xref: /sqlite-3.40.0/src/select.c (revision 29368eab)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself depending on the value of bFree
88 **
89 ** If bFree==1, call sqlite3DbFree() on the p object.
90 ** If bFree==0, Leave the first Select object unfreed
91 */
92 static void clearSelect(sqlite3 *db, Select *p, int bFree){
93   while( p ){
94     Select *pPrior = p->pPrior;
95     sqlite3ExprListDelete(db, p->pEList);
96     sqlite3SrcListDelete(db, p->pSrc);
97     sqlite3ExprDelete(db, p->pWhere);
98     sqlite3ExprListDelete(db, p->pGroupBy);
99     sqlite3ExprDelete(db, p->pHaving);
100     sqlite3ExprListDelete(db, p->pOrderBy);
101     sqlite3ExprDelete(db, p->pLimit);
102 #ifndef SQLITE_OMIT_WINDOWFUNC
103     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
104       sqlite3WindowListDelete(db, p->pWinDefn);
105     }
106     assert( p->pWin==0 );
107 #endif
108     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
109     if( bFree ) sqlite3DbFreeNN(db, p);
110     p = pPrior;
111     bFree = 1;
112   }
113 }
114 
115 /*
116 ** Initialize a SelectDest structure.
117 */
118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
119   pDest->eDest = (u8)eDest;
120   pDest->iSDParm = iParm;
121   pDest->zAffSdst = 0;
122   pDest->iSdst = 0;
123   pDest->nSdst = 0;
124 }
125 
126 
127 /*
128 ** Allocate a new Select structure and return a pointer to that
129 ** structure.
130 */
131 Select *sqlite3SelectNew(
132   Parse *pParse,        /* Parsing context */
133   ExprList *pEList,     /* which columns to include in the result */
134   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
135   Expr *pWhere,         /* the WHERE clause */
136   ExprList *pGroupBy,   /* the GROUP BY clause */
137   Expr *pHaving,        /* the HAVING clause */
138   ExprList *pOrderBy,   /* the ORDER BY clause */
139   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
140   Expr *pLimit          /* LIMIT value.  NULL means not used */
141 ){
142   Select *pNew;
143   Select standin;
144   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
145   if( pNew==0 ){
146     assert( pParse->db->mallocFailed );
147     pNew = &standin;
148   }
149   if( pEList==0 ){
150     pEList = sqlite3ExprListAppend(pParse, 0,
151                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
152   }
153   pNew->pEList = pEList;
154   pNew->op = TK_SELECT;
155   pNew->selFlags = selFlags;
156   pNew->iLimit = 0;
157   pNew->iOffset = 0;
158   pNew->selId = ++pParse->nSelect;
159   pNew->addrOpenEphm[0] = -1;
160   pNew->addrOpenEphm[1] = -1;
161   pNew->nSelectRow = 0;
162   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
163   pNew->pSrc = pSrc;
164   pNew->pWhere = pWhere;
165   pNew->pGroupBy = pGroupBy;
166   pNew->pHaving = pHaving;
167   pNew->pOrderBy = pOrderBy;
168   pNew->pPrior = 0;
169   pNew->pNext = 0;
170   pNew->pLimit = pLimit;
171   pNew->pWith = 0;
172 #ifndef SQLITE_OMIT_WINDOWFUNC
173   pNew->pWin = 0;
174   pNew->pWinDefn = 0;
175 #endif
176   if( pParse->db->mallocFailed ) {
177     clearSelect(pParse->db, pNew, pNew!=&standin);
178     pNew = 0;
179   }else{
180     assert( pNew->pSrc!=0 || pParse->nErr>0 );
181   }
182   assert( pNew!=&standin );
183   return pNew;
184 }
185 
186 
187 /*
188 ** Delete the given Select structure and all of its substructures.
189 */
190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
192 }
193 
194 /*
195 ** Delete all the substructure for p, but keep p allocated.  Redefine
196 ** p to be a single SELECT where every column of the result set has a
197 ** value of NULL.
198 */
199 void sqlite3SelectReset(Parse *pParse, Select *p){
200   if( ALWAYS(p) ){
201     clearSelect(pParse->db, p, 0);
202     memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
203     p->pEList = sqlite3ExprListAppend(pParse, 0,
204                      sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
205   }
206 }
207 
208 /*
209 ** Return a pointer to the right-most SELECT statement in a compound.
210 */
211 static Select *findRightmost(Select *p){
212   while( p->pNext ) p = p->pNext;
213   return p;
214 }
215 
216 /*
217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
218 ** type of join.  Return an integer constant that expresses that type
219 ** in terms of the following bit values:
220 **
221 **     JT_INNER
222 **     JT_CROSS
223 **     JT_OUTER
224 **     JT_NATURAL
225 **     JT_LEFT
226 **     JT_RIGHT
227 **
228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
229 **
230 ** If an illegal or unsupported join type is seen, then still return
231 ** a join type, but put an error in the pParse structure.
232 */
233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
234   int jointype = 0;
235   Token *apAll[3];
236   Token *p;
237                              /*   0123456789 123456789 123456789 123 */
238   static const char zKeyText[] = "naturaleftouterightfullinnercross";
239   static const struct {
240     u8 i;        /* Beginning of keyword text in zKeyText[] */
241     u8 nChar;    /* Length of the keyword in characters */
242     u8 code;     /* Join type mask */
243   } aKeyword[] = {
244     /* natural */ { 0,  7, JT_NATURAL                },
245     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
246     /* outer   */ { 10, 5, JT_OUTER                  },
247     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
248     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
249     /* inner   */ { 23, 5, JT_INNER                  },
250     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
251   };
252   int i, j;
253   apAll[0] = pA;
254   apAll[1] = pB;
255   apAll[2] = pC;
256   for(i=0; i<3 && apAll[i]; i++){
257     p = apAll[i];
258     for(j=0; j<ArraySize(aKeyword); j++){
259       if( p->n==aKeyword[j].nChar
260           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
261         jointype |= aKeyword[j].code;
262         break;
263       }
264     }
265     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
266     if( j>=ArraySize(aKeyword) ){
267       jointype |= JT_ERROR;
268       break;
269     }
270   }
271   if(
272      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
273      (jointype & JT_ERROR)!=0
274   ){
275     const char *zSp = " ";
276     assert( pB!=0 );
277     if( pC==0 ){ zSp++; }
278     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
279        "%T %T%s%T", pA, pB, zSp, pC);
280     jointype = JT_INNER;
281   }else if( (jointype & JT_OUTER)!=0
282          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
283     sqlite3ErrorMsg(pParse,
284       "RIGHT and FULL OUTER JOINs are not currently supported");
285     jointype = JT_INNER;
286   }
287   return jointype;
288 }
289 
290 /*
291 ** Return the index of a column in a table.  Return -1 if the column
292 ** is not contained in the table.
293 */
294 static int columnIndex(Table *pTab, const char *zCol){
295   int i;
296   for(i=0; i<pTab->nCol; i++){
297     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
298   }
299   return -1;
300 }
301 
302 /*
303 ** Search the first N tables in pSrc, from left to right, looking for a
304 ** table that has a column named zCol.
305 **
306 ** When found, set *piTab and *piCol to the table index and column index
307 ** of the matching column and return TRUE.
308 **
309 ** If not found, return FALSE.
310 */
311 static int tableAndColumnIndex(
312   SrcList *pSrc,       /* Array of tables to search */
313   int N,               /* Number of tables in pSrc->a[] to search */
314   const char *zCol,    /* Name of the column we are looking for */
315   int *piTab,          /* Write index of pSrc->a[] here */
316   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
317 ){
318   int i;               /* For looping over tables in pSrc */
319   int iCol;            /* Index of column matching zCol */
320 
321   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
322   for(i=0; i<N; i++){
323     iCol = columnIndex(pSrc->a[i].pTab, zCol);
324     if( iCol>=0 ){
325       if( piTab ){
326         *piTab = i;
327         *piCol = iCol;
328       }
329       return 1;
330     }
331   }
332   return 0;
333 }
334 
335 /*
336 ** This function is used to add terms implied by JOIN syntax to the
337 ** WHERE clause expression of a SELECT statement. The new term, which
338 ** is ANDed with the existing WHERE clause, is of the form:
339 **
340 **    (tab1.col1 = tab2.col2)
341 **
342 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
343 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
344 ** column iColRight of tab2.
345 */
346 static void addWhereTerm(
347   Parse *pParse,                  /* Parsing context */
348   SrcList *pSrc,                  /* List of tables in FROM clause */
349   int iLeft,                      /* Index of first table to join in pSrc */
350   int iColLeft,                   /* Index of column in first table */
351   int iRight,                     /* Index of second table in pSrc */
352   int iColRight,                  /* Index of column in second table */
353   int isOuterJoin,                /* True if this is an OUTER join */
354   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
355 ){
356   sqlite3 *db = pParse->db;
357   Expr *pE1;
358   Expr *pE2;
359   Expr *pEq;
360 
361   assert( iLeft<iRight );
362   assert( pSrc->nSrc>iRight );
363   assert( pSrc->a[iLeft].pTab );
364   assert( pSrc->a[iRight].pTab );
365 
366   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
367   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
368 
369   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
370   if( pEq && isOuterJoin ){
371     ExprSetProperty(pEq, EP_FromJoin);
372     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
373     ExprSetVVAProperty(pEq, EP_NoReduce);
374     pEq->iRightJoinTable = (i16)pE2->iTable;
375   }
376   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
377 }
378 
379 /*
380 ** Set the EP_FromJoin property on all terms of the given expression.
381 ** And set the Expr.iRightJoinTable to iTable for every term in the
382 ** expression.
383 **
384 ** The EP_FromJoin property is used on terms of an expression to tell
385 ** the LEFT OUTER JOIN processing logic that this term is part of the
386 ** join restriction specified in the ON or USING clause and not a part
387 ** of the more general WHERE clause.  These terms are moved over to the
388 ** WHERE clause during join processing but we need to remember that they
389 ** originated in the ON or USING clause.
390 **
391 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
392 ** expression depends on table iRightJoinTable even if that table is not
393 ** explicitly mentioned in the expression.  That information is needed
394 ** for cases like this:
395 **
396 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
397 **
398 ** The where clause needs to defer the handling of the t1.x=5
399 ** term until after the t2 loop of the join.  In that way, a
400 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
401 ** defer the handling of t1.x=5, it will be processed immediately
402 ** after the t1 loop and rows with t1.x!=5 will never appear in
403 ** the output, which is incorrect.
404 */
405 void sqlite3SetJoinExpr(Expr *p, int iTable){
406   while( p ){
407     ExprSetProperty(p, EP_FromJoin);
408     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
409     ExprSetVVAProperty(p, EP_NoReduce);
410     p->iRightJoinTable = (i16)iTable;
411     if( p->op==TK_FUNCTION && p->x.pList ){
412       int i;
413       for(i=0; i<p->x.pList->nExpr; i++){
414         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
415       }
416     }
417     sqlite3SetJoinExpr(p->pLeft, iTable);
418     p = p->pRight;
419   }
420 }
421 
422 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
423 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
424 ** an ordinary term that omits the EP_FromJoin mark.
425 **
426 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
427 */
428 static void unsetJoinExpr(Expr *p, int iTable){
429   while( p ){
430     if( ExprHasProperty(p, EP_FromJoin)
431      && (iTable<0 || p->iRightJoinTable==iTable) ){
432       ExprClearProperty(p, EP_FromJoin);
433     }
434     if( p->op==TK_FUNCTION && p->x.pList ){
435       int i;
436       for(i=0; i<p->x.pList->nExpr; i++){
437         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
438       }
439     }
440     unsetJoinExpr(p->pLeft, iTable);
441     p = p->pRight;
442   }
443 }
444 
445 /*
446 ** This routine processes the join information for a SELECT statement.
447 ** ON and USING clauses are converted into extra terms of the WHERE clause.
448 ** NATURAL joins also create extra WHERE clause terms.
449 **
450 ** The terms of a FROM clause are contained in the Select.pSrc structure.
451 ** The left most table is the first entry in Select.pSrc.  The right-most
452 ** table is the last entry.  The join operator is held in the entry to
453 ** the left.  Thus entry 0 contains the join operator for the join between
454 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
455 ** also attached to the left entry.
456 **
457 ** This routine returns the number of errors encountered.
458 */
459 static int sqliteProcessJoin(Parse *pParse, Select *p){
460   SrcList *pSrc;                  /* All tables in the FROM clause */
461   int i, j;                       /* Loop counters */
462   struct SrcList_item *pLeft;     /* Left table being joined */
463   struct SrcList_item *pRight;    /* Right table being joined */
464 
465   pSrc = p->pSrc;
466   pLeft = &pSrc->a[0];
467   pRight = &pLeft[1];
468   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
469     Table *pRightTab = pRight->pTab;
470     int isOuter;
471 
472     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
473     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
474 
475     /* When the NATURAL keyword is present, add WHERE clause terms for
476     ** every column that the two tables have in common.
477     */
478     if( pRight->fg.jointype & JT_NATURAL ){
479       if( pRight->pOn || pRight->pUsing ){
480         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
481            "an ON or USING clause", 0);
482         return 1;
483       }
484       for(j=0; j<pRightTab->nCol; j++){
485         char *zName;   /* Name of column in the right table */
486         int iLeft;     /* Matching left table */
487         int iLeftCol;  /* Matching column in the left table */
488 
489         zName = pRightTab->aCol[j].zName;
490         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
491           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
492                        isOuter, &p->pWhere);
493         }
494       }
495     }
496 
497     /* Disallow both ON and USING clauses in the same join
498     */
499     if( pRight->pOn && pRight->pUsing ){
500       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
501         "clauses in the same join");
502       return 1;
503     }
504 
505     /* Add the ON clause to the end of the WHERE clause, connected by
506     ** an AND operator.
507     */
508     if( pRight->pOn ){
509       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
510       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
511       pRight->pOn = 0;
512     }
513 
514     /* Create extra terms on the WHERE clause for each column named
515     ** in the USING clause.  Example: If the two tables to be joined are
516     ** A and B and the USING clause names X, Y, and Z, then add this
517     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
518     ** Report an error if any column mentioned in the USING clause is
519     ** not contained in both tables to be joined.
520     */
521     if( pRight->pUsing ){
522       IdList *pList = pRight->pUsing;
523       for(j=0; j<pList->nId; j++){
524         char *zName;     /* Name of the term in the USING clause */
525         int iLeft;       /* Table on the left with matching column name */
526         int iLeftCol;    /* Column number of matching column on the left */
527         int iRightCol;   /* Column number of matching column on the right */
528 
529         zName = pList->a[j].zName;
530         iRightCol = columnIndex(pRightTab, zName);
531         if( iRightCol<0
532          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
533         ){
534           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
535             "not present in both tables", zName);
536           return 1;
537         }
538         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
539                      isOuter, &p->pWhere);
540       }
541     }
542   }
543   return 0;
544 }
545 
546 /*
547 ** An instance of this object holds information (beyond pParse and pSelect)
548 ** needed to load the next result row that is to be added to the sorter.
549 */
550 typedef struct RowLoadInfo RowLoadInfo;
551 struct RowLoadInfo {
552   int regResult;               /* Store results in array of registers here */
553   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
555   ExprList *pExtra;            /* Extra columns needed by sorter refs */
556   int regExtraResult;          /* Where to load the extra columns */
557 #endif
558 };
559 
560 /*
561 ** This routine does the work of loading query data into an array of
562 ** registers so that it can be added to the sorter.
563 */
564 static void innerLoopLoadRow(
565   Parse *pParse,             /* Statement under construction */
566   Select *pSelect,           /* The query being coded */
567   RowLoadInfo *pInfo         /* Info needed to complete the row load */
568 ){
569   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
570                           0, pInfo->ecelFlags);
571 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
572   if( pInfo->pExtra ){
573     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
574     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
575   }
576 #endif
577 }
578 
579 /*
580 ** Code the OP_MakeRecord instruction that generates the entry to be
581 ** added into the sorter.
582 **
583 ** Return the register in which the result is stored.
584 */
585 static int makeSorterRecord(
586   Parse *pParse,
587   SortCtx *pSort,
588   Select *pSelect,
589   int regBase,
590   int nBase
591 ){
592   int nOBSat = pSort->nOBSat;
593   Vdbe *v = pParse->pVdbe;
594   int regOut = ++pParse->nMem;
595   if( pSort->pDeferredRowLoad ){
596     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
597   }
598   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
599   return regOut;
600 }
601 
602 /*
603 ** Generate code that will push the record in registers regData
604 ** through regData+nData-1 onto the sorter.
605 */
606 static void pushOntoSorter(
607   Parse *pParse,         /* Parser context */
608   SortCtx *pSort,        /* Information about the ORDER BY clause */
609   Select *pSelect,       /* The whole SELECT statement */
610   int regData,           /* First register holding data to be sorted */
611   int regOrigData,       /* First register holding data before packing */
612   int nData,             /* Number of elements in the regData data array */
613   int nPrefixReg         /* No. of reg prior to regData available for use */
614 ){
615   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
616   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
617   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
618   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
619   int regBase;                                     /* Regs for sorter record */
620   int regRecord = 0;                               /* Assembled sorter record */
621   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
622   int op;                            /* Opcode to add sorter record to sorter */
623   int iLimit;                        /* LIMIT counter */
624   int iSkip = 0;                     /* End of the sorter insert loop */
625 
626   assert( bSeq==0 || bSeq==1 );
627 
628   /* Three cases:
629   **   (1) The data to be sorted has already been packed into a Record
630   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
631   **       will be completely unrelated to regOrigData.
632   **   (2) All output columns are included in the sort record.  In that
633   **       case regData==regOrigData.
634   **   (3) Some output columns are omitted from the sort record due to
635   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
636   **       SQLITE_ECEL_OMITREF optimization, or due to the
637   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
638   **       regOrigData is 0 to prevent this routine from trying to copy
639   **       values that might not yet exist.
640   */
641   assert( nData==1 || regData==regOrigData || regOrigData==0 );
642 
643   if( nPrefixReg ){
644     assert( nPrefixReg==nExpr+bSeq );
645     regBase = regData - nPrefixReg;
646   }else{
647     regBase = pParse->nMem + 1;
648     pParse->nMem += nBase;
649   }
650   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
651   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
652   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
653   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
654                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
655   if( bSeq ){
656     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
657   }
658   if( nPrefixReg==0 && nData>0 ){
659     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
660   }
661   if( nOBSat>0 ){
662     int regPrevKey;   /* The first nOBSat columns of the previous row */
663     int addrFirst;    /* Address of the OP_IfNot opcode */
664     int addrJmp;      /* Address of the OP_Jump opcode */
665     VdbeOp *pOp;      /* Opcode that opens the sorter */
666     int nKey;         /* Number of sorting key columns, including OP_Sequence */
667     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
668 
669     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
670     regPrevKey = pParse->nMem+1;
671     pParse->nMem += pSort->nOBSat;
672     nKey = nExpr - pSort->nOBSat + bSeq;
673     if( bSeq ){
674       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
675     }else{
676       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
677     }
678     VdbeCoverage(v);
679     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
680     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
681     if( pParse->db->mallocFailed ) return;
682     pOp->p2 = nKey + nData;
683     pKI = pOp->p4.pKeyInfo;
684     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
685     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
686     testcase( pKI->nAllField > pKI->nKeyField+2 );
687     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
688                                            pKI->nAllField-pKI->nKeyField-1);
689     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
690     addrJmp = sqlite3VdbeCurrentAddr(v);
691     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
692     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
693     pSort->regReturn = ++pParse->nMem;
694     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
695     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
696     if( iLimit ){
697       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
698       VdbeCoverage(v);
699     }
700     sqlite3VdbeJumpHere(v, addrFirst);
701     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
702     sqlite3VdbeJumpHere(v, addrJmp);
703   }
704   if( iLimit ){
705     /* At this point the values for the new sorter entry are stored
706     ** in an array of registers. They need to be composed into a record
707     ** and inserted into the sorter if either (a) there are currently
708     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
709     ** the largest record currently in the sorter. If (b) is true and there
710     ** are already LIMIT+OFFSET items in the sorter, delete the largest
711     ** entry before inserting the new one. This way there are never more
712     ** than LIMIT+OFFSET items in the sorter.
713     **
714     ** If the new record does not need to be inserted into the sorter,
715     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
716     ** value is not zero, then it is a label of where to jump.  Otherwise,
717     ** just bypass the row insert logic.  See the header comment on the
718     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
719     */
720     int iCsr = pSort->iECursor;
721     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
722     VdbeCoverage(v);
723     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
724     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
725                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
726     VdbeCoverage(v);
727     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
728   }
729   if( regRecord==0 ){
730     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
731   }
732   if( pSort->sortFlags & SORTFLAG_UseSorter ){
733     op = OP_SorterInsert;
734   }else{
735     op = OP_IdxInsert;
736   }
737   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
738                        regBase+nOBSat, nBase-nOBSat);
739   if( iSkip ){
740     sqlite3VdbeChangeP2(v, iSkip,
741          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
742   }
743 }
744 
745 /*
746 ** Add code to implement the OFFSET
747 */
748 static void codeOffset(
749   Vdbe *v,          /* Generate code into this VM */
750   int iOffset,      /* Register holding the offset counter */
751   int iContinue     /* Jump here to skip the current record */
752 ){
753   if( iOffset>0 ){
754     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
755     VdbeComment((v, "OFFSET"));
756   }
757 }
758 
759 /*
760 ** Add code that will check to make sure the N registers starting at iMem
761 ** form a distinct entry.  iTab is a sorting index that holds previously
762 ** seen combinations of the N values.  A new entry is made in iTab
763 ** if the current N values are new.
764 **
765 ** A jump to addrRepeat is made and the N+1 values are popped from the
766 ** stack if the top N elements are not distinct.
767 */
768 static void codeDistinct(
769   Parse *pParse,     /* Parsing and code generating context */
770   int iTab,          /* A sorting index used to test for distinctness */
771   int addrRepeat,    /* Jump to here if not distinct */
772   int N,             /* Number of elements */
773   int iMem           /* First element */
774 ){
775   Vdbe *v;
776   int r1;
777 
778   v = pParse->pVdbe;
779   r1 = sqlite3GetTempReg(pParse);
780   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
781   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
782   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
783   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
784   sqlite3ReleaseTempReg(pParse, r1);
785 }
786 
787 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
788 /*
789 ** This function is called as part of inner-loop generation for a SELECT
790 ** statement with an ORDER BY that is not optimized by an index. It
791 ** determines the expressions, if any, that the sorter-reference
792 ** optimization should be used for. The sorter-reference optimization
793 ** is used for SELECT queries like:
794 **
795 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
796 **
797 ** If the optimization is used for expression "bigblob", then instead of
798 ** storing values read from that column in the sorter records, the PK of
799 ** the row from table t1 is stored instead. Then, as records are extracted from
800 ** the sorter to return to the user, the required value of bigblob is
801 ** retrieved directly from table t1. If the values are very large, this
802 ** can be more efficient than storing them directly in the sorter records.
803 **
804 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
805 ** for which the sorter-reference optimization should be enabled.
806 ** Additionally, the pSort->aDefer[] array is populated with entries
807 ** for all cursors required to evaluate all selected expressions. Finally.
808 ** output variable (*ppExtra) is set to an expression list containing
809 ** expressions for all extra PK values that should be stored in the
810 ** sorter records.
811 */
812 static void selectExprDefer(
813   Parse *pParse,                  /* Leave any error here */
814   SortCtx *pSort,                 /* Sorter context */
815   ExprList *pEList,               /* Expressions destined for sorter */
816   ExprList **ppExtra              /* Expressions to append to sorter record */
817 ){
818   int i;
819   int nDefer = 0;
820   ExprList *pExtra = 0;
821   for(i=0; i<pEList->nExpr; i++){
822     struct ExprList_item *pItem = &pEList->a[i];
823     if( pItem->u.x.iOrderByCol==0 ){
824       Expr *pExpr = pItem->pExpr;
825       Table *pTab = pExpr->y.pTab;
826       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
827        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
828       ){
829         int j;
830         for(j=0; j<nDefer; j++){
831           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
832         }
833         if( j==nDefer ){
834           if( nDefer==ArraySize(pSort->aDefer) ){
835             continue;
836           }else{
837             int nKey = 1;
838             int k;
839             Index *pPk = 0;
840             if( !HasRowid(pTab) ){
841               pPk = sqlite3PrimaryKeyIndex(pTab);
842               nKey = pPk->nKeyCol;
843             }
844             for(k=0; k<nKey; k++){
845               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
846               if( pNew ){
847                 pNew->iTable = pExpr->iTable;
848                 pNew->y.pTab = pExpr->y.pTab;
849                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
850                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
851               }
852             }
853             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
854             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
855             pSort->aDefer[nDefer].nKey = nKey;
856             nDefer++;
857           }
858         }
859         pItem->bSorterRef = 1;
860       }
861     }
862   }
863   pSort->nDefer = (u8)nDefer;
864   *ppExtra = pExtra;
865 }
866 #endif
867 
868 /*
869 ** This routine generates the code for the inside of the inner loop
870 ** of a SELECT.
871 **
872 ** If srcTab is negative, then the p->pEList expressions
873 ** are evaluated in order to get the data for this row.  If srcTab is
874 ** zero or more, then data is pulled from srcTab and p->pEList is used only
875 ** to get the number of columns and the collation sequence for each column.
876 */
877 static void selectInnerLoop(
878   Parse *pParse,          /* The parser context */
879   Select *p,              /* The complete select statement being coded */
880   int srcTab,             /* Pull data from this table if non-negative */
881   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
882   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
883   SelectDest *pDest,      /* How to dispose of the results */
884   int iContinue,          /* Jump here to continue with next row */
885   int iBreak              /* Jump here to break out of the inner loop */
886 ){
887   Vdbe *v = pParse->pVdbe;
888   int i;
889   int hasDistinct;            /* True if the DISTINCT keyword is present */
890   int eDest = pDest->eDest;   /* How to dispose of results */
891   int iParm = pDest->iSDParm; /* First argument to disposal method */
892   int nResultCol;             /* Number of result columns */
893   int nPrefixReg = 0;         /* Number of extra registers before regResult */
894   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
895 
896   /* Usually, regResult is the first cell in an array of memory cells
897   ** containing the current result row. In this case regOrig is set to the
898   ** same value. However, if the results are being sent to the sorter, the
899   ** values for any expressions that are also part of the sort-key are omitted
900   ** from this array. In this case regOrig is set to zero.  */
901   int regResult;              /* Start of memory holding current results */
902   int regOrig;                /* Start of memory holding full result (or 0) */
903 
904   assert( v );
905   assert( p->pEList!=0 );
906   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
907   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
908   if( pSort==0 && !hasDistinct ){
909     assert( iContinue!=0 );
910     codeOffset(v, p->iOffset, iContinue);
911   }
912 
913   /* Pull the requested columns.
914   */
915   nResultCol = p->pEList->nExpr;
916 
917   if( pDest->iSdst==0 ){
918     if( pSort ){
919       nPrefixReg = pSort->pOrderBy->nExpr;
920       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
921       pParse->nMem += nPrefixReg;
922     }
923     pDest->iSdst = pParse->nMem+1;
924     pParse->nMem += nResultCol;
925   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
926     /* This is an error condition that can result, for example, when a SELECT
927     ** on the right-hand side of an INSERT contains more result columns than
928     ** there are columns in the table on the left.  The error will be caught
929     ** and reported later.  But we need to make sure enough memory is allocated
930     ** to avoid other spurious errors in the meantime. */
931     pParse->nMem += nResultCol;
932   }
933   pDest->nSdst = nResultCol;
934   regOrig = regResult = pDest->iSdst;
935   if( srcTab>=0 ){
936     for(i=0; i<nResultCol; i++){
937       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
938       VdbeComment((v, "%s", p->pEList->a[i].zName));
939     }
940   }else if( eDest!=SRT_Exists ){
941 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
942     ExprList *pExtra = 0;
943 #endif
944     /* If the destination is an EXISTS(...) expression, the actual
945     ** values returned by the SELECT are not required.
946     */
947     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
948     ExprList *pEList;
949     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
950       ecelFlags = SQLITE_ECEL_DUP;
951     }else{
952       ecelFlags = 0;
953     }
954     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
955       /* For each expression in p->pEList that is a copy of an expression in
956       ** the ORDER BY clause (pSort->pOrderBy), set the associated
957       ** iOrderByCol value to one more than the index of the ORDER BY
958       ** expression within the sort-key that pushOntoSorter() will generate.
959       ** This allows the p->pEList field to be omitted from the sorted record,
960       ** saving space and CPU cycles.  */
961       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
962 
963       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
964         int j;
965         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
966           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
967         }
968       }
969 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
970       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
971       if( pExtra && pParse->db->mallocFailed==0 ){
972         /* If there are any extra PK columns to add to the sorter records,
973         ** allocate extra memory cells and adjust the OpenEphemeral
974         ** instruction to account for the larger records. This is only
975         ** required if there are one or more WITHOUT ROWID tables with
976         ** composite primary keys in the SortCtx.aDefer[] array.  */
977         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
978         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
979         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
980         pParse->nMem += pExtra->nExpr;
981       }
982 #endif
983 
984       /* Adjust nResultCol to account for columns that are omitted
985       ** from the sorter by the optimizations in this branch */
986       pEList = p->pEList;
987       for(i=0; i<pEList->nExpr; i++){
988         if( pEList->a[i].u.x.iOrderByCol>0
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990          || pEList->a[i].bSorterRef
991 #endif
992         ){
993           nResultCol--;
994           regOrig = 0;
995         }
996       }
997 
998       testcase( regOrig );
999       testcase( eDest==SRT_Set );
1000       testcase( eDest==SRT_Mem );
1001       testcase( eDest==SRT_Coroutine );
1002       testcase( eDest==SRT_Output );
1003       assert( eDest==SRT_Set || eDest==SRT_Mem
1004            || eDest==SRT_Coroutine || eDest==SRT_Output );
1005     }
1006     sRowLoadInfo.regResult = regResult;
1007     sRowLoadInfo.ecelFlags = ecelFlags;
1008 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1009     sRowLoadInfo.pExtra = pExtra;
1010     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1011     if( pExtra ) nResultCol += pExtra->nExpr;
1012 #endif
1013     if( p->iLimit
1014      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1015      && nPrefixReg>0
1016     ){
1017       assert( pSort!=0 );
1018       assert( hasDistinct==0 );
1019       pSort->pDeferredRowLoad = &sRowLoadInfo;
1020       regOrig = 0;
1021     }else{
1022       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1023     }
1024   }
1025 
1026   /* If the DISTINCT keyword was present on the SELECT statement
1027   ** and this row has been seen before, then do not make this row
1028   ** part of the result.
1029   */
1030   if( hasDistinct ){
1031     switch( pDistinct->eTnctType ){
1032       case WHERE_DISTINCT_ORDERED: {
1033         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1034         int iJump;              /* Jump destination */
1035         int regPrev;            /* Previous row content */
1036 
1037         /* Allocate space for the previous row */
1038         regPrev = pParse->nMem+1;
1039         pParse->nMem += nResultCol;
1040 
1041         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1042         ** sets the MEM_Cleared bit on the first register of the
1043         ** previous value.  This will cause the OP_Ne below to always
1044         ** fail on the first iteration of the loop even if the first
1045         ** row is all NULLs.
1046         */
1047         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1048         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1049         pOp->opcode = OP_Null;
1050         pOp->p1 = 1;
1051         pOp->p2 = regPrev;
1052         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1053 
1054         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1055         for(i=0; i<nResultCol; i++){
1056           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1057           if( i<nResultCol-1 ){
1058             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1059             VdbeCoverage(v);
1060           }else{
1061             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1062             VdbeCoverage(v);
1063            }
1064           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1065           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1066         }
1067         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1068         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1069         break;
1070       }
1071 
1072       case WHERE_DISTINCT_UNIQUE: {
1073         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1074         break;
1075       }
1076 
1077       default: {
1078         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1079         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1080                      regResult);
1081         break;
1082       }
1083     }
1084     if( pSort==0 ){
1085       codeOffset(v, p->iOffset, iContinue);
1086     }
1087   }
1088 
1089   switch( eDest ){
1090     /* In this mode, write each query result to the key of the temporary
1091     ** table iParm.
1092     */
1093 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1094     case SRT_Union: {
1095       int r1;
1096       r1 = sqlite3GetTempReg(pParse);
1097       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1098       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1099       sqlite3ReleaseTempReg(pParse, r1);
1100       break;
1101     }
1102 
1103     /* Construct a record from the query result, but instead of
1104     ** saving that record, use it as a key to delete elements from
1105     ** the temporary table iParm.
1106     */
1107     case SRT_Except: {
1108       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1109       break;
1110     }
1111 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1112 
1113     /* Store the result as data using a unique key.
1114     */
1115     case SRT_Fifo:
1116     case SRT_DistFifo:
1117     case SRT_Table:
1118     case SRT_EphemTab: {
1119       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1120       testcase( eDest==SRT_Table );
1121       testcase( eDest==SRT_EphemTab );
1122       testcase( eDest==SRT_Fifo );
1123       testcase( eDest==SRT_DistFifo );
1124       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1125 #ifndef SQLITE_OMIT_CTE
1126       if( eDest==SRT_DistFifo ){
1127         /* If the destination is DistFifo, then cursor (iParm+1) is open
1128         ** on an ephemeral index. If the current row is already present
1129         ** in the index, do not write it to the output. If not, add the
1130         ** current row to the index and proceed with writing it to the
1131         ** output table as well.  */
1132         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1133         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1134         VdbeCoverage(v);
1135         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1136         assert( pSort==0 );
1137       }
1138 #endif
1139       if( pSort ){
1140         assert( regResult==regOrig );
1141         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1142       }else{
1143         int r2 = sqlite3GetTempReg(pParse);
1144         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1145         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1146         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1147         sqlite3ReleaseTempReg(pParse, r2);
1148       }
1149       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1150       break;
1151     }
1152 
1153 #ifndef SQLITE_OMIT_SUBQUERY
1154     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1155     ** then there should be a single item on the stack.  Write this
1156     ** item into the set table with bogus data.
1157     */
1158     case SRT_Set: {
1159       if( pSort ){
1160         /* At first glance you would think we could optimize out the
1161         ** ORDER BY in this case since the order of entries in the set
1162         ** does not matter.  But there might be a LIMIT clause, in which
1163         ** case the order does matter */
1164         pushOntoSorter(
1165             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1166       }else{
1167         int r1 = sqlite3GetTempReg(pParse);
1168         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1169         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1170             r1, pDest->zAffSdst, nResultCol);
1171         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1172         sqlite3ReleaseTempReg(pParse, r1);
1173       }
1174       break;
1175     }
1176 
1177     /* If any row exist in the result set, record that fact and abort.
1178     */
1179     case SRT_Exists: {
1180       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1181       /* The LIMIT clause will terminate the loop for us */
1182       break;
1183     }
1184 
1185     /* If this is a scalar select that is part of an expression, then
1186     ** store the results in the appropriate memory cell or array of
1187     ** memory cells and break out of the scan loop.
1188     */
1189     case SRT_Mem: {
1190       if( pSort ){
1191         assert( nResultCol<=pDest->nSdst );
1192         pushOntoSorter(
1193             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1194       }else{
1195         assert( nResultCol==pDest->nSdst );
1196         assert( regResult==iParm );
1197         /* The LIMIT clause will jump out of the loop for us */
1198       }
1199       break;
1200     }
1201 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1202 
1203     case SRT_Coroutine:       /* Send data to a co-routine */
1204     case SRT_Output: {        /* Return the results */
1205       testcase( eDest==SRT_Coroutine );
1206       testcase( eDest==SRT_Output );
1207       if( pSort ){
1208         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1209                        nPrefixReg);
1210       }else if( eDest==SRT_Coroutine ){
1211         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1212       }else{
1213         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1214       }
1215       break;
1216     }
1217 
1218 #ifndef SQLITE_OMIT_CTE
1219     /* Write the results into a priority queue that is order according to
1220     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1221     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1222     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1223     ** final OP_Sequence column.  The last column is the record as a blob.
1224     */
1225     case SRT_DistQueue:
1226     case SRT_Queue: {
1227       int nKey;
1228       int r1, r2, r3;
1229       int addrTest = 0;
1230       ExprList *pSO;
1231       pSO = pDest->pOrderBy;
1232       assert( pSO );
1233       nKey = pSO->nExpr;
1234       r1 = sqlite3GetTempReg(pParse);
1235       r2 = sqlite3GetTempRange(pParse, nKey+2);
1236       r3 = r2+nKey+1;
1237       if( eDest==SRT_DistQueue ){
1238         /* If the destination is DistQueue, then cursor (iParm+1) is open
1239         ** on a second ephemeral index that holds all values every previously
1240         ** added to the queue. */
1241         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1242                                         regResult, nResultCol);
1243         VdbeCoverage(v);
1244       }
1245       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1246       if( eDest==SRT_DistQueue ){
1247         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1248         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1249       }
1250       for(i=0; i<nKey; i++){
1251         sqlite3VdbeAddOp2(v, OP_SCopy,
1252                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1253                           r2+i);
1254       }
1255       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1256       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1257       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1258       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1259       sqlite3ReleaseTempReg(pParse, r1);
1260       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1261       break;
1262     }
1263 #endif /* SQLITE_OMIT_CTE */
1264 
1265 
1266 
1267 #if !defined(SQLITE_OMIT_TRIGGER)
1268     /* Discard the results.  This is used for SELECT statements inside
1269     ** the body of a TRIGGER.  The purpose of such selects is to call
1270     ** user-defined functions that have side effects.  We do not care
1271     ** about the actual results of the select.
1272     */
1273     default: {
1274       assert( eDest==SRT_Discard );
1275       break;
1276     }
1277 #endif
1278   }
1279 
1280   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1281   ** there is a sorter, in which case the sorter has already limited
1282   ** the output for us.
1283   */
1284   if( pSort==0 && p->iLimit ){
1285     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1286   }
1287 }
1288 
1289 /*
1290 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1291 ** X extra columns.
1292 */
1293 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1294   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1295   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1296   if( p ){
1297     p->aSortFlags = (u8*)&p->aColl[N+X];
1298     p->nKeyField = (u16)N;
1299     p->nAllField = (u16)(N+X);
1300     p->enc = ENC(db);
1301     p->db = db;
1302     p->nRef = 1;
1303     memset(&p[1], 0, nExtra);
1304   }else{
1305     sqlite3OomFault(db);
1306   }
1307   return p;
1308 }
1309 
1310 /*
1311 ** Deallocate a KeyInfo object
1312 */
1313 void sqlite3KeyInfoUnref(KeyInfo *p){
1314   if( p ){
1315     assert( p->nRef>0 );
1316     p->nRef--;
1317     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1318   }
1319 }
1320 
1321 /*
1322 ** Make a new pointer to a KeyInfo object
1323 */
1324 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1325   if( p ){
1326     assert( p->nRef>0 );
1327     p->nRef++;
1328   }
1329   return p;
1330 }
1331 
1332 #ifdef SQLITE_DEBUG
1333 /*
1334 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1335 ** can only be changed if this is just a single reference to the object.
1336 **
1337 ** This routine is used only inside of assert() statements.
1338 */
1339 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1340 #endif /* SQLITE_DEBUG */
1341 
1342 /*
1343 ** Given an expression list, generate a KeyInfo structure that records
1344 ** the collating sequence for each expression in that expression list.
1345 **
1346 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1347 ** KeyInfo structure is appropriate for initializing a virtual index to
1348 ** implement that clause.  If the ExprList is the result set of a SELECT
1349 ** then the KeyInfo structure is appropriate for initializing a virtual
1350 ** index to implement a DISTINCT test.
1351 **
1352 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1353 ** function is responsible for seeing that this structure is eventually
1354 ** freed.
1355 */
1356 KeyInfo *sqlite3KeyInfoFromExprList(
1357   Parse *pParse,       /* Parsing context */
1358   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1359   int iStart,          /* Begin with this column of pList */
1360   int nExtra           /* Add this many extra columns to the end */
1361 ){
1362   int nExpr;
1363   KeyInfo *pInfo;
1364   struct ExprList_item *pItem;
1365   sqlite3 *db = pParse->db;
1366   int i;
1367 
1368   nExpr = pList->nExpr;
1369   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1370   if( pInfo ){
1371     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1372     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1373       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1374       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1375     }
1376   }
1377   return pInfo;
1378 }
1379 
1380 /*
1381 ** Name of the connection operator, used for error messages.
1382 */
1383 static const char *selectOpName(int id){
1384   char *z;
1385   switch( id ){
1386     case TK_ALL:       z = "UNION ALL";   break;
1387     case TK_INTERSECT: z = "INTERSECT";   break;
1388     case TK_EXCEPT:    z = "EXCEPT";      break;
1389     default:           z = "UNION";       break;
1390   }
1391   return z;
1392 }
1393 
1394 #ifndef SQLITE_OMIT_EXPLAIN
1395 /*
1396 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1397 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1398 ** where the caption is of the form:
1399 **
1400 **   "USE TEMP B-TREE FOR xxx"
1401 **
1402 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1403 ** is determined by the zUsage argument.
1404 */
1405 static void explainTempTable(Parse *pParse, const char *zUsage){
1406   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1407 }
1408 
1409 /*
1410 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1411 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1412 ** in sqlite3Select() to assign values to structure member variables that
1413 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1414 ** code with #ifndef directives.
1415 */
1416 # define explainSetInteger(a, b) a = b
1417 
1418 #else
1419 /* No-op versions of the explainXXX() functions and macros. */
1420 # define explainTempTable(y,z)
1421 # define explainSetInteger(y,z)
1422 #endif
1423 
1424 
1425 /*
1426 ** If the inner loop was generated using a non-null pOrderBy argument,
1427 ** then the results were placed in a sorter.  After the loop is terminated
1428 ** we need to run the sorter and output the results.  The following
1429 ** routine generates the code needed to do that.
1430 */
1431 static void generateSortTail(
1432   Parse *pParse,    /* Parsing context */
1433   Select *p,        /* The SELECT statement */
1434   SortCtx *pSort,   /* Information on the ORDER BY clause */
1435   int nColumn,      /* Number of columns of data */
1436   SelectDest *pDest /* Write the sorted results here */
1437 ){
1438   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1439   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1440   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1441   int addr;                       /* Top of output loop. Jump for Next. */
1442   int addrOnce = 0;
1443   int iTab;
1444   ExprList *pOrderBy = pSort->pOrderBy;
1445   int eDest = pDest->eDest;
1446   int iParm = pDest->iSDParm;
1447   int regRow;
1448   int regRowid;
1449   int iCol;
1450   int nKey;                       /* Number of key columns in sorter record */
1451   int iSortTab;                   /* Sorter cursor to read from */
1452   int i;
1453   int bSeq;                       /* True if sorter record includes seq. no. */
1454   int nRefKey = 0;
1455   struct ExprList_item *aOutEx = p->pEList->a;
1456 
1457   assert( addrBreak<0 );
1458   if( pSort->labelBkOut ){
1459     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1460     sqlite3VdbeGoto(v, addrBreak);
1461     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1462   }
1463 
1464 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1465   /* Open any cursors needed for sorter-reference expressions */
1466   for(i=0; i<pSort->nDefer; i++){
1467     Table *pTab = pSort->aDefer[i].pTab;
1468     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1469     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1470     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1471   }
1472 #endif
1473 
1474   iTab = pSort->iECursor;
1475   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1476     regRowid = 0;
1477     regRow = pDest->iSdst;
1478   }else{
1479     regRowid = sqlite3GetTempReg(pParse);
1480     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1481       regRow = sqlite3GetTempReg(pParse);
1482       nColumn = 0;
1483     }else{
1484       regRow = sqlite3GetTempRange(pParse, nColumn);
1485     }
1486   }
1487   nKey = pOrderBy->nExpr - pSort->nOBSat;
1488   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1489     int regSortOut = ++pParse->nMem;
1490     iSortTab = pParse->nTab++;
1491     if( pSort->labelBkOut ){
1492       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1493     }
1494     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1495         nKey+1+nColumn+nRefKey);
1496     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1497     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1498     VdbeCoverage(v);
1499     codeOffset(v, p->iOffset, addrContinue);
1500     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1501     bSeq = 0;
1502   }else{
1503     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1504     codeOffset(v, p->iOffset, addrContinue);
1505     iSortTab = iTab;
1506     bSeq = 1;
1507   }
1508   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1509 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1510     if( aOutEx[i].bSorterRef ) continue;
1511 #endif
1512     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1513   }
1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1515   if( pSort->nDefer ){
1516     int iKey = iCol+1;
1517     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1518 
1519     for(i=0; i<pSort->nDefer; i++){
1520       int iCsr = pSort->aDefer[i].iCsr;
1521       Table *pTab = pSort->aDefer[i].pTab;
1522       int nKey = pSort->aDefer[i].nKey;
1523 
1524       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1525       if( HasRowid(pTab) ){
1526         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1527         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1528             sqlite3VdbeCurrentAddr(v)+1, regKey);
1529       }else{
1530         int k;
1531         int iJmp;
1532         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1533         for(k=0; k<nKey; k++){
1534           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1535         }
1536         iJmp = sqlite3VdbeCurrentAddr(v);
1537         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1538         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1539         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1540       }
1541     }
1542     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1543   }
1544 #endif
1545   for(i=nColumn-1; i>=0; i--){
1546 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1547     if( aOutEx[i].bSorterRef ){
1548       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1549     }else
1550 #endif
1551     {
1552       int iRead;
1553       if( aOutEx[i].u.x.iOrderByCol ){
1554         iRead = aOutEx[i].u.x.iOrderByCol-1;
1555       }else{
1556         iRead = iCol--;
1557       }
1558       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1559       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1560     }
1561   }
1562   switch( eDest ){
1563     case SRT_Table:
1564     case SRT_EphemTab: {
1565       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1566       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1567       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1568       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1569       break;
1570     }
1571 #ifndef SQLITE_OMIT_SUBQUERY
1572     case SRT_Set: {
1573       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1574       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1575                         pDest->zAffSdst, nColumn);
1576       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1577       break;
1578     }
1579     case SRT_Mem: {
1580       /* The LIMIT clause will terminate the loop for us */
1581       break;
1582     }
1583 #endif
1584     default: {
1585       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1586       testcase( eDest==SRT_Output );
1587       testcase( eDest==SRT_Coroutine );
1588       if( eDest==SRT_Output ){
1589         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1590       }else{
1591         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1592       }
1593       break;
1594     }
1595   }
1596   if( regRowid ){
1597     if( eDest==SRT_Set ){
1598       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1599     }else{
1600       sqlite3ReleaseTempReg(pParse, regRow);
1601     }
1602     sqlite3ReleaseTempReg(pParse, regRowid);
1603   }
1604   /* The bottom of the loop
1605   */
1606   sqlite3VdbeResolveLabel(v, addrContinue);
1607   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1608     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1609   }else{
1610     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1611   }
1612   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1613   sqlite3VdbeResolveLabel(v, addrBreak);
1614 }
1615 
1616 /*
1617 ** Return a pointer to a string containing the 'declaration type' of the
1618 ** expression pExpr. The string may be treated as static by the caller.
1619 **
1620 ** Also try to estimate the size of the returned value and return that
1621 ** result in *pEstWidth.
1622 **
1623 ** The declaration type is the exact datatype definition extracted from the
1624 ** original CREATE TABLE statement if the expression is a column. The
1625 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1626 ** is considered a column can be complex in the presence of subqueries. The
1627 ** result-set expression in all of the following SELECT statements is
1628 ** considered a column by this function.
1629 **
1630 **   SELECT col FROM tbl;
1631 **   SELECT (SELECT col FROM tbl;
1632 **   SELECT (SELECT col FROM tbl);
1633 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1634 **
1635 ** The declaration type for any expression other than a column is NULL.
1636 **
1637 ** This routine has either 3 or 6 parameters depending on whether or not
1638 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1639 */
1640 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1641 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1642 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1643 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1644 #endif
1645 static const char *columnTypeImpl(
1646   NameContext *pNC,
1647 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1648   Expr *pExpr
1649 #else
1650   Expr *pExpr,
1651   const char **pzOrigDb,
1652   const char **pzOrigTab,
1653   const char **pzOrigCol
1654 #endif
1655 ){
1656   char const *zType = 0;
1657   int j;
1658 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1659   char const *zOrigDb = 0;
1660   char const *zOrigTab = 0;
1661   char const *zOrigCol = 0;
1662 #endif
1663 
1664   assert( pExpr!=0 );
1665   assert( pNC->pSrcList!=0 );
1666   switch( pExpr->op ){
1667     case TK_COLUMN: {
1668       /* The expression is a column. Locate the table the column is being
1669       ** extracted from in NameContext.pSrcList. This table may be real
1670       ** database table or a subquery.
1671       */
1672       Table *pTab = 0;            /* Table structure column is extracted from */
1673       Select *pS = 0;             /* Select the column is extracted from */
1674       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1675       while( pNC && !pTab ){
1676         SrcList *pTabList = pNC->pSrcList;
1677         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1678         if( j<pTabList->nSrc ){
1679           pTab = pTabList->a[j].pTab;
1680           pS = pTabList->a[j].pSelect;
1681         }else{
1682           pNC = pNC->pNext;
1683         }
1684       }
1685 
1686       if( pTab==0 ){
1687         /* At one time, code such as "SELECT new.x" within a trigger would
1688         ** cause this condition to run.  Since then, we have restructured how
1689         ** trigger code is generated and so this condition is no longer
1690         ** possible. However, it can still be true for statements like
1691         ** the following:
1692         **
1693         **   CREATE TABLE t1(col INTEGER);
1694         **   SELECT (SELECT t1.col) FROM FROM t1;
1695         **
1696         ** when columnType() is called on the expression "t1.col" in the
1697         ** sub-select. In this case, set the column type to NULL, even
1698         ** though it should really be "INTEGER".
1699         **
1700         ** This is not a problem, as the column type of "t1.col" is never
1701         ** used. When columnType() is called on the expression
1702         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1703         ** branch below.  */
1704         break;
1705       }
1706 
1707       assert( pTab && pExpr->y.pTab==pTab );
1708       if( pS ){
1709         /* The "table" is actually a sub-select or a view in the FROM clause
1710         ** of the SELECT statement. Return the declaration type and origin
1711         ** data for the result-set column of the sub-select.
1712         */
1713         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1714           /* If iCol is less than zero, then the expression requests the
1715           ** rowid of the sub-select or view. This expression is legal (see
1716           ** test case misc2.2.2) - it always evaluates to NULL.
1717           */
1718           NameContext sNC;
1719           Expr *p = pS->pEList->a[iCol].pExpr;
1720           sNC.pSrcList = pS->pSrc;
1721           sNC.pNext = pNC;
1722           sNC.pParse = pNC->pParse;
1723           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1724         }
1725       }else{
1726         /* A real table or a CTE table */
1727         assert( !pS );
1728 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1729         if( iCol<0 ) iCol = pTab->iPKey;
1730         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1731         if( iCol<0 ){
1732           zType = "INTEGER";
1733           zOrigCol = "rowid";
1734         }else{
1735           zOrigCol = pTab->aCol[iCol].zName;
1736           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1737         }
1738         zOrigTab = pTab->zName;
1739         if( pNC->pParse && pTab->pSchema ){
1740           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1741           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1742         }
1743 #else
1744         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745         if( iCol<0 ){
1746           zType = "INTEGER";
1747         }else{
1748           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1749         }
1750 #endif
1751       }
1752       break;
1753     }
1754 #ifndef SQLITE_OMIT_SUBQUERY
1755     case TK_SELECT: {
1756       /* The expression is a sub-select. Return the declaration type and
1757       ** origin info for the single column in the result set of the SELECT
1758       ** statement.
1759       */
1760       NameContext sNC;
1761       Select *pS = pExpr->x.pSelect;
1762       Expr *p = pS->pEList->a[0].pExpr;
1763       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1764       sNC.pSrcList = pS->pSrc;
1765       sNC.pNext = pNC;
1766       sNC.pParse = pNC->pParse;
1767       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1768       break;
1769     }
1770 #endif
1771   }
1772 
1773 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1774   if( pzOrigDb ){
1775     assert( pzOrigTab && pzOrigCol );
1776     *pzOrigDb = zOrigDb;
1777     *pzOrigTab = zOrigTab;
1778     *pzOrigCol = zOrigCol;
1779   }
1780 #endif
1781   return zType;
1782 }
1783 
1784 /*
1785 ** Generate code that will tell the VDBE the declaration types of columns
1786 ** in the result set.
1787 */
1788 static void generateColumnTypes(
1789   Parse *pParse,      /* Parser context */
1790   SrcList *pTabList,  /* List of tables */
1791   ExprList *pEList    /* Expressions defining the result set */
1792 ){
1793 #ifndef SQLITE_OMIT_DECLTYPE
1794   Vdbe *v = pParse->pVdbe;
1795   int i;
1796   NameContext sNC;
1797   sNC.pSrcList = pTabList;
1798   sNC.pParse = pParse;
1799   sNC.pNext = 0;
1800   for(i=0; i<pEList->nExpr; i++){
1801     Expr *p = pEList->a[i].pExpr;
1802     const char *zType;
1803 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1804     const char *zOrigDb = 0;
1805     const char *zOrigTab = 0;
1806     const char *zOrigCol = 0;
1807     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1808 
1809     /* The vdbe must make its own copy of the column-type and other
1810     ** column specific strings, in case the schema is reset before this
1811     ** virtual machine is deleted.
1812     */
1813     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1814     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1815     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1816 #else
1817     zType = columnType(&sNC, p, 0, 0, 0);
1818 #endif
1819     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1820   }
1821 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1822 }
1823 
1824 
1825 /*
1826 ** Compute the column names for a SELECT statement.
1827 **
1828 ** The only guarantee that SQLite makes about column names is that if the
1829 ** column has an AS clause assigning it a name, that will be the name used.
1830 ** That is the only documented guarantee.  However, countless applications
1831 ** developed over the years have made baseless assumptions about column names
1832 ** and will break if those assumptions changes.  Hence, use extreme caution
1833 ** when modifying this routine to avoid breaking legacy.
1834 **
1835 ** See Also: sqlite3ColumnsFromExprList()
1836 **
1837 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1838 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1839 ** applications should operate this way.  Nevertheless, we need to support the
1840 ** other modes for legacy:
1841 **
1842 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1843 **                              originally appears in the SELECT statement.  In
1844 **                              other words, the zSpan of the result expression.
1845 **
1846 **    short=ON, full=OFF:       (This is the default setting).  If the result
1847 **                              refers directly to a table column, then the
1848 **                              result column name is just the table column
1849 **                              name: COLUMN.  Otherwise use zSpan.
1850 **
1851 **    full=ON, short=ANY:       If the result refers directly to a table column,
1852 **                              then the result column name with the table name
1853 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1854 */
1855 static void generateColumnNames(
1856   Parse *pParse,      /* Parser context */
1857   Select *pSelect     /* Generate column names for this SELECT statement */
1858 ){
1859   Vdbe *v = pParse->pVdbe;
1860   int i;
1861   Table *pTab;
1862   SrcList *pTabList;
1863   ExprList *pEList;
1864   sqlite3 *db = pParse->db;
1865   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1866   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1867 
1868 #ifndef SQLITE_OMIT_EXPLAIN
1869   /* If this is an EXPLAIN, skip this step */
1870   if( pParse->explain ){
1871     return;
1872   }
1873 #endif
1874 
1875   if( pParse->colNamesSet ) return;
1876   /* Column names are determined by the left-most term of a compound select */
1877   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1878   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1879   pTabList = pSelect->pSrc;
1880   pEList = pSelect->pEList;
1881   assert( v!=0 );
1882   assert( pTabList!=0 );
1883   pParse->colNamesSet = 1;
1884   fullName = (db->flags & SQLITE_FullColNames)!=0;
1885   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1886   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1887   for(i=0; i<pEList->nExpr; i++){
1888     Expr *p = pEList->a[i].pExpr;
1889 
1890     assert( p!=0 );
1891     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1892     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1893     if( pEList->a[i].zName ){
1894       /* An AS clause always takes first priority */
1895       char *zName = pEList->a[i].zName;
1896       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1897     }else if( srcName && p->op==TK_COLUMN ){
1898       char *zCol;
1899       int iCol = p->iColumn;
1900       pTab = p->y.pTab;
1901       assert( pTab!=0 );
1902       if( iCol<0 ) iCol = pTab->iPKey;
1903       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1904       if( iCol<0 ){
1905         zCol = "rowid";
1906       }else{
1907         zCol = pTab->aCol[iCol].zName;
1908       }
1909       if( fullName ){
1910         char *zName = 0;
1911         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1912         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1913       }else{
1914         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1915       }
1916     }else{
1917       const char *z = pEList->a[i].zSpan;
1918       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1919       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1920     }
1921   }
1922   generateColumnTypes(pParse, pTabList, pEList);
1923 }
1924 
1925 /*
1926 ** Given an expression list (which is really the list of expressions
1927 ** that form the result set of a SELECT statement) compute appropriate
1928 ** column names for a table that would hold the expression list.
1929 **
1930 ** All column names will be unique.
1931 **
1932 ** Only the column names are computed.  Column.zType, Column.zColl,
1933 ** and other fields of Column are zeroed.
1934 **
1935 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1936 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1937 **
1938 ** The only guarantee that SQLite makes about column names is that if the
1939 ** column has an AS clause assigning it a name, that will be the name used.
1940 ** That is the only documented guarantee.  However, countless applications
1941 ** developed over the years have made baseless assumptions about column names
1942 ** and will break if those assumptions changes.  Hence, use extreme caution
1943 ** when modifying this routine to avoid breaking legacy.
1944 **
1945 ** See Also: generateColumnNames()
1946 */
1947 int sqlite3ColumnsFromExprList(
1948   Parse *pParse,          /* Parsing context */
1949   ExprList *pEList,       /* Expr list from which to derive column names */
1950   i16 *pnCol,             /* Write the number of columns here */
1951   Column **paCol          /* Write the new column list here */
1952 ){
1953   sqlite3 *db = pParse->db;   /* Database connection */
1954   int i, j;                   /* Loop counters */
1955   u32 cnt;                    /* Index added to make the name unique */
1956   Column *aCol, *pCol;        /* For looping over result columns */
1957   int nCol;                   /* Number of columns in the result set */
1958   char *zName;                /* Column name */
1959   int nName;                  /* Size of name in zName[] */
1960   Hash ht;                    /* Hash table of column names */
1961 
1962   sqlite3HashInit(&ht);
1963   if( pEList ){
1964     nCol = pEList->nExpr;
1965     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1966     testcase( aCol==0 );
1967     if( nCol>32767 ) nCol = 32767;
1968   }else{
1969     nCol = 0;
1970     aCol = 0;
1971   }
1972   assert( nCol==(i16)nCol );
1973   *pnCol = nCol;
1974   *paCol = aCol;
1975 
1976   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1977     /* Get an appropriate name for the column
1978     */
1979     if( (zName = pEList->a[i].zName)!=0 ){
1980       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1981     }else{
1982       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1983       while( pColExpr->op==TK_DOT ){
1984         pColExpr = pColExpr->pRight;
1985         assert( pColExpr!=0 );
1986       }
1987       if( pColExpr->op==TK_COLUMN ){
1988         /* For columns use the column name name */
1989         int iCol = pColExpr->iColumn;
1990         Table *pTab = pColExpr->y.pTab;
1991         assert( pTab!=0 );
1992         if( iCol<0 ) iCol = pTab->iPKey;
1993         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1994       }else if( pColExpr->op==TK_ID ){
1995         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1996         zName = pColExpr->u.zToken;
1997       }else{
1998         /* Use the original text of the column expression as its name */
1999         zName = pEList->a[i].zSpan;
2000       }
2001     }
2002     if( zName ){
2003       zName = sqlite3DbStrDup(db, zName);
2004     }else{
2005       zName = sqlite3MPrintf(db,"column%d",i+1);
2006     }
2007 
2008     /* Make sure the column name is unique.  If the name is not unique,
2009     ** append an integer to the name so that it becomes unique.
2010     */
2011     cnt = 0;
2012     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2013       nName = sqlite3Strlen30(zName);
2014       if( nName>0 ){
2015         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2016         if( zName[j]==':' ) nName = j;
2017       }
2018       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2019       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2020     }
2021     pCol->zName = zName;
2022     sqlite3ColumnPropertiesFromName(0, pCol);
2023     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2024       sqlite3OomFault(db);
2025     }
2026   }
2027   sqlite3HashClear(&ht);
2028   if( db->mallocFailed ){
2029     for(j=0; j<i; j++){
2030       sqlite3DbFree(db, aCol[j].zName);
2031     }
2032     sqlite3DbFree(db, aCol);
2033     *paCol = 0;
2034     *pnCol = 0;
2035     return SQLITE_NOMEM_BKPT;
2036   }
2037   return SQLITE_OK;
2038 }
2039 
2040 /*
2041 ** Add type and collation information to a column list based on
2042 ** a SELECT statement.
2043 **
2044 ** The column list presumably came from selectColumnNamesFromExprList().
2045 ** The column list has only names, not types or collations.  This
2046 ** routine goes through and adds the types and collations.
2047 **
2048 ** This routine requires that all identifiers in the SELECT
2049 ** statement be resolved.
2050 */
2051 void sqlite3SelectAddColumnTypeAndCollation(
2052   Parse *pParse,        /* Parsing contexts */
2053   Table *pTab,          /* Add column type information to this table */
2054   Select *pSelect,      /* SELECT used to determine types and collations */
2055   char aff              /* Default affinity for columns */
2056 ){
2057   sqlite3 *db = pParse->db;
2058   NameContext sNC;
2059   Column *pCol;
2060   CollSeq *pColl;
2061   int i;
2062   Expr *p;
2063   struct ExprList_item *a;
2064 
2065   assert( pSelect!=0 );
2066   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2067   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2068   if( db->mallocFailed ) return;
2069   memset(&sNC, 0, sizeof(sNC));
2070   sNC.pSrcList = pSelect->pSrc;
2071   a = pSelect->pEList->a;
2072   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2073     const char *zType;
2074     int n, m;
2075     p = a[i].pExpr;
2076     zType = columnType(&sNC, p, 0, 0, 0);
2077     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2078     pCol->affinity = sqlite3ExprAffinity(p);
2079     if( zType ){
2080       m = sqlite3Strlen30(zType);
2081       n = sqlite3Strlen30(pCol->zName);
2082       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2083       if( pCol->zName ){
2084         memcpy(&pCol->zName[n+1], zType, m+1);
2085         pCol->colFlags |= COLFLAG_HASTYPE;
2086       }
2087     }
2088     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2089     pColl = sqlite3ExprCollSeq(pParse, p);
2090     if( pColl && pCol->zColl==0 ){
2091       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2092     }
2093   }
2094   pTab->szTabRow = 1; /* Any non-zero value works */
2095 }
2096 
2097 /*
2098 ** Given a SELECT statement, generate a Table structure that describes
2099 ** the result set of that SELECT.
2100 */
2101 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2102   Table *pTab;
2103   sqlite3 *db = pParse->db;
2104   u64 savedFlags;
2105 
2106   savedFlags = db->flags;
2107   db->flags &= ~(u64)SQLITE_FullColNames;
2108   db->flags |= SQLITE_ShortColNames;
2109   sqlite3SelectPrep(pParse, pSelect, 0);
2110   db->flags = savedFlags;
2111   if( pParse->nErr ) return 0;
2112   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2113   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2114   if( pTab==0 ){
2115     return 0;
2116   }
2117   pTab->nTabRef = 1;
2118   pTab->zName = 0;
2119   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2120   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2121   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2122   pTab->iPKey = -1;
2123   if( db->mallocFailed ){
2124     sqlite3DeleteTable(db, pTab);
2125     return 0;
2126   }
2127   return pTab;
2128 }
2129 
2130 /*
2131 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2132 ** If an error occurs, return NULL and leave a message in pParse.
2133 */
2134 Vdbe *sqlite3GetVdbe(Parse *pParse){
2135   if( pParse->pVdbe ){
2136     return pParse->pVdbe;
2137   }
2138   if( pParse->pToplevel==0
2139    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2140   ){
2141     pParse->okConstFactor = 1;
2142   }
2143   return sqlite3VdbeCreate(pParse);
2144 }
2145 
2146 
2147 /*
2148 ** Compute the iLimit and iOffset fields of the SELECT based on the
2149 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2150 ** that appear in the original SQL statement after the LIMIT and OFFSET
2151 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2152 ** are the integer memory register numbers for counters used to compute
2153 ** the limit and offset.  If there is no limit and/or offset, then
2154 ** iLimit and iOffset are negative.
2155 **
2156 ** This routine changes the values of iLimit and iOffset only if
2157 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2158 ** and iOffset should have been preset to appropriate default values (zero)
2159 ** prior to calling this routine.
2160 **
2161 ** The iOffset register (if it exists) is initialized to the value
2162 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2163 ** iOffset+1 is initialized to LIMIT+OFFSET.
2164 **
2165 ** Only if pLimit->pLeft!=0 do the limit registers get
2166 ** redefined.  The UNION ALL operator uses this property to force
2167 ** the reuse of the same limit and offset registers across multiple
2168 ** SELECT statements.
2169 */
2170 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2171   Vdbe *v = 0;
2172   int iLimit = 0;
2173   int iOffset;
2174   int n;
2175   Expr *pLimit = p->pLimit;
2176 
2177   if( p->iLimit ) return;
2178 
2179   /*
2180   ** "LIMIT -1" always shows all rows.  There is some
2181   ** controversy about what the correct behavior should be.
2182   ** The current implementation interprets "LIMIT 0" to mean
2183   ** no rows.
2184   */
2185   if( pLimit ){
2186     assert( pLimit->op==TK_LIMIT );
2187     assert( pLimit->pLeft!=0 );
2188     p->iLimit = iLimit = ++pParse->nMem;
2189     v = sqlite3GetVdbe(pParse);
2190     assert( v!=0 );
2191     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2192       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2193       VdbeComment((v, "LIMIT counter"));
2194       if( n==0 ){
2195         sqlite3VdbeGoto(v, iBreak);
2196       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2197         p->nSelectRow = sqlite3LogEst((u64)n);
2198         p->selFlags |= SF_FixedLimit;
2199       }
2200     }else{
2201       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2202       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2203       VdbeComment((v, "LIMIT counter"));
2204       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2205     }
2206     if( pLimit->pRight ){
2207       p->iOffset = iOffset = ++pParse->nMem;
2208       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2209       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2210       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2211       VdbeComment((v, "OFFSET counter"));
2212       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2213       VdbeComment((v, "LIMIT+OFFSET"));
2214     }
2215   }
2216 }
2217 
2218 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2219 /*
2220 ** Return the appropriate collating sequence for the iCol-th column of
2221 ** the result set for the compound-select statement "p".  Return NULL if
2222 ** the column has no default collating sequence.
2223 **
2224 ** The collating sequence for the compound select is taken from the
2225 ** left-most term of the select that has a collating sequence.
2226 */
2227 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2228   CollSeq *pRet;
2229   if( p->pPrior ){
2230     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2231   }else{
2232     pRet = 0;
2233   }
2234   assert( iCol>=0 );
2235   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2236   ** have been thrown during name resolution and we would not have gotten
2237   ** this far */
2238   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2239     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2240   }
2241   return pRet;
2242 }
2243 
2244 /*
2245 ** The select statement passed as the second parameter is a compound SELECT
2246 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2247 ** structure suitable for implementing the ORDER BY.
2248 **
2249 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2250 ** function is responsible for ensuring that this structure is eventually
2251 ** freed.
2252 */
2253 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2254   ExprList *pOrderBy = p->pOrderBy;
2255   int nOrderBy = p->pOrderBy->nExpr;
2256   sqlite3 *db = pParse->db;
2257   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2258   if( pRet ){
2259     int i;
2260     for(i=0; i<nOrderBy; i++){
2261       struct ExprList_item *pItem = &pOrderBy->a[i];
2262       Expr *pTerm = pItem->pExpr;
2263       CollSeq *pColl;
2264 
2265       if( pTerm->flags & EP_Collate ){
2266         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2267       }else{
2268         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2269         if( pColl==0 ) pColl = db->pDfltColl;
2270         pOrderBy->a[i].pExpr =
2271           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2272       }
2273       assert( sqlite3KeyInfoIsWriteable(pRet) );
2274       pRet->aColl[i] = pColl;
2275       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2276     }
2277   }
2278 
2279   return pRet;
2280 }
2281 
2282 #ifndef SQLITE_OMIT_CTE
2283 /*
2284 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2285 ** query of the form:
2286 **
2287 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2288 **                         \___________/             \_______________/
2289 **                           p->pPrior                      p
2290 **
2291 **
2292 ** There is exactly one reference to the recursive-table in the FROM clause
2293 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2294 **
2295 ** The setup-query runs once to generate an initial set of rows that go
2296 ** into a Queue table.  Rows are extracted from the Queue table one by
2297 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2298 ** extracted row (now in the iCurrent table) becomes the content of the
2299 ** recursive-table for a recursive-query run.  The output of the recursive-query
2300 ** is added back into the Queue table.  Then another row is extracted from Queue
2301 ** and the iteration continues until the Queue table is empty.
2302 **
2303 ** If the compound query operator is UNION then no duplicate rows are ever
2304 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2305 ** that have ever been inserted into Queue and causes duplicates to be
2306 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2307 **
2308 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2309 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2310 ** an ORDER BY, the Queue table is just a FIFO.
2311 **
2312 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2313 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2314 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2315 ** with a positive value, then the first OFFSET outputs are discarded rather
2316 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2317 ** rows have been skipped.
2318 */
2319 static void generateWithRecursiveQuery(
2320   Parse *pParse,        /* Parsing context */
2321   Select *p,            /* The recursive SELECT to be coded */
2322   SelectDest *pDest     /* What to do with query results */
2323 ){
2324   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2325   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2326   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2327   Select *pSetup = p->pPrior;   /* The setup query */
2328   int addrTop;                  /* Top of the loop */
2329   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2330   int iCurrent = 0;             /* The Current table */
2331   int regCurrent;               /* Register holding Current table */
2332   int iQueue;                   /* The Queue table */
2333   int iDistinct = 0;            /* To ensure unique results if UNION */
2334   int eDest = SRT_Fifo;         /* How to write to Queue */
2335   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2336   int i;                        /* Loop counter */
2337   int rc;                       /* Result code */
2338   ExprList *pOrderBy;           /* The ORDER BY clause */
2339   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2340   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2341 
2342 #ifndef SQLITE_OMIT_WINDOWFUNC
2343   if( p->pWin ){
2344     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2345     return;
2346   }
2347 #endif
2348 
2349   /* Obtain authorization to do a recursive query */
2350   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2351 
2352   /* Process the LIMIT and OFFSET clauses, if they exist */
2353   addrBreak = sqlite3VdbeMakeLabel(pParse);
2354   p->nSelectRow = 320;  /* 4 billion rows */
2355   computeLimitRegisters(pParse, p, addrBreak);
2356   pLimit = p->pLimit;
2357   regLimit = p->iLimit;
2358   regOffset = p->iOffset;
2359   p->pLimit = 0;
2360   p->iLimit = p->iOffset = 0;
2361   pOrderBy = p->pOrderBy;
2362 
2363   /* Locate the cursor number of the Current table */
2364   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2365     if( pSrc->a[i].fg.isRecursive ){
2366       iCurrent = pSrc->a[i].iCursor;
2367       break;
2368     }
2369   }
2370 
2371   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2372   ** the Distinct table must be exactly one greater than Queue in order
2373   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2374   iQueue = pParse->nTab++;
2375   if( p->op==TK_UNION ){
2376     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2377     iDistinct = pParse->nTab++;
2378   }else{
2379     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2380   }
2381   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2382 
2383   /* Allocate cursors for Current, Queue, and Distinct. */
2384   regCurrent = ++pParse->nMem;
2385   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2386   if( pOrderBy ){
2387     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2388     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2389                       (char*)pKeyInfo, P4_KEYINFO);
2390     destQueue.pOrderBy = pOrderBy;
2391   }else{
2392     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2393   }
2394   VdbeComment((v, "Queue table"));
2395   if( iDistinct ){
2396     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2397     p->selFlags |= SF_UsesEphemeral;
2398   }
2399 
2400   /* Detach the ORDER BY clause from the compound SELECT */
2401   p->pOrderBy = 0;
2402 
2403   /* Store the results of the setup-query in Queue. */
2404   pSetup->pNext = 0;
2405   ExplainQueryPlan((pParse, 1, "SETUP"));
2406   rc = sqlite3Select(pParse, pSetup, &destQueue);
2407   pSetup->pNext = p;
2408   if( rc ) goto end_of_recursive_query;
2409 
2410   /* Find the next row in the Queue and output that row */
2411   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2412 
2413   /* Transfer the next row in Queue over to Current */
2414   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2415   if( pOrderBy ){
2416     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2417   }else{
2418     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2419   }
2420   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2421 
2422   /* Output the single row in Current */
2423   addrCont = sqlite3VdbeMakeLabel(pParse);
2424   codeOffset(v, regOffset, addrCont);
2425   selectInnerLoop(pParse, p, iCurrent,
2426       0, 0, pDest, addrCont, addrBreak);
2427   if( regLimit ){
2428     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2429     VdbeCoverage(v);
2430   }
2431   sqlite3VdbeResolveLabel(v, addrCont);
2432 
2433   /* Execute the recursive SELECT taking the single row in Current as
2434   ** the value for the recursive-table. Store the results in the Queue.
2435   */
2436   if( p->selFlags & SF_Aggregate ){
2437     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2438   }else{
2439     p->pPrior = 0;
2440     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2441     sqlite3Select(pParse, p, &destQueue);
2442     assert( p->pPrior==0 );
2443     p->pPrior = pSetup;
2444   }
2445 
2446   /* Keep running the loop until the Queue is empty */
2447   sqlite3VdbeGoto(v, addrTop);
2448   sqlite3VdbeResolveLabel(v, addrBreak);
2449 
2450 end_of_recursive_query:
2451   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2452   p->pOrderBy = pOrderBy;
2453   p->pLimit = pLimit;
2454   return;
2455 }
2456 #endif /* SQLITE_OMIT_CTE */
2457 
2458 /* Forward references */
2459 static int multiSelectOrderBy(
2460   Parse *pParse,        /* Parsing context */
2461   Select *p,            /* The right-most of SELECTs to be coded */
2462   SelectDest *pDest     /* What to do with query results */
2463 );
2464 
2465 /*
2466 ** Handle the special case of a compound-select that originates from a
2467 ** VALUES clause.  By handling this as a special case, we avoid deep
2468 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2469 ** on a VALUES clause.
2470 **
2471 ** Because the Select object originates from a VALUES clause:
2472 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2473 **   (2) All terms are UNION ALL
2474 **   (3) There is no ORDER BY clause
2475 **
2476 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2477 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2478 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2479 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2480 */
2481 static int multiSelectValues(
2482   Parse *pParse,        /* Parsing context */
2483   Select *p,            /* The right-most of SELECTs to be coded */
2484   SelectDest *pDest     /* What to do with query results */
2485 ){
2486   int nRow = 1;
2487   int rc = 0;
2488   int bShowAll = p->pLimit==0;
2489   assert( p->selFlags & SF_MultiValue );
2490   do{
2491     assert( p->selFlags & SF_Values );
2492     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2493     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2494     if( p->pWin ) return -1;
2495     if( p->pPrior==0 ) break;
2496     assert( p->pPrior->pNext==p );
2497     p = p->pPrior;
2498     nRow += bShowAll;
2499   }while(1);
2500   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2501                     nRow==1 ? "" : "S"));
2502   while( p ){
2503     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2504     if( !bShowAll ) break;
2505     p->nSelectRow = nRow;
2506     p = p->pNext;
2507   }
2508   return rc;
2509 }
2510 
2511 /*
2512 ** This routine is called to process a compound query form from
2513 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2514 ** INTERSECT
2515 **
2516 ** "p" points to the right-most of the two queries.  the query on the
2517 ** left is p->pPrior.  The left query could also be a compound query
2518 ** in which case this routine will be called recursively.
2519 **
2520 ** The results of the total query are to be written into a destination
2521 ** of type eDest with parameter iParm.
2522 **
2523 ** Example 1:  Consider a three-way compound SQL statement.
2524 **
2525 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2526 **
2527 ** This statement is parsed up as follows:
2528 **
2529 **     SELECT c FROM t3
2530 **      |
2531 **      `----->  SELECT b FROM t2
2532 **                |
2533 **                `------>  SELECT a FROM t1
2534 **
2535 ** The arrows in the diagram above represent the Select.pPrior pointer.
2536 ** So if this routine is called with p equal to the t3 query, then
2537 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2538 **
2539 ** Notice that because of the way SQLite parses compound SELECTs, the
2540 ** individual selects always group from left to right.
2541 */
2542 static int multiSelect(
2543   Parse *pParse,        /* Parsing context */
2544   Select *p,            /* The right-most of SELECTs to be coded */
2545   SelectDest *pDest     /* What to do with query results */
2546 ){
2547   int rc = SQLITE_OK;   /* Success code from a subroutine */
2548   Select *pPrior;       /* Another SELECT immediately to our left */
2549   Vdbe *v;              /* Generate code to this VDBE */
2550   SelectDest dest;      /* Alternative data destination */
2551   Select *pDelete = 0;  /* Chain of simple selects to delete */
2552   sqlite3 *db;          /* Database connection */
2553 
2554   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2555   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2556   */
2557   assert( p && p->pPrior );  /* Calling function guarantees this much */
2558   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2559   assert( p->selFlags & SF_Compound );
2560   db = pParse->db;
2561   pPrior = p->pPrior;
2562   dest = *pDest;
2563   if( pPrior->pOrderBy || pPrior->pLimit ){
2564     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2565       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2566     rc = 1;
2567     goto multi_select_end;
2568   }
2569 
2570   v = sqlite3GetVdbe(pParse);
2571   assert( v!=0 );  /* The VDBE already created by calling function */
2572 
2573   /* Create the destination temporary table if necessary
2574   */
2575   if( dest.eDest==SRT_EphemTab ){
2576     assert( p->pEList );
2577     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2578     dest.eDest = SRT_Table;
2579   }
2580 
2581   /* Special handling for a compound-select that originates as a VALUES clause.
2582   */
2583   if( p->selFlags & SF_MultiValue ){
2584     rc = multiSelectValues(pParse, p, &dest);
2585     if( rc>=0 ) goto multi_select_end;
2586     rc = SQLITE_OK;
2587   }
2588 
2589   /* Make sure all SELECTs in the statement have the same number of elements
2590   ** in their result sets.
2591   */
2592   assert( p->pEList && pPrior->pEList );
2593   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2594 
2595 #ifndef SQLITE_OMIT_CTE
2596   if( p->selFlags & SF_Recursive ){
2597     generateWithRecursiveQuery(pParse, p, &dest);
2598   }else
2599 #endif
2600 
2601   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2602   */
2603   if( p->pOrderBy ){
2604     return multiSelectOrderBy(pParse, p, pDest);
2605   }else{
2606 
2607 #ifndef SQLITE_OMIT_EXPLAIN
2608     if( pPrior->pPrior==0 ){
2609       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2610       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2611     }
2612 #endif
2613 
2614     /* Generate code for the left and right SELECT statements.
2615     */
2616     switch( p->op ){
2617       case TK_ALL: {
2618         int addr = 0;
2619         int nLimit;
2620         assert( !pPrior->pLimit );
2621         pPrior->iLimit = p->iLimit;
2622         pPrior->iOffset = p->iOffset;
2623         pPrior->pLimit = p->pLimit;
2624         rc = sqlite3Select(pParse, pPrior, &dest);
2625         p->pLimit = 0;
2626         if( rc ){
2627           goto multi_select_end;
2628         }
2629         p->pPrior = 0;
2630         p->iLimit = pPrior->iLimit;
2631         p->iOffset = pPrior->iOffset;
2632         if( p->iLimit ){
2633           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2634           VdbeComment((v, "Jump ahead if LIMIT reached"));
2635           if( p->iOffset ){
2636             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2637                               p->iLimit, p->iOffset+1, p->iOffset);
2638           }
2639         }
2640         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2641         rc = sqlite3Select(pParse, p, &dest);
2642         testcase( rc!=SQLITE_OK );
2643         pDelete = p->pPrior;
2644         p->pPrior = pPrior;
2645         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2646         if( pPrior->pLimit
2647          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2648          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2649         ){
2650           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2651         }
2652         if( addr ){
2653           sqlite3VdbeJumpHere(v, addr);
2654         }
2655         break;
2656       }
2657       case TK_EXCEPT:
2658       case TK_UNION: {
2659         int unionTab;    /* Cursor number of the temp table holding result */
2660         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2661         int priorOp;     /* The SRT_ operation to apply to prior selects */
2662         Expr *pLimit;    /* Saved values of p->nLimit  */
2663         int addr;
2664         SelectDest uniondest;
2665 
2666         testcase( p->op==TK_EXCEPT );
2667         testcase( p->op==TK_UNION );
2668         priorOp = SRT_Union;
2669         if( dest.eDest==priorOp ){
2670           /* We can reuse a temporary table generated by a SELECT to our
2671           ** right.
2672           */
2673           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2674           unionTab = dest.iSDParm;
2675         }else{
2676           /* We will need to create our own temporary table to hold the
2677           ** intermediate results.
2678           */
2679           unionTab = pParse->nTab++;
2680           assert( p->pOrderBy==0 );
2681           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2682           assert( p->addrOpenEphm[0] == -1 );
2683           p->addrOpenEphm[0] = addr;
2684           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2685           assert( p->pEList );
2686         }
2687 
2688         /* Code the SELECT statements to our left
2689         */
2690         assert( !pPrior->pOrderBy );
2691         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2692         rc = sqlite3Select(pParse, pPrior, &uniondest);
2693         if( rc ){
2694           goto multi_select_end;
2695         }
2696 
2697         /* Code the current SELECT statement
2698         */
2699         if( p->op==TK_EXCEPT ){
2700           op = SRT_Except;
2701         }else{
2702           assert( p->op==TK_UNION );
2703           op = SRT_Union;
2704         }
2705         p->pPrior = 0;
2706         pLimit = p->pLimit;
2707         p->pLimit = 0;
2708         uniondest.eDest = op;
2709         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2710                           selectOpName(p->op)));
2711         rc = sqlite3Select(pParse, p, &uniondest);
2712         testcase( rc!=SQLITE_OK );
2713         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2714         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2715         sqlite3ExprListDelete(db, p->pOrderBy);
2716         pDelete = p->pPrior;
2717         p->pPrior = pPrior;
2718         p->pOrderBy = 0;
2719         if( p->op==TK_UNION ){
2720           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2721         }
2722         sqlite3ExprDelete(db, p->pLimit);
2723         p->pLimit = pLimit;
2724         p->iLimit = 0;
2725         p->iOffset = 0;
2726 
2727         /* Convert the data in the temporary table into whatever form
2728         ** it is that we currently need.
2729         */
2730         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2731         assert( p->pEList || db->mallocFailed );
2732         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2733           int iCont, iBreak, iStart;
2734           iBreak = sqlite3VdbeMakeLabel(pParse);
2735           iCont = sqlite3VdbeMakeLabel(pParse);
2736           computeLimitRegisters(pParse, p, iBreak);
2737           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2738           iStart = sqlite3VdbeCurrentAddr(v);
2739           selectInnerLoop(pParse, p, unionTab,
2740                           0, 0, &dest, iCont, iBreak);
2741           sqlite3VdbeResolveLabel(v, iCont);
2742           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2743           sqlite3VdbeResolveLabel(v, iBreak);
2744           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2745         }
2746         break;
2747       }
2748       default: assert( p->op==TK_INTERSECT ); {
2749         int tab1, tab2;
2750         int iCont, iBreak, iStart;
2751         Expr *pLimit;
2752         int addr;
2753         SelectDest intersectdest;
2754         int r1;
2755 
2756         /* INTERSECT is different from the others since it requires
2757         ** two temporary tables.  Hence it has its own case.  Begin
2758         ** by allocating the tables we will need.
2759         */
2760         tab1 = pParse->nTab++;
2761         tab2 = pParse->nTab++;
2762         assert( p->pOrderBy==0 );
2763 
2764         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2765         assert( p->addrOpenEphm[0] == -1 );
2766         p->addrOpenEphm[0] = addr;
2767         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2768         assert( p->pEList );
2769 
2770         /* Code the SELECTs to our left into temporary table "tab1".
2771         */
2772         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2773         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2774         if( rc ){
2775           goto multi_select_end;
2776         }
2777 
2778         /* Code the current SELECT into temporary table "tab2"
2779         */
2780         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2781         assert( p->addrOpenEphm[1] == -1 );
2782         p->addrOpenEphm[1] = addr;
2783         p->pPrior = 0;
2784         pLimit = p->pLimit;
2785         p->pLimit = 0;
2786         intersectdest.iSDParm = tab2;
2787         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2788                           selectOpName(p->op)));
2789         rc = sqlite3Select(pParse, p, &intersectdest);
2790         testcase( rc!=SQLITE_OK );
2791         pDelete = p->pPrior;
2792         p->pPrior = pPrior;
2793         if( p->nSelectRow>pPrior->nSelectRow ){
2794           p->nSelectRow = pPrior->nSelectRow;
2795         }
2796         sqlite3ExprDelete(db, p->pLimit);
2797         p->pLimit = pLimit;
2798 
2799         /* Generate code to take the intersection of the two temporary
2800         ** tables.
2801         */
2802         assert( p->pEList );
2803         iBreak = sqlite3VdbeMakeLabel(pParse);
2804         iCont = sqlite3VdbeMakeLabel(pParse);
2805         computeLimitRegisters(pParse, p, iBreak);
2806         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2807         r1 = sqlite3GetTempReg(pParse);
2808         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2809         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2810         VdbeCoverage(v);
2811         sqlite3ReleaseTempReg(pParse, r1);
2812         selectInnerLoop(pParse, p, tab1,
2813                         0, 0, &dest, iCont, iBreak);
2814         sqlite3VdbeResolveLabel(v, iCont);
2815         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2816         sqlite3VdbeResolveLabel(v, iBreak);
2817         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2818         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2819         break;
2820       }
2821     }
2822 
2823   #ifndef SQLITE_OMIT_EXPLAIN
2824     if( p->pNext==0 ){
2825       ExplainQueryPlanPop(pParse);
2826     }
2827   #endif
2828   }
2829   if( pParse->nErr ) goto multi_select_end;
2830 
2831   /* Compute collating sequences used by
2832   ** temporary tables needed to implement the compound select.
2833   ** Attach the KeyInfo structure to all temporary tables.
2834   **
2835   ** This section is run by the right-most SELECT statement only.
2836   ** SELECT statements to the left always skip this part.  The right-most
2837   ** SELECT might also skip this part if it has no ORDER BY clause and
2838   ** no temp tables are required.
2839   */
2840   if( p->selFlags & SF_UsesEphemeral ){
2841     int i;                        /* Loop counter */
2842     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2843     Select *pLoop;                /* For looping through SELECT statements */
2844     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2845     int nCol;                     /* Number of columns in result set */
2846 
2847     assert( p->pNext==0 );
2848     nCol = p->pEList->nExpr;
2849     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2850     if( !pKeyInfo ){
2851       rc = SQLITE_NOMEM_BKPT;
2852       goto multi_select_end;
2853     }
2854     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2855       *apColl = multiSelectCollSeq(pParse, p, i);
2856       if( 0==*apColl ){
2857         *apColl = db->pDfltColl;
2858       }
2859     }
2860 
2861     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2862       for(i=0; i<2; i++){
2863         int addr = pLoop->addrOpenEphm[i];
2864         if( addr<0 ){
2865           /* If [0] is unused then [1] is also unused.  So we can
2866           ** always safely abort as soon as the first unused slot is found */
2867           assert( pLoop->addrOpenEphm[1]<0 );
2868           break;
2869         }
2870         sqlite3VdbeChangeP2(v, addr, nCol);
2871         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2872                             P4_KEYINFO);
2873         pLoop->addrOpenEphm[i] = -1;
2874       }
2875     }
2876     sqlite3KeyInfoUnref(pKeyInfo);
2877   }
2878 
2879 multi_select_end:
2880   pDest->iSdst = dest.iSdst;
2881   pDest->nSdst = dest.nSdst;
2882   sqlite3SelectDelete(db, pDelete);
2883   return rc;
2884 }
2885 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2886 
2887 /*
2888 ** Error message for when two or more terms of a compound select have different
2889 ** size result sets.
2890 */
2891 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2892   if( p->selFlags & SF_Values ){
2893     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2894   }else{
2895     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2896       " do not have the same number of result columns", selectOpName(p->op));
2897   }
2898 }
2899 
2900 /*
2901 ** Code an output subroutine for a coroutine implementation of a
2902 ** SELECT statment.
2903 **
2904 ** The data to be output is contained in pIn->iSdst.  There are
2905 ** pIn->nSdst columns to be output.  pDest is where the output should
2906 ** be sent.
2907 **
2908 ** regReturn is the number of the register holding the subroutine
2909 ** return address.
2910 **
2911 ** If regPrev>0 then it is the first register in a vector that
2912 ** records the previous output.  mem[regPrev] is a flag that is false
2913 ** if there has been no previous output.  If regPrev>0 then code is
2914 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2915 ** keys.
2916 **
2917 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2918 ** iBreak.
2919 */
2920 static int generateOutputSubroutine(
2921   Parse *pParse,          /* Parsing context */
2922   Select *p,              /* The SELECT statement */
2923   SelectDest *pIn,        /* Coroutine supplying data */
2924   SelectDest *pDest,      /* Where to send the data */
2925   int regReturn,          /* The return address register */
2926   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2927   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2928   int iBreak              /* Jump here if we hit the LIMIT */
2929 ){
2930   Vdbe *v = pParse->pVdbe;
2931   int iContinue;
2932   int addr;
2933 
2934   addr = sqlite3VdbeCurrentAddr(v);
2935   iContinue = sqlite3VdbeMakeLabel(pParse);
2936 
2937   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2938   */
2939   if( regPrev ){
2940     int addr1, addr2;
2941     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2942     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2943                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2944     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2945     sqlite3VdbeJumpHere(v, addr1);
2946     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2947     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2948   }
2949   if( pParse->db->mallocFailed ) return 0;
2950 
2951   /* Suppress the first OFFSET entries if there is an OFFSET clause
2952   */
2953   codeOffset(v, p->iOffset, iContinue);
2954 
2955   assert( pDest->eDest!=SRT_Exists );
2956   assert( pDest->eDest!=SRT_Table );
2957   switch( pDest->eDest ){
2958     /* Store the result as data using a unique key.
2959     */
2960     case SRT_EphemTab: {
2961       int r1 = sqlite3GetTempReg(pParse);
2962       int r2 = sqlite3GetTempReg(pParse);
2963       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2964       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2965       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2966       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2967       sqlite3ReleaseTempReg(pParse, r2);
2968       sqlite3ReleaseTempReg(pParse, r1);
2969       break;
2970     }
2971 
2972 #ifndef SQLITE_OMIT_SUBQUERY
2973     /* If we are creating a set for an "expr IN (SELECT ...)".
2974     */
2975     case SRT_Set: {
2976       int r1;
2977       testcase( pIn->nSdst>1 );
2978       r1 = sqlite3GetTempReg(pParse);
2979       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2980           r1, pDest->zAffSdst, pIn->nSdst);
2981       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2982                            pIn->iSdst, pIn->nSdst);
2983       sqlite3ReleaseTempReg(pParse, r1);
2984       break;
2985     }
2986 
2987     /* If this is a scalar select that is part of an expression, then
2988     ** store the results in the appropriate memory cell and break out
2989     ** of the scan loop.  Note that the select might return multiple columns
2990     ** if it is the RHS of a row-value IN operator.
2991     */
2992     case SRT_Mem: {
2993       if( pParse->nErr==0 ){
2994         testcase( pIn->nSdst>1 );
2995         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
2996       }
2997       /* The LIMIT clause will jump out of the loop for us */
2998       break;
2999     }
3000 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3001 
3002     /* The results are stored in a sequence of registers
3003     ** starting at pDest->iSdst.  Then the co-routine yields.
3004     */
3005     case SRT_Coroutine: {
3006       if( pDest->iSdst==0 ){
3007         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3008         pDest->nSdst = pIn->nSdst;
3009       }
3010       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3011       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3012       break;
3013     }
3014 
3015     /* If none of the above, then the result destination must be
3016     ** SRT_Output.  This routine is never called with any other
3017     ** destination other than the ones handled above or SRT_Output.
3018     **
3019     ** For SRT_Output, results are stored in a sequence of registers.
3020     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3021     ** return the next row of result.
3022     */
3023     default: {
3024       assert( pDest->eDest==SRT_Output );
3025       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3026       break;
3027     }
3028   }
3029 
3030   /* Jump to the end of the loop if the LIMIT is reached.
3031   */
3032   if( p->iLimit ){
3033     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3034   }
3035 
3036   /* Generate the subroutine return
3037   */
3038   sqlite3VdbeResolveLabel(v, iContinue);
3039   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3040 
3041   return addr;
3042 }
3043 
3044 /*
3045 ** Alternative compound select code generator for cases when there
3046 ** is an ORDER BY clause.
3047 **
3048 ** We assume a query of the following form:
3049 **
3050 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3051 **
3052 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3053 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3054 ** co-routines.  Then run the co-routines in parallel and merge the results
3055 ** into the output.  In addition to the two coroutines (called selectA and
3056 ** selectB) there are 7 subroutines:
3057 **
3058 **    outA:    Move the output of the selectA coroutine into the output
3059 **             of the compound query.
3060 **
3061 **    outB:    Move the output of the selectB coroutine into the output
3062 **             of the compound query.  (Only generated for UNION and
3063 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3064 **             appears only in B.)
3065 **
3066 **    AltB:    Called when there is data from both coroutines and A<B.
3067 **
3068 **    AeqB:    Called when there is data from both coroutines and A==B.
3069 **
3070 **    AgtB:    Called when there is data from both coroutines and A>B.
3071 **
3072 **    EofA:    Called when data is exhausted from selectA.
3073 **
3074 **    EofB:    Called when data is exhausted from selectB.
3075 **
3076 ** The implementation of the latter five subroutines depend on which
3077 ** <operator> is used:
3078 **
3079 **
3080 **             UNION ALL         UNION            EXCEPT          INTERSECT
3081 **          -------------  -----------------  --------------  -----------------
3082 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3083 **
3084 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3085 **
3086 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3087 **
3088 **   EofA:   outB, nextB      outB, nextB          halt             halt
3089 **
3090 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3091 **
3092 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3093 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3094 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3095 ** following nextX causes a jump to the end of the select processing.
3096 **
3097 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3098 ** within the output subroutine.  The regPrev register set holds the previously
3099 ** output value.  A comparison is made against this value and the output
3100 ** is skipped if the next results would be the same as the previous.
3101 **
3102 ** The implementation plan is to implement the two coroutines and seven
3103 ** subroutines first, then put the control logic at the bottom.  Like this:
3104 **
3105 **          goto Init
3106 **     coA: coroutine for left query (A)
3107 **     coB: coroutine for right query (B)
3108 **    outA: output one row of A
3109 **    outB: output one row of B (UNION and UNION ALL only)
3110 **    EofA: ...
3111 **    EofB: ...
3112 **    AltB: ...
3113 **    AeqB: ...
3114 **    AgtB: ...
3115 **    Init: initialize coroutine registers
3116 **          yield coA
3117 **          if eof(A) goto EofA
3118 **          yield coB
3119 **          if eof(B) goto EofB
3120 **    Cmpr: Compare A, B
3121 **          Jump AltB, AeqB, AgtB
3122 **     End: ...
3123 **
3124 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3125 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3126 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3127 ** and AgtB jump to either L2 or to one of EofA or EofB.
3128 */
3129 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3130 static int multiSelectOrderBy(
3131   Parse *pParse,        /* Parsing context */
3132   Select *p,            /* The right-most of SELECTs to be coded */
3133   SelectDest *pDest     /* What to do with query results */
3134 ){
3135   int i, j;             /* Loop counters */
3136   Select *pPrior;       /* Another SELECT immediately to our left */
3137   Vdbe *v;              /* Generate code to this VDBE */
3138   SelectDest destA;     /* Destination for coroutine A */
3139   SelectDest destB;     /* Destination for coroutine B */
3140   int regAddrA;         /* Address register for select-A coroutine */
3141   int regAddrB;         /* Address register for select-B coroutine */
3142   int addrSelectA;      /* Address of the select-A coroutine */
3143   int addrSelectB;      /* Address of the select-B coroutine */
3144   int regOutA;          /* Address register for the output-A subroutine */
3145   int regOutB;          /* Address register for the output-B subroutine */
3146   int addrOutA;         /* Address of the output-A subroutine */
3147   int addrOutB = 0;     /* Address of the output-B subroutine */
3148   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3149   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3150   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3151   int addrAltB;         /* Address of the A<B subroutine */
3152   int addrAeqB;         /* Address of the A==B subroutine */
3153   int addrAgtB;         /* Address of the A>B subroutine */
3154   int regLimitA;        /* Limit register for select-A */
3155   int regLimitB;        /* Limit register for select-A */
3156   int regPrev;          /* A range of registers to hold previous output */
3157   int savedLimit;       /* Saved value of p->iLimit */
3158   int savedOffset;      /* Saved value of p->iOffset */
3159   int labelCmpr;        /* Label for the start of the merge algorithm */
3160   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3161   int addr1;            /* Jump instructions that get retargetted */
3162   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3163   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3164   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3165   sqlite3 *db;          /* Database connection */
3166   ExprList *pOrderBy;   /* The ORDER BY clause */
3167   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3168   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3169 
3170   assert( p->pOrderBy!=0 );
3171   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3172   db = pParse->db;
3173   v = pParse->pVdbe;
3174   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3175   labelEnd = sqlite3VdbeMakeLabel(pParse);
3176   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3177 
3178 
3179   /* Patch up the ORDER BY clause
3180   */
3181   op = p->op;
3182   pPrior = p->pPrior;
3183   assert( pPrior->pOrderBy==0 );
3184   pOrderBy = p->pOrderBy;
3185   assert( pOrderBy );
3186   nOrderBy = pOrderBy->nExpr;
3187 
3188   /* For operators other than UNION ALL we have to make sure that
3189   ** the ORDER BY clause covers every term of the result set.  Add
3190   ** terms to the ORDER BY clause as necessary.
3191   */
3192   if( op!=TK_ALL ){
3193     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3194       struct ExprList_item *pItem;
3195       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3196         assert( pItem->u.x.iOrderByCol>0 );
3197         if( pItem->u.x.iOrderByCol==i ) break;
3198       }
3199       if( j==nOrderBy ){
3200         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3201         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3202         pNew->flags |= EP_IntValue;
3203         pNew->u.iValue = i;
3204         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3205         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3206       }
3207     }
3208   }
3209 
3210   /* Compute the comparison permutation and keyinfo that is used with
3211   ** the permutation used to determine if the next
3212   ** row of results comes from selectA or selectB.  Also add explicit
3213   ** collations to the ORDER BY clause terms so that when the subqueries
3214   ** to the right and the left are evaluated, they use the correct
3215   ** collation.
3216   */
3217   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3218   if( aPermute ){
3219     struct ExprList_item *pItem;
3220     aPermute[0] = nOrderBy;
3221     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3222       assert( pItem->u.x.iOrderByCol>0 );
3223       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3224       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3225     }
3226     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3227   }else{
3228     pKeyMerge = 0;
3229   }
3230 
3231   /* Reattach the ORDER BY clause to the query.
3232   */
3233   p->pOrderBy = pOrderBy;
3234   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3235 
3236   /* Allocate a range of temporary registers and the KeyInfo needed
3237   ** for the logic that removes duplicate result rows when the
3238   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3239   */
3240   if( op==TK_ALL ){
3241     regPrev = 0;
3242   }else{
3243     int nExpr = p->pEList->nExpr;
3244     assert( nOrderBy>=nExpr || db->mallocFailed );
3245     regPrev = pParse->nMem+1;
3246     pParse->nMem += nExpr+1;
3247     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3248     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3249     if( pKeyDup ){
3250       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3251       for(i=0; i<nExpr; i++){
3252         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3253         pKeyDup->aSortFlags[i] = 0;
3254       }
3255     }
3256   }
3257 
3258   /* Separate the left and the right query from one another
3259   */
3260   p->pPrior = 0;
3261   pPrior->pNext = 0;
3262   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3263   if( pPrior->pPrior==0 ){
3264     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3265   }
3266 
3267   /* Compute the limit registers */
3268   computeLimitRegisters(pParse, p, labelEnd);
3269   if( p->iLimit && op==TK_ALL ){
3270     regLimitA = ++pParse->nMem;
3271     regLimitB = ++pParse->nMem;
3272     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3273                                   regLimitA);
3274     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3275   }else{
3276     regLimitA = regLimitB = 0;
3277   }
3278   sqlite3ExprDelete(db, p->pLimit);
3279   p->pLimit = 0;
3280 
3281   regAddrA = ++pParse->nMem;
3282   regAddrB = ++pParse->nMem;
3283   regOutA = ++pParse->nMem;
3284   regOutB = ++pParse->nMem;
3285   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3286   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3287 
3288   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3289 
3290   /* Generate a coroutine to evaluate the SELECT statement to the
3291   ** left of the compound operator - the "A" select.
3292   */
3293   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3294   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3295   VdbeComment((v, "left SELECT"));
3296   pPrior->iLimit = regLimitA;
3297   ExplainQueryPlan((pParse, 1, "LEFT"));
3298   sqlite3Select(pParse, pPrior, &destA);
3299   sqlite3VdbeEndCoroutine(v, regAddrA);
3300   sqlite3VdbeJumpHere(v, addr1);
3301 
3302   /* Generate a coroutine to evaluate the SELECT statement on
3303   ** the right - the "B" select
3304   */
3305   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3306   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3307   VdbeComment((v, "right SELECT"));
3308   savedLimit = p->iLimit;
3309   savedOffset = p->iOffset;
3310   p->iLimit = regLimitB;
3311   p->iOffset = 0;
3312   ExplainQueryPlan((pParse, 1, "RIGHT"));
3313   sqlite3Select(pParse, p, &destB);
3314   p->iLimit = savedLimit;
3315   p->iOffset = savedOffset;
3316   sqlite3VdbeEndCoroutine(v, regAddrB);
3317 
3318   /* Generate a subroutine that outputs the current row of the A
3319   ** select as the next output row of the compound select.
3320   */
3321   VdbeNoopComment((v, "Output routine for A"));
3322   addrOutA = generateOutputSubroutine(pParse,
3323                  p, &destA, pDest, regOutA,
3324                  regPrev, pKeyDup, labelEnd);
3325 
3326   /* Generate a subroutine that outputs the current row of the B
3327   ** select as the next output row of the compound select.
3328   */
3329   if( op==TK_ALL || op==TK_UNION ){
3330     VdbeNoopComment((v, "Output routine for B"));
3331     addrOutB = generateOutputSubroutine(pParse,
3332                  p, &destB, pDest, regOutB,
3333                  regPrev, pKeyDup, labelEnd);
3334   }
3335   sqlite3KeyInfoUnref(pKeyDup);
3336 
3337   /* Generate a subroutine to run when the results from select A
3338   ** are exhausted and only data in select B remains.
3339   */
3340   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3341     addrEofA_noB = addrEofA = labelEnd;
3342   }else{
3343     VdbeNoopComment((v, "eof-A subroutine"));
3344     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3345     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3346                                      VdbeCoverage(v);
3347     sqlite3VdbeGoto(v, addrEofA);
3348     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3349   }
3350 
3351   /* Generate a subroutine to run when the results from select B
3352   ** are exhausted and only data in select A remains.
3353   */
3354   if( op==TK_INTERSECT ){
3355     addrEofB = addrEofA;
3356     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3357   }else{
3358     VdbeNoopComment((v, "eof-B subroutine"));
3359     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3360     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3361     sqlite3VdbeGoto(v, addrEofB);
3362   }
3363 
3364   /* Generate code to handle the case of A<B
3365   */
3366   VdbeNoopComment((v, "A-lt-B subroutine"));
3367   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3368   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3369   sqlite3VdbeGoto(v, labelCmpr);
3370 
3371   /* Generate code to handle the case of A==B
3372   */
3373   if( op==TK_ALL ){
3374     addrAeqB = addrAltB;
3375   }else if( op==TK_INTERSECT ){
3376     addrAeqB = addrAltB;
3377     addrAltB++;
3378   }else{
3379     VdbeNoopComment((v, "A-eq-B subroutine"));
3380     addrAeqB =
3381     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3382     sqlite3VdbeGoto(v, labelCmpr);
3383   }
3384 
3385   /* Generate code to handle the case of A>B
3386   */
3387   VdbeNoopComment((v, "A-gt-B subroutine"));
3388   addrAgtB = sqlite3VdbeCurrentAddr(v);
3389   if( op==TK_ALL || op==TK_UNION ){
3390     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3391   }
3392   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3393   sqlite3VdbeGoto(v, labelCmpr);
3394 
3395   /* This code runs once to initialize everything.
3396   */
3397   sqlite3VdbeJumpHere(v, addr1);
3398   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3399   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3400 
3401   /* Implement the main merge loop
3402   */
3403   sqlite3VdbeResolveLabel(v, labelCmpr);
3404   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3405   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3406                          (char*)pKeyMerge, P4_KEYINFO);
3407   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3408   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3409 
3410   /* Jump to the this point in order to terminate the query.
3411   */
3412   sqlite3VdbeResolveLabel(v, labelEnd);
3413 
3414   /* Reassembly the compound query so that it will be freed correctly
3415   ** by the calling function */
3416   if( p->pPrior ){
3417     sqlite3SelectDelete(db, p->pPrior);
3418   }
3419   p->pPrior = pPrior;
3420   pPrior->pNext = p;
3421 
3422   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3423   **** subqueries ****/
3424   ExplainQueryPlanPop(pParse);
3425   return pParse->nErr!=0;
3426 }
3427 #endif
3428 
3429 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3430 
3431 /* An instance of the SubstContext object describes an substitution edit
3432 ** to be performed on a parse tree.
3433 **
3434 ** All references to columns in table iTable are to be replaced by corresponding
3435 ** expressions in pEList.
3436 */
3437 typedef struct SubstContext {
3438   Parse *pParse;            /* The parsing context */
3439   int iTable;               /* Replace references to this table */
3440   int iNewTable;            /* New table number */
3441   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3442   ExprList *pEList;         /* Replacement expressions */
3443 } SubstContext;
3444 
3445 /* Forward Declarations */
3446 static void substExprList(SubstContext*, ExprList*);
3447 static void substSelect(SubstContext*, Select*, int);
3448 
3449 /*
3450 ** Scan through the expression pExpr.  Replace every reference to
3451 ** a column in table number iTable with a copy of the iColumn-th
3452 ** entry in pEList.  (But leave references to the ROWID column
3453 ** unchanged.)
3454 **
3455 ** This routine is part of the flattening procedure.  A subquery
3456 ** whose result set is defined by pEList appears as entry in the
3457 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3458 ** FORM clause entry is iTable.  This routine makes the necessary
3459 ** changes to pExpr so that it refers directly to the source table
3460 ** of the subquery rather the result set of the subquery.
3461 */
3462 static Expr *substExpr(
3463   SubstContext *pSubst,  /* Description of the substitution */
3464   Expr *pExpr            /* Expr in which substitution occurs */
3465 ){
3466   if( pExpr==0 ) return 0;
3467   if( ExprHasProperty(pExpr, EP_FromJoin)
3468    && pExpr->iRightJoinTable==pSubst->iTable
3469   ){
3470     pExpr->iRightJoinTable = pSubst->iNewTable;
3471   }
3472   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3473     if( pExpr->iColumn<0 ){
3474       pExpr->op = TK_NULL;
3475     }else{
3476       Expr *pNew;
3477       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3478       Expr ifNullRow;
3479       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3480       assert( pExpr->pRight==0 );
3481       if( sqlite3ExprIsVector(pCopy) ){
3482         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3483       }else{
3484         sqlite3 *db = pSubst->pParse->db;
3485         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3486           memset(&ifNullRow, 0, sizeof(ifNullRow));
3487           ifNullRow.op = TK_IF_NULL_ROW;
3488           ifNullRow.pLeft = pCopy;
3489           ifNullRow.iTable = pSubst->iNewTable;
3490           pCopy = &ifNullRow;
3491         }
3492         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3493         pNew = sqlite3ExprDup(db, pCopy, 0);
3494         if( pNew && pSubst->isLeftJoin ){
3495           ExprSetProperty(pNew, EP_CanBeNull);
3496         }
3497         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3498           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3499           ExprSetProperty(pNew, EP_FromJoin);
3500         }
3501         sqlite3ExprDelete(db, pExpr);
3502         pExpr = pNew;
3503 
3504         /* Ensure that the expression now has an implicit collation sequence,
3505         ** just as it did when it was a column of a view or sub-query. */
3506         if( pExpr ){
3507           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3508             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3509             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3510                 (pColl ? pColl->zName : "BINARY")
3511             );
3512           }
3513           ExprClearProperty(pExpr, EP_Collate);
3514         }
3515       }
3516     }
3517   }else{
3518     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3519       pExpr->iTable = pSubst->iNewTable;
3520     }
3521     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3522     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3523     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3524       substSelect(pSubst, pExpr->x.pSelect, 1);
3525     }else{
3526       substExprList(pSubst, pExpr->x.pList);
3527     }
3528 #ifndef SQLITE_OMIT_WINDOWFUNC
3529     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3530       Window *pWin = pExpr->y.pWin;
3531       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3532       substExprList(pSubst, pWin->pPartition);
3533       substExprList(pSubst, pWin->pOrderBy);
3534     }
3535 #endif
3536   }
3537   return pExpr;
3538 }
3539 static void substExprList(
3540   SubstContext *pSubst, /* Description of the substitution */
3541   ExprList *pList       /* List to scan and in which to make substitutes */
3542 ){
3543   int i;
3544   if( pList==0 ) return;
3545   for(i=0; i<pList->nExpr; i++){
3546     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3547   }
3548 }
3549 static void substSelect(
3550   SubstContext *pSubst, /* Description of the substitution */
3551   Select *p,            /* SELECT statement in which to make substitutions */
3552   int doPrior           /* Do substitutes on p->pPrior too */
3553 ){
3554   SrcList *pSrc;
3555   struct SrcList_item *pItem;
3556   int i;
3557   if( !p ) return;
3558   do{
3559     substExprList(pSubst, p->pEList);
3560     substExprList(pSubst, p->pGroupBy);
3561     substExprList(pSubst, p->pOrderBy);
3562     p->pHaving = substExpr(pSubst, p->pHaving);
3563     p->pWhere = substExpr(pSubst, p->pWhere);
3564     pSrc = p->pSrc;
3565     assert( pSrc!=0 );
3566     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3567       substSelect(pSubst, pItem->pSelect, 1);
3568       if( pItem->fg.isTabFunc ){
3569         substExprList(pSubst, pItem->u1.pFuncArg);
3570       }
3571     }
3572   }while( doPrior && (p = p->pPrior)!=0 );
3573 }
3574 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3575 
3576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3577 /*
3578 ** This routine attempts to flatten subqueries as a performance optimization.
3579 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3580 **
3581 ** To understand the concept of flattening, consider the following
3582 ** query:
3583 **
3584 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3585 **
3586 ** The default way of implementing this query is to execute the
3587 ** subquery first and store the results in a temporary table, then
3588 ** run the outer query on that temporary table.  This requires two
3589 ** passes over the data.  Furthermore, because the temporary table
3590 ** has no indices, the WHERE clause on the outer query cannot be
3591 ** optimized.
3592 **
3593 ** This routine attempts to rewrite queries such as the above into
3594 ** a single flat select, like this:
3595 **
3596 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3597 **
3598 ** The code generated for this simplification gives the same result
3599 ** but only has to scan the data once.  And because indices might
3600 ** exist on the table t1, a complete scan of the data might be
3601 ** avoided.
3602 **
3603 ** Flattening is subject to the following constraints:
3604 **
3605 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3606 **        The subquery and the outer query cannot both be aggregates.
3607 **
3608 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3609 **        (2) If the subquery is an aggregate then
3610 **        (2a) the outer query must not be a join and
3611 **        (2b) the outer query must not use subqueries
3612 **             other than the one FROM-clause subquery that is a candidate
3613 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3614 **             from 2015-02-09.)
3615 **
3616 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3617 **        (3a) the subquery may not be a join and
3618 **        (3b) the FROM clause of the subquery may not contain a virtual
3619 **             table and
3620 **        (3c) the outer query may not be an aggregate.
3621 **        (3d) the outer query may not be DISTINCT.
3622 **
3623 **   (4)  The subquery can not be DISTINCT.
3624 **
3625 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3626 **        sub-queries that were excluded from this optimization. Restriction
3627 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3628 **
3629 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3630 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3631 **
3632 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3633 **        A FROM clause, consider adding a FROM clause with the special
3634 **        table sqlite_once that consists of a single row containing a
3635 **        single NULL.
3636 **
3637 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3638 **
3639 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3640 **
3641 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3642 **        accidently carried the comment forward until 2014-09-15.  Original
3643 **        constraint: "If the subquery is aggregate then the outer query
3644 **        may not use LIMIT."
3645 **
3646 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3647 **
3648 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3649 **        a separate restriction deriving from ticket #350.
3650 **
3651 **  (13)  The subquery and outer query may not both use LIMIT.
3652 **
3653 **  (14)  The subquery may not use OFFSET.
3654 **
3655 **  (15)  If the outer query is part of a compound select, then the
3656 **        subquery may not use LIMIT.
3657 **        (See ticket #2339 and ticket [02a8e81d44]).
3658 **
3659 **  (16)  If the outer query is aggregate, then the subquery may not
3660 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3661 **        until we introduced the group_concat() function.
3662 **
3663 **  (17)  If the subquery is a compound select, then
3664 **        (17a) all compound operators must be a UNION ALL, and
3665 **        (17b) no terms within the subquery compound may be aggregate
3666 **              or DISTINCT, and
3667 **        (17c) every term within the subquery compound must have a FROM clause
3668 **        (17d) the outer query may not be
3669 **              (17d1) aggregate, or
3670 **              (17d2) DISTINCT, or
3671 **              (17d3) a join.
3672 **
3673 **        The parent and sub-query may contain WHERE clauses. Subject to
3674 **        rules (11), (13) and (14), they may also contain ORDER BY,
3675 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3676 **        operator other than UNION ALL because all the other compound
3677 **        operators have an implied DISTINCT which is disallowed by
3678 **        restriction (4).
3679 **
3680 **        Also, each component of the sub-query must return the same number
3681 **        of result columns. This is actually a requirement for any compound
3682 **        SELECT statement, but all the code here does is make sure that no
3683 **        such (illegal) sub-query is flattened. The caller will detect the
3684 **        syntax error and return a detailed message.
3685 **
3686 **  (18)  If the sub-query is a compound select, then all terms of the
3687 **        ORDER BY clause of the parent must be simple references to
3688 **        columns of the sub-query.
3689 **
3690 **  (19)  If the subquery uses LIMIT then the outer query may not
3691 **        have a WHERE clause.
3692 **
3693 **  (20)  If the sub-query is a compound select, then it must not use
3694 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3695 **        somewhat by saying that the terms of the ORDER BY clause must
3696 **        appear as unmodified result columns in the outer query.  But we
3697 **        have other optimizations in mind to deal with that case.
3698 **
3699 **  (21)  If the subquery uses LIMIT then the outer query may not be
3700 **        DISTINCT.  (See ticket [752e1646fc]).
3701 **
3702 **  (22)  The subquery may not be a recursive CTE.
3703 **
3704 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3705 **        a recursive CTE, then the sub-query may not be a compound query.
3706 **        This restriction is because transforming the
3707 **        parent to a compound query confuses the code that handles
3708 **        recursive queries in multiSelect().
3709 **
3710 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3711 **        The subquery may not be an aggregate that uses the built-in min() or
3712 **        or max() functions.  (Without this restriction, a query like:
3713 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3714 **        return the value X for which Y was maximal.)
3715 **
3716 **  (25)  If either the subquery or the parent query contains a window
3717 **        function in the select list or ORDER BY clause, flattening
3718 **        is not attempted.
3719 **
3720 **
3721 ** In this routine, the "p" parameter is a pointer to the outer query.
3722 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3723 ** uses aggregates.
3724 **
3725 ** If flattening is not attempted, this routine is a no-op and returns 0.
3726 ** If flattening is attempted this routine returns 1.
3727 **
3728 ** All of the expression analysis must occur on both the outer query and
3729 ** the subquery before this routine runs.
3730 */
3731 static int flattenSubquery(
3732   Parse *pParse,       /* Parsing context */
3733   Select *p,           /* The parent or outer SELECT statement */
3734   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3735   int isAgg            /* True if outer SELECT uses aggregate functions */
3736 ){
3737   const char *zSavedAuthContext = pParse->zAuthContext;
3738   Select *pParent;    /* Current UNION ALL term of the other query */
3739   Select *pSub;       /* The inner query or "subquery" */
3740   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3741   SrcList *pSrc;      /* The FROM clause of the outer query */
3742   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3743   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3744   int iNewParent = -1;/* Replacement table for iParent */
3745   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3746   int i;              /* Loop counter */
3747   Expr *pWhere;                    /* The WHERE clause */
3748   struct SrcList_item *pSubitem;   /* The subquery */
3749   sqlite3 *db = pParse->db;
3750 
3751   /* Check to see if flattening is permitted.  Return 0 if not.
3752   */
3753   assert( p!=0 );
3754   assert( p->pPrior==0 );
3755   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3756   pSrc = p->pSrc;
3757   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3758   pSubitem = &pSrc->a[iFrom];
3759   iParent = pSubitem->iCursor;
3760   pSub = pSubitem->pSelect;
3761   assert( pSub!=0 );
3762 
3763 #ifndef SQLITE_OMIT_WINDOWFUNC
3764   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3765 #endif
3766 
3767   pSubSrc = pSub->pSrc;
3768   assert( pSubSrc );
3769   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3770   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3771   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3772   ** became arbitrary expressions, we were forced to add restrictions (13)
3773   ** and (14). */
3774   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3775   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3776   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3777     return 0;                                            /* Restriction (15) */
3778   }
3779   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3780   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3781   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3782      return 0;         /* Restrictions (8)(9) */
3783   }
3784   if( p->pOrderBy && pSub->pOrderBy ){
3785      return 0;                                           /* Restriction (11) */
3786   }
3787   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3788   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3789   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3790      return 0;         /* Restriction (21) */
3791   }
3792   if( pSub->selFlags & (SF_Recursive) ){
3793     return 0; /* Restrictions (22) */
3794   }
3795 
3796   /*
3797   ** If the subquery is the right operand of a LEFT JOIN, then the
3798   ** subquery may not be a join itself (3a). Example of why this is not
3799   ** allowed:
3800   **
3801   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3802   **
3803   ** If we flatten the above, we would get
3804   **
3805   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3806   **
3807   ** which is not at all the same thing.
3808   **
3809   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3810   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3811   ** aggregates are processed - there is no mechanism to determine if
3812   ** the LEFT JOIN table should be all-NULL.
3813   **
3814   ** See also tickets #306, #350, and #3300.
3815   */
3816   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3817     isLeftJoin = 1;
3818     if( pSubSrc->nSrc>1                   /* (3a) */
3819      || isAgg                             /* (3b) */
3820      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3821      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3822     ){
3823       return 0;
3824     }
3825   }
3826 #ifdef SQLITE_EXTRA_IFNULLROW
3827   else if( iFrom>0 && !isAgg ){
3828     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3829     ** every reference to any result column from subquery in a join, even
3830     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3831     ** opcode. */
3832     isLeftJoin = -1;
3833   }
3834 #endif
3835 
3836   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3837   ** use only the UNION ALL operator. And none of the simple select queries
3838   ** that make up the compound SELECT are allowed to be aggregate or distinct
3839   ** queries.
3840   */
3841   if( pSub->pPrior ){
3842     if( pSub->pOrderBy ){
3843       return 0;  /* Restriction (20) */
3844     }
3845     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3846       return 0; /* (17d1), (17d2), or (17d3) */
3847     }
3848     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3849       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3850       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3851       assert( pSub->pSrc!=0 );
3852       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3853       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3854        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3855        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3856       ){
3857         return 0;
3858       }
3859       testcase( pSub1->pSrc->nSrc>1 );
3860     }
3861 
3862     /* Restriction (18). */
3863     if( p->pOrderBy ){
3864       int ii;
3865       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3866         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3867       }
3868     }
3869   }
3870 
3871   /* Ex-restriction (23):
3872   ** The only way that the recursive part of a CTE can contain a compound
3873   ** subquery is for the subquery to be one term of a join.  But if the
3874   ** subquery is a join, then the flattening has already been stopped by
3875   ** restriction (17d3)
3876   */
3877   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3878 
3879   /***** If we reach this point, flattening is permitted. *****/
3880   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3881                    pSub->selId, pSub, iFrom));
3882 
3883   /* Authorize the subquery */
3884   pParse->zAuthContext = pSubitem->zName;
3885   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3886   testcase( i==SQLITE_DENY );
3887   pParse->zAuthContext = zSavedAuthContext;
3888 
3889   /* If the sub-query is a compound SELECT statement, then (by restrictions
3890   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3891   ** be of the form:
3892   **
3893   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3894   **
3895   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3896   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3897   ** OFFSET clauses and joins them to the left-hand-side of the original
3898   ** using UNION ALL operators. In this case N is the number of simple
3899   ** select statements in the compound sub-query.
3900   **
3901   ** Example:
3902   **
3903   **     SELECT a+1 FROM (
3904   **        SELECT x FROM tab
3905   **        UNION ALL
3906   **        SELECT y FROM tab
3907   **        UNION ALL
3908   **        SELECT abs(z*2) FROM tab2
3909   **     ) WHERE a!=5 ORDER BY 1
3910   **
3911   ** Transformed into:
3912   **
3913   **     SELECT x+1 FROM tab WHERE x+1!=5
3914   **     UNION ALL
3915   **     SELECT y+1 FROM tab WHERE y+1!=5
3916   **     UNION ALL
3917   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3918   **     ORDER BY 1
3919   **
3920   ** We call this the "compound-subquery flattening".
3921   */
3922   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3923     Select *pNew;
3924     ExprList *pOrderBy = p->pOrderBy;
3925     Expr *pLimit = p->pLimit;
3926     Select *pPrior = p->pPrior;
3927     p->pOrderBy = 0;
3928     p->pSrc = 0;
3929     p->pPrior = 0;
3930     p->pLimit = 0;
3931     pNew = sqlite3SelectDup(db, p, 0);
3932     p->pLimit = pLimit;
3933     p->pOrderBy = pOrderBy;
3934     p->pSrc = pSrc;
3935     p->op = TK_ALL;
3936     if( pNew==0 ){
3937       p->pPrior = pPrior;
3938     }else{
3939       pNew->pPrior = pPrior;
3940       if( pPrior ) pPrior->pNext = pNew;
3941       pNew->pNext = p;
3942       p->pPrior = pNew;
3943       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3944                               " creates %u as peer\n",pNew->selId));
3945     }
3946     if( db->mallocFailed ) return 1;
3947   }
3948 
3949   /* Begin flattening the iFrom-th entry of the FROM clause
3950   ** in the outer query.
3951   */
3952   pSub = pSub1 = pSubitem->pSelect;
3953 
3954   /* Delete the transient table structure associated with the
3955   ** subquery
3956   */
3957   sqlite3DbFree(db, pSubitem->zDatabase);
3958   sqlite3DbFree(db, pSubitem->zName);
3959   sqlite3DbFree(db, pSubitem->zAlias);
3960   pSubitem->zDatabase = 0;
3961   pSubitem->zName = 0;
3962   pSubitem->zAlias = 0;
3963   pSubitem->pSelect = 0;
3964 
3965   /* Defer deleting the Table object associated with the
3966   ** subquery until code generation is
3967   ** complete, since there may still exist Expr.pTab entries that
3968   ** refer to the subquery even after flattening.  Ticket #3346.
3969   **
3970   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3971   */
3972   if( ALWAYS(pSubitem->pTab!=0) ){
3973     Table *pTabToDel = pSubitem->pTab;
3974     if( pTabToDel->nTabRef==1 ){
3975       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3976       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3977       pToplevel->pZombieTab = pTabToDel;
3978     }else{
3979       pTabToDel->nTabRef--;
3980     }
3981     pSubitem->pTab = 0;
3982   }
3983 
3984   /* The following loop runs once for each term in a compound-subquery
3985   ** flattening (as described above).  If we are doing a different kind
3986   ** of flattening - a flattening other than a compound-subquery flattening -
3987   ** then this loop only runs once.
3988   **
3989   ** This loop moves all of the FROM elements of the subquery into the
3990   ** the FROM clause of the outer query.  Before doing this, remember
3991   ** the cursor number for the original outer query FROM element in
3992   ** iParent.  The iParent cursor will never be used.  Subsequent code
3993   ** will scan expressions looking for iParent references and replace
3994   ** those references with expressions that resolve to the subquery FROM
3995   ** elements we are now copying in.
3996   */
3997   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3998     int nSubSrc;
3999     u8 jointype = 0;
4000     assert( pSub!=0 );
4001     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4002     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4003     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4004 
4005     if( pSrc ){
4006       assert( pParent==p );  /* First time through the loop */
4007       jointype = pSubitem->fg.jointype;
4008     }else{
4009       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4010       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4011       if( pSrc==0 ) break;
4012       pParent->pSrc = pSrc;
4013     }
4014 
4015     /* The subquery uses a single slot of the FROM clause of the outer
4016     ** query.  If the subquery has more than one element in its FROM clause,
4017     ** then expand the outer query to make space for it to hold all elements
4018     ** of the subquery.
4019     **
4020     ** Example:
4021     **
4022     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4023     **
4024     ** The outer query has 3 slots in its FROM clause.  One slot of the
4025     ** outer query (the middle slot) is used by the subquery.  The next
4026     ** block of code will expand the outer query FROM clause to 4 slots.
4027     ** The middle slot is expanded to two slots in order to make space
4028     ** for the two elements in the FROM clause of the subquery.
4029     */
4030     if( nSubSrc>1 ){
4031       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4032       if( pSrc==0 ) break;
4033       pParent->pSrc = pSrc;
4034     }
4035 
4036     /* Transfer the FROM clause terms from the subquery into the
4037     ** outer query.
4038     */
4039     for(i=0; i<nSubSrc; i++){
4040       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4041       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4042       pSrc->a[i+iFrom] = pSubSrc->a[i];
4043       iNewParent = pSubSrc->a[i].iCursor;
4044       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4045     }
4046     pSrc->a[iFrom].fg.jointype = jointype;
4047 
4048     /* Now begin substituting subquery result set expressions for
4049     ** references to the iParent in the outer query.
4050     **
4051     ** Example:
4052     **
4053     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4054     **   \                     \_____________ subquery __________/          /
4055     **    \_____________________ outer query ______________________________/
4056     **
4057     ** We look at every expression in the outer query and every place we see
4058     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4059     */
4060     if( pSub->pOrderBy ){
4061       /* At this point, any non-zero iOrderByCol values indicate that the
4062       ** ORDER BY column expression is identical to the iOrderByCol'th
4063       ** expression returned by SELECT statement pSub. Since these values
4064       ** do not necessarily correspond to columns in SELECT statement pParent,
4065       ** zero them before transfering the ORDER BY clause.
4066       **
4067       ** Not doing this may cause an error if a subsequent call to this
4068       ** function attempts to flatten a compound sub-query into pParent
4069       ** (the only way this can happen is if the compound sub-query is
4070       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4071       ExprList *pOrderBy = pSub->pOrderBy;
4072       for(i=0; i<pOrderBy->nExpr; i++){
4073         pOrderBy->a[i].u.x.iOrderByCol = 0;
4074       }
4075       assert( pParent->pOrderBy==0 );
4076       pParent->pOrderBy = pOrderBy;
4077       pSub->pOrderBy = 0;
4078     }
4079     pWhere = pSub->pWhere;
4080     pSub->pWhere = 0;
4081     if( isLeftJoin>0 ){
4082       sqlite3SetJoinExpr(pWhere, iNewParent);
4083     }
4084     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4085     if( db->mallocFailed==0 ){
4086       SubstContext x;
4087       x.pParse = pParse;
4088       x.iTable = iParent;
4089       x.iNewTable = iNewParent;
4090       x.isLeftJoin = isLeftJoin;
4091       x.pEList = pSub->pEList;
4092       substSelect(&x, pParent, 0);
4093     }
4094 
4095     /* The flattened query is a compound if either the inner or the
4096     ** outer query is a compound. */
4097     pParent->selFlags |= pSub->selFlags & SF_Compound;
4098     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4099 
4100     /*
4101     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4102     **
4103     ** One is tempted to try to add a and b to combine the limits.  But this
4104     ** does not work if either limit is negative.
4105     */
4106     if( pSub->pLimit ){
4107       pParent->pLimit = pSub->pLimit;
4108       pSub->pLimit = 0;
4109     }
4110   }
4111 
4112   /* Finially, delete what is left of the subquery and return
4113   ** success.
4114   */
4115   sqlite3SelectDelete(db, pSub1);
4116 
4117 #if SELECTTRACE_ENABLED
4118   if( sqlite3SelectTrace & 0x100 ){
4119     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4120     sqlite3TreeViewSelect(0, p, 0);
4121   }
4122 #endif
4123 
4124   return 1;
4125 }
4126 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4127 
4128 /*
4129 ** A structure to keep track of all of the column values that are fixed to
4130 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4131 */
4132 typedef struct WhereConst WhereConst;
4133 struct WhereConst {
4134   Parse *pParse;   /* Parsing context */
4135   int nConst;      /* Number for COLUMN=CONSTANT terms */
4136   int nChng;       /* Number of times a constant is propagated */
4137   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4138 };
4139 
4140 /*
4141 ** Add a new entry to the pConst object.  Except, do not add duplicate
4142 ** pColumn entires.
4143 */
4144 static void constInsert(
4145   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4146   Expr *pColumn,           /* The COLUMN part of the constraint */
4147   Expr *pValue             /* The VALUE part of the constraint */
4148 ){
4149   int i;
4150   assert( pColumn->op==TK_COLUMN );
4151 
4152   /* 2018-10-25 ticket [cf5ed20f]
4153   ** Make sure the same pColumn is not inserted more than once */
4154   for(i=0; i<pConst->nConst; i++){
4155     const Expr *pExpr = pConst->apExpr[i*2];
4156     assert( pExpr->op==TK_COLUMN );
4157     if( pExpr->iTable==pColumn->iTable
4158      && pExpr->iColumn==pColumn->iColumn
4159     ){
4160       return;  /* Already present.  Return without doing anything. */
4161     }
4162   }
4163 
4164   pConst->nConst++;
4165   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4166                          pConst->nConst*2*sizeof(Expr*));
4167   if( pConst->apExpr==0 ){
4168     pConst->nConst = 0;
4169   }else{
4170     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4171     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4172     pConst->apExpr[pConst->nConst*2-1] = pValue;
4173   }
4174 }
4175 
4176 /*
4177 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4178 ** is a constant expression and where the term must be true because it
4179 ** is part of the AND-connected terms of the expression.  For each term
4180 ** found, add it to the pConst structure.
4181 */
4182 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4183   Expr *pRight, *pLeft;
4184   if( pExpr==0 ) return;
4185   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4186   if( pExpr->op==TK_AND ){
4187     findConstInWhere(pConst, pExpr->pRight);
4188     findConstInWhere(pConst, pExpr->pLeft);
4189     return;
4190   }
4191   if( pExpr->op!=TK_EQ ) return;
4192   pRight = pExpr->pRight;
4193   pLeft = pExpr->pLeft;
4194   assert( pRight!=0 );
4195   assert( pLeft!=0 );
4196   if( pRight->op==TK_COLUMN
4197    && !ExprHasProperty(pRight, EP_FixedCol)
4198    && sqlite3ExprIsConstant(pLeft)
4199    && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr))
4200   ){
4201     constInsert(pConst, pRight, pLeft);
4202   }else
4203   if( pLeft->op==TK_COLUMN
4204    && !ExprHasProperty(pLeft, EP_FixedCol)
4205    && sqlite3ExprIsConstant(pRight)
4206    && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr))
4207   ){
4208     constInsert(pConst, pLeft, pRight);
4209   }
4210 }
4211 
4212 /*
4213 ** This is a Walker expression callback.  pExpr is a candidate expression
4214 ** to be replaced by a value.  If pExpr is equivalent to one of the
4215 ** columns named in pWalker->u.pConst, then overwrite it with its
4216 ** corresponding value.
4217 */
4218 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4219   int i;
4220   WhereConst *pConst;
4221   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4222   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4223   pConst = pWalker->u.pConst;
4224   for(i=0; i<pConst->nConst; i++){
4225     Expr *pColumn = pConst->apExpr[i*2];
4226     if( pColumn==pExpr ) continue;
4227     if( pColumn->iTable!=pExpr->iTable ) continue;
4228     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4229     /* A match is found.  Add the EP_FixedCol property */
4230     pConst->nChng++;
4231     ExprClearProperty(pExpr, EP_Leaf);
4232     ExprSetProperty(pExpr, EP_FixedCol);
4233     assert( pExpr->pLeft==0 );
4234     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4235     break;
4236   }
4237   return WRC_Prune;
4238 }
4239 
4240 /*
4241 ** The WHERE-clause constant propagation optimization.
4242 **
4243 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4244 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4245 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4246 ** then throughout the query replace all other occurrences of COLUMN
4247 ** with CONSTANT within the WHERE clause.
4248 **
4249 ** For example, the query:
4250 **
4251 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4252 **
4253 ** Is transformed into
4254 **
4255 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4256 **
4257 ** Return true if any transformations where made and false if not.
4258 **
4259 ** Implementation note:  Constant propagation is tricky due to affinity
4260 ** and collating sequence interactions.  Consider this example:
4261 **
4262 **    CREATE TABLE t1(a INT,b TEXT);
4263 **    INSERT INTO t1 VALUES(123,'0123');
4264 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4265 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4266 **
4267 ** The two SELECT statements above should return different answers.  b=a
4268 ** is alway true because the comparison uses numeric affinity, but b=123
4269 ** is false because it uses text affinity and '0123' is not the same as '123'.
4270 ** To work around this, the expression tree is not actually changed from
4271 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4272 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4273 ** routines know to generate the constant "123" instead of looking up the
4274 ** column value.  Also, to avoid collation problems, this optimization is
4275 ** only attempted if the "a=123" term uses the default BINARY collation.
4276 */
4277 static int propagateConstants(
4278   Parse *pParse,   /* The parsing context */
4279   Select *p        /* The query in which to propagate constants */
4280 ){
4281   WhereConst x;
4282   Walker w;
4283   int nChng = 0;
4284   x.pParse = pParse;
4285   do{
4286     x.nConst = 0;
4287     x.nChng = 0;
4288     x.apExpr = 0;
4289     findConstInWhere(&x, p->pWhere);
4290     if( x.nConst ){
4291       memset(&w, 0, sizeof(w));
4292       w.pParse = pParse;
4293       w.xExprCallback = propagateConstantExprRewrite;
4294       w.xSelectCallback = sqlite3SelectWalkNoop;
4295       w.xSelectCallback2 = 0;
4296       w.walkerDepth = 0;
4297       w.u.pConst = &x;
4298       sqlite3WalkExpr(&w, p->pWhere);
4299       sqlite3DbFree(x.pParse->db, x.apExpr);
4300       nChng += x.nChng;
4301     }
4302   }while( x.nChng );
4303   return nChng;
4304 }
4305 
4306 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4307 /*
4308 ** Make copies of relevant WHERE clause terms of the outer query into
4309 ** the WHERE clause of subquery.  Example:
4310 **
4311 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4312 **
4313 ** Transformed into:
4314 **
4315 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4316 **     WHERE x=5 AND y=10;
4317 **
4318 ** The hope is that the terms added to the inner query will make it more
4319 ** efficient.
4320 **
4321 ** Do not attempt this optimization if:
4322 **
4323 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4324 **           disallow this optimization for aggregate subqueries, but now
4325 **           it is allowed by putting the extra terms on the HAVING clause.
4326 **           The added HAVING clause is pointless if the subquery lacks
4327 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4328 **           so there does not appear to be any reason to add extra logic
4329 **           to suppress it. **)
4330 **
4331 **   (2) The inner query is the recursive part of a common table expression.
4332 **
4333 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4334 **       clause would change the meaning of the LIMIT).
4335 **
4336 **   (4) The inner query is the right operand of a LEFT JOIN and the
4337 **       expression to be pushed down does not come from the ON clause
4338 **       on that LEFT JOIN.
4339 **
4340 **   (5) The WHERE clause expression originates in the ON or USING clause
4341 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4342 **       left join.  An example:
4343 **
4344 **           SELECT *
4345 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4346 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4347 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4348 **
4349 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4350 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4351 **       then the (1,1,NULL) row would be suppressed.
4352 **
4353 **   (6) The inner query features one or more window-functions (since
4354 **       changes to the WHERE clause of the inner query could change the
4355 **       window over which window functions are calculated).
4356 **
4357 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4358 ** terms are duplicated into the subquery.
4359 */
4360 static int pushDownWhereTerms(
4361   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4362   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4363   Expr *pWhere,         /* The WHERE clause of the outer query */
4364   int iCursor,          /* Cursor number of the subquery */
4365   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4366 ){
4367   Expr *pNew;
4368   int nChng = 0;
4369   if( pWhere==0 ) return 0;
4370   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4371 
4372 #ifndef SQLITE_OMIT_WINDOWFUNC
4373   if( pSubq->pWin ) return 0;    /* restriction (6) */
4374 #endif
4375 
4376 #ifdef SQLITE_DEBUG
4377   /* Only the first term of a compound can have a WITH clause.  But make
4378   ** sure no other terms are marked SF_Recursive in case something changes
4379   ** in the future.
4380   */
4381   {
4382     Select *pX;
4383     for(pX=pSubq; pX; pX=pX->pPrior){
4384       assert( (pX->selFlags & (SF_Recursive))==0 );
4385     }
4386   }
4387 #endif
4388 
4389   if( pSubq->pLimit!=0 ){
4390     return 0; /* restriction (3) */
4391   }
4392   while( pWhere->op==TK_AND ){
4393     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4394                                 iCursor, isLeftJoin);
4395     pWhere = pWhere->pLeft;
4396   }
4397   if( isLeftJoin
4398    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4399          || pWhere->iRightJoinTable!=iCursor)
4400   ){
4401     return 0; /* restriction (4) */
4402   }
4403   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4404     return 0; /* restriction (5) */
4405   }
4406   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4407     nChng++;
4408     while( pSubq ){
4409       SubstContext x;
4410       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4411       unsetJoinExpr(pNew, -1);
4412       x.pParse = pParse;
4413       x.iTable = iCursor;
4414       x.iNewTable = iCursor;
4415       x.isLeftJoin = 0;
4416       x.pEList = pSubq->pEList;
4417       pNew = substExpr(&x, pNew);
4418       if( pSubq->selFlags & SF_Aggregate ){
4419         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4420       }else{
4421         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4422       }
4423       pSubq = pSubq->pPrior;
4424     }
4425   }
4426   return nChng;
4427 }
4428 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4429 
4430 /*
4431 ** The pFunc is the only aggregate function in the query.  Check to see
4432 ** if the query is a candidate for the min/max optimization.
4433 **
4434 ** If the query is a candidate for the min/max optimization, then set
4435 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4436 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4437 ** whether pFunc is a min() or max() function.
4438 **
4439 ** If the query is not a candidate for the min/max optimization, return
4440 ** WHERE_ORDERBY_NORMAL (which must be zero).
4441 **
4442 ** This routine must be called after aggregate functions have been
4443 ** located but before their arguments have been subjected to aggregate
4444 ** analysis.
4445 */
4446 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4447   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4448   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4449   const char *zFunc;                    /* Name of aggregate function pFunc */
4450   ExprList *pOrderBy;
4451   u8 sortFlags;
4452 
4453   assert( *ppMinMax==0 );
4454   assert( pFunc->op==TK_AGG_FUNCTION );
4455   assert( !IsWindowFunc(pFunc) );
4456   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4457     return eRet;
4458   }
4459   zFunc = pFunc->u.zToken;
4460   if( sqlite3StrICmp(zFunc, "min")==0 ){
4461     eRet = WHERE_ORDERBY_MIN;
4462     sortFlags = KEYINFO_ORDER_BIGNULL;
4463   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4464     eRet = WHERE_ORDERBY_MAX;
4465     sortFlags = KEYINFO_ORDER_DESC;
4466   }else{
4467     return eRet;
4468   }
4469   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4470   assert( pOrderBy!=0 || db->mallocFailed );
4471   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4472   return eRet;
4473 }
4474 
4475 /*
4476 ** The select statement passed as the first argument is an aggregate query.
4477 ** The second argument is the associated aggregate-info object. This
4478 ** function tests if the SELECT is of the form:
4479 **
4480 **   SELECT count(*) FROM <tbl>
4481 **
4482 ** where table is a database table, not a sub-select or view. If the query
4483 ** does match this pattern, then a pointer to the Table object representing
4484 ** <tbl> is returned. Otherwise, 0 is returned.
4485 */
4486 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4487   Table *pTab;
4488   Expr *pExpr;
4489 
4490   assert( !p->pGroupBy );
4491 
4492   if( p->pWhere || p->pEList->nExpr!=1
4493    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4494   ){
4495     return 0;
4496   }
4497   pTab = p->pSrc->a[0].pTab;
4498   pExpr = p->pEList->a[0].pExpr;
4499   assert( pTab && !pTab->pSelect && pExpr );
4500 
4501   if( IsVirtual(pTab) ) return 0;
4502   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4503   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4504   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4505   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4506 
4507   return pTab;
4508 }
4509 
4510 /*
4511 ** If the source-list item passed as an argument was augmented with an
4512 ** INDEXED BY clause, then try to locate the specified index. If there
4513 ** was such a clause and the named index cannot be found, return
4514 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4515 ** pFrom->pIndex and return SQLITE_OK.
4516 */
4517 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4518   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4519     Table *pTab = pFrom->pTab;
4520     char *zIndexedBy = pFrom->u1.zIndexedBy;
4521     Index *pIdx;
4522     for(pIdx=pTab->pIndex;
4523         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4524         pIdx=pIdx->pNext
4525     );
4526     if( !pIdx ){
4527       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4528       pParse->checkSchema = 1;
4529       return SQLITE_ERROR;
4530     }
4531     pFrom->pIBIndex = pIdx;
4532   }
4533   return SQLITE_OK;
4534 }
4535 /*
4536 ** Detect compound SELECT statements that use an ORDER BY clause with
4537 ** an alternative collating sequence.
4538 **
4539 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4540 **
4541 ** These are rewritten as a subquery:
4542 **
4543 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4544 **     ORDER BY ... COLLATE ...
4545 **
4546 ** This transformation is necessary because the multiSelectOrderBy() routine
4547 ** above that generates the code for a compound SELECT with an ORDER BY clause
4548 ** uses a merge algorithm that requires the same collating sequence on the
4549 ** result columns as on the ORDER BY clause.  See ticket
4550 ** http://www.sqlite.org/src/info/6709574d2a
4551 **
4552 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4553 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4554 ** there are COLLATE terms in the ORDER BY.
4555 */
4556 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4557   int i;
4558   Select *pNew;
4559   Select *pX;
4560   sqlite3 *db;
4561   struct ExprList_item *a;
4562   SrcList *pNewSrc;
4563   Parse *pParse;
4564   Token dummy;
4565 
4566   if( p->pPrior==0 ) return WRC_Continue;
4567   if( p->pOrderBy==0 ) return WRC_Continue;
4568   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4569   if( pX==0 ) return WRC_Continue;
4570   a = p->pOrderBy->a;
4571   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4572     if( a[i].pExpr->flags & EP_Collate ) break;
4573   }
4574   if( i<0 ) return WRC_Continue;
4575 
4576   /* If we reach this point, that means the transformation is required. */
4577 
4578   pParse = pWalker->pParse;
4579   db = pParse->db;
4580   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4581   if( pNew==0 ) return WRC_Abort;
4582   memset(&dummy, 0, sizeof(dummy));
4583   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4584   if( pNewSrc==0 ) return WRC_Abort;
4585   *pNew = *p;
4586   p->pSrc = pNewSrc;
4587   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4588   p->op = TK_SELECT;
4589   p->pWhere = 0;
4590   pNew->pGroupBy = 0;
4591   pNew->pHaving = 0;
4592   pNew->pOrderBy = 0;
4593   p->pPrior = 0;
4594   p->pNext = 0;
4595   p->pWith = 0;
4596 #ifndef SQLITE_OMIT_WINDOWFUNC
4597   p->pWinDefn = 0;
4598 #endif
4599   p->selFlags &= ~SF_Compound;
4600   assert( (p->selFlags & SF_Converted)==0 );
4601   p->selFlags |= SF_Converted;
4602   assert( pNew->pPrior!=0 );
4603   pNew->pPrior->pNext = pNew;
4604   pNew->pLimit = 0;
4605   return WRC_Continue;
4606 }
4607 
4608 /*
4609 ** Check to see if the FROM clause term pFrom has table-valued function
4610 ** arguments.  If it does, leave an error message in pParse and return
4611 ** non-zero, since pFrom is not allowed to be a table-valued function.
4612 */
4613 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4614   if( pFrom->fg.isTabFunc ){
4615     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4616     return 1;
4617   }
4618   return 0;
4619 }
4620 
4621 #ifndef SQLITE_OMIT_CTE
4622 /*
4623 ** Argument pWith (which may be NULL) points to a linked list of nested
4624 ** WITH contexts, from inner to outermost. If the table identified by
4625 ** FROM clause element pItem is really a common-table-expression (CTE)
4626 ** then return a pointer to the CTE definition for that table. Otherwise
4627 ** return NULL.
4628 **
4629 ** If a non-NULL value is returned, set *ppContext to point to the With
4630 ** object that the returned CTE belongs to.
4631 */
4632 static struct Cte *searchWith(
4633   With *pWith,                    /* Current innermost WITH clause */
4634   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4635   With **ppContext                /* OUT: WITH clause return value belongs to */
4636 ){
4637   const char *zName;
4638   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4639     With *p;
4640     for(p=pWith; p; p=p->pOuter){
4641       int i;
4642       for(i=0; i<p->nCte; i++){
4643         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4644           *ppContext = p;
4645           return &p->a[i];
4646         }
4647       }
4648     }
4649   }
4650   return 0;
4651 }
4652 
4653 /* The code generator maintains a stack of active WITH clauses
4654 ** with the inner-most WITH clause being at the top of the stack.
4655 **
4656 ** This routine pushes the WITH clause passed as the second argument
4657 ** onto the top of the stack. If argument bFree is true, then this
4658 ** WITH clause will never be popped from the stack. In this case it
4659 ** should be freed along with the Parse object. In other cases, when
4660 ** bFree==0, the With object will be freed along with the SELECT
4661 ** statement with which it is associated.
4662 */
4663 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4664   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4665   if( pWith ){
4666     assert( pParse->pWith!=pWith );
4667     pWith->pOuter = pParse->pWith;
4668     pParse->pWith = pWith;
4669     if( bFree ) pParse->pWithToFree = pWith;
4670   }
4671 }
4672 
4673 /*
4674 ** This function checks if argument pFrom refers to a CTE declared by
4675 ** a WITH clause on the stack currently maintained by the parser. And,
4676 ** if currently processing a CTE expression, if it is a recursive
4677 ** reference to the current CTE.
4678 **
4679 ** If pFrom falls into either of the two categories above, pFrom->pTab
4680 ** and other fields are populated accordingly. The caller should check
4681 ** (pFrom->pTab!=0) to determine whether or not a successful match
4682 ** was found.
4683 **
4684 ** Whether or not a match is found, SQLITE_OK is returned if no error
4685 ** occurs. If an error does occur, an error message is stored in the
4686 ** parser and some error code other than SQLITE_OK returned.
4687 */
4688 static int withExpand(
4689   Walker *pWalker,
4690   struct SrcList_item *pFrom
4691 ){
4692   Parse *pParse = pWalker->pParse;
4693   sqlite3 *db = pParse->db;
4694   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4695   With *pWith;                    /* WITH clause that pCte belongs to */
4696 
4697   assert( pFrom->pTab==0 );
4698   if( pParse->nErr ){
4699     return SQLITE_ERROR;
4700   }
4701 
4702   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4703   if( pCte ){
4704     Table *pTab;
4705     ExprList *pEList;
4706     Select *pSel;
4707     Select *pLeft;                /* Left-most SELECT statement */
4708     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4709     With *pSavedWith;             /* Initial value of pParse->pWith */
4710 
4711     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4712     ** recursive reference to CTE pCte. Leave an error in pParse and return
4713     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4714     ** In this case, proceed.  */
4715     if( pCte->zCteErr ){
4716       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4717       return SQLITE_ERROR;
4718     }
4719     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4720 
4721     assert( pFrom->pTab==0 );
4722     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4723     if( pTab==0 ) return WRC_Abort;
4724     pTab->nTabRef = 1;
4725     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4726     pTab->iPKey = -1;
4727     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4728     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4729     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4730     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4731     assert( pFrom->pSelect );
4732 
4733     /* Check if this is a recursive CTE. */
4734     pSel = pFrom->pSelect;
4735     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4736     if( bMayRecursive ){
4737       int i;
4738       SrcList *pSrc = pFrom->pSelect->pSrc;
4739       for(i=0; i<pSrc->nSrc; i++){
4740         struct SrcList_item *pItem = &pSrc->a[i];
4741         if( pItem->zDatabase==0
4742          && pItem->zName!=0
4743          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4744           ){
4745           pItem->pTab = pTab;
4746           pItem->fg.isRecursive = 1;
4747           pTab->nTabRef++;
4748           pSel->selFlags |= SF_Recursive;
4749         }
4750       }
4751     }
4752 
4753     /* Only one recursive reference is permitted. */
4754     if( pTab->nTabRef>2 ){
4755       sqlite3ErrorMsg(
4756           pParse, "multiple references to recursive table: %s", pCte->zName
4757       );
4758       return SQLITE_ERROR;
4759     }
4760     assert( pTab->nTabRef==1 ||
4761             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4762 
4763     pCte->zCteErr = "circular reference: %s";
4764     pSavedWith = pParse->pWith;
4765     pParse->pWith = pWith;
4766     if( bMayRecursive ){
4767       Select *pPrior = pSel->pPrior;
4768       assert( pPrior->pWith==0 );
4769       pPrior->pWith = pSel->pWith;
4770       sqlite3WalkSelect(pWalker, pPrior);
4771       pPrior->pWith = 0;
4772     }else{
4773       sqlite3WalkSelect(pWalker, pSel);
4774     }
4775     pParse->pWith = pWith;
4776 
4777     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4778     pEList = pLeft->pEList;
4779     if( pCte->pCols ){
4780       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4781         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4782             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4783         );
4784         pParse->pWith = pSavedWith;
4785         return SQLITE_ERROR;
4786       }
4787       pEList = pCte->pCols;
4788     }
4789 
4790     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4791     if( bMayRecursive ){
4792       if( pSel->selFlags & SF_Recursive ){
4793         pCte->zCteErr = "multiple recursive references: %s";
4794       }else{
4795         pCte->zCteErr = "recursive reference in a subquery: %s";
4796       }
4797       sqlite3WalkSelect(pWalker, pSel);
4798     }
4799     pCte->zCteErr = 0;
4800     pParse->pWith = pSavedWith;
4801   }
4802 
4803   return SQLITE_OK;
4804 }
4805 #endif
4806 
4807 #ifndef SQLITE_OMIT_CTE
4808 /*
4809 ** If the SELECT passed as the second argument has an associated WITH
4810 ** clause, pop it from the stack stored as part of the Parse object.
4811 **
4812 ** This function is used as the xSelectCallback2() callback by
4813 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4814 ** names and other FROM clause elements.
4815 */
4816 static void selectPopWith(Walker *pWalker, Select *p){
4817   Parse *pParse = pWalker->pParse;
4818   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4819     With *pWith = findRightmost(p)->pWith;
4820     if( pWith!=0 ){
4821       assert( pParse->pWith==pWith );
4822       pParse->pWith = pWith->pOuter;
4823     }
4824   }
4825 }
4826 #else
4827 #define selectPopWith 0
4828 #endif
4829 
4830 /*
4831 ** The SrcList_item structure passed as the second argument represents a
4832 ** sub-query in the FROM clause of a SELECT statement. This function
4833 ** allocates and populates the SrcList_item.pTab object. If successful,
4834 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4835 ** SQLITE_NOMEM.
4836 */
4837 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4838   Select *pSel = pFrom->pSelect;
4839   Table *pTab;
4840 
4841   assert( pSel );
4842   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4843   if( pTab==0 ) return SQLITE_NOMEM;
4844   pTab->nTabRef = 1;
4845   if( pFrom->zAlias ){
4846     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4847   }else{
4848     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4849   }
4850   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4851   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4852   pTab->iPKey = -1;
4853   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4854   pTab->tabFlags |= TF_Ephemeral;
4855 
4856   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4857 }
4858 
4859 /*
4860 ** This routine is a Walker callback for "expanding" a SELECT statement.
4861 ** "Expanding" means to do the following:
4862 **
4863 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4864 **         element of the FROM clause.
4865 **
4866 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4867 **         defines FROM clause.  When views appear in the FROM clause,
4868 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4869 **         that implements the view.  A copy is made of the view's SELECT
4870 **         statement so that we can freely modify or delete that statement
4871 **         without worrying about messing up the persistent representation
4872 **         of the view.
4873 **
4874 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4875 **         on joins and the ON and USING clause of joins.
4876 **
4877 **    (4)  Scan the list of columns in the result set (pEList) looking
4878 **         for instances of the "*" operator or the TABLE.* operator.
4879 **         If found, expand each "*" to be every column in every table
4880 **         and TABLE.* to be every column in TABLE.
4881 **
4882 */
4883 static int selectExpander(Walker *pWalker, Select *p){
4884   Parse *pParse = pWalker->pParse;
4885   int i, j, k;
4886   SrcList *pTabList;
4887   ExprList *pEList;
4888   struct SrcList_item *pFrom;
4889   sqlite3 *db = pParse->db;
4890   Expr *pE, *pRight, *pExpr;
4891   u16 selFlags = p->selFlags;
4892   u32 elistFlags = 0;
4893 
4894   p->selFlags |= SF_Expanded;
4895   if( db->mallocFailed  ){
4896     return WRC_Abort;
4897   }
4898   assert( p->pSrc!=0 );
4899   if( (selFlags & SF_Expanded)!=0 ){
4900     return WRC_Prune;
4901   }
4902   if( pWalker->eCode ){
4903     /* Renumber selId because it has been copied from a view */
4904     p->selId = ++pParse->nSelect;
4905   }
4906   pTabList = p->pSrc;
4907   pEList = p->pEList;
4908   sqlite3WithPush(pParse, p->pWith, 0);
4909 
4910   /* Make sure cursor numbers have been assigned to all entries in
4911   ** the FROM clause of the SELECT statement.
4912   */
4913   sqlite3SrcListAssignCursors(pParse, pTabList);
4914 
4915   /* Look up every table named in the FROM clause of the select.  If
4916   ** an entry of the FROM clause is a subquery instead of a table or view,
4917   ** then create a transient table structure to describe the subquery.
4918   */
4919   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4920     Table *pTab;
4921     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4922     if( pFrom->fg.isRecursive ) continue;
4923     assert( pFrom->pTab==0 );
4924 #ifndef SQLITE_OMIT_CTE
4925     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4926     if( pFrom->pTab ) {} else
4927 #endif
4928     if( pFrom->zName==0 ){
4929 #ifndef SQLITE_OMIT_SUBQUERY
4930       Select *pSel = pFrom->pSelect;
4931       /* A sub-query in the FROM clause of a SELECT */
4932       assert( pSel!=0 );
4933       assert( pFrom->pTab==0 );
4934       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4935       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4936 #endif
4937     }else{
4938       /* An ordinary table or view name in the FROM clause */
4939       assert( pFrom->pTab==0 );
4940       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4941       if( pTab==0 ) return WRC_Abort;
4942       if( pTab->nTabRef>=0xffff ){
4943         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4944            pTab->zName);
4945         pFrom->pTab = 0;
4946         return WRC_Abort;
4947       }
4948       pTab->nTabRef++;
4949       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4950         return WRC_Abort;
4951       }
4952 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4953       if( IsVirtual(pTab) || pTab->pSelect ){
4954         i16 nCol;
4955         u8 eCodeOrig = pWalker->eCode;
4956         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4957         assert( pFrom->pSelect==0 );
4958         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
4959           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
4960               pTab->zName);
4961         }
4962         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4963         nCol = pTab->nCol;
4964         pTab->nCol = -1;
4965         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4966         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4967         pWalker->eCode = eCodeOrig;
4968         pTab->nCol = nCol;
4969       }
4970 #endif
4971     }
4972 
4973     /* Locate the index named by the INDEXED BY clause, if any. */
4974     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4975       return WRC_Abort;
4976     }
4977   }
4978 
4979   /* Process NATURAL keywords, and ON and USING clauses of joins.
4980   */
4981   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4982     return WRC_Abort;
4983   }
4984 
4985   /* For every "*" that occurs in the column list, insert the names of
4986   ** all columns in all tables.  And for every TABLE.* insert the names
4987   ** of all columns in TABLE.  The parser inserted a special expression
4988   ** with the TK_ASTERISK operator for each "*" that it found in the column
4989   ** list.  The following code just has to locate the TK_ASTERISK
4990   ** expressions and expand each one to the list of all columns in
4991   ** all tables.
4992   **
4993   ** The first loop just checks to see if there are any "*" operators
4994   ** that need expanding.
4995   */
4996   for(k=0; k<pEList->nExpr; k++){
4997     pE = pEList->a[k].pExpr;
4998     if( pE->op==TK_ASTERISK ) break;
4999     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5000     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5001     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5002     elistFlags |= pE->flags;
5003   }
5004   if( k<pEList->nExpr ){
5005     /*
5006     ** If we get here it means the result set contains one or more "*"
5007     ** operators that need to be expanded.  Loop through each expression
5008     ** in the result set and expand them one by one.
5009     */
5010     struct ExprList_item *a = pEList->a;
5011     ExprList *pNew = 0;
5012     int flags = pParse->db->flags;
5013     int longNames = (flags & SQLITE_FullColNames)!=0
5014                       && (flags & SQLITE_ShortColNames)==0;
5015 
5016     for(k=0; k<pEList->nExpr; k++){
5017       pE = a[k].pExpr;
5018       elistFlags |= pE->flags;
5019       pRight = pE->pRight;
5020       assert( pE->op!=TK_DOT || pRight!=0 );
5021       if( pE->op!=TK_ASTERISK
5022        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5023       ){
5024         /* This particular expression does not need to be expanded.
5025         */
5026         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5027         if( pNew ){
5028           pNew->a[pNew->nExpr-1].zName = a[k].zName;
5029           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
5030           a[k].zName = 0;
5031           a[k].zSpan = 0;
5032         }
5033         a[k].pExpr = 0;
5034       }else{
5035         /* This expression is a "*" or a "TABLE.*" and needs to be
5036         ** expanded. */
5037         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5038         char *zTName = 0;       /* text of name of TABLE */
5039         if( pE->op==TK_DOT ){
5040           assert( pE->pLeft!=0 );
5041           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5042           zTName = pE->pLeft->u.zToken;
5043         }
5044         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5045           Table *pTab = pFrom->pTab;
5046           Select *pSub = pFrom->pSelect;
5047           char *zTabName = pFrom->zAlias;
5048           const char *zSchemaName = 0;
5049           int iDb;
5050           if( zTabName==0 ){
5051             zTabName = pTab->zName;
5052           }
5053           if( db->mallocFailed ) break;
5054           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5055             pSub = 0;
5056             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5057               continue;
5058             }
5059             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5060             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5061           }
5062           for(j=0; j<pTab->nCol; j++){
5063             char *zName = pTab->aCol[j].zName;
5064             char *zColname;  /* The computed column name */
5065             char *zToFree;   /* Malloced string that needs to be freed */
5066             Token sColname;  /* Computed column name as a token */
5067 
5068             assert( zName );
5069             if( zTName && pSub
5070              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
5071             ){
5072               continue;
5073             }
5074 
5075             /* If a column is marked as 'hidden', omit it from the expanded
5076             ** result-set list unless the SELECT has the SF_IncludeHidden
5077             ** bit set.
5078             */
5079             if( (p->selFlags & SF_IncludeHidden)==0
5080              && IsHiddenColumn(&pTab->aCol[j])
5081             ){
5082               continue;
5083             }
5084             tableSeen = 1;
5085 
5086             if( i>0 && zTName==0 ){
5087               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5088                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5089               ){
5090                 /* In a NATURAL join, omit the join columns from the
5091                 ** table to the right of the join */
5092                 continue;
5093               }
5094               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5095                 /* In a join with a USING clause, omit columns in the
5096                 ** using clause from the table on the right. */
5097                 continue;
5098               }
5099             }
5100             pRight = sqlite3Expr(db, TK_ID, zName);
5101             zColname = zName;
5102             zToFree = 0;
5103             if( longNames || pTabList->nSrc>1 ){
5104               Expr *pLeft;
5105               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5106               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5107               if( zSchemaName ){
5108                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5109                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5110               }
5111               if( longNames ){
5112                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5113                 zToFree = zColname;
5114               }
5115             }else{
5116               pExpr = pRight;
5117             }
5118             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5119             sqlite3TokenInit(&sColname, zColname);
5120             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5121             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5122               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5123               if( pSub ){
5124                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5125                 testcase( pX->zSpan==0 );
5126               }else{
5127                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5128                                            zSchemaName, zTabName, zColname);
5129                 testcase( pX->zSpan==0 );
5130               }
5131               pX->bSpanIsTab = 1;
5132             }
5133             sqlite3DbFree(db, zToFree);
5134           }
5135         }
5136         if( !tableSeen ){
5137           if( zTName ){
5138             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5139           }else{
5140             sqlite3ErrorMsg(pParse, "no tables specified");
5141           }
5142         }
5143       }
5144     }
5145     sqlite3ExprListDelete(db, pEList);
5146     p->pEList = pNew;
5147   }
5148   if( p->pEList ){
5149     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5150       sqlite3ErrorMsg(pParse, "too many columns in result set");
5151       return WRC_Abort;
5152     }
5153     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5154       p->selFlags |= SF_ComplexResult;
5155     }
5156   }
5157   return WRC_Continue;
5158 }
5159 
5160 /*
5161 ** No-op routine for the parse-tree walker.
5162 **
5163 ** When this routine is the Walker.xExprCallback then expression trees
5164 ** are walked without any actions being taken at each node.  Presumably,
5165 ** when this routine is used for Walker.xExprCallback then
5166 ** Walker.xSelectCallback is set to do something useful for every
5167 ** subquery in the parser tree.
5168 */
5169 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5170   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5171   return WRC_Continue;
5172 }
5173 
5174 /*
5175 ** No-op routine for the parse-tree walker for SELECT statements.
5176 ** subquery in the parser tree.
5177 */
5178 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5179   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5180   return WRC_Continue;
5181 }
5182 
5183 #if SQLITE_DEBUG
5184 /*
5185 ** Always assert.  This xSelectCallback2 implementation proves that the
5186 ** xSelectCallback2 is never invoked.
5187 */
5188 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5189   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5190   assert( 0 );
5191 }
5192 #endif
5193 /*
5194 ** This routine "expands" a SELECT statement and all of its subqueries.
5195 ** For additional information on what it means to "expand" a SELECT
5196 ** statement, see the comment on the selectExpand worker callback above.
5197 **
5198 ** Expanding a SELECT statement is the first step in processing a
5199 ** SELECT statement.  The SELECT statement must be expanded before
5200 ** name resolution is performed.
5201 **
5202 ** If anything goes wrong, an error message is written into pParse.
5203 ** The calling function can detect the problem by looking at pParse->nErr
5204 ** and/or pParse->db->mallocFailed.
5205 */
5206 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5207   Walker w;
5208   w.xExprCallback = sqlite3ExprWalkNoop;
5209   w.pParse = pParse;
5210   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5211     w.xSelectCallback = convertCompoundSelectToSubquery;
5212     w.xSelectCallback2 = 0;
5213     sqlite3WalkSelect(&w, pSelect);
5214   }
5215   w.xSelectCallback = selectExpander;
5216   w.xSelectCallback2 = selectPopWith;
5217   w.eCode = 0;
5218   sqlite3WalkSelect(&w, pSelect);
5219 }
5220 
5221 
5222 #ifndef SQLITE_OMIT_SUBQUERY
5223 /*
5224 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5225 ** interface.
5226 **
5227 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5228 ** information to the Table structure that represents the result set
5229 ** of that subquery.
5230 **
5231 ** The Table structure that represents the result set was constructed
5232 ** by selectExpander() but the type and collation information was omitted
5233 ** at that point because identifiers had not yet been resolved.  This
5234 ** routine is called after identifier resolution.
5235 */
5236 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5237   Parse *pParse;
5238   int i;
5239   SrcList *pTabList;
5240   struct SrcList_item *pFrom;
5241 
5242   assert( p->selFlags & SF_Resolved );
5243   if( p->selFlags & SF_HasTypeInfo ) return;
5244   p->selFlags |= SF_HasTypeInfo;
5245   pParse = pWalker->pParse;
5246   pTabList = p->pSrc;
5247   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5248     Table *pTab = pFrom->pTab;
5249     assert( pTab!=0 );
5250     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5251       /* A sub-query in the FROM clause of a SELECT */
5252       Select *pSel = pFrom->pSelect;
5253       if( pSel ){
5254         while( pSel->pPrior ) pSel = pSel->pPrior;
5255         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5256                                                SQLITE_AFF_NONE);
5257       }
5258     }
5259   }
5260 }
5261 #endif
5262 
5263 
5264 /*
5265 ** This routine adds datatype and collating sequence information to
5266 ** the Table structures of all FROM-clause subqueries in a
5267 ** SELECT statement.
5268 **
5269 ** Use this routine after name resolution.
5270 */
5271 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5272 #ifndef SQLITE_OMIT_SUBQUERY
5273   Walker w;
5274   w.xSelectCallback = sqlite3SelectWalkNoop;
5275   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5276   w.xExprCallback = sqlite3ExprWalkNoop;
5277   w.pParse = pParse;
5278   sqlite3WalkSelect(&w, pSelect);
5279 #endif
5280 }
5281 
5282 
5283 /*
5284 ** This routine sets up a SELECT statement for processing.  The
5285 ** following is accomplished:
5286 **
5287 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5288 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5289 **     *  ON and USING clauses are shifted into WHERE statements
5290 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5291 **     *  Identifiers in expression are matched to tables.
5292 **
5293 ** This routine acts recursively on all subqueries within the SELECT.
5294 */
5295 void sqlite3SelectPrep(
5296   Parse *pParse,         /* The parser context */
5297   Select *p,             /* The SELECT statement being coded. */
5298   NameContext *pOuterNC  /* Name context for container */
5299 ){
5300   assert( p!=0 || pParse->db->mallocFailed );
5301   if( pParse->db->mallocFailed ) return;
5302   if( p->selFlags & SF_HasTypeInfo ) return;
5303   sqlite3SelectExpand(pParse, p);
5304   if( pParse->nErr || pParse->db->mallocFailed ) return;
5305   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5306   if( pParse->nErr || pParse->db->mallocFailed ) return;
5307   sqlite3SelectAddTypeInfo(pParse, p);
5308 }
5309 
5310 /*
5311 ** Reset the aggregate accumulator.
5312 **
5313 ** The aggregate accumulator is a set of memory cells that hold
5314 ** intermediate results while calculating an aggregate.  This
5315 ** routine generates code that stores NULLs in all of those memory
5316 ** cells.
5317 */
5318 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5319   Vdbe *v = pParse->pVdbe;
5320   int i;
5321   struct AggInfo_func *pFunc;
5322   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5323   if( nReg==0 ) return;
5324 #ifdef SQLITE_DEBUG
5325   /* Verify that all AggInfo registers are within the range specified by
5326   ** AggInfo.mnReg..AggInfo.mxReg */
5327   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5328   for(i=0; i<pAggInfo->nColumn; i++){
5329     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5330          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5331   }
5332   for(i=0; i<pAggInfo->nFunc; i++){
5333     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5334          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5335   }
5336 #endif
5337   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5338   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5339     if( pFunc->iDistinct>=0 ){
5340       Expr *pE = pFunc->pExpr;
5341       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5342       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5343         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5344            "argument");
5345         pFunc->iDistinct = -1;
5346       }else{
5347         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5348         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5349                           (char*)pKeyInfo, P4_KEYINFO);
5350       }
5351     }
5352   }
5353 }
5354 
5355 /*
5356 ** Invoke the OP_AggFinalize opcode for every aggregate function
5357 ** in the AggInfo structure.
5358 */
5359 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5360   Vdbe *v = pParse->pVdbe;
5361   int i;
5362   struct AggInfo_func *pF;
5363   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5364     ExprList *pList = pF->pExpr->x.pList;
5365     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5366     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5367     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5368   }
5369 }
5370 
5371 
5372 /*
5373 ** Update the accumulator memory cells for an aggregate based on
5374 ** the current cursor position.
5375 **
5376 ** If regAcc is non-zero and there are no min() or max() aggregates
5377 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5378 ** registers if register regAcc contains 0. The caller will take care
5379 ** of setting and clearing regAcc.
5380 */
5381 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5382   Vdbe *v = pParse->pVdbe;
5383   int i;
5384   int regHit = 0;
5385   int addrHitTest = 0;
5386   struct AggInfo_func *pF;
5387   struct AggInfo_col *pC;
5388 
5389   pAggInfo->directMode = 1;
5390   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5391     int nArg;
5392     int addrNext = 0;
5393     int regAgg;
5394     ExprList *pList = pF->pExpr->x.pList;
5395     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5396     assert( !IsWindowFunc(pF->pExpr) );
5397     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5398       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5399       if( pAggInfo->nAccumulator
5400        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5401       ){
5402         if( regHit==0 ) regHit = ++pParse->nMem;
5403         /* If this is the first row of the group (regAcc==0), clear the
5404         ** "magnet" register regHit so that the accumulator registers
5405         ** are populated if the FILTER clause jumps over the the
5406         ** invocation of min() or max() altogether. Or, if this is not
5407         ** the first row (regAcc==1), set the magnet register so that the
5408         ** accumulators are not populated unless the min()/max() is invoked and
5409         ** indicates that they should be.  */
5410         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5411       }
5412       addrNext = sqlite3VdbeMakeLabel(pParse);
5413       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5414     }
5415     if( pList ){
5416       nArg = pList->nExpr;
5417       regAgg = sqlite3GetTempRange(pParse, nArg);
5418       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5419     }else{
5420       nArg = 0;
5421       regAgg = 0;
5422     }
5423     if( pF->iDistinct>=0 ){
5424       if( addrNext==0 ){
5425         addrNext = sqlite3VdbeMakeLabel(pParse);
5426       }
5427       testcase( nArg==0 );  /* Error condition */
5428       testcase( nArg>1 );   /* Also an error */
5429       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5430     }
5431     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5432       CollSeq *pColl = 0;
5433       struct ExprList_item *pItem;
5434       int j;
5435       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5436       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5437         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5438       }
5439       if( !pColl ){
5440         pColl = pParse->db->pDfltColl;
5441       }
5442       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5443       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5444     }
5445     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5446     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5447     sqlite3VdbeChangeP5(v, (u8)nArg);
5448     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5449     if( addrNext ){
5450       sqlite3VdbeResolveLabel(v, addrNext);
5451     }
5452   }
5453   if( regHit==0 && pAggInfo->nAccumulator ){
5454     regHit = regAcc;
5455   }
5456   if( regHit ){
5457     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5458   }
5459   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5460     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5461   }
5462 
5463   pAggInfo->directMode = 0;
5464   if( addrHitTest ){
5465     sqlite3VdbeJumpHere(v, addrHitTest);
5466   }
5467 }
5468 
5469 /*
5470 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5471 ** count(*) query ("SELECT count(*) FROM pTab").
5472 */
5473 #ifndef SQLITE_OMIT_EXPLAIN
5474 static void explainSimpleCount(
5475   Parse *pParse,                  /* Parse context */
5476   Table *pTab,                    /* Table being queried */
5477   Index *pIdx                     /* Index used to optimize scan, or NULL */
5478 ){
5479   if( pParse->explain==2 ){
5480     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5481     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5482         pTab->zName,
5483         bCover ? " USING COVERING INDEX " : "",
5484         bCover ? pIdx->zName : ""
5485     );
5486   }
5487 }
5488 #else
5489 # define explainSimpleCount(a,b,c)
5490 #endif
5491 
5492 /*
5493 ** sqlite3WalkExpr() callback used by havingToWhere().
5494 **
5495 ** If the node passed to the callback is a TK_AND node, return
5496 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5497 **
5498 ** Otherwise, return WRC_Prune. In this case, also check if the
5499 ** sub-expression matches the criteria for being moved to the WHERE
5500 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5501 ** within the HAVING expression with a constant "1".
5502 */
5503 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5504   if( pExpr->op!=TK_AND ){
5505     Select *pS = pWalker->u.pSelect;
5506     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5507       sqlite3 *db = pWalker->pParse->db;
5508       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5509       if( pNew ){
5510         Expr *pWhere = pS->pWhere;
5511         SWAP(Expr, *pNew, *pExpr);
5512         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5513         pS->pWhere = pNew;
5514         pWalker->eCode = 1;
5515       }
5516     }
5517     return WRC_Prune;
5518   }
5519   return WRC_Continue;
5520 }
5521 
5522 /*
5523 ** Transfer eligible terms from the HAVING clause of a query, which is
5524 ** processed after grouping, to the WHERE clause, which is processed before
5525 ** grouping. For example, the query:
5526 **
5527 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5528 **
5529 ** can be rewritten as:
5530 **
5531 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5532 **
5533 ** A term of the HAVING expression is eligible for transfer if it consists
5534 ** entirely of constants and expressions that are also GROUP BY terms that
5535 ** use the "BINARY" collation sequence.
5536 */
5537 static void havingToWhere(Parse *pParse, Select *p){
5538   Walker sWalker;
5539   memset(&sWalker, 0, sizeof(sWalker));
5540   sWalker.pParse = pParse;
5541   sWalker.xExprCallback = havingToWhereExprCb;
5542   sWalker.u.pSelect = p;
5543   sqlite3WalkExpr(&sWalker, p->pHaving);
5544 #if SELECTTRACE_ENABLED
5545   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5546     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5547     sqlite3TreeViewSelect(0, p, 0);
5548   }
5549 #endif
5550 }
5551 
5552 /*
5553 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5554 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5555 ** then return 0.
5556 */
5557 static struct SrcList_item *isSelfJoinView(
5558   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5559   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5560 ){
5561   struct SrcList_item *pItem;
5562   for(pItem = pTabList->a; pItem<pThis; pItem++){
5563     Select *pS1;
5564     if( pItem->pSelect==0 ) continue;
5565     if( pItem->fg.viaCoroutine ) continue;
5566     if( pItem->zName==0 ) continue;
5567     assert( pItem->pTab!=0 );
5568     assert( pThis->pTab!=0 );
5569     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5570     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5571     pS1 = pItem->pSelect;
5572     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5573       /* The query flattener left two different CTE tables with identical
5574       ** names in the same FROM clause. */
5575       continue;
5576     }
5577     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5578      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5579     ){
5580       /* The view was modified by some other optimization such as
5581       ** pushDownWhereTerms() */
5582       continue;
5583     }
5584     return pItem;
5585   }
5586   return 0;
5587 }
5588 
5589 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5590 /*
5591 ** Attempt to transform a query of the form
5592 **
5593 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5594 **
5595 ** Into this:
5596 **
5597 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5598 **
5599 ** The transformation only works if all of the following are true:
5600 **
5601 **   *  The subquery is a UNION ALL of two or more terms
5602 **   *  The subquery does not have a LIMIT clause
5603 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5604 **   *  The outer query is a simple count(*) with no WHERE clause or other
5605 **      extraneous syntax.
5606 **
5607 ** Return TRUE if the optimization is undertaken.
5608 */
5609 static int countOfViewOptimization(Parse *pParse, Select *p){
5610   Select *pSub, *pPrior;
5611   Expr *pExpr;
5612   Expr *pCount;
5613   sqlite3 *db;
5614   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5615   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5616   if( p->pWhere ) return 0;
5617   if( p->pGroupBy ) return 0;
5618   pExpr = p->pEList->a[0].pExpr;
5619   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5620   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5621   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5622   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5623   pSub = p->pSrc->a[0].pSelect;
5624   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5625   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5626   do{
5627     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5628     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5629     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5630     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5631     pSub = pSub->pPrior;                              /* Repeat over compound */
5632   }while( pSub );
5633 
5634   /* If we reach this point then it is OK to perform the transformation */
5635 
5636   db = pParse->db;
5637   pCount = pExpr;
5638   pExpr = 0;
5639   pSub = p->pSrc->a[0].pSelect;
5640   p->pSrc->a[0].pSelect = 0;
5641   sqlite3SrcListDelete(db, p->pSrc);
5642   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5643   while( pSub ){
5644     Expr *pTerm;
5645     pPrior = pSub->pPrior;
5646     pSub->pPrior = 0;
5647     pSub->pNext = 0;
5648     pSub->selFlags |= SF_Aggregate;
5649     pSub->selFlags &= ~SF_Compound;
5650     pSub->nSelectRow = 0;
5651     sqlite3ExprListDelete(db, pSub->pEList);
5652     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5653     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5654     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5655     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5656     if( pExpr==0 ){
5657       pExpr = pTerm;
5658     }else{
5659       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5660     }
5661     pSub = pPrior;
5662   }
5663   p->pEList->a[0].pExpr = pExpr;
5664   p->selFlags &= ~SF_Aggregate;
5665 
5666 #if SELECTTRACE_ENABLED
5667   if( sqlite3SelectTrace & 0x400 ){
5668     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5669     sqlite3TreeViewSelect(0, p, 0);
5670   }
5671 #endif
5672   return 1;
5673 }
5674 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5675 
5676 /*
5677 ** Generate code for the SELECT statement given in the p argument.
5678 **
5679 ** The results are returned according to the SelectDest structure.
5680 ** See comments in sqliteInt.h for further information.
5681 **
5682 ** This routine returns the number of errors.  If any errors are
5683 ** encountered, then an appropriate error message is left in
5684 ** pParse->zErrMsg.
5685 **
5686 ** This routine does NOT free the Select structure passed in.  The
5687 ** calling function needs to do that.
5688 */
5689 int sqlite3Select(
5690   Parse *pParse,         /* The parser context */
5691   Select *p,             /* The SELECT statement being coded. */
5692   SelectDest *pDest      /* What to do with the query results */
5693 ){
5694   int i, j;              /* Loop counters */
5695   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5696   Vdbe *v;               /* The virtual machine under construction */
5697   int isAgg;             /* True for select lists like "count(*)" */
5698   ExprList *pEList = 0;  /* List of columns to extract. */
5699   SrcList *pTabList;     /* List of tables to select from */
5700   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5701   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5702   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5703   int rc = 1;            /* Value to return from this function */
5704   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5705   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5706   AggInfo sAggInfo;      /* Information used by aggregate queries */
5707   int iEnd;              /* Address of the end of the query */
5708   sqlite3 *db;           /* The database connection */
5709   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5710   u8 minMaxFlag;                 /* Flag for min/max queries */
5711 
5712   db = pParse->db;
5713   v = sqlite3GetVdbe(pParse);
5714   if( p==0 || db->mallocFailed || pParse->nErr ){
5715     return 1;
5716   }
5717   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5718   memset(&sAggInfo, 0, sizeof(sAggInfo));
5719 #if SELECTTRACE_ENABLED
5720   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5721   if( sqlite3SelectTrace & 0x100 ){
5722     sqlite3TreeViewSelect(0, p, 0);
5723   }
5724 #endif
5725 
5726   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5727   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5728   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5729   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5730   if( IgnorableOrderby(pDest) ){
5731     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5732            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5733            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5734            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5735     /* If ORDER BY makes no difference in the output then neither does
5736     ** DISTINCT so it can be removed too. */
5737     sqlite3ExprListDelete(db, p->pOrderBy);
5738     p->pOrderBy = 0;
5739     p->selFlags &= ~SF_Distinct;
5740   }
5741   sqlite3SelectPrep(pParse, p, 0);
5742   if( pParse->nErr || db->mallocFailed ){
5743     goto select_end;
5744   }
5745   assert( p->pEList!=0 );
5746 #if SELECTTRACE_ENABLED
5747   if( sqlite3SelectTrace & 0x104 ){
5748     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5749     sqlite3TreeViewSelect(0, p, 0);
5750   }
5751 #endif
5752 
5753   if( pDest->eDest==SRT_Output ){
5754     generateColumnNames(pParse, p);
5755   }
5756 
5757 #ifndef SQLITE_OMIT_WINDOWFUNC
5758   rc = sqlite3WindowRewrite(pParse, p);
5759   if( rc ){
5760     assert( db->mallocFailed || pParse->nErr>0 );
5761     goto select_end;
5762   }
5763 #if SELECTTRACE_ENABLED
5764   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5765     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5766     sqlite3TreeViewSelect(0, p, 0);
5767   }
5768 #endif
5769 #endif /* SQLITE_OMIT_WINDOWFUNC */
5770   pTabList = p->pSrc;
5771   isAgg = (p->selFlags & SF_Aggregate)!=0;
5772   memset(&sSort, 0, sizeof(sSort));
5773   sSort.pOrderBy = p->pOrderBy;
5774 
5775   /* Try to various optimizations (flattening subqueries, and strength
5776   ** reduction of join operators) in the FROM clause up into the main query
5777   */
5778 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5779   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5780     struct SrcList_item *pItem = &pTabList->a[i];
5781     Select *pSub = pItem->pSelect;
5782     Table *pTab = pItem->pTab;
5783 
5784     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5785     ** of the LEFT JOIN used in the WHERE clause.
5786     */
5787     if( (pItem->fg.jointype & JT_LEFT)!=0
5788      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5789      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5790     ){
5791       SELECTTRACE(0x100,pParse,p,
5792                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5793       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5794       unsetJoinExpr(p->pWhere, pItem->iCursor);
5795     }
5796 
5797     /* No futher action if this term of the FROM clause is no a subquery */
5798     if( pSub==0 ) continue;
5799 
5800     /* Catch mismatch in the declared columns of a view and the number of
5801     ** columns in the SELECT on the RHS */
5802     if( pTab->nCol!=pSub->pEList->nExpr ){
5803       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5804                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5805       goto select_end;
5806     }
5807 
5808     /* Do not try to flatten an aggregate subquery.
5809     **
5810     ** Flattening an aggregate subquery is only possible if the outer query
5811     ** is not a join.  But if the outer query is not a join, then the subquery
5812     ** will be implemented as a co-routine and there is no advantage to
5813     ** flattening in that case.
5814     */
5815     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5816     assert( pSub->pGroupBy==0 );
5817 
5818     /* If the outer query contains a "complex" result set (that is,
5819     ** if the result set of the outer query uses functions or subqueries)
5820     ** and if the subquery contains an ORDER BY clause and if
5821     ** it will be implemented as a co-routine, then do not flatten.  This
5822     ** restriction allows SQL constructs like this:
5823     **
5824     **  SELECT expensive_function(x)
5825     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5826     **
5827     ** The expensive_function() is only computed on the 10 rows that
5828     ** are output, rather than every row of the table.
5829     **
5830     ** The requirement that the outer query have a complex result set
5831     ** means that flattening does occur on simpler SQL constraints without
5832     ** the expensive_function() like:
5833     **
5834     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5835     */
5836     if( pSub->pOrderBy!=0
5837      && i==0
5838      && (p->selFlags & SF_ComplexResult)!=0
5839      && (pTabList->nSrc==1
5840          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5841     ){
5842       continue;
5843     }
5844 
5845     if( flattenSubquery(pParse, p, i, isAgg) ){
5846       if( pParse->nErr ) goto select_end;
5847       /* This subquery can be absorbed into its parent. */
5848       i = -1;
5849     }
5850     pTabList = p->pSrc;
5851     if( db->mallocFailed ) goto select_end;
5852     if( !IgnorableOrderby(pDest) ){
5853       sSort.pOrderBy = p->pOrderBy;
5854     }
5855   }
5856 #endif
5857 
5858 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5859   /* Handle compound SELECT statements using the separate multiSelect()
5860   ** procedure.
5861   */
5862   if( p->pPrior ){
5863     rc = multiSelect(pParse, p, pDest);
5864 #if SELECTTRACE_ENABLED
5865     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5866     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5867       sqlite3TreeViewSelect(0, p, 0);
5868     }
5869 #endif
5870     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5871     return rc;
5872   }
5873 #endif
5874 
5875   /* Do the WHERE-clause constant propagation optimization if this is
5876   ** a join.  No need to speed time on this operation for non-join queries
5877   ** as the equivalent optimization will be handled by query planner in
5878   ** sqlite3WhereBegin().
5879   */
5880   if( pTabList->nSrc>1
5881    && OptimizationEnabled(db, SQLITE_PropagateConst)
5882    && propagateConstants(pParse, p)
5883   ){
5884 #if SELECTTRACE_ENABLED
5885     if( sqlite3SelectTrace & 0x100 ){
5886       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5887       sqlite3TreeViewSelect(0, p, 0);
5888     }
5889 #endif
5890   }else{
5891     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5892   }
5893 
5894 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5895   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5896    && countOfViewOptimization(pParse, p)
5897   ){
5898     if( db->mallocFailed ) goto select_end;
5899     pEList = p->pEList;
5900     pTabList = p->pSrc;
5901   }
5902 #endif
5903 
5904   /* For each term in the FROM clause, do two things:
5905   ** (1) Authorized unreferenced tables
5906   ** (2) Generate code for all sub-queries
5907   */
5908   for(i=0; i<pTabList->nSrc; i++){
5909     struct SrcList_item *pItem = &pTabList->a[i];
5910     SelectDest dest;
5911     Select *pSub;
5912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5913     const char *zSavedAuthContext;
5914 #endif
5915 
5916     /* Issue SQLITE_READ authorizations with a fake column name for any
5917     ** tables that are referenced but from which no values are extracted.
5918     ** Examples of where these kinds of null SQLITE_READ authorizations
5919     ** would occur:
5920     **
5921     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5922     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5923     **
5924     ** The fake column name is an empty string.  It is possible for a table to
5925     ** have a column named by the empty string, in which case there is no way to
5926     ** distinguish between an unreferenced table and an actual reference to the
5927     ** "" column. The original design was for the fake column name to be a NULL,
5928     ** which would be unambiguous.  But legacy authorization callbacks might
5929     ** assume the column name is non-NULL and segfault.  The use of an empty
5930     ** string for the fake column name seems safer.
5931     */
5932     if( pItem->colUsed==0 && pItem->zName!=0 ){
5933       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5934     }
5935 
5936 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5937     /* Generate code for all sub-queries in the FROM clause
5938     */
5939     pSub = pItem->pSelect;
5940     if( pSub==0 ) continue;
5941 
5942     /* The code for a subquery should only be generated once, though it is
5943     ** technically harmless for it to be generated multiple times. The
5944     ** following assert() will detect if something changes to cause
5945     ** the same subquery to be coded multiple times, as a signal to the
5946     ** developers to try to optimize the situation.
5947     **
5948     ** Update 2019-07-24:
5949     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5950     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5951     ** coded twice.  So this assert() now becomes a testcase().  It should
5952     ** be very rare, though.
5953     */
5954     testcase( pItem->addrFillSub!=0 );
5955 
5956     /* Increment Parse.nHeight by the height of the largest expression
5957     ** tree referred to by this, the parent select. The child select
5958     ** may contain expression trees of at most
5959     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5960     ** more conservative than necessary, but much easier than enforcing
5961     ** an exact limit.
5962     */
5963     pParse->nHeight += sqlite3SelectExprHeight(p);
5964 
5965     /* Make copies of constant WHERE-clause terms in the outer query down
5966     ** inside the subquery.  This can help the subquery to run more efficiently.
5967     */
5968     if( OptimizationEnabled(db, SQLITE_PushDown)
5969      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5970                            (pItem->fg.jointype & JT_OUTER)!=0)
5971     ){
5972 #if SELECTTRACE_ENABLED
5973       if( sqlite3SelectTrace & 0x100 ){
5974         SELECTTRACE(0x100,pParse,p,
5975             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5976         sqlite3TreeViewSelect(0, p, 0);
5977       }
5978 #endif
5979     }else{
5980       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5981     }
5982 
5983     zSavedAuthContext = pParse->zAuthContext;
5984     pParse->zAuthContext = pItem->zName;
5985 
5986     /* Generate code to implement the subquery
5987     **
5988     ** The subquery is implemented as a co-routine if the subquery is
5989     ** guaranteed to be the outer loop (so that it does not need to be
5990     ** computed more than once)
5991     **
5992     ** TODO: Are there other reasons beside (1) to use a co-routine
5993     ** implementation?
5994     */
5995     if( i==0
5996      && (pTabList->nSrc==1
5997             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5998     ){
5999       /* Implement a co-routine that will return a single row of the result
6000       ** set on each invocation.
6001       */
6002       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6003 
6004       pItem->regReturn = ++pParse->nMem;
6005       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6006       VdbeComment((v, "%s", pItem->pTab->zName));
6007       pItem->addrFillSub = addrTop;
6008       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6009       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6010       sqlite3Select(pParse, pSub, &dest);
6011       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6012       pItem->fg.viaCoroutine = 1;
6013       pItem->regResult = dest.iSdst;
6014       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6015       sqlite3VdbeJumpHere(v, addrTop-1);
6016       sqlite3ClearTempRegCache(pParse);
6017     }else{
6018       /* Generate a subroutine that will fill an ephemeral table with
6019       ** the content of this subquery.  pItem->addrFillSub will point
6020       ** to the address of the generated subroutine.  pItem->regReturn
6021       ** is a register allocated to hold the subroutine return address
6022       */
6023       int topAddr;
6024       int onceAddr = 0;
6025       int retAddr;
6026       struct SrcList_item *pPrior;
6027 
6028       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6029       pItem->regReturn = ++pParse->nMem;
6030       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6031       pItem->addrFillSub = topAddr+1;
6032       if( pItem->fg.isCorrelated==0 ){
6033         /* If the subquery is not correlated and if we are not inside of
6034         ** a trigger, then we only need to compute the value of the subquery
6035         ** once. */
6036         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6037         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6038       }else{
6039         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6040       }
6041       pPrior = isSelfJoinView(pTabList, pItem);
6042       if( pPrior ){
6043         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6044         assert( pPrior->pSelect!=0 );
6045         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6046       }else{
6047         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6048         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6049         sqlite3Select(pParse, pSub, &dest);
6050       }
6051       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6052       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6053       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6054       VdbeComment((v, "end %s", pItem->pTab->zName));
6055       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6056       sqlite3ClearTempRegCache(pParse);
6057     }
6058     if( db->mallocFailed ) goto select_end;
6059     pParse->nHeight -= sqlite3SelectExprHeight(p);
6060     pParse->zAuthContext = zSavedAuthContext;
6061 #endif
6062   }
6063 
6064   /* Various elements of the SELECT copied into local variables for
6065   ** convenience */
6066   pEList = p->pEList;
6067   pWhere = p->pWhere;
6068   pGroupBy = p->pGroupBy;
6069   pHaving = p->pHaving;
6070   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6071 
6072 #if SELECTTRACE_ENABLED
6073   if( sqlite3SelectTrace & 0x400 ){
6074     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6075     sqlite3TreeViewSelect(0, p, 0);
6076   }
6077 #endif
6078 
6079   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6080   ** if the select-list is the same as the ORDER BY list, then this query
6081   ** can be rewritten as a GROUP BY. In other words, this:
6082   **
6083   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6084   **
6085   ** is transformed to:
6086   **
6087   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6088   **
6089   ** The second form is preferred as a single index (or temp-table) may be
6090   ** used for both the ORDER BY and DISTINCT processing. As originally
6091   ** written the query must use a temp-table for at least one of the ORDER
6092   ** BY and DISTINCT, and an index or separate temp-table for the other.
6093   */
6094   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6095    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6096    && p->pWin==0
6097   ){
6098     p->selFlags &= ~SF_Distinct;
6099     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6100     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6101     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6102     ** original setting of the SF_Distinct flag, not the current setting */
6103     assert( sDistinct.isTnct );
6104 
6105 #if SELECTTRACE_ENABLED
6106     if( sqlite3SelectTrace & 0x400 ){
6107       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6108       sqlite3TreeViewSelect(0, p, 0);
6109     }
6110 #endif
6111   }
6112 
6113   /* If there is an ORDER BY clause, then create an ephemeral index to
6114   ** do the sorting.  But this sorting ephemeral index might end up
6115   ** being unused if the data can be extracted in pre-sorted order.
6116   ** If that is the case, then the OP_OpenEphemeral instruction will be
6117   ** changed to an OP_Noop once we figure out that the sorting index is
6118   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6119   ** that change.
6120   */
6121   if( sSort.pOrderBy ){
6122     KeyInfo *pKeyInfo;
6123     pKeyInfo = sqlite3KeyInfoFromExprList(
6124         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6125     sSort.iECursor = pParse->nTab++;
6126     sSort.addrSortIndex =
6127       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6128           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6129           (char*)pKeyInfo, P4_KEYINFO
6130       );
6131   }else{
6132     sSort.addrSortIndex = -1;
6133   }
6134 
6135   /* If the output is destined for a temporary table, open that table.
6136   */
6137   if( pDest->eDest==SRT_EphemTab ){
6138     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6139   }
6140 
6141   /* Set the limiter.
6142   */
6143   iEnd = sqlite3VdbeMakeLabel(pParse);
6144   if( (p->selFlags & SF_FixedLimit)==0 ){
6145     p->nSelectRow = 320;  /* 4 billion rows */
6146   }
6147   computeLimitRegisters(pParse, p, iEnd);
6148   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6149     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6150     sSort.sortFlags |= SORTFLAG_UseSorter;
6151   }
6152 
6153   /* Open an ephemeral index to use for the distinct set.
6154   */
6155   if( p->selFlags & SF_Distinct ){
6156     sDistinct.tabTnct = pParse->nTab++;
6157     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6158                        sDistinct.tabTnct, 0, 0,
6159                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6160                        P4_KEYINFO);
6161     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6162     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6163   }else{
6164     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6165   }
6166 
6167   if( !isAgg && pGroupBy==0 ){
6168     /* No aggregate functions and no GROUP BY clause */
6169     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6170                    | (p->selFlags & SF_FixedLimit);
6171 #ifndef SQLITE_OMIT_WINDOWFUNC
6172     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6173     if( pWin ){
6174       sqlite3WindowCodeInit(pParse, pWin);
6175     }
6176 #endif
6177     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6178 
6179 
6180     /* Begin the database scan. */
6181     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6182     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6183                                p->pEList, wctrlFlags, p->nSelectRow);
6184     if( pWInfo==0 ) goto select_end;
6185     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6186       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6187     }
6188     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6189       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6190     }
6191     if( sSort.pOrderBy ){
6192       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6193       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6194       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6195         sSort.pOrderBy = 0;
6196       }
6197     }
6198 
6199     /* If sorting index that was created by a prior OP_OpenEphemeral
6200     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6201     ** into an OP_Noop.
6202     */
6203     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6204       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6205     }
6206 
6207     assert( p->pEList==pEList );
6208 #ifndef SQLITE_OMIT_WINDOWFUNC
6209     if( pWin ){
6210       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6211       int iCont = sqlite3VdbeMakeLabel(pParse);
6212       int iBreak = sqlite3VdbeMakeLabel(pParse);
6213       int regGosub = ++pParse->nMem;
6214 
6215       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6216 
6217       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6218       sqlite3VdbeResolveLabel(v, addrGosub);
6219       VdbeNoopComment((v, "inner-loop subroutine"));
6220       sSort.labelOBLopt = 0;
6221       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6222       sqlite3VdbeResolveLabel(v, iCont);
6223       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6224       VdbeComment((v, "end inner-loop subroutine"));
6225       sqlite3VdbeResolveLabel(v, iBreak);
6226     }else
6227 #endif /* SQLITE_OMIT_WINDOWFUNC */
6228     {
6229       /* Use the standard inner loop. */
6230       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6231           sqlite3WhereContinueLabel(pWInfo),
6232           sqlite3WhereBreakLabel(pWInfo));
6233 
6234       /* End the database scan loop.
6235       */
6236       sqlite3WhereEnd(pWInfo);
6237     }
6238   }else{
6239     /* This case when there exist aggregate functions or a GROUP BY clause
6240     ** or both */
6241     NameContext sNC;    /* Name context for processing aggregate information */
6242     int iAMem;          /* First Mem address for storing current GROUP BY */
6243     int iBMem;          /* First Mem address for previous GROUP BY */
6244     int iUseFlag;       /* Mem address holding flag indicating that at least
6245                         ** one row of the input to the aggregator has been
6246                         ** processed */
6247     int iAbortFlag;     /* Mem address which causes query abort if positive */
6248     int groupBySort;    /* Rows come from source in GROUP BY order */
6249     int addrEnd;        /* End of processing for this SELECT */
6250     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6251     int sortOut = 0;    /* Output register from the sorter */
6252     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6253 
6254     /* Remove any and all aliases between the result set and the
6255     ** GROUP BY clause.
6256     */
6257     if( pGroupBy ){
6258       int k;                        /* Loop counter */
6259       struct ExprList_item *pItem;  /* For looping over expression in a list */
6260 
6261       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6262         pItem->u.x.iAlias = 0;
6263       }
6264       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6265         pItem->u.x.iAlias = 0;
6266       }
6267       assert( 66==sqlite3LogEst(100) );
6268       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6269 
6270       /* If there is both a GROUP BY and an ORDER BY clause and they are
6271       ** identical, then it may be possible to disable the ORDER BY clause
6272       ** on the grounds that the GROUP BY will cause elements to come out
6273       ** in the correct order. It also may not - the GROUP BY might use a
6274       ** database index that causes rows to be grouped together as required
6275       ** but not actually sorted. Either way, record the fact that the
6276       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6277       ** variable.  */
6278       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6279         int ii;
6280         /* The GROUP BY processing doesn't care whether rows are delivered in
6281         ** ASC or DESC order - only that each group is returned contiguously.
6282         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6283         ** ORDER BY to maximize the chances of rows being delivered in an
6284         ** order that makes the ORDER BY redundant.  */
6285         for(ii=0; ii<pGroupBy->nExpr; ii++){
6286           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6287           pGroupBy->a[ii].sortFlags = sortFlags;
6288         }
6289         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6290           orderByGrp = 1;
6291         }
6292       }
6293     }else{
6294       assert( 0==sqlite3LogEst(1) );
6295       p->nSelectRow = 0;
6296     }
6297 
6298     /* Create a label to jump to when we want to abort the query */
6299     addrEnd = sqlite3VdbeMakeLabel(pParse);
6300 
6301     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6302     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6303     ** SELECT statement.
6304     */
6305     memset(&sNC, 0, sizeof(sNC));
6306     sNC.pParse = pParse;
6307     sNC.pSrcList = pTabList;
6308     sNC.uNC.pAggInfo = &sAggInfo;
6309     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6310     sAggInfo.mnReg = pParse->nMem+1;
6311     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6312     sAggInfo.pGroupBy = pGroupBy;
6313     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6314     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6315     if( pHaving ){
6316       if( pGroupBy ){
6317         assert( pWhere==p->pWhere );
6318         assert( pHaving==p->pHaving );
6319         assert( pGroupBy==p->pGroupBy );
6320         havingToWhere(pParse, p);
6321         pWhere = p->pWhere;
6322       }
6323       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6324     }
6325     sAggInfo.nAccumulator = sAggInfo.nColumn;
6326     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6327       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6328     }else{
6329       minMaxFlag = WHERE_ORDERBY_NORMAL;
6330     }
6331     for(i=0; i<sAggInfo.nFunc; i++){
6332       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6333       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6334       sNC.ncFlags |= NC_InAggFunc;
6335       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6336 #ifndef SQLITE_OMIT_WINDOWFUNC
6337       assert( !IsWindowFunc(pExpr) );
6338       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6339         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6340       }
6341 #endif
6342       sNC.ncFlags &= ~NC_InAggFunc;
6343     }
6344     sAggInfo.mxReg = pParse->nMem;
6345     if( db->mallocFailed ) goto select_end;
6346 #if SELECTTRACE_ENABLED
6347     if( sqlite3SelectTrace & 0x400 ){
6348       int ii;
6349       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6350       sqlite3TreeViewSelect(0, p, 0);
6351       for(ii=0; ii<sAggInfo.nColumn; ii++){
6352         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6353             ii, sAggInfo.aCol[ii].iMem);
6354         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6355       }
6356       for(ii=0; ii<sAggInfo.nFunc; ii++){
6357         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6358             ii, sAggInfo.aFunc[ii].iMem);
6359         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6360       }
6361     }
6362 #endif
6363 
6364 
6365     /* Processing for aggregates with GROUP BY is very different and
6366     ** much more complex than aggregates without a GROUP BY.
6367     */
6368     if( pGroupBy ){
6369       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6370       int addr1;          /* A-vs-B comparision jump */
6371       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6372       int regOutputRow;   /* Return address register for output subroutine */
6373       int addrSetAbort;   /* Set the abort flag and return */
6374       int addrTopOfLoop;  /* Top of the input loop */
6375       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6376       int addrReset;      /* Subroutine for resetting the accumulator */
6377       int regReset;       /* Return address register for reset subroutine */
6378 
6379       /* If there is a GROUP BY clause we might need a sorting index to
6380       ** implement it.  Allocate that sorting index now.  If it turns out
6381       ** that we do not need it after all, the OP_SorterOpen instruction
6382       ** will be converted into a Noop.
6383       */
6384       sAggInfo.sortingIdx = pParse->nTab++;
6385       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6386       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6387           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6388           0, (char*)pKeyInfo, P4_KEYINFO);
6389 
6390       /* Initialize memory locations used by GROUP BY aggregate processing
6391       */
6392       iUseFlag = ++pParse->nMem;
6393       iAbortFlag = ++pParse->nMem;
6394       regOutputRow = ++pParse->nMem;
6395       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6396       regReset = ++pParse->nMem;
6397       addrReset = sqlite3VdbeMakeLabel(pParse);
6398       iAMem = pParse->nMem + 1;
6399       pParse->nMem += pGroupBy->nExpr;
6400       iBMem = pParse->nMem + 1;
6401       pParse->nMem += pGroupBy->nExpr;
6402       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6403       VdbeComment((v, "clear abort flag"));
6404       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6405 
6406       /* Begin a loop that will extract all source rows in GROUP BY order.
6407       ** This might involve two separate loops with an OP_Sort in between, or
6408       ** it might be a single loop that uses an index to extract information
6409       ** in the right order to begin with.
6410       */
6411       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6412       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6413       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6414           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6415       );
6416       if( pWInfo==0 ) goto select_end;
6417       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6418         /* The optimizer is able to deliver rows in group by order so
6419         ** we do not have to sort.  The OP_OpenEphemeral table will be
6420         ** cancelled later because we still need to use the pKeyInfo
6421         */
6422         groupBySort = 0;
6423       }else{
6424         /* Rows are coming out in undetermined order.  We have to push
6425         ** each row into a sorting index, terminate the first loop,
6426         ** then loop over the sorting index in order to get the output
6427         ** in sorted order
6428         */
6429         int regBase;
6430         int regRecord;
6431         int nCol;
6432         int nGroupBy;
6433 
6434         explainTempTable(pParse,
6435             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6436                     "DISTINCT" : "GROUP BY");
6437 
6438         groupBySort = 1;
6439         nGroupBy = pGroupBy->nExpr;
6440         nCol = nGroupBy;
6441         j = nGroupBy;
6442         for(i=0; i<sAggInfo.nColumn; i++){
6443           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6444             nCol++;
6445             j++;
6446           }
6447         }
6448         regBase = sqlite3GetTempRange(pParse, nCol);
6449         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6450         j = nGroupBy;
6451         for(i=0; i<sAggInfo.nColumn; i++){
6452           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6453           if( pCol->iSorterColumn>=j ){
6454             int r1 = j + regBase;
6455             sqlite3ExprCodeGetColumnOfTable(v,
6456                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6457             j++;
6458           }
6459         }
6460         regRecord = sqlite3GetTempReg(pParse);
6461         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6462         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6463         sqlite3ReleaseTempReg(pParse, regRecord);
6464         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6465         sqlite3WhereEnd(pWInfo);
6466         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6467         sortOut = sqlite3GetTempReg(pParse);
6468         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6469         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6470         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6471         sAggInfo.useSortingIdx = 1;
6472       }
6473 
6474       /* If the index or temporary table used by the GROUP BY sort
6475       ** will naturally deliver rows in the order required by the ORDER BY
6476       ** clause, cancel the ephemeral table open coded earlier.
6477       **
6478       ** This is an optimization - the correct answer should result regardless.
6479       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6480       ** disable this optimization for testing purposes.  */
6481       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6482        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6483       ){
6484         sSort.pOrderBy = 0;
6485         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6486       }
6487 
6488       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6489       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6490       ** Then compare the current GROUP BY terms against the GROUP BY terms
6491       ** from the previous row currently stored in a0, a1, a2...
6492       */
6493       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6494       if( groupBySort ){
6495         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6496                           sortOut, sortPTab);
6497       }
6498       for(j=0; j<pGroupBy->nExpr; j++){
6499         if( groupBySort ){
6500           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6501         }else{
6502           sAggInfo.directMode = 1;
6503           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6504         }
6505       }
6506       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6507                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6508       addr1 = sqlite3VdbeCurrentAddr(v);
6509       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6510 
6511       /* Generate code that runs whenever the GROUP BY changes.
6512       ** Changes in the GROUP BY are detected by the previous code
6513       ** block.  If there were no changes, this block is skipped.
6514       **
6515       ** This code copies current group by terms in b0,b1,b2,...
6516       ** over to a0,a1,a2.  It then calls the output subroutine
6517       ** and resets the aggregate accumulator registers in preparation
6518       ** for the next GROUP BY batch.
6519       */
6520       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6521       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6522       VdbeComment((v, "output one row"));
6523       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6524       VdbeComment((v, "check abort flag"));
6525       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6526       VdbeComment((v, "reset accumulator"));
6527 
6528       /* Update the aggregate accumulators based on the content of
6529       ** the current row
6530       */
6531       sqlite3VdbeJumpHere(v, addr1);
6532       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6533       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6534       VdbeComment((v, "indicate data in accumulator"));
6535 
6536       /* End of the loop
6537       */
6538       if( groupBySort ){
6539         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6540         VdbeCoverage(v);
6541       }else{
6542         sqlite3WhereEnd(pWInfo);
6543         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6544       }
6545 
6546       /* Output the final row of result
6547       */
6548       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6549       VdbeComment((v, "output final row"));
6550 
6551       /* Jump over the subroutines
6552       */
6553       sqlite3VdbeGoto(v, addrEnd);
6554 
6555       /* Generate a subroutine that outputs a single row of the result
6556       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6557       ** is less than or equal to zero, the subroutine is a no-op.  If
6558       ** the processing calls for the query to abort, this subroutine
6559       ** increments the iAbortFlag memory location before returning in
6560       ** order to signal the caller to abort.
6561       */
6562       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6563       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6564       VdbeComment((v, "set abort flag"));
6565       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6566       sqlite3VdbeResolveLabel(v, addrOutputRow);
6567       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6568       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6569       VdbeCoverage(v);
6570       VdbeComment((v, "Groupby result generator entry point"));
6571       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6572       finalizeAggFunctions(pParse, &sAggInfo);
6573       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6574       selectInnerLoop(pParse, p, -1, &sSort,
6575                       &sDistinct, pDest,
6576                       addrOutputRow+1, addrSetAbort);
6577       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6578       VdbeComment((v, "end groupby result generator"));
6579 
6580       /* Generate a subroutine that will reset the group-by accumulator
6581       */
6582       sqlite3VdbeResolveLabel(v, addrReset);
6583       resetAccumulator(pParse, &sAggInfo);
6584       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6585       VdbeComment((v, "indicate accumulator empty"));
6586       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6587 
6588     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6589     else {
6590 #ifndef SQLITE_OMIT_BTREECOUNT
6591       Table *pTab;
6592       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6593         /* If isSimpleCount() returns a pointer to a Table structure, then
6594         ** the SQL statement is of the form:
6595         **
6596         **   SELECT count(*) FROM <tbl>
6597         **
6598         ** where the Table structure returned represents table <tbl>.
6599         **
6600         ** This statement is so common that it is optimized specially. The
6601         ** OP_Count instruction is executed either on the intkey table that
6602         ** contains the data for table <tbl> or on one of its indexes. It
6603         ** is better to execute the op on an index, as indexes are almost
6604         ** always spread across less pages than their corresponding tables.
6605         */
6606         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6607         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6608         Index *pIdx;                         /* Iterator variable */
6609         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6610         Index *pBest = 0;                    /* Best index found so far */
6611         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6612 
6613         sqlite3CodeVerifySchema(pParse, iDb);
6614         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6615 
6616         /* Search for the index that has the lowest scan cost.
6617         **
6618         ** (2011-04-15) Do not do a full scan of an unordered index.
6619         **
6620         ** (2013-10-03) Do not count the entries in a partial index.
6621         **
6622         ** In practice the KeyInfo structure will not be used. It is only
6623         ** passed to keep OP_OpenRead happy.
6624         */
6625         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6626         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6627           if( pIdx->bUnordered==0
6628            && pIdx->szIdxRow<pTab->szTabRow
6629            && pIdx->pPartIdxWhere==0
6630            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6631           ){
6632             pBest = pIdx;
6633           }
6634         }
6635         if( pBest ){
6636           iRoot = pBest->tnum;
6637           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6638         }
6639 
6640         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6641         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6642         if( pKeyInfo ){
6643           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6644         }
6645         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6646         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6647         explainSimpleCount(pParse, pTab, pBest);
6648       }else
6649 #endif /* SQLITE_OMIT_BTREECOUNT */
6650       {
6651         int regAcc = 0;           /* "populate accumulators" flag */
6652 
6653         /* If there are accumulator registers but no min() or max() functions
6654         ** without FILTER clauses, allocate register regAcc. Register regAcc
6655         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6656         ** The code generated by updateAccumulator() uses this to ensure
6657         ** that the accumulator registers are (a) updated only once if
6658         ** there are no min() or max functions or (b) always updated for the
6659         ** first row visited by the aggregate, so that they are updated at
6660         ** least once even if the FILTER clause means the min() or max()
6661         ** function visits zero rows.  */
6662         if( sAggInfo.nAccumulator ){
6663           for(i=0; i<sAggInfo.nFunc; i++){
6664             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6665             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6666           }
6667           if( i==sAggInfo.nFunc ){
6668             regAcc = ++pParse->nMem;
6669             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6670           }
6671         }
6672 
6673         /* This case runs if the aggregate has no GROUP BY clause.  The
6674         ** processing is much simpler since there is only a single row
6675         ** of output.
6676         */
6677         assert( p->pGroupBy==0 );
6678         resetAccumulator(pParse, &sAggInfo);
6679 
6680         /* If this query is a candidate for the min/max optimization, then
6681         ** minMaxFlag will have been previously set to either
6682         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6683         ** be an appropriate ORDER BY expression for the optimization.
6684         */
6685         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6686         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6687 
6688         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6689         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6690                                    0, minMaxFlag, 0);
6691         if( pWInfo==0 ){
6692           goto select_end;
6693         }
6694         updateAccumulator(pParse, regAcc, &sAggInfo);
6695         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6696         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6697           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6698           VdbeComment((v, "%s() by index",
6699                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6700         }
6701         sqlite3WhereEnd(pWInfo);
6702         finalizeAggFunctions(pParse, &sAggInfo);
6703       }
6704 
6705       sSort.pOrderBy = 0;
6706       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6707       selectInnerLoop(pParse, p, -1, 0, 0,
6708                       pDest, addrEnd, addrEnd);
6709     }
6710     sqlite3VdbeResolveLabel(v, addrEnd);
6711 
6712   } /* endif aggregate query */
6713 
6714   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6715     explainTempTable(pParse, "DISTINCT");
6716   }
6717 
6718   /* If there is an ORDER BY clause, then we need to sort the results
6719   ** and send them to the callback one by one.
6720   */
6721   if( sSort.pOrderBy ){
6722     explainTempTable(pParse,
6723                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6724     assert( p->pEList==pEList );
6725     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6726   }
6727 
6728   /* Jump here to skip this query
6729   */
6730   sqlite3VdbeResolveLabel(v, iEnd);
6731 
6732   /* The SELECT has been coded. If there is an error in the Parse structure,
6733   ** set the return code to 1. Otherwise 0. */
6734   rc = (pParse->nErr>0);
6735 
6736   /* Control jumps to here if an error is encountered above, or upon
6737   ** successful coding of the SELECT.
6738   */
6739 select_end:
6740   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6741   sqlite3DbFree(db, sAggInfo.aCol);
6742   sqlite3DbFree(db, sAggInfo.aFunc);
6743 #if SELECTTRACE_ENABLED
6744   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6745   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6746     sqlite3TreeViewSelect(0, p, 0);
6747   }
6748 #endif
6749   ExplainQueryPlanPop(pParse);
6750   return rc;
6751 }
6752