1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself depending on the value of bFree 88 ** 89 ** If bFree==1, call sqlite3DbFree() on the p object. 90 ** If bFree==0, Leave the first Select object unfreed 91 */ 92 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 93 while( p ){ 94 Select *pPrior = p->pPrior; 95 sqlite3ExprListDelete(db, p->pEList); 96 sqlite3SrcListDelete(db, p->pSrc); 97 sqlite3ExprDelete(db, p->pWhere); 98 sqlite3ExprListDelete(db, p->pGroupBy); 99 sqlite3ExprDelete(db, p->pHaving); 100 sqlite3ExprListDelete(db, p->pOrderBy); 101 sqlite3ExprDelete(db, p->pLimit); 102 #ifndef SQLITE_OMIT_WINDOWFUNC 103 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 104 sqlite3WindowListDelete(db, p->pWinDefn); 105 } 106 assert( p->pWin==0 ); 107 #endif 108 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 109 if( bFree ) sqlite3DbFreeNN(db, p); 110 p = pPrior; 111 bFree = 1; 112 } 113 } 114 115 /* 116 ** Initialize a SelectDest structure. 117 */ 118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 119 pDest->eDest = (u8)eDest; 120 pDest->iSDParm = iParm; 121 pDest->zAffSdst = 0; 122 pDest->iSdst = 0; 123 pDest->nSdst = 0; 124 } 125 126 127 /* 128 ** Allocate a new Select structure and return a pointer to that 129 ** structure. 130 */ 131 Select *sqlite3SelectNew( 132 Parse *pParse, /* Parsing context */ 133 ExprList *pEList, /* which columns to include in the result */ 134 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 135 Expr *pWhere, /* the WHERE clause */ 136 ExprList *pGroupBy, /* the GROUP BY clause */ 137 Expr *pHaving, /* the HAVING clause */ 138 ExprList *pOrderBy, /* the ORDER BY clause */ 139 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 140 Expr *pLimit /* LIMIT value. NULL means not used */ 141 ){ 142 Select *pNew; 143 Select standin; 144 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 145 if( pNew==0 ){ 146 assert( pParse->db->mallocFailed ); 147 pNew = &standin; 148 } 149 if( pEList==0 ){ 150 pEList = sqlite3ExprListAppend(pParse, 0, 151 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 152 } 153 pNew->pEList = pEList; 154 pNew->op = TK_SELECT; 155 pNew->selFlags = selFlags; 156 pNew->iLimit = 0; 157 pNew->iOffset = 0; 158 pNew->selId = ++pParse->nSelect; 159 pNew->addrOpenEphm[0] = -1; 160 pNew->addrOpenEphm[1] = -1; 161 pNew->nSelectRow = 0; 162 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 163 pNew->pSrc = pSrc; 164 pNew->pWhere = pWhere; 165 pNew->pGroupBy = pGroupBy; 166 pNew->pHaving = pHaving; 167 pNew->pOrderBy = pOrderBy; 168 pNew->pPrior = 0; 169 pNew->pNext = 0; 170 pNew->pLimit = pLimit; 171 pNew->pWith = 0; 172 #ifndef SQLITE_OMIT_WINDOWFUNC 173 pNew->pWin = 0; 174 pNew->pWinDefn = 0; 175 #endif 176 if( pParse->db->mallocFailed ) { 177 clearSelect(pParse->db, pNew, pNew!=&standin); 178 pNew = 0; 179 }else{ 180 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 181 } 182 assert( pNew!=&standin ); 183 return pNew; 184 } 185 186 187 /* 188 ** Delete the given Select structure and all of its substructures. 189 */ 190 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 192 } 193 194 /* 195 ** Delete all the substructure for p, but keep p allocated. Redefine 196 ** p to be a single SELECT where every column of the result set has a 197 ** value of NULL. 198 */ 199 void sqlite3SelectReset(Parse *pParse, Select *p){ 200 if( ALWAYS(p) ){ 201 clearSelect(pParse->db, p, 0); 202 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 203 p->pEList = sqlite3ExprListAppend(pParse, 0, 204 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 205 } 206 } 207 208 /* 209 ** Return a pointer to the right-most SELECT statement in a compound. 210 */ 211 static Select *findRightmost(Select *p){ 212 while( p->pNext ) p = p->pNext; 213 return p; 214 } 215 216 /* 217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 218 ** type of join. Return an integer constant that expresses that type 219 ** in terms of the following bit values: 220 ** 221 ** JT_INNER 222 ** JT_CROSS 223 ** JT_OUTER 224 ** JT_NATURAL 225 ** JT_LEFT 226 ** JT_RIGHT 227 ** 228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 229 ** 230 ** If an illegal or unsupported join type is seen, then still return 231 ** a join type, but put an error in the pParse structure. 232 */ 233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 234 int jointype = 0; 235 Token *apAll[3]; 236 Token *p; 237 /* 0123456789 123456789 123456789 123 */ 238 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 239 static const struct { 240 u8 i; /* Beginning of keyword text in zKeyText[] */ 241 u8 nChar; /* Length of the keyword in characters */ 242 u8 code; /* Join type mask */ 243 } aKeyword[] = { 244 /* natural */ { 0, 7, JT_NATURAL }, 245 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 246 /* outer */ { 10, 5, JT_OUTER }, 247 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 248 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 249 /* inner */ { 23, 5, JT_INNER }, 250 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 251 }; 252 int i, j; 253 apAll[0] = pA; 254 apAll[1] = pB; 255 apAll[2] = pC; 256 for(i=0; i<3 && apAll[i]; i++){ 257 p = apAll[i]; 258 for(j=0; j<ArraySize(aKeyword); j++){ 259 if( p->n==aKeyword[j].nChar 260 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 261 jointype |= aKeyword[j].code; 262 break; 263 } 264 } 265 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 266 if( j>=ArraySize(aKeyword) ){ 267 jointype |= JT_ERROR; 268 break; 269 } 270 } 271 if( 272 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 273 (jointype & JT_ERROR)!=0 274 ){ 275 const char *zSp = " "; 276 assert( pB!=0 ); 277 if( pC==0 ){ zSp++; } 278 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 279 "%T %T%s%T", pA, pB, zSp, pC); 280 jointype = JT_INNER; 281 }else if( (jointype & JT_OUTER)!=0 282 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 283 sqlite3ErrorMsg(pParse, 284 "RIGHT and FULL OUTER JOINs are not currently supported"); 285 jointype = JT_INNER; 286 } 287 return jointype; 288 } 289 290 /* 291 ** Return the index of a column in a table. Return -1 if the column 292 ** is not contained in the table. 293 */ 294 static int columnIndex(Table *pTab, const char *zCol){ 295 int i; 296 for(i=0; i<pTab->nCol; i++){ 297 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 298 } 299 return -1; 300 } 301 302 /* 303 ** Search the first N tables in pSrc, from left to right, looking for a 304 ** table that has a column named zCol. 305 ** 306 ** When found, set *piTab and *piCol to the table index and column index 307 ** of the matching column and return TRUE. 308 ** 309 ** If not found, return FALSE. 310 */ 311 static int tableAndColumnIndex( 312 SrcList *pSrc, /* Array of tables to search */ 313 int N, /* Number of tables in pSrc->a[] to search */ 314 const char *zCol, /* Name of the column we are looking for */ 315 int *piTab, /* Write index of pSrc->a[] here */ 316 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 317 ){ 318 int i; /* For looping over tables in pSrc */ 319 int iCol; /* Index of column matching zCol */ 320 321 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 322 for(i=0; i<N; i++){ 323 iCol = columnIndex(pSrc->a[i].pTab, zCol); 324 if( iCol>=0 ){ 325 if( piTab ){ 326 *piTab = i; 327 *piCol = iCol; 328 } 329 return 1; 330 } 331 } 332 return 0; 333 } 334 335 /* 336 ** This function is used to add terms implied by JOIN syntax to the 337 ** WHERE clause expression of a SELECT statement. The new term, which 338 ** is ANDed with the existing WHERE clause, is of the form: 339 ** 340 ** (tab1.col1 = tab2.col2) 341 ** 342 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 343 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 344 ** column iColRight of tab2. 345 */ 346 static void addWhereTerm( 347 Parse *pParse, /* Parsing context */ 348 SrcList *pSrc, /* List of tables in FROM clause */ 349 int iLeft, /* Index of first table to join in pSrc */ 350 int iColLeft, /* Index of column in first table */ 351 int iRight, /* Index of second table in pSrc */ 352 int iColRight, /* Index of column in second table */ 353 int isOuterJoin, /* True if this is an OUTER join */ 354 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 355 ){ 356 sqlite3 *db = pParse->db; 357 Expr *pE1; 358 Expr *pE2; 359 Expr *pEq; 360 361 assert( iLeft<iRight ); 362 assert( pSrc->nSrc>iRight ); 363 assert( pSrc->a[iLeft].pTab ); 364 assert( pSrc->a[iRight].pTab ); 365 366 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 367 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 368 369 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 370 if( pEq && isOuterJoin ){ 371 ExprSetProperty(pEq, EP_FromJoin); 372 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 373 ExprSetVVAProperty(pEq, EP_NoReduce); 374 pEq->iRightJoinTable = (i16)pE2->iTable; 375 } 376 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 377 } 378 379 /* 380 ** Set the EP_FromJoin property on all terms of the given expression. 381 ** And set the Expr.iRightJoinTable to iTable for every term in the 382 ** expression. 383 ** 384 ** The EP_FromJoin property is used on terms of an expression to tell 385 ** the LEFT OUTER JOIN processing logic that this term is part of the 386 ** join restriction specified in the ON or USING clause and not a part 387 ** of the more general WHERE clause. These terms are moved over to the 388 ** WHERE clause during join processing but we need to remember that they 389 ** originated in the ON or USING clause. 390 ** 391 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 392 ** expression depends on table iRightJoinTable even if that table is not 393 ** explicitly mentioned in the expression. That information is needed 394 ** for cases like this: 395 ** 396 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 397 ** 398 ** The where clause needs to defer the handling of the t1.x=5 399 ** term until after the t2 loop of the join. In that way, a 400 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 401 ** defer the handling of t1.x=5, it will be processed immediately 402 ** after the t1 loop and rows with t1.x!=5 will never appear in 403 ** the output, which is incorrect. 404 */ 405 void sqlite3SetJoinExpr(Expr *p, int iTable){ 406 while( p ){ 407 ExprSetProperty(p, EP_FromJoin); 408 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 409 ExprSetVVAProperty(p, EP_NoReduce); 410 p->iRightJoinTable = (i16)iTable; 411 if( p->op==TK_FUNCTION && p->x.pList ){ 412 int i; 413 for(i=0; i<p->x.pList->nExpr; i++){ 414 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 415 } 416 } 417 sqlite3SetJoinExpr(p->pLeft, iTable); 418 p = p->pRight; 419 } 420 } 421 422 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 423 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 424 ** an ordinary term that omits the EP_FromJoin mark. 425 ** 426 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 427 */ 428 static void unsetJoinExpr(Expr *p, int iTable){ 429 while( p ){ 430 if( ExprHasProperty(p, EP_FromJoin) 431 && (iTable<0 || p->iRightJoinTable==iTable) ){ 432 ExprClearProperty(p, EP_FromJoin); 433 } 434 if( p->op==TK_FUNCTION && p->x.pList ){ 435 int i; 436 for(i=0; i<p->x.pList->nExpr; i++){ 437 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 438 } 439 } 440 unsetJoinExpr(p->pLeft, iTable); 441 p = p->pRight; 442 } 443 } 444 445 /* 446 ** This routine processes the join information for a SELECT statement. 447 ** ON and USING clauses are converted into extra terms of the WHERE clause. 448 ** NATURAL joins also create extra WHERE clause terms. 449 ** 450 ** The terms of a FROM clause are contained in the Select.pSrc structure. 451 ** The left most table is the first entry in Select.pSrc. The right-most 452 ** table is the last entry. The join operator is held in the entry to 453 ** the left. Thus entry 0 contains the join operator for the join between 454 ** entries 0 and 1. Any ON or USING clauses associated with the join are 455 ** also attached to the left entry. 456 ** 457 ** This routine returns the number of errors encountered. 458 */ 459 static int sqliteProcessJoin(Parse *pParse, Select *p){ 460 SrcList *pSrc; /* All tables in the FROM clause */ 461 int i, j; /* Loop counters */ 462 struct SrcList_item *pLeft; /* Left table being joined */ 463 struct SrcList_item *pRight; /* Right table being joined */ 464 465 pSrc = p->pSrc; 466 pLeft = &pSrc->a[0]; 467 pRight = &pLeft[1]; 468 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 469 Table *pRightTab = pRight->pTab; 470 int isOuter; 471 472 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 473 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 474 475 /* When the NATURAL keyword is present, add WHERE clause terms for 476 ** every column that the two tables have in common. 477 */ 478 if( pRight->fg.jointype & JT_NATURAL ){ 479 if( pRight->pOn || pRight->pUsing ){ 480 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 481 "an ON or USING clause", 0); 482 return 1; 483 } 484 for(j=0; j<pRightTab->nCol; j++){ 485 char *zName; /* Name of column in the right table */ 486 int iLeft; /* Matching left table */ 487 int iLeftCol; /* Matching column in the left table */ 488 489 zName = pRightTab->aCol[j].zName; 490 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 491 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 492 isOuter, &p->pWhere); 493 } 494 } 495 } 496 497 /* Disallow both ON and USING clauses in the same join 498 */ 499 if( pRight->pOn && pRight->pUsing ){ 500 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 501 "clauses in the same join"); 502 return 1; 503 } 504 505 /* Add the ON clause to the end of the WHERE clause, connected by 506 ** an AND operator. 507 */ 508 if( pRight->pOn ){ 509 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 510 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 511 pRight->pOn = 0; 512 } 513 514 /* Create extra terms on the WHERE clause for each column named 515 ** in the USING clause. Example: If the two tables to be joined are 516 ** A and B and the USING clause names X, Y, and Z, then add this 517 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 518 ** Report an error if any column mentioned in the USING clause is 519 ** not contained in both tables to be joined. 520 */ 521 if( pRight->pUsing ){ 522 IdList *pList = pRight->pUsing; 523 for(j=0; j<pList->nId; j++){ 524 char *zName; /* Name of the term in the USING clause */ 525 int iLeft; /* Table on the left with matching column name */ 526 int iLeftCol; /* Column number of matching column on the left */ 527 int iRightCol; /* Column number of matching column on the right */ 528 529 zName = pList->a[j].zName; 530 iRightCol = columnIndex(pRightTab, zName); 531 if( iRightCol<0 532 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 533 ){ 534 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 535 "not present in both tables", zName); 536 return 1; 537 } 538 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 539 isOuter, &p->pWhere); 540 } 541 } 542 } 543 return 0; 544 } 545 546 /* 547 ** An instance of this object holds information (beyond pParse and pSelect) 548 ** needed to load the next result row that is to be added to the sorter. 549 */ 550 typedef struct RowLoadInfo RowLoadInfo; 551 struct RowLoadInfo { 552 int regResult; /* Store results in array of registers here */ 553 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 555 ExprList *pExtra; /* Extra columns needed by sorter refs */ 556 int regExtraResult; /* Where to load the extra columns */ 557 #endif 558 }; 559 560 /* 561 ** This routine does the work of loading query data into an array of 562 ** registers so that it can be added to the sorter. 563 */ 564 static void innerLoopLoadRow( 565 Parse *pParse, /* Statement under construction */ 566 Select *pSelect, /* The query being coded */ 567 RowLoadInfo *pInfo /* Info needed to complete the row load */ 568 ){ 569 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 570 0, pInfo->ecelFlags); 571 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 572 if( pInfo->pExtra ){ 573 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 574 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 575 } 576 #endif 577 } 578 579 /* 580 ** Code the OP_MakeRecord instruction that generates the entry to be 581 ** added into the sorter. 582 ** 583 ** Return the register in which the result is stored. 584 */ 585 static int makeSorterRecord( 586 Parse *pParse, 587 SortCtx *pSort, 588 Select *pSelect, 589 int regBase, 590 int nBase 591 ){ 592 int nOBSat = pSort->nOBSat; 593 Vdbe *v = pParse->pVdbe; 594 int regOut = ++pParse->nMem; 595 if( pSort->pDeferredRowLoad ){ 596 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 597 } 598 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 599 return regOut; 600 } 601 602 /* 603 ** Generate code that will push the record in registers regData 604 ** through regData+nData-1 onto the sorter. 605 */ 606 static void pushOntoSorter( 607 Parse *pParse, /* Parser context */ 608 SortCtx *pSort, /* Information about the ORDER BY clause */ 609 Select *pSelect, /* The whole SELECT statement */ 610 int regData, /* First register holding data to be sorted */ 611 int regOrigData, /* First register holding data before packing */ 612 int nData, /* Number of elements in the regData data array */ 613 int nPrefixReg /* No. of reg prior to regData available for use */ 614 ){ 615 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 616 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 617 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 618 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 619 int regBase; /* Regs for sorter record */ 620 int regRecord = 0; /* Assembled sorter record */ 621 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 622 int op; /* Opcode to add sorter record to sorter */ 623 int iLimit; /* LIMIT counter */ 624 int iSkip = 0; /* End of the sorter insert loop */ 625 626 assert( bSeq==0 || bSeq==1 ); 627 628 /* Three cases: 629 ** (1) The data to be sorted has already been packed into a Record 630 ** by a prior OP_MakeRecord. In this case nData==1 and regData 631 ** will be completely unrelated to regOrigData. 632 ** (2) All output columns are included in the sort record. In that 633 ** case regData==regOrigData. 634 ** (3) Some output columns are omitted from the sort record due to 635 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 636 ** SQLITE_ECEL_OMITREF optimization, or due to the 637 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 638 ** regOrigData is 0 to prevent this routine from trying to copy 639 ** values that might not yet exist. 640 */ 641 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 642 643 if( nPrefixReg ){ 644 assert( nPrefixReg==nExpr+bSeq ); 645 regBase = regData - nPrefixReg; 646 }else{ 647 regBase = pParse->nMem + 1; 648 pParse->nMem += nBase; 649 } 650 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 651 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 652 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 653 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 654 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 655 if( bSeq ){ 656 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 657 } 658 if( nPrefixReg==0 && nData>0 ){ 659 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 660 } 661 if( nOBSat>0 ){ 662 int regPrevKey; /* The first nOBSat columns of the previous row */ 663 int addrFirst; /* Address of the OP_IfNot opcode */ 664 int addrJmp; /* Address of the OP_Jump opcode */ 665 VdbeOp *pOp; /* Opcode that opens the sorter */ 666 int nKey; /* Number of sorting key columns, including OP_Sequence */ 667 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 668 669 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 670 regPrevKey = pParse->nMem+1; 671 pParse->nMem += pSort->nOBSat; 672 nKey = nExpr - pSort->nOBSat + bSeq; 673 if( bSeq ){ 674 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 675 }else{ 676 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 677 } 678 VdbeCoverage(v); 679 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 680 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 681 if( pParse->db->mallocFailed ) return; 682 pOp->p2 = nKey + nData; 683 pKI = pOp->p4.pKeyInfo; 684 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 685 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 686 testcase( pKI->nAllField > pKI->nKeyField+2 ); 687 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 688 pKI->nAllField-pKI->nKeyField-1); 689 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 690 addrJmp = sqlite3VdbeCurrentAddr(v); 691 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 692 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 693 pSort->regReturn = ++pParse->nMem; 694 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 695 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 696 if( iLimit ){ 697 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 698 VdbeCoverage(v); 699 } 700 sqlite3VdbeJumpHere(v, addrFirst); 701 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 702 sqlite3VdbeJumpHere(v, addrJmp); 703 } 704 if( iLimit ){ 705 /* At this point the values for the new sorter entry are stored 706 ** in an array of registers. They need to be composed into a record 707 ** and inserted into the sorter if either (a) there are currently 708 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 709 ** the largest record currently in the sorter. If (b) is true and there 710 ** are already LIMIT+OFFSET items in the sorter, delete the largest 711 ** entry before inserting the new one. This way there are never more 712 ** than LIMIT+OFFSET items in the sorter. 713 ** 714 ** If the new record does not need to be inserted into the sorter, 715 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 716 ** value is not zero, then it is a label of where to jump. Otherwise, 717 ** just bypass the row insert logic. See the header comment on the 718 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 719 */ 720 int iCsr = pSort->iECursor; 721 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 722 VdbeCoverage(v); 723 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 724 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 725 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 726 VdbeCoverage(v); 727 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 728 } 729 if( regRecord==0 ){ 730 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 731 } 732 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 733 op = OP_SorterInsert; 734 }else{ 735 op = OP_IdxInsert; 736 } 737 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 738 regBase+nOBSat, nBase-nOBSat); 739 if( iSkip ){ 740 sqlite3VdbeChangeP2(v, iSkip, 741 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 742 } 743 } 744 745 /* 746 ** Add code to implement the OFFSET 747 */ 748 static void codeOffset( 749 Vdbe *v, /* Generate code into this VM */ 750 int iOffset, /* Register holding the offset counter */ 751 int iContinue /* Jump here to skip the current record */ 752 ){ 753 if( iOffset>0 ){ 754 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 755 VdbeComment((v, "OFFSET")); 756 } 757 } 758 759 /* 760 ** Add code that will check to make sure the N registers starting at iMem 761 ** form a distinct entry. iTab is a sorting index that holds previously 762 ** seen combinations of the N values. A new entry is made in iTab 763 ** if the current N values are new. 764 ** 765 ** A jump to addrRepeat is made and the N+1 values are popped from the 766 ** stack if the top N elements are not distinct. 767 */ 768 static void codeDistinct( 769 Parse *pParse, /* Parsing and code generating context */ 770 int iTab, /* A sorting index used to test for distinctness */ 771 int addrRepeat, /* Jump to here if not distinct */ 772 int N, /* Number of elements */ 773 int iMem /* First element */ 774 ){ 775 Vdbe *v; 776 int r1; 777 778 v = pParse->pVdbe; 779 r1 = sqlite3GetTempReg(pParse); 780 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 781 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 782 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 783 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 784 sqlite3ReleaseTempReg(pParse, r1); 785 } 786 787 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 788 /* 789 ** This function is called as part of inner-loop generation for a SELECT 790 ** statement with an ORDER BY that is not optimized by an index. It 791 ** determines the expressions, if any, that the sorter-reference 792 ** optimization should be used for. The sorter-reference optimization 793 ** is used for SELECT queries like: 794 ** 795 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 796 ** 797 ** If the optimization is used for expression "bigblob", then instead of 798 ** storing values read from that column in the sorter records, the PK of 799 ** the row from table t1 is stored instead. Then, as records are extracted from 800 ** the sorter to return to the user, the required value of bigblob is 801 ** retrieved directly from table t1. If the values are very large, this 802 ** can be more efficient than storing them directly in the sorter records. 803 ** 804 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 805 ** for which the sorter-reference optimization should be enabled. 806 ** Additionally, the pSort->aDefer[] array is populated with entries 807 ** for all cursors required to evaluate all selected expressions. Finally. 808 ** output variable (*ppExtra) is set to an expression list containing 809 ** expressions for all extra PK values that should be stored in the 810 ** sorter records. 811 */ 812 static void selectExprDefer( 813 Parse *pParse, /* Leave any error here */ 814 SortCtx *pSort, /* Sorter context */ 815 ExprList *pEList, /* Expressions destined for sorter */ 816 ExprList **ppExtra /* Expressions to append to sorter record */ 817 ){ 818 int i; 819 int nDefer = 0; 820 ExprList *pExtra = 0; 821 for(i=0; i<pEList->nExpr; i++){ 822 struct ExprList_item *pItem = &pEList->a[i]; 823 if( pItem->u.x.iOrderByCol==0 ){ 824 Expr *pExpr = pItem->pExpr; 825 Table *pTab = pExpr->y.pTab; 826 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 827 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 828 ){ 829 int j; 830 for(j=0; j<nDefer; j++){ 831 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 832 } 833 if( j==nDefer ){ 834 if( nDefer==ArraySize(pSort->aDefer) ){ 835 continue; 836 }else{ 837 int nKey = 1; 838 int k; 839 Index *pPk = 0; 840 if( !HasRowid(pTab) ){ 841 pPk = sqlite3PrimaryKeyIndex(pTab); 842 nKey = pPk->nKeyCol; 843 } 844 for(k=0; k<nKey; k++){ 845 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 846 if( pNew ){ 847 pNew->iTable = pExpr->iTable; 848 pNew->y.pTab = pExpr->y.pTab; 849 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 850 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 851 } 852 } 853 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 854 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 855 pSort->aDefer[nDefer].nKey = nKey; 856 nDefer++; 857 } 858 } 859 pItem->bSorterRef = 1; 860 } 861 } 862 } 863 pSort->nDefer = (u8)nDefer; 864 *ppExtra = pExtra; 865 } 866 #endif 867 868 /* 869 ** This routine generates the code for the inside of the inner loop 870 ** of a SELECT. 871 ** 872 ** If srcTab is negative, then the p->pEList expressions 873 ** are evaluated in order to get the data for this row. If srcTab is 874 ** zero or more, then data is pulled from srcTab and p->pEList is used only 875 ** to get the number of columns and the collation sequence for each column. 876 */ 877 static void selectInnerLoop( 878 Parse *pParse, /* The parser context */ 879 Select *p, /* The complete select statement being coded */ 880 int srcTab, /* Pull data from this table if non-negative */ 881 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 882 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 883 SelectDest *pDest, /* How to dispose of the results */ 884 int iContinue, /* Jump here to continue with next row */ 885 int iBreak /* Jump here to break out of the inner loop */ 886 ){ 887 Vdbe *v = pParse->pVdbe; 888 int i; 889 int hasDistinct; /* True if the DISTINCT keyword is present */ 890 int eDest = pDest->eDest; /* How to dispose of results */ 891 int iParm = pDest->iSDParm; /* First argument to disposal method */ 892 int nResultCol; /* Number of result columns */ 893 int nPrefixReg = 0; /* Number of extra registers before regResult */ 894 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 895 896 /* Usually, regResult is the first cell in an array of memory cells 897 ** containing the current result row. In this case regOrig is set to the 898 ** same value. However, if the results are being sent to the sorter, the 899 ** values for any expressions that are also part of the sort-key are omitted 900 ** from this array. In this case regOrig is set to zero. */ 901 int regResult; /* Start of memory holding current results */ 902 int regOrig; /* Start of memory holding full result (or 0) */ 903 904 assert( v ); 905 assert( p->pEList!=0 ); 906 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 907 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 908 if( pSort==0 && !hasDistinct ){ 909 assert( iContinue!=0 ); 910 codeOffset(v, p->iOffset, iContinue); 911 } 912 913 /* Pull the requested columns. 914 */ 915 nResultCol = p->pEList->nExpr; 916 917 if( pDest->iSdst==0 ){ 918 if( pSort ){ 919 nPrefixReg = pSort->pOrderBy->nExpr; 920 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 921 pParse->nMem += nPrefixReg; 922 } 923 pDest->iSdst = pParse->nMem+1; 924 pParse->nMem += nResultCol; 925 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 926 /* This is an error condition that can result, for example, when a SELECT 927 ** on the right-hand side of an INSERT contains more result columns than 928 ** there are columns in the table on the left. The error will be caught 929 ** and reported later. But we need to make sure enough memory is allocated 930 ** to avoid other spurious errors in the meantime. */ 931 pParse->nMem += nResultCol; 932 } 933 pDest->nSdst = nResultCol; 934 regOrig = regResult = pDest->iSdst; 935 if( srcTab>=0 ){ 936 for(i=0; i<nResultCol; i++){ 937 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 938 VdbeComment((v, "%s", p->pEList->a[i].zName)); 939 } 940 }else if( eDest!=SRT_Exists ){ 941 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 942 ExprList *pExtra = 0; 943 #endif 944 /* If the destination is an EXISTS(...) expression, the actual 945 ** values returned by the SELECT are not required. 946 */ 947 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 948 ExprList *pEList; 949 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 950 ecelFlags = SQLITE_ECEL_DUP; 951 }else{ 952 ecelFlags = 0; 953 } 954 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 955 /* For each expression in p->pEList that is a copy of an expression in 956 ** the ORDER BY clause (pSort->pOrderBy), set the associated 957 ** iOrderByCol value to one more than the index of the ORDER BY 958 ** expression within the sort-key that pushOntoSorter() will generate. 959 ** This allows the p->pEList field to be omitted from the sorted record, 960 ** saving space and CPU cycles. */ 961 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 962 963 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 964 int j; 965 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 966 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 967 } 968 } 969 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 970 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 971 if( pExtra && pParse->db->mallocFailed==0 ){ 972 /* If there are any extra PK columns to add to the sorter records, 973 ** allocate extra memory cells and adjust the OpenEphemeral 974 ** instruction to account for the larger records. This is only 975 ** required if there are one or more WITHOUT ROWID tables with 976 ** composite primary keys in the SortCtx.aDefer[] array. */ 977 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 978 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 979 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 980 pParse->nMem += pExtra->nExpr; 981 } 982 #endif 983 984 /* Adjust nResultCol to account for columns that are omitted 985 ** from the sorter by the optimizations in this branch */ 986 pEList = p->pEList; 987 for(i=0; i<pEList->nExpr; i++){ 988 if( pEList->a[i].u.x.iOrderByCol>0 989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 990 || pEList->a[i].bSorterRef 991 #endif 992 ){ 993 nResultCol--; 994 regOrig = 0; 995 } 996 } 997 998 testcase( regOrig ); 999 testcase( eDest==SRT_Set ); 1000 testcase( eDest==SRT_Mem ); 1001 testcase( eDest==SRT_Coroutine ); 1002 testcase( eDest==SRT_Output ); 1003 assert( eDest==SRT_Set || eDest==SRT_Mem 1004 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1005 } 1006 sRowLoadInfo.regResult = regResult; 1007 sRowLoadInfo.ecelFlags = ecelFlags; 1008 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1009 sRowLoadInfo.pExtra = pExtra; 1010 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1011 if( pExtra ) nResultCol += pExtra->nExpr; 1012 #endif 1013 if( p->iLimit 1014 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1015 && nPrefixReg>0 1016 ){ 1017 assert( pSort!=0 ); 1018 assert( hasDistinct==0 ); 1019 pSort->pDeferredRowLoad = &sRowLoadInfo; 1020 regOrig = 0; 1021 }else{ 1022 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1023 } 1024 } 1025 1026 /* If the DISTINCT keyword was present on the SELECT statement 1027 ** and this row has been seen before, then do not make this row 1028 ** part of the result. 1029 */ 1030 if( hasDistinct ){ 1031 switch( pDistinct->eTnctType ){ 1032 case WHERE_DISTINCT_ORDERED: { 1033 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1034 int iJump; /* Jump destination */ 1035 int regPrev; /* Previous row content */ 1036 1037 /* Allocate space for the previous row */ 1038 regPrev = pParse->nMem+1; 1039 pParse->nMem += nResultCol; 1040 1041 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1042 ** sets the MEM_Cleared bit on the first register of the 1043 ** previous value. This will cause the OP_Ne below to always 1044 ** fail on the first iteration of the loop even if the first 1045 ** row is all NULLs. 1046 */ 1047 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1048 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1049 pOp->opcode = OP_Null; 1050 pOp->p1 = 1; 1051 pOp->p2 = regPrev; 1052 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1053 1054 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1055 for(i=0; i<nResultCol; i++){ 1056 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1057 if( i<nResultCol-1 ){ 1058 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1059 VdbeCoverage(v); 1060 }else{ 1061 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1062 VdbeCoverage(v); 1063 } 1064 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1065 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1066 } 1067 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1068 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1069 break; 1070 } 1071 1072 case WHERE_DISTINCT_UNIQUE: { 1073 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1074 break; 1075 } 1076 1077 default: { 1078 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1079 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1080 regResult); 1081 break; 1082 } 1083 } 1084 if( pSort==0 ){ 1085 codeOffset(v, p->iOffset, iContinue); 1086 } 1087 } 1088 1089 switch( eDest ){ 1090 /* In this mode, write each query result to the key of the temporary 1091 ** table iParm. 1092 */ 1093 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1094 case SRT_Union: { 1095 int r1; 1096 r1 = sqlite3GetTempReg(pParse); 1097 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1098 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1099 sqlite3ReleaseTempReg(pParse, r1); 1100 break; 1101 } 1102 1103 /* Construct a record from the query result, but instead of 1104 ** saving that record, use it as a key to delete elements from 1105 ** the temporary table iParm. 1106 */ 1107 case SRT_Except: { 1108 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1109 break; 1110 } 1111 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1112 1113 /* Store the result as data using a unique key. 1114 */ 1115 case SRT_Fifo: 1116 case SRT_DistFifo: 1117 case SRT_Table: 1118 case SRT_EphemTab: { 1119 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1120 testcase( eDest==SRT_Table ); 1121 testcase( eDest==SRT_EphemTab ); 1122 testcase( eDest==SRT_Fifo ); 1123 testcase( eDest==SRT_DistFifo ); 1124 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1125 #ifndef SQLITE_OMIT_CTE 1126 if( eDest==SRT_DistFifo ){ 1127 /* If the destination is DistFifo, then cursor (iParm+1) is open 1128 ** on an ephemeral index. If the current row is already present 1129 ** in the index, do not write it to the output. If not, add the 1130 ** current row to the index and proceed with writing it to the 1131 ** output table as well. */ 1132 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1133 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1134 VdbeCoverage(v); 1135 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1136 assert( pSort==0 ); 1137 } 1138 #endif 1139 if( pSort ){ 1140 assert( regResult==regOrig ); 1141 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1142 }else{ 1143 int r2 = sqlite3GetTempReg(pParse); 1144 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1145 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1146 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1147 sqlite3ReleaseTempReg(pParse, r2); 1148 } 1149 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1150 break; 1151 } 1152 1153 #ifndef SQLITE_OMIT_SUBQUERY 1154 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1155 ** then there should be a single item on the stack. Write this 1156 ** item into the set table with bogus data. 1157 */ 1158 case SRT_Set: { 1159 if( pSort ){ 1160 /* At first glance you would think we could optimize out the 1161 ** ORDER BY in this case since the order of entries in the set 1162 ** does not matter. But there might be a LIMIT clause, in which 1163 ** case the order does matter */ 1164 pushOntoSorter( 1165 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1166 }else{ 1167 int r1 = sqlite3GetTempReg(pParse); 1168 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1169 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1170 r1, pDest->zAffSdst, nResultCol); 1171 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1172 sqlite3ReleaseTempReg(pParse, r1); 1173 } 1174 break; 1175 } 1176 1177 /* If any row exist in the result set, record that fact and abort. 1178 */ 1179 case SRT_Exists: { 1180 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1181 /* The LIMIT clause will terminate the loop for us */ 1182 break; 1183 } 1184 1185 /* If this is a scalar select that is part of an expression, then 1186 ** store the results in the appropriate memory cell or array of 1187 ** memory cells and break out of the scan loop. 1188 */ 1189 case SRT_Mem: { 1190 if( pSort ){ 1191 assert( nResultCol<=pDest->nSdst ); 1192 pushOntoSorter( 1193 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1194 }else{ 1195 assert( nResultCol==pDest->nSdst ); 1196 assert( regResult==iParm ); 1197 /* The LIMIT clause will jump out of the loop for us */ 1198 } 1199 break; 1200 } 1201 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1202 1203 case SRT_Coroutine: /* Send data to a co-routine */ 1204 case SRT_Output: { /* Return the results */ 1205 testcase( eDest==SRT_Coroutine ); 1206 testcase( eDest==SRT_Output ); 1207 if( pSort ){ 1208 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1209 nPrefixReg); 1210 }else if( eDest==SRT_Coroutine ){ 1211 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1212 }else{ 1213 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1214 } 1215 break; 1216 } 1217 1218 #ifndef SQLITE_OMIT_CTE 1219 /* Write the results into a priority queue that is order according to 1220 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1221 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1222 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1223 ** final OP_Sequence column. The last column is the record as a blob. 1224 */ 1225 case SRT_DistQueue: 1226 case SRT_Queue: { 1227 int nKey; 1228 int r1, r2, r3; 1229 int addrTest = 0; 1230 ExprList *pSO; 1231 pSO = pDest->pOrderBy; 1232 assert( pSO ); 1233 nKey = pSO->nExpr; 1234 r1 = sqlite3GetTempReg(pParse); 1235 r2 = sqlite3GetTempRange(pParse, nKey+2); 1236 r3 = r2+nKey+1; 1237 if( eDest==SRT_DistQueue ){ 1238 /* If the destination is DistQueue, then cursor (iParm+1) is open 1239 ** on a second ephemeral index that holds all values every previously 1240 ** added to the queue. */ 1241 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1242 regResult, nResultCol); 1243 VdbeCoverage(v); 1244 } 1245 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1246 if( eDest==SRT_DistQueue ){ 1247 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1248 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1249 } 1250 for(i=0; i<nKey; i++){ 1251 sqlite3VdbeAddOp2(v, OP_SCopy, 1252 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1253 r2+i); 1254 } 1255 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1256 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1257 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1258 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1259 sqlite3ReleaseTempReg(pParse, r1); 1260 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1261 break; 1262 } 1263 #endif /* SQLITE_OMIT_CTE */ 1264 1265 1266 1267 #if !defined(SQLITE_OMIT_TRIGGER) 1268 /* Discard the results. This is used for SELECT statements inside 1269 ** the body of a TRIGGER. The purpose of such selects is to call 1270 ** user-defined functions that have side effects. We do not care 1271 ** about the actual results of the select. 1272 */ 1273 default: { 1274 assert( eDest==SRT_Discard ); 1275 break; 1276 } 1277 #endif 1278 } 1279 1280 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1281 ** there is a sorter, in which case the sorter has already limited 1282 ** the output for us. 1283 */ 1284 if( pSort==0 && p->iLimit ){ 1285 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1286 } 1287 } 1288 1289 /* 1290 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1291 ** X extra columns. 1292 */ 1293 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1294 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1295 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1296 if( p ){ 1297 p->aSortFlags = (u8*)&p->aColl[N+X]; 1298 p->nKeyField = (u16)N; 1299 p->nAllField = (u16)(N+X); 1300 p->enc = ENC(db); 1301 p->db = db; 1302 p->nRef = 1; 1303 memset(&p[1], 0, nExtra); 1304 }else{ 1305 sqlite3OomFault(db); 1306 } 1307 return p; 1308 } 1309 1310 /* 1311 ** Deallocate a KeyInfo object 1312 */ 1313 void sqlite3KeyInfoUnref(KeyInfo *p){ 1314 if( p ){ 1315 assert( p->nRef>0 ); 1316 p->nRef--; 1317 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1318 } 1319 } 1320 1321 /* 1322 ** Make a new pointer to a KeyInfo object 1323 */ 1324 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1325 if( p ){ 1326 assert( p->nRef>0 ); 1327 p->nRef++; 1328 } 1329 return p; 1330 } 1331 1332 #ifdef SQLITE_DEBUG 1333 /* 1334 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1335 ** can only be changed if this is just a single reference to the object. 1336 ** 1337 ** This routine is used only inside of assert() statements. 1338 */ 1339 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1340 #endif /* SQLITE_DEBUG */ 1341 1342 /* 1343 ** Given an expression list, generate a KeyInfo structure that records 1344 ** the collating sequence for each expression in that expression list. 1345 ** 1346 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1347 ** KeyInfo structure is appropriate for initializing a virtual index to 1348 ** implement that clause. If the ExprList is the result set of a SELECT 1349 ** then the KeyInfo structure is appropriate for initializing a virtual 1350 ** index to implement a DISTINCT test. 1351 ** 1352 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1353 ** function is responsible for seeing that this structure is eventually 1354 ** freed. 1355 */ 1356 KeyInfo *sqlite3KeyInfoFromExprList( 1357 Parse *pParse, /* Parsing context */ 1358 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1359 int iStart, /* Begin with this column of pList */ 1360 int nExtra /* Add this many extra columns to the end */ 1361 ){ 1362 int nExpr; 1363 KeyInfo *pInfo; 1364 struct ExprList_item *pItem; 1365 sqlite3 *db = pParse->db; 1366 int i; 1367 1368 nExpr = pList->nExpr; 1369 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1370 if( pInfo ){ 1371 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1372 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1373 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1374 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1375 } 1376 } 1377 return pInfo; 1378 } 1379 1380 /* 1381 ** Name of the connection operator, used for error messages. 1382 */ 1383 static const char *selectOpName(int id){ 1384 char *z; 1385 switch( id ){ 1386 case TK_ALL: z = "UNION ALL"; break; 1387 case TK_INTERSECT: z = "INTERSECT"; break; 1388 case TK_EXCEPT: z = "EXCEPT"; break; 1389 default: z = "UNION"; break; 1390 } 1391 return z; 1392 } 1393 1394 #ifndef SQLITE_OMIT_EXPLAIN 1395 /* 1396 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1397 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1398 ** where the caption is of the form: 1399 ** 1400 ** "USE TEMP B-TREE FOR xxx" 1401 ** 1402 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1403 ** is determined by the zUsage argument. 1404 */ 1405 static void explainTempTable(Parse *pParse, const char *zUsage){ 1406 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1407 } 1408 1409 /* 1410 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1411 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1412 ** in sqlite3Select() to assign values to structure member variables that 1413 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1414 ** code with #ifndef directives. 1415 */ 1416 # define explainSetInteger(a, b) a = b 1417 1418 #else 1419 /* No-op versions of the explainXXX() functions and macros. */ 1420 # define explainTempTable(y,z) 1421 # define explainSetInteger(y,z) 1422 #endif 1423 1424 1425 /* 1426 ** If the inner loop was generated using a non-null pOrderBy argument, 1427 ** then the results were placed in a sorter. After the loop is terminated 1428 ** we need to run the sorter and output the results. The following 1429 ** routine generates the code needed to do that. 1430 */ 1431 static void generateSortTail( 1432 Parse *pParse, /* Parsing context */ 1433 Select *p, /* The SELECT statement */ 1434 SortCtx *pSort, /* Information on the ORDER BY clause */ 1435 int nColumn, /* Number of columns of data */ 1436 SelectDest *pDest /* Write the sorted results here */ 1437 ){ 1438 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1439 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1440 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1441 int addr; /* Top of output loop. Jump for Next. */ 1442 int addrOnce = 0; 1443 int iTab; 1444 ExprList *pOrderBy = pSort->pOrderBy; 1445 int eDest = pDest->eDest; 1446 int iParm = pDest->iSDParm; 1447 int regRow; 1448 int regRowid; 1449 int iCol; 1450 int nKey; /* Number of key columns in sorter record */ 1451 int iSortTab; /* Sorter cursor to read from */ 1452 int i; 1453 int bSeq; /* True if sorter record includes seq. no. */ 1454 int nRefKey = 0; 1455 struct ExprList_item *aOutEx = p->pEList->a; 1456 1457 assert( addrBreak<0 ); 1458 if( pSort->labelBkOut ){ 1459 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1460 sqlite3VdbeGoto(v, addrBreak); 1461 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1462 } 1463 1464 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1465 /* Open any cursors needed for sorter-reference expressions */ 1466 for(i=0; i<pSort->nDefer; i++){ 1467 Table *pTab = pSort->aDefer[i].pTab; 1468 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1469 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1470 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1471 } 1472 #endif 1473 1474 iTab = pSort->iECursor; 1475 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1476 regRowid = 0; 1477 regRow = pDest->iSdst; 1478 }else{ 1479 regRowid = sqlite3GetTempReg(pParse); 1480 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1481 regRow = sqlite3GetTempReg(pParse); 1482 nColumn = 0; 1483 }else{ 1484 regRow = sqlite3GetTempRange(pParse, nColumn); 1485 } 1486 } 1487 nKey = pOrderBy->nExpr - pSort->nOBSat; 1488 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1489 int regSortOut = ++pParse->nMem; 1490 iSortTab = pParse->nTab++; 1491 if( pSort->labelBkOut ){ 1492 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1493 } 1494 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1495 nKey+1+nColumn+nRefKey); 1496 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1497 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1498 VdbeCoverage(v); 1499 codeOffset(v, p->iOffset, addrContinue); 1500 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1501 bSeq = 0; 1502 }else{ 1503 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1504 codeOffset(v, p->iOffset, addrContinue); 1505 iSortTab = iTab; 1506 bSeq = 1; 1507 } 1508 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1509 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1510 if( aOutEx[i].bSorterRef ) continue; 1511 #endif 1512 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1513 } 1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1515 if( pSort->nDefer ){ 1516 int iKey = iCol+1; 1517 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1518 1519 for(i=0; i<pSort->nDefer; i++){ 1520 int iCsr = pSort->aDefer[i].iCsr; 1521 Table *pTab = pSort->aDefer[i].pTab; 1522 int nKey = pSort->aDefer[i].nKey; 1523 1524 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1525 if( HasRowid(pTab) ){ 1526 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1527 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1528 sqlite3VdbeCurrentAddr(v)+1, regKey); 1529 }else{ 1530 int k; 1531 int iJmp; 1532 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1533 for(k=0; k<nKey; k++){ 1534 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1535 } 1536 iJmp = sqlite3VdbeCurrentAddr(v); 1537 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1538 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1539 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1540 } 1541 } 1542 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1543 } 1544 #endif 1545 for(i=nColumn-1; i>=0; i--){ 1546 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1547 if( aOutEx[i].bSorterRef ){ 1548 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1549 }else 1550 #endif 1551 { 1552 int iRead; 1553 if( aOutEx[i].u.x.iOrderByCol ){ 1554 iRead = aOutEx[i].u.x.iOrderByCol-1; 1555 }else{ 1556 iRead = iCol--; 1557 } 1558 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1559 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1560 } 1561 } 1562 switch( eDest ){ 1563 case SRT_Table: 1564 case SRT_EphemTab: { 1565 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1566 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1567 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1568 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1569 break; 1570 } 1571 #ifndef SQLITE_OMIT_SUBQUERY 1572 case SRT_Set: { 1573 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1574 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1575 pDest->zAffSdst, nColumn); 1576 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1577 break; 1578 } 1579 case SRT_Mem: { 1580 /* The LIMIT clause will terminate the loop for us */ 1581 break; 1582 } 1583 #endif 1584 default: { 1585 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1586 testcase( eDest==SRT_Output ); 1587 testcase( eDest==SRT_Coroutine ); 1588 if( eDest==SRT_Output ){ 1589 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1590 }else{ 1591 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1592 } 1593 break; 1594 } 1595 } 1596 if( regRowid ){ 1597 if( eDest==SRT_Set ){ 1598 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1599 }else{ 1600 sqlite3ReleaseTempReg(pParse, regRow); 1601 } 1602 sqlite3ReleaseTempReg(pParse, regRowid); 1603 } 1604 /* The bottom of the loop 1605 */ 1606 sqlite3VdbeResolveLabel(v, addrContinue); 1607 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1608 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1609 }else{ 1610 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1611 } 1612 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1613 sqlite3VdbeResolveLabel(v, addrBreak); 1614 } 1615 1616 /* 1617 ** Return a pointer to a string containing the 'declaration type' of the 1618 ** expression pExpr. The string may be treated as static by the caller. 1619 ** 1620 ** Also try to estimate the size of the returned value and return that 1621 ** result in *pEstWidth. 1622 ** 1623 ** The declaration type is the exact datatype definition extracted from the 1624 ** original CREATE TABLE statement if the expression is a column. The 1625 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1626 ** is considered a column can be complex in the presence of subqueries. The 1627 ** result-set expression in all of the following SELECT statements is 1628 ** considered a column by this function. 1629 ** 1630 ** SELECT col FROM tbl; 1631 ** SELECT (SELECT col FROM tbl; 1632 ** SELECT (SELECT col FROM tbl); 1633 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1634 ** 1635 ** The declaration type for any expression other than a column is NULL. 1636 ** 1637 ** This routine has either 3 or 6 parameters depending on whether or not 1638 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1639 */ 1640 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1641 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1642 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1643 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1644 #endif 1645 static const char *columnTypeImpl( 1646 NameContext *pNC, 1647 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1648 Expr *pExpr 1649 #else 1650 Expr *pExpr, 1651 const char **pzOrigDb, 1652 const char **pzOrigTab, 1653 const char **pzOrigCol 1654 #endif 1655 ){ 1656 char const *zType = 0; 1657 int j; 1658 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1659 char const *zOrigDb = 0; 1660 char const *zOrigTab = 0; 1661 char const *zOrigCol = 0; 1662 #endif 1663 1664 assert( pExpr!=0 ); 1665 assert( pNC->pSrcList!=0 ); 1666 switch( pExpr->op ){ 1667 case TK_COLUMN: { 1668 /* The expression is a column. Locate the table the column is being 1669 ** extracted from in NameContext.pSrcList. This table may be real 1670 ** database table or a subquery. 1671 */ 1672 Table *pTab = 0; /* Table structure column is extracted from */ 1673 Select *pS = 0; /* Select the column is extracted from */ 1674 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1675 while( pNC && !pTab ){ 1676 SrcList *pTabList = pNC->pSrcList; 1677 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1678 if( j<pTabList->nSrc ){ 1679 pTab = pTabList->a[j].pTab; 1680 pS = pTabList->a[j].pSelect; 1681 }else{ 1682 pNC = pNC->pNext; 1683 } 1684 } 1685 1686 if( pTab==0 ){ 1687 /* At one time, code such as "SELECT new.x" within a trigger would 1688 ** cause this condition to run. Since then, we have restructured how 1689 ** trigger code is generated and so this condition is no longer 1690 ** possible. However, it can still be true for statements like 1691 ** the following: 1692 ** 1693 ** CREATE TABLE t1(col INTEGER); 1694 ** SELECT (SELECT t1.col) FROM FROM t1; 1695 ** 1696 ** when columnType() is called on the expression "t1.col" in the 1697 ** sub-select. In this case, set the column type to NULL, even 1698 ** though it should really be "INTEGER". 1699 ** 1700 ** This is not a problem, as the column type of "t1.col" is never 1701 ** used. When columnType() is called on the expression 1702 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1703 ** branch below. */ 1704 break; 1705 } 1706 1707 assert( pTab && pExpr->y.pTab==pTab ); 1708 if( pS ){ 1709 /* The "table" is actually a sub-select or a view in the FROM clause 1710 ** of the SELECT statement. Return the declaration type and origin 1711 ** data for the result-set column of the sub-select. 1712 */ 1713 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1714 /* If iCol is less than zero, then the expression requests the 1715 ** rowid of the sub-select or view. This expression is legal (see 1716 ** test case misc2.2.2) - it always evaluates to NULL. 1717 */ 1718 NameContext sNC; 1719 Expr *p = pS->pEList->a[iCol].pExpr; 1720 sNC.pSrcList = pS->pSrc; 1721 sNC.pNext = pNC; 1722 sNC.pParse = pNC->pParse; 1723 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1724 } 1725 }else{ 1726 /* A real table or a CTE table */ 1727 assert( !pS ); 1728 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1729 if( iCol<0 ) iCol = pTab->iPKey; 1730 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1731 if( iCol<0 ){ 1732 zType = "INTEGER"; 1733 zOrigCol = "rowid"; 1734 }else{ 1735 zOrigCol = pTab->aCol[iCol].zName; 1736 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1737 } 1738 zOrigTab = pTab->zName; 1739 if( pNC->pParse && pTab->pSchema ){ 1740 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1741 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1742 } 1743 #else 1744 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1745 if( iCol<0 ){ 1746 zType = "INTEGER"; 1747 }else{ 1748 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1749 } 1750 #endif 1751 } 1752 break; 1753 } 1754 #ifndef SQLITE_OMIT_SUBQUERY 1755 case TK_SELECT: { 1756 /* The expression is a sub-select. Return the declaration type and 1757 ** origin info for the single column in the result set of the SELECT 1758 ** statement. 1759 */ 1760 NameContext sNC; 1761 Select *pS = pExpr->x.pSelect; 1762 Expr *p = pS->pEList->a[0].pExpr; 1763 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1764 sNC.pSrcList = pS->pSrc; 1765 sNC.pNext = pNC; 1766 sNC.pParse = pNC->pParse; 1767 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1768 break; 1769 } 1770 #endif 1771 } 1772 1773 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1774 if( pzOrigDb ){ 1775 assert( pzOrigTab && pzOrigCol ); 1776 *pzOrigDb = zOrigDb; 1777 *pzOrigTab = zOrigTab; 1778 *pzOrigCol = zOrigCol; 1779 } 1780 #endif 1781 return zType; 1782 } 1783 1784 /* 1785 ** Generate code that will tell the VDBE the declaration types of columns 1786 ** in the result set. 1787 */ 1788 static void generateColumnTypes( 1789 Parse *pParse, /* Parser context */ 1790 SrcList *pTabList, /* List of tables */ 1791 ExprList *pEList /* Expressions defining the result set */ 1792 ){ 1793 #ifndef SQLITE_OMIT_DECLTYPE 1794 Vdbe *v = pParse->pVdbe; 1795 int i; 1796 NameContext sNC; 1797 sNC.pSrcList = pTabList; 1798 sNC.pParse = pParse; 1799 sNC.pNext = 0; 1800 for(i=0; i<pEList->nExpr; i++){ 1801 Expr *p = pEList->a[i].pExpr; 1802 const char *zType; 1803 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1804 const char *zOrigDb = 0; 1805 const char *zOrigTab = 0; 1806 const char *zOrigCol = 0; 1807 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1808 1809 /* The vdbe must make its own copy of the column-type and other 1810 ** column specific strings, in case the schema is reset before this 1811 ** virtual machine is deleted. 1812 */ 1813 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1814 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1815 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1816 #else 1817 zType = columnType(&sNC, p, 0, 0, 0); 1818 #endif 1819 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1820 } 1821 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1822 } 1823 1824 1825 /* 1826 ** Compute the column names for a SELECT statement. 1827 ** 1828 ** The only guarantee that SQLite makes about column names is that if the 1829 ** column has an AS clause assigning it a name, that will be the name used. 1830 ** That is the only documented guarantee. However, countless applications 1831 ** developed over the years have made baseless assumptions about column names 1832 ** and will break if those assumptions changes. Hence, use extreme caution 1833 ** when modifying this routine to avoid breaking legacy. 1834 ** 1835 ** See Also: sqlite3ColumnsFromExprList() 1836 ** 1837 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1838 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1839 ** applications should operate this way. Nevertheless, we need to support the 1840 ** other modes for legacy: 1841 ** 1842 ** short=OFF, full=OFF: Column name is the text of the expression has it 1843 ** originally appears in the SELECT statement. In 1844 ** other words, the zSpan of the result expression. 1845 ** 1846 ** short=ON, full=OFF: (This is the default setting). If the result 1847 ** refers directly to a table column, then the 1848 ** result column name is just the table column 1849 ** name: COLUMN. Otherwise use zSpan. 1850 ** 1851 ** full=ON, short=ANY: If the result refers directly to a table column, 1852 ** then the result column name with the table name 1853 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1854 */ 1855 static void generateColumnNames( 1856 Parse *pParse, /* Parser context */ 1857 Select *pSelect /* Generate column names for this SELECT statement */ 1858 ){ 1859 Vdbe *v = pParse->pVdbe; 1860 int i; 1861 Table *pTab; 1862 SrcList *pTabList; 1863 ExprList *pEList; 1864 sqlite3 *db = pParse->db; 1865 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1866 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1867 1868 #ifndef SQLITE_OMIT_EXPLAIN 1869 /* If this is an EXPLAIN, skip this step */ 1870 if( pParse->explain ){ 1871 return; 1872 } 1873 #endif 1874 1875 if( pParse->colNamesSet ) return; 1876 /* Column names are determined by the left-most term of a compound select */ 1877 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1878 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1879 pTabList = pSelect->pSrc; 1880 pEList = pSelect->pEList; 1881 assert( v!=0 ); 1882 assert( pTabList!=0 ); 1883 pParse->colNamesSet = 1; 1884 fullName = (db->flags & SQLITE_FullColNames)!=0; 1885 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1886 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1887 for(i=0; i<pEList->nExpr; i++){ 1888 Expr *p = pEList->a[i].pExpr; 1889 1890 assert( p!=0 ); 1891 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1892 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1893 if( pEList->a[i].zName ){ 1894 /* An AS clause always takes first priority */ 1895 char *zName = pEList->a[i].zName; 1896 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1897 }else if( srcName && p->op==TK_COLUMN ){ 1898 char *zCol; 1899 int iCol = p->iColumn; 1900 pTab = p->y.pTab; 1901 assert( pTab!=0 ); 1902 if( iCol<0 ) iCol = pTab->iPKey; 1903 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1904 if( iCol<0 ){ 1905 zCol = "rowid"; 1906 }else{ 1907 zCol = pTab->aCol[iCol].zName; 1908 } 1909 if( fullName ){ 1910 char *zName = 0; 1911 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1912 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1913 }else{ 1914 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1915 } 1916 }else{ 1917 const char *z = pEList->a[i].zSpan; 1918 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1919 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1920 } 1921 } 1922 generateColumnTypes(pParse, pTabList, pEList); 1923 } 1924 1925 /* 1926 ** Given an expression list (which is really the list of expressions 1927 ** that form the result set of a SELECT statement) compute appropriate 1928 ** column names for a table that would hold the expression list. 1929 ** 1930 ** All column names will be unique. 1931 ** 1932 ** Only the column names are computed. Column.zType, Column.zColl, 1933 ** and other fields of Column are zeroed. 1934 ** 1935 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1936 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1937 ** 1938 ** The only guarantee that SQLite makes about column names is that if the 1939 ** column has an AS clause assigning it a name, that will be the name used. 1940 ** That is the only documented guarantee. However, countless applications 1941 ** developed over the years have made baseless assumptions about column names 1942 ** and will break if those assumptions changes. Hence, use extreme caution 1943 ** when modifying this routine to avoid breaking legacy. 1944 ** 1945 ** See Also: generateColumnNames() 1946 */ 1947 int sqlite3ColumnsFromExprList( 1948 Parse *pParse, /* Parsing context */ 1949 ExprList *pEList, /* Expr list from which to derive column names */ 1950 i16 *pnCol, /* Write the number of columns here */ 1951 Column **paCol /* Write the new column list here */ 1952 ){ 1953 sqlite3 *db = pParse->db; /* Database connection */ 1954 int i, j; /* Loop counters */ 1955 u32 cnt; /* Index added to make the name unique */ 1956 Column *aCol, *pCol; /* For looping over result columns */ 1957 int nCol; /* Number of columns in the result set */ 1958 char *zName; /* Column name */ 1959 int nName; /* Size of name in zName[] */ 1960 Hash ht; /* Hash table of column names */ 1961 1962 sqlite3HashInit(&ht); 1963 if( pEList ){ 1964 nCol = pEList->nExpr; 1965 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1966 testcase( aCol==0 ); 1967 if( nCol>32767 ) nCol = 32767; 1968 }else{ 1969 nCol = 0; 1970 aCol = 0; 1971 } 1972 assert( nCol==(i16)nCol ); 1973 *pnCol = nCol; 1974 *paCol = aCol; 1975 1976 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1977 /* Get an appropriate name for the column 1978 */ 1979 if( (zName = pEList->a[i].zName)!=0 ){ 1980 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1981 }else{ 1982 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1983 while( pColExpr->op==TK_DOT ){ 1984 pColExpr = pColExpr->pRight; 1985 assert( pColExpr!=0 ); 1986 } 1987 if( pColExpr->op==TK_COLUMN ){ 1988 /* For columns use the column name name */ 1989 int iCol = pColExpr->iColumn; 1990 Table *pTab = pColExpr->y.pTab; 1991 assert( pTab!=0 ); 1992 if( iCol<0 ) iCol = pTab->iPKey; 1993 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1994 }else if( pColExpr->op==TK_ID ){ 1995 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1996 zName = pColExpr->u.zToken; 1997 }else{ 1998 /* Use the original text of the column expression as its name */ 1999 zName = pEList->a[i].zSpan; 2000 } 2001 } 2002 if( zName ){ 2003 zName = sqlite3DbStrDup(db, zName); 2004 }else{ 2005 zName = sqlite3MPrintf(db,"column%d",i+1); 2006 } 2007 2008 /* Make sure the column name is unique. If the name is not unique, 2009 ** append an integer to the name so that it becomes unique. 2010 */ 2011 cnt = 0; 2012 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2013 nName = sqlite3Strlen30(zName); 2014 if( nName>0 ){ 2015 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2016 if( zName[j]==':' ) nName = j; 2017 } 2018 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2019 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2020 } 2021 pCol->zName = zName; 2022 sqlite3ColumnPropertiesFromName(0, pCol); 2023 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2024 sqlite3OomFault(db); 2025 } 2026 } 2027 sqlite3HashClear(&ht); 2028 if( db->mallocFailed ){ 2029 for(j=0; j<i; j++){ 2030 sqlite3DbFree(db, aCol[j].zName); 2031 } 2032 sqlite3DbFree(db, aCol); 2033 *paCol = 0; 2034 *pnCol = 0; 2035 return SQLITE_NOMEM_BKPT; 2036 } 2037 return SQLITE_OK; 2038 } 2039 2040 /* 2041 ** Add type and collation information to a column list based on 2042 ** a SELECT statement. 2043 ** 2044 ** The column list presumably came from selectColumnNamesFromExprList(). 2045 ** The column list has only names, not types or collations. This 2046 ** routine goes through and adds the types and collations. 2047 ** 2048 ** This routine requires that all identifiers in the SELECT 2049 ** statement be resolved. 2050 */ 2051 void sqlite3SelectAddColumnTypeAndCollation( 2052 Parse *pParse, /* Parsing contexts */ 2053 Table *pTab, /* Add column type information to this table */ 2054 Select *pSelect, /* SELECT used to determine types and collations */ 2055 char aff /* Default affinity for columns */ 2056 ){ 2057 sqlite3 *db = pParse->db; 2058 NameContext sNC; 2059 Column *pCol; 2060 CollSeq *pColl; 2061 int i; 2062 Expr *p; 2063 struct ExprList_item *a; 2064 2065 assert( pSelect!=0 ); 2066 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2067 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2068 if( db->mallocFailed ) return; 2069 memset(&sNC, 0, sizeof(sNC)); 2070 sNC.pSrcList = pSelect->pSrc; 2071 a = pSelect->pEList->a; 2072 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2073 const char *zType; 2074 int n, m; 2075 p = a[i].pExpr; 2076 zType = columnType(&sNC, p, 0, 0, 0); 2077 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2078 pCol->affinity = sqlite3ExprAffinity(p); 2079 if( zType ){ 2080 m = sqlite3Strlen30(zType); 2081 n = sqlite3Strlen30(pCol->zName); 2082 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2083 if( pCol->zName ){ 2084 memcpy(&pCol->zName[n+1], zType, m+1); 2085 pCol->colFlags |= COLFLAG_HASTYPE; 2086 } 2087 } 2088 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2089 pColl = sqlite3ExprCollSeq(pParse, p); 2090 if( pColl && pCol->zColl==0 ){ 2091 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2092 } 2093 } 2094 pTab->szTabRow = 1; /* Any non-zero value works */ 2095 } 2096 2097 /* 2098 ** Given a SELECT statement, generate a Table structure that describes 2099 ** the result set of that SELECT. 2100 */ 2101 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2102 Table *pTab; 2103 sqlite3 *db = pParse->db; 2104 u64 savedFlags; 2105 2106 savedFlags = db->flags; 2107 db->flags &= ~(u64)SQLITE_FullColNames; 2108 db->flags |= SQLITE_ShortColNames; 2109 sqlite3SelectPrep(pParse, pSelect, 0); 2110 db->flags = savedFlags; 2111 if( pParse->nErr ) return 0; 2112 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2113 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2114 if( pTab==0 ){ 2115 return 0; 2116 } 2117 pTab->nTabRef = 1; 2118 pTab->zName = 0; 2119 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2120 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2121 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2122 pTab->iPKey = -1; 2123 if( db->mallocFailed ){ 2124 sqlite3DeleteTable(db, pTab); 2125 return 0; 2126 } 2127 return pTab; 2128 } 2129 2130 /* 2131 ** Get a VDBE for the given parser context. Create a new one if necessary. 2132 ** If an error occurs, return NULL and leave a message in pParse. 2133 */ 2134 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2135 if( pParse->pVdbe ){ 2136 return pParse->pVdbe; 2137 } 2138 if( pParse->pToplevel==0 2139 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2140 ){ 2141 pParse->okConstFactor = 1; 2142 } 2143 return sqlite3VdbeCreate(pParse); 2144 } 2145 2146 2147 /* 2148 ** Compute the iLimit and iOffset fields of the SELECT based on the 2149 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2150 ** that appear in the original SQL statement after the LIMIT and OFFSET 2151 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2152 ** are the integer memory register numbers for counters used to compute 2153 ** the limit and offset. If there is no limit and/or offset, then 2154 ** iLimit and iOffset are negative. 2155 ** 2156 ** This routine changes the values of iLimit and iOffset only if 2157 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2158 ** and iOffset should have been preset to appropriate default values (zero) 2159 ** prior to calling this routine. 2160 ** 2161 ** The iOffset register (if it exists) is initialized to the value 2162 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2163 ** iOffset+1 is initialized to LIMIT+OFFSET. 2164 ** 2165 ** Only if pLimit->pLeft!=0 do the limit registers get 2166 ** redefined. The UNION ALL operator uses this property to force 2167 ** the reuse of the same limit and offset registers across multiple 2168 ** SELECT statements. 2169 */ 2170 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2171 Vdbe *v = 0; 2172 int iLimit = 0; 2173 int iOffset; 2174 int n; 2175 Expr *pLimit = p->pLimit; 2176 2177 if( p->iLimit ) return; 2178 2179 /* 2180 ** "LIMIT -1" always shows all rows. There is some 2181 ** controversy about what the correct behavior should be. 2182 ** The current implementation interprets "LIMIT 0" to mean 2183 ** no rows. 2184 */ 2185 if( pLimit ){ 2186 assert( pLimit->op==TK_LIMIT ); 2187 assert( pLimit->pLeft!=0 ); 2188 p->iLimit = iLimit = ++pParse->nMem; 2189 v = sqlite3GetVdbe(pParse); 2190 assert( v!=0 ); 2191 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2192 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2193 VdbeComment((v, "LIMIT counter")); 2194 if( n==0 ){ 2195 sqlite3VdbeGoto(v, iBreak); 2196 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2197 p->nSelectRow = sqlite3LogEst((u64)n); 2198 p->selFlags |= SF_FixedLimit; 2199 } 2200 }else{ 2201 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2202 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2203 VdbeComment((v, "LIMIT counter")); 2204 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2205 } 2206 if( pLimit->pRight ){ 2207 p->iOffset = iOffset = ++pParse->nMem; 2208 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2209 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2210 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2211 VdbeComment((v, "OFFSET counter")); 2212 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2213 VdbeComment((v, "LIMIT+OFFSET")); 2214 } 2215 } 2216 } 2217 2218 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2219 /* 2220 ** Return the appropriate collating sequence for the iCol-th column of 2221 ** the result set for the compound-select statement "p". Return NULL if 2222 ** the column has no default collating sequence. 2223 ** 2224 ** The collating sequence for the compound select is taken from the 2225 ** left-most term of the select that has a collating sequence. 2226 */ 2227 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2228 CollSeq *pRet; 2229 if( p->pPrior ){ 2230 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2231 }else{ 2232 pRet = 0; 2233 } 2234 assert( iCol>=0 ); 2235 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2236 ** have been thrown during name resolution and we would not have gotten 2237 ** this far */ 2238 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2239 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2240 } 2241 return pRet; 2242 } 2243 2244 /* 2245 ** The select statement passed as the second parameter is a compound SELECT 2246 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2247 ** structure suitable for implementing the ORDER BY. 2248 ** 2249 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2250 ** function is responsible for ensuring that this structure is eventually 2251 ** freed. 2252 */ 2253 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2254 ExprList *pOrderBy = p->pOrderBy; 2255 int nOrderBy = p->pOrderBy->nExpr; 2256 sqlite3 *db = pParse->db; 2257 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2258 if( pRet ){ 2259 int i; 2260 for(i=0; i<nOrderBy; i++){ 2261 struct ExprList_item *pItem = &pOrderBy->a[i]; 2262 Expr *pTerm = pItem->pExpr; 2263 CollSeq *pColl; 2264 2265 if( pTerm->flags & EP_Collate ){ 2266 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2267 }else{ 2268 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2269 if( pColl==0 ) pColl = db->pDfltColl; 2270 pOrderBy->a[i].pExpr = 2271 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2272 } 2273 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2274 pRet->aColl[i] = pColl; 2275 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2276 } 2277 } 2278 2279 return pRet; 2280 } 2281 2282 #ifndef SQLITE_OMIT_CTE 2283 /* 2284 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2285 ** query of the form: 2286 ** 2287 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2288 ** \___________/ \_______________/ 2289 ** p->pPrior p 2290 ** 2291 ** 2292 ** There is exactly one reference to the recursive-table in the FROM clause 2293 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2294 ** 2295 ** The setup-query runs once to generate an initial set of rows that go 2296 ** into a Queue table. Rows are extracted from the Queue table one by 2297 ** one. Each row extracted from Queue is output to pDest. Then the single 2298 ** extracted row (now in the iCurrent table) becomes the content of the 2299 ** recursive-table for a recursive-query run. The output of the recursive-query 2300 ** is added back into the Queue table. Then another row is extracted from Queue 2301 ** and the iteration continues until the Queue table is empty. 2302 ** 2303 ** If the compound query operator is UNION then no duplicate rows are ever 2304 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2305 ** that have ever been inserted into Queue and causes duplicates to be 2306 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2307 ** 2308 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2309 ** ORDER BY order and the first entry is extracted for each cycle. Without 2310 ** an ORDER BY, the Queue table is just a FIFO. 2311 ** 2312 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2313 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2314 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2315 ** with a positive value, then the first OFFSET outputs are discarded rather 2316 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2317 ** rows have been skipped. 2318 */ 2319 static void generateWithRecursiveQuery( 2320 Parse *pParse, /* Parsing context */ 2321 Select *p, /* The recursive SELECT to be coded */ 2322 SelectDest *pDest /* What to do with query results */ 2323 ){ 2324 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2325 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2326 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2327 Select *pSetup = p->pPrior; /* The setup query */ 2328 int addrTop; /* Top of the loop */ 2329 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2330 int iCurrent = 0; /* The Current table */ 2331 int regCurrent; /* Register holding Current table */ 2332 int iQueue; /* The Queue table */ 2333 int iDistinct = 0; /* To ensure unique results if UNION */ 2334 int eDest = SRT_Fifo; /* How to write to Queue */ 2335 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2336 int i; /* Loop counter */ 2337 int rc; /* Result code */ 2338 ExprList *pOrderBy; /* The ORDER BY clause */ 2339 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2340 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2341 2342 #ifndef SQLITE_OMIT_WINDOWFUNC 2343 if( p->pWin ){ 2344 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2345 return; 2346 } 2347 #endif 2348 2349 /* Obtain authorization to do a recursive query */ 2350 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2351 2352 /* Process the LIMIT and OFFSET clauses, if they exist */ 2353 addrBreak = sqlite3VdbeMakeLabel(pParse); 2354 p->nSelectRow = 320; /* 4 billion rows */ 2355 computeLimitRegisters(pParse, p, addrBreak); 2356 pLimit = p->pLimit; 2357 regLimit = p->iLimit; 2358 regOffset = p->iOffset; 2359 p->pLimit = 0; 2360 p->iLimit = p->iOffset = 0; 2361 pOrderBy = p->pOrderBy; 2362 2363 /* Locate the cursor number of the Current table */ 2364 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2365 if( pSrc->a[i].fg.isRecursive ){ 2366 iCurrent = pSrc->a[i].iCursor; 2367 break; 2368 } 2369 } 2370 2371 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2372 ** the Distinct table must be exactly one greater than Queue in order 2373 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2374 iQueue = pParse->nTab++; 2375 if( p->op==TK_UNION ){ 2376 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2377 iDistinct = pParse->nTab++; 2378 }else{ 2379 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2380 } 2381 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2382 2383 /* Allocate cursors for Current, Queue, and Distinct. */ 2384 regCurrent = ++pParse->nMem; 2385 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2386 if( pOrderBy ){ 2387 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2388 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2389 (char*)pKeyInfo, P4_KEYINFO); 2390 destQueue.pOrderBy = pOrderBy; 2391 }else{ 2392 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2393 } 2394 VdbeComment((v, "Queue table")); 2395 if( iDistinct ){ 2396 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2397 p->selFlags |= SF_UsesEphemeral; 2398 } 2399 2400 /* Detach the ORDER BY clause from the compound SELECT */ 2401 p->pOrderBy = 0; 2402 2403 /* Store the results of the setup-query in Queue. */ 2404 pSetup->pNext = 0; 2405 ExplainQueryPlan((pParse, 1, "SETUP")); 2406 rc = sqlite3Select(pParse, pSetup, &destQueue); 2407 pSetup->pNext = p; 2408 if( rc ) goto end_of_recursive_query; 2409 2410 /* Find the next row in the Queue and output that row */ 2411 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2412 2413 /* Transfer the next row in Queue over to Current */ 2414 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2415 if( pOrderBy ){ 2416 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2417 }else{ 2418 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2419 } 2420 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2421 2422 /* Output the single row in Current */ 2423 addrCont = sqlite3VdbeMakeLabel(pParse); 2424 codeOffset(v, regOffset, addrCont); 2425 selectInnerLoop(pParse, p, iCurrent, 2426 0, 0, pDest, addrCont, addrBreak); 2427 if( regLimit ){ 2428 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2429 VdbeCoverage(v); 2430 } 2431 sqlite3VdbeResolveLabel(v, addrCont); 2432 2433 /* Execute the recursive SELECT taking the single row in Current as 2434 ** the value for the recursive-table. Store the results in the Queue. 2435 */ 2436 if( p->selFlags & SF_Aggregate ){ 2437 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2438 }else{ 2439 p->pPrior = 0; 2440 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2441 sqlite3Select(pParse, p, &destQueue); 2442 assert( p->pPrior==0 ); 2443 p->pPrior = pSetup; 2444 } 2445 2446 /* Keep running the loop until the Queue is empty */ 2447 sqlite3VdbeGoto(v, addrTop); 2448 sqlite3VdbeResolveLabel(v, addrBreak); 2449 2450 end_of_recursive_query: 2451 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2452 p->pOrderBy = pOrderBy; 2453 p->pLimit = pLimit; 2454 return; 2455 } 2456 #endif /* SQLITE_OMIT_CTE */ 2457 2458 /* Forward references */ 2459 static int multiSelectOrderBy( 2460 Parse *pParse, /* Parsing context */ 2461 Select *p, /* The right-most of SELECTs to be coded */ 2462 SelectDest *pDest /* What to do with query results */ 2463 ); 2464 2465 /* 2466 ** Handle the special case of a compound-select that originates from a 2467 ** VALUES clause. By handling this as a special case, we avoid deep 2468 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2469 ** on a VALUES clause. 2470 ** 2471 ** Because the Select object originates from a VALUES clause: 2472 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2473 ** (2) All terms are UNION ALL 2474 ** (3) There is no ORDER BY clause 2475 ** 2476 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2477 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2478 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2479 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2480 */ 2481 static int multiSelectValues( 2482 Parse *pParse, /* Parsing context */ 2483 Select *p, /* The right-most of SELECTs to be coded */ 2484 SelectDest *pDest /* What to do with query results */ 2485 ){ 2486 int nRow = 1; 2487 int rc = 0; 2488 int bShowAll = p->pLimit==0; 2489 assert( p->selFlags & SF_MultiValue ); 2490 do{ 2491 assert( p->selFlags & SF_Values ); 2492 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2493 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2494 if( p->pWin ) return -1; 2495 if( p->pPrior==0 ) break; 2496 assert( p->pPrior->pNext==p ); 2497 p = p->pPrior; 2498 nRow += bShowAll; 2499 }while(1); 2500 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2501 nRow==1 ? "" : "S")); 2502 while( p ){ 2503 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2504 if( !bShowAll ) break; 2505 p->nSelectRow = nRow; 2506 p = p->pNext; 2507 } 2508 return rc; 2509 } 2510 2511 /* 2512 ** This routine is called to process a compound query form from 2513 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2514 ** INTERSECT 2515 ** 2516 ** "p" points to the right-most of the two queries. the query on the 2517 ** left is p->pPrior. The left query could also be a compound query 2518 ** in which case this routine will be called recursively. 2519 ** 2520 ** The results of the total query are to be written into a destination 2521 ** of type eDest with parameter iParm. 2522 ** 2523 ** Example 1: Consider a three-way compound SQL statement. 2524 ** 2525 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2526 ** 2527 ** This statement is parsed up as follows: 2528 ** 2529 ** SELECT c FROM t3 2530 ** | 2531 ** `-----> SELECT b FROM t2 2532 ** | 2533 ** `------> SELECT a FROM t1 2534 ** 2535 ** The arrows in the diagram above represent the Select.pPrior pointer. 2536 ** So if this routine is called with p equal to the t3 query, then 2537 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2538 ** 2539 ** Notice that because of the way SQLite parses compound SELECTs, the 2540 ** individual selects always group from left to right. 2541 */ 2542 static int multiSelect( 2543 Parse *pParse, /* Parsing context */ 2544 Select *p, /* The right-most of SELECTs to be coded */ 2545 SelectDest *pDest /* What to do with query results */ 2546 ){ 2547 int rc = SQLITE_OK; /* Success code from a subroutine */ 2548 Select *pPrior; /* Another SELECT immediately to our left */ 2549 Vdbe *v; /* Generate code to this VDBE */ 2550 SelectDest dest; /* Alternative data destination */ 2551 Select *pDelete = 0; /* Chain of simple selects to delete */ 2552 sqlite3 *db; /* Database connection */ 2553 2554 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2555 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2556 */ 2557 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2558 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2559 assert( p->selFlags & SF_Compound ); 2560 db = pParse->db; 2561 pPrior = p->pPrior; 2562 dest = *pDest; 2563 if( pPrior->pOrderBy || pPrior->pLimit ){ 2564 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2565 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2566 rc = 1; 2567 goto multi_select_end; 2568 } 2569 2570 v = sqlite3GetVdbe(pParse); 2571 assert( v!=0 ); /* The VDBE already created by calling function */ 2572 2573 /* Create the destination temporary table if necessary 2574 */ 2575 if( dest.eDest==SRT_EphemTab ){ 2576 assert( p->pEList ); 2577 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2578 dest.eDest = SRT_Table; 2579 } 2580 2581 /* Special handling for a compound-select that originates as a VALUES clause. 2582 */ 2583 if( p->selFlags & SF_MultiValue ){ 2584 rc = multiSelectValues(pParse, p, &dest); 2585 if( rc>=0 ) goto multi_select_end; 2586 rc = SQLITE_OK; 2587 } 2588 2589 /* Make sure all SELECTs in the statement have the same number of elements 2590 ** in their result sets. 2591 */ 2592 assert( p->pEList && pPrior->pEList ); 2593 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2594 2595 #ifndef SQLITE_OMIT_CTE 2596 if( p->selFlags & SF_Recursive ){ 2597 generateWithRecursiveQuery(pParse, p, &dest); 2598 }else 2599 #endif 2600 2601 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2602 */ 2603 if( p->pOrderBy ){ 2604 return multiSelectOrderBy(pParse, p, pDest); 2605 }else{ 2606 2607 #ifndef SQLITE_OMIT_EXPLAIN 2608 if( pPrior->pPrior==0 ){ 2609 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2610 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2611 } 2612 #endif 2613 2614 /* Generate code for the left and right SELECT statements. 2615 */ 2616 switch( p->op ){ 2617 case TK_ALL: { 2618 int addr = 0; 2619 int nLimit; 2620 assert( !pPrior->pLimit ); 2621 pPrior->iLimit = p->iLimit; 2622 pPrior->iOffset = p->iOffset; 2623 pPrior->pLimit = p->pLimit; 2624 rc = sqlite3Select(pParse, pPrior, &dest); 2625 p->pLimit = 0; 2626 if( rc ){ 2627 goto multi_select_end; 2628 } 2629 p->pPrior = 0; 2630 p->iLimit = pPrior->iLimit; 2631 p->iOffset = pPrior->iOffset; 2632 if( p->iLimit ){ 2633 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2634 VdbeComment((v, "Jump ahead if LIMIT reached")); 2635 if( p->iOffset ){ 2636 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2637 p->iLimit, p->iOffset+1, p->iOffset); 2638 } 2639 } 2640 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2641 rc = sqlite3Select(pParse, p, &dest); 2642 testcase( rc!=SQLITE_OK ); 2643 pDelete = p->pPrior; 2644 p->pPrior = pPrior; 2645 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2646 if( pPrior->pLimit 2647 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2648 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2649 ){ 2650 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2651 } 2652 if( addr ){ 2653 sqlite3VdbeJumpHere(v, addr); 2654 } 2655 break; 2656 } 2657 case TK_EXCEPT: 2658 case TK_UNION: { 2659 int unionTab; /* Cursor number of the temp table holding result */ 2660 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2661 int priorOp; /* The SRT_ operation to apply to prior selects */ 2662 Expr *pLimit; /* Saved values of p->nLimit */ 2663 int addr; 2664 SelectDest uniondest; 2665 2666 testcase( p->op==TK_EXCEPT ); 2667 testcase( p->op==TK_UNION ); 2668 priorOp = SRT_Union; 2669 if( dest.eDest==priorOp ){ 2670 /* We can reuse a temporary table generated by a SELECT to our 2671 ** right. 2672 */ 2673 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2674 unionTab = dest.iSDParm; 2675 }else{ 2676 /* We will need to create our own temporary table to hold the 2677 ** intermediate results. 2678 */ 2679 unionTab = pParse->nTab++; 2680 assert( p->pOrderBy==0 ); 2681 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2682 assert( p->addrOpenEphm[0] == -1 ); 2683 p->addrOpenEphm[0] = addr; 2684 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2685 assert( p->pEList ); 2686 } 2687 2688 /* Code the SELECT statements to our left 2689 */ 2690 assert( !pPrior->pOrderBy ); 2691 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2692 rc = sqlite3Select(pParse, pPrior, &uniondest); 2693 if( rc ){ 2694 goto multi_select_end; 2695 } 2696 2697 /* Code the current SELECT statement 2698 */ 2699 if( p->op==TK_EXCEPT ){ 2700 op = SRT_Except; 2701 }else{ 2702 assert( p->op==TK_UNION ); 2703 op = SRT_Union; 2704 } 2705 p->pPrior = 0; 2706 pLimit = p->pLimit; 2707 p->pLimit = 0; 2708 uniondest.eDest = op; 2709 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2710 selectOpName(p->op))); 2711 rc = sqlite3Select(pParse, p, &uniondest); 2712 testcase( rc!=SQLITE_OK ); 2713 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2714 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2715 sqlite3ExprListDelete(db, p->pOrderBy); 2716 pDelete = p->pPrior; 2717 p->pPrior = pPrior; 2718 p->pOrderBy = 0; 2719 if( p->op==TK_UNION ){ 2720 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2721 } 2722 sqlite3ExprDelete(db, p->pLimit); 2723 p->pLimit = pLimit; 2724 p->iLimit = 0; 2725 p->iOffset = 0; 2726 2727 /* Convert the data in the temporary table into whatever form 2728 ** it is that we currently need. 2729 */ 2730 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2731 assert( p->pEList || db->mallocFailed ); 2732 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2733 int iCont, iBreak, iStart; 2734 iBreak = sqlite3VdbeMakeLabel(pParse); 2735 iCont = sqlite3VdbeMakeLabel(pParse); 2736 computeLimitRegisters(pParse, p, iBreak); 2737 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2738 iStart = sqlite3VdbeCurrentAddr(v); 2739 selectInnerLoop(pParse, p, unionTab, 2740 0, 0, &dest, iCont, iBreak); 2741 sqlite3VdbeResolveLabel(v, iCont); 2742 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2743 sqlite3VdbeResolveLabel(v, iBreak); 2744 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2745 } 2746 break; 2747 } 2748 default: assert( p->op==TK_INTERSECT ); { 2749 int tab1, tab2; 2750 int iCont, iBreak, iStart; 2751 Expr *pLimit; 2752 int addr; 2753 SelectDest intersectdest; 2754 int r1; 2755 2756 /* INTERSECT is different from the others since it requires 2757 ** two temporary tables. Hence it has its own case. Begin 2758 ** by allocating the tables we will need. 2759 */ 2760 tab1 = pParse->nTab++; 2761 tab2 = pParse->nTab++; 2762 assert( p->pOrderBy==0 ); 2763 2764 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2765 assert( p->addrOpenEphm[0] == -1 ); 2766 p->addrOpenEphm[0] = addr; 2767 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2768 assert( p->pEList ); 2769 2770 /* Code the SELECTs to our left into temporary table "tab1". 2771 */ 2772 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2773 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2774 if( rc ){ 2775 goto multi_select_end; 2776 } 2777 2778 /* Code the current SELECT into temporary table "tab2" 2779 */ 2780 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2781 assert( p->addrOpenEphm[1] == -1 ); 2782 p->addrOpenEphm[1] = addr; 2783 p->pPrior = 0; 2784 pLimit = p->pLimit; 2785 p->pLimit = 0; 2786 intersectdest.iSDParm = tab2; 2787 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2788 selectOpName(p->op))); 2789 rc = sqlite3Select(pParse, p, &intersectdest); 2790 testcase( rc!=SQLITE_OK ); 2791 pDelete = p->pPrior; 2792 p->pPrior = pPrior; 2793 if( p->nSelectRow>pPrior->nSelectRow ){ 2794 p->nSelectRow = pPrior->nSelectRow; 2795 } 2796 sqlite3ExprDelete(db, p->pLimit); 2797 p->pLimit = pLimit; 2798 2799 /* Generate code to take the intersection of the two temporary 2800 ** tables. 2801 */ 2802 assert( p->pEList ); 2803 iBreak = sqlite3VdbeMakeLabel(pParse); 2804 iCont = sqlite3VdbeMakeLabel(pParse); 2805 computeLimitRegisters(pParse, p, iBreak); 2806 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2807 r1 = sqlite3GetTempReg(pParse); 2808 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2809 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2810 VdbeCoverage(v); 2811 sqlite3ReleaseTempReg(pParse, r1); 2812 selectInnerLoop(pParse, p, tab1, 2813 0, 0, &dest, iCont, iBreak); 2814 sqlite3VdbeResolveLabel(v, iCont); 2815 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2816 sqlite3VdbeResolveLabel(v, iBreak); 2817 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2818 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2819 break; 2820 } 2821 } 2822 2823 #ifndef SQLITE_OMIT_EXPLAIN 2824 if( p->pNext==0 ){ 2825 ExplainQueryPlanPop(pParse); 2826 } 2827 #endif 2828 } 2829 if( pParse->nErr ) goto multi_select_end; 2830 2831 /* Compute collating sequences used by 2832 ** temporary tables needed to implement the compound select. 2833 ** Attach the KeyInfo structure to all temporary tables. 2834 ** 2835 ** This section is run by the right-most SELECT statement only. 2836 ** SELECT statements to the left always skip this part. The right-most 2837 ** SELECT might also skip this part if it has no ORDER BY clause and 2838 ** no temp tables are required. 2839 */ 2840 if( p->selFlags & SF_UsesEphemeral ){ 2841 int i; /* Loop counter */ 2842 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2843 Select *pLoop; /* For looping through SELECT statements */ 2844 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2845 int nCol; /* Number of columns in result set */ 2846 2847 assert( p->pNext==0 ); 2848 nCol = p->pEList->nExpr; 2849 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2850 if( !pKeyInfo ){ 2851 rc = SQLITE_NOMEM_BKPT; 2852 goto multi_select_end; 2853 } 2854 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2855 *apColl = multiSelectCollSeq(pParse, p, i); 2856 if( 0==*apColl ){ 2857 *apColl = db->pDfltColl; 2858 } 2859 } 2860 2861 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2862 for(i=0; i<2; i++){ 2863 int addr = pLoop->addrOpenEphm[i]; 2864 if( addr<0 ){ 2865 /* If [0] is unused then [1] is also unused. So we can 2866 ** always safely abort as soon as the first unused slot is found */ 2867 assert( pLoop->addrOpenEphm[1]<0 ); 2868 break; 2869 } 2870 sqlite3VdbeChangeP2(v, addr, nCol); 2871 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2872 P4_KEYINFO); 2873 pLoop->addrOpenEphm[i] = -1; 2874 } 2875 } 2876 sqlite3KeyInfoUnref(pKeyInfo); 2877 } 2878 2879 multi_select_end: 2880 pDest->iSdst = dest.iSdst; 2881 pDest->nSdst = dest.nSdst; 2882 sqlite3SelectDelete(db, pDelete); 2883 return rc; 2884 } 2885 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2886 2887 /* 2888 ** Error message for when two or more terms of a compound select have different 2889 ** size result sets. 2890 */ 2891 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2892 if( p->selFlags & SF_Values ){ 2893 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2894 }else{ 2895 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2896 " do not have the same number of result columns", selectOpName(p->op)); 2897 } 2898 } 2899 2900 /* 2901 ** Code an output subroutine for a coroutine implementation of a 2902 ** SELECT statment. 2903 ** 2904 ** The data to be output is contained in pIn->iSdst. There are 2905 ** pIn->nSdst columns to be output. pDest is where the output should 2906 ** be sent. 2907 ** 2908 ** regReturn is the number of the register holding the subroutine 2909 ** return address. 2910 ** 2911 ** If regPrev>0 then it is the first register in a vector that 2912 ** records the previous output. mem[regPrev] is a flag that is false 2913 ** if there has been no previous output. If regPrev>0 then code is 2914 ** generated to suppress duplicates. pKeyInfo is used for comparing 2915 ** keys. 2916 ** 2917 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2918 ** iBreak. 2919 */ 2920 static int generateOutputSubroutine( 2921 Parse *pParse, /* Parsing context */ 2922 Select *p, /* The SELECT statement */ 2923 SelectDest *pIn, /* Coroutine supplying data */ 2924 SelectDest *pDest, /* Where to send the data */ 2925 int regReturn, /* The return address register */ 2926 int regPrev, /* Previous result register. No uniqueness if 0 */ 2927 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2928 int iBreak /* Jump here if we hit the LIMIT */ 2929 ){ 2930 Vdbe *v = pParse->pVdbe; 2931 int iContinue; 2932 int addr; 2933 2934 addr = sqlite3VdbeCurrentAddr(v); 2935 iContinue = sqlite3VdbeMakeLabel(pParse); 2936 2937 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2938 */ 2939 if( regPrev ){ 2940 int addr1, addr2; 2941 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2942 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2943 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2944 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2945 sqlite3VdbeJumpHere(v, addr1); 2946 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2947 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2948 } 2949 if( pParse->db->mallocFailed ) return 0; 2950 2951 /* Suppress the first OFFSET entries if there is an OFFSET clause 2952 */ 2953 codeOffset(v, p->iOffset, iContinue); 2954 2955 assert( pDest->eDest!=SRT_Exists ); 2956 assert( pDest->eDest!=SRT_Table ); 2957 switch( pDest->eDest ){ 2958 /* Store the result as data using a unique key. 2959 */ 2960 case SRT_EphemTab: { 2961 int r1 = sqlite3GetTempReg(pParse); 2962 int r2 = sqlite3GetTempReg(pParse); 2963 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2964 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2965 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2966 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2967 sqlite3ReleaseTempReg(pParse, r2); 2968 sqlite3ReleaseTempReg(pParse, r1); 2969 break; 2970 } 2971 2972 #ifndef SQLITE_OMIT_SUBQUERY 2973 /* If we are creating a set for an "expr IN (SELECT ...)". 2974 */ 2975 case SRT_Set: { 2976 int r1; 2977 testcase( pIn->nSdst>1 ); 2978 r1 = sqlite3GetTempReg(pParse); 2979 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2980 r1, pDest->zAffSdst, pIn->nSdst); 2981 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2982 pIn->iSdst, pIn->nSdst); 2983 sqlite3ReleaseTempReg(pParse, r1); 2984 break; 2985 } 2986 2987 /* If this is a scalar select that is part of an expression, then 2988 ** store the results in the appropriate memory cell and break out 2989 ** of the scan loop. Note that the select might return multiple columns 2990 ** if it is the RHS of a row-value IN operator. 2991 */ 2992 case SRT_Mem: { 2993 if( pParse->nErr==0 ){ 2994 testcase( pIn->nSdst>1 ); 2995 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 2996 } 2997 /* The LIMIT clause will jump out of the loop for us */ 2998 break; 2999 } 3000 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3001 3002 /* The results are stored in a sequence of registers 3003 ** starting at pDest->iSdst. Then the co-routine yields. 3004 */ 3005 case SRT_Coroutine: { 3006 if( pDest->iSdst==0 ){ 3007 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3008 pDest->nSdst = pIn->nSdst; 3009 } 3010 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3011 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3012 break; 3013 } 3014 3015 /* If none of the above, then the result destination must be 3016 ** SRT_Output. This routine is never called with any other 3017 ** destination other than the ones handled above or SRT_Output. 3018 ** 3019 ** For SRT_Output, results are stored in a sequence of registers. 3020 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3021 ** return the next row of result. 3022 */ 3023 default: { 3024 assert( pDest->eDest==SRT_Output ); 3025 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3026 break; 3027 } 3028 } 3029 3030 /* Jump to the end of the loop if the LIMIT is reached. 3031 */ 3032 if( p->iLimit ){ 3033 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3034 } 3035 3036 /* Generate the subroutine return 3037 */ 3038 sqlite3VdbeResolveLabel(v, iContinue); 3039 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3040 3041 return addr; 3042 } 3043 3044 /* 3045 ** Alternative compound select code generator for cases when there 3046 ** is an ORDER BY clause. 3047 ** 3048 ** We assume a query of the following form: 3049 ** 3050 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3051 ** 3052 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3053 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3054 ** co-routines. Then run the co-routines in parallel and merge the results 3055 ** into the output. In addition to the two coroutines (called selectA and 3056 ** selectB) there are 7 subroutines: 3057 ** 3058 ** outA: Move the output of the selectA coroutine into the output 3059 ** of the compound query. 3060 ** 3061 ** outB: Move the output of the selectB coroutine into the output 3062 ** of the compound query. (Only generated for UNION and 3063 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3064 ** appears only in B.) 3065 ** 3066 ** AltB: Called when there is data from both coroutines and A<B. 3067 ** 3068 ** AeqB: Called when there is data from both coroutines and A==B. 3069 ** 3070 ** AgtB: Called when there is data from both coroutines and A>B. 3071 ** 3072 ** EofA: Called when data is exhausted from selectA. 3073 ** 3074 ** EofB: Called when data is exhausted from selectB. 3075 ** 3076 ** The implementation of the latter five subroutines depend on which 3077 ** <operator> is used: 3078 ** 3079 ** 3080 ** UNION ALL UNION EXCEPT INTERSECT 3081 ** ------------- ----------------- -------------- ----------------- 3082 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3083 ** 3084 ** AeqB: outA, nextA nextA nextA outA, nextA 3085 ** 3086 ** AgtB: outB, nextB outB, nextB nextB nextB 3087 ** 3088 ** EofA: outB, nextB outB, nextB halt halt 3089 ** 3090 ** EofB: outA, nextA outA, nextA outA, nextA halt 3091 ** 3092 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3093 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3094 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3095 ** following nextX causes a jump to the end of the select processing. 3096 ** 3097 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3098 ** within the output subroutine. The regPrev register set holds the previously 3099 ** output value. A comparison is made against this value and the output 3100 ** is skipped if the next results would be the same as the previous. 3101 ** 3102 ** The implementation plan is to implement the two coroutines and seven 3103 ** subroutines first, then put the control logic at the bottom. Like this: 3104 ** 3105 ** goto Init 3106 ** coA: coroutine for left query (A) 3107 ** coB: coroutine for right query (B) 3108 ** outA: output one row of A 3109 ** outB: output one row of B (UNION and UNION ALL only) 3110 ** EofA: ... 3111 ** EofB: ... 3112 ** AltB: ... 3113 ** AeqB: ... 3114 ** AgtB: ... 3115 ** Init: initialize coroutine registers 3116 ** yield coA 3117 ** if eof(A) goto EofA 3118 ** yield coB 3119 ** if eof(B) goto EofB 3120 ** Cmpr: Compare A, B 3121 ** Jump AltB, AeqB, AgtB 3122 ** End: ... 3123 ** 3124 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3125 ** actually called using Gosub and they do not Return. EofA and EofB loop 3126 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3127 ** and AgtB jump to either L2 or to one of EofA or EofB. 3128 */ 3129 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3130 static int multiSelectOrderBy( 3131 Parse *pParse, /* Parsing context */ 3132 Select *p, /* The right-most of SELECTs to be coded */ 3133 SelectDest *pDest /* What to do with query results */ 3134 ){ 3135 int i, j; /* Loop counters */ 3136 Select *pPrior; /* Another SELECT immediately to our left */ 3137 Vdbe *v; /* Generate code to this VDBE */ 3138 SelectDest destA; /* Destination for coroutine A */ 3139 SelectDest destB; /* Destination for coroutine B */ 3140 int regAddrA; /* Address register for select-A coroutine */ 3141 int regAddrB; /* Address register for select-B coroutine */ 3142 int addrSelectA; /* Address of the select-A coroutine */ 3143 int addrSelectB; /* Address of the select-B coroutine */ 3144 int regOutA; /* Address register for the output-A subroutine */ 3145 int regOutB; /* Address register for the output-B subroutine */ 3146 int addrOutA; /* Address of the output-A subroutine */ 3147 int addrOutB = 0; /* Address of the output-B subroutine */ 3148 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3149 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3150 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3151 int addrAltB; /* Address of the A<B subroutine */ 3152 int addrAeqB; /* Address of the A==B subroutine */ 3153 int addrAgtB; /* Address of the A>B subroutine */ 3154 int regLimitA; /* Limit register for select-A */ 3155 int regLimitB; /* Limit register for select-A */ 3156 int regPrev; /* A range of registers to hold previous output */ 3157 int savedLimit; /* Saved value of p->iLimit */ 3158 int savedOffset; /* Saved value of p->iOffset */ 3159 int labelCmpr; /* Label for the start of the merge algorithm */ 3160 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3161 int addr1; /* Jump instructions that get retargetted */ 3162 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3163 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3164 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3165 sqlite3 *db; /* Database connection */ 3166 ExprList *pOrderBy; /* The ORDER BY clause */ 3167 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3168 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3169 3170 assert( p->pOrderBy!=0 ); 3171 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3172 db = pParse->db; 3173 v = pParse->pVdbe; 3174 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3175 labelEnd = sqlite3VdbeMakeLabel(pParse); 3176 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3177 3178 3179 /* Patch up the ORDER BY clause 3180 */ 3181 op = p->op; 3182 pPrior = p->pPrior; 3183 assert( pPrior->pOrderBy==0 ); 3184 pOrderBy = p->pOrderBy; 3185 assert( pOrderBy ); 3186 nOrderBy = pOrderBy->nExpr; 3187 3188 /* For operators other than UNION ALL we have to make sure that 3189 ** the ORDER BY clause covers every term of the result set. Add 3190 ** terms to the ORDER BY clause as necessary. 3191 */ 3192 if( op!=TK_ALL ){ 3193 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3194 struct ExprList_item *pItem; 3195 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3196 assert( pItem->u.x.iOrderByCol>0 ); 3197 if( pItem->u.x.iOrderByCol==i ) break; 3198 } 3199 if( j==nOrderBy ){ 3200 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3201 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3202 pNew->flags |= EP_IntValue; 3203 pNew->u.iValue = i; 3204 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3205 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3206 } 3207 } 3208 } 3209 3210 /* Compute the comparison permutation and keyinfo that is used with 3211 ** the permutation used to determine if the next 3212 ** row of results comes from selectA or selectB. Also add explicit 3213 ** collations to the ORDER BY clause terms so that when the subqueries 3214 ** to the right and the left are evaluated, they use the correct 3215 ** collation. 3216 */ 3217 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3218 if( aPermute ){ 3219 struct ExprList_item *pItem; 3220 aPermute[0] = nOrderBy; 3221 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3222 assert( pItem->u.x.iOrderByCol>0 ); 3223 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3224 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3225 } 3226 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3227 }else{ 3228 pKeyMerge = 0; 3229 } 3230 3231 /* Reattach the ORDER BY clause to the query. 3232 */ 3233 p->pOrderBy = pOrderBy; 3234 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3235 3236 /* Allocate a range of temporary registers and the KeyInfo needed 3237 ** for the logic that removes duplicate result rows when the 3238 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3239 */ 3240 if( op==TK_ALL ){ 3241 regPrev = 0; 3242 }else{ 3243 int nExpr = p->pEList->nExpr; 3244 assert( nOrderBy>=nExpr || db->mallocFailed ); 3245 regPrev = pParse->nMem+1; 3246 pParse->nMem += nExpr+1; 3247 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3248 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3249 if( pKeyDup ){ 3250 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3251 for(i=0; i<nExpr; i++){ 3252 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3253 pKeyDup->aSortFlags[i] = 0; 3254 } 3255 } 3256 } 3257 3258 /* Separate the left and the right query from one another 3259 */ 3260 p->pPrior = 0; 3261 pPrior->pNext = 0; 3262 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3263 if( pPrior->pPrior==0 ){ 3264 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3265 } 3266 3267 /* Compute the limit registers */ 3268 computeLimitRegisters(pParse, p, labelEnd); 3269 if( p->iLimit && op==TK_ALL ){ 3270 regLimitA = ++pParse->nMem; 3271 regLimitB = ++pParse->nMem; 3272 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3273 regLimitA); 3274 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3275 }else{ 3276 regLimitA = regLimitB = 0; 3277 } 3278 sqlite3ExprDelete(db, p->pLimit); 3279 p->pLimit = 0; 3280 3281 regAddrA = ++pParse->nMem; 3282 regAddrB = ++pParse->nMem; 3283 regOutA = ++pParse->nMem; 3284 regOutB = ++pParse->nMem; 3285 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3286 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3287 3288 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3289 3290 /* Generate a coroutine to evaluate the SELECT statement to the 3291 ** left of the compound operator - the "A" select. 3292 */ 3293 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3294 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3295 VdbeComment((v, "left SELECT")); 3296 pPrior->iLimit = regLimitA; 3297 ExplainQueryPlan((pParse, 1, "LEFT")); 3298 sqlite3Select(pParse, pPrior, &destA); 3299 sqlite3VdbeEndCoroutine(v, regAddrA); 3300 sqlite3VdbeJumpHere(v, addr1); 3301 3302 /* Generate a coroutine to evaluate the SELECT statement on 3303 ** the right - the "B" select 3304 */ 3305 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3306 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3307 VdbeComment((v, "right SELECT")); 3308 savedLimit = p->iLimit; 3309 savedOffset = p->iOffset; 3310 p->iLimit = regLimitB; 3311 p->iOffset = 0; 3312 ExplainQueryPlan((pParse, 1, "RIGHT")); 3313 sqlite3Select(pParse, p, &destB); 3314 p->iLimit = savedLimit; 3315 p->iOffset = savedOffset; 3316 sqlite3VdbeEndCoroutine(v, regAddrB); 3317 3318 /* Generate a subroutine that outputs the current row of the A 3319 ** select as the next output row of the compound select. 3320 */ 3321 VdbeNoopComment((v, "Output routine for A")); 3322 addrOutA = generateOutputSubroutine(pParse, 3323 p, &destA, pDest, regOutA, 3324 regPrev, pKeyDup, labelEnd); 3325 3326 /* Generate a subroutine that outputs the current row of the B 3327 ** select as the next output row of the compound select. 3328 */ 3329 if( op==TK_ALL || op==TK_UNION ){ 3330 VdbeNoopComment((v, "Output routine for B")); 3331 addrOutB = generateOutputSubroutine(pParse, 3332 p, &destB, pDest, regOutB, 3333 regPrev, pKeyDup, labelEnd); 3334 } 3335 sqlite3KeyInfoUnref(pKeyDup); 3336 3337 /* Generate a subroutine to run when the results from select A 3338 ** are exhausted and only data in select B remains. 3339 */ 3340 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3341 addrEofA_noB = addrEofA = labelEnd; 3342 }else{ 3343 VdbeNoopComment((v, "eof-A subroutine")); 3344 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3345 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3346 VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, addrEofA); 3348 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3349 } 3350 3351 /* Generate a subroutine to run when the results from select B 3352 ** are exhausted and only data in select A remains. 3353 */ 3354 if( op==TK_INTERSECT ){ 3355 addrEofB = addrEofA; 3356 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3357 }else{ 3358 VdbeNoopComment((v, "eof-B subroutine")); 3359 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3360 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3361 sqlite3VdbeGoto(v, addrEofB); 3362 } 3363 3364 /* Generate code to handle the case of A<B 3365 */ 3366 VdbeNoopComment((v, "A-lt-B subroutine")); 3367 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3368 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3369 sqlite3VdbeGoto(v, labelCmpr); 3370 3371 /* Generate code to handle the case of A==B 3372 */ 3373 if( op==TK_ALL ){ 3374 addrAeqB = addrAltB; 3375 }else if( op==TK_INTERSECT ){ 3376 addrAeqB = addrAltB; 3377 addrAltB++; 3378 }else{ 3379 VdbeNoopComment((v, "A-eq-B subroutine")); 3380 addrAeqB = 3381 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3382 sqlite3VdbeGoto(v, labelCmpr); 3383 } 3384 3385 /* Generate code to handle the case of A>B 3386 */ 3387 VdbeNoopComment((v, "A-gt-B subroutine")); 3388 addrAgtB = sqlite3VdbeCurrentAddr(v); 3389 if( op==TK_ALL || op==TK_UNION ){ 3390 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3391 } 3392 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3393 sqlite3VdbeGoto(v, labelCmpr); 3394 3395 /* This code runs once to initialize everything. 3396 */ 3397 sqlite3VdbeJumpHere(v, addr1); 3398 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3399 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3400 3401 /* Implement the main merge loop 3402 */ 3403 sqlite3VdbeResolveLabel(v, labelCmpr); 3404 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3405 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3406 (char*)pKeyMerge, P4_KEYINFO); 3407 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3408 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3409 3410 /* Jump to the this point in order to terminate the query. 3411 */ 3412 sqlite3VdbeResolveLabel(v, labelEnd); 3413 3414 /* Reassembly the compound query so that it will be freed correctly 3415 ** by the calling function */ 3416 if( p->pPrior ){ 3417 sqlite3SelectDelete(db, p->pPrior); 3418 } 3419 p->pPrior = pPrior; 3420 pPrior->pNext = p; 3421 3422 /*** TBD: Insert subroutine calls to close cursors on incomplete 3423 **** subqueries ****/ 3424 ExplainQueryPlanPop(pParse); 3425 return pParse->nErr!=0; 3426 } 3427 #endif 3428 3429 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3430 3431 /* An instance of the SubstContext object describes an substitution edit 3432 ** to be performed on a parse tree. 3433 ** 3434 ** All references to columns in table iTable are to be replaced by corresponding 3435 ** expressions in pEList. 3436 */ 3437 typedef struct SubstContext { 3438 Parse *pParse; /* The parsing context */ 3439 int iTable; /* Replace references to this table */ 3440 int iNewTable; /* New table number */ 3441 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3442 ExprList *pEList; /* Replacement expressions */ 3443 } SubstContext; 3444 3445 /* Forward Declarations */ 3446 static void substExprList(SubstContext*, ExprList*); 3447 static void substSelect(SubstContext*, Select*, int); 3448 3449 /* 3450 ** Scan through the expression pExpr. Replace every reference to 3451 ** a column in table number iTable with a copy of the iColumn-th 3452 ** entry in pEList. (But leave references to the ROWID column 3453 ** unchanged.) 3454 ** 3455 ** This routine is part of the flattening procedure. A subquery 3456 ** whose result set is defined by pEList appears as entry in the 3457 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3458 ** FORM clause entry is iTable. This routine makes the necessary 3459 ** changes to pExpr so that it refers directly to the source table 3460 ** of the subquery rather the result set of the subquery. 3461 */ 3462 static Expr *substExpr( 3463 SubstContext *pSubst, /* Description of the substitution */ 3464 Expr *pExpr /* Expr in which substitution occurs */ 3465 ){ 3466 if( pExpr==0 ) return 0; 3467 if( ExprHasProperty(pExpr, EP_FromJoin) 3468 && pExpr->iRightJoinTable==pSubst->iTable 3469 ){ 3470 pExpr->iRightJoinTable = pSubst->iNewTable; 3471 } 3472 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3473 if( pExpr->iColumn<0 ){ 3474 pExpr->op = TK_NULL; 3475 }else{ 3476 Expr *pNew; 3477 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3478 Expr ifNullRow; 3479 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3480 assert( pExpr->pRight==0 ); 3481 if( sqlite3ExprIsVector(pCopy) ){ 3482 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3483 }else{ 3484 sqlite3 *db = pSubst->pParse->db; 3485 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3486 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3487 ifNullRow.op = TK_IF_NULL_ROW; 3488 ifNullRow.pLeft = pCopy; 3489 ifNullRow.iTable = pSubst->iNewTable; 3490 pCopy = &ifNullRow; 3491 } 3492 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3493 pNew = sqlite3ExprDup(db, pCopy, 0); 3494 if( pNew && pSubst->isLeftJoin ){ 3495 ExprSetProperty(pNew, EP_CanBeNull); 3496 } 3497 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3498 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3499 ExprSetProperty(pNew, EP_FromJoin); 3500 } 3501 sqlite3ExprDelete(db, pExpr); 3502 pExpr = pNew; 3503 3504 /* Ensure that the expression now has an implicit collation sequence, 3505 ** just as it did when it was a column of a view or sub-query. */ 3506 if( pExpr ){ 3507 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3508 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3509 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3510 (pColl ? pColl->zName : "BINARY") 3511 ); 3512 } 3513 ExprClearProperty(pExpr, EP_Collate); 3514 } 3515 } 3516 } 3517 }else{ 3518 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3519 pExpr->iTable = pSubst->iNewTable; 3520 } 3521 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3522 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3523 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3524 substSelect(pSubst, pExpr->x.pSelect, 1); 3525 }else{ 3526 substExprList(pSubst, pExpr->x.pList); 3527 } 3528 #ifndef SQLITE_OMIT_WINDOWFUNC 3529 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3530 Window *pWin = pExpr->y.pWin; 3531 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3532 substExprList(pSubst, pWin->pPartition); 3533 substExprList(pSubst, pWin->pOrderBy); 3534 } 3535 #endif 3536 } 3537 return pExpr; 3538 } 3539 static void substExprList( 3540 SubstContext *pSubst, /* Description of the substitution */ 3541 ExprList *pList /* List to scan and in which to make substitutes */ 3542 ){ 3543 int i; 3544 if( pList==0 ) return; 3545 for(i=0; i<pList->nExpr; i++){ 3546 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3547 } 3548 } 3549 static void substSelect( 3550 SubstContext *pSubst, /* Description of the substitution */ 3551 Select *p, /* SELECT statement in which to make substitutions */ 3552 int doPrior /* Do substitutes on p->pPrior too */ 3553 ){ 3554 SrcList *pSrc; 3555 struct SrcList_item *pItem; 3556 int i; 3557 if( !p ) return; 3558 do{ 3559 substExprList(pSubst, p->pEList); 3560 substExprList(pSubst, p->pGroupBy); 3561 substExprList(pSubst, p->pOrderBy); 3562 p->pHaving = substExpr(pSubst, p->pHaving); 3563 p->pWhere = substExpr(pSubst, p->pWhere); 3564 pSrc = p->pSrc; 3565 assert( pSrc!=0 ); 3566 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3567 substSelect(pSubst, pItem->pSelect, 1); 3568 if( pItem->fg.isTabFunc ){ 3569 substExprList(pSubst, pItem->u1.pFuncArg); 3570 } 3571 } 3572 }while( doPrior && (p = p->pPrior)!=0 ); 3573 } 3574 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3575 3576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3577 /* 3578 ** This routine attempts to flatten subqueries as a performance optimization. 3579 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3580 ** 3581 ** To understand the concept of flattening, consider the following 3582 ** query: 3583 ** 3584 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3585 ** 3586 ** The default way of implementing this query is to execute the 3587 ** subquery first and store the results in a temporary table, then 3588 ** run the outer query on that temporary table. This requires two 3589 ** passes over the data. Furthermore, because the temporary table 3590 ** has no indices, the WHERE clause on the outer query cannot be 3591 ** optimized. 3592 ** 3593 ** This routine attempts to rewrite queries such as the above into 3594 ** a single flat select, like this: 3595 ** 3596 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3597 ** 3598 ** The code generated for this simplification gives the same result 3599 ** but only has to scan the data once. And because indices might 3600 ** exist on the table t1, a complete scan of the data might be 3601 ** avoided. 3602 ** 3603 ** Flattening is subject to the following constraints: 3604 ** 3605 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3606 ** The subquery and the outer query cannot both be aggregates. 3607 ** 3608 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3609 ** (2) If the subquery is an aggregate then 3610 ** (2a) the outer query must not be a join and 3611 ** (2b) the outer query must not use subqueries 3612 ** other than the one FROM-clause subquery that is a candidate 3613 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3614 ** from 2015-02-09.) 3615 ** 3616 ** (3) If the subquery is the right operand of a LEFT JOIN then 3617 ** (3a) the subquery may not be a join and 3618 ** (3b) the FROM clause of the subquery may not contain a virtual 3619 ** table and 3620 ** (3c) the outer query may not be an aggregate. 3621 ** (3d) the outer query may not be DISTINCT. 3622 ** 3623 ** (4) The subquery can not be DISTINCT. 3624 ** 3625 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3626 ** sub-queries that were excluded from this optimization. Restriction 3627 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3628 ** 3629 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3630 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3631 ** 3632 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3633 ** A FROM clause, consider adding a FROM clause with the special 3634 ** table sqlite_once that consists of a single row containing a 3635 ** single NULL. 3636 ** 3637 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3638 ** 3639 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3640 ** 3641 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3642 ** accidently carried the comment forward until 2014-09-15. Original 3643 ** constraint: "If the subquery is aggregate then the outer query 3644 ** may not use LIMIT." 3645 ** 3646 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3647 ** 3648 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3649 ** a separate restriction deriving from ticket #350. 3650 ** 3651 ** (13) The subquery and outer query may not both use LIMIT. 3652 ** 3653 ** (14) The subquery may not use OFFSET. 3654 ** 3655 ** (15) If the outer query is part of a compound select, then the 3656 ** subquery may not use LIMIT. 3657 ** (See ticket #2339 and ticket [02a8e81d44]). 3658 ** 3659 ** (16) If the outer query is aggregate, then the subquery may not 3660 ** use ORDER BY. (Ticket #2942) This used to not matter 3661 ** until we introduced the group_concat() function. 3662 ** 3663 ** (17) If the subquery is a compound select, then 3664 ** (17a) all compound operators must be a UNION ALL, and 3665 ** (17b) no terms within the subquery compound may be aggregate 3666 ** or DISTINCT, and 3667 ** (17c) every term within the subquery compound must have a FROM clause 3668 ** (17d) the outer query may not be 3669 ** (17d1) aggregate, or 3670 ** (17d2) DISTINCT, or 3671 ** (17d3) a join. 3672 ** 3673 ** The parent and sub-query may contain WHERE clauses. Subject to 3674 ** rules (11), (13) and (14), they may also contain ORDER BY, 3675 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3676 ** operator other than UNION ALL because all the other compound 3677 ** operators have an implied DISTINCT which is disallowed by 3678 ** restriction (4). 3679 ** 3680 ** Also, each component of the sub-query must return the same number 3681 ** of result columns. This is actually a requirement for any compound 3682 ** SELECT statement, but all the code here does is make sure that no 3683 ** such (illegal) sub-query is flattened. The caller will detect the 3684 ** syntax error and return a detailed message. 3685 ** 3686 ** (18) If the sub-query is a compound select, then all terms of the 3687 ** ORDER BY clause of the parent must be simple references to 3688 ** columns of the sub-query. 3689 ** 3690 ** (19) If the subquery uses LIMIT then the outer query may not 3691 ** have a WHERE clause. 3692 ** 3693 ** (20) If the sub-query is a compound select, then it must not use 3694 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3695 ** somewhat by saying that the terms of the ORDER BY clause must 3696 ** appear as unmodified result columns in the outer query. But we 3697 ** have other optimizations in mind to deal with that case. 3698 ** 3699 ** (21) If the subquery uses LIMIT then the outer query may not be 3700 ** DISTINCT. (See ticket [752e1646fc]). 3701 ** 3702 ** (22) The subquery may not be a recursive CTE. 3703 ** 3704 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3705 ** a recursive CTE, then the sub-query may not be a compound query. 3706 ** This restriction is because transforming the 3707 ** parent to a compound query confuses the code that handles 3708 ** recursive queries in multiSelect(). 3709 ** 3710 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3711 ** The subquery may not be an aggregate that uses the built-in min() or 3712 ** or max() functions. (Without this restriction, a query like: 3713 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3714 ** return the value X for which Y was maximal.) 3715 ** 3716 ** (25) If either the subquery or the parent query contains a window 3717 ** function in the select list or ORDER BY clause, flattening 3718 ** is not attempted. 3719 ** 3720 ** 3721 ** In this routine, the "p" parameter is a pointer to the outer query. 3722 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3723 ** uses aggregates. 3724 ** 3725 ** If flattening is not attempted, this routine is a no-op and returns 0. 3726 ** If flattening is attempted this routine returns 1. 3727 ** 3728 ** All of the expression analysis must occur on both the outer query and 3729 ** the subquery before this routine runs. 3730 */ 3731 static int flattenSubquery( 3732 Parse *pParse, /* Parsing context */ 3733 Select *p, /* The parent or outer SELECT statement */ 3734 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3735 int isAgg /* True if outer SELECT uses aggregate functions */ 3736 ){ 3737 const char *zSavedAuthContext = pParse->zAuthContext; 3738 Select *pParent; /* Current UNION ALL term of the other query */ 3739 Select *pSub; /* The inner query or "subquery" */ 3740 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3741 SrcList *pSrc; /* The FROM clause of the outer query */ 3742 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3743 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3744 int iNewParent = -1;/* Replacement table for iParent */ 3745 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3746 int i; /* Loop counter */ 3747 Expr *pWhere; /* The WHERE clause */ 3748 struct SrcList_item *pSubitem; /* The subquery */ 3749 sqlite3 *db = pParse->db; 3750 3751 /* Check to see if flattening is permitted. Return 0 if not. 3752 */ 3753 assert( p!=0 ); 3754 assert( p->pPrior==0 ); 3755 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3756 pSrc = p->pSrc; 3757 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3758 pSubitem = &pSrc->a[iFrom]; 3759 iParent = pSubitem->iCursor; 3760 pSub = pSubitem->pSelect; 3761 assert( pSub!=0 ); 3762 3763 #ifndef SQLITE_OMIT_WINDOWFUNC 3764 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3765 #endif 3766 3767 pSubSrc = pSub->pSrc; 3768 assert( pSubSrc ); 3769 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3770 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3771 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3772 ** became arbitrary expressions, we were forced to add restrictions (13) 3773 ** and (14). */ 3774 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3775 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3776 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3777 return 0; /* Restriction (15) */ 3778 } 3779 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3780 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3781 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3782 return 0; /* Restrictions (8)(9) */ 3783 } 3784 if( p->pOrderBy && pSub->pOrderBy ){ 3785 return 0; /* Restriction (11) */ 3786 } 3787 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3788 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3789 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3790 return 0; /* Restriction (21) */ 3791 } 3792 if( pSub->selFlags & (SF_Recursive) ){ 3793 return 0; /* Restrictions (22) */ 3794 } 3795 3796 /* 3797 ** If the subquery is the right operand of a LEFT JOIN, then the 3798 ** subquery may not be a join itself (3a). Example of why this is not 3799 ** allowed: 3800 ** 3801 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3802 ** 3803 ** If we flatten the above, we would get 3804 ** 3805 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3806 ** 3807 ** which is not at all the same thing. 3808 ** 3809 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3810 ** query cannot be an aggregate. (3c) This is an artifact of the way 3811 ** aggregates are processed - there is no mechanism to determine if 3812 ** the LEFT JOIN table should be all-NULL. 3813 ** 3814 ** See also tickets #306, #350, and #3300. 3815 */ 3816 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3817 isLeftJoin = 1; 3818 if( pSubSrc->nSrc>1 /* (3a) */ 3819 || isAgg /* (3b) */ 3820 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3821 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3822 ){ 3823 return 0; 3824 } 3825 } 3826 #ifdef SQLITE_EXTRA_IFNULLROW 3827 else if( iFrom>0 && !isAgg ){ 3828 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3829 ** every reference to any result column from subquery in a join, even 3830 ** though they are not necessary. This will stress-test the OP_IfNullRow 3831 ** opcode. */ 3832 isLeftJoin = -1; 3833 } 3834 #endif 3835 3836 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3837 ** use only the UNION ALL operator. And none of the simple select queries 3838 ** that make up the compound SELECT are allowed to be aggregate or distinct 3839 ** queries. 3840 */ 3841 if( pSub->pPrior ){ 3842 if( pSub->pOrderBy ){ 3843 return 0; /* Restriction (20) */ 3844 } 3845 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3846 return 0; /* (17d1), (17d2), or (17d3) */ 3847 } 3848 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3849 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3850 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3851 assert( pSub->pSrc!=0 ); 3852 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3853 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3854 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3855 || pSub1->pSrc->nSrc<1 /* (17c) */ 3856 ){ 3857 return 0; 3858 } 3859 testcase( pSub1->pSrc->nSrc>1 ); 3860 } 3861 3862 /* Restriction (18). */ 3863 if( p->pOrderBy ){ 3864 int ii; 3865 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3866 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3867 } 3868 } 3869 } 3870 3871 /* Ex-restriction (23): 3872 ** The only way that the recursive part of a CTE can contain a compound 3873 ** subquery is for the subquery to be one term of a join. But if the 3874 ** subquery is a join, then the flattening has already been stopped by 3875 ** restriction (17d3) 3876 */ 3877 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3878 3879 /***** If we reach this point, flattening is permitted. *****/ 3880 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3881 pSub->selId, pSub, iFrom)); 3882 3883 /* Authorize the subquery */ 3884 pParse->zAuthContext = pSubitem->zName; 3885 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3886 testcase( i==SQLITE_DENY ); 3887 pParse->zAuthContext = zSavedAuthContext; 3888 3889 /* If the sub-query is a compound SELECT statement, then (by restrictions 3890 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3891 ** be of the form: 3892 ** 3893 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3894 ** 3895 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3896 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3897 ** OFFSET clauses and joins them to the left-hand-side of the original 3898 ** using UNION ALL operators. In this case N is the number of simple 3899 ** select statements in the compound sub-query. 3900 ** 3901 ** Example: 3902 ** 3903 ** SELECT a+1 FROM ( 3904 ** SELECT x FROM tab 3905 ** UNION ALL 3906 ** SELECT y FROM tab 3907 ** UNION ALL 3908 ** SELECT abs(z*2) FROM tab2 3909 ** ) WHERE a!=5 ORDER BY 1 3910 ** 3911 ** Transformed into: 3912 ** 3913 ** SELECT x+1 FROM tab WHERE x+1!=5 3914 ** UNION ALL 3915 ** SELECT y+1 FROM tab WHERE y+1!=5 3916 ** UNION ALL 3917 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3918 ** ORDER BY 1 3919 ** 3920 ** We call this the "compound-subquery flattening". 3921 */ 3922 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3923 Select *pNew; 3924 ExprList *pOrderBy = p->pOrderBy; 3925 Expr *pLimit = p->pLimit; 3926 Select *pPrior = p->pPrior; 3927 p->pOrderBy = 0; 3928 p->pSrc = 0; 3929 p->pPrior = 0; 3930 p->pLimit = 0; 3931 pNew = sqlite3SelectDup(db, p, 0); 3932 p->pLimit = pLimit; 3933 p->pOrderBy = pOrderBy; 3934 p->pSrc = pSrc; 3935 p->op = TK_ALL; 3936 if( pNew==0 ){ 3937 p->pPrior = pPrior; 3938 }else{ 3939 pNew->pPrior = pPrior; 3940 if( pPrior ) pPrior->pNext = pNew; 3941 pNew->pNext = p; 3942 p->pPrior = pNew; 3943 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3944 " creates %u as peer\n",pNew->selId)); 3945 } 3946 if( db->mallocFailed ) return 1; 3947 } 3948 3949 /* Begin flattening the iFrom-th entry of the FROM clause 3950 ** in the outer query. 3951 */ 3952 pSub = pSub1 = pSubitem->pSelect; 3953 3954 /* Delete the transient table structure associated with the 3955 ** subquery 3956 */ 3957 sqlite3DbFree(db, pSubitem->zDatabase); 3958 sqlite3DbFree(db, pSubitem->zName); 3959 sqlite3DbFree(db, pSubitem->zAlias); 3960 pSubitem->zDatabase = 0; 3961 pSubitem->zName = 0; 3962 pSubitem->zAlias = 0; 3963 pSubitem->pSelect = 0; 3964 3965 /* Defer deleting the Table object associated with the 3966 ** subquery until code generation is 3967 ** complete, since there may still exist Expr.pTab entries that 3968 ** refer to the subquery even after flattening. Ticket #3346. 3969 ** 3970 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3971 */ 3972 if( ALWAYS(pSubitem->pTab!=0) ){ 3973 Table *pTabToDel = pSubitem->pTab; 3974 if( pTabToDel->nTabRef==1 ){ 3975 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3976 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3977 pToplevel->pZombieTab = pTabToDel; 3978 }else{ 3979 pTabToDel->nTabRef--; 3980 } 3981 pSubitem->pTab = 0; 3982 } 3983 3984 /* The following loop runs once for each term in a compound-subquery 3985 ** flattening (as described above). If we are doing a different kind 3986 ** of flattening - a flattening other than a compound-subquery flattening - 3987 ** then this loop only runs once. 3988 ** 3989 ** This loop moves all of the FROM elements of the subquery into the 3990 ** the FROM clause of the outer query. Before doing this, remember 3991 ** the cursor number for the original outer query FROM element in 3992 ** iParent. The iParent cursor will never be used. Subsequent code 3993 ** will scan expressions looking for iParent references and replace 3994 ** those references with expressions that resolve to the subquery FROM 3995 ** elements we are now copying in. 3996 */ 3997 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3998 int nSubSrc; 3999 u8 jointype = 0; 4000 assert( pSub!=0 ); 4001 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4002 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4003 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4004 4005 if( pSrc ){ 4006 assert( pParent==p ); /* First time through the loop */ 4007 jointype = pSubitem->fg.jointype; 4008 }else{ 4009 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4010 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4011 if( pSrc==0 ) break; 4012 pParent->pSrc = pSrc; 4013 } 4014 4015 /* The subquery uses a single slot of the FROM clause of the outer 4016 ** query. If the subquery has more than one element in its FROM clause, 4017 ** then expand the outer query to make space for it to hold all elements 4018 ** of the subquery. 4019 ** 4020 ** Example: 4021 ** 4022 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4023 ** 4024 ** The outer query has 3 slots in its FROM clause. One slot of the 4025 ** outer query (the middle slot) is used by the subquery. The next 4026 ** block of code will expand the outer query FROM clause to 4 slots. 4027 ** The middle slot is expanded to two slots in order to make space 4028 ** for the two elements in the FROM clause of the subquery. 4029 */ 4030 if( nSubSrc>1 ){ 4031 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4032 if( pSrc==0 ) break; 4033 pParent->pSrc = pSrc; 4034 } 4035 4036 /* Transfer the FROM clause terms from the subquery into the 4037 ** outer query. 4038 */ 4039 for(i=0; i<nSubSrc; i++){ 4040 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4041 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4042 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4043 iNewParent = pSubSrc->a[i].iCursor; 4044 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4045 } 4046 pSrc->a[iFrom].fg.jointype = jointype; 4047 4048 /* Now begin substituting subquery result set expressions for 4049 ** references to the iParent in the outer query. 4050 ** 4051 ** Example: 4052 ** 4053 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4054 ** \ \_____________ subquery __________/ / 4055 ** \_____________________ outer query ______________________________/ 4056 ** 4057 ** We look at every expression in the outer query and every place we see 4058 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4059 */ 4060 if( pSub->pOrderBy ){ 4061 /* At this point, any non-zero iOrderByCol values indicate that the 4062 ** ORDER BY column expression is identical to the iOrderByCol'th 4063 ** expression returned by SELECT statement pSub. Since these values 4064 ** do not necessarily correspond to columns in SELECT statement pParent, 4065 ** zero them before transfering the ORDER BY clause. 4066 ** 4067 ** Not doing this may cause an error if a subsequent call to this 4068 ** function attempts to flatten a compound sub-query into pParent 4069 ** (the only way this can happen is if the compound sub-query is 4070 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4071 ExprList *pOrderBy = pSub->pOrderBy; 4072 for(i=0; i<pOrderBy->nExpr; i++){ 4073 pOrderBy->a[i].u.x.iOrderByCol = 0; 4074 } 4075 assert( pParent->pOrderBy==0 ); 4076 pParent->pOrderBy = pOrderBy; 4077 pSub->pOrderBy = 0; 4078 } 4079 pWhere = pSub->pWhere; 4080 pSub->pWhere = 0; 4081 if( isLeftJoin>0 ){ 4082 sqlite3SetJoinExpr(pWhere, iNewParent); 4083 } 4084 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4085 if( db->mallocFailed==0 ){ 4086 SubstContext x; 4087 x.pParse = pParse; 4088 x.iTable = iParent; 4089 x.iNewTable = iNewParent; 4090 x.isLeftJoin = isLeftJoin; 4091 x.pEList = pSub->pEList; 4092 substSelect(&x, pParent, 0); 4093 } 4094 4095 /* The flattened query is a compound if either the inner or the 4096 ** outer query is a compound. */ 4097 pParent->selFlags |= pSub->selFlags & SF_Compound; 4098 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4099 4100 /* 4101 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4102 ** 4103 ** One is tempted to try to add a and b to combine the limits. But this 4104 ** does not work if either limit is negative. 4105 */ 4106 if( pSub->pLimit ){ 4107 pParent->pLimit = pSub->pLimit; 4108 pSub->pLimit = 0; 4109 } 4110 } 4111 4112 /* Finially, delete what is left of the subquery and return 4113 ** success. 4114 */ 4115 sqlite3SelectDelete(db, pSub1); 4116 4117 #if SELECTTRACE_ENABLED 4118 if( sqlite3SelectTrace & 0x100 ){ 4119 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4120 sqlite3TreeViewSelect(0, p, 0); 4121 } 4122 #endif 4123 4124 return 1; 4125 } 4126 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4127 4128 /* 4129 ** A structure to keep track of all of the column values that are fixed to 4130 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4131 */ 4132 typedef struct WhereConst WhereConst; 4133 struct WhereConst { 4134 Parse *pParse; /* Parsing context */ 4135 int nConst; /* Number for COLUMN=CONSTANT terms */ 4136 int nChng; /* Number of times a constant is propagated */ 4137 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4138 }; 4139 4140 /* 4141 ** Add a new entry to the pConst object. Except, do not add duplicate 4142 ** pColumn entires. 4143 */ 4144 static void constInsert( 4145 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4146 Expr *pColumn, /* The COLUMN part of the constraint */ 4147 Expr *pValue /* The VALUE part of the constraint */ 4148 ){ 4149 int i; 4150 assert( pColumn->op==TK_COLUMN ); 4151 4152 /* 2018-10-25 ticket [cf5ed20f] 4153 ** Make sure the same pColumn is not inserted more than once */ 4154 for(i=0; i<pConst->nConst; i++){ 4155 const Expr *pExpr = pConst->apExpr[i*2]; 4156 assert( pExpr->op==TK_COLUMN ); 4157 if( pExpr->iTable==pColumn->iTable 4158 && pExpr->iColumn==pColumn->iColumn 4159 ){ 4160 return; /* Already present. Return without doing anything. */ 4161 } 4162 } 4163 4164 pConst->nConst++; 4165 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4166 pConst->nConst*2*sizeof(Expr*)); 4167 if( pConst->apExpr==0 ){ 4168 pConst->nConst = 0; 4169 }else{ 4170 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4171 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4172 pConst->apExpr[pConst->nConst*2-1] = pValue; 4173 } 4174 } 4175 4176 /* 4177 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4178 ** is a constant expression and where the term must be true because it 4179 ** is part of the AND-connected terms of the expression. For each term 4180 ** found, add it to the pConst structure. 4181 */ 4182 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4183 Expr *pRight, *pLeft; 4184 if( pExpr==0 ) return; 4185 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4186 if( pExpr->op==TK_AND ){ 4187 findConstInWhere(pConst, pExpr->pRight); 4188 findConstInWhere(pConst, pExpr->pLeft); 4189 return; 4190 } 4191 if( pExpr->op!=TK_EQ ) return; 4192 pRight = pExpr->pRight; 4193 pLeft = pExpr->pLeft; 4194 assert( pRight!=0 ); 4195 assert( pLeft!=0 ); 4196 if( pRight->op==TK_COLUMN 4197 && !ExprHasProperty(pRight, EP_FixedCol) 4198 && sqlite3ExprIsConstant(pLeft) 4199 && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) 4200 ){ 4201 constInsert(pConst, pRight, pLeft); 4202 }else 4203 if( pLeft->op==TK_COLUMN 4204 && !ExprHasProperty(pLeft, EP_FixedCol) 4205 && sqlite3ExprIsConstant(pRight) 4206 && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) 4207 ){ 4208 constInsert(pConst, pLeft, pRight); 4209 } 4210 } 4211 4212 /* 4213 ** This is a Walker expression callback. pExpr is a candidate expression 4214 ** to be replaced by a value. If pExpr is equivalent to one of the 4215 ** columns named in pWalker->u.pConst, then overwrite it with its 4216 ** corresponding value. 4217 */ 4218 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4219 int i; 4220 WhereConst *pConst; 4221 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4222 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4223 pConst = pWalker->u.pConst; 4224 for(i=0; i<pConst->nConst; i++){ 4225 Expr *pColumn = pConst->apExpr[i*2]; 4226 if( pColumn==pExpr ) continue; 4227 if( pColumn->iTable!=pExpr->iTable ) continue; 4228 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4229 /* A match is found. Add the EP_FixedCol property */ 4230 pConst->nChng++; 4231 ExprClearProperty(pExpr, EP_Leaf); 4232 ExprSetProperty(pExpr, EP_FixedCol); 4233 assert( pExpr->pLeft==0 ); 4234 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4235 break; 4236 } 4237 return WRC_Prune; 4238 } 4239 4240 /* 4241 ** The WHERE-clause constant propagation optimization. 4242 ** 4243 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4244 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4245 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4246 ** then throughout the query replace all other occurrences of COLUMN 4247 ** with CONSTANT within the WHERE clause. 4248 ** 4249 ** For example, the query: 4250 ** 4251 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4252 ** 4253 ** Is transformed into 4254 ** 4255 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4256 ** 4257 ** Return true if any transformations where made and false if not. 4258 ** 4259 ** Implementation note: Constant propagation is tricky due to affinity 4260 ** and collating sequence interactions. Consider this example: 4261 ** 4262 ** CREATE TABLE t1(a INT,b TEXT); 4263 ** INSERT INTO t1 VALUES(123,'0123'); 4264 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4265 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4266 ** 4267 ** The two SELECT statements above should return different answers. b=a 4268 ** is alway true because the comparison uses numeric affinity, but b=123 4269 ** is false because it uses text affinity and '0123' is not the same as '123'. 4270 ** To work around this, the expression tree is not actually changed from 4271 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4272 ** and the "123" value is hung off of the pLeft pointer. Code generator 4273 ** routines know to generate the constant "123" instead of looking up the 4274 ** column value. Also, to avoid collation problems, this optimization is 4275 ** only attempted if the "a=123" term uses the default BINARY collation. 4276 */ 4277 static int propagateConstants( 4278 Parse *pParse, /* The parsing context */ 4279 Select *p /* The query in which to propagate constants */ 4280 ){ 4281 WhereConst x; 4282 Walker w; 4283 int nChng = 0; 4284 x.pParse = pParse; 4285 do{ 4286 x.nConst = 0; 4287 x.nChng = 0; 4288 x.apExpr = 0; 4289 findConstInWhere(&x, p->pWhere); 4290 if( x.nConst ){ 4291 memset(&w, 0, sizeof(w)); 4292 w.pParse = pParse; 4293 w.xExprCallback = propagateConstantExprRewrite; 4294 w.xSelectCallback = sqlite3SelectWalkNoop; 4295 w.xSelectCallback2 = 0; 4296 w.walkerDepth = 0; 4297 w.u.pConst = &x; 4298 sqlite3WalkExpr(&w, p->pWhere); 4299 sqlite3DbFree(x.pParse->db, x.apExpr); 4300 nChng += x.nChng; 4301 } 4302 }while( x.nChng ); 4303 return nChng; 4304 } 4305 4306 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4307 /* 4308 ** Make copies of relevant WHERE clause terms of the outer query into 4309 ** the WHERE clause of subquery. Example: 4310 ** 4311 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4312 ** 4313 ** Transformed into: 4314 ** 4315 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4316 ** WHERE x=5 AND y=10; 4317 ** 4318 ** The hope is that the terms added to the inner query will make it more 4319 ** efficient. 4320 ** 4321 ** Do not attempt this optimization if: 4322 ** 4323 ** (1) (** This restriction was removed on 2017-09-29. We used to 4324 ** disallow this optimization for aggregate subqueries, but now 4325 ** it is allowed by putting the extra terms on the HAVING clause. 4326 ** The added HAVING clause is pointless if the subquery lacks 4327 ** a GROUP BY clause. But such a HAVING clause is also harmless 4328 ** so there does not appear to be any reason to add extra logic 4329 ** to suppress it. **) 4330 ** 4331 ** (2) The inner query is the recursive part of a common table expression. 4332 ** 4333 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4334 ** clause would change the meaning of the LIMIT). 4335 ** 4336 ** (4) The inner query is the right operand of a LEFT JOIN and the 4337 ** expression to be pushed down does not come from the ON clause 4338 ** on that LEFT JOIN. 4339 ** 4340 ** (5) The WHERE clause expression originates in the ON or USING clause 4341 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4342 ** left join. An example: 4343 ** 4344 ** SELECT * 4345 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4346 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4347 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4348 ** 4349 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4350 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4351 ** then the (1,1,NULL) row would be suppressed. 4352 ** 4353 ** (6) The inner query features one or more window-functions (since 4354 ** changes to the WHERE clause of the inner query could change the 4355 ** window over which window functions are calculated). 4356 ** 4357 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4358 ** terms are duplicated into the subquery. 4359 */ 4360 static int pushDownWhereTerms( 4361 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4362 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4363 Expr *pWhere, /* The WHERE clause of the outer query */ 4364 int iCursor, /* Cursor number of the subquery */ 4365 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4366 ){ 4367 Expr *pNew; 4368 int nChng = 0; 4369 if( pWhere==0 ) return 0; 4370 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4371 4372 #ifndef SQLITE_OMIT_WINDOWFUNC 4373 if( pSubq->pWin ) return 0; /* restriction (6) */ 4374 #endif 4375 4376 #ifdef SQLITE_DEBUG 4377 /* Only the first term of a compound can have a WITH clause. But make 4378 ** sure no other terms are marked SF_Recursive in case something changes 4379 ** in the future. 4380 */ 4381 { 4382 Select *pX; 4383 for(pX=pSubq; pX; pX=pX->pPrior){ 4384 assert( (pX->selFlags & (SF_Recursive))==0 ); 4385 } 4386 } 4387 #endif 4388 4389 if( pSubq->pLimit!=0 ){ 4390 return 0; /* restriction (3) */ 4391 } 4392 while( pWhere->op==TK_AND ){ 4393 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4394 iCursor, isLeftJoin); 4395 pWhere = pWhere->pLeft; 4396 } 4397 if( isLeftJoin 4398 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4399 || pWhere->iRightJoinTable!=iCursor) 4400 ){ 4401 return 0; /* restriction (4) */ 4402 } 4403 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4404 return 0; /* restriction (5) */ 4405 } 4406 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4407 nChng++; 4408 while( pSubq ){ 4409 SubstContext x; 4410 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4411 unsetJoinExpr(pNew, -1); 4412 x.pParse = pParse; 4413 x.iTable = iCursor; 4414 x.iNewTable = iCursor; 4415 x.isLeftJoin = 0; 4416 x.pEList = pSubq->pEList; 4417 pNew = substExpr(&x, pNew); 4418 if( pSubq->selFlags & SF_Aggregate ){ 4419 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4420 }else{ 4421 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4422 } 4423 pSubq = pSubq->pPrior; 4424 } 4425 } 4426 return nChng; 4427 } 4428 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4429 4430 /* 4431 ** The pFunc is the only aggregate function in the query. Check to see 4432 ** if the query is a candidate for the min/max optimization. 4433 ** 4434 ** If the query is a candidate for the min/max optimization, then set 4435 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4436 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4437 ** whether pFunc is a min() or max() function. 4438 ** 4439 ** If the query is not a candidate for the min/max optimization, return 4440 ** WHERE_ORDERBY_NORMAL (which must be zero). 4441 ** 4442 ** This routine must be called after aggregate functions have been 4443 ** located but before their arguments have been subjected to aggregate 4444 ** analysis. 4445 */ 4446 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4447 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4448 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4449 const char *zFunc; /* Name of aggregate function pFunc */ 4450 ExprList *pOrderBy; 4451 u8 sortFlags; 4452 4453 assert( *ppMinMax==0 ); 4454 assert( pFunc->op==TK_AGG_FUNCTION ); 4455 assert( !IsWindowFunc(pFunc) ); 4456 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4457 return eRet; 4458 } 4459 zFunc = pFunc->u.zToken; 4460 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4461 eRet = WHERE_ORDERBY_MIN; 4462 sortFlags = KEYINFO_ORDER_BIGNULL; 4463 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4464 eRet = WHERE_ORDERBY_MAX; 4465 sortFlags = KEYINFO_ORDER_DESC; 4466 }else{ 4467 return eRet; 4468 } 4469 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4470 assert( pOrderBy!=0 || db->mallocFailed ); 4471 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4472 return eRet; 4473 } 4474 4475 /* 4476 ** The select statement passed as the first argument is an aggregate query. 4477 ** The second argument is the associated aggregate-info object. This 4478 ** function tests if the SELECT is of the form: 4479 ** 4480 ** SELECT count(*) FROM <tbl> 4481 ** 4482 ** where table is a database table, not a sub-select or view. If the query 4483 ** does match this pattern, then a pointer to the Table object representing 4484 ** <tbl> is returned. Otherwise, 0 is returned. 4485 */ 4486 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4487 Table *pTab; 4488 Expr *pExpr; 4489 4490 assert( !p->pGroupBy ); 4491 4492 if( p->pWhere || p->pEList->nExpr!=1 4493 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4494 ){ 4495 return 0; 4496 } 4497 pTab = p->pSrc->a[0].pTab; 4498 pExpr = p->pEList->a[0].pExpr; 4499 assert( pTab && !pTab->pSelect && pExpr ); 4500 4501 if( IsVirtual(pTab) ) return 0; 4502 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4503 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4504 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4505 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4506 4507 return pTab; 4508 } 4509 4510 /* 4511 ** If the source-list item passed as an argument was augmented with an 4512 ** INDEXED BY clause, then try to locate the specified index. If there 4513 ** was such a clause and the named index cannot be found, return 4514 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4515 ** pFrom->pIndex and return SQLITE_OK. 4516 */ 4517 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4518 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4519 Table *pTab = pFrom->pTab; 4520 char *zIndexedBy = pFrom->u1.zIndexedBy; 4521 Index *pIdx; 4522 for(pIdx=pTab->pIndex; 4523 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4524 pIdx=pIdx->pNext 4525 ); 4526 if( !pIdx ){ 4527 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4528 pParse->checkSchema = 1; 4529 return SQLITE_ERROR; 4530 } 4531 pFrom->pIBIndex = pIdx; 4532 } 4533 return SQLITE_OK; 4534 } 4535 /* 4536 ** Detect compound SELECT statements that use an ORDER BY clause with 4537 ** an alternative collating sequence. 4538 ** 4539 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4540 ** 4541 ** These are rewritten as a subquery: 4542 ** 4543 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4544 ** ORDER BY ... COLLATE ... 4545 ** 4546 ** This transformation is necessary because the multiSelectOrderBy() routine 4547 ** above that generates the code for a compound SELECT with an ORDER BY clause 4548 ** uses a merge algorithm that requires the same collating sequence on the 4549 ** result columns as on the ORDER BY clause. See ticket 4550 ** http://www.sqlite.org/src/info/6709574d2a 4551 ** 4552 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4553 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4554 ** there are COLLATE terms in the ORDER BY. 4555 */ 4556 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4557 int i; 4558 Select *pNew; 4559 Select *pX; 4560 sqlite3 *db; 4561 struct ExprList_item *a; 4562 SrcList *pNewSrc; 4563 Parse *pParse; 4564 Token dummy; 4565 4566 if( p->pPrior==0 ) return WRC_Continue; 4567 if( p->pOrderBy==0 ) return WRC_Continue; 4568 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4569 if( pX==0 ) return WRC_Continue; 4570 a = p->pOrderBy->a; 4571 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4572 if( a[i].pExpr->flags & EP_Collate ) break; 4573 } 4574 if( i<0 ) return WRC_Continue; 4575 4576 /* If we reach this point, that means the transformation is required. */ 4577 4578 pParse = pWalker->pParse; 4579 db = pParse->db; 4580 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4581 if( pNew==0 ) return WRC_Abort; 4582 memset(&dummy, 0, sizeof(dummy)); 4583 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4584 if( pNewSrc==0 ) return WRC_Abort; 4585 *pNew = *p; 4586 p->pSrc = pNewSrc; 4587 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4588 p->op = TK_SELECT; 4589 p->pWhere = 0; 4590 pNew->pGroupBy = 0; 4591 pNew->pHaving = 0; 4592 pNew->pOrderBy = 0; 4593 p->pPrior = 0; 4594 p->pNext = 0; 4595 p->pWith = 0; 4596 #ifndef SQLITE_OMIT_WINDOWFUNC 4597 p->pWinDefn = 0; 4598 #endif 4599 p->selFlags &= ~SF_Compound; 4600 assert( (p->selFlags & SF_Converted)==0 ); 4601 p->selFlags |= SF_Converted; 4602 assert( pNew->pPrior!=0 ); 4603 pNew->pPrior->pNext = pNew; 4604 pNew->pLimit = 0; 4605 return WRC_Continue; 4606 } 4607 4608 /* 4609 ** Check to see if the FROM clause term pFrom has table-valued function 4610 ** arguments. If it does, leave an error message in pParse and return 4611 ** non-zero, since pFrom is not allowed to be a table-valued function. 4612 */ 4613 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4614 if( pFrom->fg.isTabFunc ){ 4615 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4616 return 1; 4617 } 4618 return 0; 4619 } 4620 4621 #ifndef SQLITE_OMIT_CTE 4622 /* 4623 ** Argument pWith (which may be NULL) points to a linked list of nested 4624 ** WITH contexts, from inner to outermost. If the table identified by 4625 ** FROM clause element pItem is really a common-table-expression (CTE) 4626 ** then return a pointer to the CTE definition for that table. Otherwise 4627 ** return NULL. 4628 ** 4629 ** If a non-NULL value is returned, set *ppContext to point to the With 4630 ** object that the returned CTE belongs to. 4631 */ 4632 static struct Cte *searchWith( 4633 With *pWith, /* Current innermost WITH clause */ 4634 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4635 With **ppContext /* OUT: WITH clause return value belongs to */ 4636 ){ 4637 const char *zName; 4638 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4639 With *p; 4640 for(p=pWith; p; p=p->pOuter){ 4641 int i; 4642 for(i=0; i<p->nCte; i++){ 4643 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4644 *ppContext = p; 4645 return &p->a[i]; 4646 } 4647 } 4648 } 4649 } 4650 return 0; 4651 } 4652 4653 /* The code generator maintains a stack of active WITH clauses 4654 ** with the inner-most WITH clause being at the top of the stack. 4655 ** 4656 ** This routine pushes the WITH clause passed as the second argument 4657 ** onto the top of the stack. If argument bFree is true, then this 4658 ** WITH clause will never be popped from the stack. In this case it 4659 ** should be freed along with the Parse object. In other cases, when 4660 ** bFree==0, the With object will be freed along with the SELECT 4661 ** statement with which it is associated. 4662 */ 4663 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4664 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4665 if( pWith ){ 4666 assert( pParse->pWith!=pWith ); 4667 pWith->pOuter = pParse->pWith; 4668 pParse->pWith = pWith; 4669 if( bFree ) pParse->pWithToFree = pWith; 4670 } 4671 } 4672 4673 /* 4674 ** This function checks if argument pFrom refers to a CTE declared by 4675 ** a WITH clause on the stack currently maintained by the parser. And, 4676 ** if currently processing a CTE expression, if it is a recursive 4677 ** reference to the current CTE. 4678 ** 4679 ** If pFrom falls into either of the two categories above, pFrom->pTab 4680 ** and other fields are populated accordingly. The caller should check 4681 ** (pFrom->pTab!=0) to determine whether or not a successful match 4682 ** was found. 4683 ** 4684 ** Whether or not a match is found, SQLITE_OK is returned if no error 4685 ** occurs. If an error does occur, an error message is stored in the 4686 ** parser and some error code other than SQLITE_OK returned. 4687 */ 4688 static int withExpand( 4689 Walker *pWalker, 4690 struct SrcList_item *pFrom 4691 ){ 4692 Parse *pParse = pWalker->pParse; 4693 sqlite3 *db = pParse->db; 4694 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4695 With *pWith; /* WITH clause that pCte belongs to */ 4696 4697 assert( pFrom->pTab==0 ); 4698 if( pParse->nErr ){ 4699 return SQLITE_ERROR; 4700 } 4701 4702 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4703 if( pCte ){ 4704 Table *pTab; 4705 ExprList *pEList; 4706 Select *pSel; 4707 Select *pLeft; /* Left-most SELECT statement */ 4708 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4709 With *pSavedWith; /* Initial value of pParse->pWith */ 4710 4711 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4712 ** recursive reference to CTE pCte. Leave an error in pParse and return 4713 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4714 ** In this case, proceed. */ 4715 if( pCte->zCteErr ){ 4716 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4717 return SQLITE_ERROR; 4718 } 4719 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4720 4721 assert( pFrom->pTab==0 ); 4722 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4723 if( pTab==0 ) return WRC_Abort; 4724 pTab->nTabRef = 1; 4725 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4726 pTab->iPKey = -1; 4727 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4728 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4729 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4730 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4731 assert( pFrom->pSelect ); 4732 4733 /* Check if this is a recursive CTE. */ 4734 pSel = pFrom->pSelect; 4735 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4736 if( bMayRecursive ){ 4737 int i; 4738 SrcList *pSrc = pFrom->pSelect->pSrc; 4739 for(i=0; i<pSrc->nSrc; i++){ 4740 struct SrcList_item *pItem = &pSrc->a[i]; 4741 if( pItem->zDatabase==0 4742 && pItem->zName!=0 4743 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4744 ){ 4745 pItem->pTab = pTab; 4746 pItem->fg.isRecursive = 1; 4747 pTab->nTabRef++; 4748 pSel->selFlags |= SF_Recursive; 4749 } 4750 } 4751 } 4752 4753 /* Only one recursive reference is permitted. */ 4754 if( pTab->nTabRef>2 ){ 4755 sqlite3ErrorMsg( 4756 pParse, "multiple references to recursive table: %s", pCte->zName 4757 ); 4758 return SQLITE_ERROR; 4759 } 4760 assert( pTab->nTabRef==1 || 4761 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4762 4763 pCte->zCteErr = "circular reference: %s"; 4764 pSavedWith = pParse->pWith; 4765 pParse->pWith = pWith; 4766 if( bMayRecursive ){ 4767 Select *pPrior = pSel->pPrior; 4768 assert( pPrior->pWith==0 ); 4769 pPrior->pWith = pSel->pWith; 4770 sqlite3WalkSelect(pWalker, pPrior); 4771 pPrior->pWith = 0; 4772 }else{ 4773 sqlite3WalkSelect(pWalker, pSel); 4774 } 4775 pParse->pWith = pWith; 4776 4777 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4778 pEList = pLeft->pEList; 4779 if( pCte->pCols ){ 4780 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4781 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4782 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4783 ); 4784 pParse->pWith = pSavedWith; 4785 return SQLITE_ERROR; 4786 } 4787 pEList = pCte->pCols; 4788 } 4789 4790 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4791 if( bMayRecursive ){ 4792 if( pSel->selFlags & SF_Recursive ){ 4793 pCte->zCteErr = "multiple recursive references: %s"; 4794 }else{ 4795 pCte->zCteErr = "recursive reference in a subquery: %s"; 4796 } 4797 sqlite3WalkSelect(pWalker, pSel); 4798 } 4799 pCte->zCteErr = 0; 4800 pParse->pWith = pSavedWith; 4801 } 4802 4803 return SQLITE_OK; 4804 } 4805 #endif 4806 4807 #ifndef SQLITE_OMIT_CTE 4808 /* 4809 ** If the SELECT passed as the second argument has an associated WITH 4810 ** clause, pop it from the stack stored as part of the Parse object. 4811 ** 4812 ** This function is used as the xSelectCallback2() callback by 4813 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4814 ** names and other FROM clause elements. 4815 */ 4816 static void selectPopWith(Walker *pWalker, Select *p){ 4817 Parse *pParse = pWalker->pParse; 4818 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4819 With *pWith = findRightmost(p)->pWith; 4820 if( pWith!=0 ){ 4821 assert( pParse->pWith==pWith ); 4822 pParse->pWith = pWith->pOuter; 4823 } 4824 } 4825 } 4826 #else 4827 #define selectPopWith 0 4828 #endif 4829 4830 /* 4831 ** The SrcList_item structure passed as the second argument represents a 4832 ** sub-query in the FROM clause of a SELECT statement. This function 4833 ** allocates and populates the SrcList_item.pTab object. If successful, 4834 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4835 ** SQLITE_NOMEM. 4836 */ 4837 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4838 Select *pSel = pFrom->pSelect; 4839 Table *pTab; 4840 4841 assert( pSel ); 4842 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4843 if( pTab==0 ) return SQLITE_NOMEM; 4844 pTab->nTabRef = 1; 4845 if( pFrom->zAlias ){ 4846 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4847 }else{ 4848 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4849 } 4850 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4851 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4852 pTab->iPKey = -1; 4853 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4854 pTab->tabFlags |= TF_Ephemeral; 4855 4856 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4857 } 4858 4859 /* 4860 ** This routine is a Walker callback for "expanding" a SELECT statement. 4861 ** "Expanding" means to do the following: 4862 ** 4863 ** (1) Make sure VDBE cursor numbers have been assigned to every 4864 ** element of the FROM clause. 4865 ** 4866 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4867 ** defines FROM clause. When views appear in the FROM clause, 4868 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4869 ** that implements the view. A copy is made of the view's SELECT 4870 ** statement so that we can freely modify or delete that statement 4871 ** without worrying about messing up the persistent representation 4872 ** of the view. 4873 ** 4874 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4875 ** on joins and the ON and USING clause of joins. 4876 ** 4877 ** (4) Scan the list of columns in the result set (pEList) looking 4878 ** for instances of the "*" operator or the TABLE.* operator. 4879 ** If found, expand each "*" to be every column in every table 4880 ** and TABLE.* to be every column in TABLE. 4881 ** 4882 */ 4883 static int selectExpander(Walker *pWalker, Select *p){ 4884 Parse *pParse = pWalker->pParse; 4885 int i, j, k; 4886 SrcList *pTabList; 4887 ExprList *pEList; 4888 struct SrcList_item *pFrom; 4889 sqlite3 *db = pParse->db; 4890 Expr *pE, *pRight, *pExpr; 4891 u16 selFlags = p->selFlags; 4892 u32 elistFlags = 0; 4893 4894 p->selFlags |= SF_Expanded; 4895 if( db->mallocFailed ){ 4896 return WRC_Abort; 4897 } 4898 assert( p->pSrc!=0 ); 4899 if( (selFlags & SF_Expanded)!=0 ){ 4900 return WRC_Prune; 4901 } 4902 if( pWalker->eCode ){ 4903 /* Renumber selId because it has been copied from a view */ 4904 p->selId = ++pParse->nSelect; 4905 } 4906 pTabList = p->pSrc; 4907 pEList = p->pEList; 4908 sqlite3WithPush(pParse, p->pWith, 0); 4909 4910 /* Make sure cursor numbers have been assigned to all entries in 4911 ** the FROM clause of the SELECT statement. 4912 */ 4913 sqlite3SrcListAssignCursors(pParse, pTabList); 4914 4915 /* Look up every table named in the FROM clause of the select. If 4916 ** an entry of the FROM clause is a subquery instead of a table or view, 4917 ** then create a transient table structure to describe the subquery. 4918 */ 4919 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4920 Table *pTab; 4921 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4922 if( pFrom->fg.isRecursive ) continue; 4923 assert( pFrom->pTab==0 ); 4924 #ifndef SQLITE_OMIT_CTE 4925 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4926 if( pFrom->pTab ) {} else 4927 #endif 4928 if( pFrom->zName==0 ){ 4929 #ifndef SQLITE_OMIT_SUBQUERY 4930 Select *pSel = pFrom->pSelect; 4931 /* A sub-query in the FROM clause of a SELECT */ 4932 assert( pSel!=0 ); 4933 assert( pFrom->pTab==0 ); 4934 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4935 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4936 #endif 4937 }else{ 4938 /* An ordinary table or view name in the FROM clause */ 4939 assert( pFrom->pTab==0 ); 4940 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4941 if( pTab==0 ) return WRC_Abort; 4942 if( pTab->nTabRef>=0xffff ){ 4943 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4944 pTab->zName); 4945 pFrom->pTab = 0; 4946 return WRC_Abort; 4947 } 4948 pTab->nTabRef++; 4949 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4950 return WRC_Abort; 4951 } 4952 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4953 if( IsVirtual(pTab) || pTab->pSelect ){ 4954 i16 nCol; 4955 u8 eCodeOrig = pWalker->eCode; 4956 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4957 assert( pFrom->pSelect==0 ); 4958 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 4959 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 4960 pTab->zName); 4961 } 4962 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4963 nCol = pTab->nCol; 4964 pTab->nCol = -1; 4965 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4966 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4967 pWalker->eCode = eCodeOrig; 4968 pTab->nCol = nCol; 4969 } 4970 #endif 4971 } 4972 4973 /* Locate the index named by the INDEXED BY clause, if any. */ 4974 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4975 return WRC_Abort; 4976 } 4977 } 4978 4979 /* Process NATURAL keywords, and ON and USING clauses of joins. 4980 */ 4981 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4982 return WRC_Abort; 4983 } 4984 4985 /* For every "*" that occurs in the column list, insert the names of 4986 ** all columns in all tables. And for every TABLE.* insert the names 4987 ** of all columns in TABLE. The parser inserted a special expression 4988 ** with the TK_ASTERISK operator for each "*" that it found in the column 4989 ** list. The following code just has to locate the TK_ASTERISK 4990 ** expressions and expand each one to the list of all columns in 4991 ** all tables. 4992 ** 4993 ** The first loop just checks to see if there are any "*" operators 4994 ** that need expanding. 4995 */ 4996 for(k=0; k<pEList->nExpr; k++){ 4997 pE = pEList->a[k].pExpr; 4998 if( pE->op==TK_ASTERISK ) break; 4999 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5000 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5001 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5002 elistFlags |= pE->flags; 5003 } 5004 if( k<pEList->nExpr ){ 5005 /* 5006 ** If we get here it means the result set contains one or more "*" 5007 ** operators that need to be expanded. Loop through each expression 5008 ** in the result set and expand them one by one. 5009 */ 5010 struct ExprList_item *a = pEList->a; 5011 ExprList *pNew = 0; 5012 int flags = pParse->db->flags; 5013 int longNames = (flags & SQLITE_FullColNames)!=0 5014 && (flags & SQLITE_ShortColNames)==0; 5015 5016 for(k=0; k<pEList->nExpr; k++){ 5017 pE = a[k].pExpr; 5018 elistFlags |= pE->flags; 5019 pRight = pE->pRight; 5020 assert( pE->op!=TK_DOT || pRight!=0 ); 5021 if( pE->op!=TK_ASTERISK 5022 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5023 ){ 5024 /* This particular expression does not need to be expanded. 5025 */ 5026 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5027 if( pNew ){ 5028 pNew->a[pNew->nExpr-1].zName = a[k].zName; 5029 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 5030 a[k].zName = 0; 5031 a[k].zSpan = 0; 5032 } 5033 a[k].pExpr = 0; 5034 }else{ 5035 /* This expression is a "*" or a "TABLE.*" and needs to be 5036 ** expanded. */ 5037 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5038 char *zTName = 0; /* text of name of TABLE */ 5039 if( pE->op==TK_DOT ){ 5040 assert( pE->pLeft!=0 ); 5041 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5042 zTName = pE->pLeft->u.zToken; 5043 } 5044 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5045 Table *pTab = pFrom->pTab; 5046 Select *pSub = pFrom->pSelect; 5047 char *zTabName = pFrom->zAlias; 5048 const char *zSchemaName = 0; 5049 int iDb; 5050 if( zTabName==0 ){ 5051 zTabName = pTab->zName; 5052 } 5053 if( db->mallocFailed ) break; 5054 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5055 pSub = 0; 5056 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5057 continue; 5058 } 5059 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5060 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5061 } 5062 for(j=0; j<pTab->nCol; j++){ 5063 char *zName = pTab->aCol[j].zName; 5064 char *zColname; /* The computed column name */ 5065 char *zToFree; /* Malloced string that needs to be freed */ 5066 Token sColname; /* Computed column name as a token */ 5067 5068 assert( zName ); 5069 if( zTName && pSub 5070 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 5071 ){ 5072 continue; 5073 } 5074 5075 /* If a column is marked as 'hidden', omit it from the expanded 5076 ** result-set list unless the SELECT has the SF_IncludeHidden 5077 ** bit set. 5078 */ 5079 if( (p->selFlags & SF_IncludeHidden)==0 5080 && IsHiddenColumn(&pTab->aCol[j]) 5081 ){ 5082 continue; 5083 } 5084 tableSeen = 1; 5085 5086 if( i>0 && zTName==0 ){ 5087 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5088 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 5089 ){ 5090 /* In a NATURAL join, omit the join columns from the 5091 ** table to the right of the join */ 5092 continue; 5093 } 5094 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5095 /* In a join with a USING clause, omit columns in the 5096 ** using clause from the table on the right. */ 5097 continue; 5098 } 5099 } 5100 pRight = sqlite3Expr(db, TK_ID, zName); 5101 zColname = zName; 5102 zToFree = 0; 5103 if( longNames || pTabList->nSrc>1 ){ 5104 Expr *pLeft; 5105 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5106 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5107 if( zSchemaName ){ 5108 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5109 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5110 } 5111 if( longNames ){ 5112 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5113 zToFree = zColname; 5114 } 5115 }else{ 5116 pExpr = pRight; 5117 } 5118 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5119 sqlite3TokenInit(&sColname, zColname); 5120 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5121 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5122 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5123 if( pSub ){ 5124 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5125 testcase( pX->zSpan==0 ); 5126 }else{ 5127 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5128 zSchemaName, zTabName, zColname); 5129 testcase( pX->zSpan==0 ); 5130 } 5131 pX->bSpanIsTab = 1; 5132 } 5133 sqlite3DbFree(db, zToFree); 5134 } 5135 } 5136 if( !tableSeen ){ 5137 if( zTName ){ 5138 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5139 }else{ 5140 sqlite3ErrorMsg(pParse, "no tables specified"); 5141 } 5142 } 5143 } 5144 } 5145 sqlite3ExprListDelete(db, pEList); 5146 p->pEList = pNew; 5147 } 5148 if( p->pEList ){ 5149 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5150 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5151 return WRC_Abort; 5152 } 5153 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5154 p->selFlags |= SF_ComplexResult; 5155 } 5156 } 5157 return WRC_Continue; 5158 } 5159 5160 /* 5161 ** No-op routine for the parse-tree walker. 5162 ** 5163 ** When this routine is the Walker.xExprCallback then expression trees 5164 ** are walked without any actions being taken at each node. Presumably, 5165 ** when this routine is used for Walker.xExprCallback then 5166 ** Walker.xSelectCallback is set to do something useful for every 5167 ** subquery in the parser tree. 5168 */ 5169 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5170 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5171 return WRC_Continue; 5172 } 5173 5174 /* 5175 ** No-op routine for the parse-tree walker for SELECT statements. 5176 ** subquery in the parser tree. 5177 */ 5178 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5179 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5180 return WRC_Continue; 5181 } 5182 5183 #if SQLITE_DEBUG 5184 /* 5185 ** Always assert. This xSelectCallback2 implementation proves that the 5186 ** xSelectCallback2 is never invoked. 5187 */ 5188 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5189 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5190 assert( 0 ); 5191 } 5192 #endif 5193 /* 5194 ** This routine "expands" a SELECT statement and all of its subqueries. 5195 ** For additional information on what it means to "expand" a SELECT 5196 ** statement, see the comment on the selectExpand worker callback above. 5197 ** 5198 ** Expanding a SELECT statement is the first step in processing a 5199 ** SELECT statement. The SELECT statement must be expanded before 5200 ** name resolution is performed. 5201 ** 5202 ** If anything goes wrong, an error message is written into pParse. 5203 ** The calling function can detect the problem by looking at pParse->nErr 5204 ** and/or pParse->db->mallocFailed. 5205 */ 5206 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5207 Walker w; 5208 w.xExprCallback = sqlite3ExprWalkNoop; 5209 w.pParse = pParse; 5210 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5211 w.xSelectCallback = convertCompoundSelectToSubquery; 5212 w.xSelectCallback2 = 0; 5213 sqlite3WalkSelect(&w, pSelect); 5214 } 5215 w.xSelectCallback = selectExpander; 5216 w.xSelectCallback2 = selectPopWith; 5217 w.eCode = 0; 5218 sqlite3WalkSelect(&w, pSelect); 5219 } 5220 5221 5222 #ifndef SQLITE_OMIT_SUBQUERY 5223 /* 5224 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5225 ** interface. 5226 ** 5227 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5228 ** information to the Table structure that represents the result set 5229 ** of that subquery. 5230 ** 5231 ** The Table structure that represents the result set was constructed 5232 ** by selectExpander() but the type and collation information was omitted 5233 ** at that point because identifiers had not yet been resolved. This 5234 ** routine is called after identifier resolution. 5235 */ 5236 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5237 Parse *pParse; 5238 int i; 5239 SrcList *pTabList; 5240 struct SrcList_item *pFrom; 5241 5242 assert( p->selFlags & SF_Resolved ); 5243 if( p->selFlags & SF_HasTypeInfo ) return; 5244 p->selFlags |= SF_HasTypeInfo; 5245 pParse = pWalker->pParse; 5246 pTabList = p->pSrc; 5247 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5248 Table *pTab = pFrom->pTab; 5249 assert( pTab!=0 ); 5250 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5251 /* A sub-query in the FROM clause of a SELECT */ 5252 Select *pSel = pFrom->pSelect; 5253 if( pSel ){ 5254 while( pSel->pPrior ) pSel = pSel->pPrior; 5255 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5256 SQLITE_AFF_NONE); 5257 } 5258 } 5259 } 5260 } 5261 #endif 5262 5263 5264 /* 5265 ** This routine adds datatype and collating sequence information to 5266 ** the Table structures of all FROM-clause subqueries in a 5267 ** SELECT statement. 5268 ** 5269 ** Use this routine after name resolution. 5270 */ 5271 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5272 #ifndef SQLITE_OMIT_SUBQUERY 5273 Walker w; 5274 w.xSelectCallback = sqlite3SelectWalkNoop; 5275 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5276 w.xExprCallback = sqlite3ExprWalkNoop; 5277 w.pParse = pParse; 5278 sqlite3WalkSelect(&w, pSelect); 5279 #endif 5280 } 5281 5282 5283 /* 5284 ** This routine sets up a SELECT statement for processing. The 5285 ** following is accomplished: 5286 ** 5287 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5288 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5289 ** * ON and USING clauses are shifted into WHERE statements 5290 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5291 ** * Identifiers in expression are matched to tables. 5292 ** 5293 ** This routine acts recursively on all subqueries within the SELECT. 5294 */ 5295 void sqlite3SelectPrep( 5296 Parse *pParse, /* The parser context */ 5297 Select *p, /* The SELECT statement being coded. */ 5298 NameContext *pOuterNC /* Name context for container */ 5299 ){ 5300 assert( p!=0 || pParse->db->mallocFailed ); 5301 if( pParse->db->mallocFailed ) return; 5302 if( p->selFlags & SF_HasTypeInfo ) return; 5303 sqlite3SelectExpand(pParse, p); 5304 if( pParse->nErr || pParse->db->mallocFailed ) return; 5305 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5306 if( pParse->nErr || pParse->db->mallocFailed ) return; 5307 sqlite3SelectAddTypeInfo(pParse, p); 5308 } 5309 5310 /* 5311 ** Reset the aggregate accumulator. 5312 ** 5313 ** The aggregate accumulator is a set of memory cells that hold 5314 ** intermediate results while calculating an aggregate. This 5315 ** routine generates code that stores NULLs in all of those memory 5316 ** cells. 5317 */ 5318 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5319 Vdbe *v = pParse->pVdbe; 5320 int i; 5321 struct AggInfo_func *pFunc; 5322 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5323 if( nReg==0 ) return; 5324 #ifdef SQLITE_DEBUG 5325 /* Verify that all AggInfo registers are within the range specified by 5326 ** AggInfo.mnReg..AggInfo.mxReg */ 5327 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5328 for(i=0; i<pAggInfo->nColumn; i++){ 5329 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5330 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5331 } 5332 for(i=0; i<pAggInfo->nFunc; i++){ 5333 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5334 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5335 } 5336 #endif 5337 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5338 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5339 if( pFunc->iDistinct>=0 ){ 5340 Expr *pE = pFunc->pExpr; 5341 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5342 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5343 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5344 "argument"); 5345 pFunc->iDistinct = -1; 5346 }else{ 5347 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5348 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5349 (char*)pKeyInfo, P4_KEYINFO); 5350 } 5351 } 5352 } 5353 } 5354 5355 /* 5356 ** Invoke the OP_AggFinalize opcode for every aggregate function 5357 ** in the AggInfo structure. 5358 */ 5359 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5360 Vdbe *v = pParse->pVdbe; 5361 int i; 5362 struct AggInfo_func *pF; 5363 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5364 ExprList *pList = pF->pExpr->x.pList; 5365 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5366 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5367 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5368 } 5369 } 5370 5371 5372 /* 5373 ** Update the accumulator memory cells for an aggregate based on 5374 ** the current cursor position. 5375 ** 5376 ** If regAcc is non-zero and there are no min() or max() aggregates 5377 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5378 ** registers if register regAcc contains 0. The caller will take care 5379 ** of setting and clearing regAcc. 5380 */ 5381 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5382 Vdbe *v = pParse->pVdbe; 5383 int i; 5384 int regHit = 0; 5385 int addrHitTest = 0; 5386 struct AggInfo_func *pF; 5387 struct AggInfo_col *pC; 5388 5389 pAggInfo->directMode = 1; 5390 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5391 int nArg; 5392 int addrNext = 0; 5393 int regAgg; 5394 ExprList *pList = pF->pExpr->x.pList; 5395 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5396 assert( !IsWindowFunc(pF->pExpr) ); 5397 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5398 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5399 if( pAggInfo->nAccumulator 5400 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5401 ){ 5402 if( regHit==0 ) regHit = ++pParse->nMem; 5403 /* If this is the first row of the group (regAcc==0), clear the 5404 ** "magnet" register regHit so that the accumulator registers 5405 ** are populated if the FILTER clause jumps over the the 5406 ** invocation of min() or max() altogether. Or, if this is not 5407 ** the first row (regAcc==1), set the magnet register so that the 5408 ** accumulators are not populated unless the min()/max() is invoked and 5409 ** indicates that they should be. */ 5410 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5411 } 5412 addrNext = sqlite3VdbeMakeLabel(pParse); 5413 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5414 } 5415 if( pList ){ 5416 nArg = pList->nExpr; 5417 regAgg = sqlite3GetTempRange(pParse, nArg); 5418 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5419 }else{ 5420 nArg = 0; 5421 regAgg = 0; 5422 } 5423 if( pF->iDistinct>=0 ){ 5424 if( addrNext==0 ){ 5425 addrNext = sqlite3VdbeMakeLabel(pParse); 5426 } 5427 testcase( nArg==0 ); /* Error condition */ 5428 testcase( nArg>1 ); /* Also an error */ 5429 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5430 } 5431 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5432 CollSeq *pColl = 0; 5433 struct ExprList_item *pItem; 5434 int j; 5435 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5436 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5437 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5438 } 5439 if( !pColl ){ 5440 pColl = pParse->db->pDfltColl; 5441 } 5442 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5443 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5444 } 5445 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5446 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5447 sqlite3VdbeChangeP5(v, (u8)nArg); 5448 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5449 if( addrNext ){ 5450 sqlite3VdbeResolveLabel(v, addrNext); 5451 } 5452 } 5453 if( regHit==0 && pAggInfo->nAccumulator ){ 5454 regHit = regAcc; 5455 } 5456 if( regHit ){ 5457 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5458 } 5459 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5460 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5461 } 5462 5463 pAggInfo->directMode = 0; 5464 if( addrHitTest ){ 5465 sqlite3VdbeJumpHere(v, addrHitTest); 5466 } 5467 } 5468 5469 /* 5470 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5471 ** count(*) query ("SELECT count(*) FROM pTab"). 5472 */ 5473 #ifndef SQLITE_OMIT_EXPLAIN 5474 static void explainSimpleCount( 5475 Parse *pParse, /* Parse context */ 5476 Table *pTab, /* Table being queried */ 5477 Index *pIdx /* Index used to optimize scan, or NULL */ 5478 ){ 5479 if( pParse->explain==2 ){ 5480 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5481 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5482 pTab->zName, 5483 bCover ? " USING COVERING INDEX " : "", 5484 bCover ? pIdx->zName : "" 5485 ); 5486 } 5487 } 5488 #else 5489 # define explainSimpleCount(a,b,c) 5490 #endif 5491 5492 /* 5493 ** sqlite3WalkExpr() callback used by havingToWhere(). 5494 ** 5495 ** If the node passed to the callback is a TK_AND node, return 5496 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5497 ** 5498 ** Otherwise, return WRC_Prune. In this case, also check if the 5499 ** sub-expression matches the criteria for being moved to the WHERE 5500 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5501 ** within the HAVING expression with a constant "1". 5502 */ 5503 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5504 if( pExpr->op!=TK_AND ){ 5505 Select *pS = pWalker->u.pSelect; 5506 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5507 sqlite3 *db = pWalker->pParse->db; 5508 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5509 if( pNew ){ 5510 Expr *pWhere = pS->pWhere; 5511 SWAP(Expr, *pNew, *pExpr); 5512 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5513 pS->pWhere = pNew; 5514 pWalker->eCode = 1; 5515 } 5516 } 5517 return WRC_Prune; 5518 } 5519 return WRC_Continue; 5520 } 5521 5522 /* 5523 ** Transfer eligible terms from the HAVING clause of a query, which is 5524 ** processed after grouping, to the WHERE clause, which is processed before 5525 ** grouping. For example, the query: 5526 ** 5527 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5528 ** 5529 ** can be rewritten as: 5530 ** 5531 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5532 ** 5533 ** A term of the HAVING expression is eligible for transfer if it consists 5534 ** entirely of constants and expressions that are also GROUP BY terms that 5535 ** use the "BINARY" collation sequence. 5536 */ 5537 static void havingToWhere(Parse *pParse, Select *p){ 5538 Walker sWalker; 5539 memset(&sWalker, 0, sizeof(sWalker)); 5540 sWalker.pParse = pParse; 5541 sWalker.xExprCallback = havingToWhereExprCb; 5542 sWalker.u.pSelect = p; 5543 sqlite3WalkExpr(&sWalker, p->pHaving); 5544 #if SELECTTRACE_ENABLED 5545 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5546 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5547 sqlite3TreeViewSelect(0, p, 0); 5548 } 5549 #endif 5550 } 5551 5552 /* 5553 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5554 ** If it is, then return the SrcList_item for the prior view. If it is not, 5555 ** then return 0. 5556 */ 5557 static struct SrcList_item *isSelfJoinView( 5558 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5559 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5560 ){ 5561 struct SrcList_item *pItem; 5562 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5563 Select *pS1; 5564 if( pItem->pSelect==0 ) continue; 5565 if( pItem->fg.viaCoroutine ) continue; 5566 if( pItem->zName==0 ) continue; 5567 assert( pItem->pTab!=0 ); 5568 assert( pThis->pTab!=0 ); 5569 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5570 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5571 pS1 = pItem->pSelect; 5572 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5573 /* The query flattener left two different CTE tables with identical 5574 ** names in the same FROM clause. */ 5575 continue; 5576 } 5577 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5578 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5579 ){ 5580 /* The view was modified by some other optimization such as 5581 ** pushDownWhereTerms() */ 5582 continue; 5583 } 5584 return pItem; 5585 } 5586 return 0; 5587 } 5588 5589 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5590 /* 5591 ** Attempt to transform a query of the form 5592 ** 5593 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5594 ** 5595 ** Into this: 5596 ** 5597 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5598 ** 5599 ** The transformation only works if all of the following are true: 5600 ** 5601 ** * The subquery is a UNION ALL of two or more terms 5602 ** * The subquery does not have a LIMIT clause 5603 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5604 ** * The outer query is a simple count(*) with no WHERE clause or other 5605 ** extraneous syntax. 5606 ** 5607 ** Return TRUE if the optimization is undertaken. 5608 */ 5609 static int countOfViewOptimization(Parse *pParse, Select *p){ 5610 Select *pSub, *pPrior; 5611 Expr *pExpr; 5612 Expr *pCount; 5613 sqlite3 *db; 5614 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5615 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5616 if( p->pWhere ) return 0; 5617 if( p->pGroupBy ) return 0; 5618 pExpr = p->pEList->a[0].pExpr; 5619 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5620 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5621 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5622 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5623 pSub = p->pSrc->a[0].pSelect; 5624 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5625 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5626 do{ 5627 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5628 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5629 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5630 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5631 pSub = pSub->pPrior; /* Repeat over compound */ 5632 }while( pSub ); 5633 5634 /* If we reach this point then it is OK to perform the transformation */ 5635 5636 db = pParse->db; 5637 pCount = pExpr; 5638 pExpr = 0; 5639 pSub = p->pSrc->a[0].pSelect; 5640 p->pSrc->a[0].pSelect = 0; 5641 sqlite3SrcListDelete(db, p->pSrc); 5642 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5643 while( pSub ){ 5644 Expr *pTerm; 5645 pPrior = pSub->pPrior; 5646 pSub->pPrior = 0; 5647 pSub->pNext = 0; 5648 pSub->selFlags |= SF_Aggregate; 5649 pSub->selFlags &= ~SF_Compound; 5650 pSub->nSelectRow = 0; 5651 sqlite3ExprListDelete(db, pSub->pEList); 5652 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5653 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5654 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5655 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5656 if( pExpr==0 ){ 5657 pExpr = pTerm; 5658 }else{ 5659 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5660 } 5661 pSub = pPrior; 5662 } 5663 p->pEList->a[0].pExpr = pExpr; 5664 p->selFlags &= ~SF_Aggregate; 5665 5666 #if SELECTTRACE_ENABLED 5667 if( sqlite3SelectTrace & 0x400 ){ 5668 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5669 sqlite3TreeViewSelect(0, p, 0); 5670 } 5671 #endif 5672 return 1; 5673 } 5674 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5675 5676 /* 5677 ** Generate code for the SELECT statement given in the p argument. 5678 ** 5679 ** The results are returned according to the SelectDest structure. 5680 ** See comments in sqliteInt.h for further information. 5681 ** 5682 ** This routine returns the number of errors. If any errors are 5683 ** encountered, then an appropriate error message is left in 5684 ** pParse->zErrMsg. 5685 ** 5686 ** This routine does NOT free the Select structure passed in. The 5687 ** calling function needs to do that. 5688 */ 5689 int sqlite3Select( 5690 Parse *pParse, /* The parser context */ 5691 Select *p, /* The SELECT statement being coded. */ 5692 SelectDest *pDest /* What to do with the query results */ 5693 ){ 5694 int i, j; /* Loop counters */ 5695 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5696 Vdbe *v; /* The virtual machine under construction */ 5697 int isAgg; /* True for select lists like "count(*)" */ 5698 ExprList *pEList = 0; /* List of columns to extract. */ 5699 SrcList *pTabList; /* List of tables to select from */ 5700 Expr *pWhere; /* The WHERE clause. May be NULL */ 5701 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5702 Expr *pHaving; /* The HAVING clause. May be NULL */ 5703 int rc = 1; /* Value to return from this function */ 5704 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5705 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5706 AggInfo sAggInfo; /* Information used by aggregate queries */ 5707 int iEnd; /* Address of the end of the query */ 5708 sqlite3 *db; /* The database connection */ 5709 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5710 u8 minMaxFlag; /* Flag for min/max queries */ 5711 5712 db = pParse->db; 5713 v = sqlite3GetVdbe(pParse); 5714 if( p==0 || db->mallocFailed || pParse->nErr ){ 5715 return 1; 5716 } 5717 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5718 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5719 #if SELECTTRACE_ENABLED 5720 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5721 if( sqlite3SelectTrace & 0x100 ){ 5722 sqlite3TreeViewSelect(0, p, 0); 5723 } 5724 #endif 5725 5726 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5727 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5728 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5729 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5730 if( IgnorableOrderby(pDest) ){ 5731 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5732 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5733 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5734 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5735 /* If ORDER BY makes no difference in the output then neither does 5736 ** DISTINCT so it can be removed too. */ 5737 sqlite3ExprListDelete(db, p->pOrderBy); 5738 p->pOrderBy = 0; 5739 p->selFlags &= ~SF_Distinct; 5740 } 5741 sqlite3SelectPrep(pParse, p, 0); 5742 if( pParse->nErr || db->mallocFailed ){ 5743 goto select_end; 5744 } 5745 assert( p->pEList!=0 ); 5746 #if SELECTTRACE_ENABLED 5747 if( sqlite3SelectTrace & 0x104 ){ 5748 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5749 sqlite3TreeViewSelect(0, p, 0); 5750 } 5751 #endif 5752 5753 if( pDest->eDest==SRT_Output ){ 5754 generateColumnNames(pParse, p); 5755 } 5756 5757 #ifndef SQLITE_OMIT_WINDOWFUNC 5758 rc = sqlite3WindowRewrite(pParse, p); 5759 if( rc ){ 5760 assert( db->mallocFailed || pParse->nErr>0 ); 5761 goto select_end; 5762 } 5763 #if SELECTTRACE_ENABLED 5764 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5765 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5766 sqlite3TreeViewSelect(0, p, 0); 5767 } 5768 #endif 5769 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5770 pTabList = p->pSrc; 5771 isAgg = (p->selFlags & SF_Aggregate)!=0; 5772 memset(&sSort, 0, sizeof(sSort)); 5773 sSort.pOrderBy = p->pOrderBy; 5774 5775 /* Try to various optimizations (flattening subqueries, and strength 5776 ** reduction of join operators) in the FROM clause up into the main query 5777 */ 5778 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5779 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5780 struct SrcList_item *pItem = &pTabList->a[i]; 5781 Select *pSub = pItem->pSelect; 5782 Table *pTab = pItem->pTab; 5783 5784 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5785 ** of the LEFT JOIN used in the WHERE clause. 5786 */ 5787 if( (pItem->fg.jointype & JT_LEFT)!=0 5788 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5789 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5790 ){ 5791 SELECTTRACE(0x100,pParse,p, 5792 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5793 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5794 unsetJoinExpr(p->pWhere, pItem->iCursor); 5795 } 5796 5797 /* No futher action if this term of the FROM clause is no a subquery */ 5798 if( pSub==0 ) continue; 5799 5800 /* Catch mismatch in the declared columns of a view and the number of 5801 ** columns in the SELECT on the RHS */ 5802 if( pTab->nCol!=pSub->pEList->nExpr ){ 5803 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5804 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5805 goto select_end; 5806 } 5807 5808 /* Do not try to flatten an aggregate subquery. 5809 ** 5810 ** Flattening an aggregate subquery is only possible if the outer query 5811 ** is not a join. But if the outer query is not a join, then the subquery 5812 ** will be implemented as a co-routine and there is no advantage to 5813 ** flattening in that case. 5814 */ 5815 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5816 assert( pSub->pGroupBy==0 ); 5817 5818 /* If the outer query contains a "complex" result set (that is, 5819 ** if the result set of the outer query uses functions or subqueries) 5820 ** and if the subquery contains an ORDER BY clause and if 5821 ** it will be implemented as a co-routine, then do not flatten. This 5822 ** restriction allows SQL constructs like this: 5823 ** 5824 ** SELECT expensive_function(x) 5825 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5826 ** 5827 ** The expensive_function() is only computed on the 10 rows that 5828 ** are output, rather than every row of the table. 5829 ** 5830 ** The requirement that the outer query have a complex result set 5831 ** means that flattening does occur on simpler SQL constraints without 5832 ** the expensive_function() like: 5833 ** 5834 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5835 */ 5836 if( pSub->pOrderBy!=0 5837 && i==0 5838 && (p->selFlags & SF_ComplexResult)!=0 5839 && (pTabList->nSrc==1 5840 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5841 ){ 5842 continue; 5843 } 5844 5845 if( flattenSubquery(pParse, p, i, isAgg) ){ 5846 if( pParse->nErr ) goto select_end; 5847 /* This subquery can be absorbed into its parent. */ 5848 i = -1; 5849 } 5850 pTabList = p->pSrc; 5851 if( db->mallocFailed ) goto select_end; 5852 if( !IgnorableOrderby(pDest) ){ 5853 sSort.pOrderBy = p->pOrderBy; 5854 } 5855 } 5856 #endif 5857 5858 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5859 /* Handle compound SELECT statements using the separate multiSelect() 5860 ** procedure. 5861 */ 5862 if( p->pPrior ){ 5863 rc = multiSelect(pParse, p, pDest); 5864 #if SELECTTRACE_ENABLED 5865 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5866 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5867 sqlite3TreeViewSelect(0, p, 0); 5868 } 5869 #endif 5870 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5871 return rc; 5872 } 5873 #endif 5874 5875 /* Do the WHERE-clause constant propagation optimization if this is 5876 ** a join. No need to speed time on this operation for non-join queries 5877 ** as the equivalent optimization will be handled by query planner in 5878 ** sqlite3WhereBegin(). 5879 */ 5880 if( pTabList->nSrc>1 5881 && OptimizationEnabled(db, SQLITE_PropagateConst) 5882 && propagateConstants(pParse, p) 5883 ){ 5884 #if SELECTTRACE_ENABLED 5885 if( sqlite3SelectTrace & 0x100 ){ 5886 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5887 sqlite3TreeViewSelect(0, p, 0); 5888 } 5889 #endif 5890 }else{ 5891 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5892 } 5893 5894 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5895 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5896 && countOfViewOptimization(pParse, p) 5897 ){ 5898 if( db->mallocFailed ) goto select_end; 5899 pEList = p->pEList; 5900 pTabList = p->pSrc; 5901 } 5902 #endif 5903 5904 /* For each term in the FROM clause, do two things: 5905 ** (1) Authorized unreferenced tables 5906 ** (2) Generate code for all sub-queries 5907 */ 5908 for(i=0; i<pTabList->nSrc; i++){ 5909 struct SrcList_item *pItem = &pTabList->a[i]; 5910 SelectDest dest; 5911 Select *pSub; 5912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5913 const char *zSavedAuthContext; 5914 #endif 5915 5916 /* Issue SQLITE_READ authorizations with a fake column name for any 5917 ** tables that are referenced but from which no values are extracted. 5918 ** Examples of where these kinds of null SQLITE_READ authorizations 5919 ** would occur: 5920 ** 5921 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5922 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5923 ** 5924 ** The fake column name is an empty string. It is possible for a table to 5925 ** have a column named by the empty string, in which case there is no way to 5926 ** distinguish between an unreferenced table and an actual reference to the 5927 ** "" column. The original design was for the fake column name to be a NULL, 5928 ** which would be unambiguous. But legacy authorization callbacks might 5929 ** assume the column name is non-NULL and segfault. The use of an empty 5930 ** string for the fake column name seems safer. 5931 */ 5932 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5933 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5934 } 5935 5936 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5937 /* Generate code for all sub-queries in the FROM clause 5938 */ 5939 pSub = pItem->pSelect; 5940 if( pSub==0 ) continue; 5941 5942 /* The code for a subquery should only be generated once, though it is 5943 ** technically harmless for it to be generated multiple times. The 5944 ** following assert() will detect if something changes to cause 5945 ** the same subquery to be coded multiple times, as a signal to the 5946 ** developers to try to optimize the situation. 5947 ** 5948 ** Update 2019-07-24: 5949 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5950 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5951 ** coded twice. So this assert() now becomes a testcase(). It should 5952 ** be very rare, though. 5953 */ 5954 testcase( pItem->addrFillSub!=0 ); 5955 5956 /* Increment Parse.nHeight by the height of the largest expression 5957 ** tree referred to by this, the parent select. The child select 5958 ** may contain expression trees of at most 5959 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5960 ** more conservative than necessary, but much easier than enforcing 5961 ** an exact limit. 5962 */ 5963 pParse->nHeight += sqlite3SelectExprHeight(p); 5964 5965 /* Make copies of constant WHERE-clause terms in the outer query down 5966 ** inside the subquery. This can help the subquery to run more efficiently. 5967 */ 5968 if( OptimizationEnabled(db, SQLITE_PushDown) 5969 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5970 (pItem->fg.jointype & JT_OUTER)!=0) 5971 ){ 5972 #if SELECTTRACE_ENABLED 5973 if( sqlite3SelectTrace & 0x100 ){ 5974 SELECTTRACE(0x100,pParse,p, 5975 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5976 sqlite3TreeViewSelect(0, p, 0); 5977 } 5978 #endif 5979 }else{ 5980 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5981 } 5982 5983 zSavedAuthContext = pParse->zAuthContext; 5984 pParse->zAuthContext = pItem->zName; 5985 5986 /* Generate code to implement the subquery 5987 ** 5988 ** The subquery is implemented as a co-routine if the subquery is 5989 ** guaranteed to be the outer loop (so that it does not need to be 5990 ** computed more than once) 5991 ** 5992 ** TODO: Are there other reasons beside (1) to use a co-routine 5993 ** implementation? 5994 */ 5995 if( i==0 5996 && (pTabList->nSrc==1 5997 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5998 ){ 5999 /* Implement a co-routine that will return a single row of the result 6000 ** set on each invocation. 6001 */ 6002 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6003 6004 pItem->regReturn = ++pParse->nMem; 6005 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6006 VdbeComment((v, "%s", pItem->pTab->zName)); 6007 pItem->addrFillSub = addrTop; 6008 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6009 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6010 sqlite3Select(pParse, pSub, &dest); 6011 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6012 pItem->fg.viaCoroutine = 1; 6013 pItem->regResult = dest.iSdst; 6014 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6015 sqlite3VdbeJumpHere(v, addrTop-1); 6016 sqlite3ClearTempRegCache(pParse); 6017 }else{ 6018 /* Generate a subroutine that will fill an ephemeral table with 6019 ** the content of this subquery. pItem->addrFillSub will point 6020 ** to the address of the generated subroutine. pItem->regReturn 6021 ** is a register allocated to hold the subroutine return address 6022 */ 6023 int topAddr; 6024 int onceAddr = 0; 6025 int retAddr; 6026 struct SrcList_item *pPrior; 6027 6028 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6029 pItem->regReturn = ++pParse->nMem; 6030 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6031 pItem->addrFillSub = topAddr+1; 6032 if( pItem->fg.isCorrelated==0 ){ 6033 /* If the subquery is not correlated and if we are not inside of 6034 ** a trigger, then we only need to compute the value of the subquery 6035 ** once. */ 6036 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6037 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6038 }else{ 6039 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6040 } 6041 pPrior = isSelfJoinView(pTabList, pItem); 6042 if( pPrior ){ 6043 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6044 assert( pPrior->pSelect!=0 ); 6045 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6046 }else{ 6047 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6048 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6049 sqlite3Select(pParse, pSub, &dest); 6050 } 6051 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6052 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6053 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6054 VdbeComment((v, "end %s", pItem->pTab->zName)); 6055 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6056 sqlite3ClearTempRegCache(pParse); 6057 } 6058 if( db->mallocFailed ) goto select_end; 6059 pParse->nHeight -= sqlite3SelectExprHeight(p); 6060 pParse->zAuthContext = zSavedAuthContext; 6061 #endif 6062 } 6063 6064 /* Various elements of the SELECT copied into local variables for 6065 ** convenience */ 6066 pEList = p->pEList; 6067 pWhere = p->pWhere; 6068 pGroupBy = p->pGroupBy; 6069 pHaving = p->pHaving; 6070 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6071 6072 #if SELECTTRACE_ENABLED 6073 if( sqlite3SelectTrace & 0x400 ){ 6074 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6075 sqlite3TreeViewSelect(0, p, 0); 6076 } 6077 #endif 6078 6079 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6080 ** if the select-list is the same as the ORDER BY list, then this query 6081 ** can be rewritten as a GROUP BY. In other words, this: 6082 ** 6083 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6084 ** 6085 ** is transformed to: 6086 ** 6087 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6088 ** 6089 ** The second form is preferred as a single index (or temp-table) may be 6090 ** used for both the ORDER BY and DISTINCT processing. As originally 6091 ** written the query must use a temp-table for at least one of the ORDER 6092 ** BY and DISTINCT, and an index or separate temp-table for the other. 6093 */ 6094 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6095 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6096 && p->pWin==0 6097 ){ 6098 p->selFlags &= ~SF_Distinct; 6099 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6100 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6101 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6102 ** original setting of the SF_Distinct flag, not the current setting */ 6103 assert( sDistinct.isTnct ); 6104 6105 #if SELECTTRACE_ENABLED 6106 if( sqlite3SelectTrace & 0x400 ){ 6107 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6108 sqlite3TreeViewSelect(0, p, 0); 6109 } 6110 #endif 6111 } 6112 6113 /* If there is an ORDER BY clause, then create an ephemeral index to 6114 ** do the sorting. But this sorting ephemeral index might end up 6115 ** being unused if the data can be extracted in pre-sorted order. 6116 ** If that is the case, then the OP_OpenEphemeral instruction will be 6117 ** changed to an OP_Noop once we figure out that the sorting index is 6118 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6119 ** that change. 6120 */ 6121 if( sSort.pOrderBy ){ 6122 KeyInfo *pKeyInfo; 6123 pKeyInfo = sqlite3KeyInfoFromExprList( 6124 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6125 sSort.iECursor = pParse->nTab++; 6126 sSort.addrSortIndex = 6127 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6128 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6129 (char*)pKeyInfo, P4_KEYINFO 6130 ); 6131 }else{ 6132 sSort.addrSortIndex = -1; 6133 } 6134 6135 /* If the output is destined for a temporary table, open that table. 6136 */ 6137 if( pDest->eDest==SRT_EphemTab ){ 6138 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6139 } 6140 6141 /* Set the limiter. 6142 */ 6143 iEnd = sqlite3VdbeMakeLabel(pParse); 6144 if( (p->selFlags & SF_FixedLimit)==0 ){ 6145 p->nSelectRow = 320; /* 4 billion rows */ 6146 } 6147 computeLimitRegisters(pParse, p, iEnd); 6148 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6149 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6150 sSort.sortFlags |= SORTFLAG_UseSorter; 6151 } 6152 6153 /* Open an ephemeral index to use for the distinct set. 6154 */ 6155 if( p->selFlags & SF_Distinct ){ 6156 sDistinct.tabTnct = pParse->nTab++; 6157 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6158 sDistinct.tabTnct, 0, 0, 6159 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6160 P4_KEYINFO); 6161 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6162 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6163 }else{ 6164 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6165 } 6166 6167 if( !isAgg && pGroupBy==0 ){ 6168 /* No aggregate functions and no GROUP BY clause */ 6169 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6170 | (p->selFlags & SF_FixedLimit); 6171 #ifndef SQLITE_OMIT_WINDOWFUNC 6172 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6173 if( pWin ){ 6174 sqlite3WindowCodeInit(pParse, pWin); 6175 } 6176 #endif 6177 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6178 6179 6180 /* Begin the database scan. */ 6181 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6182 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6183 p->pEList, wctrlFlags, p->nSelectRow); 6184 if( pWInfo==0 ) goto select_end; 6185 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6186 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6187 } 6188 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6189 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6190 } 6191 if( sSort.pOrderBy ){ 6192 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6193 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6194 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6195 sSort.pOrderBy = 0; 6196 } 6197 } 6198 6199 /* If sorting index that was created by a prior OP_OpenEphemeral 6200 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6201 ** into an OP_Noop. 6202 */ 6203 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6204 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6205 } 6206 6207 assert( p->pEList==pEList ); 6208 #ifndef SQLITE_OMIT_WINDOWFUNC 6209 if( pWin ){ 6210 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6211 int iCont = sqlite3VdbeMakeLabel(pParse); 6212 int iBreak = sqlite3VdbeMakeLabel(pParse); 6213 int regGosub = ++pParse->nMem; 6214 6215 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6216 6217 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6218 sqlite3VdbeResolveLabel(v, addrGosub); 6219 VdbeNoopComment((v, "inner-loop subroutine")); 6220 sSort.labelOBLopt = 0; 6221 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6222 sqlite3VdbeResolveLabel(v, iCont); 6223 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6224 VdbeComment((v, "end inner-loop subroutine")); 6225 sqlite3VdbeResolveLabel(v, iBreak); 6226 }else 6227 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6228 { 6229 /* Use the standard inner loop. */ 6230 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6231 sqlite3WhereContinueLabel(pWInfo), 6232 sqlite3WhereBreakLabel(pWInfo)); 6233 6234 /* End the database scan loop. 6235 */ 6236 sqlite3WhereEnd(pWInfo); 6237 } 6238 }else{ 6239 /* This case when there exist aggregate functions or a GROUP BY clause 6240 ** or both */ 6241 NameContext sNC; /* Name context for processing aggregate information */ 6242 int iAMem; /* First Mem address for storing current GROUP BY */ 6243 int iBMem; /* First Mem address for previous GROUP BY */ 6244 int iUseFlag; /* Mem address holding flag indicating that at least 6245 ** one row of the input to the aggregator has been 6246 ** processed */ 6247 int iAbortFlag; /* Mem address which causes query abort if positive */ 6248 int groupBySort; /* Rows come from source in GROUP BY order */ 6249 int addrEnd; /* End of processing for this SELECT */ 6250 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6251 int sortOut = 0; /* Output register from the sorter */ 6252 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6253 6254 /* Remove any and all aliases between the result set and the 6255 ** GROUP BY clause. 6256 */ 6257 if( pGroupBy ){ 6258 int k; /* Loop counter */ 6259 struct ExprList_item *pItem; /* For looping over expression in a list */ 6260 6261 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6262 pItem->u.x.iAlias = 0; 6263 } 6264 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6265 pItem->u.x.iAlias = 0; 6266 } 6267 assert( 66==sqlite3LogEst(100) ); 6268 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6269 6270 /* If there is both a GROUP BY and an ORDER BY clause and they are 6271 ** identical, then it may be possible to disable the ORDER BY clause 6272 ** on the grounds that the GROUP BY will cause elements to come out 6273 ** in the correct order. It also may not - the GROUP BY might use a 6274 ** database index that causes rows to be grouped together as required 6275 ** but not actually sorted. Either way, record the fact that the 6276 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6277 ** variable. */ 6278 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6279 int ii; 6280 /* The GROUP BY processing doesn't care whether rows are delivered in 6281 ** ASC or DESC order - only that each group is returned contiguously. 6282 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6283 ** ORDER BY to maximize the chances of rows being delivered in an 6284 ** order that makes the ORDER BY redundant. */ 6285 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6286 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6287 pGroupBy->a[ii].sortFlags = sortFlags; 6288 } 6289 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6290 orderByGrp = 1; 6291 } 6292 } 6293 }else{ 6294 assert( 0==sqlite3LogEst(1) ); 6295 p->nSelectRow = 0; 6296 } 6297 6298 /* Create a label to jump to when we want to abort the query */ 6299 addrEnd = sqlite3VdbeMakeLabel(pParse); 6300 6301 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6302 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6303 ** SELECT statement. 6304 */ 6305 memset(&sNC, 0, sizeof(sNC)); 6306 sNC.pParse = pParse; 6307 sNC.pSrcList = pTabList; 6308 sNC.uNC.pAggInfo = &sAggInfo; 6309 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6310 sAggInfo.mnReg = pParse->nMem+1; 6311 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6312 sAggInfo.pGroupBy = pGroupBy; 6313 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6314 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6315 if( pHaving ){ 6316 if( pGroupBy ){ 6317 assert( pWhere==p->pWhere ); 6318 assert( pHaving==p->pHaving ); 6319 assert( pGroupBy==p->pGroupBy ); 6320 havingToWhere(pParse, p); 6321 pWhere = p->pWhere; 6322 } 6323 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6324 } 6325 sAggInfo.nAccumulator = sAggInfo.nColumn; 6326 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6327 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6328 }else{ 6329 minMaxFlag = WHERE_ORDERBY_NORMAL; 6330 } 6331 for(i=0; i<sAggInfo.nFunc; i++){ 6332 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6333 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6334 sNC.ncFlags |= NC_InAggFunc; 6335 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6336 #ifndef SQLITE_OMIT_WINDOWFUNC 6337 assert( !IsWindowFunc(pExpr) ); 6338 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6339 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6340 } 6341 #endif 6342 sNC.ncFlags &= ~NC_InAggFunc; 6343 } 6344 sAggInfo.mxReg = pParse->nMem; 6345 if( db->mallocFailed ) goto select_end; 6346 #if SELECTTRACE_ENABLED 6347 if( sqlite3SelectTrace & 0x400 ){ 6348 int ii; 6349 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6350 sqlite3TreeViewSelect(0, p, 0); 6351 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6352 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6353 ii, sAggInfo.aCol[ii].iMem); 6354 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6355 } 6356 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6357 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6358 ii, sAggInfo.aFunc[ii].iMem); 6359 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6360 } 6361 } 6362 #endif 6363 6364 6365 /* Processing for aggregates with GROUP BY is very different and 6366 ** much more complex than aggregates without a GROUP BY. 6367 */ 6368 if( pGroupBy ){ 6369 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6370 int addr1; /* A-vs-B comparision jump */ 6371 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6372 int regOutputRow; /* Return address register for output subroutine */ 6373 int addrSetAbort; /* Set the abort flag and return */ 6374 int addrTopOfLoop; /* Top of the input loop */ 6375 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6376 int addrReset; /* Subroutine for resetting the accumulator */ 6377 int regReset; /* Return address register for reset subroutine */ 6378 6379 /* If there is a GROUP BY clause we might need a sorting index to 6380 ** implement it. Allocate that sorting index now. If it turns out 6381 ** that we do not need it after all, the OP_SorterOpen instruction 6382 ** will be converted into a Noop. 6383 */ 6384 sAggInfo.sortingIdx = pParse->nTab++; 6385 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6386 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6387 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6388 0, (char*)pKeyInfo, P4_KEYINFO); 6389 6390 /* Initialize memory locations used by GROUP BY aggregate processing 6391 */ 6392 iUseFlag = ++pParse->nMem; 6393 iAbortFlag = ++pParse->nMem; 6394 regOutputRow = ++pParse->nMem; 6395 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6396 regReset = ++pParse->nMem; 6397 addrReset = sqlite3VdbeMakeLabel(pParse); 6398 iAMem = pParse->nMem + 1; 6399 pParse->nMem += pGroupBy->nExpr; 6400 iBMem = pParse->nMem + 1; 6401 pParse->nMem += pGroupBy->nExpr; 6402 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6403 VdbeComment((v, "clear abort flag")); 6404 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6405 6406 /* Begin a loop that will extract all source rows in GROUP BY order. 6407 ** This might involve two separate loops with an OP_Sort in between, or 6408 ** it might be a single loop that uses an index to extract information 6409 ** in the right order to begin with. 6410 */ 6411 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6412 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6413 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6414 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6415 ); 6416 if( pWInfo==0 ) goto select_end; 6417 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6418 /* The optimizer is able to deliver rows in group by order so 6419 ** we do not have to sort. The OP_OpenEphemeral table will be 6420 ** cancelled later because we still need to use the pKeyInfo 6421 */ 6422 groupBySort = 0; 6423 }else{ 6424 /* Rows are coming out in undetermined order. We have to push 6425 ** each row into a sorting index, terminate the first loop, 6426 ** then loop over the sorting index in order to get the output 6427 ** in sorted order 6428 */ 6429 int regBase; 6430 int regRecord; 6431 int nCol; 6432 int nGroupBy; 6433 6434 explainTempTable(pParse, 6435 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6436 "DISTINCT" : "GROUP BY"); 6437 6438 groupBySort = 1; 6439 nGroupBy = pGroupBy->nExpr; 6440 nCol = nGroupBy; 6441 j = nGroupBy; 6442 for(i=0; i<sAggInfo.nColumn; i++){ 6443 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6444 nCol++; 6445 j++; 6446 } 6447 } 6448 regBase = sqlite3GetTempRange(pParse, nCol); 6449 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6450 j = nGroupBy; 6451 for(i=0; i<sAggInfo.nColumn; i++){ 6452 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6453 if( pCol->iSorterColumn>=j ){ 6454 int r1 = j + regBase; 6455 sqlite3ExprCodeGetColumnOfTable(v, 6456 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6457 j++; 6458 } 6459 } 6460 regRecord = sqlite3GetTempReg(pParse); 6461 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6462 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6463 sqlite3ReleaseTempReg(pParse, regRecord); 6464 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6465 sqlite3WhereEnd(pWInfo); 6466 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6467 sortOut = sqlite3GetTempReg(pParse); 6468 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6469 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6470 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6471 sAggInfo.useSortingIdx = 1; 6472 } 6473 6474 /* If the index or temporary table used by the GROUP BY sort 6475 ** will naturally deliver rows in the order required by the ORDER BY 6476 ** clause, cancel the ephemeral table open coded earlier. 6477 ** 6478 ** This is an optimization - the correct answer should result regardless. 6479 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6480 ** disable this optimization for testing purposes. */ 6481 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6482 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6483 ){ 6484 sSort.pOrderBy = 0; 6485 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6486 } 6487 6488 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6489 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6490 ** Then compare the current GROUP BY terms against the GROUP BY terms 6491 ** from the previous row currently stored in a0, a1, a2... 6492 */ 6493 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6494 if( groupBySort ){ 6495 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6496 sortOut, sortPTab); 6497 } 6498 for(j=0; j<pGroupBy->nExpr; j++){ 6499 if( groupBySort ){ 6500 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6501 }else{ 6502 sAggInfo.directMode = 1; 6503 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6504 } 6505 } 6506 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6508 addr1 = sqlite3VdbeCurrentAddr(v); 6509 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6510 6511 /* Generate code that runs whenever the GROUP BY changes. 6512 ** Changes in the GROUP BY are detected by the previous code 6513 ** block. If there were no changes, this block is skipped. 6514 ** 6515 ** This code copies current group by terms in b0,b1,b2,... 6516 ** over to a0,a1,a2. It then calls the output subroutine 6517 ** and resets the aggregate accumulator registers in preparation 6518 ** for the next GROUP BY batch. 6519 */ 6520 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6521 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6522 VdbeComment((v, "output one row")); 6523 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6524 VdbeComment((v, "check abort flag")); 6525 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6526 VdbeComment((v, "reset accumulator")); 6527 6528 /* Update the aggregate accumulators based on the content of 6529 ** the current row 6530 */ 6531 sqlite3VdbeJumpHere(v, addr1); 6532 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6533 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6534 VdbeComment((v, "indicate data in accumulator")); 6535 6536 /* End of the loop 6537 */ 6538 if( groupBySort ){ 6539 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6540 VdbeCoverage(v); 6541 }else{ 6542 sqlite3WhereEnd(pWInfo); 6543 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6544 } 6545 6546 /* Output the final row of result 6547 */ 6548 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6549 VdbeComment((v, "output final row")); 6550 6551 /* Jump over the subroutines 6552 */ 6553 sqlite3VdbeGoto(v, addrEnd); 6554 6555 /* Generate a subroutine that outputs a single row of the result 6556 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6557 ** is less than or equal to zero, the subroutine is a no-op. If 6558 ** the processing calls for the query to abort, this subroutine 6559 ** increments the iAbortFlag memory location before returning in 6560 ** order to signal the caller to abort. 6561 */ 6562 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6563 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6564 VdbeComment((v, "set abort flag")); 6565 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6566 sqlite3VdbeResolveLabel(v, addrOutputRow); 6567 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6568 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6569 VdbeCoverage(v); 6570 VdbeComment((v, "Groupby result generator entry point")); 6571 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6572 finalizeAggFunctions(pParse, &sAggInfo); 6573 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6574 selectInnerLoop(pParse, p, -1, &sSort, 6575 &sDistinct, pDest, 6576 addrOutputRow+1, addrSetAbort); 6577 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6578 VdbeComment((v, "end groupby result generator")); 6579 6580 /* Generate a subroutine that will reset the group-by accumulator 6581 */ 6582 sqlite3VdbeResolveLabel(v, addrReset); 6583 resetAccumulator(pParse, &sAggInfo); 6584 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6585 VdbeComment((v, "indicate accumulator empty")); 6586 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6587 6588 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6589 else { 6590 #ifndef SQLITE_OMIT_BTREECOUNT 6591 Table *pTab; 6592 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6593 /* If isSimpleCount() returns a pointer to a Table structure, then 6594 ** the SQL statement is of the form: 6595 ** 6596 ** SELECT count(*) FROM <tbl> 6597 ** 6598 ** where the Table structure returned represents table <tbl>. 6599 ** 6600 ** This statement is so common that it is optimized specially. The 6601 ** OP_Count instruction is executed either on the intkey table that 6602 ** contains the data for table <tbl> or on one of its indexes. It 6603 ** is better to execute the op on an index, as indexes are almost 6604 ** always spread across less pages than their corresponding tables. 6605 */ 6606 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6607 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6608 Index *pIdx; /* Iterator variable */ 6609 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6610 Index *pBest = 0; /* Best index found so far */ 6611 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6612 6613 sqlite3CodeVerifySchema(pParse, iDb); 6614 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6615 6616 /* Search for the index that has the lowest scan cost. 6617 ** 6618 ** (2011-04-15) Do not do a full scan of an unordered index. 6619 ** 6620 ** (2013-10-03) Do not count the entries in a partial index. 6621 ** 6622 ** In practice the KeyInfo structure will not be used. It is only 6623 ** passed to keep OP_OpenRead happy. 6624 */ 6625 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6626 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6627 if( pIdx->bUnordered==0 6628 && pIdx->szIdxRow<pTab->szTabRow 6629 && pIdx->pPartIdxWhere==0 6630 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6631 ){ 6632 pBest = pIdx; 6633 } 6634 } 6635 if( pBest ){ 6636 iRoot = pBest->tnum; 6637 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6638 } 6639 6640 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6641 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6642 if( pKeyInfo ){ 6643 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6644 } 6645 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6646 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6647 explainSimpleCount(pParse, pTab, pBest); 6648 }else 6649 #endif /* SQLITE_OMIT_BTREECOUNT */ 6650 { 6651 int regAcc = 0; /* "populate accumulators" flag */ 6652 6653 /* If there are accumulator registers but no min() or max() functions 6654 ** without FILTER clauses, allocate register regAcc. Register regAcc 6655 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6656 ** The code generated by updateAccumulator() uses this to ensure 6657 ** that the accumulator registers are (a) updated only once if 6658 ** there are no min() or max functions or (b) always updated for the 6659 ** first row visited by the aggregate, so that they are updated at 6660 ** least once even if the FILTER clause means the min() or max() 6661 ** function visits zero rows. */ 6662 if( sAggInfo.nAccumulator ){ 6663 for(i=0; i<sAggInfo.nFunc; i++){ 6664 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6665 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6666 } 6667 if( i==sAggInfo.nFunc ){ 6668 regAcc = ++pParse->nMem; 6669 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6670 } 6671 } 6672 6673 /* This case runs if the aggregate has no GROUP BY clause. The 6674 ** processing is much simpler since there is only a single row 6675 ** of output. 6676 */ 6677 assert( p->pGroupBy==0 ); 6678 resetAccumulator(pParse, &sAggInfo); 6679 6680 /* If this query is a candidate for the min/max optimization, then 6681 ** minMaxFlag will have been previously set to either 6682 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6683 ** be an appropriate ORDER BY expression for the optimization. 6684 */ 6685 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6686 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6687 6688 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6689 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6690 0, minMaxFlag, 0); 6691 if( pWInfo==0 ){ 6692 goto select_end; 6693 } 6694 updateAccumulator(pParse, regAcc, &sAggInfo); 6695 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6696 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6697 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6698 VdbeComment((v, "%s() by index", 6699 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6700 } 6701 sqlite3WhereEnd(pWInfo); 6702 finalizeAggFunctions(pParse, &sAggInfo); 6703 } 6704 6705 sSort.pOrderBy = 0; 6706 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6707 selectInnerLoop(pParse, p, -1, 0, 0, 6708 pDest, addrEnd, addrEnd); 6709 } 6710 sqlite3VdbeResolveLabel(v, addrEnd); 6711 6712 } /* endif aggregate query */ 6713 6714 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6715 explainTempTable(pParse, "DISTINCT"); 6716 } 6717 6718 /* If there is an ORDER BY clause, then we need to sort the results 6719 ** and send them to the callback one by one. 6720 */ 6721 if( sSort.pOrderBy ){ 6722 explainTempTable(pParse, 6723 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6724 assert( p->pEList==pEList ); 6725 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6726 } 6727 6728 /* Jump here to skip this query 6729 */ 6730 sqlite3VdbeResolveLabel(v, iEnd); 6731 6732 /* The SELECT has been coded. If there is an error in the Parse structure, 6733 ** set the return code to 1. Otherwise 0. */ 6734 rc = (pParse->nErr>0); 6735 6736 /* Control jumps to here if an error is encountered above, or upon 6737 ** successful coding of the SELECT. 6738 */ 6739 select_end: 6740 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6741 sqlite3DbFree(db, sAggInfo.aCol); 6742 sqlite3DbFree(db, sAggInfo.aFunc); 6743 #if SELECTTRACE_ENABLED 6744 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6745 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6746 sqlite3TreeViewSelect(0, p, 0); 6747 } 6748 #endif 6749 ExplainQueryPlanPop(pParse); 6750 return rc; 6751 } 6752