xref: /sqlite-3.40.0/src/select.c (revision 27a770e0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.356 2007/08/16 10:09:03 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   Parse *pParse,        /* Parsing context */
43   ExprList *pEList,     /* which columns to include in the result */
44   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
45   Expr *pWhere,         /* the WHERE clause */
46   ExprList *pGroupBy,   /* the GROUP BY clause */
47   Expr *pHaving,        /* the HAVING clause */
48   ExprList *pOrderBy,   /* the ORDER BY clause */
49   int isDistinct,       /* true if the DISTINCT keyword is present */
50   Expr *pLimit,         /* LIMIT value.  NULL means not used */
51   Expr *pOffset         /* OFFSET value.  NULL means no offset */
52 ){
53   Select *pNew;
54   Select standin;
55   sqlite3 *db = pParse->db;
56   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
57   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
58   if( pNew==0 ){
59     pNew = &standin;
60     memset(pNew, 0, sizeof(*pNew));
61   }
62   if( pEList==0 ){
63     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(TK_ALL,0,0,0), 0);
64   }
65   pNew->pEList = pEList;
66   pNew->pSrc = pSrc;
67   pNew->pWhere = pWhere;
68   pNew->pGroupBy = pGroupBy;
69   pNew->pHaving = pHaving;
70   pNew->pOrderBy = pOrderBy;
71   pNew->isDistinct = isDistinct;
72   pNew->op = TK_SELECT;
73   assert( pOffset==0 || pLimit!=0 );
74   pNew->pLimit = pLimit;
75   pNew->pOffset = pOffset;
76   pNew->iLimit = -1;
77   pNew->iOffset = -1;
78   pNew->addrOpenEphm[0] = -1;
79   pNew->addrOpenEphm[1] = -1;
80   pNew->addrOpenEphm[2] = -1;
81   if( pNew==&standin) {
82     clearSelect(pNew);
83     pNew = 0;
84   }
85   return pNew;
86 }
87 
88 /*
89 ** Delete the given Select structure and all of its substructures.
90 */
91 void sqlite3SelectDelete(Select *p){
92   if( p ){
93     clearSelect(p);
94     sqlite3_free(p);
95   }
96 }
97 
98 /*
99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
100 ** type of join.  Return an integer constant that expresses that type
101 ** in terms of the following bit values:
102 **
103 **     JT_INNER
104 **     JT_CROSS
105 **     JT_OUTER
106 **     JT_NATURAL
107 **     JT_LEFT
108 **     JT_RIGHT
109 **
110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
111 **
112 ** If an illegal or unsupported join type is seen, then still return
113 ** a join type, but put an error in the pParse structure.
114 */
115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
116   int jointype = 0;
117   Token *apAll[3];
118   Token *p;
119   static const struct {
120     const char zKeyword[8];
121     u8 nChar;
122     u8 code;
123   } keywords[] = {
124     { "natural", 7, JT_NATURAL },
125     { "left",    4, JT_LEFT|JT_OUTER },
126     { "right",   5, JT_RIGHT|JT_OUTER },
127     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
128     { "outer",   5, JT_OUTER },
129     { "inner",   5, JT_INNER },
130     { "cross",   5, JT_INNER|JT_CROSS },
131   };
132   int i, j;
133   apAll[0] = pA;
134   apAll[1] = pB;
135   apAll[2] = pC;
136   for(i=0; i<3 && apAll[i]; i++){
137     p = apAll[i];
138     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
139       if( p->n==keywords[j].nChar
140           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
141         jointype |= keywords[j].code;
142         break;
143       }
144     }
145     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
146       jointype |= JT_ERROR;
147       break;
148     }
149   }
150   if(
151      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
152      (jointype & JT_ERROR)!=0
153   ){
154     const char *zSp1 = " ";
155     const char *zSp2 = " ";
156     if( pB==0 ){ zSp1++; }
157     if( pC==0 ){ zSp2++; }
158     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
159        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
160     jointype = JT_INNER;
161   }else if( jointype & JT_RIGHT ){
162     sqlite3ErrorMsg(pParse,
163       "RIGHT and FULL OUTER JOINs are not currently supported");
164     jointype = JT_INNER;
165   }
166   return jointype;
167 }
168 
169 /*
170 ** Return the index of a column in a table.  Return -1 if the column
171 ** is not contained in the table.
172 */
173 static int columnIndex(Table *pTab, const char *zCol){
174   int i;
175   for(i=0; i<pTab->nCol; i++){
176     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
177   }
178   return -1;
179 }
180 
181 /*
182 ** Set the value of a token to a '\000'-terminated string.
183 */
184 static void setToken(Token *p, const char *z){
185   p->z = (u8*)z;
186   p->n = z ? strlen(z) : 0;
187   p->dyn = 0;
188 }
189 
190 /*
191 ** Set the token to the double-quoted and escaped version of the string pointed
192 ** to by z. For example;
193 **
194 **    {a"bc}  ->  {"a""bc"}
195 */
196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
197   p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
198   p->dyn = 1;
199   if( p->z ){
200     p->n = strlen((char *)p->z);
201   }else{
202     pParse->db->mallocFailed = 1;
203   }
204 }
205 
206 /*
207 ** Create an expression node for an identifier with the name of zName
208 */
209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
210   Token dummy;
211   setToken(&dummy, zName);
212   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
213 }
214 
215 
216 /*
217 ** Add a term to the WHERE expression in *ppExpr that requires the
218 ** zCol column to be equal in the two tables pTab1 and pTab2.
219 */
220 static void addWhereTerm(
221   Parse *pParse,           /* Parsing context */
222   const char *zCol,        /* Name of the column */
223   const Table *pTab1,      /* First table */
224   const char *zAlias1,     /* Alias for first table.  May be NULL */
225   const Table *pTab2,      /* Second table */
226   const char *zAlias2,     /* Alias for second table.  May be NULL */
227   int iRightJoinTable,     /* VDBE cursor for the right table */
228   Expr **ppExpr            /* Add the equality term to this expression */
229 ){
230   Expr *pE1a, *pE1b, *pE1c;
231   Expr *pE2a, *pE2b, *pE2c;
232   Expr *pE;
233 
234   pE1a = sqlite3CreateIdExpr(pParse, zCol);
235   pE2a = sqlite3CreateIdExpr(pParse, zCol);
236   if( zAlias1==0 ){
237     zAlias1 = pTab1->zName;
238   }
239   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
240   if( zAlias2==0 ){
241     zAlias2 = pTab2->zName;
242   }
243   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
244   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
245   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
246   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
247   if( pE ){
248     ExprSetProperty(pE, EP_FromJoin);
249     pE->iRightJoinTable = iRightJoinTable;
250   }
251   pE = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
252   if( pE ){
253     *ppExpr = pE;
254   }
255 }
256 
257 /*
258 ** Set the EP_FromJoin property on all terms of the given expression.
259 ** And set the Expr.iRightJoinTable to iTable for every term in the
260 ** expression.
261 **
262 ** The EP_FromJoin property is used on terms of an expression to tell
263 ** the LEFT OUTER JOIN processing logic that this term is part of the
264 ** join restriction specified in the ON or USING clause and not a part
265 ** of the more general WHERE clause.  These terms are moved over to the
266 ** WHERE clause during join processing but we need to remember that they
267 ** originated in the ON or USING clause.
268 **
269 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
270 ** expression depends on table iRightJoinTable even if that table is not
271 ** explicitly mentioned in the expression.  That information is needed
272 ** for cases like this:
273 **
274 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
275 **
276 ** The where clause needs to defer the handling of the t1.x=5
277 ** term until after the t2 loop of the join.  In that way, a
278 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
279 ** defer the handling of t1.x=5, it will be processed immediately
280 ** after the t1 loop and rows with t1.x!=5 will never appear in
281 ** the output, which is incorrect.
282 */
283 static void setJoinExpr(Expr *p, int iTable){
284   while( p ){
285     ExprSetProperty(p, EP_FromJoin);
286     p->iRightJoinTable = iTable;
287     setJoinExpr(p->pLeft, iTable);
288     p = p->pRight;
289   }
290 }
291 
292 /*
293 ** This routine processes the join information for a SELECT statement.
294 ** ON and USING clauses are converted into extra terms of the WHERE clause.
295 ** NATURAL joins also create extra WHERE clause terms.
296 **
297 ** The terms of a FROM clause are contained in the Select.pSrc structure.
298 ** The left most table is the first entry in Select.pSrc.  The right-most
299 ** table is the last entry.  The join operator is held in the entry to
300 ** the left.  Thus entry 0 contains the join operator for the join between
301 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
302 ** also attached to the left entry.
303 **
304 ** This routine returns the number of errors encountered.
305 */
306 static int sqliteProcessJoin(Parse *pParse, Select *p){
307   SrcList *pSrc;                  /* All tables in the FROM clause */
308   int i, j;                       /* Loop counters */
309   struct SrcList_item *pLeft;     /* Left table being joined */
310   struct SrcList_item *pRight;    /* Right table being joined */
311 
312   pSrc = p->pSrc;
313   pLeft = &pSrc->a[0];
314   pRight = &pLeft[1];
315   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
316     Table *pLeftTab = pLeft->pTab;
317     Table *pRightTab = pRight->pTab;
318 
319     if( pLeftTab==0 || pRightTab==0 ) continue;
320 
321     /* When the NATURAL keyword is present, add WHERE clause terms for
322     ** every column that the two tables have in common.
323     */
324     if( pRight->jointype & JT_NATURAL ){
325       if( pRight->pOn || pRight->pUsing ){
326         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
327            "an ON or USING clause", 0);
328         return 1;
329       }
330       for(j=0; j<pLeftTab->nCol; j++){
331         char *zName = pLeftTab->aCol[j].zName;
332         if( columnIndex(pRightTab, zName)>=0 ){
333           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
334                               pRightTab, pRight->zAlias,
335                               pRight->iCursor, &p->pWhere);
336 
337         }
338       }
339     }
340 
341     /* Disallow both ON and USING clauses in the same join
342     */
343     if( pRight->pOn && pRight->pUsing ){
344       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
345         "clauses in the same join");
346       return 1;
347     }
348 
349     /* Add the ON clause to the end of the WHERE clause, connected by
350     ** an AND operator.
351     */
352     if( pRight->pOn ){
353       setJoinExpr(pRight->pOn, pRight->iCursor);
354       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
355       pRight->pOn = 0;
356     }
357 
358     /* Create extra terms on the WHERE clause for each column named
359     ** in the USING clause.  Example: If the two tables to be joined are
360     ** A and B and the USING clause names X, Y, and Z, then add this
361     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
362     ** Report an error if any column mentioned in the USING clause is
363     ** not contained in both tables to be joined.
364     */
365     if( pRight->pUsing ){
366       IdList *pList = pRight->pUsing;
367       for(j=0; j<pList->nId; j++){
368         char *zName = pList->a[j].zName;
369         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
370           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
371             "not present in both tables", zName);
372           return 1;
373         }
374         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
375                             pRightTab, pRight->zAlias,
376                             pRight->iCursor, &p->pWhere);
377       }
378     }
379   }
380   return 0;
381 }
382 
383 /*
384 ** Insert code into "v" that will push the record on the top of the
385 ** stack into the sorter.
386 */
387 static void pushOntoSorter(
388   Parse *pParse,         /* Parser context */
389   ExprList *pOrderBy,    /* The ORDER BY clause */
390   Select *pSelect        /* The whole SELECT statement */
391 ){
392   Vdbe *v = pParse->pVdbe;
393   sqlite3ExprCodeExprList(pParse, pOrderBy);
394   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
395   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
396   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
397   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
398   if( pSelect->iLimit>=0 ){
399     int addr1, addr2;
400     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
401     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
402     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
403     sqlite3VdbeJumpHere(v, addr1);
404     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
405     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
406     sqlite3VdbeJumpHere(v, addr2);
407     pSelect->iLimit = -1;
408   }
409 }
410 
411 /*
412 ** Add code to implement the OFFSET
413 */
414 static void codeOffset(
415   Vdbe *v,          /* Generate code into this VM */
416   Select *p,        /* The SELECT statement being coded */
417   int iContinue,    /* Jump here to skip the current record */
418   int nPop          /* Number of times to pop stack when jumping */
419 ){
420   if( p->iOffset>=0 && iContinue!=0 ){
421     int addr;
422     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
423     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
424     if( nPop>0 ){
425       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
426     }
427     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
428     VdbeComment((v, "# skip OFFSET records"));
429     sqlite3VdbeJumpHere(v, addr);
430   }
431 }
432 
433 /*
434 ** Add code that will check to make sure the top N elements of the
435 ** stack are distinct.  iTab is a sorting index that holds previously
436 ** seen combinations of the N values.  A new entry is made in iTab
437 ** if the current N values are new.
438 **
439 ** A jump to addrRepeat is made and the N+1 values are popped from the
440 ** stack if the top N elements are not distinct.
441 */
442 static void codeDistinct(
443   Vdbe *v,           /* Generate code into this VM */
444   int iTab,          /* A sorting index used to test for distinctness */
445   int addrRepeat,    /* Jump to here if not distinct */
446   int N              /* The top N elements of the stack must be distinct */
447 ){
448   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
449   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
450   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
451   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
452   VdbeComment((v, "# skip indistinct records"));
453   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
454 }
455 
456 /*
457 ** Generate an error message when a SELECT is used within a subexpression
458 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
459 ** column.  We do this in a subroutine because the error occurs in multiple
460 ** places.
461 */
462 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
463   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
464     sqlite3ErrorMsg(pParse, "only a single result allowed for "
465        "a SELECT that is part of an expression");
466     return 1;
467   }else{
468     return 0;
469   }
470 }
471 
472 /*
473 ** This routine generates the code for the inside of the inner loop
474 ** of a SELECT.
475 **
476 ** If srcTab and nColumn are both zero, then the pEList expressions
477 ** are evaluated in order to get the data for this row.  If nColumn>0
478 ** then data is pulled from srcTab and pEList is used only to get the
479 ** datatypes for each column.
480 */
481 static int selectInnerLoop(
482   Parse *pParse,          /* The parser context */
483   Select *p,              /* The complete select statement being coded */
484   ExprList *pEList,       /* List of values being extracted */
485   int srcTab,             /* Pull data from this table */
486   int nColumn,            /* Number of columns in the source table */
487   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
488   int distinct,           /* If >=0, make sure results are distinct */
489   int eDest,              /* How to dispose of the results */
490   int iParm,              /* An argument to the disposal method */
491   int iContinue,          /* Jump here to continue with next row */
492   int iBreak,             /* Jump here to break out of the inner loop */
493   char *aff               /* affinity string if eDest is SRT_Union */
494 ){
495   Vdbe *v = pParse->pVdbe;
496   int i;
497   int hasDistinct;        /* True if the DISTINCT keyword is present */
498 
499   if( v==0 ) return 0;
500   assert( pEList!=0 );
501 
502   /* If there was a LIMIT clause on the SELECT statement, then do the check
503   ** to see if this row should be output.
504   */
505   hasDistinct = distinct>=0 && pEList->nExpr>0;
506   if( pOrderBy==0 && !hasDistinct ){
507     codeOffset(v, p, iContinue, 0);
508   }
509 
510   /* Pull the requested columns.
511   */
512   if( nColumn>0 ){
513     for(i=0; i<nColumn; i++){
514       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
515     }
516   }else{
517     nColumn = pEList->nExpr;
518     sqlite3ExprCodeExprList(pParse, pEList);
519   }
520 
521   /* If the DISTINCT keyword was present on the SELECT statement
522   ** and this row has been seen before, then do not make this row
523   ** part of the result.
524   */
525   if( hasDistinct ){
526     assert( pEList!=0 );
527     assert( pEList->nExpr==nColumn );
528     codeDistinct(v, distinct, iContinue, nColumn);
529     if( pOrderBy==0 ){
530       codeOffset(v, p, iContinue, nColumn);
531     }
532   }
533 
534   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
535     return 0;
536   }
537 
538   switch( eDest ){
539     /* In this mode, write each query result to the key of the temporary
540     ** table iParm.
541     */
542 #ifndef SQLITE_OMIT_COMPOUND_SELECT
543     case SRT_Union: {
544       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
545       if( aff ){
546         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
547       }
548       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
549       break;
550     }
551 
552     /* Construct a record from the query result, but instead of
553     ** saving that record, use it as a key to delete elements from
554     ** the temporary table iParm.
555     */
556     case SRT_Except: {
557       int addr;
558       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
559       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
560       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
561       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
562       break;
563     }
564 #endif
565 
566     /* Store the result as data using a unique key.
567     */
568     case SRT_Table:
569     case SRT_EphemTab: {
570       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
571       if( pOrderBy ){
572         pushOntoSorter(pParse, pOrderBy, p);
573       }else{
574         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
575         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
576         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
577       }
578       break;
579     }
580 
581 #ifndef SQLITE_OMIT_SUBQUERY
582     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
583     ** then there should be a single item on the stack.  Write this
584     ** item into the set table with bogus data.
585     */
586     case SRT_Set: {
587       int addr1 = sqlite3VdbeCurrentAddr(v);
588       int addr2;
589 
590       assert( nColumn==1 );
591       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
592       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
593       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
594       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
595       if( pOrderBy ){
596         /* At first glance you would think we could optimize out the
597         ** ORDER BY in this case since the order of entries in the set
598         ** does not matter.  But there might be a LIMIT clause, in which
599         ** case the order does matter */
600         pushOntoSorter(pParse, pOrderBy, p);
601       }else{
602         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
603         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
604       }
605       sqlite3VdbeJumpHere(v, addr2);
606       break;
607     }
608 
609     /* If any row exist in the result set, record that fact and abort.
610     */
611     case SRT_Exists: {
612       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
613       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
614       /* The LIMIT clause will terminate the loop for us */
615       break;
616     }
617 
618     /* If this is a scalar select that is part of an expression, then
619     ** store the results in the appropriate memory cell and break out
620     ** of the scan loop.
621     */
622     case SRT_Mem: {
623       assert( nColumn==1 );
624       if( pOrderBy ){
625         pushOntoSorter(pParse, pOrderBy, p);
626       }else{
627         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
628         /* The LIMIT clause will jump out of the loop for us */
629       }
630       break;
631     }
632 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
633 
634     /* Send the data to the callback function or to a subroutine.  In the
635     ** case of a subroutine, the subroutine itself is responsible for
636     ** popping the data from the stack.
637     */
638     case SRT_Subroutine:
639     case SRT_Callback: {
640       if( pOrderBy ){
641         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
642         pushOntoSorter(pParse, pOrderBy, p);
643       }else if( eDest==SRT_Subroutine ){
644         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
645       }else{
646         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
647       }
648       break;
649     }
650 
651 #if !defined(SQLITE_OMIT_TRIGGER)
652     /* Discard the results.  This is used for SELECT statements inside
653     ** the body of a TRIGGER.  The purpose of such selects is to call
654     ** user-defined functions that have side effects.  We do not care
655     ** about the actual results of the select.
656     */
657     default: {
658       assert( eDest==SRT_Discard );
659       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
660       break;
661     }
662 #endif
663   }
664 
665   /* Jump to the end of the loop if the LIMIT is reached.
666   */
667   if( p->iLimit>=0 && pOrderBy==0 ){
668     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
669     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
670   }
671   return 0;
672 }
673 
674 /*
675 ** Given an expression list, generate a KeyInfo structure that records
676 ** the collating sequence for each expression in that expression list.
677 **
678 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
679 ** KeyInfo structure is appropriate for initializing a virtual index to
680 ** implement that clause.  If the ExprList is the result set of a SELECT
681 ** then the KeyInfo structure is appropriate for initializing a virtual
682 ** index to implement a DISTINCT test.
683 **
684 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
685 ** function is responsible for seeing that this structure is eventually
686 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
687 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
688 */
689 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
690   sqlite3 *db = pParse->db;
691   int nExpr;
692   KeyInfo *pInfo;
693   struct ExprList_item *pItem;
694   int i;
695 
696   nExpr = pList->nExpr;
697   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
698   if( pInfo ){
699     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
700     pInfo->nField = nExpr;
701     pInfo->enc = ENC(db);
702     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
703       CollSeq *pColl;
704       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
705       if( !pColl ){
706         pColl = db->pDfltColl;
707       }
708       pInfo->aColl[i] = pColl;
709       pInfo->aSortOrder[i] = pItem->sortOrder;
710     }
711   }
712   return pInfo;
713 }
714 
715 
716 /*
717 ** If the inner loop was generated using a non-null pOrderBy argument,
718 ** then the results were placed in a sorter.  After the loop is terminated
719 ** we need to run the sorter and output the results.  The following
720 ** routine generates the code needed to do that.
721 */
722 static void generateSortTail(
723   Parse *pParse,   /* Parsing context */
724   Select *p,       /* The SELECT statement */
725   Vdbe *v,         /* Generate code into this VDBE */
726   int nColumn,     /* Number of columns of data */
727   int eDest,       /* Write the sorted results here */
728   int iParm        /* Optional parameter associated with eDest */
729 ){
730   int brk = sqlite3VdbeMakeLabel(v);
731   int cont = sqlite3VdbeMakeLabel(v);
732   int addr;
733   int iTab;
734   int pseudoTab = 0;
735   ExprList *pOrderBy = p->pOrderBy;
736 
737   iTab = pOrderBy->iECursor;
738   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
739     pseudoTab = pParse->nTab++;
740     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
741     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
742   }
743   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
744   codeOffset(v, p, cont, 0);
745   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
746     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
747   }
748   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
749   switch( eDest ){
750     case SRT_Table:
751     case SRT_EphemTab: {
752       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
753       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
754       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
755       break;
756     }
757 #ifndef SQLITE_OMIT_SUBQUERY
758     case SRT_Set: {
759       assert( nColumn==1 );
760       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
761       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
762       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
763       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
764       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
765       break;
766     }
767     case SRT_Mem: {
768       assert( nColumn==1 );
769       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
770       /* The LIMIT clause will terminate the loop for us */
771       break;
772     }
773 #endif
774     case SRT_Callback:
775     case SRT_Subroutine: {
776       int i;
777       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
778       for(i=0; i<nColumn; i++){
779         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
780       }
781       if( eDest==SRT_Callback ){
782         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
783       }else{
784         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
785       }
786       break;
787     }
788     default: {
789       /* Do nothing */
790       break;
791     }
792   }
793 
794   /* Jump to the end of the loop when the LIMIT is reached
795   */
796   if( p->iLimit>=0 ){
797     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
798     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
799   }
800 
801   /* The bottom of the loop
802   */
803   sqlite3VdbeResolveLabel(v, cont);
804   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
805   sqlite3VdbeResolveLabel(v, brk);
806   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
807     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
808   }
809 
810 }
811 
812 /*
813 ** Return a pointer to a string containing the 'declaration type' of the
814 ** expression pExpr. The string may be treated as static by the caller.
815 **
816 ** The declaration type is the exact datatype definition extracted from the
817 ** original CREATE TABLE statement if the expression is a column. The
818 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
819 ** is considered a column can be complex in the presence of subqueries. The
820 ** result-set expression in all of the following SELECT statements is
821 ** considered a column by this function.
822 **
823 **   SELECT col FROM tbl;
824 **   SELECT (SELECT col FROM tbl;
825 **   SELECT (SELECT col FROM tbl);
826 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
827 **
828 ** The declaration type for any expression other than a column is NULL.
829 */
830 static const char *columnType(
831   NameContext *pNC,
832   Expr *pExpr,
833   const char **pzOriginDb,
834   const char **pzOriginTab,
835   const char **pzOriginCol
836 ){
837   char const *zType = 0;
838   char const *zOriginDb = 0;
839   char const *zOriginTab = 0;
840   char const *zOriginCol = 0;
841   int j;
842   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
843 
844   switch( pExpr->op ){
845     case TK_AGG_COLUMN:
846     case TK_COLUMN: {
847       /* The expression is a column. Locate the table the column is being
848       ** extracted from in NameContext.pSrcList. This table may be real
849       ** database table or a subquery.
850       */
851       Table *pTab = 0;            /* Table structure column is extracted from */
852       Select *pS = 0;             /* Select the column is extracted from */
853       int iCol = pExpr->iColumn;  /* Index of column in pTab */
854       while( pNC && !pTab ){
855         SrcList *pTabList = pNC->pSrcList;
856         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
857         if( j<pTabList->nSrc ){
858           pTab = pTabList->a[j].pTab;
859           pS = pTabList->a[j].pSelect;
860         }else{
861           pNC = pNC->pNext;
862         }
863       }
864 
865       if( pTab==0 ){
866         /* FIX ME:
867         ** This can occurs if you have something like "SELECT new.x;" inside
868         ** a trigger.  In other words, if you reference the special "new"
869         ** table in the result set of a select.  We do not have a good way
870         ** to find the actual table type, so call it "TEXT".  This is really
871         ** something of a bug, but I do not know how to fix it.
872         **
873         ** This code does not produce the correct answer - it just prevents
874         ** a segfault.  See ticket #1229.
875         */
876         zType = "TEXT";
877         break;
878       }
879 
880       assert( pTab );
881       if( pS ){
882         /* The "table" is actually a sub-select or a view in the FROM clause
883         ** of the SELECT statement. Return the declaration type and origin
884         ** data for the result-set column of the sub-select.
885         */
886         if( iCol>=0 && iCol<pS->pEList->nExpr ){
887           /* If iCol is less than zero, then the expression requests the
888           ** rowid of the sub-select or view. This expression is legal (see
889           ** test case misc2.2.2) - it always evaluates to NULL.
890           */
891           NameContext sNC;
892           Expr *p = pS->pEList->a[iCol].pExpr;
893           sNC.pSrcList = pS->pSrc;
894           sNC.pNext = 0;
895           sNC.pParse = pNC->pParse;
896           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
897         }
898       }else if( pTab->pSchema ){
899         /* A real table */
900         assert( !pS );
901         if( iCol<0 ) iCol = pTab->iPKey;
902         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
903         if( iCol<0 ){
904           zType = "INTEGER";
905           zOriginCol = "rowid";
906         }else{
907           zType = pTab->aCol[iCol].zType;
908           zOriginCol = pTab->aCol[iCol].zName;
909         }
910         zOriginTab = pTab->zName;
911         if( pNC->pParse ){
912           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
913           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
914         }
915       }
916       break;
917     }
918 #ifndef SQLITE_OMIT_SUBQUERY
919     case TK_SELECT: {
920       /* The expression is a sub-select. Return the declaration type and
921       ** origin info for the single column in the result set of the SELECT
922       ** statement.
923       */
924       NameContext sNC;
925       Select *pS = pExpr->pSelect;
926       Expr *p = pS->pEList->a[0].pExpr;
927       sNC.pSrcList = pS->pSrc;
928       sNC.pNext = pNC;
929       sNC.pParse = pNC->pParse;
930       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
931       break;
932     }
933 #endif
934   }
935 
936   if( pzOriginDb ){
937     assert( pzOriginTab && pzOriginCol );
938     *pzOriginDb = zOriginDb;
939     *pzOriginTab = zOriginTab;
940     *pzOriginCol = zOriginCol;
941   }
942   return zType;
943 }
944 
945 /*
946 ** Generate code that will tell the VDBE the declaration types of columns
947 ** in the result set.
948 */
949 static void generateColumnTypes(
950   Parse *pParse,      /* Parser context */
951   SrcList *pTabList,  /* List of tables */
952   ExprList *pEList    /* Expressions defining the result set */
953 ){
954   Vdbe *v = pParse->pVdbe;
955   int i;
956   NameContext sNC;
957   sNC.pSrcList = pTabList;
958   sNC.pParse = pParse;
959   for(i=0; i<pEList->nExpr; i++){
960     Expr *p = pEList->a[i].pExpr;
961     const char *zOrigDb = 0;
962     const char *zOrigTab = 0;
963     const char *zOrigCol = 0;
964     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
965 
966     /* The vdbe must make it's own copy of the column-type and other
967     ** column specific strings, in case the schema is reset before this
968     ** virtual machine is deleted.
969     */
970     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
971     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
972     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
973     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
974   }
975 }
976 
977 /*
978 ** Generate code that will tell the VDBE the names of columns
979 ** in the result set.  This information is used to provide the
980 ** azCol[] values in the callback.
981 */
982 static void generateColumnNames(
983   Parse *pParse,      /* Parser context */
984   SrcList *pTabList,  /* List of tables */
985   ExprList *pEList    /* Expressions defining the result set */
986 ){
987   Vdbe *v = pParse->pVdbe;
988   int i, j;
989   sqlite3 *db = pParse->db;
990   int fullNames, shortNames;
991 
992 #ifndef SQLITE_OMIT_EXPLAIN
993   /* If this is an EXPLAIN, skip this step */
994   if( pParse->explain ){
995     return;
996   }
997 #endif
998 
999   assert( v!=0 );
1000   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1001   pParse->colNamesSet = 1;
1002   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1003   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1004   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1005   for(i=0; i<pEList->nExpr; i++){
1006     Expr *p;
1007     p = pEList->a[i].pExpr;
1008     if( p==0 ) continue;
1009     if( pEList->a[i].zName ){
1010       char *zName = pEList->a[i].zName;
1011       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1012       continue;
1013     }
1014     if( p->op==TK_COLUMN && pTabList ){
1015       Table *pTab;
1016       char *zCol;
1017       int iCol = p->iColumn;
1018       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1019       assert( j<pTabList->nSrc );
1020       pTab = pTabList->a[j].pTab;
1021       if( iCol<0 ) iCol = pTab->iPKey;
1022       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1023       if( iCol<0 ){
1024         zCol = "rowid";
1025       }else{
1026         zCol = pTab->aCol[iCol].zName;
1027       }
1028       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
1029         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1030       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1031         char *zName = 0;
1032         char *zTab;
1033 
1034         zTab = pTabList->a[j].zAlias;
1035         if( fullNames || zTab==0 ) zTab = pTab->zName;
1036         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1037         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1038       }else{
1039         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1040       }
1041     }else if( p->span.z && p->span.z[0] ){
1042       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1043       /* sqlite3VdbeCompressSpace(v, addr); */
1044     }else{
1045       char zName[30];
1046       assert( p->op!=TK_COLUMN || pTabList==0 );
1047       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1048       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1049     }
1050   }
1051   generateColumnTypes(pParse, pTabList, pEList);
1052 }
1053 
1054 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1055 /*
1056 ** Name of the connection operator, used for error messages.
1057 */
1058 static const char *selectOpName(int id){
1059   char *z;
1060   switch( id ){
1061     case TK_ALL:       z = "UNION ALL";   break;
1062     case TK_INTERSECT: z = "INTERSECT";   break;
1063     case TK_EXCEPT:    z = "EXCEPT";      break;
1064     default:           z = "UNION";       break;
1065   }
1066   return z;
1067 }
1068 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1069 
1070 /*
1071 ** Forward declaration
1072 */
1073 static int prepSelectStmt(Parse*, Select*);
1074 
1075 /*
1076 ** Given a SELECT statement, generate a Table structure that describes
1077 ** the result set of that SELECT.
1078 */
1079 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1080   Table *pTab;
1081   int i, j;
1082   ExprList *pEList;
1083   Column *aCol, *pCol;
1084   sqlite3 *db = pParse->db;
1085 
1086   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1087   if( prepSelectStmt(pParse, pSelect) ){
1088     return 0;
1089   }
1090   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1091     return 0;
1092   }
1093   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1094   if( pTab==0 ){
1095     return 0;
1096   }
1097   pTab->nRef = 1;
1098   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
1099   pEList = pSelect->pEList;
1100   pTab->nCol = pEList->nExpr;
1101   assert( pTab->nCol>0 );
1102   pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
1103   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1104     Expr *p, *pR;
1105     char *zType;
1106     char *zName;
1107     int nName;
1108     CollSeq *pColl;
1109     int cnt;
1110     NameContext sNC;
1111 
1112     /* Get an appropriate name for the column
1113     */
1114     p = pEList->a[i].pExpr;
1115     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1116     if( (zName = pEList->a[i].zName)!=0 ){
1117       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1118       zName = sqlite3DbStrDup(db, zName);
1119     }else if( p->op==TK_DOT
1120               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1121       /* For columns of the from A.B use B as the name */
1122       zName = sqlite3MPrintf(db, "%T", &pR->token);
1123     }else if( p->span.z && p->span.z[0] ){
1124       /* Use the original text of the column expression as its name */
1125       zName = sqlite3MPrintf(db, "%T", &p->span);
1126     }else{
1127       /* If all else fails, make up a name */
1128       zName = sqlite3MPrintf(db, "column%d", i+1);
1129     }
1130     sqlite3Dequote(zName);
1131     if( db->mallocFailed ){
1132       sqlite3_free(zName);
1133       sqlite3DeleteTable(pTab);
1134       return 0;
1135     }
1136 
1137     /* Make sure the column name is unique.  If the name is not unique,
1138     ** append a integer to the name so that it becomes unique.
1139     */
1140     nName = strlen(zName);
1141     for(j=cnt=0; j<i; j++){
1142       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1143         zName[nName] = 0;
1144         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
1145         j = -1;
1146         if( zName==0 ) break;
1147       }
1148     }
1149     pCol->zName = zName;
1150 
1151     /* Get the typename, type affinity, and collating sequence for the
1152     ** column.
1153     */
1154     memset(&sNC, 0, sizeof(sNC));
1155     sNC.pSrcList = pSelect->pSrc;
1156     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1157     pCol->zType = zType;
1158     pCol->affinity = sqlite3ExprAffinity(p);
1159     pColl = sqlite3ExprCollSeq(pParse, p);
1160     if( pColl ){
1161       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1162     }
1163   }
1164   pTab->iPKey = -1;
1165   return pTab;
1166 }
1167 
1168 /*
1169 ** Prepare a SELECT statement for processing by doing the following
1170 ** things:
1171 **
1172 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1173 **         element of the FROM clause.
1174 **
1175 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1176 **         defines FROM clause.  When views appear in the FROM clause,
1177 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1178 **         that implements the view.  A copy is made of the view's SELECT
1179 **         statement so that we can freely modify or delete that statement
1180 **         without worrying about messing up the presistent representation
1181 **         of the view.
1182 **
1183 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1184 **         on joins and the ON and USING clause of joins.
1185 **
1186 **    (4)  Scan the list of columns in the result set (pEList) looking
1187 **         for instances of the "*" operator or the TABLE.* operator.
1188 **         If found, expand each "*" to be every column in every table
1189 **         and TABLE.* to be every column in TABLE.
1190 **
1191 ** Return 0 on success.  If there are problems, leave an error message
1192 ** in pParse and return non-zero.
1193 */
1194 static int prepSelectStmt(Parse *pParse, Select *p){
1195   int i, j, k, rc;
1196   SrcList *pTabList;
1197   ExprList *pEList;
1198   struct SrcList_item *pFrom;
1199   sqlite3 *db = pParse->db;
1200 
1201   if( p==0 || p->pSrc==0 || db->mallocFailed ){
1202     return 1;
1203   }
1204   pTabList = p->pSrc;
1205   pEList = p->pEList;
1206 
1207   /* Make sure cursor numbers have been assigned to all entries in
1208   ** the FROM clause of the SELECT statement.
1209   */
1210   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1211 
1212   /* Look up every table named in the FROM clause of the select.  If
1213   ** an entry of the FROM clause is a subquery instead of a table or view,
1214   ** then create a transient table structure to describe the subquery.
1215   */
1216   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1217     Table *pTab;
1218     if( pFrom->pTab!=0 ){
1219       /* This statement has already been prepared.  There is no need
1220       ** to go further. */
1221       assert( i==0 );
1222       return 0;
1223     }
1224     if( pFrom->zName==0 ){
1225 #ifndef SQLITE_OMIT_SUBQUERY
1226       /* A sub-query in the FROM clause of a SELECT */
1227       assert( pFrom->pSelect!=0 );
1228       if( pFrom->zAlias==0 ){
1229         pFrom->zAlias =
1230           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
1231       }
1232       assert( pFrom->pTab==0 );
1233       pFrom->pTab = pTab =
1234         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1235       if( pTab==0 ){
1236         return 1;
1237       }
1238       /* The isEphem flag indicates that the Table structure has been
1239       ** dynamically allocated and may be freed at any time.  In other words,
1240       ** pTab is not pointing to a persistent table structure that defines
1241       ** part of the schema. */
1242       pTab->isEphem = 1;
1243 #endif
1244     }else{
1245       /* An ordinary table or view name in the FROM clause */
1246       assert( pFrom->pTab==0 );
1247       pFrom->pTab = pTab =
1248         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1249       if( pTab==0 ){
1250         return 1;
1251       }
1252       pTab->nRef++;
1253 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1254       if( pTab->pSelect || IsVirtual(pTab) ){
1255         /* We reach here if the named table is a really a view */
1256         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1257           return 1;
1258         }
1259         /* If pFrom->pSelect!=0 it means we are dealing with a
1260         ** view within a view.  The SELECT structure has already been
1261         ** copied by the outer view so we can skip the copy step here
1262         ** in the inner view.
1263         */
1264         if( pFrom->pSelect==0 ){
1265           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
1266         }
1267       }
1268 #endif
1269     }
1270   }
1271 
1272   /* Process NATURAL keywords, and ON and USING clauses of joins.
1273   */
1274   if( sqliteProcessJoin(pParse, p) ) return 1;
1275 
1276   /* For every "*" that occurs in the column list, insert the names of
1277   ** all columns in all tables.  And for every TABLE.* insert the names
1278   ** of all columns in TABLE.  The parser inserted a special expression
1279   ** with the TK_ALL operator for each "*" that it found in the column list.
1280   ** The following code just has to locate the TK_ALL expressions and expand
1281   ** each one to the list of all columns in all tables.
1282   **
1283   ** The first loop just checks to see if there are any "*" operators
1284   ** that need expanding.
1285   */
1286   for(k=0; k<pEList->nExpr; k++){
1287     Expr *pE = pEList->a[k].pExpr;
1288     if( pE->op==TK_ALL ) break;
1289     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1290          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1291   }
1292   rc = 0;
1293   if( k<pEList->nExpr ){
1294     /*
1295     ** If we get here it means the result set contains one or more "*"
1296     ** operators that need to be expanded.  Loop through each expression
1297     ** in the result set and expand them one by one.
1298     */
1299     struct ExprList_item *a = pEList->a;
1300     ExprList *pNew = 0;
1301     int flags = pParse->db->flags;
1302     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1303                       (flags & SQLITE_ShortColNames)==0;
1304 
1305     for(k=0; k<pEList->nExpr; k++){
1306       Expr *pE = a[k].pExpr;
1307       if( pE->op!=TK_ALL &&
1308            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1309         /* This particular expression does not need to be expanded.
1310         */
1311         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
1312         if( pNew ){
1313           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1314         }else{
1315           rc = 1;
1316         }
1317         a[k].pExpr = 0;
1318         a[k].zName = 0;
1319       }else{
1320         /* This expression is a "*" or a "TABLE.*" and needs to be
1321         ** expanded. */
1322         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1323         char *zTName;            /* text of name of TABLE */
1324         if( pE->op==TK_DOT && pE->pLeft ){
1325           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
1326         }else{
1327           zTName = 0;
1328         }
1329         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1330           Table *pTab = pFrom->pTab;
1331           char *zTabName = pFrom->zAlias;
1332           if( zTabName==0 || zTabName[0]==0 ){
1333             zTabName = pTab->zName;
1334           }
1335           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1336                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1337             continue;
1338           }
1339           tableSeen = 1;
1340           for(j=0; j<pTab->nCol; j++){
1341             Expr *pExpr, *pRight;
1342             char *zName = pTab->aCol[j].zName;
1343 
1344             /* If a column is marked as 'hidden' (currently only possible
1345             ** for virtual tables), do not include it in the expanded
1346             ** result-set list.
1347             */
1348             if( IsHiddenColumn(&pTab->aCol[j]) ){
1349               assert(IsVirtual(pTab));
1350               continue;
1351             }
1352 
1353             if( i>0 ){
1354               struct SrcList_item *pLeft = &pTabList->a[i-1];
1355               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1356                         columnIndex(pLeft->pTab, zName)>=0 ){
1357                 /* In a NATURAL join, omit the join columns from the
1358                 ** table on the right */
1359                 continue;
1360               }
1361               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1362                 /* In a join with a USING clause, omit columns in the
1363                 ** using clause from the table on the right. */
1364                 continue;
1365               }
1366             }
1367             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1368             if( pRight==0 ) break;
1369             setQuotedToken(pParse, &pRight->token, zName);
1370             if( zTabName && (longNames || pTabList->nSrc>1) ){
1371               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1372               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1373               if( pExpr==0 ) break;
1374               setQuotedToken(pParse, &pLeft->token, zTabName);
1375               setToken(&pExpr->span,
1376                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
1377               pExpr->span.dyn = 1;
1378               pExpr->token.z = 0;
1379               pExpr->token.n = 0;
1380               pExpr->token.dyn = 0;
1381             }else{
1382               pExpr = pRight;
1383               pExpr->span = pExpr->token;
1384               pExpr->span.dyn = 0;
1385             }
1386             if( longNames ){
1387               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
1388             }else{
1389               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
1390             }
1391           }
1392         }
1393         if( !tableSeen ){
1394           if( zTName ){
1395             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1396           }else{
1397             sqlite3ErrorMsg(pParse, "no tables specified");
1398           }
1399           rc = 1;
1400         }
1401         sqlite3_free(zTName);
1402       }
1403     }
1404     sqlite3ExprListDelete(pEList);
1405     p->pEList = pNew;
1406   }
1407   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
1408     sqlite3ErrorMsg(pParse, "too many columns in result set");
1409     rc = SQLITE_ERROR;
1410   }
1411   if( db->mallocFailed ){
1412     rc = SQLITE_NOMEM;
1413   }
1414   return rc;
1415 }
1416 
1417 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1418 /*
1419 ** This routine associates entries in an ORDER BY expression list with
1420 ** columns in a result.  For each ORDER BY expression, the opcode of
1421 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1422 ** the top-level node is filled in with column number and the iTable
1423 ** value of the top-level node is filled with iTable parameter.
1424 **
1425 ** If there are prior SELECT clauses, they are processed first.  A match
1426 ** in an earlier SELECT takes precedence over a later SELECT.
1427 **
1428 ** Any entry that does not match is flagged as an error.  The number
1429 ** of errors is returned.
1430 */
1431 static int matchOrderbyToColumn(
1432   Parse *pParse,          /* A place to leave error messages */
1433   Select *pSelect,        /* Match to result columns of this SELECT */
1434   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1435   int iTable,             /* Insert this value in iTable */
1436   int mustComplete        /* If TRUE all ORDER BYs must match */
1437 ){
1438   int nErr = 0;
1439   int i, j;
1440   ExprList *pEList;
1441   sqlite3 *db = pParse->db;
1442 
1443   if( pSelect==0 || pOrderBy==0 ) return 1;
1444   if( mustComplete ){
1445     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1446   }
1447   if( prepSelectStmt(pParse, pSelect) ){
1448     return 1;
1449   }
1450   if( pSelect->pPrior ){
1451     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1452       return 1;
1453     }
1454   }
1455   pEList = pSelect->pEList;
1456   for(i=0; i<pOrderBy->nExpr; i++){
1457     struct ExprList_item *pItem;
1458     Expr *pE = pOrderBy->a[i].pExpr;
1459     int iCol = -1;
1460     char *zLabel;
1461 
1462     if( pOrderBy->a[i].done ) continue;
1463     if( sqlite3ExprIsInteger(pE, &iCol) ){
1464       if( iCol<=0 || iCol>pEList->nExpr ){
1465         sqlite3ErrorMsg(pParse,
1466           "ORDER BY position %d should be between 1 and %d",
1467           iCol, pEList->nExpr);
1468         nErr++;
1469         break;
1470       }
1471       if( !mustComplete ) continue;
1472       iCol--;
1473     }
1474     if( iCol<0 && (zLabel = sqlite3NameFromToken(db, &pE->token))!=0 ){
1475       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1476         char *zName;
1477         int isMatch;
1478         if( pItem->zName ){
1479           zName = sqlite3DbStrDup(db, pItem->zName);
1480         }else{
1481           zName = sqlite3NameFromToken(db, &pItem->pExpr->token);
1482         }
1483         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1484         sqlite3_free(zName);
1485         if( isMatch ){
1486           iCol = j;
1487           break;
1488         }
1489       }
1490       sqlite3_free(zLabel);
1491     }
1492     if( iCol>=0 ){
1493       pE->op = TK_COLUMN;
1494       pE->iColumn = iCol;
1495       pE->iTable = iTable;
1496       pE->iAgg = -1;
1497       pOrderBy->a[i].done = 1;
1498     }else if( mustComplete ){
1499       sqlite3ErrorMsg(pParse,
1500         "ORDER BY term number %d does not match any result column", i+1);
1501       nErr++;
1502       break;
1503     }
1504   }
1505   return nErr;
1506 }
1507 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1508 
1509 /*
1510 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1511 ** If an error occurs, return NULL and leave a message in pParse.
1512 */
1513 Vdbe *sqlite3GetVdbe(Parse *pParse){
1514   Vdbe *v = pParse->pVdbe;
1515   if( v==0 ){
1516     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1517   }
1518   return v;
1519 }
1520 
1521 
1522 /*
1523 ** Compute the iLimit and iOffset fields of the SELECT based on the
1524 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1525 ** that appear in the original SQL statement after the LIMIT and OFFSET
1526 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1527 ** are the integer memory register numbers for counters used to compute
1528 ** the limit and offset.  If there is no limit and/or offset, then
1529 ** iLimit and iOffset are negative.
1530 **
1531 ** This routine changes the values of iLimit and iOffset only if
1532 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1533 ** iOffset should have been preset to appropriate default values
1534 ** (usually but not always -1) prior to calling this routine.
1535 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1536 ** redefined.  The UNION ALL operator uses this property to force
1537 ** the reuse of the same limit and offset registers across multiple
1538 ** SELECT statements.
1539 */
1540 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1541   Vdbe *v = 0;
1542   int iLimit = 0;
1543   int iOffset;
1544   int addr1, addr2;
1545 
1546   /*
1547   ** "LIMIT -1" always shows all rows.  There is some
1548   ** contraversy about what the correct behavior should be.
1549   ** The current implementation interprets "LIMIT 0" to mean
1550   ** no rows.
1551   */
1552   if( p->pLimit ){
1553     p->iLimit = iLimit = pParse->nMem;
1554     pParse->nMem += 2;
1555     v = sqlite3GetVdbe(pParse);
1556     if( v==0 ) return;
1557     sqlite3ExprCode(pParse, p->pLimit);
1558     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1559     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
1560     VdbeComment((v, "# LIMIT counter"));
1561     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1562     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
1563   }
1564   if( p->pOffset ){
1565     p->iOffset = iOffset = pParse->nMem++;
1566     v = sqlite3GetVdbe(pParse);
1567     if( v==0 ) return;
1568     sqlite3ExprCode(pParse, p->pOffset);
1569     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1570     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1571     VdbeComment((v, "# OFFSET counter"));
1572     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1573     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1574     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1575     sqlite3VdbeJumpHere(v, addr1);
1576     if( p->pLimit ){
1577       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1578     }
1579   }
1580   if( p->pLimit ){
1581     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1582     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1583     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1584     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1585     sqlite3VdbeJumpHere(v, addr1);
1586     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1587     VdbeComment((v, "# LIMIT+OFFSET"));
1588     sqlite3VdbeJumpHere(v, addr2);
1589   }
1590 }
1591 
1592 /*
1593 ** Allocate a virtual index to use for sorting.
1594 */
1595 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1596   if( pOrderBy ){
1597     int addr;
1598     assert( pOrderBy->iECursor==0 );
1599     pOrderBy->iECursor = pParse->nTab++;
1600     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1601                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1602     assert( p->addrOpenEphm[2] == -1 );
1603     p->addrOpenEphm[2] = addr;
1604   }
1605 }
1606 
1607 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1608 /*
1609 ** Return the appropriate collating sequence for the iCol-th column of
1610 ** the result set for the compound-select statement "p".  Return NULL if
1611 ** the column has no default collating sequence.
1612 **
1613 ** The collating sequence for the compound select is taken from the
1614 ** left-most term of the select that has a collating sequence.
1615 */
1616 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1617   CollSeq *pRet;
1618   if( p->pPrior ){
1619     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1620   }else{
1621     pRet = 0;
1622   }
1623   if( pRet==0 ){
1624     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1625   }
1626   return pRet;
1627 }
1628 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1629 
1630 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1631 /*
1632 ** This routine is called to process a query that is really the union
1633 ** or intersection of two or more separate queries.
1634 **
1635 ** "p" points to the right-most of the two queries.  the query on the
1636 ** left is p->pPrior.  The left query could also be a compound query
1637 ** in which case this routine will be called recursively.
1638 **
1639 ** The results of the total query are to be written into a destination
1640 ** of type eDest with parameter iParm.
1641 **
1642 ** Example 1:  Consider a three-way compound SQL statement.
1643 **
1644 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1645 **
1646 ** This statement is parsed up as follows:
1647 **
1648 **     SELECT c FROM t3
1649 **      |
1650 **      `----->  SELECT b FROM t2
1651 **                |
1652 **                `------>  SELECT a FROM t1
1653 **
1654 ** The arrows in the diagram above represent the Select.pPrior pointer.
1655 ** So if this routine is called with p equal to the t3 query, then
1656 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1657 **
1658 ** Notice that because of the way SQLite parses compound SELECTs, the
1659 ** individual selects always group from left to right.
1660 */
1661 static int multiSelect(
1662   Parse *pParse,        /* Parsing context */
1663   Select *p,            /* The right-most of SELECTs to be coded */
1664   int eDest,            /* \___  Store query results as specified */
1665   int iParm,            /* /     by these two parameters.         */
1666   char *aff             /* If eDest is SRT_Union, the affinity string */
1667 ){
1668   int rc = SQLITE_OK;   /* Success code from a subroutine */
1669   Select *pPrior;       /* Another SELECT immediately to our left */
1670   Vdbe *v;              /* Generate code to this VDBE */
1671   int nCol;             /* Number of columns in the result set */
1672   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1673   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1674   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1675 
1676   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1677   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1678   */
1679   if( p==0 || p->pPrior==0 ){
1680     rc = 1;
1681     goto multi_select_end;
1682   }
1683   pPrior = p->pPrior;
1684   assert( pPrior->pRightmost!=pPrior );
1685   assert( pPrior->pRightmost==p->pRightmost );
1686   if( pPrior->pOrderBy ){
1687     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1688       selectOpName(p->op));
1689     rc = 1;
1690     goto multi_select_end;
1691   }
1692   if( pPrior->pLimit ){
1693     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1694       selectOpName(p->op));
1695     rc = 1;
1696     goto multi_select_end;
1697   }
1698 
1699   /* Make sure we have a valid query engine.  If not, create a new one.
1700   */
1701   v = sqlite3GetVdbe(pParse);
1702   if( v==0 ){
1703     rc = 1;
1704     goto multi_select_end;
1705   }
1706 
1707   /* Create the destination temporary table if necessary
1708   */
1709   if( eDest==SRT_EphemTab ){
1710     assert( p->pEList );
1711     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1712     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1713     eDest = SRT_Table;
1714   }
1715 
1716   /* Generate code for the left and right SELECT statements.
1717   */
1718   pOrderBy = p->pOrderBy;
1719   switch( p->op ){
1720     case TK_ALL: {
1721       if( pOrderBy==0 ){
1722         int addr = 0;
1723         assert( !pPrior->pLimit );
1724         pPrior->pLimit = p->pLimit;
1725         pPrior->pOffset = p->pOffset;
1726         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1727         p->pLimit = 0;
1728         p->pOffset = 0;
1729         if( rc ){
1730           goto multi_select_end;
1731         }
1732         p->pPrior = 0;
1733         p->iLimit = pPrior->iLimit;
1734         p->iOffset = pPrior->iOffset;
1735         if( p->iLimit>=0 ){
1736           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1737           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1738         }
1739         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1740         p->pPrior = pPrior;
1741         if( rc ){
1742           goto multi_select_end;
1743         }
1744         if( addr ){
1745           sqlite3VdbeJumpHere(v, addr);
1746         }
1747         break;
1748       }
1749       /* For UNION ALL ... ORDER BY fall through to the next case */
1750     }
1751     case TK_EXCEPT:
1752     case TK_UNION: {
1753       int unionTab;    /* Cursor number of the temporary table holding result */
1754       int op = 0;      /* One of the SRT_ operations to apply to self */
1755       int priorOp;     /* The SRT_ operation to apply to prior selects */
1756       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1757       int addr;
1758 
1759       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1760       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1761         /* We can reuse a temporary table generated by a SELECT to our
1762         ** right.
1763         */
1764         unionTab = iParm;
1765       }else{
1766         /* We will need to create our own temporary table to hold the
1767         ** intermediate results.
1768         */
1769         unionTab = pParse->nTab++;
1770         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1771           rc = 1;
1772           goto multi_select_end;
1773         }
1774         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1775         if( priorOp==SRT_Table ){
1776           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1777           aSetP2[nSetP2++] = addr;
1778         }else{
1779           assert( p->addrOpenEphm[0] == -1 );
1780           p->addrOpenEphm[0] = addr;
1781           p->pRightmost->usesEphm = 1;
1782         }
1783         createSortingIndex(pParse, p, pOrderBy);
1784         assert( p->pEList );
1785       }
1786 
1787       /* Code the SELECT statements to our left
1788       */
1789       assert( !pPrior->pOrderBy );
1790       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1791       if( rc ){
1792         goto multi_select_end;
1793       }
1794 
1795       /* Code the current SELECT statement
1796       */
1797       switch( p->op ){
1798          case TK_EXCEPT:  op = SRT_Except;   break;
1799          case TK_UNION:   op = SRT_Union;    break;
1800          case TK_ALL:     op = SRT_Table;    break;
1801       }
1802       p->pPrior = 0;
1803       p->pOrderBy = 0;
1804       p->disallowOrderBy = pOrderBy!=0;
1805       pLimit = p->pLimit;
1806       p->pLimit = 0;
1807       pOffset = p->pOffset;
1808       p->pOffset = 0;
1809       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1810       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1811       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1812       sqlite3ExprListDelete(p->pOrderBy);
1813       p->pPrior = pPrior;
1814       p->pOrderBy = pOrderBy;
1815       sqlite3ExprDelete(p->pLimit);
1816       p->pLimit = pLimit;
1817       p->pOffset = pOffset;
1818       p->iLimit = -1;
1819       p->iOffset = -1;
1820       if( rc ){
1821         goto multi_select_end;
1822       }
1823 
1824 
1825       /* Convert the data in the temporary table into whatever form
1826       ** it is that we currently need.
1827       */
1828       if( eDest!=priorOp || unionTab!=iParm ){
1829         int iCont, iBreak, iStart;
1830         assert( p->pEList );
1831         if( eDest==SRT_Callback ){
1832           Select *pFirst = p;
1833           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1834           generateColumnNames(pParse, 0, pFirst->pEList);
1835         }
1836         iBreak = sqlite3VdbeMakeLabel(v);
1837         iCont = sqlite3VdbeMakeLabel(v);
1838         computeLimitRegisters(pParse, p, iBreak);
1839         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1840         iStart = sqlite3VdbeCurrentAddr(v);
1841         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1842                              pOrderBy, -1, eDest, iParm,
1843                              iCont, iBreak, 0);
1844         if( rc ){
1845           rc = 1;
1846           goto multi_select_end;
1847         }
1848         sqlite3VdbeResolveLabel(v, iCont);
1849         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1850         sqlite3VdbeResolveLabel(v, iBreak);
1851         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1852       }
1853       break;
1854     }
1855     case TK_INTERSECT: {
1856       int tab1, tab2;
1857       int iCont, iBreak, iStart;
1858       Expr *pLimit, *pOffset;
1859       int addr;
1860 
1861       /* INTERSECT is different from the others since it requires
1862       ** two temporary tables.  Hence it has its own case.  Begin
1863       ** by allocating the tables we will need.
1864       */
1865       tab1 = pParse->nTab++;
1866       tab2 = pParse->nTab++;
1867       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1868         rc = 1;
1869         goto multi_select_end;
1870       }
1871       createSortingIndex(pParse, p, pOrderBy);
1872 
1873       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1874       assert( p->addrOpenEphm[0] == -1 );
1875       p->addrOpenEphm[0] = addr;
1876       p->pRightmost->usesEphm = 1;
1877       assert( p->pEList );
1878 
1879       /* Code the SELECTs to our left into temporary table "tab1".
1880       */
1881       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1882       if( rc ){
1883         goto multi_select_end;
1884       }
1885 
1886       /* Code the current SELECT into temporary table "tab2"
1887       */
1888       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1889       assert( p->addrOpenEphm[1] == -1 );
1890       p->addrOpenEphm[1] = addr;
1891       p->pPrior = 0;
1892       pLimit = p->pLimit;
1893       p->pLimit = 0;
1894       pOffset = p->pOffset;
1895       p->pOffset = 0;
1896       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1897       p->pPrior = pPrior;
1898       sqlite3ExprDelete(p->pLimit);
1899       p->pLimit = pLimit;
1900       p->pOffset = pOffset;
1901       if( rc ){
1902         goto multi_select_end;
1903       }
1904 
1905       /* Generate code to take the intersection of the two temporary
1906       ** tables.
1907       */
1908       assert( p->pEList );
1909       if( eDest==SRT_Callback ){
1910         Select *pFirst = p;
1911         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1912         generateColumnNames(pParse, 0, pFirst->pEList);
1913       }
1914       iBreak = sqlite3VdbeMakeLabel(v);
1915       iCont = sqlite3VdbeMakeLabel(v);
1916       computeLimitRegisters(pParse, p, iBreak);
1917       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1918       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1919       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1920       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1921                              pOrderBy, -1, eDest, iParm,
1922                              iCont, iBreak, 0);
1923       if( rc ){
1924         rc = 1;
1925         goto multi_select_end;
1926       }
1927       sqlite3VdbeResolveLabel(v, iCont);
1928       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1929       sqlite3VdbeResolveLabel(v, iBreak);
1930       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1931       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1932       break;
1933     }
1934   }
1935 
1936   /* Make sure all SELECTs in the statement have the same number of elements
1937   ** in their result sets.
1938   */
1939   assert( p->pEList && pPrior->pEList );
1940   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1941     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1942       " do not have the same number of result columns", selectOpName(p->op));
1943     rc = 1;
1944     goto multi_select_end;
1945   }
1946 
1947   /* Set the number of columns in temporary tables
1948   */
1949   nCol = p->pEList->nExpr;
1950   while( nSetP2 ){
1951     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1952   }
1953 
1954   /* Compute collating sequences used by either the ORDER BY clause or
1955   ** by any temporary tables needed to implement the compound select.
1956   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1957   ** ORDER BY processing if there is an ORDER BY clause.
1958   **
1959   ** This section is run by the right-most SELECT statement only.
1960   ** SELECT statements to the left always skip this part.  The right-most
1961   ** SELECT might also skip this part if it has no ORDER BY clause and
1962   ** no temp tables are required.
1963   */
1964   if( pOrderBy || p->usesEphm ){
1965     int i;                        /* Loop counter */
1966     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1967     Select *pLoop;                /* For looping through SELECT statements */
1968     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1969     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1970     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1971 
1972     assert( p->pRightmost==p );
1973     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1974     pKeyInfo = sqlite3DbMallocZero(pParse->db,
1975                        sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1976     if( !pKeyInfo ){
1977       rc = SQLITE_NOMEM;
1978       goto multi_select_end;
1979     }
1980 
1981     pKeyInfo->enc = ENC(pParse->db);
1982     pKeyInfo->nField = nCol;
1983 
1984     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1985       *apColl = multiSelectCollSeq(pParse, p, i);
1986       if( 0==*apColl ){
1987         *apColl = pParse->db->pDfltColl;
1988       }
1989     }
1990 
1991     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1992       for(i=0; i<2; i++){
1993         int addr = pLoop->addrOpenEphm[i];
1994         if( addr<0 ){
1995           /* If [0] is unused then [1] is also unused.  So we can
1996           ** always safely abort as soon as the first unused slot is found */
1997           assert( pLoop->addrOpenEphm[1]<0 );
1998           break;
1999         }
2000         sqlite3VdbeChangeP2(v, addr, nCol);
2001         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
2002         pLoop->addrOpenEphm[i] = -1;
2003       }
2004     }
2005 
2006     if( pOrderBy ){
2007       struct ExprList_item *pOTerm = pOrderBy->a;
2008       int nOrderByExpr = pOrderBy->nExpr;
2009       int addr;
2010       u8 *pSortOrder;
2011 
2012       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
2013       ** the compound select statements.  Except we have to change out the
2014       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
2015       ** reused when constructing the pKeyInfo for the ORDER BY, so make
2016       ** a copy.  Sufficient space to hold both the nCol entries for
2017       ** the compound select and the nOrderbyExpr entries for the ORDER BY
2018       ** was allocated above.  But we need to move the compound select
2019       ** entries out of the way before constructing the ORDER BY entries.
2020       ** Move the compound select entries into aCopy[] where they can be
2021       ** accessed and reused when constructing the ORDER BY entries.
2022       ** Because nCol might be greater than or less than nOrderByExpr
2023       ** we have to use memmove() when doing the copy.
2024       */
2025       aCopy = &pKeyInfo->aColl[nOrderByExpr];
2026       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
2027       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
2028 
2029       apColl = pKeyInfo->aColl;
2030       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
2031         Expr *pExpr = pOTerm->pExpr;
2032         if( (pExpr->flags & EP_ExpCollate) ){
2033           assert( pExpr->pColl!=0 );
2034           *apColl = pExpr->pColl;
2035         }else{
2036           *apColl = aCopy[pExpr->iColumn];
2037         }
2038         *pSortOrder = pOTerm->sortOrder;
2039       }
2040       assert( p->pRightmost==p );
2041       assert( p->addrOpenEphm[2]>=0 );
2042       addr = p->addrOpenEphm[2];
2043       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
2044       pKeyInfo->nField = nOrderByExpr;
2045       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2046       pKeyInfo = 0;
2047       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
2048     }
2049 
2050     sqlite3_free(pKeyInfo);
2051   }
2052 
2053 multi_select_end:
2054   return rc;
2055 }
2056 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2057 
2058 #ifndef SQLITE_OMIT_VIEW
2059 /* Forward Declarations */
2060 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2061 static void substSelect(sqlite3*, Select *, int, ExprList *);
2062 
2063 /*
2064 ** Scan through the expression pExpr.  Replace every reference to
2065 ** a column in table number iTable with a copy of the iColumn-th
2066 ** entry in pEList.  (But leave references to the ROWID column
2067 ** unchanged.)
2068 **
2069 ** This routine is part of the flattening procedure.  A subquery
2070 ** whose result set is defined by pEList appears as entry in the
2071 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2072 ** FORM clause entry is iTable.  This routine make the necessary
2073 ** changes to pExpr so that it refers directly to the source table
2074 ** of the subquery rather the result set of the subquery.
2075 */
2076 static void substExpr(
2077   sqlite3 *db,        /* Report malloc errors to this connection */
2078   Expr *pExpr,        /* Expr in which substitution occurs */
2079   int iTable,         /* Table to be substituted */
2080   ExprList *pEList    /* Substitute expressions */
2081 ){
2082   if( pExpr==0 ) return;
2083   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2084     if( pExpr->iColumn<0 ){
2085       pExpr->op = TK_NULL;
2086     }else{
2087       Expr *pNew;
2088       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2089       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2090       pNew = pEList->a[pExpr->iColumn].pExpr;
2091       assert( pNew!=0 );
2092       pExpr->op = pNew->op;
2093       assert( pExpr->pLeft==0 );
2094       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2095       assert( pExpr->pRight==0 );
2096       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2097       assert( pExpr->pList==0 );
2098       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2099       pExpr->iTable = pNew->iTable;
2100       pExpr->pTab = pNew->pTab;
2101       pExpr->iColumn = pNew->iColumn;
2102       pExpr->iAgg = pNew->iAgg;
2103       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2104       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2105       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2106       pExpr->flags = pNew->flags;
2107     }
2108   }else{
2109     substExpr(db, pExpr->pLeft, iTable, pEList);
2110     substExpr(db, pExpr->pRight, iTable, pEList);
2111     substSelect(db, pExpr->pSelect, iTable, pEList);
2112     substExprList(db, pExpr->pList, iTable, pEList);
2113   }
2114 }
2115 static void substExprList(
2116   sqlite3 *db,         /* Report malloc errors here */
2117   ExprList *pList,     /* List to scan and in which to make substitutes */
2118   int iTable,          /* Table to be substituted */
2119   ExprList *pEList     /* Substitute values */
2120 ){
2121   int i;
2122   if( pList==0 ) return;
2123   for(i=0; i<pList->nExpr; i++){
2124     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2125   }
2126 }
2127 static void substSelect(
2128   sqlite3 *db,         /* Report malloc errors here */
2129   Select *p,           /* SELECT statement in which to make substitutions */
2130   int iTable,          /* Table to be replaced */
2131   ExprList *pEList     /* Substitute values */
2132 ){
2133   if( !p ) return;
2134   substExprList(db, p->pEList, iTable, pEList);
2135   substExprList(db, p->pGroupBy, iTable, pEList);
2136   substExprList(db, p->pOrderBy, iTable, pEList);
2137   substExpr(db, p->pHaving, iTable, pEList);
2138   substExpr(db, p->pWhere, iTable, pEList);
2139   substSelect(db, p->pPrior, iTable, pEList);
2140 }
2141 #endif /* !defined(SQLITE_OMIT_VIEW) */
2142 
2143 #ifndef SQLITE_OMIT_VIEW
2144 /*
2145 ** This routine attempts to flatten subqueries in order to speed
2146 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2147 ** occurs.
2148 **
2149 ** To understand the concept of flattening, consider the following
2150 ** query:
2151 **
2152 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2153 **
2154 ** The default way of implementing this query is to execute the
2155 ** subquery first and store the results in a temporary table, then
2156 ** run the outer query on that temporary table.  This requires two
2157 ** passes over the data.  Furthermore, because the temporary table
2158 ** has no indices, the WHERE clause on the outer query cannot be
2159 ** optimized.
2160 **
2161 ** This routine attempts to rewrite queries such as the above into
2162 ** a single flat select, like this:
2163 **
2164 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2165 **
2166 ** The code generated for this simpification gives the same result
2167 ** but only has to scan the data once.  And because indices might
2168 ** exist on the table t1, a complete scan of the data might be
2169 ** avoided.
2170 **
2171 ** Flattening is only attempted if all of the following are true:
2172 **
2173 **   (1)  The subquery and the outer query do not both use aggregates.
2174 **
2175 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2176 **
2177 **   (3)  The subquery is not the right operand of a left outer join, or
2178 **        the subquery is not itself a join.  (Ticket #306)
2179 **
2180 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2181 **
2182 **   (5)  The subquery is not DISTINCT or the outer query does not use
2183 **        aggregates.
2184 **
2185 **   (6)  The subquery does not use aggregates or the outer query is not
2186 **        DISTINCT.
2187 **
2188 **   (7)  The subquery has a FROM clause.
2189 **
2190 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2191 **
2192 **   (9)  The subquery does not use LIMIT or the outer query does not use
2193 **        aggregates.
2194 **
2195 **  (10)  The subquery does not use aggregates or the outer query does not
2196 **        use LIMIT.
2197 **
2198 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2199 **
2200 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2201 **        subquery has no WHERE clause.  (added by ticket #350)
2202 **
2203 **  (13)  The subquery and outer query do not both use LIMIT
2204 **
2205 **  (14)  The subquery does not use OFFSET
2206 **
2207 **  (15)  The outer query is not part of a compound select or the
2208 **        subquery does not have both an ORDER BY and a LIMIT clause.
2209 **        (See ticket #2339)
2210 **
2211 ** In this routine, the "p" parameter is a pointer to the outer query.
2212 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2213 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2214 **
2215 ** If flattening is not attempted, this routine is a no-op and returns 0.
2216 ** If flattening is attempted this routine returns 1.
2217 **
2218 ** All of the expression analysis must occur on both the outer query and
2219 ** the subquery before this routine runs.
2220 */
2221 static int flattenSubquery(
2222   sqlite3 *db,         /* Database connection */
2223   Select *p,           /* The parent or outer SELECT statement */
2224   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2225   int isAgg,           /* True if outer SELECT uses aggregate functions */
2226   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2227 ){
2228   Select *pSub;       /* The inner query or "subquery" */
2229   SrcList *pSrc;      /* The FROM clause of the outer query */
2230   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2231   ExprList *pList;    /* The result set of the outer query */
2232   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2233   int i;              /* Loop counter */
2234   Expr *pWhere;                    /* The WHERE clause */
2235   struct SrcList_item *pSubitem;   /* The subquery */
2236 
2237   /* Check to see if flattening is permitted.  Return 0 if not.
2238   */
2239   if( p==0 ) return 0;
2240   pSrc = p->pSrc;
2241   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2242   pSubitem = &pSrc->a[iFrom];
2243   pSub = pSubitem->pSelect;
2244   assert( pSub!=0 );
2245   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2246   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2247   pSubSrc = pSub->pSrc;
2248   assert( pSubSrc );
2249   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2250   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2251   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2252   ** became arbitrary expressions, we were forced to add restrictions (13)
2253   ** and (14). */
2254   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2255   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2256   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2257     return 0;                                            /* Restriction (15) */
2258   }
2259   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2260   if( (pSub->isDistinct || pSub->pLimit)
2261          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2262      return 0;
2263   }
2264   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2265   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2266      return 0;                                           /* Restriction (11) */
2267   }
2268 
2269   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2270   ** not used as the right operand of an outer join.  Examples of why this
2271   ** is not allowed:
2272   **
2273   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2274   **
2275   ** If we flatten the above, we would get
2276   **
2277   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2278   **
2279   ** which is not at all the same thing.
2280   */
2281   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2282     return 0;
2283   }
2284 
2285   /* Restriction 12:  If the subquery is the right operand of a left outer
2286   ** join, make sure the subquery has no WHERE clause.
2287   ** An examples of why this is not allowed:
2288   **
2289   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2290   **
2291   ** If we flatten the above, we would get
2292   **
2293   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2294   **
2295   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2296   ** effectively converts the OUTER JOIN into an INNER JOIN.
2297   */
2298   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2299     return 0;
2300   }
2301 
2302   /* If we reach this point, it means flattening is permitted for the
2303   ** iFrom-th entry of the FROM clause in the outer query.
2304   */
2305 
2306   /* Move all of the FROM elements of the subquery into the
2307   ** the FROM clause of the outer query.  Before doing this, remember
2308   ** the cursor number for the original outer query FROM element in
2309   ** iParent.  The iParent cursor will never be used.  Subsequent code
2310   ** will scan expressions looking for iParent references and replace
2311   ** those references with expressions that resolve to the subquery FROM
2312   ** elements we are now copying in.
2313   */
2314   iParent = pSubitem->iCursor;
2315   {
2316     int nSubSrc = pSubSrc->nSrc;
2317     int jointype = pSubitem->jointype;
2318 
2319     sqlite3DeleteTable(pSubitem->pTab);
2320     sqlite3_free(pSubitem->zDatabase);
2321     sqlite3_free(pSubitem->zName);
2322     sqlite3_free(pSubitem->zAlias);
2323     if( nSubSrc>1 ){
2324       int extra = nSubSrc - 1;
2325       for(i=1; i<nSubSrc; i++){
2326         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
2327       }
2328       p->pSrc = pSrc;
2329       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2330         pSrc->a[i] = pSrc->a[i-extra];
2331       }
2332     }
2333     for(i=0; i<nSubSrc; i++){
2334       pSrc->a[i+iFrom] = pSubSrc->a[i];
2335       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2336     }
2337     pSrc->a[iFrom].jointype = jointype;
2338   }
2339 
2340   /* Now begin substituting subquery result set expressions for
2341   ** references to the iParent in the outer query.
2342   **
2343   ** Example:
2344   **
2345   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2346   **   \                     \_____________ subquery __________/          /
2347   **    \_____________________ outer query ______________________________/
2348   **
2349   ** We look at every expression in the outer query and every place we see
2350   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2351   */
2352   pList = p->pEList;
2353   for(i=0; i<pList->nExpr; i++){
2354     Expr *pExpr;
2355     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2356       pList->a[i].zName =
2357              sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2358     }
2359   }
2360   substExprList(db, p->pEList, iParent, pSub->pEList);
2361   if( isAgg ){
2362     substExprList(db, p->pGroupBy, iParent, pSub->pEList);
2363     substExpr(db, p->pHaving, iParent, pSub->pEList);
2364   }
2365   if( pSub->pOrderBy ){
2366     assert( p->pOrderBy==0 );
2367     p->pOrderBy = pSub->pOrderBy;
2368     pSub->pOrderBy = 0;
2369   }else if( p->pOrderBy ){
2370     substExprList(db, p->pOrderBy, iParent, pSub->pEList);
2371   }
2372   if( pSub->pWhere ){
2373     pWhere = sqlite3ExprDup(db, pSub->pWhere);
2374   }else{
2375     pWhere = 0;
2376   }
2377   if( subqueryIsAgg ){
2378     assert( p->pHaving==0 );
2379     p->pHaving = p->pWhere;
2380     p->pWhere = pWhere;
2381     substExpr(db, p->pHaving, iParent, pSub->pEList);
2382     p->pHaving = sqlite3ExprAnd(db, p->pHaving,
2383                                 sqlite3ExprDup(db, pSub->pHaving));
2384     assert( p->pGroupBy==0 );
2385     p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
2386   }else{
2387     substExpr(db, p->pWhere, iParent, pSub->pEList);
2388     p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
2389   }
2390 
2391   /* The flattened query is distinct if either the inner or the
2392   ** outer query is distinct.
2393   */
2394   p->isDistinct = p->isDistinct || pSub->isDistinct;
2395 
2396   /*
2397   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2398   **
2399   ** One is tempted to try to add a and b to combine the limits.  But this
2400   ** does not work if either limit is negative.
2401   */
2402   if( pSub->pLimit ){
2403     p->pLimit = pSub->pLimit;
2404     pSub->pLimit = 0;
2405   }
2406 
2407   /* Finially, delete what is left of the subquery and return
2408   ** success.
2409   */
2410   sqlite3SelectDelete(pSub);
2411   return 1;
2412 }
2413 #endif /* SQLITE_OMIT_VIEW */
2414 
2415 /*
2416 ** Analyze the SELECT statement passed in as an argument to see if it
2417 ** is a simple min() or max() query.  If it is and this query can be
2418 ** satisfied using a single seek to the beginning or end of an index,
2419 ** then generate the code for this SELECT and return 1.  If this is not a
2420 ** simple min() or max() query, then return 0;
2421 **
2422 ** A simply min() or max() query looks like this:
2423 **
2424 **    SELECT min(a) FROM table;
2425 **    SELECT max(a) FROM table;
2426 **
2427 ** The query may have only a single table in its FROM argument.  There
2428 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2429 ** be the min() or max() of a single column of the table.  The column
2430 ** in the min() or max() function must be indexed.
2431 **
2432 ** The parameters to this routine are the same as for sqlite3Select().
2433 ** See the header comment on that routine for additional information.
2434 */
2435 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2436   Expr *pExpr;
2437   int iCol;
2438   Table *pTab;
2439   Index *pIdx;
2440   int base;
2441   Vdbe *v;
2442   int seekOp;
2443   ExprList *pEList, *pList, eList;
2444   struct ExprList_item eListItem;
2445   SrcList *pSrc;
2446   int brk;
2447   int iDb;
2448 
2449   /* Check to see if this query is a simple min() or max() query.  Return
2450   ** zero if it is  not.
2451   */
2452   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2453   pSrc = p->pSrc;
2454   if( pSrc->nSrc!=1 ) return 0;
2455   pEList = p->pEList;
2456   if( pEList->nExpr!=1 ) return 0;
2457   pExpr = pEList->a[0].pExpr;
2458   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2459   pList = pExpr->pList;
2460   if( pList==0 || pList->nExpr!=1 ) return 0;
2461   if( pExpr->token.n!=3 ) return 0;
2462   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2463     seekOp = OP_Rewind;
2464   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2465     seekOp = OP_Last;
2466   }else{
2467     return 0;
2468   }
2469   pExpr = pList->a[0].pExpr;
2470   if( pExpr->op!=TK_COLUMN ) return 0;
2471   iCol = pExpr->iColumn;
2472   pTab = pSrc->a[0].pTab;
2473 
2474   /* This optimization cannot be used with virtual tables. */
2475   if( IsVirtual(pTab) ) return 0;
2476 
2477   /* If we get to here, it means the query is of the correct form.
2478   ** Check to make sure we have an index and make pIdx point to the
2479   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2480   ** key column, no index is necessary so set pIdx to NULL.  If no
2481   ** usable index is found, return 0.
2482   */
2483   if( iCol<0 ){
2484     pIdx = 0;
2485   }else{
2486     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2487     if( pColl==0 ) return 0;
2488     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2489       assert( pIdx->nColumn>=1 );
2490       if( pIdx->aiColumn[0]==iCol &&
2491           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2492         break;
2493       }
2494     }
2495     if( pIdx==0 ) return 0;
2496   }
2497 
2498   /* Identify column types if we will be using the callback.  This
2499   ** step is skipped if the output is going to a table or a memory cell.
2500   ** The column names have already been generated in the calling function.
2501   */
2502   v = sqlite3GetVdbe(pParse);
2503   if( v==0 ) return 0;
2504 
2505   /* If the output is destined for a temporary table, open that table.
2506   */
2507   if( eDest==SRT_EphemTab ){
2508     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2509   }
2510 
2511   /* Generating code to find the min or the max.  Basically all we have
2512   ** to do is find the first or the last entry in the chosen index.  If
2513   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2514   ** or last entry in the main table.
2515   */
2516   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2517   assert( iDb>=0 || pTab->isEphem );
2518   sqlite3CodeVerifySchema(pParse, iDb);
2519   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2520   base = pSrc->a[0].iCursor;
2521   brk = sqlite3VdbeMakeLabel(v);
2522   computeLimitRegisters(pParse, p, brk);
2523   if( pSrc->a[0].pSelect==0 ){
2524     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2525   }
2526   if( pIdx==0 ){
2527     sqlite3VdbeAddOp(v, seekOp, base, 0);
2528   }else{
2529     /* Even though the cursor used to open the index here is closed
2530     ** as soon as a single value has been read from it, allocate it
2531     ** using (pParse->nTab++) to prevent the cursor id from being
2532     ** reused. This is important for statements of the form
2533     ** "INSERT INTO x SELECT max() FROM x".
2534     */
2535     int iIdx;
2536     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2537     iIdx = pParse->nTab++;
2538     assert( pIdx->pSchema==pTab->pSchema );
2539     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2540     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2541         (char*)pKey, P3_KEYINFO_HANDOFF);
2542     if( seekOp==OP_Rewind ){
2543       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2544       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2545       seekOp = OP_MoveGt;
2546     }
2547     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
2548       /* Ticket #2514: invert the seek operator if we are using
2549       ** a descending index. */
2550       if( seekOp==OP_Last ){
2551         seekOp = OP_Rewind;
2552       }else{
2553         assert( seekOp==OP_MoveGt );
2554         seekOp = OP_MoveLt;
2555       }
2556     }
2557     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2558     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2559     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2560     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2561   }
2562   eList.nExpr = 1;
2563   memset(&eListItem, 0, sizeof(eListItem));
2564   eList.a = &eListItem;
2565   eList.a[0].pExpr = pExpr;
2566   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2567   sqlite3VdbeResolveLabel(v, brk);
2568   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2569 
2570   return 1;
2571 }
2572 
2573 /*
2574 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2575 ** the number of errors seen.
2576 **
2577 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2578 ** is an integer constant, then that expression is replaced by the
2579 ** corresponding entry in the result set.
2580 */
2581 static int processOrderGroupBy(
2582   NameContext *pNC,     /* Name context of the SELECT statement. */
2583   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2584   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2585 ){
2586   int i;
2587   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2588   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2589   assert( pEList );
2590 
2591   if( pOrderBy==0 ) return 0;
2592   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
2593     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
2594     return 1;
2595   }
2596   for(i=0; i<pOrderBy->nExpr; i++){
2597     int iCol;
2598     Expr *pE = pOrderBy->a[i].pExpr;
2599     if( sqlite3ExprIsInteger(pE, &iCol) ){
2600       if( iCol>0 && iCol<=pEList->nExpr ){
2601         CollSeq *pColl = pE->pColl;
2602         int flags = pE->flags & EP_ExpCollate;
2603         sqlite3ExprDelete(pE);
2604         pE = sqlite3ExprDup(pParse->db, pEList->a[iCol-1].pExpr);
2605         pOrderBy->a[i].pExpr = pE;
2606         if( pColl && flags ){
2607           pE->pColl = pColl;
2608           pE->flags |= flags;
2609         }
2610       }else{
2611         sqlite3ErrorMsg(pParse,
2612            "%s BY column number %d out of range - should be "
2613            "between 1 and %d", zType, iCol, pEList->nExpr);
2614         return 1;
2615       }
2616     }
2617     if( sqlite3ExprResolveNames(pNC, pE) ){
2618       return 1;
2619     }
2620   }
2621   return 0;
2622 }
2623 
2624 /*
2625 ** This routine resolves any names used in the result set of the
2626 ** supplied SELECT statement. If the SELECT statement being resolved
2627 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2628 ** of the parent SELECT.
2629 */
2630 int sqlite3SelectResolve(
2631   Parse *pParse,         /* The parser context */
2632   Select *p,             /* The SELECT statement being coded. */
2633   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2634 ){
2635   ExprList *pEList;          /* Result set. */
2636   int i;                     /* For-loop variable used in multiple places */
2637   NameContext sNC;           /* Local name-context */
2638   ExprList *pGroupBy;        /* The group by clause */
2639 
2640   /* If this routine has run before, return immediately. */
2641   if( p->isResolved ){
2642     assert( !pOuterNC );
2643     return SQLITE_OK;
2644   }
2645   p->isResolved = 1;
2646 
2647   /* If there have already been errors, do nothing. */
2648   if( pParse->nErr>0 ){
2649     return SQLITE_ERROR;
2650   }
2651 
2652   /* Prepare the select statement. This call will allocate all cursors
2653   ** required to handle the tables and subqueries in the FROM clause.
2654   */
2655   if( prepSelectStmt(pParse, p) ){
2656     return SQLITE_ERROR;
2657   }
2658 
2659   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2660   ** are not allowed to refer to any names, so pass an empty NameContext.
2661   */
2662   memset(&sNC, 0, sizeof(sNC));
2663   sNC.pParse = pParse;
2664   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2665       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2666     return SQLITE_ERROR;
2667   }
2668 
2669   /* Set up the local name-context to pass to ExprResolveNames() to
2670   ** resolve the expression-list.
2671   */
2672   sNC.allowAgg = 1;
2673   sNC.pSrcList = p->pSrc;
2674   sNC.pNext = pOuterNC;
2675 
2676   /* Resolve names in the result set. */
2677   pEList = p->pEList;
2678   if( !pEList ) return SQLITE_ERROR;
2679   for(i=0; i<pEList->nExpr; i++){
2680     Expr *pX = pEList->a[i].pExpr;
2681     if( sqlite3ExprResolveNames(&sNC, pX) ){
2682       return SQLITE_ERROR;
2683     }
2684   }
2685 
2686   /* If there are no aggregate functions in the result-set, and no GROUP BY
2687   ** expression, do not allow aggregates in any of the other expressions.
2688   */
2689   assert( !p->isAgg );
2690   pGroupBy = p->pGroupBy;
2691   if( pGroupBy || sNC.hasAgg ){
2692     p->isAgg = 1;
2693   }else{
2694     sNC.allowAgg = 0;
2695   }
2696 
2697   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2698   */
2699   if( p->pHaving && !pGroupBy ){
2700     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2701     return SQLITE_ERROR;
2702   }
2703 
2704   /* Add the expression list to the name-context before parsing the
2705   ** other expressions in the SELECT statement. This is so that
2706   ** expressions in the WHERE clause (etc.) can refer to expressions by
2707   ** aliases in the result set.
2708   **
2709   ** Minor point: If this is the case, then the expression will be
2710   ** re-evaluated for each reference to it.
2711   */
2712   sNC.pEList = p->pEList;
2713   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2714      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2715     return SQLITE_ERROR;
2716   }
2717   if( p->pPrior==0 ){
2718     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2719         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2720       return SQLITE_ERROR;
2721     }
2722   }
2723 
2724   if( pParse->db->mallocFailed ){
2725     return SQLITE_NOMEM;
2726   }
2727 
2728   /* Make sure the GROUP BY clause does not contain aggregate functions.
2729   */
2730   if( pGroupBy ){
2731     struct ExprList_item *pItem;
2732 
2733     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2734       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2735         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2736             "the GROUP BY clause");
2737         return SQLITE_ERROR;
2738       }
2739     }
2740   }
2741 
2742   /* If this is one SELECT of a compound, be sure to resolve names
2743   ** in the other SELECTs.
2744   */
2745   if( p->pPrior ){
2746     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2747   }else{
2748     return SQLITE_OK;
2749   }
2750 }
2751 
2752 /*
2753 ** Reset the aggregate accumulator.
2754 **
2755 ** The aggregate accumulator is a set of memory cells that hold
2756 ** intermediate results while calculating an aggregate.  This
2757 ** routine simply stores NULLs in all of those memory cells.
2758 */
2759 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2760   Vdbe *v = pParse->pVdbe;
2761   int i;
2762   struct AggInfo_func *pFunc;
2763   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2764     return;
2765   }
2766   for(i=0; i<pAggInfo->nColumn; i++){
2767     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2768   }
2769   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2770     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2771     if( pFunc->iDistinct>=0 ){
2772       Expr *pE = pFunc->pExpr;
2773       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2774         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2775            "by an expression");
2776         pFunc->iDistinct = -1;
2777       }else{
2778         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2779         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2780                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2781       }
2782     }
2783   }
2784 }
2785 
2786 /*
2787 ** Invoke the OP_AggFinalize opcode for every aggregate function
2788 ** in the AggInfo structure.
2789 */
2790 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2791   Vdbe *v = pParse->pVdbe;
2792   int i;
2793   struct AggInfo_func *pF;
2794   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2795     ExprList *pList = pF->pExpr->pList;
2796     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2797                       (void*)pF->pFunc, P3_FUNCDEF);
2798   }
2799 }
2800 
2801 /*
2802 ** Update the accumulator memory cells for an aggregate based on
2803 ** the current cursor position.
2804 */
2805 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2806   Vdbe *v = pParse->pVdbe;
2807   int i;
2808   struct AggInfo_func *pF;
2809   struct AggInfo_col *pC;
2810 
2811   pAggInfo->directMode = 1;
2812   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2813     int nArg;
2814     int addrNext = 0;
2815     ExprList *pList = pF->pExpr->pList;
2816     if( pList ){
2817       nArg = pList->nExpr;
2818       sqlite3ExprCodeExprList(pParse, pList);
2819     }else{
2820       nArg = 0;
2821     }
2822     if( pF->iDistinct>=0 ){
2823       addrNext = sqlite3VdbeMakeLabel(v);
2824       assert( nArg==1 );
2825       codeDistinct(v, pF->iDistinct, addrNext, 1);
2826     }
2827     if( pF->pFunc->needCollSeq ){
2828       CollSeq *pColl = 0;
2829       struct ExprList_item *pItem;
2830       int j;
2831       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2832       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2833         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2834       }
2835       if( !pColl ){
2836         pColl = pParse->db->pDfltColl;
2837       }
2838       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2839     }
2840     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2841     if( addrNext ){
2842       sqlite3VdbeResolveLabel(v, addrNext);
2843     }
2844   }
2845   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2846     sqlite3ExprCode(pParse, pC->pExpr);
2847     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2848   }
2849   pAggInfo->directMode = 0;
2850 }
2851 
2852 
2853 /*
2854 ** Generate code for the given SELECT statement.
2855 **
2856 ** The results are distributed in various ways depending on the
2857 ** value of eDest and iParm.
2858 **
2859 **     eDest Value       Result
2860 **     ------------    -------------------------------------------
2861 **     SRT_Callback    Invoke the callback for each row of the result.
2862 **
2863 **     SRT_Mem         Store first result in memory cell iParm
2864 **
2865 **     SRT_Set         Store results as keys of table iParm.
2866 **
2867 **     SRT_Union       Store results as a key in a temporary table iParm
2868 **
2869 **     SRT_Except      Remove results from the temporary table iParm.
2870 **
2871 **     SRT_Table       Store results in temporary table iParm
2872 **
2873 ** The table above is incomplete.  Additional eDist value have be added
2874 ** since this comment was written.  See the selectInnerLoop() function for
2875 ** a complete listing of the allowed values of eDest and their meanings.
2876 **
2877 ** This routine returns the number of errors.  If any errors are
2878 ** encountered, then an appropriate error message is left in
2879 ** pParse->zErrMsg.
2880 **
2881 ** This routine does NOT free the Select structure passed in.  The
2882 ** calling function needs to do that.
2883 **
2884 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2885 ** SELECT is a subquery.  This routine may try to combine this SELECT
2886 ** with its parent to form a single flat query.  In so doing, it might
2887 ** change the parent query from a non-aggregate to an aggregate query.
2888 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2889 ** can be changed.
2890 **
2891 ** Example 1:   The meaning of the pParent parameter.
2892 **
2893 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2894 **    \                      \_______ subquery _______/        /
2895 **     \                                                      /
2896 **      \____________________ outer query ___________________/
2897 **
2898 ** This routine is called for the outer query first.   For that call,
2899 ** pParent will be NULL.  During the processing of the outer query, this
2900 ** routine is called recursively to handle the subquery.  For the recursive
2901 ** call, pParent will point to the outer query.  Because the subquery is
2902 ** the second element in a three-way join, the parentTab parameter will
2903 ** be 1 (the 2nd value of a 0-indexed array.)
2904 */
2905 int sqlite3Select(
2906   Parse *pParse,         /* The parser context */
2907   Select *p,             /* The SELECT statement being coded. */
2908   int eDest,             /* How to dispose of the results */
2909   int iParm,             /* A parameter used by the eDest disposal method */
2910   Select *pParent,       /* Another SELECT for which this is a sub-query */
2911   int parentTab,         /* Index in pParent->pSrc of this query */
2912   int *pParentAgg,       /* True if pParent uses aggregate functions */
2913   char *aff              /* If eDest is SRT_Union, the affinity string */
2914 ){
2915   int i, j;              /* Loop counters */
2916   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2917   Vdbe *v;               /* The virtual machine under construction */
2918   int isAgg;             /* True for select lists like "count(*)" */
2919   ExprList *pEList;      /* List of columns to extract. */
2920   SrcList *pTabList;     /* List of tables to select from */
2921   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2922   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2923   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2924   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2925   int isDistinct;        /* True if the DISTINCT keyword is present */
2926   int distinct;          /* Table to use for the distinct set */
2927   int rc = 1;            /* Value to return from this function */
2928   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2929   AggInfo sAggInfo;      /* Information used by aggregate queries */
2930   int iEnd;              /* Address of the end of the query */
2931   sqlite3 *db;           /* The database connection */
2932 
2933   db = pParse->db;
2934   if( p==0 || db->mallocFailed || pParse->nErr ){
2935     return 1;
2936   }
2937   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2938   memset(&sAggInfo, 0, sizeof(sAggInfo));
2939 
2940 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2941   /* If there is are a sequence of queries, do the earlier ones first.
2942   */
2943   if( p->pPrior ){
2944     if( p->pRightmost==0 ){
2945       Select *pLoop;
2946       int cnt = 0;
2947       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
2948         pLoop->pRightmost = p;
2949       }
2950       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
2951         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
2952         return 1;
2953       }
2954     }
2955     return multiSelect(pParse, p, eDest, iParm, aff);
2956   }
2957 #endif
2958 
2959   pOrderBy = p->pOrderBy;
2960   if( IgnorableOrderby(eDest) ){
2961     p->pOrderBy = 0;
2962   }
2963   if( sqlite3SelectResolve(pParse, p, 0) ){
2964     goto select_end;
2965   }
2966   p->pOrderBy = pOrderBy;
2967 
2968   /* Make local copies of the parameters for this query.
2969   */
2970   pTabList = p->pSrc;
2971   pWhere = p->pWhere;
2972   pGroupBy = p->pGroupBy;
2973   pHaving = p->pHaving;
2974   isAgg = p->isAgg;
2975   isDistinct = p->isDistinct;
2976   pEList = p->pEList;
2977   if( pEList==0 ) goto select_end;
2978 
2979   /*
2980   ** Do not even attempt to generate any code if we have already seen
2981   ** errors before this routine starts.
2982   */
2983   if( pParse->nErr>0 ) goto select_end;
2984 
2985   /* If writing to memory or generating a set
2986   ** only a single column may be output.
2987   */
2988 #ifndef SQLITE_OMIT_SUBQUERY
2989   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
2990     goto select_end;
2991   }
2992 #endif
2993 
2994   /* ORDER BY is ignored for some destinations.
2995   */
2996   if( IgnorableOrderby(eDest) ){
2997     pOrderBy = 0;
2998   }
2999 
3000   /* Begin generating code.
3001   */
3002   v = sqlite3GetVdbe(pParse);
3003   if( v==0 ) goto select_end;
3004 
3005   /* Generate code for all sub-queries in the FROM clause
3006   */
3007 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3008   for(i=0; i<pTabList->nSrc; i++){
3009     const char *zSavedAuthContext = 0;
3010     int needRestoreContext;
3011     struct SrcList_item *pItem = &pTabList->a[i];
3012 
3013     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
3014     if( pItem->zName!=0 ){
3015       zSavedAuthContext = pParse->zAuthContext;
3016       pParse->zAuthContext = pItem->zName;
3017       needRestoreContext = 1;
3018     }else{
3019       needRestoreContext = 0;
3020     }
3021 #if SQLITE_MAX_EXPR_DEPTH>0
3022     /* Increment Parse.nHeight by the height of the largest expression
3023     ** tree refered to by this, the parent select. The child select
3024     ** may contain expression trees of at most
3025     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3026     ** more conservative than necessary, but much easier than enforcing
3027     ** an exact limit.
3028     */
3029     pParse->nHeight += sqlite3SelectExprHeight(p);
3030 #endif
3031     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
3032                  pItem->iCursor, p, i, &isAgg, 0);
3033 #if SQLITE_MAX_EXPR_DEPTH>0
3034     pParse->nHeight -= sqlite3SelectExprHeight(p);
3035 #endif
3036     if( needRestoreContext ){
3037       pParse->zAuthContext = zSavedAuthContext;
3038     }
3039     pTabList = p->pSrc;
3040     pWhere = p->pWhere;
3041     if( !IgnorableOrderby(eDest) ){
3042       pOrderBy = p->pOrderBy;
3043     }
3044     pGroupBy = p->pGroupBy;
3045     pHaving = p->pHaving;
3046     isDistinct = p->isDistinct;
3047   }
3048 #endif
3049 
3050   /* Check for the special case of a min() or max() function by itself
3051   ** in the result set.
3052   */
3053   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
3054     rc = 0;
3055     goto select_end;
3056   }
3057 
3058   /* Check to see if this is a subquery that can be "flattened" into its parent.
3059   ** If flattening is a possiblity, do so and return immediately.
3060   */
3061 #ifndef SQLITE_OMIT_VIEW
3062   if( pParent && pParentAgg &&
3063       flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
3064     if( isAgg ) *pParentAgg = 1;
3065     goto select_end;
3066   }
3067 #endif
3068 
3069   /* If there is an ORDER BY clause, then this sorting
3070   ** index might end up being unused if the data can be
3071   ** extracted in pre-sorted order.  If that is the case, then the
3072   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3073   ** we figure out that the sorting index is not needed.  The addrSortIndex
3074   ** variable is used to facilitate that change.
3075   */
3076   if( pOrderBy ){
3077     KeyInfo *pKeyInfo;
3078     if( pParse->nErr ){
3079       goto select_end;
3080     }
3081     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3082     pOrderBy->iECursor = pParse->nTab++;
3083     p->addrOpenEphm[2] = addrSortIndex =
3084       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3085   }else{
3086     addrSortIndex = -1;
3087   }
3088 
3089   /* If the output is destined for a temporary table, open that table.
3090   */
3091   if( eDest==SRT_EphemTab ){
3092     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
3093   }
3094 
3095   /* Set the limiter.
3096   */
3097   iEnd = sqlite3VdbeMakeLabel(v);
3098   computeLimitRegisters(pParse, p, iEnd);
3099 
3100   /* Open a virtual index to use for the distinct set.
3101   */
3102   if( isDistinct ){
3103     KeyInfo *pKeyInfo;
3104     distinct = pParse->nTab++;
3105     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3106     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
3107                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3108   }else{
3109     distinct = -1;
3110   }
3111 
3112   /* Aggregate and non-aggregate queries are handled differently */
3113   if( !isAgg && pGroupBy==0 ){
3114     /* This case is for non-aggregate queries
3115     ** Begin the database scan
3116     */
3117     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
3118     if( pWInfo==0 ) goto select_end;
3119 
3120     /* If sorting index that was created by a prior OP_OpenEphemeral
3121     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3122     ** into an OP_Noop.
3123     */
3124     if( addrSortIndex>=0 && pOrderBy==0 ){
3125       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3126       p->addrOpenEphm[2] = -1;
3127     }
3128 
3129     /* Use the standard inner loop
3130     */
3131     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
3132                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3133        goto select_end;
3134     }
3135 
3136     /* End the database scan loop.
3137     */
3138     sqlite3WhereEnd(pWInfo);
3139   }else{
3140     /* This is the processing for aggregate queries */
3141     NameContext sNC;    /* Name context for processing aggregate information */
3142     int iAMem;          /* First Mem address for storing current GROUP BY */
3143     int iBMem;          /* First Mem address for previous GROUP BY */
3144     int iUseFlag;       /* Mem address holding flag indicating that at least
3145                         ** one row of the input to the aggregator has been
3146                         ** processed */
3147     int iAbortFlag;     /* Mem address which causes query abort if positive */
3148     int groupBySort;    /* Rows come from source in GROUP BY order */
3149 
3150 
3151     /* The following variables hold addresses or labels for parts of the
3152     ** virtual machine program we are putting together */
3153     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3154     int addrSetAbort;       /* Set the abort flag and return */
3155     int addrInitializeLoop; /* Start of code that initializes the input loop */
3156     int addrTopOfLoop;      /* Top of the input loop */
3157     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3158     int addrProcessRow;     /* Code to process a single input row */
3159     int addrEnd;            /* End of all processing */
3160     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3161     int addrReset;          /* Subroutine for resetting the accumulator */
3162 
3163     addrEnd = sqlite3VdbeMakeLabel(v);
3164 
3165     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3166     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3167     ** SELECT statement.
3168     */
3169     memset(&sNC, 0, sizeof(sNC));
3170     sNC.pParse = pParse;
3171     sNC.pSrcList = pTabList;
3172     sNC.pAggInfo = &sAggInfo;
3173     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3174     sAggInfo.pGroupBy = pGroupBy;
3175     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3176       goto select_end;
3177     }
3178     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3179       goto select_end;
3180     }
3181     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3182       goto select_end;
3183     }
3184     sAggInfo.nAccumulator = sAggInfo.nColumn;
3185     for(i=0; i<sAggInfo.nFunc; i++){
3186       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3187         goto select_end;
3188       }
3189     }
3190     if( db->mallocFailed ) goto select_end;
3191 
3192     /* Processing for aggregates with GROUP BY is very different and
3193     ** much more complex tha aggregates without a GROUP BY.
3194     */
3195     if( pGroupBy ){
3196       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3197 
3198       /* Create labels that we will be needing
3199       */
3200 
3201       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3202       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3203       addrProcessRow = sqlite3VdbeMakeLabel(v);
3204 
3205       /* If there is a GROUP BY clause we might need a sorting index to
3206       ** implement it.  Allocate that sorting index now.  If it turns out
3207       ** that we do not need it after all, the OpenEphemeral instruction
3208       ** will be converted into a Noop.
3209       */
3210       sAggInfo.sortingIdx = pParse->nTab++;
3211       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3212       addrSortingIdx =
3213           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3214                          sAggInfo.nSortingColumn,
3215                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3216 
3217       /* Initialize memory locations used by GROUP BY aggregate processing
3218       */
3219       iUseFlag = pParse->nMem++;
3220       iAbortFlag = pParse->nMem++;
3221       iAMem = pParse->nMem;
3222       pParse->nMem += pGroupBy->nExpr;
3223       iBMem = pParse->nMem;
3224       pParse->nMem += pGroupBy->nExpr;
3225       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3226       VdbeComment((v, "# clear abort flag"));
3227       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3228       VdbeComment((v, "# indicate accumulator empty"));
3229       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3230 
3231       /* Generate a subroutine that outputs a single row of the result
3232       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3233       ** is less than or equal to zero, the subroutine is a no-op.  If
3234       ** the processing calls for the query to abort, this subroutine
3235       ** increments the iAbortFlag memory location before returning in
3236       ** order to signal the caller to abort.
3237       */
3238       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3239       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3240       VdbeComment((v, "# set abort flag"));
3241       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3242       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3243       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3244       VdbeComment((v, "# Groupby result generator entry point"));
3245       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3246       finalizeAggFunctions(pParse, &sAggInfo);
3247       if( pHaving ){
3248         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3249       }
3250       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3251                            distinct, eDest, iParm,
3252                            addrOutputRow+1, addrSetAbort, aff);
3253       if( rc ){
3254         goto select_end;
3255       }
3256       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3257       VdbeComment((v, "# end groupby result generator"));
3258 
3259       /* Generate a subroutine that will reset the group-by accumulator
3260       */
3261       addrReset = sqlite3VdbeCurrentAddr(v);
3262       resetAccumulator(pParse, &sAggInfo);
3263       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3264 
3265       /* Begin a loop that will extract all source rows in GROUP BY order.
3266       ** This might involve two separate loops with an OP_Sort in between, or
3267       ** it might be a single loop that uses an index to extract information
3268       ** in the right order to begin with.
3269       */
3270       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3271       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3272       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3273       if( pWInfo==0 ) goto select_end;
3274       if( pGroupBy==0 ){
3275         /* The optimizer is able to deliver rows in group by order so
3276         ** we do not have to sort.  The OP_OpenEphemeral table will be
3277         ** cancelled later because we still need to use the pKeyInfo
3278         */
3279         pGroupBy = p->pGroupBy;
3280         groupBySort = 0;
3281       }else{
3282         /* Rows are coming out in undetermined order.  We have to push
3283         ** each row into a sorting index, terminate the first loop,
3284         ** then loop over the sorting index in order to get the output
3285         ** in sorted order
3286         */
3287         groupBySort = 1;
3288         sqlite3ExprCodeExprList(pParse, pGroupBy);
3289         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3290         j = pGroupBy->nExpr+1;
3291         for(i=0; i<sAggInfo.nColumn; i++){
3292           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3293           if( pCol->iSorterColumn<j ) continue;
3294           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3295           j++;
3296         }
3297         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3298         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3299         sqlite3WhereEnd(pWInfo);
3300         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3301         VdbeComment((v, "# GROUP BY sort"));
3302         sAggInfo.useSortingIdx = 1;
3303       }
3304 
3305       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3306       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3307       ** Then compare the current GROUP BY terms against the GROUP BY terms
3308       ** from the previous row currently stored in a0, a1, a2...
3309       */
3310       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3311       for(j=0; j<pGroupBy->nExpr; j++){
3312         if( groupBySort ){
3313           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3314         }else{
3315           sAggInfo.directMode = 1;
3316           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3317         }
3318         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3319       }
3320       for(j=pGroupBy->nExpr-1; j>=0; j--){
3321         if( j<pGroupBy->nExpr-1 ){
3322           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3323         }
3324         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3325         if( j==0 ){
3326           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3327         }else{
3328           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3329         }
3330         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3331       }
3332 
3333       /* Generate code that runs whenever the GROUP BY changes.
3334       ** Change in the GROUP BY are detected by the previous code
3335       ** block.  If there were no changes, this block is skipped.
3336       **
3337       ** This code copies current group by terms in b0,b1,b2,...
3338       ** over to a0,a1,a2.  It then calls the output subroutine
3339       ** and resets the aggregate accumulator registers in preparation
3340       ** for the next GROUP BY batch.
3341       */
3342       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3343       for(j=0; j<pGroupBy->nExpr; j++){
3344         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3345       }
3346       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3347       VdbeComment((v, "# output one row"));
3348       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3349       VdbeComment((v, "# check abort flag"));
3350       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3351       VdbeComment((v, "# reset accumulator"));
3352 
3353       /* Update the aggregate accumulators based on the content of
3354       ** the current row
3355       */
3356       sqlite3VdbeResolveLabel(v, addrProcessRow);
3357       updateAccumulator(pParse, &sAggInfo);
3358       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3359       VdbeComment((v, "# indicate data in accumulator"));
3360 
3361       /* End of the loop
3362       */
3363       if( groupBySort ){
3364         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3365       }else{
3366         sqlite3WhereEnd(pWInfo);
3367         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3368       }
3369 
3370       /* Output the final row of result
3371       */
3372       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3373       VdbeComment((v, "# output final row"));
3374 
3375     } /* endif pGroupBy */
3376     else {
3377       /* This case runs if the aggregate has no GROUP BY clause.  The
3378       ** processing is much simpler since there is only a single row
3379       ** of output.
3380       */
3381       resetAccumulator(pParse, &sAggInfo);
3382       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3383       if( pWInfo==0 ) goto select_end;
3384       updateAccumulator(pParse, &sAggInfo);
3385       sqlite3WhereEnd(pWInfo);
3386       finalizeAggFunctions(pParse, &sAggInfo);
3387       pOrderBy = 0;
3388       if( pHaving ){
3389         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3390       }
3391       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3392                       eDest, iParm, addrEnd, addrEnd, aff);
3393     }
3394     sqlite3VdbeResolveLabel(v, addrEnd);
3395 
3396   } /* endif aggregate query */
3397 
3398   /* If there is an ORDER BY clause, then we need to sort the results
3399   ** and send them to the callback one by one.
3400   */
3401   if( pOrderBy ){
3402     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3403   }
3404 
3405 #ifndef SQLITE_OMIT_SUBQUERY
3406   /* If this was a subquery, we have now converted the subquery into a
3407   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3408   ** this subquery from being evaluated again and to force the use of
3409   ** the temporary table.
3410   */
3411   if( pParent ){
3412     assert( pParent->pSrc->nSrc>parentTab );
3413     assert( pParent->pSrc->a[parentTab].pSelect==p );
3414     pParent->pSrc->a[parentTab].isPopulated = 1;
3415   }
3416 #endif
3417 
3418   /* Jump here to skip this query
3419   */
3420   sqlite3VdbeResolveLabel(v, iEnd);
3421 
3422   /* The SELECT was successfully coded.   Set the return code to 0
3423   ** to indicate no errors.
3424   */
3425   rc = 0;
3426 
3427   /* Control jumps to here if an error is encountered above, or upon
3428   ** successful coding of the SELECT.
3429   */
3430 select_end:
3431 
3432   /* Identify column names if we will be using them in a callback.  This
3433   ** step is skipped if the output is going to some other destination.
3434   */
3435   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3436     generateColumnNames(pParse, pTabList, pEList);
3437   }
3438 
3439   sqlite3_free(sAggInfo.aCol);
3440   sqlite3_free(sAggInfo.aFunc);
3441   return rc;
3442 }
3443 
3444 #if defined(SQLITE_DEBUG)
3445 /*
3446 *******************************************************************************
3447 ** The following code is used for testing and debugging only.  The code
3448 ** that follows does not appear in normal builds.
3449 **
3450 ** These routines are used to print out the content of all or part of a
3451 ** parse structures such as Select or Expr.  Such printouts are useful
3452 ** for helping to understand what is happening inside the code generator
3453 ** during the execution of complex SELECT statements.
3454 **
3455 ** These routine are not called anywhere from within the normal
3456 ** code base.  Then are intended to be called from within the debugger
3457 ** or from temporary "printf" statements inserted for debugging.
3458 */
3459 void sqlite3PrintExpr(Expr *p){
3460   if( p->token.z && p->token.n>0 ){
3461     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3462   }else{
3463     sqlite3DebugPrintf("(%d", p->op);
3464   }
3465   if( p->pLeft ){
3466     sqlite3DebugPrintf(" ");
3467     sqlite3PrintExpr(p->pLeft);
3468   }
3469   if( p->pRight ){
3470     sqlite3DebugPrintf(" ");
3471     sqlite3PrintExpr(p->pRight);
3472   }
3473   sqlite3DebugPrintf(")");
3474 }
3475 void sqlite3PrintExprList(ExprList *pList){
3476   int i;
3477   for(i=0; i<pList->nExpr; i++){
3478     sqlite3PrintExpr(pList->a[i].pExpr);
3479     if( i<pList->nExpr-1 ){
3480       sqlite3DebugPrintf(", ");
3481     }
3482   }
3483 }
3484 void sqlite3PrintSelect(Select *p, int indent){
3485   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3486   sqlite3PrintExprList(p->pEList);
3487   sqlite3DebugPrintf("\n");
3488   if( p->pSrc ){
3489     char *zPrefix;
3490     int i;
3491     zPrefix = "FROM";
3492     for(i=0; i<p->pSrc->nSrc; i++){
3493       struct SrcList_item *pItem = &p->pSrc->a[i];
3494       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3495       zPrefix = "";
3496       if( pItem->pSelect ){
3497         sqlite3DebugPrintf("(\n");
3498         sqlite3PrintSelect(pItem->pSelect, indent+10);
3499         sqlite3DebugPrintf("%*s)", indent+8, "");
3500       }else if( pItem->zName ){
3501         sqlite3DebugPrintf("%s", pItem->zName);
3502       }
3503       if( pItem->pTab ){
3504         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3505       }
3506       if( pItem->zAlias ){
3507         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3508       }
3509       if( i<p->pSrc->nSrc-1 ){
3510         sqlite3DebugPrintf(",");
3511       }
3512       sqlite3DebugPrintf("\n");
3513     }
3514   }
3515   if( p->pWhere ){
3516     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3517     sqlite3PrintExpr(p->pWhere);
3518     sqlite3DebugPrintf("\n");
3519   }
3520   if( p->pGroupBy ){
3521     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3522     sqlite3PrintExprList(p->pGroupBy);
3523     sqlite3DebugPrintf("\n");
3524   }
3525   if( p->pHaving ){
3526     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3527     sqlite3PrintExpr(p->pHaving);
3528     sqlite3DebugPrintf("\n");
3529   }
3530   if( p->pOrderBy ){
3531     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3532     sqlite3PrintExprList(p->pOrderBy);
3533     sqlite3DebugPrintf("\n");
3534   }
3535 }
3536 /* End of the structure debug printing code
3537 *****************************************************************************/
3538 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3539