1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 57 }; 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 59 60 /* 61 ** Delete all the content of a Select structure. Deallocate the structure 62 ** itself only if bFree is true. 63 */ 64 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 65 while( p ){ 66 Select *pPrior = p->pPrior; 67 sqlite3ExprListDelete(db, p->pEList); 68 sqlite3SrcListDelete(db, p->pSrc); 69 sqlite3ExprDelete(db, p->pWhere); 70 sqlite3ExprListDelete(db, p->pGroupBy); 71 sqlite3ExprDelete(db, p->pHaving); 72 sqlite3ExprListDelete(db, p->pOrderBy); 73 sqlite3ExprDelete(db, p->pLimit); 74 sqlite3ExprDelete(db, p->pOffset); 75 sqlite3WithDelete(db, p->pWith); 76 if( bFree ) sqlite3DbFree(db, p); 77 p = pPrior; 78 bFree = 1; 79 } 80 } 81 82 /* 83 ** Initialize a SelectDest structure. 84 */ 85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 86 pDest->eDest = (u8)eDest; 87 pDest->iSDParm = iParm; 88 pDest->affSdst = 0; 89 pDest->iSdst = 0; 90 pDest->nSdst = 0; 91 } 92 93 94 /* 95 ** Allocate a new Select structure and return a pointer to that 96 ** structure. 97 */ 98 Select *sqlite3SelectNew( 99 Parse *pParse, /* Parsing context */ 100 ExprList *pEList, /* which columns to include in the result */ 101 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 102 Expr *pWhere, /* the WHERE clause */ 103 ExprList *pGroupBy, /* the GROUP BY clause */ 104 Expr *pHaving, /* the HAVING clause */ 105 ExprList *pOrderBy, /* the ORDER BY clause */ 106 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 107 Expr *pLimit, /* LIMIT value. NULL means not used */ 108 Expr *pOffset /* OFFSET value. NULL means no offset */ 109 ){ 110 Select *pNew; 111 Select standin; 112 sqlite3 *db = pParse->db; 113 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 114 if( pNew==0 ){ 115 assert( db->mallocFailed ); 116 pNew = &standin; 117 memset(pNew, 0, sizeof(*pNew)); 118 } 119 if( pEList==0 ){ 120 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 121 } 122 pNew->pEList = pEList; 123 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 124 pNew->pSrc = pSrc; 125 pNew->pWhere = pWhere; 126 pNew->pGroupBy = pGroupBy; 127 pNew->pHaving = pHaving; 128 pNew->pOrderBy = pOrderBy; 129 pNew->selFlags = selFlags; 130 pNew->op = TK_SELECT; 131 pNew->pLimit = pLimit; 132 pNew->pOffset = pOffset; 133 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 134 pNew->addrOpenEphm[0] = -1; 135 pNew->addrOpenEphm[1] = -1; 136 if( db->mallocFailed ) { 137 clearSelect(db, pNew, pNew!=&standin); 138 pNew = 0; 139 }else{ 140 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 141 } 142 assert( pNew!=&standin ); 143 return pNew; 144 } 145 146 #if SELECTTRACE_ENABLED 147 /* 148 ** Set the name of a Select object 149 */ 150 void sqlite3SelectSetName(Select *p, const char *zName){ 151 if( p && zName ){ 152 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 153 } 154 } 155 #endif 156 157 158 /* 159 ** Delete the given Select structure and all of its substructures. 160 */ 161 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 162 clearSelect(db, p, 1); 163 } 164 165 /* 166 ** Return a pointer to the right-most SELECT statement in a compound. 167 */ 168 static Select *findRightmost(Select *p){ 169 while( p->pNext ) p = p->pNext; 170 return p; 171 } 172 173 /* 174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 175 ** type of join. Return an integer constant that expresses that type 176 ** in terms of the following bit values: 177 ** 178 ** JT_INNER 179 ** JT_CROSS 180 ** JT_OUTER 181 ** JT_NATURAL 182 ** JT_LEFT 183 ** JT_RIGHT 184 ** 185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 186 ** 187 ** If an illegal or unsupported join type is seen, then still return 188 ** a join type, but put an error in the pParse structure. 189 */ 190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 191 int jointype = 0; 192 Token *apAll[3]; 193 Token *p; 194 /* 0123456789 123456789 123456789 123 */ 195 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 196 static const struct { 197 u8 i; /* Beginning of keyword text in zKeyText[] */ 198 u8 nChar; /* Length of the keyword in characters */ 199 u8 code; /* Join type mask */ 200 } aKeyword[] = { 201 /* natural */ { 0, 7, JT_NATURAL }, 202 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 203 /* outer */ { 10, 5, JT_OUTER }, 204 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 205 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 206 /* inner */ { 23, 5, JT_INNER }, 207 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 208 }; 209 int i, j; 210 apAll[0] = pA; 211 apAll[1] = pB; 212 apAll[2] = pC; 213 for(i=0; i<3 && apAll[i]; i++){ 214 p = apAll[i]; 215 for(j=0; j<ArraySize(aKeyword); j++){ 216 if( p->n==aKeyword[j].nChar 217 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 218 jointype |= aKeyword[j].code; 219 break; 220 } 221 } 222 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 223 if( j>=ArraySize(aKeyword) ){ 224 jointype |= JT_ERROR; 225 break; 226 } 227 } 228 if( 229 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 230 (jointype & JT_ERROR)!=0 231 ){ 232 const char *zSp = " "; 233 assert( pB!=0 ); 234 if( pC==0 ){ zSp++; } 235 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 236 "%T %T%s%T", pA, pB, zSp, pC); 237 jointype = JT_INNER; 238 }else if( (jointype & JT_OUTER)!=0 239 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 240 sqlite3ErrorMsg(pParse, 241 "RIGHT and FULL OUTER JOINs are not currently supported"); 242 jointype = JT_INNER; 243 } 244 return jointype; 245 } 246 247 /* 248 ** Return the index of a column in a table. Return -1 if the column 249 ** is not contained in the table. 250 */ 251 static int columnIndex(Table *pTab, const char *zCol){ 252 int i; 253 for(i=0; i<pTab->nCol; i++){ 254 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 255 } 256 return -1; 257 } 258 259 /* 260 ** Search the first N tables in pSrc, from left to right, looking for a 261 ** table that has a column named zCol. 262 ** 263 ** When found, set *piTab and *piCol to the table index and column index 264 ** of the matching column and return TRUE. 265 ** 266 ** If not found, return FALSE. 267 */ 268 static int tableAndColumnIndex( 269 SrcList *pSrc, /* Array of tables to search */ 270 int N, /* Number of tables in pSrc->a[] to search */ 271 const char *zCol, /* Name of the column we are looking for */ 272 int *piTab, /* Write index of pSrc->a[] here */ 273 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 274 ){ 275 int i; /* For looping over tables in pSrc */ 276 int iCol; /* Index of column matching zCol */ 277 278 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 279 for(i=0; i<N; i++){ 280 iCol = columnIndex(pSrc->a[i].pTab, zCol); 281 if( iCol>=0 ){ 282 if( piTab ){ 283 *piTab = i; 284 *piCol = iCol; 285 } 286 return 1; 287 } 288 } 289 return 0; 290 } 291 292 /* 293 ** This function is used to add terms implied by JOIN syntax to the 294 ** WHERE clause expression of a SELECT statement. The new term, which 295 ** is ANDed with the existing WHERE clause, is of the form: 296 ** 297 ** (tab1.col1 = tab2.col2) 298 ** 299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 301 ** column iColRight of tab2. 302 */ 303 static void addWhereTerm( 304 Parse *pParse, /* Parsing context */ 305 SrcList *pSrc, /* List of tables in FROM clause */ 306 int iLeft, /* Index of first table to join in pSrc */ 307 int iColLeft, /* Index of column in first table */ 308 int iRight, /* Index of second table in pSrc */ 309 int iColRight, /* Index of column in second table */ 310 int isOuterJoin, /* True if this is an OUTER join */ 311 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 312 ){ 313 sqlite3 *db = pParse->db; 314 Expr *pE1; 315 Expr *pE2; 316 Expr *pEq; 317 318 assert( iLeft<iRight ); 319 assert( pSrc->nSrc>iRight ); 320 assert( pSrc->a[iLeft].pTab ); 321 assert( pSrc->a[iRight].pTab ); 322 323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 325 326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 327 if( pEq && isOuterJoin ){ 328 ExprSetProperty(pEq, EP_FromJoin); 329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 330 ExprSetVVAProperty(pEq, EP_NoReduce); 331 pEq->iRightJoinTable = (i16)pE2->iTable; 332 } 333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 334 } 335 336 /* 337 ** Set the EP_FromJoin property on all terms of the given expression. 338 ** And set the Expr.iRightJoinTable to iTable for every term in the 339 ** expression. 340 ** 341 ** The EP_FromJoin property is used on terms of an expression to tell 342 ** the LEFT OUTER JOIN processing logic that this term is part of the 343 ** join restriction specified in the ON or USING clause and not a part 344 ** of the more general WHERE clause. These terms are moved over to the 345 ** WHERE clause during join processing but we need to remember that they 346 ** originated in the ON or USING clause. 347 ** 348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 349 ** expression depends on table iRightJoinTable even if that table is not 350 ** explicitly mentioned in the expression. That information is needed 351 ** for cases like this: 352 ** 353 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 354 ** 355 ** The where clause needs to defer the handling of the t1.x=5 356 ** term until after the t2 loop of the join. In that way, a 357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 358 ** defer the handling of t1.x=5, it will be processed immediately 359 ** after the t1 loop and rows with t1.x!=5 will never appear in 360 ** the output, which is incorrect. 361 */ 362 static void setJoinExpr(Expr *p, int iTable){ 363 while( p ){ 364 ExprSetProperty(p, EP_FromJoin); 365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 366 ExprSetVVAProperty(p, EP_NoReduce); 367 p->iRightJoinTable = (i16)iTable; 368 setJoinExpr(p->pLeft, iTable); 369 p = p->pRight; 370 } 371 } 372 373 /* 374 ** This routine processes the join information for a SELECT statement. 375 ** ON and USING clauses are converted into extra terms of the WHERE clause. 376 ** NATURAL joins also create extra WHERE clause terms. 377 ** 378 ** The terms of a FROM clause are contained in the Select.pSrc structure. 379 ** The left most table is the first entry in Select.pSrc. The right-most 380 ** table is the last entry. The join operator is held in the entry to 381 ** the left. Thus entry 0 contains the join operator for the join between 382 ** entries 0 and 1. Any ON or USING clauses associated with the join are 383 ** also attached to the left entry. 384 ** 385 ** This routine returns the number of errors encountered. 386 */ 387 static int sqliteProcessJoin(Parse *pParse, Select *p){ 388 SrcList *pSrc; /* All tables in the FROM clause */ 389 int i, j; /* Loop counters */ 390 struct SrcList_item *pLeft; /* Left table being joined */ 391 struct SrcList_item *pRight; /* Right table being joined */ 392 393 pSrc = p->pSrc; 394 pLeft = &pSrc->a[0]; 395 pRight = &pLeft[1]; 396 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 397 Table *pLeftTab = pLeft->pTab; 398 Table *pRightTab = pRight->pTab; 399 int isOuter; 400 401 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 402 isOuter = (pRight->jointype & JT_OUTER)!=0; 403 404 /* When the NATURAL keyword is present, add WHERE clause terms for 405 ** every column that the two tables have in common. 406 */ 407 if( pRight->jointype & JT_NATURAL ){ 408 if( pRight->pOn || pRight->pUsing ){ 409 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 410 "an ON or USING clause", 0); 411 return 1; 412 } 413 for(j=0; j<pRightTab->nCol; j++){ 414 char *zName; /* Name of column in the right table */ 415 int iLeft; /* Matching left table */ 416 int iLeftCol; /* Matching column in the left table */ 417 418 zName = pRightTab->aCol[j].zName; 419 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 420 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 421 isOuter, &p->pWhere); 422 } 423 } 424 } 425 426 /* Disallow both ON and USING clauses in the same join 427 */ 428 if( pRight->pOn && pRight->pUsing ){ 429 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 430 "clauses in the same join"); 431 return 1; 432 } 433 434 /* Add the ON clause to the end of the WHERE clause, connected by 435 ** an AND operator. 436 */ 437 if( pRight->pOn ){ 438 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 439 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 440 pRight->pOn = 0; 441 } 442 443 /* Create extra terms on the WHERE clause for each column named 444 ** in the USING clause. Example: If the two tables to be joined are 445 ** A and B and the USING clause names X, Y, and Z, then add this 446 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 447 ** Report an error if any column mentioned in the USING clause is 448 ** not contained in both tables to be joined. 449 */ 450 if( pRight->pUsing ){ 451 IdList *pList = pRight->pUsing; 452 for(j=0; j<pList->nId; j++){ 453 char *zName; /* Name of the term in the USING clause */ 454 int iLeft; /* Table on the left with matching column name */ 455 int iLeftCol; /* Column number of matching column on the left */ 456 int iRightCol; /* Column number of matching column on the right */ 457 458 zName = pList->a[j].zName; 459 iRightCol = columnIndex(pRightTab, zName); 460 if( iRightCol<0 461 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 462 ){ 463 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 464 "not present in both tables", zName); 465 return 1; 466 } 467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 468 isOuter, &p->pWhere); 469 } 470 } 471 } 472 return 0; 473 } 474 475 /* Forward reference */ 476 static KeyInfo *keyInfoFromExprList( 477 Parse *pParse, /* Parsing context */ 478 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 479 int iStart, /* Begin with this column of pList */ 480 int nExtra /* Add this many extra columns to the end */ 481 ); 482 483 /* 484 ** Generate code that will push the record in registers regData 485 ** through regData+nData-1 onto the sorter. 486 */ 487 static void pushOntoSorter( 488 Parse *pParse, /* Parser context */ 489 SortCtx *pSort, /* Information about the ORDER BY clause */ 490 Select *pSelect, /* The whole SELECT statement */ 491 int regData, /* First register holding data to be sorted */ 492 int nData, /* Number of elements in the data array */ 493 int nPrefixReg /* No. of reg prior to regData available for use */ 494 ){ 495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 499 int regBase; /* Regs for sorter record */ 500 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 502 int op; /* Opcode to add sorter record to sorter */ 503 504 assert( bSeq==0 || bSeq==1 ); 505 if( nPrefixReg ){ 506 assert( nPrefixReg==nExpr+bSeq ); 507 regBase = regData - nExpr - bSeq; 508 }else{ 509 regBase = pParse->nMem + 1; 510 pParse->nMem += nBase; 511 } 512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 513 if( bSeq ){ 514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 515 } 516 if( nPrefixReg==0 ){ 517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 518 } 519 520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 521 if( nOBSat>0 ){ 522 int regPrevKey; /* The first nOBSat columns of the previous row */ 523 int addrFirst; /* Address of the OP_IfNot opcode */ 524 int addrJmp; /* Address of the OP_Jump opcode */ 525 VdbeOp *pOp; /* Opcode that opens the sorter */ 526 int nKey; /* Number of sorting key columns, including OP_Sequence */ 527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 528 529 regPrevKey = pParse->nMem+1; 530 pParse->nMem += pSort->nOBSat; 531 nKey = nExpr - pSort->nOBSat + bSeq; 532 if( bSeq ){ 533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 534 }else{ 535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 536 } 537 VdbeCoverage(v); 538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 540 if( pParse->db->mallocFailed ) return; 541 pOp->p2 = nKey + nData; 542 pKI = pOp->p4.pKeyInfo; 543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 545 testcase( pKI->nXField>2 ); 546 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 547 pKI->nXField-1); 548 addrJmp = sqlite3VdbeCurrentAddr(v); 549 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 550 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 551 pSort->regReturn = ++pParse->nMem; 552 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 553 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 554 sqlite3VdbeJumpHere(v, addrFirst); 555 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 556 sqlite3VdbeJumpHere(v, addrJmp); 557 } 558 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 559 op = OP_SorterInsert; 560 }else{ 561 op = OP_IdxInsert; 562 } 563 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 564 if( pSelect->iLimit ){ 565 int addr; 566 int iLimit; 567 if( pSelect->iOffset ){ 568 iLimit = pSelect->iOffset+1; 569 }else{ 570 iLimit = pSelect->iLimit; 571 } 572 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 573 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 574 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 575 sqlite3VdbeJumpHere(v, addr); 576 } 577 } 578 579 /* 580 ** Add code to implement the OFFSET 581 */ 582 static void codeOffset( 583 Vdbe *v, /* Generate code into this VM */ 584 int iOffset, /* Register holding the offset counter */ 585 int iContinue /* Jump here to skip the current record */ 586 ){ 587 if( iOffset>0 ){ 588 int addr; 589 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 590 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 591 VdbeComment((v, "skip OFFSET records")); 592 sqlite3VdbeJumpHere(v, addr); 593 } 594 } 595 596 /* 597 ** Add code that will check to make sure the N registers starting at iMem 598 ** form a distinct entry. iTab is a sorting index that holds previously 599 ** seen combinations of the N values. A new entry is made in iTab 600 ** if the current N values are new. 601 ** 602 ** A jump to addrRepeat is made and the N+1 values are popped from the 603 ** stack if the top N elements are not distinct. 604 */ 605 static void codeDistinct( 606 Parse *pParse, /* Parsing and code generating context */ 607 int iTab, /* A sorting index used to test for distinctness */ 608 int addrRepeat, /* Jump to here if not distinct */ 609 int N, /* Number of elements */ 610 int iMem /* First element */ 611 ){ 612 Vdbe *v; 613 int r1; 614 615 v = pParse->pVdbe; 616 r1 = sqlite3GetTempReg(pParse); 617 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 618 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 619 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 620 sqlite3ReleaseTempReg(pParse, r1); 621 } 622 623 #ifndef SQLITE_OMIT_SUBQUERY 624 /* 625 ** Generate an error message when a SELECT is used within a subexpression 626 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 627 ** column. We do this in a subroutine because the error used to occur 628 ** in multiple places. (The error only occurs in one place now, but we 629 ** retain the subroutine to minimize code disruption.) 630 */ 631 static int checkForMultiColumnSelectError( 632 Parse *pParse, /* Parse context. */ 633 SelectDest *pDest, /* Destination of SELECT results */ 634 int nExpr /* Number of result columns returned by SELECT */ 635 ){ 636 int eDest = pDest->eDest; 637 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 638 sqlite3ErrorMsg(pParse, "only a single result allowed for " 639 "a SELECT that is part of an expression"); 640 return 1; 641 }else{ 642 return 0; 643 } 644 } 645 #endif 646 647 /* 648 ** This routine generates the code for the inside of the inner loop 649 ** of a SELECT. 650 ** 651 ** If srcTab is negative, then the pEList expressions 652 ** are evaluated in order to get the data for this row. If srcTab is 653 ** zero or more, then data is pulled from srcTab and pEList is used only 654 ** to get number columns and the datatype for each column. 655 */ 656 static void selectInnerLoop( 657 Parse *pParse, /* The parser context */ 658 Select *p, /* The complete select statement being coded */ 659 ExprList *pEList, /* List of values being extracted */ 660 int srcTab, /* Pull data from this table */ 661 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 662 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 663 SelectDest *pDest, /* How to dispose of the results */ 664 int iContinue, /* Jump here to continue with next row */ 665 int iBreak /* Jump here to break out of the inner loop */ 666 ){ 667 Vdbe *v = pParse->pVdbe; 668 int i; 669 int hasDistinct; /* True if the DISTINCT keyword is present */ 670 int regResult; /* Start of memory holding result set */ 671 int eDest = pDest->eDest; /* How to dispose of results */ 672 int iParm = pDest->iSDParm; /* First argument to disposal method */ 673 int nResultCol; /* Number of result columns */ 674 int nPrefixReg = 0; /* Number of extra registers before regResult */ 675 676 assert( v ); 677 assert( pEList!=0 ); 678 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 679 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 680 if( pSort==0 && !hasDistinct ){ 681 assert( iContinue!=0 ); 682 codeOffset(v, p->iOffset, iContinue); 683 } 684 685 /* Pull the requested columns. 686 */ 687 nResultCol = pEList->nExpr; 688 689 if( pDest->iSdst==0 ){ 690 if( pSort ){ 691 nPrefixReg = pSort->pOrderBy->nExpr; 692 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 693 pParse->nMem += nPrefixReg; 694 } 695 pDest->iSdst = pParse->nMem+1; 696 pParse->nMem += nResultCol; 697 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 698 /* This is an error condition that can result, for example, when a SELECT 699 ** on the right-hand side of an INSERT contains more result columns than 700 ** there are columns in the table on the left. The error will be caught 701 ** and reported later. But we need to make sure enough memory is allocated 702 ** to avoid other spurious errors in the meantime. */ 703 pParse->nMem += nResultCol; 704 } 705 pDest->nSdst = nResultCol; 706 regResult = pDest->iSdst; 707 if( srcTab>=0 ){ 708 for(i=0; i<nResultCol; i++){ 709 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 710 VdbeComment((v, "%s", pEList->a[i].zName)); 711 } 712 }else if( eDest!=SRT_Exists ){ 713 /* If the destination is an EXISTS(...) expression, the actual 714 ** values returned by the SELECT are not required. 715 */ 716 sqlite3ExprCodeExprList(pParse, pEList, regResult, 717 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 718 } 719 720 /* If the DISTINCT keyword was present on the SELECT statement 721 ** and this row has been seen before, then do not make this row 722 ** part of the result. 723 */ 724 if( hasDistinct ){ 725 switch( pDistinct->eTnctType ){ 726 case WHERE_DISTINCT_ORDERED: { 727 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 728 int iJump; /* Jump destination */ 729 int regPrev; /* Previous row content */ 730 731 /* Allocate space for the previous row */ 732 regPrev = pParse->nMem+1; 733 pParse->nMem += nResultCol; 734 735 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 736 ** sets the MEM_Cleared bit on the first register of the 737 ** previous value. This will cause the OP_Ne below to always 738 ** fail on the first iteration of the loop even if the first 739 ** row is all NULLs. 740 */ 741 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 742 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 743 pOp->opcode = OP_Null; 744 pOp->p1 = 1; 745 pOp->p2 = regPrev; 746 747 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 748 for(i=0; i<nResultCol; i++){ 749 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 750 if( i<nResultCol-1 ){ 751 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 752 VdbeCoverage(v); 753 }else{ 754 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 755 VdbeCoverage(v); 756 } 757 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 758 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 759 } 760 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 761 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 762 break; 763 } 764 765 case WHERE_DISTINCT_UNIQUE: { 766 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 767 break; 768 } 769 770 default: { 771 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 772 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 773 break; 774 } 775 } 776 if( pSort==0 ){ 777 codeOffset(v, p->iOffset, iContinue); 778 } 779 } 780 781 switch( eDest ){ 782 /* In this mode, write each query result to the key of the temporary 783 ** table iParm. 784 */ 785 #ifndef SQLITE_OMIT_COMPOUND_SELECT 786 case SRT_Union: { 787 int r1; 788 r1 = sqlite3GetTempReg(pParse); 789 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 790 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 791 sqlite3ReleaseTempReg(pParse, r1); 792 break; 793 } 794 795 /* Construct a record from the query result, but instead of 796 ** saving that record, use it as a key to delete elements from 797 ** the temporary table iParm. 798 */ 799 case SRT_Except: { 800 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 801 break; 802 } 803 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 804 805 /* Store the result as data using a unique key. 806 */ 807 case SRT_Fifo: 808 case SRT_DistFifo: 809 case SRT_Table: 810 case SRT_EphemTab: { 811 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 812 testcase( eDest==SRT_Table ); 813 testcase( eDest==SRT_EphemTab ); 814 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 815 #ifndef SQLITE_OMIT_CTE 816 if( eDest==SRT_DistFifo ){ 817 /* If the destination is DistFifo, then cursor (iParm+1) is open 818 ** on an ephemeral index. If the current row is already present 819 ** in the index, do not write it to the output. If not, add the 820 ** current row to the index and proceed with writing it to the 821 ** output table as well. */ 822 int addr = sqlite3VdbeCurrentAddr(v) + 4; 823 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 824 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 825 assert( pSort==0 ); 826 } 827 #endif 828 if( pSort ){ 829 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 830 }else{ 831 int r2 = sqlite3GetTempReg(pParse); 832 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 833 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 834 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 835 sqlite3ReleaseTempReg(pParse, r2); 836 } 837 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 838 break; 839 } 840 841 #ifndef SQLITE_OMIT_SUBQUERY 842 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 843 ** then there should be a single item on the stack. Write this 844 ** item into the set table with bogus data. 845 */ 846 case SRT_Set: { 847 assert( nResultCol==1 ); 848 pDest->affSdst = 849 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 850 if( pSort ){ 851 /* At first glance you would think we could optimize out the 852 ** ORDER BY in this case since the order of entries in the set 853 ** does not matter. But there might be a LIMIT clause, in which 854 ** case the order does matter */ 855 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 856 }else{ 857 int r1 = sqlite3GetTempReg(pParse); 858 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 859 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 860 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 861 sqlite3ReleaseTempReg(pParse, r1); 862 } 863 break; 864 } 865 866 /* If any row exist in the result set, record that fact and abort. 867 */ 868 case SRT_Exists: { 869 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 870 /* The LIMIT clause will terminate the loop for us */ 871 break; 872 } 873 874 /* If this is a scalar select that is part of an expression, then 875 ** store the results in the appropriate memory cell and break out 876 ** of the scan loop. 877 */ 878 case SRT_Mem: { 879 assert( nResultCol==1 ); 880 if( pSort ){ 881 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 882 }else{ 883 assert( regResult==iParm ); 884 /* The LIMIT clause will jump out of the loop for us */ 885 } 886 break; 887 } 888 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 889 890 case SRT_Coroutine: /* Send data to a co-routine */ 891 case SRT_Output: { /* Return the results */ 892 testcase( eDest==SRT_Coroutine ); 893 testcase( eDest==SRT_Output ); 894 if( pSort ){ 895 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 896 }else if( eDest==SRT_Coroutine ){ 897 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 898 }else{ 899 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 900 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 901 } 902 break; 903 } 904 905 #ifndef SQLITE_OMIT_CTE 906 /* Write the results into a priority queue that is order according to 907 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 908 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 909 ** pSO->nExpr columns, then make sure all keys are unique by adding a 910 ** final OP_Sequence column. The last column is the record as a blob. 911 */ 912 case SRT_DistQueue: 913 case SRT_Queue: { 914 int nKey; 915 int r1, r2, r3; 916 int addrTest = 0; 917 ExprList *pSO; 918 pSO = pDest->pOrderBy; 919 assert( pSO ); 920 nKey = pSO->nExpr; 921 r1 = sqlite3GetTempReg(pParse); 922 r2 = sqlite3GetTempRange(pParse, nKey+2); 923 r3 = r2+nKey+1; 924 if( eDest==SRT_DistQueue ){ 925 /* If the destination is DistQueue, then cursor (iParm+1) is open 926 ** on a second ephemeral index that holds all values every previously 927 ** added to the queue. */ 928 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 929 regResult, nResultCol); 930 VdbeCoverage(v); 931 } 932 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 933 if( eDest==SRT_DistQueue ){ 934 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 935 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 936 } 937 for(i=0; i<nKey; i++){ 938 sqlite3VdbeAddOp2(v, OP_SCopy, 939 regResult + pSO->a[i].u.x.iOrderByCol - 1, 940 r2+i); 941 } 942 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 943 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 944 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 945 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 946 sqlite3ReleaseTempReg(pParse, r1); 947 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 948 break; 949 } 950 #endif /* SQLITE_OMIT_CTE */ 951 952 953 954 #if !defined(SQLITE_OMIT_TRIGGER) 955 /* Discard the results. This is used for SELECT statements inside 956 ** the body of a TRIGGER. The purpose of such selects is to call 957 ** user-defined functions that have side effects. We do not care 958 ** about the actual results of the select. 959 */ 960 default: { 961 assert( eDest==SRT_Discard ); 962 break; 963 } 964 #endif 965 } 966 967 /* Jump to the end of the loop if the LIMIT is reached. Except, if 968 ** there is a sorter, in which case the sorter has already limited 969 ** the output for us. 970 */ 971 if( pSort==0 && p->iLimit ){ 972 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 973 } 974 } 975 976 /* 977 ** Allocate a KeyInfo object sufficient for an index of N key columns and 978 ** X extra columns. 979 */ 980 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 981 KeyInfo *p = sqlite3DbMallocZero(0, 982 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 983 if( p ){ 984 p->aSortOrder = (u8*)&p->aColl[N+X]; 985 p->nField = (u16)N; 986 p->nXField = (u16)X; 987 p->enc = ENC(db); 988 p->db = db; 989 p->nRef = 1; 990 }else{ 991 db->mallocFailed = 1; 992 } 993 return p; 994 } 995 996 /* 997 ** Deallocate a KeyInfo object 998 */ 999 void sqlite3KeyInfoUnref(KeyInfo *p){ 1000 if( p ){ 1001 assert( p->nRef>0 ); 1002 p->nRef--; 1003 if( p->nRef==0 ) sqlite3DbFree(0, p); 1004 } 1005 } 1006 1007 /* 1008 ** Make a new pointer to a KeyInfo object 1009 */ 1010 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1011 if( p ){ 1012 assert( p->nRef>0 ); 1013 p->nRef++; 1014 } 1015 return p; 1016 } 1017 1018 #ifdef SQLITE_DEBUG 1019 /* 1020 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1021 ** can only be changed if this is just a single reference to the object. 1022 ** 1023 ** This routine is used only inside of assert() statements. 1024 */ 1025 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1026 #endif /* SQLITE_DEBUG */ 1027 1028 /* 1029 ** Given an expression list, generate a KeyInfo structure that records 1030 ** the collating sequence for each expression in that expression list. 1031 ** 1032 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1033 ** KeyInfo structure is appropriate for initializing a virtual index to 1034 ** implement that clause. If the ExprList is the result set of a SELECT 1035 ** then the KeyInfo structure is appropriate for initializing a virtual 1036 ** index to implement a DISTINCT test. 1037 ** 1038 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1039 ** function is responsible for seeing that this structure is eventually 1040 ** freed. 1041 */ 1042 static KeyInfo *keyInfoFromExprList( 1043 Parse *pParse, /* Parsing context */ 1044 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1045 int iStart, /* Begin with this column of pList */ 1046 int nExtra /* Add this many extra columns to the end */ 1047 ){ 1048 int nExpr; 1049 KeyInfo *pInfo; 1050 struct ExprList_item *pItem; 1051 sqlite3 *db = pParse->db; 1052 int i; 1053 1054 nExpr = pList->nExpr; 1055 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1056 if( pInfo ){ 1057 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1058 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1059 CollSeq *pColl; 1060 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1061 if( !pColl ) pColl = db->pDfltColl; 1062 pInfo->aColl[i-iStart] = pColl; 1063 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1064 } 1065 } 1066 return pInfo; 1067 } 1068 1069 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1070 /* 1071 ** Name of the connection operator, used for error messages. 1072 */ 1073 static const char *selectOpName(int id){ 1074 char *z; 1075 switch( id ){ 1076 case TK_ALL: z = "UNION ALL"; break; 1077 case TK_INTERSECT: z = "INTERSECT"; break; 1078 case TK_EXCEPT: z = "EXCEPT"; break; 1079 default: z = "UNION"; break; 1080 } 1081 return z; 1082 } 1083 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1084 1085 #ifndef SQLITE_OMIT_EXPLAIN 1086 /* 1087 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1088 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1089 ** where the caption is of the form: 1090 ** 1091 ** "USE TEMP B-TREE FOR xxx" 1092 ** 1093 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1094 ** is determined by the zUsage argument. 1095 */ 1096 static void explainTempTable(Parse *pParse, const char *zUsage){ 1097 if( pParse->explain==2 ){ 1098 Vdbe *v = pParse->pVdbe; 1099 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1100 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1101 } 1102 } 1103 1104 /* 1105 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1106 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1107 ** in sqlite3Select() to assign values to structure member variables that 1108 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1109 ** code with #ifndef directives. 1110 */ 1111 # define explainSetInteger(a, b) a = b 1112 1113 #else 1114 /* No-op versions of the explainXXX() functions and macros. */ 1115 # define explainTempTable(y,z) 1116 # define explainSetInteger(y,z) 1117 #endif 1118 1119 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1120 /* 1121 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1122 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1123 ** where the caption is of one of the two forms: 1124 ** 1125 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1127 ** 1128 ** where iSub1 and iSub2 are the integers passed as the corresponding 1129 ** function parameters, and op is the text representation of the parameter 1130 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1131 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1132 ** false, or the second form if it is true. 1133 */ 1134 static void explainComposite( 1135 Parse *pParse, /* Parse context */ 1136 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1137 int iSub1, /* Subquery id 1 */ 1138 int iSub2, /* Subquery id 2 */ 1139 int bUseTmp /* True if a temp table was used */ 1140 ){ 1141 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1142 if( pParse->explain==2 ){ 1143 Vdbe *v = pParse->pVdbe; 1144 char *zMsg = sqlite3MPrintf( 1145 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1146 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1147 ); 1148 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1149 } 1150 } 1151 #else 1152 /* No-op versions of the explainXXX() functions and macros. */ 1153 # define explainComposite(v,w,x,y,z) 1154 #endif 1155 1156 /* 1157 ** If the inner loop was generated using a non-null pOrderBy argument, 1158 ** then the results were placed in a sorter. After the loop is terminated 1159 ** we need to run the sorter and output the results. The following 1160 ** routine generates the code needed to do that. 1161 */ 1162 static void generateSortTail( 1163 Parse *pParse, /* Parsing context */ 1164 Select *p, /* The SELECT statement */ 1165 SortCtx *pSort, /* Information on the ORDER BY clause */ 1166 int nColumn, /* Number of columns of data */ 1167 SelectDest *pDest /* Write the sorted results here */ 1168 ){ 1169 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1170 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1171 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1172 int addr; 1173 int addrOnce = 0; 1174 int iTab; 1175 ExprList *pOrderBy = pSort->pOrderBy; 1176 int eDest = pDest->eDest; 1177 int iParm = pDest->iSDParm; 1178 int regRow; 1179 int regRowid; 1180 int nKey; 1181 int iSortTab; /* Sorter cursor to read from */ 1182 int nSortData; /* Trailing values to read from sorter */ 1183 int i; 1184 int bSeq; /* True if sorter record includes seq. no. */ 1185 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1186 struct ExprList_item *aOutEx = p->pEList->a; 1187 #endif 1188 1189 if( pSort->labelBkOut ){ 1190 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1191 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1192 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1193 } 1194 iTab = pSort->iECursor; 1195 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1196 regRowid = 0; 1197 regRow = pDest->iSdst; 1198 nSortData = nColumn; 1199 }else{ 1200 regRowid = sqlite3GetTempReg(pParse); 1201 regRow = sqlite3GetTempReg(pParse); 1202 nSortData = 1; 1203 } 1204 nKey = pOrderBy->nExpr - pSort->nOBSat; 1205 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1206 int regSortOut = ++pParse->nMem; 1207 iSortTab = pParse->nTab++; 1208 if( pSort->labelBkOut ){ 1209 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1210 } 1211 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1212 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1213 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1214 VdbeCoverage(v); 1215 codeOffset(v, p->iOffset, addrContinue); 1216 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1217 bSeq = 0; 1218 }else{ 1219 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1220 codeOffset(v, p->iOffset, addrContinue); 1221 iSortTab = iTab; 1222 bSeq = 1; 1223 } 1224 for(i=0; i<nSortData; i++){ 1225 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1226 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1227 } 1228 switch( eDest ){ 1229 case SRT_Table: 1230 case SRT_EphemTab: { 1231 testcase( eDest==SRT_Table ); 1232 testcase( eDest==SRT_EphemTab ); 1233 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1234 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1235 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1236 break; 1237 } 1238 #ifndef SQLITE_OMIT_SUBQUERY 1239 case SRT_Set: { 1240 assert( nColumn==1 ); 1241 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1242 &pDest->affSdst, 1); 1243 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1244 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1245 break; 1246 } 1247 case SRT_Mem: { 1248 assert( nColumn==1 ); 1249 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1250 /* The LIMIT clause will terminate the loop for us */ 1251 break; 1252 } 1253 #endif 1254 default: { 1255 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1256 testcase( eDest==SRT_Output ); 1257 testcase( eDest==SRT_Coroutine ); 1258 if( eDest==SRT_Output ){ 1259 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1260 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1261 }else{ 1262 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1263 } 1264 break; 1265 } 1266 } 1267 if( regRowid ){ 1268 sqlite3ReleaseTempReg(pParse, regRow); 1269 sqlite3ReleaseTempReg(pParse, regRowid); 1270 } 1271 /* The bottom of the loop 1272 */ 1273 sqlite3VdbeResolveLabel(v, addrContinue); 1274 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1275 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1276 }else{ 1277 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1278 } 1279 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1280 sqlite3VdbeResolveLabel(v, addrBreak); 1281 } 1282 1283 /* 1284 ** Return a pointer to a string containing the 'declaration type' of the 1285 ** expression pExpr. The string may be treated as static by the caller. 1286 ** 1287 ** Also try to estimate the size of the returned value and return that 1288 ** result in *pEstWidth. 1289 ** 1290 ** The declaration type is the exact datatype definition extracted from the 1291 ** original CREATE TABLE statement if the expression is a column. The 1292 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1293 ** is considered a column can be complex in the presence of subqueries. The 1294 ** result-set expression in all of the following SELECT statements is 1295 ** considered a column by this function. 1296 ** 1297 ** SELECT col FROM tbl; 1298 ** SELECT (SELECT col FROM tbl; 1299 ** SELECT (SELECT col FROM tbl); 1300 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1301 ** 1302 ** The declaration type for any expression other than a column is NULL. 1303 ** 1304 ** This routine has either 3 or 6 parameters depending on whether or not 1305 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1306 */ 1307 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1308 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1309 static const char *columnTypeImpl( 1310 NameContext *pNC, 1311 Expr *pExpr, 1312 const char **pzOrigDb, 1313 const char **pzOrigTab, 1314 const char **pzOrigCol, 1315 u8 *pEstWidth 1316 ){ 1317 char const *zOrigDb = 0; 1318 char const *zOrigTab = 0; 1319 char const *zOrigCol = 0; 1320 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1322 static const char *columnTypeImpl( 1323 NameContext *pNC, 1324 Expr *pExpr, 1325 u8 *pEstWidth 1326 ){ 1327 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1328 char const *zType = 0; 1329 int j; 1330 u8 estWidth = 1; 1331 1332 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1333 switch( pExpr->op ){ 1334 case TK_AGG_COLUMN: 1335 case TK_COLUMN: { 1336 /* The expression is a column. Locate the table the column is being 1337 ** extracted from in NameContext.pSrcList. This table may be real 1338 ** database table or a subquery. 1339 */ 1340 Table *pTab = 0; /* Table structure column is extracted from */ 1341 Select *pS = 0; /* Select the column is extracted from */ 1342 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1343 testcase( pExpr->op==TK_AGG_COLUMN ); 1344 testcase( pExpr->op==TK_COLUMN ); 1345 while( pNC && !pTab ){ 1346 SrcList *pTabList = pNC->pSrcList; 1347 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1348 if( j<pTabList->nSrc ){ 1349 pTab = pTabList->a[j].pTab; 1350 pS = pTabList->a[j].pSelect; 1351 }else{ 1352 pNC = pNC->pNext; 1353 } 1354 } 1355 1356 if( pTab==0 ){ 1357 /* At one time, code such as "SELECT new.x" within a trigger would 1358 ** cause this condition to run. Since then, we have restructured how 1359 ** trigger code is generated and so this condition is no longer 1360 ** possible. However, it can still be true for statements like 1361 ** the following: 1362 ** 1363 ** CREATE TABLE t1(col INTEGER); 1364 ** SELECT (SELECT t1.col) FROM FROM t1; 1365 ** 1366 ** when columnType() is called on the expression "t1.col" in the 1367 ** sub-select. In this case, set the column type to NULL, even 1368 ** though it should really be "INTEGER". 1369 ** 1370 ** This is not a problem, as the column type of "t1.col" is never 1371 ** used. When columnType() is called on the expression 1372 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1373 ** branch below. */ 1374 break; 1375 } 1376 1377 assert( pTab && pExpr->pTab==pTab ); 1378 if( pS ){ 1379 /* The "table" is actually a sub-select or a view in the FROM clause 1380 ** of the SELECT statement. Return the declaration type and origin 1381 ** data for the result-set column of the sub-select. 1382 */ 1383 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1384 /* If iCol is less than zero, then the expression requests the 1385 ** rowid of the sub-select or view. This expression is legal (see 1386 ** test case misc2.2.2) - it always evaluates to NULL. 1387 */ 1388 NameContext sNC; 1389 Expr *p = pS->pEList->a[iCol].pExpr; 1390 sNC.pSrcList = pS->pSrc; 1391 sNC.pNext = pNC; 1392 sNC.pParse = pNC->pParse; 1393 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1394 } 1395 }else if( pTab->pSchema ){ 1396 /* A real table */ 1397 assert( !pS ); 1398 if( iCol<0 ) iCol = pTab->iPKey; 1399 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1400 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1401 if( iCol<0 ){ 1402 zType = "INTEGER"; 1403 zOrigCol = "rowid"; 1404 }else{ 1405 zType = pTab->aCol[iCol].zType; 1406 zOrigCol = pTab->aCol[iCol].zName; 1407 estWidth = pTab->aCol[iCol].szEst; 1408 } 1409 zOrigTab = pTab->zName; 1410 if( pNC->pParse ){ 1411 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1412 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1413 } 1414 #else 1415 if( iCol<0 ){ 1416 zType = "INTEGER"; 1417 }else{ 1418 zType = pTab->aCol[iCol].zType; 1419 estWidth = pTab->aCol[iCol].szEst; 1420 } 1421 #endif 1422 } 1423 break; 1424 } 1425 #ifndef SQLITE_OMIT_SUBQUERY 1426 case TK_SELECT: { 1427 /* The expression is a sub-select. Return the declaration type and 1428 ** origin info for the single column in the result set of the SELECT 1429 ** statement. 1430 */ 1431 NameContext sNC; 1432 Select *pS = pExpr->x.pSelect; 1433 Expr *p = pS->pEList->a[0].pExpr; 1434 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1435 sNC.pSrcList = pS->pSrc; 1436 sNC.pNext = pNC; 1437 sNC.pParse = pNC->pParse; 1438 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1439 break; 1440 } 1441 #endif 1442 } 1443 1444 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1445 if( pzOrigDb ){ 1446 assert( pzOrigTab && pzOrigCol ); 1447 *pzOrigDb = zOrigDb; 1448 *pzOrigTab = zOrigTab; 1449 *pzOrigCol = zOrigCol; 1450 } 1451 #endif 1452 if( pEstWidth ) *pEstWidth = estWidth; 1453 return zType; 1454 } 1455 1456 /* 1457 ** Generate code that will tell the VDBE the declaration types of columns 1458 ** in the result set. 1459 */ 1460 static void generateColumnTypes( 1461 Parse *pParse, /* Parser context */ 1462 SrcList *pTabList, /* List of tables */ 1463 ExprList *pEList /* Expressions defining the result set */ 1464 ){ 1465 #ifndef SQLITE_OMIT_DECLTYPE 1466 Vdbe *v = pParse->pVdbe; 1467 int i; 1468 NameContext sNC; 1469 sNC.pSrcList = pTabList; 1470 sNC.pParse = pParse; 1471 for(i=0; i<pEList->nExpr; i++){ 1472 Expr *p = pEList->a[i].pExpr; 1473 const char *zType; 1474 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1475 const char *zOrigDb = 0; 1476 const char *zOrigTab = 0; 1477 const char *zOrigCol = 0; 1478 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1479 1480 /* The vdbe must make its own copy of the column-type and other 1481 ** column specific strings, in case the schema is reset before this 1482 ** virtual machine is deleted. 1483 */ 1484 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1485 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1486 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1487 #else 1488 zType = columnType(&sNC, p, 0, 0, 0, 0); 1489 #endif 1490 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1491 } 1492 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1493 } 1494 1495 /* 1496 ** Generate code that will tell the VDBE the names of columns 1497 ** in the result set. This information is used to provide the 1498 ** azCol[] values in the callback. 1499 */ 1500 static void generateColumnNames( 1501 Parse *pParse, /* Parser context */ 1502 SrcList *pTabList, /* List of tables */ 1503 ExprList *pEList /* Expressions defining the result set */ 1504 ){ 1505 Vdbe *v = pParse->pVdbe; 1506 int i, j; 1507 sqlite3 *db = pParse->db; 1508 int fullNames, shortNames; 1509 1510 #ifndef SQLITE_OMIT_EXPLAIN 1511 /* If this is an EXPLAIN, skip this step */ 1512 if( pParse->explain ){ 1513 return; 1514 } 1515 #endif 1516 1517 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1518 pParse->colNamesSet = 1; 1519 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1520 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1521 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1522 for(i=0; i<pEList->nExpr; i++){ 1523 Expr *p; 1524 p = pEList->a[i].pExpr; 1525 if( NEVER(p==0) ) continue; 1526 if( pEList->a[i].zName ){ 1527 char *zName = pEList->a[i].zName; 1528 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1529 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1530 Table *pTab; 1531 char *zCol; 1532 int iCol = p->iColumn; 1533 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1534 if( pTabList->a[j].iCursor==p->iTable ) break; 1535 } 1536 assert( j<pTabList->nSrc ); 1537 pTab = pTabList->a[j].pTab; 1538 if( iCol<0 ) iCol = pTab->iPKey; 1539 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1540 if( iCol<0 ){ 1541 zCol = "rowid"; 1542 }else{ 1543 zCol = pTab->aCol[iCol].zName; 1544 } 1545 if( !shortNames && !fullNames ){ 1546 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1547 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1548 }else if( fullNames ){ 1549 char *zName = 0; 1550 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1551 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1552 }else{ 1553 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1554 } 1555 }else{ 1556 const char *z = pEList->a[i].zSpan; 1557 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1558 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1559 } 1560 } 1561 generateColumnTypes(pParse, pTabList, pEList); 1562 } 1563 1564 /* 1565 ** Given an expression list (which is really the list of expressions 1566 ** that form the result set of a SELECT statement) compute appropriate 1567 ** column names for a table that would hold the expression list. 1568 ** 1569 ** All column names will be unique. 1570 ** 1571 ** Only the column names are computed. Column.zType, Column.zColl, 1572 ** and other fields of Column are zeroed. 1573 ** 1574 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1575 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1576 */ 1577 static int selectColumnsFromExprList( 1578 Parse *pParse, /* Parsing context */ 1579 ExprList *pEList, /* Expr list from which to derive column names */ 1580 i16 *pnCol, /* Write the number of columns here */ 1581 Column **paCol /* Write the new column list here */ 1582 ){ 1583 sqlite3 *db = pParse->db; /* Database connection */ 1584 int i, j; /* Loop counters */ 1585 int cnt; /* Index added to make the name unique */ 1586 Column *aCol, *pCol; /* For looping over result columns */ 1587 int nCol; /* Number of columns in the result set */ 1588 Expr *p; /* Expression for a single result column */ 1589 char *zName; /* Column name */ 1590 int nName; /* Size of name in zName[] */ 1591 1592 if( pEList ){ 1593 nCol = pEList->nExpr; 1594 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1595 testcase( aCol==0 ); 1596 }else{ 1597 nCol = 0; 1598 aCol = 0; 1599 } 1600 *pnCol = nCol; 1601 *paCol = aCol; 1602 1603 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1604 /* Get an appropriate name for the column 1605 */ 1606 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1607 if( (zName = pEList->a[i].zName)!=0 ){ 1608 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1609 zName = sqlite3DbStrDup(db, zName); 1610 }else{ 1611 Expr *pColExpr = p; /* The expression that is the result column name */ 1612 Table *pTab; /* Table associated with this expression */ 1613 while( pColExpr->op==TK_DOT ){ 1614 pColExpr = pColExpr->pRight; 1615 assert( pColExpr!=0 ); 1616 } 1617 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1618 /* For columns use the column name name */ 1619 int iCol = pColExpr->iColumn; 1620 pTab = pColExpr->pTab; 1621 if( iCol<0 ) iCol = pTab->iPKey; 1622 zName = sqlite3MPrintf(db, "%s", 1623 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1624 }else if( pColExpr->op==TK_ID ){ 1625 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1626 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1627 }else{ 1628 /* Use the original text of the column expression as its name */ 1629 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1630 } 1631 } 1632 if( db->mallocFailed ){ 1633 sqlite3DbFree(db, zName); 1634 break; 1635 } 1636 1637 /* Make sure the column name is unique. If the name is not unique, 1638 ** append an integer to the name so that it becomes unique. 1639 */ 1640 nName = sqlite3Strlen30(zName); 1641 for(j=cnt=0; j<i; j++){ 1642 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1643 char *zNewName; 1644 int k; 1645 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1646 if( k>=0 && zName[k]==':' ) nName = k; 1647 zName[nName] = 0; 1648 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1649 sqlite3DbFree(db, zName); 1650 zName = zNewName; 1651 j = -1; 1652 if( zName==0 ) break; 1653 } 1654 } 1655 pCol->zName = zName; 1656 } 1657 if( db->mallocFailed ){ 1658 for(j=0; j<i; j++){ 1659 sqlite3DbFree(db, aCol[j].zName); 1660 } 1661 sqlite3DbFree(db, aCol); 1662 *paCol = 0; 1663 *pnCol = 0; 1664 return SQLITE_NOMEM; 1665 } 1666 return SQLITE_OK; 1667 } 1668 1669 /* 1670 ** Add type and collation information to a column list based on 1671 ** a SELECT statement. 1672 ** 1673 ** The column list presumably came from selectColumnNamesFromExprList(). 1674 ** The column list has only names, not types or collations. This 1675 ** routine goes through and adds the types and collations. 1676 ** 1677 ** This routine requires that all identifiers in the SELECT 1678 ** statement be resolved. 1679 */ 1680 static void selectAddColumnTypeAndCollation( 1681 Parse *pParse, /* Parsing contexts */ 1682 Table *pTab, /* Add column type information to this table */ 1683 Select *pSelect /* SELECT used to determine types and collations */ 1684 ){ 1685 sqlite3 *db = pParse->db; 1686 NameContext sNC; 1687 Column *pCol; 1688 CollSeq *pColl; 1689 int i; 1690 Expr *p; 1691 struct ExprList_item *a; 1692 u64 szAll = 0; 1693 1694 assert( pSelect!=0 ); 1695 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1696 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1697 if( db->mallocFailed ) return; 1698 memset(&sNC, 0, sizeof(sNC)); 1699 sNC.pSrcList = pSelect->pSrc; 1700 a = pSelect->pEList->a; 1701 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1702 p = a[i].pExpr; 1703 if( pCol->zType==0 ){ 1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1705 } 1706 szAll += pCol->szEst; 1707 pCol->affinity = sqlite3ExprAffinity(p); 1708 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1709 pColl = sqlite3ExprCollSeq(pParse, p); 1710 if( pColl && pCol->zColl==0 ){ 1711 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1712 } 1713 } 1714 pTab->szTabRow = sqlite3LogEst(szAll*4); 1715 } 1716 1717 /* 1718 ** Given a SELECT statement, generate a Table structure that describes 1719 ** the result set of that SELECT. 1720 */ 1721 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1722 Table *pTab; 1723 sqlite3 *db = pParse->db; 1724 int savedFlags; 1725 1726 savedFlags = db->flags; 1727 db->flags &= ~SQLITE_FullColNames; 1728 db->flags |= SQLITE_ShortColNames; 1729 sqlite3SelectPrep(pParse, pSelect, 0); 1730 if( pParse->nErr ) return 0; 1731 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1732 db->flags = savedFlags; 1733 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1734 if( pTab==0 ){ 1735 return 0; 1736 } 1737 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1738 ** is disabled */ 1739 assert( db->lookaside.bEnabled==0 ); 1740 pTab->nRef = 1; 1741 pTab->zName = 0; 1742 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1743 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1744 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1745 pTab->iPKey = -1; 1746 if( db->mallocFailed ){ 1747 sqlite3DeleteTable(db, pTab); 1748 return 0; 1749 } 1750 return pTab; 1751 } 1752 1753 /* 1754 ** Get a VDBE for the given parser context. Create a new one if necessary. 1755 ** If an error occurs, return NULL and leave a message in pParse. 1756 */ 1757 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1758 Vdbe *v = pParse->pVdbe; 1759 if( v==0 ){ 1760 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1761 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1762 if( pParse->pToplevel==0 1763 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1764 ){ 1765 pParse->okConstFactor = 1; 1766 } 1767 1768 } 1769 return v; 1770 } 1771 1772 1773 /* 1774 ** Compute the iLimit and iOffset fields of the SELECT based on the 1775 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1776 ** that appear in the original SQL statement after the LIMIT and OFFSET 1777 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1778 ** are the integer memory register numbers for counters used to compute 1779 ** the limit and offset. If there is no limit and/or offset, then 1780 ** iLimit and iOffset are negative. 1781 ** 1782 ** This routine changes the values of iLimit and iOffset only if 1783 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1784 ** iOffset should have been preset to appropriate default values (zero) 1785 ** prior to calling this routine. 1786 ** 1787 ** The iOffset register (if it exists) is initialized to the value 1788 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1789 ** iOffset+1 is initialized to LIMIT+OFFSET. 1790 ** 1791 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1792 ** redefined. The UNION ALL operator uses this property to force 1793 ** the reuse of the same limit and offset registers across multiple 1794 ** SELECT statements. 1795 */ 1796 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1797 Vdbe *v = 0; 1798 int iLimit = 0; 1799 int iOffset; 1800 int addr1, n; 1801 if( p->iLimit ) return; 1802 1803 /* 1804 ** "LIMIT -1" always shows all rows. There is some 1805 ** controversy about what the correct behavior should be. 1806 ** The current implementation interprets "LIMIT 0" to mean 1807 ** no rows. 1808 */ 1809 sqlite3ExprCacheClear(pParse); 1810 assert( p->pOffset==0 || p->pLimit!=0 ); 1811 if( p->pLimit ){ 1812 p->iLimit = iLimit = ++pParse->nMem; 1813 v = sqlite3GetVdbe(pParse); 1814 assert( v!=0 ); 1815 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1816 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1817 VdbeComment((v, "LIMIT counter")); 1818 if( n==0 ){ 1819 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1820 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1821 p->nSelectRow = n; 1822 } 1823 }else{ 1824 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1825 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1826 VdbeComment((v, "LIMIT counter")); 1827 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1828 } 1829 if( p->pOffset ){ 1830 p->iOffset = iOffset = ++pParse->nMem; 1831 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1832 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1833 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1834 VdbeComment((v, "OFFSET counter")); 1835 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1836 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1837 sqlite3VdbeJumpHere(v, addr1); 1838 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1839 VdbeComment((v, "LIMIT+OFFSET")); 1840 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1841 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1842 sqlite3VdbeJumpHere(v, addr1); 1843 } 1844 } 1845 } 1846 1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1848 /* 1849 ** Return the appropriate collating sequence for the iCol-th column of 1850 ** the result set for the compound-select statement "p". Return NULL if 1851 ** the column has no default collating sequence. 1852 ** 1853 ** The collating sequence for the compound select is taken from the 1854 ** left-most term of the select that has a collating sequence. 1855 */ 1856 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1857 CollSeq *pRet; 1858 if( p->pPrior ){ 1859 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1860 }else{ 1861 pRet = 0; 1862 } 1863 assert( iCol>=0 ); 1864 if( pRet==0 && iCol<p->pEList->nExpr ){ 1865 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1866 } 1867 return pRet; 1868 } 1869 1870 /* 1871 ** The select statement passed as the second parameter is a compound SELECT 1872 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1873 ** structure suitable for implementing the ORDER BY. 1874 ** 1875 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1876 ** function is responsible for ensuring that this structure is eventually 1877 ** freed. 1878 */ 1879 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1880 ExprList *pOrderBy = p->pOrderBy; 1881 int nOrderBy = p->pOrderBy->nExpr; 1882 sqlite3 *db = pParse->db; 1883 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1884 if( pRet ){ 1885 int i; 1886 for(i=0; i<nOrderBy; i++){ 1887 struct ExprList_item *pItem = &pOrderBy->a[i]; 1888 Expr *pTerm = pItem->pExpr; 1889 CollSeq *pColl; 1890 1891 if( pTerm->flags & EP_Collate ){ 1892 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1893 }else{ 1894 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1895 if( pColl==0 ) pColl = db->pDfltColl; 1896 pOrderBy->a[i].pExpr = 1897 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1898 } 1899 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1900 pRet->aColl[i] = pColl; 1901 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1902 } 1903 } 1904 1905 return pRet; 1906 } 1907 1908 #ifndef SQLITE_OMIT_CTE 1909 /* 1910 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1911 ** query of the form: 1912 ** 1913 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1914 ** \___________/ \_______________/ 1915 ** p->pPrior p 1916 ** 1917 ** 1918 ** There is exactly one reference to the recursive-table in the FROM clause 1919 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1920 ** 1921 ** The setup-query runs once to generate an initial set of rows that go 1922 ** into a Queue table. Rows are extracted from the Queue table one by 1923 ** one. Each row extracted from Queue is output to pDest. Then the single 1924 ** extracted row (now in the iCurrent table) becomes the content of the 1925 ** recursive-table for a recursive-query run. The output of the recursive-query 1926 ** is added back into the Queue table. Then another row is extracted from Queue 1927 ** and the iteration continues until the Queue table is empty. 1928 ** 1929 ** If the compound query operator is UNION then no duplicate rows are ever 1930 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1931 ** that have ever been inserted into Queue and causes duplicates to be 1932 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1933 ** 1934 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1935 ** ORDER BY order and the first entry is extracted for each cycle. Without 1936 ** an ORDER BY, the Queue table is just a FIFO. 1937 ** 1938 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1939 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1940 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1941 ** with a positive value, then the first OFFSET outputs are discarded rather 1942 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1943 ** rows have been skipped. 1944 */ 1945 static void generateWithRecursiveQuery( 1946 Parse *pParse, /* Parsing context */ 1947 Select *p, /* The recursive SELECT to be coded */ 1948 SelectDest *pDest /* What to do with query results */ 1949 ){ 1950 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1951 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1952 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1953 Select *pSetup = p->pPrior; /* The setup query */ 1954 int addrTop; /* Top of the loop */ 1955 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1956 int iCurrent = 0; /* The Current table */ 1957 int regCurrent; /* Register holding Current table */ 1958 int iQueue; /* The Queue table */ 1959 int iDistinct = 0; /* To ensure unique results if UNION */ 1960 int eDest = SRT_Fifo; /* How to write to Queue */ 1961 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1962 int i; /* Loop counter */ 1963 int rc; /* Result code */ 1964 ExprList *pOrderBy; /* The ORDER BY clause */ 1965 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1966 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1967 1968 /* Obtain authorization to do a recursive query */ 1969 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1970 1971 /* Process the LIMIT and OFFSET clauses, if they exist */ 1972 addrBreak = sqlite3VdbeMakeLabel(v); 1973 computeLimitRegisters(pParse, p, addrBreak); 1974 pLimit = p->pLimit; 1975 pOffset = p->pOffset; 1976 regLimit = p->iLimit; 1977 regOffset = p->iOffset; 1978 p->pLimit = p->pOffset = 0; 1979 p->iLimit = p->iOffset = 0; 1980 pOrderBy = p->pOrderBy; 1981 1982 /* Locate the cursor number of the Current table */ 1983 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1984 if( pSrc->a[i].isRecursive ){ 1985 iCurrent = pSrc->a[i].iCursor; 1986 break; 1987 } 1988 } 1989 1990 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1991 ** the Distinct table must be exactly one greater than Queue in order 1992 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1993 iQueue = pParse->nTab++; 1994 if( p->op==TK_UNION ){ 1995 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1996 iDistinct = pParse->nTab++; 1997 }else{ 1998 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1999 } 2000 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2001 2002 /* Allocate cursors for Current, Queue, and Distinct. */ 2003 regCurrent = ++pParse->nMem; 2004 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2005 if( pOrderBy ){ 2006 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2007 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2008 (char*)pKeyInfo, P4_KEYINFO); 2009 destQueue.pOrderBy = pOrderBy; 2010 }else{ 2011 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2012 } 2013 VdbeComment((v, "Queue table")); 2014 if( iDistinct ){ 2015 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2016 p->selFlags |= SF_UsesEphemeral; 2017 } 2018 2019 /* Detach the ORDER BY clause from the compound SELECT */ 2020 p->pOrderBy = 0; 2021 2022 /* Store the results of the setup-query in Queue. */ 2023 pSetup->pNext = 0; 2024 rc = sqlite3Select(pParse, pSetup, &destQueue); 2025 pSetup->pNext = p; 2026 if( rc ) goto end_of_recursive_query; 2027 2028 /* Find the next row in the Queue and output that row */ 2029 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2030 2031 /* Transfer the next row in Queue over to Current */ 2032 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2033 if( pOrderBy ){ 2034 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2035 }else{ 2036 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2037 } 2038 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2039 2040 /* Output the single row in Current */ 2041 addrCont = sqlite3VdbeMakeLabel(v); 2042 codeOffset(v, regOffset, addrCont); 2043 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2044 0, 0, pDest, addrCont, addrBreak); 2045 if( regLimit ){ 2046 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2047 VdbeCoverage(v); 2048 } 2049 sqlite3VdbeResolveLabel(v, addrCont); 2050 2051 /* Execute the recursive SELECT taking the single row in Current as 2052 ** the value for the recursive-table. Store the results in the Queue. 2053 */ 2054 p->pPrior = 0; 2055 sqlite3Select(pParse, p, &destQueue); 2056 assert( p->pPrior==0 ); 2057 p->pPrior = pSetup; 2058 2059 /* Keep running the loop until the Queue is empty */ 2060 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2061 sqlite3VdbeResolveLabel(v, addrBreak); 2062 2063 end_of_recursive_query: 2064 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2065 p->pOrderBy = pOrderBy; 2066 p->pLimit = pLimit; 2067 p->pOffset = pOffset; 2068 return; 2069 } 2070 #endif /* SQLITE_OMIT_CTE */ 2071 2072 /* Forward references */ 2073 static int multiSelectOrderBy( 2074 Parse *pParse, /* Parsing context */ 2075 Select *p, /* The right-most of SELECTs to be coded */ 2076 SelectDest *pDest /* What to do with query results */ 2077 ); 2078 2079 /* 2080 ** Error message for when two or more terms of a compound select have different 2081 ** size result sets. 2082 */ 2083 static void selectWrongNumTermsError(Parse *pParse, Select *p){ 2084 if( p->selFlags & SF_Values ){ 2085 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2086 }else{ 2087 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2088 " do not have the same number of result columns", selectOpName(p->op)); 2089 } 2090 } 2091 2092 /* 2093 ** Handle the special case of a compound-select that originates from a 2094 ** VALUES clause. By handling this as a special case, we avoid deep 2095 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2096 ** on a VALUES clause. 2097 ** 2098 ** Because the Select object originates from a VALUES clause: 2099 ** (1) It has no LIMIT or OFFSET 2100 ** (2) All terms are UNION ALL 2101 ** (3) There is no ORDER BY clause 2102 */ 2103 static int multiSelectValues( 2104 Parse *pParse, /* Parsing context */ 2105 Select *p, /* The right-most of SELECTs to be coded */ 2106 SelectDest *pDest /* What to do with query results */ 2107 ){ 2108 Select *pPrior; 2109 int nExpr = p->pEList->nExpr; 2110 int nRow = 1; 2111 int rc = 0; 2112 assert( p->selFlags & SF_MultiValue ); 2113 do{ 2114 assert( p->selFlags & SF_Values ); 2115 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2116 assert( p->pLimit==0 ); 2117 assert( p->pOffset==0 ); 2118 if( p->pEList->nExpr!=nExpr ){ 2119 selectWrongNumTermsError(pParse, p); 2120 return 1; 2121 } 2122 if( p->pPrior==0 ) break; 2123 assert( p->pPrior->pNext==p ); 2124 p = p->pPrior; 2125 nRow++; 2126 }while(1); 2127 while( p ){ 2128 pPrior = p->pPrior; 2129 p->pPrior = 0; 2130 rc = sqlite3Select(pParse, p, pDest); 2131 p->pPrior = pPrior; 2132 if( rc ) break; 2133 p->nSelectRow = nRow; 2134 p = p->pNext; 2135 } 2136 return rc; 2137 } 2138 2139 /* 2140 ** This routine is called to process a compound query form from 2141 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2142 ** INTERSECT 2143 ** 2144 ** "p" points to the right-most of the two queries. the query on the 2145 ** left is p->pPrior. The left query could also be a compound query 2146 ** in which case this routine will be called recursively. 2147 ** 2148 ** The results of the total query are to be written into a destination 2149 ** of type eDest with parameter iParm. 2150 ** 2151 ** Example 1: Consider a three-way compound SQL statement. 2152 ** 2153 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2154 ** 2155 ** This statement is parsed up as follows: 2156 ** 2157 ** SELECT c FROM t3 2158 ** | 2159 ** `-----> SELECT b FROM t2 2160 ** | 2161 ** `------> SELECT a FROM t1 2162 ** 2163 ** The arrows in the diagram above represent the Select.pPrior pointer. 2164 ** So if this routine is called with p equal to the t3 query, then 2165 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2166 ** 2167 ** Notice that because of the way SQLite parses compound SELECTs, the 2168 ** individual selects always group from left to right. 2169 */ 2170 static int multiSelect( 2171 Parse *pParse, /* Parsing context */ 2172 Select *p, /* The right-most of SELECTs to be coded */ 2173 SelectDest *pDest /* What to do with query results */ 2174 ){ 2175 int rc = SQLITE_OK; /* Success code from a subroutine */ 2176 Select *pPrior; /* Another SELECT immediately to our left */ 2177 Vdbe *v; /* Generate code to this VDBE */ 2178 SelectDest dest; /* Alternative data destination */ 2179 Select *pDelete = 0; /* Chain of simple selects to delete */ 2180 sqlite3 *db; /* Database connection */ 2181 #ifndef SQLITE_OMIT_EXPLAIN 2182 int iSub1 = 0; /* EQP id of left-hand query */ 2183 int iSub2 = 0; /* EQP id of right-hand query */ 2184 #endif 2185 2186 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2187 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2188 */ 2189 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2190 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2191 db = pParse->db; 2192 pPrior = p->pPrior; 2193 dest = *pDest; 2194 if( pPrior->pOrderBy ){ 2195 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2196 selectOpName(p->op)); 2197 rc = 1; 2198 goto multi_select_end; 2199 } 2200 if( pPrior->pLimit ){ 2201 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2202 selectOpName(p->op)); 2203 rc = 1; 2204 goto multi_select_end; 2205 } 2206 2207 v = sqlite3GetVdbe(pParse); 2208 assert( v!=0 ); /* The VDBE already created by calling function */ 2209 2210 /* Create the destination temporary table if necessary 2211 */ 2212 if( dest.eDest==SRT_EphemTab ){ 2213 assert( p->pEList ); 2214 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2215 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2216 dest.eDest = SRT_Table; 2217 } 2218 2219 /* Special handling for a compound-select that originates as a VALUES clause. 2220 */ 2221 if( p->selFlags & SF_MultiValue ){ 2222 rc = multiSelectValues(pParse, p, &dest); 2223 goto multi_select_end; 2224 } 2225 2226 /* Make sure all SELECTs in the statement have the same number of elements 2227 ** in their result sets. 2228 */ 2229 assert( p->pEList && pPrior->pEList ); 2230 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2231 selectWrongNumTermsError(pParse, p); 2232 rc = 1; 2233 goto multi_select_end; 2234 } 2235 2236 #ifndef SQLITE_OMIT_CTE 2237 if( p->selFlags & SF_Recursive ){ 2238 generateWithRecursiveQuery(pParse, p, &dest); 2239 }else 2240 #endif 2241 2242 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2243 */ 2244 if( p->pOrderBy ){ 2245 return multiSelectOrderBy(pParse, p, pDest); 2246 }else 2247 2248 /* Generate code for the left and right SELECT statements. 2249 */ 2250 switch( p->op ){ 2251 case TK_ALL: { 2252 int addr = 0; 2253 int nLimit; 2254 assert( !pPrior->pLimit ); 2255 pPrior->iLimit = p->iLimit; 2256 pPrior->iOffset = p->iOffset; 2257 pPrior->pLimit = p->pLimit; 2258 pPrior->pOffset = p->pOffset; 2259 explainSetInteger(iSub1, pParse->iNextSelectId); 2260 rc = sqlite3Select(pParse, pPrior, &dest); 2261 p->pLimit = 0; 2262 p->pOffset = 0; 2263 if( rc ){ 2264 goto multi_select_end; 2265 } 2266 p->pPrior = 0; 2267 p->iLimit = pPrior->iLimit; 2268 p->iOffset = pPrior->iOffset; 2269 if( p->iLimit ){ 2270 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2271 VdbeComment((v, "Jump ahead if LIMIT reached")); 2272 } 2273 explainSetInteger(iSub2, pParse->iNextSelectId); 2274 rc = sqlite3Select(pParse, p, &dest); 2275 testcase( rc!=SQLITE_OK ); 2276 pDelete = p->pPrior; 2277 p->pPrior = pPrior; 2278 p->nSelectRow += pPrior->nSelectRow; 2279 if( pPrior->pLimit 2280 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2281 && nLimit>0 && p->nSelectRow > (u64)nLimit 2282 ){ 2283 p->nSelectRow = nLimit; 2284 } 2285 if( addr ){ 2286 sqlite3VdbeJumpHere(v, addr); 2287 } 2288 break; 2289 } 2290 case TK_EXCEPT: 2291 case TK_UNION: { 2292 int unionTab; /* Cursor number of the temporary table holding result */ 2293 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2294 int priorOp; /* The SRT_ operation to apply to prior selects */ 2295 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2296 int addr; 2297 SelectDest uniondest; 2298 2299 testcase( p->op==TK_EXCEPT ); 2300 testcase( p->op==TK_UNION ); 2301 priorOp = SRT_Union; 2302 if( dest.eDest==priorOp ){ 2303 /* We can reuse a temporary table generated by a SELECT to our 2304 ** right. 2305 */ 2306 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2307 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2308 unionTab = dest.iSDParm; 2309 }else{ 2310 /* We will need to create our own temporary table to hold the 2311 ** intermediate results. 2312 */ 2313 unionTab = pParse->nTab++; 2314 assert( p->pOrderBy==0 ); 2315 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2316 assert( p->addrOpenEphm[0] == -1 ); 2317 p->addrOpenEphm[0] = addr; 2318 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2319 assert( p->pEList ); 2320 } 2321 2322 /* Code the SELECT statements to our left 2323 */ 2324 assert( !pPrior->pOrderBy ); 2325 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2326 explainSetInteger(iSub1, pParse->iNextSelectId); 2327 rc = sqlite3Select(pParse, pPrior, &uniondest); 2328 if( rc ){ 2329 goto multi_select_end; 2330 } 2331 2332 /* Code the current SELECT statement 2333 */ 2334 if( p->op==TK_EXCEPT ){ 2335 op = SRT_Except; 2336 }else{ 2337 assert( p->op==TK_UNION ); 2338 op = SRT_Union; 2339 } 2340 p->pPrior = 0; 2341 pLimit = p->pLimit; 2342 p->pLimit = 0; 2343 pOffset = p->pOffset; 2344 p->pOffset = 0; 2345 uniondest.eDest = op; 2346 explainSetInteger(iSub2, pParse->iNextSelectId); 2347 rc = sqlite3Select(pParse, p, &uniondest); 2348 testcase( rc!=SQLITE_OK ); 2349 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2350 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2351 sqlite3ExprListDelete(db, p->pOrderBy); 2352 pDelete = p->pPrior; 2353 p->pPrior = pPrior; 2354 p->pOrderBy = 0; 2355 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2356 sqlite3ExprDelete(db, p->pLimit); 2357 p->pLimit = pLimit; 2358 p->pOffset = pOffset; 2359 p->iLimit = 0; 2360 p->iOffset = 0; 2361 2362 /* Convert the data in the temporary table into whatever form 2363 ** it is that we currently need. 2364 */ 2365 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2366 if( dest.eDest!=priorOp ){ 2367 int iCont, iBreak, iStart; 2368 assert( p->pEList ); 2369 if( dest.eDest==SRT_Output ){ 2370 Select *pFirst = p; 2371 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2372 generateColumnNames(pParse, 0, pFirst->pEList); 2373 } 2374 iBreak = sqlite3VdbeMakeLabel(v); 2375 iCont = sqlite3VdbeMakeLabel(v); 2376 computeLimitRegisters(pParse, p, iBreak); 2377 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2378 iStart = sqlite3VdbeCurrentAddr(v); 2379 selectInnerLoop(pParse, p, p->pEList, unionTab, 2380 0, 0, &dest, iCont, iBreak); 2381 sqlite3VdbeResolveLabel(v, iCont); 2382 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2383 sqlite3VdbeResolveLabel(v, iBreak); 2384 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2385 } 2386 break; 2387 } 2388 default: assert( p->op==TK_INTERSECT ); { 2389 int tab1, tab2; 2390 int iCont, iBreak, iStart; 2391 Expr *pLimit, *pOffset; 2392 int addr; 2393 SelectDest intersectdest; 2394 int r1; 2395 2396 /* INTERSECT is different from the others since it requires 2397 ** two temporary tables. Hence it has its own case. Begin 2398 ** by allocating the tables we will need. 2399 */ 2400 tab1 = pParse->nTab++; 2401 tab2 = pParse->nTab++; 2402 assert( p->pOrderBy==0 ); 2403 2404 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2405 assert( p->addrOpenEphm[0] == -1 ); 2406 p->addrOpenEphm[0] = addr; 2407 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2408 assert( p->pEList ); 2409 2410 /* Code the SELECTs to our left into temporary table "tab1". 2411 */ 2412 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2413 explainSetInteger(iSub1, pParse->iNextSelectId); 2414 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2415 if( rc ){ 2416 goto multi_select_end; 2417 } 2418 2419 /* Code the current SELECT into temporary table "tab2" 2420 */ 2421 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2422 assert( p->addrOpenEphm[1] == -1 ); 2423 p->addrOpenEphm[1] = addr; 2424 p->pPrior = 0; 2425 pLimit = p->pLimit; 2426 p->pLimit = 0; 2427 pOffset = p->pOffset; 2428 p->pOffset = 0; 2429 intersectdest.iSDParm = tab2; 2430 explainSetInteger(iSub2, pParse->iNextSelectId); 2431 rc = sqlite3Select(pParse, p, &intersectdest); 2432 testcase( rc!=SQLITE_OK ); 2433 pDelete = p->pPrior; 2434 p->pPrior = pPrior; 2435 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2436 sqlite3ExprDelete(db, p->pLimit); 2437 p->pLimit = pLimit; 2438 p->pOffset = pOffset; 2439 2440 /* Generate code to take the intersection of the two temporary 2441 ** tables. 2442 */ 2443 assert( p->pEList ); 2444 if( dest.eDest==SRT_Output ){ 2445 Select *pFirst = p; 2446 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2447 generateColumnNames(pParse, 0, pFirst->pEList); 2448 } 2449 iBreak = sqlite3VdbeMakeLabel(v); 2450 iCont = sqlite3VdbeMakeLabel(v); 2451 computeLimitRegisters(pParse, p, iBreak); 2452 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2453 r1 = sqlite3GetTempReg(pParse); 2454 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2455 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2456 sqlite3ReleaseTempReg(pParse, r1); 2457 selectInnerLoop(pParse, p, p->pEList, tab1, 2458 0, 0, &dest, iCont, iBreak); 2459 sqlite3VdbeResolveLabel(v, iCont); 2460 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2461 sqlite3VdbeResolveLabel(v, iBreak); 2462 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2463 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2464 break; 2465 } 2466 } 2467 2468 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2469 2470 /* Compute collating sequences used by 2471 ** temporary tables needed to implement the compound select. 2472 ** Attach the KeyInfo structure to all temporary tables. 2473 ** 2474 ** This section is run by the right-most SELECT statement only. 2475 ** SELECT statements to the left always skip this part. The right-most 2476 ** SELECT might also skip this part if it has no ORDER BY clause and 2477 ** no temp tables are required. 2478 */ 2479 if( p->selFlags & SF_UsesEphemeral ){ 2480 int i; /* Loop counter */ 2481 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2482 Select *pLoop; /* For looping through SELECT statements */ 2483 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2484 int nCol; /* Number of columns in result set */ 2485 2486 assert( p->pNext==0 ); 2487 nCol = p->pEList->nExpr; 2488 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2489 if( !pKeyInfo ){ 2490 rc = SQLITE_NOMEM; 2491 goto multi_select_end; 2492 } 2493 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2494 *apColl = multiSelectCollSeq(pParse, p, i); 2495 if( 0==*apColl ){ 2496 *apColl = db->pDfltColl; 2497 } 2498 } 2499 2500 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2501 for(i=0; i<2; i++){ 2502 int addr = pLoop->addrOpenEphm[i]; 2503 if( addr<0 ){ 2504 /* If [0] is unused then [1] is also unused. So we can 2505 ** always safely abort as soon as the first unused slot is found */ 2506 assert( pLoop->addrOpenEphm[1]<0 ); 2507 break; 2508 } 2509 sqlite3VdbeChangeP2(v, addr, nCol); 2510 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2511 P4_KEYINFO); 2512 pLoop->addrOpenEphm[i] = -1; 2513 } 2514 } 2515 sqlite3KeyInfoUnref(pKeyInfo); 2516 } 2517 2518 multi_select_end: 2519 pDest->iSdst = dest.iSdst; 2520 pDest->nSdst = dest.nSdst; 2521 sqlite3SelectDelete(db, pDelete); 2522 return rc; 2523 } 2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2525 2526 /* 2527 ** Code an output subroutine for a coroutine implementation of a 2528 ** SELECT statment. 2529 ** 2530 ** The data to be output is contained in pIn->iSdst. There are 2531 ** pIn->nSdst columns to be output. pDest is where the output should 2532 ** be sent. 2533 ** 2534 ** regReturn is the number of the register holding the subroutine 2535 ** return address. 2536 ** 2537 ** If regPrev>0 then it is the first register in a vector that 2538 ** records the previous output. mem[regPrev] is a flag that is false 2539 ** if there has been no previous output. If regPrev>0 then code is 2540 ** generated to suppress duplicates. pKeyInfo is used for comparing 2541 ** keys. 2542 ** 2543 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2544 ** iBreak. 2545 */ 2546 static int generateOutputSubroutine( 2547 Parse *pParse, /* Parsing context */ 2548 Select *p, /* The SELECT statement */ 2549 SelectDest *pIn, /* Coroutine supplying data */ 2550 SelectDest *pDest, /* Where to send the data */ 2551 int regReturn, /* The return address register */ 2552 int regPrev, /* Previous result register. No uniqueness if 0 */ 2553 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2554 int iBreak /* Jump here if we hit the LIMIT */ 2555 ){ 2556 Vdbe *v = pParse->pVdbe; 2557 int iContinue; 2558 int addr; 2559 2560 addr = sqlite3VdbeCurrentAddr(v); 2561 iContinue = sqlite3VdbeMakeLabel(v); 2562 2563 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2564 */ 2565 if( regPrev ){ 2566 int j1, j2; 2567 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2568 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2569 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2570 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2571 sqlite3VdbeJumpHere(v, j1); 2572 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2573 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2574 } 2575 if( pParse->db->mallocFailed ) return 0; 2576 2577 /* Suppress the first OFFSET entries if there is an OFFSET clause 2578 */ 2579 codeOffset(v, p->iOffset, iContinue); 2580 2581 switch( pDest->eDest ){ 2582 /* Store the result as data using a unique key. 2583 */ 2584 case SRT_Table: 2585 case SRT_EphemTab: { 2586 int r1 = sqlite3GetTempReg(pParse); 2587 int r2 = sqlite3GetTempReg(pParse); 2588 testcase( pDest->eDest==SRT_Table ); 2589 testcase( pDest->eDest==SRT_EphemTab ); 2590 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2591 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2592 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2593 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2594 sqlite3ReleaseTempReg(pParse, r2); 2595 sqlite3ReleaseTempReg(pParse, r1); 2596 break; 2597 } 2598 2599 #ifndef SQLITE_OMIT_SUBQUERY 2600 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2601 ** then there should be a single item on the stack. Write this 2602 ** item into the set table with bogus data. 2603 */ 2604 case SRT_Set: { 2605 int r1; 2606 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2607 pDest->affSdst = 2608 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2609 r1 = sqlite3GetTempReg(pParse); 2610 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2611 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2612 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2613 sqlite3ReleaseTempReg(pParse, r1); 2614 break; 2615 } 2616 2617 #if 0 /* Never occurs on an ORDER BY query */ 2618 /* If any row exist in the result set, record that fact and abort. 2619 */ 2620 case SRT_Exists: { 2621 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2622 /* The LIMIT clause will terminate the loop for us */ 2623 break; 2624 } 2625 #endif 2626 2627 /* If this is a scalar select that is part of an expression, then 2628 ** store the results in the appropriate memory cell and break out 2629 ** of the scan loop. 2630 */ 2631 case SRT_Mem: { 2632 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2633 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2634 /* The LIMIT clause will jump out of the loop for us */ 2635 break; 2636 } 2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2638 2639 /* The results are stored in a sequence of registers 2640 ** starting at pDest->iSdst. Then the co-routine yields. 2641 */ 2642 case SRT_Coroutine: { 2643 if( pDest->iSdst==0 ){ 2644 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2645 pDest->nSdst = pIn->nSdst; 2646 } 2647 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2648 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2649 break; 2650 } 2651 2652 /* If none of the above, then the result destination must be 2653 ** SRT_Output. This routine is never called with any other 2654 ** destination other than the ones handled above or SRT_Output. 2655 ** 2656 ** For SRT_Output, results are stored in a sequence of registers. 2657 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2658 ** return the next row of result. 2659 */ 2660 default: { 2661 assert( pDest->eDest==SRT_Output ); 2662 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2663 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2664 break; 2665 } 2666 } 2667 2668 /* Jump to the end of the loop if the LIMIT is reached. 2669 */ 2670 if( p->iLimit ){ 2671 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2672 } 2673 2674 /* Generate the subroutine return 2675 */ 2676 sqlite3VdbeResolveLabel(v, iContinue); 2677 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2678 2679 return addr; 2680 } 2681 2682 /* 2683 ** Alternative compound select code generator for cases when there 2684 ** is an ORDER BY clause. 2685 ** 2686 ** We assume a query of the following form: 2687 ** 2688 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2689 ** 2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2692 ** co-routines. Then run the co-routines in parallel and merge the results 2693 ** into the output. In addition to the two coroutines (called selectA and 2694 ** selectB) there are 7 subroutines: 2695 ** 2696 ** outA: Move the output of the selectA coroutine into the output 2697 ** of the compound query. 2698 ** 2699 ** outB: Move the output of the selectB coroutine into the output 2700 ** of the compound query. (Only generated for UNION and 2701 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2702 ** appears only in B.) 2703 ** 2704 ** AltB: Called when there is data from both coroutines and A<B. 2705 ** 2706 ** AeqB: Called when there is data from both coroutines and A==B. 2707 ** 2708 ** AgtB: Called when there is data from both coroutines and A>B. 2709 ** 2710 ** EofA: Called when data is exhausted from selectA. 2711 ** 2712 ** EofB: Called when data is exhausted from selectB. 2713 ** 2714 ** The implementation of the latter five subroutines depend on which 2715 ** <operator> is used: 2716 ** 2717 ** 2718 ** UNION ALL UNION EXCEPT INTERSECT 2719 ** ------------- ----------------- -------------- ----------------- 2720 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2721 ** 2722 ** AeqB: outA, nextA nextA nextA outA, nextA 2723 ** 2724 ** AgtB: outB, nextB outB, nextB nextB nextB 2725 ** 2726 ** EofA: outB, nextB outB, nextB halt halt 2727 ** 2728 ** EofB: outA, nextA outA, nextA outA, nextA halt 2729 ** 2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2732 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2733 ** following nextX causes a jump to the end of the select processing. 2734 ** 2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2736 ** within the output subroutine. The regPrev register set holds the previously 2737 ** output value. A comparison is made against this value and the output 2738 ** is skipped if the next results would be the same as the previous. 2739 ** 2740 ** The implementation plan is to implement the two coroutines and seven 2741 ** subroutines first, then put the control logic at the bottom. Like this: 2742 ** 2743 ** goto Init 2744 ** coA: coroutine for left query (A) 2745 ** coB: coroutine for right query (B) 2746 ** outA: output one row of A 2747 ** outB: output one row of B (UNION and UNION ALL only) 2748 ** EofA: ... 2749 ** EofB: ... 2750 ** AltB: ... 2751 ** AeqB: ... 2752 ** AgtB: ... 2753 ** Init: initialize coroutine registers 2754 ** yield coA 2755 ** if eof(A) goto EofA 2756 ** yield coB 2757 ** if eof(B) goto EofB 2758 ** Cmpr: Compare A, B 2759 ** Jump AltB, AeqB, AgtB 2760 ** End: ... 2761 ** 2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2763 ** actually called using Gosub and they do not Return. EofA and EofB loop 2764 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2765 ** and AgtB jump to either L2 or to one of EofA or EofB. 2766 */ 2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2768 static int multiSelectOrderBy( 2769 Parse *pParse, /* Parsing context */ 2770 Select *p, /* The right-most of SELECTs to be coded */ 2771 SelectDest *pDest /* What to do with query results */ 2772 ){ 2773 int i, j; /* Loop counters */ 2774 Select *pPrior; /* Another SELECT immediately to our left */ 2775 Vdbe *v; /* Generate code to this VDBE */ 2776 SelectDest destA; /* Destination for coroutine A */ 2777 SelectDest destB; /* Destination for coroutine B */ 2778 int regAddrA; /* Address register for select-A coroutine */ 2779 int regAddrB; /* Address register for select-B coroutine */ 2780 int addrSelectA; /* Address of the select-A coroutine */ 2781 int addrSelectB; /* Address of the select-B coroutine */ 2782 int regOutA; /* Address register for the output-A subroutine */ 2783 int regOutB; /* Address register for the output-B subroutine */ 2784 int addrOutA; /* Address of the output-A subroutine */ 2785 int addrOutB = 0; /* Address of the output-B subroutine */ 2786 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2787 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2788 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2789 int addrAltB; /* Address of the A<B subroutine */ 2790 int addrAeqB; /* Address of the A==B subroutine */ 2791 int addrAgtB; /* Address of the A>B subroutine */ 2792 int regLimitA; /* Limit register for select-A */ 2793 int regLimitB; /* Limit register for select-A */ 2794 int regPrev; /* A range of registers to hold previous output */ 2795 int savedLimit; /* Saved value of p->iLimit */ 2796 int savedOffset; /* Saved value of p->iOffset */ 2797 int labelCmpr; /* Label for the start of the merge algorithm */ 2798 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2799 int j1; /* Jump instructions that get retargetted */ 2800 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2801 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2802 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2803 sqlite3 *db; /* Database connection */ 2804 ExprList *pOrderBy; /* The ORDER BY clause */ 2805 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2806 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2807 #ifndef SQLITE_OMIT_EXPLAIN 2808 int iSub1; /* EQP id of left-hand query */ 2809 int iSub2; /* EQP id of right-hand query */ 2810 #endif 2811 2812 assert( p->pOrderBy!=0 ); 2813 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2814 db = pParse->db; 2815 v = pParse->pVdbe; 2816 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2817 labelEnd = sqlite3VdbeMakeLabel(v); 2818 labelCmpr = sqlite3VdbeMakeLabel(v); 2819 2820 2821 /* Patch up the ORDER BY clause 2822 */ 2823 op = p->op; 2824 pPrior = p->pPrior; 2825 assert( pPrior->pOrderBy==0 ); 2826 pOrderBy = p->pOrderBy; 2827 assert( pOrderBy ); 2828 nOrderBy = pOrderBy->nExpr; 2829 2830 /* For operators other than UNION ALL we have to make sure that 2831 ** the ORDER BY clause covers every term of the result set. Add 2832 ** terms to the ORDER BY clause as necessary. 2833 */ 2834 if( op!=TK_ALL ){ 2835 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2836 struct ExprList_item *pItem; 2837 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2838 assert( pItem->u.x.iOrderByCol>0 ); 2839 if( pItem->u.x.iOrderByCol==i ) break; 2840 } 2841 if( j==nOrderBy ){ 2842 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2843 if( pNew==0 ) return SQLITE_NOMEM; 2844 pNew->flags |= EP_IntValue; 2845 pNew->u.iValue = i; 2846 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2847 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2848 } 2849 } 2850 } 2851 2852 /* Compute the comparison permutation and keyinfo that is used with 2853 ** the permutation used to determine if the next 2854 ** row of results comes from selectA or selectB. Also add explicit 2855 ** collations to the ORDER BY clause terms so that when the subqueries 2856 ** to the right and the left are evaluated, they use the correct 2857 ** collation. 2858 */ 2859 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2860 if( aPermute ){ 2861 struct ExprList_item *pItem; 2862 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2863 assert( pItem->u.x.iOrderByCol>0 ); 2864 /* assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ) is also true 2865 ** but only for well-formed SELECT statements. */ 2866 testcase( pItem->u.x.iOrderByCol > p->pEList->nExpr ); 2867 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2868 } 2869 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2870 }else{ 2871 pKeyMerge = 0; 2872 } 2873 2874 /* Reattach the ORDER BY clause to the query. 2875 */ 2876 p->pOrderBy = pOrderBy; 2877 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2878 2879 /* Allocate a range of temporary registers and the KeyInfo needed 2880 ** for the logic that removes duplicate result rows when the 2881 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2882 */ 2883 if( op==TK_ALL ){ 2884 regPrev = 0; 2885 }else{ 2886 int nExpr = p->pEList->nExpr; 2887 assert( nOrderBy>=nExpr || db->mallocFailed ); 2888 regPrev = pParse->nMem+1; 2889 pParse->nMem += nExpr+1; 2890 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2891 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2892 if( pKeyDup ){ 2893 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2894 for(i=0; i<nExpr; i++){ 2895 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2896 pKeyDup->aSortOrder[i] = 0; 2897 } 2898 } 2899 } 2900 2901 /* Separate the left and the right query from one another 2902 */ 2903 p->pPrior = 0; 2904 pPrior->pNext = 0; 2905 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2906 if( pPrior->pPrior==0 ){ 2907 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2908 } 2909 2910 /* Compute the limit registers */ 2911 computeLimitRegisters(pParse, p, labelEnd); 2912 if( p->iLimit && op==TK_ALL ){ 2913 regLimitA = ++pParse->nMem; 2914 regLimitB = ++pParse->nMem; 2915 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2916 regLimitA); 2917 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2918 }else{ 2919 regLimitA = regLimitB = 0; 2920 } 2921 sqlite3ExprDelete(db, p->pLimit); 2922 p->pLimit = 0; 2923 sqlite3ExprDelete(db, p->pOffset); 2924 p->pOffset = 0; 2925 2926 regAddrA = ++pParse->nMem; 2927 regAddrB = ++pParse->nMem; 2928 regOutA = ++pParse->nMem; 2929 regOutB = ++pParse->nMem; 2930 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2931 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2932 2933 /* Generate a coroutine to evaluate the SELECT statement to the 2934 ** left of the compound operator - the "A" select. 2935 */ 2936 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2937 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2938 VdbeComment((v, "left SELECT")); 2939 pPrior->iLimit = regLimitA; 2940 explainSetInteger(iSub1, pParse->iNextSelectId); 2941 sqlite3Select(pParse, pPrior, &destA); 2942 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2943 sqlite3VdbeJumpHere(v, j1); 2944 2945 /* Generate a coroutine to evaluate the SELECT statement on 2946 ** the right - the "B" select 2947 */ 2948 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2949 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2950 VdbeComment((v, "right SELECT")); 2951 savedLimit = p->iLimit; 2952 savedOffset = p->iOffset; 2953 p->iLimit = regLimitB; 2954 p->iOffset = 0; 2955 explainSetInteger(iSub2, pParse->iNextSelectId); 2956 sqlite3Select(pParse, p, &destB); 2957 p->iLimit = savedLimit; 2958 p->iOffset = savedOffset; 2959 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2960 2961 /* Generate a subroutine that outputs the current row of the A 2962 ** select as the next output row of the compound select. 2963 */ 2964 VdbeNoopComment((v, "Output routine for A")); 2965 addrOutA = generateOutputSubroutine(pParse, 2966 p, &destA, pDest, regOutA, 2967 regPrev, pKeyDup, labelEnd); 2968 2969 /* Generate a subroutine that outputs the current row of the B 2970 ** select as the next output row of the compound select. 2971 */ 2972 if( op==TK_ALL || op==TK_UNION ){ 2973 VdbeNoopComment((v, "Output routine for B")); 2974 addrOutB = generateOutputSubroutine(pParse, 2975 p, &destB, pDest, regOutB, 2976 regPrev, pKeyDup, labelEnd); 2977 } 2978 sqlite3KeyInfoUnref(pKeyDup); 2979 2980 /* Generate a subroutine to run when the results from select A 2981 ** are exhausted and only data in select B remains. 2982 */ 2983 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2984 addrEofA_noB = addrEofA = labelEnd; 2985 }else{ 2986 VdbeNoopComment((v, "eof-A subroutine")); 2987 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2988 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2989 VdbeCoverage(v); 2990 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2991 p->nSelectRow += pPrior->nSelectRow; 2992 } 2993 2994 /* Generate a subroutine to run when the results from select B 2995 ** are exhausted and only data in select A remains. 2996 */ 2997 if( op==TK_INTERSECT ){ 2998 addrEofB = addrEofA; 2999 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3000 }else{ 3001 VdbeNoopComment((v, "eof-B subroutine")); 3002 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3003 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3004 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3005 } 3006 3007 /* Generate code to handle the case of A<B 3008 */ 3009 VdbeNoopComment((v, "A-lt-B subroutine")); 3010 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3011 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3012 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3013 3014 /* Generate code to handle the case of A==B 3015 */ 3016 if( op==TK_ALL ){ 3017 addrAeqB = addrAltB; 3018 }else if( op==TK_INTERSECT ){ 3019 addrAeqB = addrAltB; 3020 addrAltB++; 3021 }else{ 3022 VdbeNoopComment((v, "A-eq-B subroutine")); 3023 addrAeqB = 3024 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3025 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3026 } 3027 3028 /* Generate code to handle the case of A>B 3029 */ 3030 VdbeNoopComment((v, "A-gt-B subroutine")); 3031 addrAgtB = sqlite3VdbeCurrentAddr(v); 3032 if( op==TK_ALL || op==TK_UNION ){ 3033 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3034 } 3035 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3036 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3037 3038 /* This code runs once to initialize everything. 3039 */ 3040 sqlite3VdbeJumpHere(v, j1); 3041 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3042 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3043 3044 /* Implement the main merge loop 3045 */ 3046 sqlite3VdbeResolveLabel(v, labelCmpr); 3047 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3048 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3049 (char*)pKeyMerge, P4_KEYINFO); 3050 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3051 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3052 3053 /* Jump to the this point in order to terminate the query. 3054 */ 3055 sqlite3VdbeResolveLabel(v, labelEnd); 3056 3057 /* Set the number of output columns 3058 */ 3059 if( pDest->eDest==SRT_Output ){ 3060 Select *pFirst = pPrior; 3061 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3062 generateColumnNames(pParse, 0, pFirst->pEList); 3063 } 3064 3065 /* Reassembly the compound query so that it will be freed correctly 3066 ** by the calling function */ 3067 if( p->pPrior ){ 3068 sqlite3SelectDelete(db, p->pPrior); 3069 } 3070 p->pPrior = pPrior; 3071 pPrior->pNext = p; 3072 3073 /*** TBD: Insert subroutine calls to close cursors on incomplete 3074 **** subqueries ****/ 3075 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3076 return pParse->nErr!=0; 3077 } 3078 #endif 3079 3080 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3081 /* Forward Declarations */ 3082 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3083 static void substSelect(sqlite3*, Select *, int, ExprList *); 3084 3085 /* 3086 ** Scan through the expression pExpr. Replace every reference to 3087 ** a column in table number iTable with a copy of the iColumn-th 3088 ** entry in pEList. (But leave references to the ROWID column 3089 ** unchanged.) 3090 ** 3091 ** This routine is part of the flattening procedure. A subquery 3092 ** whose result set is defined by pEList appears as entry in the 3093 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3094 ** FORM clause entry is iTable. This routine make the necessary 3095 ** changes to pExpr so that it refers directly to the source table 3096 ** of the subquery rather the result set of the subquery. 3097 */ 3098 static Expr *substExpr( 3099 sqlite3 *db, /* Report malloc errors to this connection */ 3100 Expr *pExpr, /* Expr in which substitution occurs */ 3101 int iTable, /* Table to be substituted */ 3102 ExprList *pEList /* Substitute expressions */ 3103 ){ 3104 if( pExpr==0 ) return 0; 3105 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3106 if( pExpr->iColumn<0 ){ 3107 pExpr->op = TK_NULL; 3108 }else{ 3109 Expr *pNew; 3110 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3111 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3112 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3113 sqlite3ExprDelete(db, pExpr); 3114 pExpr = pNew; 3115 } 3116 }else{ 3117 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3118 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3119 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3120 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3121 }else{ 3122 substExprList(db, pExpr->x.pList, iTable, pEList); 3123 } 3124 } 3125 return pExpr; 3126 } 3127 static void substExprList( 3128 sqlite3 *db, /* Report malloc errors here */ 3129 ExprList *pList, /* List to scan and in which to make substitutes */ 3130 int iTable, /* Table to be substituted */ 3131 ExprList *pEList /* Substitute values */ 3132 ){ 3133 int i; 3134 if( pList==0 ) return; 3135 for(i=0; i<pList->nExpr; i++){ 3136 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3137 } 3138 } 3139 static void substSelect( 3140 sqlite3 *db, /* Report malloc errors here */ 3141 Select *p, /* SELECT statement in which to make substitutions */ 3142 int iTable, /* Table to be replaced */ 3143 ExprList *pEList /* Substitute values */ 3144 ){ 3145 SrcList *pSrc; 3146 struct SrcList_item *pItem; 3147 int i; 3148 if( !p ) return; 3149 substExprList(db, p->pEList, iTable, pEList); 3150 substExprList(db, p->pGroupBy, iTable, pEList); 3151 substExprList(db, p->pOrderBy, iTable, pEList); 3152 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3153 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3154 substSelect(db, p->pPrior, iTable, pEList); 3155 pSrc = p->pSrc; 3156 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3157 if( ALWAYS(pSrc) ){ 3158 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3159 substSelect(db, pItem->pSelect, iTable, pEList); 3160 } 3161 } 3162 } 3163 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3164 3165 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3166 /* 3167 ** This routine attempts to flatten subqueries as a performance optimization. 3168 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3169 ** 3170 ** To understand the concept of flattening, consider the following 3171 ** query: 3172 ** 3173 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3174 ** 3175 ** The default way of implementing this query is to execute the 3176 ** subquery first and store the results in a temporary table, then 3177 ** run the outer query on that temporary table. This requires two 3178 ** passes over the data. Furthermore, because the temporary table 3179 ** has no indices, the WHERE clause on the outer query cannot be 3180 ** optimized. 3181 ** 3182 ** This routine attempts to rewrite queries such as the above into 3183 ** a single flat select, like this: 3184 ** 3185 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3186 ** 3187 ** The code generated for this simplification gives the same result 3188 ** but only has to scan the data once. And because indices might 3189 ** exist on the table t1, a complete scan of the data might be 3190 ** avoided. 3191 ** 3192 ** Flattening is only attempted if all of the following are true: 3193 ** 3194 ** (1) The subquery and the outer query do not both use aggregates. 3195 ** 3196 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3197 ** and (2b) the outer query does not use subqueries other than the one 3198 ** FROM-clause subquery that is a candidate for flattening. (2b is 3199 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3200 ** 3201 ** (3) The subquery is not the right operand of a left outer join 3202 ** (Originally ticket #306. Strengthened by ticket #3300) 3203 ** 3204 ** (4) The subquery is not DISTINCT. 3205 ** 3206 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3207 ** sub-queries that were excluded from this optimization. Restriction 3208 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3209 ** 3210 ** (6) The subquery does not use aggregates or the outer query is not 3211 ** DISTINCT. 3212 ** 3213 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3214 ** A FROM clause, consider adding a FROM close with the special 3215 ** table sqlite_once that consists of a single row containing a 3216 ** single NULL. 3217 ** 3218 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3219 ** 3220 ** (9) The subquery does not use LIMIT or the outer query does not use 3221 ** aggregates. 3222 ** 3223 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3224 ** accidently carried the comment forward until 2014-09-15. Original 3225 ** text: "The subquery does not use aggregates or the outer query does not 3226 ** use LIMIT." 3227 ** 3228 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3229 ** 3230 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3231 ** a separate restriction deriving from ticket #350. 3232 ** 3233 ** (13) The subquery and outer query do not both use LIMIT. 3234 ** 3235 ** (14) The subquery does not use OFFSET. 3236 ** 3237 ** (15) The outer query is not part of a compound select or the 3238 ** subquery does not have a LIMIT clause. 3239 ** (See ticket #2339 and ticket [02a8e81d44]). 3240 ** 3241 ** (16) The outer query is not an aggregate or the subquery does 3242 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3243 ** until we introduced the group_concat() function. 3244 ** 3245 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3246 ** compound clause made up entirely of non-aggregate queries, and 3247 ** the parent query: 3248 ** 3249 ** * is not itself part of a compound select, 3250 ** * is not an aggregate or DISTINCT query, and 3251 ** * is not a join 3252 ** 3253 ** The parent and sub-query may contain WHERE clauses. Subject to 3254 ** rules (11), (13) and (14), they may also contain ORDER BY, 3255 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3256 ** operator other than UNION ALL because all the other compound 3257 ** operators have an implied DISTINCT which is disallowed by 3258 ** restriction (4). 3259 ** 3260 ** Also, each component of the sub-query must return the same number 3261 ** of result columns. This is actually a requirement for any compound 3262 ** SELECT statement, but all the code here does is make sure that no 3263 ** such (illegal) sub-query is flattened. The caller will detect the 3264 ** syntax error and return a detailed message. 3265 ** 3266 ** (18) If the sub-query is a compound select, then all terms of the 3267 ** ORDER by clause of the parent must be simple references to 3268 ** columns of the sub-query. 3269 ** 3270 ** (19) The subquery does not use LIMIT or the outer query does not 3271 ** have a WHERE clause. 3272 ** 3273 ** (20) If the sub-query is a compound select, then it must not use 3274 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3275 ** somewhat by saying that the terms of the ORDER BY clause must 3276 ** appear as unmodified result columns in the outer query. But we 3277 ** have other optimizations in mind to deal with that case. 3278 ** 3279 ** (21) The subquery does not use LIMIT or the outer query is not 3280 ** DISTINCT. (See ticket [752e1646fc]). 3281 ** 3282 ** (22) The subquery is not a recursive CTE. 3283 ** 3284 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3285 ** compound query. This restriction is because transforming the 3286 ** parent to a compound query confuses the code that handles 3287 ** recursive queries in multiSelect(). 3288 ** 3289 ** (24) The subquery is not an aggregate that uses the built-in min() or 3290 ** or max() functions. (Without this restriction, a query like: 3291 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3292 ** return the value X for which Y was maximal.) 3293 ** 3294 ** 3295 ** In this routine, the "p" parameter is a pointer to the outer query. 3296 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3297 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3298 ** 3299 ** If flattening is not attempted, this routine is a no-op and returns 0. 3300 ** If flattening is attempted this routine returns 1. 3301 ** 3302 ** All of the expression analysis must occur on both the outer query and 3303 ** the subquery before this routine runs. 3304 */ 3305 static int flattenSubquery( 3306 Parse *pParse, /* Parsing context */ 3307 Select *p, /* The parent or outer SELECT statement */ 3308 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3309 int isAgg, /* True if outer SELECT uses aggregate functions */ 3310 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3311 ){ 3312 const char *zSavedAuthContext = pParse->zAuthContext; 3313 Select *pParent; 3314 Select *pSub; /* The inner query or "subquery" */ 3315 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3316 SrcList *pSrc; /* The FROM clause of the outer query */ 3317 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3318 ExprList *pList; /* The result set of the outer query */ 3319 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3320 int i; /* Loop counter */ 3321 Expr *pWhere; /* The WHERE clause */ 3322 struct SrcList_item *pSubitem; /* The subquery */ 3323 sqlite3 *db = pParse->db; 3324 3325 /* Check to see if flattening is permitted. Return 0 if not. 3326 */ 3327 assert( p!=0 ); 3328 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3329 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3330 pSrc = p->pSrc; 3331 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3332 pSubitem = &pSrc->a[iFrom]; 3333 iParent = pSubitem->iCursor; 3334 pSub = pSubitem->pSelect; 3335 assert( pSub!=0 ); 3336 if( subqueryIsAgg ){ 3337 if( isAgg ) return 0; /* Restriction (1) */ 3338 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3339 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3340 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3341 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3342 ){ 3343 return 0; /* Restriction (2b) */ 3344 } 3345 } 3346 3347 pSubSrc = pSub->pSrc; 3348 assert( pSubSrc ); 3349 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3350 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3351 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3352 ** became arbitrary expressions, we were forced to add restrictions (13) 3353 ** and (14). */ 3354 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3355 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3356 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3357 return 0; /* Restriction (15) */ 3358 } 3359 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3360 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3361 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3362 return 0; /* Restrictions (8)(9) */ 3363 } 3364 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3365 return 0; /* Restriction (6) */ 3366 } 3367 if( p->pOrderBy && pSub->pOrderBy ){ 3368 return 0; /* Restriction (11) */ 3369 } 3370 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3371 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3372 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3373 return 0; /* Restriction (21) */ 3374 } 3375 testcase( pSub->selFlags & SF_Recursive ); 3376 testcase( pSub->selFlags & SF_MinMaxAgg ); 3377 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3378 return 0; /* Restrictions (22) and (24) */ 3379 } 3380 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3381 return 0; /* Restriction (23) */ 3382 } 3383 3384 /* OBSOLETE COMMENT 1: 3385 ** Restriction 3: If the subquery is a join, make sure the subquery is 3386 ** not used as the right operand of an outer join. Examples of why this 3387 ** is not allowed: 3388 ** 3389 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3390 ** 3391 ** If we flatten the above, we would get 3392 ** 3393 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3394 ** 3395 ** which is not at all the same thing. 3396 ** 3397 ** OBSOLETE COMMENT 2: 3398 ** Restriction 12: If the subquery is the right operand of a left outer 3399 ** join, make sure the subquery has no WHERE clause. 3400 ** An examples of why this is not allowed: 3401 ** 3402 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3403 ** 3404 ** If we flatten the above, we would get 3405 ** 3406 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3407 ** 3408 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3409 ** effectively converts the OUTER JOIN into an INNER JOIN. 3410 ** 3411 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3412 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3413 ** is fraught with danger. Best to avoid the whole thing. If the 3414 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3415 */ 3416 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3417 return 0; 3418 } 3419 3420 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3421 ** use only the UNION ALL operator. And none of the simple select queries 3422 ** that make up the compound SELECT are allowed to be aggregate or distinct 3423 ** queries. 3424 */ 3425 if( pSub->pPrior ){ 3426 if( pSub->pOrderBy ){ 3427 return 0; /* Restriction 20 */ 3428 } 3429 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3430 return 0; 3431 } 3432 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3433 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3434 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3435 assert( pSub->pSrc!=0 ); 3436 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3437 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3438 || pSub1->pSrc->nSrc<1 3439 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3440 ){ 3441 return 0; 3442 } 3443 testcase( pSub1->pSrc->nSrc>1 ); 3444 } 3445 3446 /* Restriction 18. */ 3447 if( p->pOrderBy ){ 3448 int ii; 3449 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3450 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3451 } 3452 } 3453 } 3454 3455 /***** If we reach this point, flattening is permitted. *****/ 3456 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3457 pSub->zSelName, pSub, iFrom)); 3458 3459 /* Authorize the subquery */ 3460 pParse->zAuthContext = pSubitem->zName; 3461 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3462 testcase( i==SQLITE_DENY ); 3463 pParse->zAuthContext = zSavedAuthContext; 3464 3465 /* If the sub-query is a compound SELECT statement, then (by restrictions 3466 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3467 ** be of the form: 3468 ** 3469 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3470 ** 3471 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3472 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3473 ** OFFSET clauses and joins them to the left-hand-side of the original 3474 ** using UNION ALL operators. In this case N is the number of simple 3475 ** select statements in the compound sub-query. 3476 ** 3477 ** Example: 3478 ** 3479 ** SELECT a+1 FROM ( 3480 ** SELECT x FROM tab 3481 ** UNION ALL 3482 ** SELECT y FROM tab 3483 ** UNION ALL 3484 ** SELECT abs(z*2) FROM tab2 3485 ** ) WHERE a!=5 ORDER BY 1 3486 ** 3487 ** Transformed into: 3488 ** 3489 ** SELECT x+1 FROM tab WHERE x+1!=5 3490 ** UNION ALL 3491 ** SELECT y+1 FROM tab WHERE y+1!=5 3492 ** UNION ALL 3493 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3494 ** ORDER BY 1 3495 ** 3496 ** We call this the "compound-subquery flattening". 3497 */ 3498 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3499 Select *pNew; 3500 ExprList *pOrderBy = p->pOrderBy; 3501 Expr *pLimit = p->pLimit; 3502 Expr *pOffset = p->pOffset; 3503 Select *pPrior = p->pPrior; 3504 p->pOrderBy = 0; 3505 p->pSrc = 0; 3506 p->pPrior = 0; 3507 p->pLimit = 0; 3508 p->pOffset = 0; 3509 pNew = sqlite3SelectDup(db, p, 0); 3510 sqlite3SelectSetName(pNew, pSub->zSelName); 3511 p->pOffset = pOffset; 3512 p->pLimit = pLimit; 3513 p->pOrderBy = pOrderBy; 3514 p->pSrc = pSrc; 3515 p->op = TK_ALL; 3516 if( pNew==0 ){ 3517 p->pPrior = pPrior; 3518 }else{ 3519 pNew->pPrior = pPrior; 3520 if( pPrior ) pPrior->pNext = pNew; 3521 pNew->pNext = p; 3522 p->pPrior = pNew; 3523 SELECTTRACE(2,pParse,p, 3524 ("compound-subquery flattener creates %s.%p as peer\n", 3525 pNew->zSelName, pNew)); 3526 } 3527 if( db->mallocFailed ) return 1; 3528 } 3529 3530 /* Begin flattening the iFrom-th entry of the FROM clause 3531 ** in the outer query. 3532 */ 3533 pSub = pSub1 = pSubitem->pSelect; 3534 3535 /* Delete the transient table structure associated with the 3536 ** subquery 3537 */ 3538 sqlite3DbFree(db, pSubitem->zDatabase); 3539 sqlite3DbFree(db, pSubitem->zName); 3540 sqlite3DbFree(db, pSubitem->zAlias); 3541 pSubitem->zDatabase = 0; 3542 pSubitem->zName = 0; 3543 pSubitem->zAlias = 0; 3544 pSubitem->pSelect = 0; 3545 3546 /* Defer deleting the Table object associated with the 3547 ** subquery until code generation is 3548 ** complete, since there may still exist Expr.pTab entries that 3549 ** refer to the subquery even after flattening. Ticket #3346. 3550 ** 3551 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3552 */ 3553 if( ALWAYS(pSubitem->pTab!=0) ){ 3554 Table *pTabToDel = pSubitem->pTab; 3555 if( pTabToDel->nRef==1 ){ 3556 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3557 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3558 pToplevel->pZombieTab = pTabToDel; 3559 }else{ 3560 pTabToDel->nRef--; 3561 } 3562 pSubitem->pTab = 0; 3563 } 3564 3565 /* The following loop runs once for each term in a compound-subquery 3566 ** flattening (as described above). If we are doing a different kind 3567 ** of flattening - a flattening other than a compound-subquery flattening - 3568 ** then this loop only runs once. 3569 ** 3570 ** This loop moves all of the FROM elements of the subquery into the 3571 ** the FROM clause of the outer query. Before doing this, remember 3572 ** the cursor number for the original outer query FROM element in 3573 ** iParent. The iParent cursor will never be used. Subsequent code 3574 ** will scan expressions looking for iParent references and replace 3575 ** those references with expressions that resolve to the subquery FROM 3576 ** elements we are now copying in. 3577 */ 3578 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3579 int nSubSrc; 3580 u8 jointype = 0; 3581 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3582 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3583 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3584 3585 if( pSrc ){ 3586 assert( pParent==p ); /* First time through the loop */ 3587 jointype = pSubitem->jointype; 3588 }else{ 3589 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3590 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3591 if( pSrc==0 ){ 3592 assert( db->mallocFailed ); 3593 break; 3594 } 3595 } 3596 3597 /* The subquery uses a single slot of the FROM clause of the outer 3598 ** query. If the subquery has more than one element in its FROM clause, 3599 ** then expand the outer query to make space for it to hold all elements 3600 ** of the subquery. 3601 ** 3602 ** Example: 3603 ** 3604 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3605 ** 3606 ** The outer query has 3 slots in its FROM clause. One slot of the 3607 ** outer query (the middle slot) is used by the subquery. The next 3608 ** block of code will expand the out query to 4 slots. The middle 3609 ** slot is expanded to two slots in order to make space for the 3610 ** two elements in the FROM clause of the subquery. 3611 */ 3612 if( nSubSrc>1 ){ 3613 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3614 if( db->mallocFailed ){ 3615 break; 3616 } 3617 } 3618 3619 /* Transfer the FROM clause terms from the subquery into the 3620 ** outer query. 3621 */ 3622 for(i=0; i<nSubSrc; i++){ 3623 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3624 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3625 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3626 } 3627 pSrc->a[iFrom].jointype = jointype; 3628 3629 /* Now begin substituting subquery result set expressions for 3630 ** references to the iParent in the outer query. 3631 ** 3632 ** Example: 3633 ** 3634 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3635 ** \ \_____________ subquery __________/ / 3636 ** \_____________________ outer query ______________________________/ 3637 ** 3638 ** We look at every expression in the outer query and every place we see 3639 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3640 */ 3641 pList = pParent->pEList; 3642 for(i=0; i<pList->nExpr; i++){ 3643 if( pList->a[i].zName==0 ){ 3644 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3645 sqlite3Dequote(zName); 3646 pList->a[i].zName = zName; 3647 } 3648 } 3649 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3650 if( isAgg ){ 3651 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3652 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3653 } 3654 if( pSub->pOrderBy ){ 3655 /* At this point, any non-zero iOrderByCol values indicate that the 3656 ** ORDER BY column expression is identical to the iOrderByCol'th 3657 ** expression returned by SELECT statement pSub. Since these values 3658 ** do not necessarily correspond to columns in SELECT statement pParent, 3659 ** zero them before transfering the ORDER BY clause. 3660 ** 3661 ** Not doing this may cause an error if a subsequent call to this 3662 ** function attempts to flatten a compound sub-query into pParent 3663 ** (the only way this can happen is if the compound sub-query is 3664 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3665 ExprList *pOrderBy = pSub->pOrderBy; 3666 for(i=0; i<pOrderBy->nExpr; i++){ 3667 pOrderBy->a[i].u.x.iOrderByCol = 0; 3668 } 3669 assert( pParent->pOrderBy==0 ); 3670 assert( pSub->pPrior==0 ); 3671 pParent->pOrderBy = pOrderBy; 3672 pSub->pOrderBy = 0; 3673 }else if( pParent->pOrderBy ){ 3674 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3675 } 3676 if( pSub->pWhere ){ 3677 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3678 }else{ 3679 pWhere = 0; 3680 } 3681 if( subqueryIsAgg ){ 3682 assert( pParent->pHaving==0 ); 3683 pParent->pHaving = pParent->pWhere; 3684 pParent->pWhere = pWhere; 3685 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3686 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3687 sqlite3ExprDup(db, pSub->pHaving, 0)); 3688 assert( pParent->pGroupBy==0 ); 3689 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3690 }else{ 3691 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3692 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3693 } 3694 3695 /* The flattened query is distinct if either the inner or the 3696 ** outer query is distinct. 3697 */ 3698 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3699 3700 /* 3701 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3702 ** 3703 ** One is tempted to try to add a and b to combine the limits. But this 3704 ** does not work if either limit is negative. 3705 */ 3706 if( pSub->pLimit ){ 3707 pParent->pLimit = pSub->pLimit; 3708 pSub->pLimit = 0; 3709 } 3710 } 3711 3712 /* Finially, delete what is left of the subquery and return 3713 ** success. 3714 */ 3715 sqlite3SelectDelete(db, pSub1); 3716 3717 #if SELECTTRACE_ENABLED 3718 if( sqlite3SelectTrace & 0x100 ){ 3719 sqlite3DebugPrintf("After flattening:\n"); 3720 sqlite3TreeViewSelect(0, p, 0); 3721 } 3722 #endif 3723 3724 return 1; 3725 } 3726 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3727 3728 /* 3729 ** Based on the contents of the AggInfo structure indicated by the first 3730 ** argument, this function checks if the following are true: 3731 ** 3732 ** * the query contains just a single aggregate function, 3733 ** * the aggregate function is either min() or max(), and 3734 ** * the argument to the aggregate function is a column value. 3735 ** 3736 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3737 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3738 ** list of arguments passed to the aggregate before returning. 3739 ** 3740 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3741 ** WHERE_ORDERBY_NORMAL is returned. 3742 */ 3743 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3744 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3745 3746 *ppMinMax = 0; 3747 if( pAggInfo->nFunc==1 ){ 3748 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3749 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3750 3751 assert( pExpr->op==TK_AGG_FUNCTION ); 3752 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3753 const char *zFunc = pExpr->u.zToken; 3754 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3755 eRet = WHERE_ORDERBY_MIN; 3756 *ppMinMax = pEList; 3757 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3758 eRet = WHERE_ORDERBY_MAX; 3759 *ppMinMax = pEList; 3760 } 3761 } 3762 } 3763 3764 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3765 return eRet; 3766 } 3767 3768 /* 3769 ** The select statement passed as the first argument is an aggregate query. 3770 ** The second argument is the associated aggregate-info object. This 3771 ** function tests if the SELECT is of the form: 3772 ** 3773 ** SELECT count(*) FROM <tbl> 3774 ** 3775 ** where table is a database table, not a sub-select or view. If the query 3776 ** does match this pattern, then a pointer to the Table object representing 3777 ** <tbl> is returned. Otherwise, 0 is returned. 3778 */ 3779 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3780 Table *pTab; 3781 Expr *pExpr; 3782 3783 assert( !p->pGroupBy ); 3784 3785 if( p->pWhere || p->pEList->nExpr!=1 3786 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3787 ){ 3788 return 0; 3789 } 3790 pTab = p->pSrc->a[0].pTab; 3791 pExpr = p->pEList->a[0].pExpr; 3792 assert( pTab && !pTab->pSelect && pExpr ); 3793 3794 if( IsVirtual(pTab) ) return 0; 3795 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3796 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3797 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3798 if( pExpr->flags&EP_Distinct ) return 0; 3799 3800 return pTab; 3801 } 3802 3803 /* 3804 ** If the source-list item passed as an argument was augmented with an 3805 ** INDEXED BY clause, then try to locate the specified index. If there 3806 ** was such a clause and the named index cannot be found, return 3807 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3808 ** pFrom->pIndex and return SQLITE_OK. 3809 */ 3810 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3811 if( pFrom->pTab && pFrom->zIndex ){ 3812 Table *pTab = pFrom->pTab; 3813 char *zIndex = pFrom->zIndex; 3814 Index *pIdx; 3815 for(pIdx=pTab->pIndex; 3816 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3817 pIdx=pIdx->pNext 3818 ); 3819 if( !pIdx ){ 3820 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3821 pParse->checkSchema = 1; 3822 return SQLITE_ERROR; 3823 } 3824 pFrom->pIndex = pIdx; 3825 } 3826 return SQLITE_OK; 3827 } 3828 /* 3829 ** Detect compound SELECT statements that use an ORDER BY clause with 3830 ** an alternative collating sequence. 3831 ** 3832 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3833 ** 3834 ** These are rewritten as a subquery: 3835 ** 3836 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3837 ** ORDER BY ... COLLATE ... 3838 ** 3839 ** This transformation is necessary because the multiSelectOrderBy() routine 3840 ** above that generates the code for a compound SELECT with an ORDER BY clause 3841 ** uses a merge algorithm that requires the same collating sequence on the 3842 ** result columns as on the ORDER BY clause. See ticket 3843 ** http://www.sqlite.org/src/info/6709574d2a 3844 ** 3845 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3846 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3847 ** there are COLLATE terms in the ORDER BY. 3848 */ 3849 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3850 int i; 3851 Select *pNew; 3852 Select *pX; 3853 sqlite3 *db; 3854 struct ExprList_item *a; 3855 SrcList *pNewSrc; 3856 Parse *pParse; 3857 Token dummy; 3858 3859 if( p->pPrior==0 ) return WRC_Continue; 3860 if( p->pOrderBy==0 ) return WRC_Continue; 3861 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3862 if( pX==0 ) return WRC_Continue; 3863 a = p->pOrderBy->a; 3864 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3865 if( a[i].pExpr->flags & EP_Collate ) break; 3866 } 3867 if( i<0 ) return WRC_Continue; 3868 3869 /* If we reach this point, that means the transformation is required. */ 3870 3871 pParse = pWalker->pParse; 3872 db = pParse->db; 3873 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3874 if( pNew==0 ) return WRC_Abort; 3875 memset(&dummy, 0, sizeof(dummy)); 3876 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3877 if( pNewSrc==0 ) return WRC_Abort; 3878 *pNew = *p; 3879 p->pSrc = pNewSrc; 3880 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3881 p->op = TK_SELECT; 3882 p->pWhere = 0; 3883 pNew->pGroupBy = 0; 3884 pNew->pHaving = 0; 3885 pNew->pOrderBy = 0; 3886 p->pPrior = 0; 3887 p->pNext = 0; 3888 p->pWith = 0; 3889 p->selFlags &= ~SF_Compound; 3890 assert( (p->selFlags & SF_Converted)==0 ); 3891 p->selFlags |= SF_Converted; 3892 assert( pNew->pPrior!=0 ); 3893 pNew->pPrior->pNext = pNew; 3894 pNew->pLimit = 0; 3895 pNew->pOffset = 0; 3896 return WRC_Continue; 3897 } 3898 3899 #ifndef SQLITE_OMIT_CTE 3900 /* 3901 ** Argument pWith (which may be NULL) points to a linked list of nested 3902 ** WITH contexts, from inner to outermost. If the table identified by 3903 ** FROM clause element pItem is really a common-table-expression (CTE) 3904 ** then return a pointer to the CTE definition for that table. Otherwise 3905 ** return NULL. 3906 ** 3907 ** If a non-NULL value is returned, set *ppContext to point to the With 3908 ** object that the returned CTE belongs to. 3909 */ 3910 static struct Cte *searchWith( 3911 With *pWith, /* Current outermost WITH clause */ 3912 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3913 With **ppContext /* OUT: WITH clause return value belongs to */ 3914 ){ 3915 const char *zName; 3916 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3917 With *p; 3918 for(p=pWith; p; p=p->pOuter){ 3919 int i; 3920 for(i=0; i<p->nCte; i++){ 3921 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3922 *ppContext = p; 3923 return &p->a[i]; 3924 } 3925 } 3926 } 3927 } 3928 return 0; 3929 } 3930 3931 /* The code generator maintains a stack of active WITH clauses 3932 ** with the inner-most WITH clause being at the top of the stack. 3933 ** 3934 ** This routine pushes the WITH clause passed as the second argument 3935 ** onto the top of the stack. If argument bFree is true, then this 3936 ** WITH clause will never be popped from the stack. In this case it 3937 ** should be freed along with the Parse object. In other cases, when 3938 ** bFree==0, the With object will be freed along with the SELECT 3939 ** statement with which it is associated. 3940 */ 3941 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3942 assert( bFree==0 || pParse->pWith==0 ); 3943 if( pWith ){ 3944 pWith->pOuter = pParse->pWith; 3945 pParse->pWith = pWith; 3946 pParse->bFreeWith = bFree; 3947 } 3948 } 3949 3950 /* 3951 ** This function checks if argument pFrom refers to a CTE declared by 3952 ** a WITH clause on the stack currently maintained by the parser. And, 3953 ** if currently processing a CTE expression, if it is a recursive 3954 ** reference to the current CTE. 3955 ** 3956 ** If pFrom falls into either of the two categories above, pFrom->pTab 3957 ** and other fields are populated accordingly. The caller should check 3958 ** (pFrom->pTab!=0) to determine whether or not a successful match 3959 ** was found. 3960 ** 3961 ** Whether or not a match is found, SQLITE_OK is returned if no error 3962 ** occurs. If an error does occur, an error message is stored in the 3963 ** parser and some error code other than SQLITE_OK returned. 3964 */ 3965 static int withExpand( 3966 Walker *pWalker, 3967 struct SrcList_item *pFrom 3968 ){ 3969 Parse *pParse = pWalker->pParse; 3970 sqlite3 *db = pParse->db; 3971 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3972 With *pWith; /* WITH clause that pCte belongs to */ 3973 3974 assert( pFrom->pTab==0 ); 3975 3976 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3977 if( pCte ){ 3978 Table *pTab; 3979 ExprList *pEList; 3980 Select *pSel; 3981 Select *pLeft; /* Left-most SELECT statement */ 3982 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3983 With *pSavedWith; /* Initial value of pParse->pWith */ 3984 3985 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3986 ** recursive reference to CTE pCte. Leave an error in pParse and return 3987 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3988 ** In this case, proceed. */ 3989 if( pCte->zErr ){ 3990 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3991 return SQLITE_ERROR; 3992 } 3993 3994 assert( pFrom->pTab==0 ); 3995 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3996 if( pTab==0 ) return WRC_Abort; 3997 pTab->nRef = 1; 3998 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3999 pTab->iPKey = -1; 4000 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4001 pTab->tabFlags |= TF_Ephemeral; 4002 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4003 if( db->mallocFailed ) return SQLITE_NOMEM; 4004 assert( pFrom->pSelect ); 4005 4006 /* Check if this is a recursive CTE. */ 4007 pSel = pFrom->pSelect; 4008 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4009 if( bMayRecursive ){ 4010 int i; 4011 SrcList *pSrc = pFrom->pSelect->pSrc; 4012 for(i=0; i<pSrc->nSrc; i++){ 4013 struct SrcList_item *pItem = &pSrc->a[i]; 4014 if( pItem->zDatabase==0 4015 && pItem->zName!=0 4016 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4017 ){ 4018 pItem->pTab = pTab; 4019 pItem->isRecursive = 1; 4020 pTab->nRef++; 4021 pSel->selFlags |= SF_Recursive; 4022 } 4023 } 4024 } 4025 4026 /* Only one recursive reference is permitted. */ 4027 if( pTab->nRef>2 ){ 4028 sqlite3ErrorMsg( 4029 pParse, "multiple references to recursive table: %s", pCte->zName 4030 ); 4031 return SQLITE_ERROR; 4032 } 4033 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4034 4035 pCte->zErr = "circular reference: %s"; 4036 pSavedWith = pParse->pWith; 4037 pParse->pWith = pWith; 4038 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4039 4040 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4041 pEList = pLeft->pEList; 4042 if( pCte->pCols ){ 4043 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4044 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4045 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4046 ); 4047 pParse->pWith = pSavedWith; 4048 return SQLITE_ERROR; 4049 } 4050 pEList = pCte->pCols; 4051 } 4052 4053 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4054 if( bMayRecursive ){ 4055 if( pSel->selFlags & SF_Recursive ){ 4056 pCte->zErr = "multiple recursive references: %s"; 4057 }else{ 4058 pCte->zErr = "recursive reference in a subquery: %s"; 4059 } 4060 sqlite3WalkSelect(pWalker, pSel); 4061 } 4062 pCte->zErr = 0; 4063 pParse->pWith = pSavedWith; 4064 } 4065 4066 return SQLITE_OK; 4067 } 4068 #endif 4069 4070 #ifndef SQLITE_OMIT_CTE 4071 /* 4072 ** If the SELECT passed as the second argument has an associated WITH 4073 ** clause, pop it from the stack stored as part of the Parse object. 4074 ** 4075 ** This function is used as the xSelectCallback2() callback by 4076 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4077 ** names and other FROM clause elements. 4078 */ 4079 static void selectPopWith(Walker *pWalker, Select *p){ 4080 Parse *pParse = pWalker->pParse; 4081 With *pWith = findRightmost(p)->pWith; 4082 if( pWith!=0 ){ 4083 assert( pParse->pWith==pWith ); 4084 pParse->pWith = pWith->pOuter; 4085 } 4086 } 4087 #else 4088 #define selectPopWith 0 4089 #endif 4090 4091 /* 4092 ** This routine is a Walker callback for "expanding" a SELECT statement. 4093 ** "Expanding" means to do the following: 4094 ** 4095 ** (1) Make sure VDBE cursor numbers have been assigned to every 4096 ** element of the FROM clause. 4097 ** 4098 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4099 ** defines FROM clause. When views appear in the FROM clause, 4100 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4101 ** that implements the view. A copy is made of the view's SELECT 4102 ** statement so that we can freely modify or delete that statement 4103 ** without worrying about messing up the persistent representation 4104 ** of the view. 4105 ** 4106 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4107 ** on joins and the ON and USING clause of joins. 4108 ** 4109 ** (4) Scan the list of columns in the result set (pEList) looking 4110 ** for instances of the "*" operator or the TABLE.* operator. 4111 ** If found, expand each "*" to be every column in every table 4112 ** and TABLE.* to be every column in TABLE. 4113 ** 4114 */ 4115 static int selectExpander(Walker *pWalker, Select *p){ 4116 Parse *pParse = pWalker->pParse; 4117 int i, j, k; 4118 SrcList *pTabList; 4119 ExprList *pEList; 4120 struct SrcList_item *pFrom; 4121 sqlite3 *db = pParse->db; 4122 Expr *pE, *pRight, *pExpr; 4123 u16 selFlags = p->selFlags; 4124 4125 p->selFlags |= SF_Expanded; 4126 if( db->mallocFailed ){ 4127 return WRC_Abort; 4128 } 4129 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4130 return WRC_Prune; 4131 } 4132 pTabList = p->pSrc; 4133 pEList = p->pEList; 4134 if( pWalker->xSelectCallback2==selectPopWith ){ 4135 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4136 } 4137 4138 /* Make sure cursor numbers have been assigned to all entries in 4139 ** the FROM clause of the SELECT statement. 4140 */ 4141 sqlite3SrcListAssignCursors(pParse, pTabList); 4142 4143 /* Look up every table named in the FROM clause of the select. If 4144 ** an entry of the FROM clause is a subquery instead of a table or view, 4145 ** then create a transient table structure to describe the subquery. 4146 */ 4147 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4148 Table *pTab; 4149 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4150 if( pFrom->isRecursive ) continue; 4151 if( pFrom->pTab!=0 ){ 4152 /* This statement has already been prepared. There is no need 4153 ** to go further. */ 4154 assert( i==0 ); 4155 #ifndef SQLITE_OMIT_CTE 4156 selectPopWith(pWalker, p); 4157 #endif 4158 return WRC_Prune; 4159 } 4160 #ifndef SQLITE_OMIT_CTE 4161 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4162 if( pFrom->pTab ) {} else 4163 #endif 4164 if( pFrom->zName==0 ){ 4165 #ifndef SQLITE_OMIT_SUBQUERY 4166 Select *pSel = pFrom->pSelect; 4167 /* A sub-query in the FROM clause of a SELECT */ 4168 assert( pSel!=0 ); 4169 assert( pFrom->pTab==0 ); 4170 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4171 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4172 if( pTab==0 ) return WRC_Abort; 4173 pTab->nRef = 1; 4174 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4175 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4176 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4177 pTab->iPKey = -1; 4178 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4179 pTab->tabFlags |= TF_Ephemeral; 4180 #endif 4181 }else{ 4182 /* An ordinary table or view name in the FROM clause */ 4183 assert( pFrom->pTab==0 ); 4184 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4185 if( pTab==0 ) return WRC_Abort; 4186 if( pTab->nRef==0xffff ){ 4187 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4188 pTab->zName); 4189 pFrom->pTab = 0; 4190 return WRC_Abort; 4191 } 4192 pTab->nRef++; 4193 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4194 if( pTab->pSelect || IsVirtual(pTab) ){ 4195 /* We reach here if the named table is a really a view */ 4196 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4197 assert( pFrom->pSelect==0 ); 4198 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4199 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4200 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4201 } 4202 #endif 4203 } 4204 4205 /* Locate the index named by the INDEXED BY clause, if any. */ 4206 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4207 return WRC_Abort; 4208 } 4209 } 4210 4211 /* Process NATURAL keywords, and ON and USING clauses of joins. 4212 */ 4213 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4214 return WRC_Abort; 4215 } 4216 4217 /* For every "*" that occurs in the column list, insert the names of 4218 ** all columns in all tables. And for every TABLE.* insert the names 4219 ** of all columns in TABLE. The parser inserted a special expression 4220 ** with the TK_ALL operator for each "*" that it found in the column list. 4221 ** The following code just has to locate the TK_ALL expressions and expand 4222 ** each one to the list of all columns in all tables. 4223 ** 4224 ** The first loop just checks to see if there are any "*" operators 4225 ** that need expanding. 4226 */ 4227 for(k=0; k<pEList->nExpr; k++){ 4228 pE = pEList->a[k].pExpr; 4229 if( pE->op==TK_ALL ) break; 4230 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4231 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4232 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4233 } 4234 if( k<pEList->nExpr ){ 4235 /* 4236 ** If we get here it means the result set contains one or more "*" 4237 ** operators that need to be expanded. Loop through each expression 4238 ** in the result set and expand them one by one. 4239 */ 4240 struct ExprList_item *a = pEList->a; 4241 ExprList *pNew = 0; 4242 int flags = pParse->db->flags; 4243 int longNames = (flags & SQLITE_FullColNames)!=0 4244 && (flags & SQLITE_ShortColNames)==0; 4245 4246 /* When processing FROM-clause subqueries, it is always the case 4247 ** that full_column_names=OFF and short_column_names=ON. The 4248 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4249 assert( (p->selFlags & SF_NestedFrom)==0 4250 || ((flags & SQLITE_FullColNames)==0 && 4251 (flags & SQLITE_ShortColNames)!=0) ); 4252 4253 for(k=0; k<pEList->nExpr; k++){ 4254 pE = a[k].pExpr; 4255 pRight = pE->pRight; 4256 assert( pE->op!=TK_DOT || pRight!=0 ); 4257 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4258 /* This particular expression does not need to be expanded. 4259 */ 4260 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4261 if( pNew ){ 4262 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4263 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4264 a[k].zName = 0; 4265 a[k].zSpan = 0; 4266 } 4267 a[k].pExpr = 0; 4268 }else{ 4269 /* This expression is a "*" or a "TABLE.*" and needs to be 4270 ** expanded. */ 4271 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4272 char *zTName = 0; /* text of name of TABLE */ 4273 if( pE->op==TK_DOT ){ 4274 assert( pE->pLeft!=0 ); 4275 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4276 zTName = pE->pLeft->u.zToken; 4277 } 4278 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4279 Table *pTab = pFrom->pTab; 4280 Select *pSub = pFrom->pSelect; 4281 char *zTabName = pFrom->zAlias; 4282 const char *zSchemaName = 0; 4283 int iDb; 4284 if( zTabName==0 ){ 4285 zTabName = pTab->zName; 4286 } 4287 if( db->mallocFailed ) break; 4288 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4289 pSub = 0; 4290 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4291 continue; 4292 } 4293 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4294 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4295 } 4296 for(j=0; j<pTab->nCol; j++){ 4297 char *zName = pTab->aCol[j].zName; 4298 char *zColname; /* The computed column name */ 4299 char *zToFree; /* Malloced string that needs to be freed */ 4300 Token sColname; /* Computed column name as a token */ 4301 4302 assert( zName ); 4303 if( zTName && pSub 4304 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4305 ){ 4306 continue; 4307 } 4308 4309 /* If a column is marked as 'hidden' (currently only possible 4310 ** for virtual tables), do not include it in the expanded 4311 ** result-set list. 4312 */ 4313 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4314 assert(IsVirtual(pTab)); 4315 continue; 4316 } 4317 tableSeen = 1; 4318 4319 if( i>0 && zTName==0 ){ 4320 if( (pFrom->jointype & JT_NATURAL)!=0 4321 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4322 ){ 4323 /* In a NATURAL join, omit the join columns from the 4324 ** table to the right of the join */ 4325 continue; 4326 } 4327 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4328 /* In a join with a USING clause, omit columns in the 4329 ** using clause from the table on the right. */ 4330 continue; 4331 } 4332 } 4333 pRight = sqlite3Expr(db, TK_ID, zName); 4334 zColname = zName; 4335 zToFree = 0; 4336 if( longNames || pTabList->nSrc>1 ){ 4337 Expr *pLeft; 4338 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4339 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4340 if( zSchemaName ){ 4341 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4342 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4343 } 4344 if( longNames ){ 4345 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4346 zToFree = zColname; 4347 } 4348 }else{ 4349 pExpr = pRight; 4350 } 4351 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4352 sColname.z = zColname; 4353 sColname.n = sqlite3Strlen30(zColname); 4354 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4355 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4356 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4357 if( pSub ){ 4358 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4359 testcase( pX->zSpan==0 ); 4360 }else{ 4361 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4362 zSchemaName, zTabName, zColname); 4363 testcase( pX->zSpan==0 ); 4364 } 4365 pX->bSpanIsTab = 1; 4366 } 4367 sqlite3DbFree(db, zToFree); 4368 } 4369 } 4370 if( !tableSeen ){ 4371 if( zTName ){ 4372 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4373 }else{ 4374 sqlite3ErrorMsg(pParse, "no tables specified"); 4375 } 4376 } 4377 } 4378 } 4379 sqlite3ExprListDelete(db, pEList); 4380 p->pEList = pNew; 4381 } 4382 #if SQLITE_MAX_COLUMN 4383 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4384 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4385 } 4386 #endif 4387 return WRC_Continue; 4388 } 4389 4390 /* 4391 ** No-op routine for the parse-tree walker. 4392 ** 4393 ** When this routine is the Walker.xExprCallback then expression trees 4394 ** are walked without any actions being taken at each node. Presumably, 4395 ** when this routine is used for Walker.xExprCallback then 4396 ** Walker.xSelectCallback is set to do something useful for every 4397 ** subquery in the parser tree. 4398 */ 4399 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4400 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4401 return WRC_Continue; 4402 } 4403 4404 /* 4405 ** This routine "expands" a SELECT statement and all of its subqueries. 4406 ** For additional information on what it means to "expand" a SELECT 4407 ** statement, see the comment on the selectExpand worker callback above. 4408 ** 4409 ** Expanding a SELECT statement is the first step in processing a 4410 ** SELECT statement. The SELECT statement must be expanded before 4411 ** name resolution is performed. 4412 ** 4413 ** If anything goes wrong, an error message is written into pParse. 4414 ** The calling function can detect the problem by looking at pParse->nErr 4415 ** and/or pParse->db->mallocFailed. 4416 */ 4417 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4418 Walker w; 4419 memset(&w, 0, sizeof(w)); 4420 w.xExprCallback = exprWalkNoop; 4421 w.pParse = pParse; 4422 if( pParse->hasCompound ){ 4423 w.xSelectCallback = convertCompoundSelectToSubquery; 4424 sqlite3WalkSelect(&w, pSelect); 4425 } 4426 w.xSelectCallback = selectExpander; 4427 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4428 w.xSelectCallback2 = selectPopWith; 4429 } 4430 sqlite3WalkSelect(&w, pSelect); 4431 } 4432 4433 4434 #ifndef SQLITE_OMIT_SUBQUERY 4435 /* 4436 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4437 ** interface. 4438 ** 4439 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4440 ** information to the Table structure that represents the result set 4441 ** of that subquery. 4442 ** 4443 ** The Table structure that represents the result set was constructed 4444 ** by selectExpander() but the type and collation information was omitted 4445 ** at that point because identifiers had not yet been resolved. This 4446 ** routine is called after identifier resolution. 4447 */ 4448 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4449 Parse *pParse; 4450 int i; 4451 SrcList *pTabList; 4452 struct SrcList_item *pFrom; 4453 4454 assert( p->selFlags & SF_Resolved ); 4455 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4456 p->selFlags |= SF_HasTypeInfo; 4457 pParse = pWalker->pParse; 4458 pTabList = p->pSrc; 4459 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4460 Table *pTab = pFrom->pTab; 4461 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4462 /* A sub-query in the FROM clause of a SELECT */ 4463 Select *pSel = pFrom->pSelect; 4464 if( pSel ){ 4465 while( pSel->pPrior ) pSel = pSel->pPrior; 4466 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4467 } 4468 } 4469 } 4470 } 4471 } 4472 #endif 4473 4474 4475 /* 4476 ** This routine adds datatype and collating sequence information to 4477 ** the Table structures of all FROM-clause subqueries in a 4478 ** SELECT statement. 4479 ** 4480 ** Use this routine after name resolution. 4481 */ 4482 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4483 #ifndef SQLITE_OMIT_SUBQUERY 4484 Walker w; 4485 memset(&w, 0, sizeof(w)); 4486 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4487 w.xExprCallback = exprWalkNoop; 4488 w.pParse = pParse; 4489 sqlite3WalkSelect(&w, pSelect); 4490 #endif 4491 } 4492 4493 4494 /* 4495 ** This routine sets up a SELECT statement for processing. The 4496 ** following is accomplished: 4497 ** 4498 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4499 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4500 ** * ON and USING clauses are shifted into WHERE statements 4501 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4502 ** * Identifiers in expression are matched to tables. 4503 ** 4504 ** This routine acts recursively on all subqueries within the SELECT. 4505 */ 4506 void sqlite3SelectPrep( 4507 Parse *pParse, /* The parser context */ 4508 Select *p, /* The SELECT statement being coded. */ 4509 NameContext *pOuterNC /* Name context for container */ 4510 ){ 4511 sqlite3 *db; 4512 if( NEVER(p==0) ) return; 4513 db = pParse->db; 4514 if( db->mallocFailed ) return; 4515 if( p->selFlags & SF_HasTypeInfo ) return; 4516 sqlite3SelectExpand(pParse, p); 4517 if( pParse->nErr || db->mallocFailed ) return; 4518 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4519 if( pParse->nErr || db->mallocFailed ) return; 4520 sqlite3SelectAddTypeInfo(pParse, p); 4521 } 4522 4523 /* 4524 ** Reset the aggregate accumulator. 4525 ** 4526 ** The aggregate accumulator is a set of memory cells that hold 4527 ** intermediate results while calculating an aggregate. This 4528 ** routine generates code that stores NULLs in all of those memory 4529 ** cells. 4530 */ 4531 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4532 Vdbe *v = pParse->pVdbe; 4533 int i; 4534 struct AggInfo_func *pFunc; 4535 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4536 if( nReg==0 ) return; 4537 #ifdef SQLITE_DEBUG 4538 /* Verify that all AggInfo registers are within the range specified by 4539 ** AggInfo.mnReg..AggInfo.mxReg */ 4540 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4541 for(i=0; i<pAggInfo->nColumn; i++){ 4542 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4543 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4544 } 4545 for(i=0; i<pAggInfo->nFunc; i++){ 4546 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4547 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4548 } 4549 #endif 4550 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4551 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4552 if( pFunc->iDistinct>=0 ){ 4553 Expr *pE = pFunc->pExpr; 4554 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4555 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4556 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4557 "argument"); 4558 pFunc->iDistinct = -1; 4559 }else{ 4560 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4561 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4562 (char*)pKeyInfo, P4_KEYINFO); 4563 } 4564 } 4565 } 4566 } 4567 4568 /* 4569 ** Invoke the OP_AggFinalize opcode for every aggregate function 4570 ** in the AggInfo structure. 4571 */ 4572 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4573 Vdbe *v = pParse->pVdbe; 4574 int i; 4575 struct AggInfo_func *pF; 4576 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4577 ExprList *pList = pF->pExpr->x.pList; 4578 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4579 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4580 (void*)pF->pFunc, P4_FUNCDEF); 4581 } 4582 } 4583 4584 /* 4585 ** Update the accumulator memory cells for an aggregate based on 4586 ** the current cursor position. 4587 */ 4588 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4589 Vdbe *v = pParse->pVdbe; 4590 int i; 4591 int regHit = 0; 4592 int addrHitTest = 0; 4593 struct AggInfo_func *pF; 4594 struct AggInfo_col *pC; 4595 4596 pAggInfo->directMode = 1; 4597 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4598 int nArg; 4599 int addrNext = 0; 4600 int regAgg; 4601 ExprList *pList = pF->pExpr->x.pList; 4602 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4603 if( pList ){ 4604 nArg = pList->nExpr; 4605 regAgg = sqlite3GetTempRange(pParse, nArg); 4606 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4607 }else{ 4608 nArg = 0; 4609 regAgg = 0; 4610 } 4611 if( pF->iDistinct>=0 ){ 4612 addrNext = sqlite3VdbeMakeLabel(v); 4613 testcase( nArg==0 ); /* Error condition */ 4614 testcase( nArg>1 ); /* Also an error */ 4615 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4616 } 4617 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4618 CollSeq *pColl = 0; 4619 struct ExprList_item *pItem; 4620 int j; 4621 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4622 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4623 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4624 } 4625 if( !pColl ){ 4626 pColl = pParse->db->pDfltColl; 4627 } 4628 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4629 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4630 } 4631 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4632 (void*)pF->pFunc, P4_FUNCDEF); 4633 sqlite3VdbeChangeP5(v, (u8)nArg); 4634 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4635 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4636 if( addrNext ){ 4637 sqlite3VdbeResolveLabel(v, addrNext); 4638 sqlite3ExprCacheClear(pParse); 4639 } 4640 } 4641 4642 /* Before populating the accumulator registers, clear the column cache. 4643 ** Otherwise, if any of the required column values are already present 4644 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4645 ** to pC->iMem. But by the time the value is used, the original register 4646 ** may have been used, invalidating the underlying buffer holding the 4647 ** text or blob value. See ticket [883034dcb5]. 4648 ** 4649 ** Another solution would be to change the OP_SCopy used to copy cached 4650 ** values to an OP_Copy. 4651 */ 4652 if( regHit ){ 4653 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4654 } 4655 sqlite3ExprCacheClear(pParse); 4656 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4657 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4658 } 4659 pAggInfo->directMode = 0; 4660 sqlite3ExprCacheClear(pParse); 4661 if( addrHitTest ){ 4662 sqlite3VdbeJumpHere(v, addrHitTest); 4663 } 4664 } 4665 4666 /* 4667 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4668 ** count(*) query ("SELECT count(*) FROM pTab"). 4669 */ 4670 #ifndef SQLITE_OMIT_EXPLAIN 4671 static void explainSimpleCount( 4672 Parse *pParse, /* Parse context */ 4673 Table *pTab, /* Table being queried */ 4674 Index *pIdx /* Index used to optimize scan, or NULL */ 4675 ){ 4676 if( pParse->explain==2 ){ 4677 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4678 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4679 pTab->zName, 4680 bCover ? " USING COVERING INDEX " : "", 4681 bCover ? pIdx->zName : "" 4682 ); 4683 sqlite3VdbeAddOp4( 4684 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4685 ); 4686 } 4687 } 4688 #else 4689 # define explainSimpleCount(a,b,c) 4690 #endif 4691 4692 /* 4693 ** Generate code for the SELECT statement given in the p argument. 4694 ** 4695 ** The results are returned according to the SelectDest structure. 4696 ** See comments in sqliteInt.h for further information. 4697 ** 4698 ** This routine returns the number of errors. If any errors are 4699 ** encountered, then an appropriate error message is left in 4700 ** pParse->zErrMsg. 4701 ** 4702 ** This routine does NOT free the Select structure passed in. The 4703 ** calling function needs to do that. 4704 */ 4705 int sqlite3Select( 4706 Parse *pParse, /* The parser context */ 4707 Select *p, /* The SELECT statement being coded. */ 4708 SelectDest *pDest /* What to do with the query results */ 4709 ){ 4710 int i, j; /* Loop counters */ 4711 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4712 Vdbe *v; /* The virtual machine under construction */ 4713 int isAgg; /* True for select lists like "count(*)" */ 4714 ExprList *pEList; /* List of columns to extract. */ 4715 SrcList *pTabList; /* List of tables to select from */ 4716 Expr *pWhere; /* The WHERE clause. May be NULL */ 4717 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4718 Expr *pHaving; /* The HAVING clause. May be NULL */ 4719 int rc = 1; /* Value to return from this function */ 4720 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4721 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4722 AggInfo sAggInfo; /* Information used by aggregate queries */ 4723 int iEnd; /* Address of the end of the query */ 4724 sqlite3 *db; /* The database connection */ 4725 4726 #ifndef SQLITE_OMIT_EXPLAIN 4727 int iRestoreSelectId = pParse->iSelectId; 4728 pParse->iSelectId = pParse->iNextSelectId++; 4729 #endif 4730 4731 db = pParse->db; 4732 if( p==0 || db->mallocFailed || pParse->nErr ){ 4733 return 1; 4734 } 4735 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4736 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4737 #if SELECTTRACE_ENABLED 4738 pParse->nSelectIndent++; 4739 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4740 if( sqlite3SelectTrace & 0x100 ){ 4741 sqlite3TreeViewSelect(0, p, 0); 4742 } 4743 #endif 4744 4745 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4746 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4747 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4748 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4749 if( IgnorableOrderby(pDest) ){ 4750 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4751 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4752 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4753 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4754 /* If ORDER BY makes no difference in the output then neither does 4755 ** DISTINCT so it can be removed too. */ 4756 sqlite3ExprListDelete(db, p->pOrderBy); 4757 p->pOrderBy = 0; 4758 p->selFlags &= ~SF_Distinct; 4759 } 4760 sqlite3SelectPrep(pParse, p, 0); 4761 memset(&sSort, 0, sizeof(sSort)); 4762 sSort.pOrderBy = p->pOrderBy; 4763 pTabList = p->pSrc; 4764 pEList = p->pEList; 4765 if( pParse->nErr || db->mallocFailed ){ 4766 goto select_end; 4767 } 4768 isAgg = (p->selFlags & SF_Aggregate)!=0; 4769 assert( pEList!=0 ); 4770 #if SELECTTRACE_ENABLED 4771 if( sqlite3SelectTrace & 0x100 ){ 4772 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4773 sqlite3TreeViewSelect(0, p, 0); 4774 } 4775 #endif 4776 4777 4778 /* Begin generating code. 4779 */ 4780 v = sqlite3GetVdbe(pParse); 4781 if( v==0 ) goto select_end; 4782 4783 /* If writing to memory or generating a set 4784 ** only a single column may be output. 4785 */ 4786 #ifndef SQLITE_OMIT_SUBQUERY 4787 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4788 goto select_end; 4789 } 4790 #endif 4791 4792 /* Generate code for all sub-queries in the FROM clause 4793 */ 4794 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4795 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4796 struct SrcList_item *pItem = &pTabList->a[i]; 4797 SelectDest dest; 4798 Select *pSub = pItem->pSelect; 4799 int isAggSub; 4800 4801 if( pSub==0 ) continue; 4802 4803 /* Sometimes the code for a subquery will be generated more than 4804 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4805 ** for example. In that case, do not regenerate the code to manifest 4806 ** a view or the co-routine to implement a view. The first instance 4807 ** is sufficient, though the subroutine to manifest the view does need 4808 ** to be invoked again. */ 4809 if( pItem->addrFillSub ){ 4810 if( pItem->viaCoroutine==0 ){ 4811 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4812 } 4813 continue; 4814 } 4815 4816 /* Increment Parse.nHeight by the height of the largest expression 4817 ** tree referred to by this, the parent select. The child select 4818 ** may contain expression trees of at most 4819 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4820 ** more conservative than necessary, but much easier than enforcing 4821 ** an exact limit. 4822 */ 4823 pParse->nHeight += sqlite3SelectExprHeight(p); 4824 4825 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4826 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4827 /* This subquery can be absorbed into its parent. */ 4828 if( isAggSub ){ 4829 isAgg = 1; 4830 p->selFlags |= SF_Aggregate; 4831 } 4832 i = -1; 4833 }else if( pTabList->nSrc==1 4834 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4835 ){ 4836 /* Implement a co-routine that will return a single row of the result 4837 ** set on each invocation. 4838 */ 4839 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4840 pItem->regReturn = ++pParse->nMem; 4841 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4842 VdbeComment((v, "%s", pItem->pTab->zName)); 4843 pItem->addrFillSub = addrTop; 4844 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4845 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4846 sqlite3Select(pParse, pSub, &dest); 4847 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4848 pItem->viaCoroutine = 1; 4849 pItem->regResult = dest.iSdst; 4850 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4851 sqlite3VdbeJumpHere(v, addrTop-1); 4852 sqlite3ClearTempRegCache(pParse); 4853 }else{ 4854 /* Generate a subroutine that will fill an ephemeral table with 4855 ** the content of this subquery. pItem->addrFillSub will point 4856 ** to the address of the generated subroutine. pItem->regReturn 4857 ** is a register allocated to hold the subroutine return address 4858 */ 4859 int topAddr; 4860 int onceAddr = 0; 4861 int retAddr; 4862 assert( pItem->addrFillSub==0 ); 4863 pItem->regReturn = ++pParse->nMem; 4864 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4865 pItem->addrFillSub = topAddr+1; 4866 if( pItem->isCorrelated==0 ){ 4867 /* If the subquery is not correlated and if we are not inside of 4868 ** a trigger, then we only need to compute the value of the subquery 4869 ** once. */ 4870 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4871 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4872 }else{ 4873 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4874 } 4875 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4876 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4877 sqlite3Select(pParse, pSub, &dest); 4878 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4879 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4880 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4881 VdbeComment((v, "end %s", pItem->pTab->zName)); 4882 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4883 sqlite3ClearTempRegCache(pParse); 4884 } 4885 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4886 goto select_end; 4887 } 4888 pParse->nHeight -= sqlite3SelectExprHeight(p); 4889 pTabList = p->pSrc; 4890 if( !IgnorableOrderby(pDest) ){ 4891 sSort.pOrderBy = p->pOrderBy; 4892 } 4893 } 4894 pEList = p->pEList; 4895 #endif 4896 pWhere = p->pWhere; 4897 pGroupBy = p->pGroupBy; 4898 pHaving = p->pHaving; 4899 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4900 4901 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4902 /* If there is are a sequence of queries, do the earlier ones first. 4903 */ 4904 if( p->pPrior ){ 4905 rc = multiSelect(pParse, p, pDest); 4906 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4907 #if SELECTTRACE_ENABLED 4908 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4909 pParse->nSelectIndent--; 4910 #endif 4911 return rc; 4912 } 4913 #endif 4914 4915 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4916 ** if the select-list is the same as the ORDER BY list, then this query 4917 ** can be rewritten as a GROUP BY. In other words, this: 4918 ** 4919 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4920 ** 4921 ** is transformed to: 4922 ** 4923 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 4924 ** 4925 ** The second form is preferred as a single index (or temp-table) may be 4926 ** used for both the ORDER BY and DISTINCT processing. As originally 4927 ** written the query must use a temp-table for at least one of the ORDER 4928 ** BY and DISTINCT, and an index or separate temp-table for the other. 4929 */ 4930 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4931 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4932 ){ 4933 p->selFlags &= ~SF_Distinct; 4934 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4935 pGroupBy = p->pGroupBy; 4936 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4937 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4938 ** original setting of the SF_Distinct flag, not the current setting */ 4939 assert( sDistinct.isTnct ); 4940 } 4941 4942 /* If there is an ORDER BY clause, then this sorting 4943 ** index might end up being unused if the data can be 4944 ** extracted in pre-sorted order. If that is the case, then the 4945 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4946 ** we figure out that the sorting index is not needed. The addrSortIndex 4947 ** variable is used to facilitate that change. 4948 */ 4949 if( sSort.pOrderBy ){ 4950 KeyInfo *pKeyInfo; 4951 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 4952 sSort.iECursor = pParse->nTab++; 4953 sSort.addrSortIndex = 4954 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4955 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4956 (char*)pKeyInfo, P4_KEYINFO 4957 ); 4958 }else{ 4959 sSort.addrSortIndex = -1; 4960 } 4961 4962 /* If the output is destined for a temporary table, open that table. 4963 */ 4964 if( pDest->eDest==SRT_EphemTab ){ 4965 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4966 } 4967 4968 /* Set the limiter. 4969 */ 4970 iEnd = sqlite3VdbeMakeLabel(v); 4971 p->nSelectRow = LARGEST_INT64; 4972 computeLimitRegisters(pParse, p, iEnd); 4973 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4974 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4975 sSort.sortFlags |= SORTFLAG_UseSorter; 4976 } 4977 4978 /* Open a virtual index to use for the distinct set. 4979 */ 4980 if( p->selFlags & SF_Distinct ){ 4981 sDistinct.tabTnct = pParse->nTab++; 4982 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4983 sDistinct.tabTnct, 0, 0, 4984 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4985 P4_KEYINFO); 4986 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4987 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4988 }else{ 4989 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4990 } 4991 4992 if( !isAgg && pGroupBy==0 ){ 4993 /* No aggregate functions and no GROUP BY clause */ 4994 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4995 4996 /* Begin the database scan. */ 4997 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4998 p->pEList, wctrlFlags, 0); 4999 if( pWInfo==0 ) goto select_end; 5000 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5001 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5002 } 5003 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5004 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5005 } 5006 if( sSort.pOrderBy ){ 5007 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5008 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5009 sSort.pOrderBy = 0; 5010 } 5011 } 5012 5013 /* If sorting index that was created by a prior OP_OpenEphemeral 5014 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5015 ** into an OP_Noop. 5016 */ 5017 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5018 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5019 } 5020 5021 /* Use the standard inner loop. */ 5022 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5023 sqlite3WhereContinueLabel(pWInfo), 5024 sqlite3WhereBreakLabel(pWInfo)); 5025 5026 /* End the database scan loop. 5027 */ 5028 sqlite3WhereEnd(pWInfo); 5029 }else{ 5030 /* This case when there exist aggregate functions or a GROUP BY clause 5031 ** or both */ 5032 NameContext sNC; /* Name context for processing aggregate information */ 5033 int iAMem; /* First Mem address for storing current GROUP BY */ 5034 int iBMem; /* First Mem address for previous GROUP BY */ 5035 int iUseFlag; /* Mem address holding flag indicating that at least 5036 ** one row of the input to the aggregator has been 5037 ** processed */ 5038 int iAbortFlag; /* Mem address which causes query abort if positive */ 5039 int groupBySort; /* Rows come from source in GROUP BY order */ 5040 int addrEnd; /* End of processing for this SELECT */ 5041 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5042 int sortOut = 0; /* Output register from the sorter */ 5043 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5044 5045 /* Remove any and all aliases between the result set and the 5046 ** GROUP BY clause. 5047 */ 5048 if( pGroupBy ){ 5049 int k; /* Loop counter */ 5050 struct ExprList_item *pItem; /* For looping over expression in a list */ 5051 5052 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5053 pItem->u.x.iAlias = 0; 5054 } 5055 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5056 pItem->u.x.iAlias = 0; 5057 } 5058 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5059 }else{ 5060 p->nSelectRow = 1; 5061 } 5062 5063 5064 /* If there is both a GROUP BY and an ORDER BY clause and they are 5065 ** identical, then it may be possible to disable the ORDER BY clause 5066 ** on the grounds that the GROUP BY will cause elements to come out 5067 ** in the correct order. It also may not - the GROUP BY may use a 5068 ** database index that causes rows to be grouped together as required 5069 ** but not actually sorted. Either way, record the fact that the 5070 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5071 ** variable. */ 5072 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5073 orderByGrp = 1; 5074 } 5075 5076 /* Create a label to jump to when we want to abort the query */ 5077 addrEnd = sqlite3VdbeMakeLabel(v); 5078 5079 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5080 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5081 ** SELECT statement. 5082 */ 5083 memset(&sNC, 0, sizeof(sNC)); 5084 sNC.pParse = pParse; 5085 sNC.pSrcList = pTabList; 5086 sNC.pAggInfo = &sAggInfo; 5087 sAggInfo.mnReg = pParse->nMem+1; 5088 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5089 sAggInfo.pGroupBy = pGroupBy; 5090 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5091 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5092 if( pHaving ){ 5093 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5094 } 5095 sAggInfo.nAccumulator = sAggInfo.nColumn; 5096 for(i=0; i<sAggInfo.nFunc; i++){ 5097 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5098 sNC.ncFlags |= NC_InAggFunc; 5099 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5100 sNC.ncFlags &= ~NC_InAggFunc; 5101 } 5102 sAggInfo.mxReg = pParse->nMem; 5103 if( db->mallocFailed ) goto select_end; 5104 5105 /* Processing for aggregates with GROUP BY is very different and 5106 ** much more complex than aggregates without a GROUP BY. 5107 */ 5108 if( pGroupBy ){ 5109 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5110 int j1; /* A-vs-B comparision jump */ 5111 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5112 int regOutputRow; /* Return address register for output subroutine */ 5113 int addrSetAbort; /* Set the abort flag and return */ 5114 int addrTopOfLoop; /* Top of the input loop */ 5115 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5116 int addrReset; /* Subroutine for resetting the accumulator */ 5117 int regReset; /* Return address register for reset subroutine */ 5118 5119 /* If there is a GROUP BY clause we might need a sorting index to 5120 ** implement it. Allocate that sorting index now. If it turns out 5121 ** that we do not need it after all, the OP_SorterOpen instruction 5122 ** will be converted into a Noop. 5123 */ 5124 sAggInfo.sortingIdx = pParse->nTab++; 5125 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5126 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5127 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5128 0, (char*)pKeyInfo, P4_KEYINFO); 5129 5130 /* Initialize memory locations used by GROUP BY aggregate processing 5131 */ 5132 iUseFlag = ++pParse->nMem; 5133 iAbortFlag = ++pParse->nMem; 5134 regOutputRow = ++pParse->nMem; 5135 addrOutputRow = sqlite3VdbeMakeLabel(v); 5136 regReset = ++pParse->nMem; 5137 addrReset = sqlite3VdbeMakeLabel(v); 5138 iAMem = pParse->nMem + 1; 5139 pParse->nMem += pGroupBy->nExpr; 5140 iBMem = pParse->nMem + 1; 5141 pParse->nMem += pGroupBy->nExpr; 5142 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5143 VdbeComment((v, "clear abort flag")); 5144 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5145 VdbeComment((v, "indicate accumulator empty")); 5146 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5147 5148 /* Begin a loop that will extract all source rows in GROUP BY order. 5149 ** This might involve two separate loops with an OP_Sort in between, or 5150 ** it might be a single loop that uses an index to extract information 5151 ** in the right order to begin with. 5152 */ 5153 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5154 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5155 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5156 ); 5157 if( pWInfo==0 ) goto select_end; 5158 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5159 /* The optimizer is able to deliver rows in group by order so 5160 ** we do not have to sort. The OP_OpenEphemeral table will be 5161 ** cancelled later because we still need to use the pKeyInfo 5162 */ 5163 groupBySort = 0; 5164 }else{ 5165 /* Rows are coming out in undetermined order. We have to push 5166 ** each row into a sorting index, terminate the first loop, 5167 ** then loop over the sorting index in order to get the output 5168 ** in sorted order 5169 */ 5170 int regBase; 5171 int regRecord; 5172 int nCol; 5173 int nGroupBy; 5174 5175 explainTempTable(pParse, 5176 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5177 "DISTINCT" : "GROUP BY"); 5178 5179 groupBySort = 1; 5180 nGroupBy = pGroupBy->nExpr; 5181 nCol = nGroupBy; 5182 j = nGroupBy; 5183 for(i=0; i<sAggInfo.nColumn; i++){ 5184 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5185 nCol++; 5186 j++; 5187 } 5188 } 5189 regBase = sqlite3GetTempRange(pParse, nCol); 5190 sqlite3ExprCacheClear(pParse); 5191 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5192 j = nGroupBy; 5193 for(i=0; i<sAggInfo.nColumn; i++){ 5194 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5195 if( pCol->iSorterColumn>=j ){ 5196 int r1 = j + regBase; 5197 int r2; 5198 5199 r2 = sqlite3ExprCodeGetColumn(pParse, 5200 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5201 if( r1!=r2 ){ 5202 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5203 } 5204 j++; 5205 } 5206 } 5207 regRecord = sqlite3GetTempReg(pParse); 5208 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5209 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5210 sqlite3ReleaseTempReg(pParse, regRecord); 5211 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5212 sqlite3WhereEnd(pWInfo); 5213 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5214 sortOut = sqlite3GetTempReg(pParse); 5215 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5216 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5217 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5218 sAggInfo.useSortingIdx = 1; 5219 sqlite3ExprCacheClear(pParse); 5220 5221 } 5222 5223 /* If the index or temporary table used by the GROUP BY sort 5224 ** will naturally deliver rows in the order required by the ORDER BY 5225 ** clause, cancel the ephemeral table open coded earlier. 5226 ** 5227 ** This is an optimization - the correct answer should result regardless. 5228 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5229 ** disable this optimization for testing purposes. */ 5230 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5231 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5232 ){ 5233 sSort.pOrderBy = 0; 5234 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5235 } 5236 5237 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5238 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5239 ** Then compare the current GROUP BY terms against the GROUP BY terms 5240 ** from the previous row currently stored in a0, a1, a2... 5241 */ 5242 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5243 sqlite3ExprCacheClear(pParse); 5244 if( groupBySort ){ 5245 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); 5246 } 5247 for(j=0; j<pGroupBy->nExpr; j++){ 5248 if( groupBySort ){ 5249 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5250 }else{ 5251 sAggInfo.directMode = 1; 5252 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5253 } 5254 } 5255 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5256 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5257 j1 = sqlite3VdbeCurrentAddr(v); 5258 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5259 5260 /* Generate code that runs whenever the GROUP BY changes. 5261 ** Changes in the GROUP BY are detected by the previous code 5262 ** block. If there were no changes, this block is skipped. 5263 ** 5264 ** This code copies current group by terms in b0,b1,b2,... 5265 ** over to a0,a1,a2. It then calls the output subroutine 5266 ** and resets the aggregate accumulator registers in preparation 5267 ** for the next GROUP BY batch. 5268 */ 5269 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5270 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5271 VdbeComment((v, "output one row")); 5272 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5273 VdbeComment((v, "check abort flag")); 5274 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5275 VdbeComment((v, "reset accumulator")); 5276 5277 /* Update the aggregate accumulators based on the content of 5278 ** the current row 5279 */ 5280 sqlite3VdbeJumpHere(v, j1); 5281 updateAccumulator(pParse, &sAggInfo); 5282 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5283 VdbeComment((v, "indicate data in accumulator")); 5284 5285 /* End of the loop 5286 */ 5287 if( groupBySort ){ 5288 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5289 VdbeCoverage(v); 5290 }else{ 5291 sqlite3WhereEnd(pWInfo); 5292 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5293 } 5294 5295 /* Output the final row of result 5296 */ 5297 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5298 VdbeComment((v, "output final row")); 5299 5300 /* Jump over the subroutines 5301 */ 5302 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5303 5304 /* Generate a subroutine that outputs a single row of the result 5305 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5306 ** is less than or equal to zero, the subroutine is a no-op. If 5307 ** the processing calls for the query to abort, this subroutine 5308 ** increments the iAbortFlag memory location before returning in 5309 ** order to signal the caller to abort. 5310 */ 5311 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5312 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5313 VdbeComment((v, "set abort flag")); 5314 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5315 sqlite3VdbeResolveLabel(v, addrOutputRow); 5316 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5317 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5318 VdbeComment((v, "Groupby result generator entry point")); 5319 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5320 finalizeAggFunctions(pParse, &sAggInfo); 5321 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5322 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5323 &sDistinct, pDest, 5324 addrOutputRow+1, addrSetAbort); 5325 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5326 VdbeComment((v, "end groupby result generator")); 5327 5328 /* Generate a subroutine that will reset the group-by accumulator 5329 */ 5330 sqlite3VdbeResolveLabel(v, addrReset); 5331 resetAccumulator(pParse, &sAggInfo); 5332 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5333 5334 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5335 else { 5336 ExprList *pDel = 0; 5337 #ifndef SQLITE_OMIT_BTREECOUNT 5338 Table *pTab; 5339 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5340 /* If isSimpleCount() returns a pointer to a Table structure, then 5341 ** the SQL statement is of the form: 5342 ** 5343 ** SELECT count(*) FROM <tbl> 5344 ** 5345 ** where the Table structure returned represents table <tbl>. 5346 ** 5347 ** This statement is so common that it is optimized specially. The 5348 ** OP_Count instruction is executed either on the intkey table that 5349 ** contains the data for table <tbl> or on one of its indexes. It 5350 ** is better to execute the op on an index, as indexes are almost 5351 ** always spread across less pages than their corresponding tables. 5352 */ 5353 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5354 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5355 Index *pIdx; /* Iterator variable */ 5356 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5357 Index *pBest = 0; /* Best index found so far */ 5358 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5359 5360 sqlite3CodeVerifySchema(pParse, iDb); 5361 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5362 5363 /* Search for the index that has the lowest scan cost. 5364 ** 5365 ** (2011-04-15) Do not do a full scan of an unordered index. 5366 ** 5367 ** (2013-10-03) Do not count the entries in a partial index. 5368 ** 5369 ** In practice the KeyInfo structure will not be used. It is only 5370 ** passed to keep OP_OpenRead happy. 5371 */ 5372 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5373 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5374 if( pIdx->bUnordered==0 5375 && pIdx->szIdxRow<pTab->szTabRow 5376 && pIdx->pPartIdxWhere==0 5377 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5378 ){ 5379 pBest = pIdx; 5380 } 5381 } 5382 if( pBest ){ 5383 iRoot = pBest->tnum; 5384 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5385 } 5386 5387 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5388 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5389 if( pKeyInfo ){ 5390 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5391 } 5392 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5393 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5394 explainSimpleCount(pParse, pTab, pBest); 5395 }else 5396 #endif /* SQLITE_OMIT_BTREECOUNT */ 5397 { 5398 /* Check if the query is of one of the following forms: 5399 ** 5400 ** SELECT min(x) FROM ... 5401 ** SELECT max(x) FROM ... 5402 ** 5403 ** If it is, then ask the code in where.c to attempt to sort results 5404 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5405 ** If where.c is able to produce results sorted in this order, then 5406 ** add vdbe code to break out of the processing loop after the 5407 ** first iteration (since the first iteration of the loop is 5408 ** guaranteed to operate on the row with the minimum or maximum 5409 ** value of x, the only row required). 5410 ** 5411 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5412 ** modify behavior as follows: 5413 ** 5414 ** + If the query is a "SELECT min(x)", then the loop coded by 5415 ** where.c should not iterate over any values with a NULL value 5416 ** for x. 5417 ** 5418 ** + The optimizer code in where.c (the thing that decides which 5419 ** index or indices to use) should place a different priority on 5420 ** satisfying the 'ORDER BY' clause than it does in other cases. 5421 ** Refer to code and comments in where.c for details. 5422 */ 5423 ExprList *pMinMax = 0; 5424 u8 flag = WHERE_ORDERBY_NORMAL; 5425 5426 assert( p->pGroupBy==0 ); 5427 assert( flag==0 ); 5428 if( p->pHaving==0 ){ 5429 flag = minMaxQuery(&sAggInfo, &pMinMax); 5430 } 5431 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5432 5433 if( flag ){ 5434 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5435 pDel = pMinMax; 5436 if( pMinMax && !db->mallocFailed ){ 5437 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5438 pMinMax->a[0].pExpr->op = TK_COLUMN; 5439 } 5440 } 5441 5442 /* This case runs if the aggregate has no GROUP BY clause. The 5443 ** processing is much simpler since there is only a single row 5444 ** of output. 5445 */ 5446 resetAccumulator(pParse, &sAggInfo); 5447 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5448 if( pWInfo==0 ){ 5449 sqlite3ExprListDelete(db, pDel); 5450 goto select_end; 5451 } 5452 updateAccumulator(pParse, &sAggInfo); 5453 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5454 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5455 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5456 VdbeComment((v, "%s() by index", 5457 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5458 } 5459 sqlite3WhereEnd(pWInfo); 5460 finalizeAggFunctions(pParse, &sAggInfo); 5461 } 5462 5463 sSort.pOrderBy = 0; 5464 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5465 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5466 pDest, addrEnd, addrEnd); 5467 sqlite3ExprListDelete(db, pDel); 5468 } 5469 sqlite3VdbeResolveLabel(v, addrEnd); 5470 5471 } /* endif aggregate query */ 5472 5473 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5474 explainTempTable(pParse, "DISTINCT"); 5475 } 5476 5477 /* If there is an ORDER BY clause, then we need to sort the results 5478 ** and send them to the callback one by one. 5479 */ 5480 if( sSort.pOrderBy ){ 5481 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5482 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5483 } 5484 5485 /* Jump here to skip this query 5486 */ 5487 sqlite3VdbeResolveLabel(v, iEnd); 5488 5489 /* The SELECT has been coded. If there is an error in the Parse structure, 5490 ** set the return code to 1. Otherwise 0. */ 5491 rc = (pParse->nErr>0); 5492 5493 /* Control jumps to here if an error is encountered above, or upon 5494 ** successful coding of the SELECT. 5495 */ 5496 select_end: 5497 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5498 5499 /* Identify column names if results of the SELECT are to be output. 5500 */ 5501 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5502 generateColumnNames(pParse, pTabList, pEList); 5503 } 5504 5505 sqlite3DbFree(db, sAggInfo.aCol); 5506 sqlite3DbFree(db, sAggInfo.aFunc); 5507 #if SELECTTRACE_ENABLED 5508 SELECTTRACE(1,pParse,p,("end processing\n")); 5509 pParse->nSelectIndent--; 5510 #endif 5511 return rc; 5512 } 5513 5514 #ifdef SQLITE_DEBUG 5515 /* 5516 ** Generate a human-readable description of a the Select object. 5517 */ 5518 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ 5519 int n = 0; 5520 pView = sqlite3TreeViewPush(pView, moreToFollow); 5521 sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)", 5522 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), 5523 ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p 5524 ); 5525 if( p->pSrc && p->pSrc->nSrc ) n++; 5526 if( p->pWhere ) n++; 5527 if( p->pGroupBy ) n++; 5528 if( p->pHaving ) n++; 5529 if( p->pOrderBy ) n++; 5530 if( p->pLimit ) n++; 5531 if( p->pOffset ) n++; 5532 if( p->pPrior ) n++; 5533 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); 5534 if( p->pSrc && p->pSrc->nSrc ){ 5535 int i; 5536 pView = sqlite3TreeViewPush(pView, (n--)>0); 5537 sqlite3TreeViewLine(pView, "FROM"); 5538 for(i=0; i<p->pSrc->nSrc; i++){ 5539 struct SrcList_item *pItem = &p->pSrc->a[i]; 5540 StrAccum x; 5541 char zLine[100]; 5542 sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); 5543 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); 5544 if( pItem->zDatabase ){ 5545 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); 5546 }else if( pItem->zName ){ 5547 sqlite3XPrintf(&x, 0, " %s", pItem->zName); 5548 } 5549 if( pItem->pTab ){ 5550 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); 5551 } 5552 if( pItem->zAlias ){ 5553 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); 5554 } 5555 if( pItem->jointype & JT_LEFT ){ 5556 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); 5557 } 5558 sqlite3StrAccumFinish(&x); 5559 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 5560 if( pItem->pSelect ){ 5561 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); 5562 } 5563 sqlite3TreeViewPop(pView); 5564 } 5565 sqlite3TreeViewPop(pView); 5566 } 5567 if( p->pWhere ){ 5568 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); 5569 sqlite3TreeViewExpr(pView, p->pWhere, 0); 5570 sqlite3TreeViewPop(pView); 5571 } 5572 if( p->pGroupBy ){ 5573 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); 5574 } 5575 if( p->pHaving ){ 5576 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); 5577 sqlite3TreeViewExpr(pView, p->pHaving, 0); 5578 sqlite3TreeViewPop(pView); 5579 } 5580 if( p->pOrderBy ){ 5581 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); 5582 } 5583 if( p->pLimit ){ 5584 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); 5585 sqlite3TreeViewExpr(pView, p->pLimit, 0); 5586 sqlite3TreeViewPop(pView); 5587 } 5588 if( p->pOffset ){ 5589 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); 5590 sqlite3TreeViewExpr(pView, p->pOffset, 0); 5591 sqlite3TreeViewPop(pView); 5592 } 5593 if( p->pPrior ){ 5594 const char *zOp = "UNION"; 5595 switch( p->op ){ 5596 case TK_ALL: zOp = "UNION ALL"; break; 5597 case TK_INTERSECT: zOp = "INTERSECT"; break; 5598 case TK_EXCEPT: zOp = "EXCEPT"; break; 5599 } 5600 sqlite3TreeViewItem(pView, zOp, (n--)>0); 5601 sqlite3TreeViewSelect(pView, p->pPrior, 0); 5602 sqlite3TreeViewPop(pView); 5603 } 5604 sqlite3TreeViewPop(pView); 5605 } 5606 #endif /* SQLITE_DEBUG */ 5607