xref: /sqlite-3.40.0/src/select.c (revision 21b7d2a9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
59 
60 /*
61 ** Delete all the content of a Select structure.  Deallocate the structure
62 ** itself only if bFree is true.
63 */
64 static void clearSelect(sqlite3 *db, Select *p, int bFree){
65   while( p ){
66     Select *pPrior = p->pPrior;
67     sqlite3ExprListDelete(db, p->pEList);
68     sqlite3SrcListDelete(db, p->pSrc);
69     sqlite3ExprDelete(db, p->pWhere);
70     sqlite3ExprListDelete(db, p->pGroupBy);
71     sqlite3ExprDelete(db, p->pHaving);
72     sqlite3ExprListDelete(db, p->pOrderBy);
73     sqlite3ExprDelete(db, p->pLimit);
74     sqlite3ExprDelete(db, p->pOffset);
75     sqlite3WithDelete(db, p->pWith);
76     if( bFree ) sqlite3DbFree(db, p);
77     p = pPrior;
78     bFree = 1;
79   }
80 }
81 
82 /*
83 ** Initialize a SelectDest structure.
84 */
85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
86   pDest->eDest = (u8)eDest;
87   pDest->iSDParm = iParm;
88   pDest->affSdst = 0;
89   pDest->iSdst = 0;
90   pDest->nSdst = 0;
91 }
92 
93 
94 /*
95 ** Allocate a new Select structure and return a pointer to that
96 ** structure.
97 */
98 Select *sqlite3SelectNew(
99   Parse *pParse,        /* Parsing context */
100   ExprList *pEList,     /* which columns to include in the result */
101   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
102   Expr *pWhere,         /* the WHERE clause */
103   ExprList *pGroupBy,   /* the GROUP BY clause */
104   Expr *pHaving,        /* the HAVING clause */
105   ExprList *pOrderBy,   /* the ORDER BY clause */
106   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
107   Expr *pLimit,         /* LIMIT value.  NULL means not used */
108   Expr *pOffset         /* OFFSET value.  NULL means no offset */
109 ){
110   Select *pNew;
111   Select standin;
112   sqlite3 *db = pParse->db;
113   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
114   if( pNew==0 ){
115     assert( db->mallocFailed );
116     pNew = &standin;
117     memset(pNew, 0, sizeof(*pNew));
118   }
119   if( pEList==0 ){
120     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
121   }
122   pNew->pEList = pEList;
123   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
124   pNew->pSrc = pSrc;
125   pNew->pWhere = pWhere;
126   pNew->pGroupBy = pGroupBy;
127   pNew->pHaving = pHaving;
128   pNew->pOrderBy = pOrderBy;
129   pNew->selFlags = selFlags;
130   pNew->op = TK_SELECT;
131   pNew->pLimit = pLimit;
132   pNew->pOffset = pOffset;
133   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
134   pNew->addrOpenEphm[0] = -1;
135   pNew->addrOpenEphm[1] = -1;
136   if( db->mallocFailed ) {
137     clearSelect(db, pNew, pNew!=&standin);
138     pNew = 0;
139   }else{
140     assert( pNew->pSrc!=0 || pParse->nErr>0 );
141   }
142   assert( pNew!=&standin );
143   return pNew;
144 }
145 
146 #if SELECTTRACE_ENABLED
147 /*
148 ** Set the name of a Select object
149 */
150 void sqlite3SelectSetName(Select *p, const char *zName){
151   if( p && zName ){
152     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
153   }
154 }
155 #endif
156 
157 
158 /*
159 ** Delete the given Select structure and all of its substructures.
160 */
161 void sqlite3SelectDelete(sqlite3 *db, Select *p){
162   clearSelect(db, p, 1);
163 }
164 
165 /*
166 ** Return a pointer to the right-most SELECT statement in a compound.
167 */
168 static Select *findRightmost(Select *p){
169   while( p->pNext ) p = p->pNext;
170   return p;
171 }
172 
173 /*
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
175 ** type of join.  Return an integer constant that expresses that type
176 ** in terms of the following bit values:
177 **
178 **     JT_INNER
179 **     JT_CROSS
180 **     JT_OUTER
181 **     JT_NATURAL
182 **     JT_LEFT
183 **     JT_RIGHT
184 **
185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
186 **
187 ** If an illegal or unsupported join type is seen, then still return
188 ** a join type, but put an error in the pParse structure.
189 */
190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
191   int jointype = 0;
192   Token *apAll[3];
193   Token *p;
194                              /*   0123456789 123456789 123456789 123 */
195   static const char zKeyText[] = "naturaleftouterightfullinnercross";
196   static const struct {
197     u8 i;        /* Beginning of keyword text in zKeyText[] */
198     u8 nChar;    /* Length of the keyword in characters */
199     u8 code;     /* Join type mask */
200   } aKeyword[] = {
201     /* natural */ { 0,  7, JT_NATURAL                },
202     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
203     /* outer   */ { 10, 5, JT_OUTER                  },
204     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
205     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
206     /* inner   */ { 23, 5, JT_INNER                  },
207     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
208   };
209   int i, j;
210   apAll[0] = pA;
211   apAll[1] = pB;
212   apAll[2] = pC;
213   for(i=0; i<3 && apAll[i]; i++){
214     p = apAll[i];
215     for(j=0; j<ArraySize(aKeyword); j++){
216       if( p->n==aKeyword[j].nChar
217           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
218         jointype |= aKeyword[j].code;
219         break;
220       }
221     }
222     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
223     if( j>=ArraySize(aKeyword) ){
224       jointype |= JT_ERROR;
225       break;
226     }
227   }
228   if(
229      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
230      (jointype & JT_ERROR)!=0
231   ){
232     const char *zSp = " ";
233     assert( pB!=0 );
234     if( pC==0 ){ zSp++; }
235     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
236        "%T %T%s%T", pA, pB, zSp, pC);
237     jointype = JT_INNER;
238   }else if( (jointype & JT_OUTER)!=0
239          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
240     sqlite3ErrorMsg(pParse,
241       "RIGHT and FULL OUTER JOINs are not currently supported");
242     jointype = JT_INNER;
243   }
244   return jointype;
245 }
246 
247 /*
248 ** Return the index of a column in a table.  Return -1 if the column
249 ** is not contained in the table.
250 */
251 static int columnIndex(Table *pTab, const char *zCol){
252   int i;
253   for(i=0; i<pTab->nCol; i++){
254     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
255   }
256   return -1;
257 }
258 
259 /*
260 ** Search the first N tables in pSrc, from left to right, looking for a
261 ** table that has a column named zCol.
262 **
263 ** When found, set *piTab and *piCol to the table index and column index
264 ** of the matching column and return TRUE.
265 **
266 ** If not found, return FALSE.
267 */
268 static int tableAndColumnIndex(
269   SrcList *pSrc,       /* Array of tables to search */
270   int N,               /* Number of tables in pSrc->a[] to search */
271   const char *zCol,    /* Name of the column we are looking for */
272   int *piTab,          /* Write index of pSrc->a[] here */
273   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
274 ){
275   int i;               /* For looping over tables in pSrc */
276   int iCol;            /* Index of column matching zCol */
277 
278   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
279   for(i=0; i<N; i++){
280     iCol = columnIndex(pSrc->a[i].pTab, zCol);
281     if( iCol>=0 ){
282       if( piTab ){
283         *piTab = i;
284         *piCol = iCol;
285       }
286       return 1;
287     }
288   }
289   return 0;
290 }
291 
292 /*
293 ** This function is used to add terms implied by JOIN syntax to the
294 ** WHERE clause expression of a SELECT statement. The new term, which
295 ** is ANDed with the existing WHERE clause, is of the form:
296 **
297 **    (tab1.col1 = tab2.col2)
298 **
299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
301 ** column iColRight of tab2.
302 */
303 static void addWhereTerm(
304   Parse *pParse,                  /* Parsing context */
305   SrcList *pSrc,                  /* List of tables in FROM clause */
306   int iLeft,                      /* Index of first table to join in pSrc */
307   int iColLeft,                   /* Index of column in first table */
308   int iRight,                     /* Index of second table in pSrc */
309   int iColRight,                  /* Index of column in second table */
310   int isOuterJoin,                /* True if this is an OUTER join */
311   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
312 ){
313   sqlite3 *db = pParse->db;
314   Expr *pE1;
315   Expr *pE2;
316   Expr *pEq;
317 
318   assert( iLeft<iRight );
319   assert( pSrc->nSrc>iRight );
320   assert( pSrc->a[iLeft].pTab );
321   assert( pSrc->a[iRight].pTab );
322 
323   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
324   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
325 
326   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
327   if( pEq && isOuterJoin ){
328     ExprSetProperty(pEq, EP_FromJoin);
329     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
330     ExprSetVVAProperty(pEq, EP_NoReduce);
331     pEq->iRightJoinTable = (i16)pE2->iTable;
332   }
333   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
334 }
335 
336 /*
337 ** Set the EP_FromJoin property on all terms of the given expression.
338 ** And set the Expr.iRightJoinTable to iTable for every term in the
339 ** expression.
340 **
341 ** The EP_FromJoin property is used on terms of an expression to tell
342 ** the LEFT OUTER JOIN processing logic that this term is part of the
343 ** join restriction specified in the ON or USING clause and not a part
344 ** of the more general WHERE clause.  These terms are moved over to the
345 ** WHERE clause during join processing but we need to remember that they
346 ** originated in the ON or USING clause.
347 **
348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
349 ** expression depends on table iRightJoinTable even if that table is not
350 ** explicitly mentioned in the expression.  That information is needed
351 ** for cases like this:
352 **
353 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
354 **
355 ** The where clause needs to defer the handling of the t1.x=5
356 ** term until after the t2 loop of the join.  In that way, a
357 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
358 ** defer the handling of t1.x=5, it will be processed immediately
359 ** after the t1 loop and rows with t1.x!=5 will never appear in
360 ** the output, which is incorrect.
361 */
362 static void setJoinExpr(Expr *p, int iTable){
363   while( p ){
364     ExprSetProperty(p, EP_FromJoin);
365     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
366     ExprSetVVAProperty(p, EP_NoReduce);
367     p->iRightJoinTable = (i16)iTable;
368     setJoinExpr(p->pLeft, iTable);
369     p = p->pRight;
370   }
371 }
372 
373 /*
374 ** This routine processes the join information for a SELECT statement.
375 ** ON and USING clauses are converted into extra terms of the WHERE clause.
376 ** NATURAL joins also create extra WHERE clause terms.
377 **
378 ** The terms of a FROM clause are contained in the Select.pSrc structure.
379 ** The left most table is the first entry in Select.pSrc.  The right-most
380 ** table is the last entry.  The join operator is held in the entry to
381 ** the left.  Thus entry 0 contains the join operator for the join between
382 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
383 ** also attached to the left entry.
384 **
385 ** This routine returns the number of errors encountered.
386 */
387 static int sqliteProcessJoin(Parse *pParse, Select *p){
388   SrcList *pSrc;                  /* All tables in the FROM clause */
389   int i, j;                       /* Loop counters */
390   struct SrcList_item *pLeft;     /* Left table being joined */
391   struct SrcList_item *pRight;    /* Right table being joined */
392 
393   pSrc = p->pSrc;
394   pLeft = &pSrc->a[0];
395   pRight = &pLeft[1];
396   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
397     Table *pLeftTab = pLeft->pTab;
398     Table *pRightTab = pRight->pTab;
399     int isOuter;
400 
401     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
402     isOuter = (pRight->jointype & JT_OUTER)!=0;
403 
404     /* When the NATURAL keyword is present, add WHERE clause terms for
405     ** every column that the two tables have in common.
406     */
407     if( pRight->jointype & JT_NATURAL ){
408       if( pRight->pOn || pRight->pUsing ){
409         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
410            "an ON or USING clause", 0);
411         return 1;
412       }
413       for(j=0; j<pRightTab->nCol; j++){
414         char *zName;   /* Name of column in the right table */
415         int iLeft;     /* Matching left table */
416         int iLeftCol;  /* Matching column in the left table */
417 
418         zName = pRightTab->aCol[j].zName;
419         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
420           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
421                        isOuter, &p->pWhere);
422         }
423       }
424     }
425 
426     /* Disallow both ON and USING clauses in the same join
427     */
428     if( pRight->pOn && pRight->pUsing ){
429       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
430         "clauses in the same join");
431       return 1;
432     }
433 
434     /* Add the ON clause to the end of the WHERE clause, connected by
435     ** an AND operator.
436     */
437     if( pRight->pOn ){
438       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
439       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
440       pRight->pOn = 0;
441     }
442 
443     /* Create extra terms on the WHERE clause for each column named
444     ** in the USING clause.  Example: If the two tables to be joined are
445     ** A and B and the USING clause names X, Y, and Z, then add this
446     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
447     ** Report an error if any column mentioned in the USING clause is
448     ** not contained in both tables to be joined.
449     */
450     if( pRight->pUsing ){
451       IdList *pList = pRight->pUsing;
452       for(j=0; j<pList->nId; j++){
453         char *zName;     /* Name of the term in the USING clause */
454         int iLeft;       /* Table on the left with matching column name */
455         int iLeftCol;    /* Column number of matching column on the left */
456         int iRightCol;   /* Column number of matching column on the right */
457 
458         zName = pList->a[j].zName;
459         iRightCol = columnIndex(pRightTab, zName);
460         if( iRightCol<0
461          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
462         ){
463           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
464             "not present in both tables", zName);
465           return 1;
466         }
467         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
468                      isOuter, &p->pWhere);
469       }
470     }
471   }
472   return 0;
473 }
474 
475 /* Forward reference */
476 static KeyInfo *keyInfoFromExprList(
477   Parse *pParse,       /* Parsing context */
478   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
479   int iStart,          /* Begin with this column of pList */
480   int nExtra           /* Add this many extra columns to the end */
481 );
482 
483 /*
484 ** Generate code that will push the record in registers regData
485 ** through regData+nData-1 onto the sorter.
486 */
487 static void pushOntoSorter(
488   Parse *pParse,         /* Parser context */
489   SortCtx *pSort,        /* Information about the ORDER BY clause */
490   Select *pSelect,       /* The whole SELECT statement */
491   int regData,           /* First register holding data to be sorted */
492   int nData,             /* Number of elements in the data array */
493   int nPrefixReg         /* No. of reg prior to regData available for use */
494 ){
495   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
496   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
497   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
498   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
499   int regBase;                                     /* Regs for sorter record */
500   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
501   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
502   int op;                            /* Opcode to add sorter record to sorter */
503 
504   assert( bSeq==0 || bSeq==1 );
505   if( nPrefixReg ){
506     assert( nPrefixReg==nExpr+bSeq );
507     regBase = regData - nExpr - bSeq;
508   }else{
509     regBase = pParse->nMem + 1;
510     pParse->nMem += nBase;
511   }
512   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
513   if( bSeq ){
514     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
515   }
516   if( nPrefixReg==0 ){
517     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
518   }
519 
520   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
521   if( nOBSat>0 ){
522     int regPrevKey;   /* The first nOBSat columns of the previous row */
523     int addrFirst;    /* Address of the OP_IfNot opcode */
524     int addrJmp;      /* Address of the OP_Jump opcode */
525     VdbeOp *pOp;      /* Opcode that opens the sorter */
526     int nKey;         /* Number of sorting key columns, including OP_Sequence */
527     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
528 
529     regPrevKey = pParse->nMem+1;
530     pParse->nMem += pSort->nOBSat;
531     nKey = nExpr - pSort->nOBSat + bSeq;
532     if( bSeq ){
533       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
534     }else{
535       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
536     }
537     VdbeCoverage(v);
538     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
539     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
540     if( pParse->db->mallocFailed ) return;
541     pOp->p2 = nKey + nData;
542     pKI = pOp->p4.pKeyInfo;
543     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
544     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
545     testcase( pKI->nXField>2 );
546     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
547                                            pKI->nXField-1);
548     addrJmp = sqlite3VdbeCurrentAddr(v);
549     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
550     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
551     pSort->regReturn = ++pParse->nMem;
552     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
553     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
554     sqlite3VdbeJumpHere(v, addrFirst);
555     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
556     sqlite3VdbeJumpHere(v, addrJmp);
557   }
558   if( pSort->sortFlags & SORTFLAG_UseSorter ){
559     op = OP_SorterInsert;
560   }else{
561     op = OP_IdxInsert;
562   }
563   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
564   if( pSelect->iLimit ){
565     int addr;
566     int iLimit;
567     if( pSelect->iOffset ){
568       iLimit = pSelect->iOffset+1;
569     }else{
570       iLimit = pSelect->iLimit;
571     }
572     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
573     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
574     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
575     sqlite3VdbeJumpHere(v, addr);
576   }
577 }
578 
579 /*
580 ** Add code to implement the OFFSET
581 */
582 static void codeOffset(
583   Vdbe *v,          /* Generate code into this VM */
584   int iOffset,      /* Register holding the offset counter */
585   int iContinue     /* Jump here to skip the current record */
586 ){
587   if( iOffset>0 ){
588     int addr;
589     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
590     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
591     VdbeComment((v, "skip OFFSET records"));
592     sqlite3VdbeJumpHere(v, addr);
593   }
594 }
595 
596 /*
597 ** Add code that will check to make sure the N registers starting at iMem
598 ** form a distinct entry.  iTab is a sorting index that holds previously
599 ** seen combinations of the N values.  A new entry is made in iTab
600 ** if the current N values are new.
601 **
602 ** A jump to addrRepeat is made and the N+1 values are popped from the
603 ** stack if the top N elements are not distinct.
604 */
605 static void codeDistinct(
606   Parse *pParse,     /* Parsing and code generating context */
607   int iTab,          /* A sorting index used to test for distinctness */
608   int addrRepeat,    /* Jump to here if not distinct */
609   int N,             /* Number of elements */
610   int iMem           /* First element */
611 ){
612   Vdbe *v;
613   int r1;
614 
615   v = pParse->pVdbe;
616   r1 = sqlite3GetTempReg(pParse);
617   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
618   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
619   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
620   sqlite3ReleaseTempReg(pParse, r1);
621 }
622 
623 #ifndef SQLITE_OMIT_SUBQUERY
624 /*
625 ** Generate an error message when a SELECT is used within a subexpression
626 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
627 ** column.  We do this in a subroutine because the error used to occur
628 ** in multiple places.  (The error only occurs in one place now, but we
629 ** retain the subroutine to minimize code disruption.)
630 */
631 static int checkForMultiColumnSelectError(
632   Parse *pParse,       /* Parse context. */
633   SelectDest *pDest,   /* Destination of SELECT results */
634   int nExpr            /* Number of result columns returned by SELECT */
635 ){
636   int eDest = pDest->eDest;
637   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
638     sqlite3ErrorMsg(pParse, "only a single result allowed for "
639        "a SELECT that is part of an expression");
640     return 1;
641   }else{
642     return 0;
643   }
644 }
645 #endif
646 
647 /*
648 ** This routine generates the code for the inside of the inner loop
649 ** of a SELECT.
650 **
651 ** If srcTab is negative, then the pEList expressions
652 ** are evaluated in order to get the data for this row.  If srcTab is
653 ** zero or more, then data is pulled from srcTab and pEList is used only
654 ** to get number columns and the datatype for each column.
655 */
656 static void selectInnerLoop(
657   Parse *pParse,          /* The parser context */
658   Select *p,              /* The complete select statement being coded */
659   ExprList *pEList,       /* List of values being extracted */
660   int srcTab,             /* Pull data from this table */
661   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
662   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
663   SelectDest *pDest,      /* How to dispose of the results */
664   int iContinue,          /* Jump here to continue with next row */
665   int iBreak              /* Jump here to break out of the inner loop */
666 ){
667   Vdbe *v = pParse->pVdbe;
668   int i;
669   int hasDistinct;        /* True if the DISTINCT keyword is present */
670   int regResult;              /* Start of memory holding result set */
671   int eDest = pDest->eDest;   /* How to dispose of results */
672   int iParm = pDest->iSDParm; /* First argument to disposal method */
673   int nResultCol;             /* Number of result columns */
674   int nPrefixReg = 0;         /* Number of extra registers before regResult */
675 
676   assert( v );
677   assert( pEList!=0 );
678   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
679   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
680   if( pSort==0 && !hasDistinct ){
681     assert( iContinue!=0 );
682     codeOffset(v, p->iOffset, iContinue);
683   }
684 
685   /* Pull the requested columns.
686   */
687   nResultCol = pEList->nExpr;
688 
689   if( pDest->iSdst==0 ){
690     if( pSort ){
691       nPrefixReg = pSort->pOrderBy->nExpr;
692       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
693       pParse->nMem += nPrefixReg;
694     }
695     pDest->iSdst = pParse->nMem+1;
696     pParse->nMem += nResultCol;
697   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
698     /* This is an error condition that can result, for example, when a SELECT
699     ** on the right-hand side of an INSERT contains more result columns than
700     ** there are columns in the table on the left.  The error will be caught
701     ** and reported later.  But we need to make sure enough memory is allocated
702     ** to avoid other spurious errors in the meantime. */
703     pParse->nMem += nResultCol;
704   }
705   pDest->nSdst = nResultCol;
706   regResult = pDest->iSdst;
707   if( srcTab>=0 ){
708     for(i=0; i<nResultCol; i++){
709       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
710       VdbeComment((v, "%s", pEList->a[i].zName));
711     }
712   }else if( eDest!=SRT_Exists ){
713     /* If the destination is an EXISTS(...) expression, the actual
714     ** values returned by the SELECT are not required.
715     */
716     sqlite3ExprCodeExprList(pParse, pEList, regResult,
717                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
718   }
719 
720   /* If the DISTINCT keyword was present on the SELECT statement
721   ** and this row has been seen before, then do not make this row
722   ** part of the result.
723   */
724   if( hasDistinct ){
725     switch( pDistinct->eTnctType ){
726       case WHERE_DISTINCT_ORDERED: {
727         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
728         int iJump;              /* Jump destination */
729         int regPrev;            /* Previous row content */
730 
731         /* Allocate space for the previous row */
732         regPrev = pParse->nMem+1;
733         pParse->nMem += nResultCol;
734 
735         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
736         ** sets the MEM_Cleared bit on the first register of the
737         ** previous value.  This will cause the OP_Ne below to always
738         ** fail on the first iteration of the loop even if the first
739         ** row is all NULLs.
740         */
741         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
742         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
743         pOp->opcode = OP_Null;
744         pOp->p1 = 1;
745         pOp->p2 = regPrev;
746 
747         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
748         for(i=0; i<nResultCol; i++){
749           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
750           if( i<nResultCol-1 ){
751             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
752             VdbeCoverage(v);
753           }else{
754             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
755             VdbeCoverage(v);
756            }
757           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
758           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
759         }
760         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
761         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
762         break;
763       }
764 
765       case WHERE_DISTINCT_UNIQUE: {
766         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
767         break;
768       }
769 
770       default: {
771         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
772         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
773         break;
774       }
775     }
776     if( pSort==0 ){
777       codeOffset(v, p->iOffset, iContinue);
778     }
779   }
780 
781   switch( eDest ){
782     /* In this mode, write each query result to the key of the temporary
783     ** table iParm.
784     */
785 #ifndef SQLITE_OMIT_COMPOUND_SELECT
786     case SRT_Union: {
787       int r1;
788       r1 = sqlite3GetTempReg(pParse);
789       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
790       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
791       sqlite3ReleaseTempReg(pParse, r1);
792       break;
793     }
794 
795     /* Construct a record from the query result, but instead of
796     ** saving that record, use it as a key to delete elements from
797     ** the temporary table iParm.
798     */
799     case SRT_Except: {
800       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
801       break;
802     }
803 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
804 
805     /* Store the result as data using a unique key.
806     */
807     case SRT_Fifo:
808     case SRT_DistFifo:
809     case SRT_Table:
810     case SRT_EphemTab: {
811       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
812       testcase( eDest==SRT_Table );
813       testcase( eDest==SRT_EphemTab );
814       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
815 #ifndef SQLITE_OMIT_CTE
816       if( eDest==SRT_DistFifo ){
817         /* If the destination is DistFifo, then cursor (iParm+1) is open
818         ** on an ephemeral index. If the current row is already present
819         ** in the index, do not write it to the output. If not, add the
820         ** current row to the index and proceed with writing it to the
821         ** output table as well.  */
822         int addr = sqlite3VdbeCurrentAddr(v) + 4;
823         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
824         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
825         assert( pSort==0 );
826       }
827 #endif
828       if( pSort ){
829         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
830       }else{
831         int r2 = sqlite3GetTempReg(pParse);
832         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
833         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
834         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
835         sqlite3ReleaseTempReg(pParse, r2);
836       }
837       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
838       break;
839     }
840 
841 #ifndef SQLITE_OMIT_SUBQUERY
842     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
843     ** then there should be a single item on the stack.  Write this
844     ** item into the set table with bogus data.
845     */
846     case SRT_Set: {
847       assert( nResultCol==1 );
848       pDest->affSdst =
849                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
850       if( pSort ){
851         /* At first glance you would think we could optimize out the
852         ** ORDER BY in this case since the order of entries in the set
853         ** does not matter.  But there might be a LIMIT clause, in which
854         ** case the order does matter */
855         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
856       }else{
857         int r1 = sqlite3GetTempReg(pParse);
858         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
859         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
860         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
861         sqlite3ReleaseTempReg(pParse, r1);
862       }
863       break;
864     }
865 
866     /* If any row exist in the result set, record that fact and abort.
867     */
868     case SRT_Exists: {
869       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
870       /* The LIMIT clause will terminate the loop for us */
871       break;
872     }
873 
874     /* If this is a scalar select that is part of an expression, then
875     ** store the results in the appropriate memory cell and break out
876     ** of the scan loop.
877     */
878     case SRT_Mem: {
879       assert( nResultCol==1 );
880       if( pSort ){
881         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
882       }else{
883         assert( regResult==iParm );
884         /* The LIMIT clause will jump out of the loop for us */
885       }
886       break;
887     }
888 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
889 
890     case SRT_Coroutine:       /* Send data to a co-routine */
891     case SRT_Output: {        /* Return the results */
892       testcase( eDest==SRT_Coroutine );
893       testcase( eDest==SRT_Output );
894       if( pSort ){
895         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
896       }else if( eDest==SRT_Coroutine ){
897         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
898       }else{
899         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
900         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
901       }
902       break;
903     }
904 
905 #ifndef SQLITE_OMIT_CTE
906     /* Write the results into a priority queue that is order according to
907     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
908     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
909     ** pSO->nExpr columns, then make sure all keys are unique by adding a
910     ** final OP_Sequence column.  The last column is the record as a blob.
911     */
912     case SRT_DistQueue:
913     case SRT_Queue: {
914       int nKey;
915       int r1, r2, r3;
916       int addrTest = 0;
917       ExprList *pSO;
918       pSO = pDest->pOrderBy;
919       assert( pSO );
920       nKey = pSO->nExpr;
921       r1 = sqlite3GetTempReg(pParse);
922       r2 = sqlite3GetTempRange(pParse, nKey+2);
923       r3 = r2+nKey+1;
924       if( eDest==SRT_DistQueue ){
925         /* If the destination is DistQueue, then cursor (iParm+1) is open
926         ** on a second ephemeral index that holds all values every previously
927         ** added to the queue. */
928         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
929                                         regResult, nResultCol);
930         VdbeCoverage(v);
931       }
932       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
933       if( eDest==SRT_DistQueue ){
934         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
935         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
936       }
937       for(i=0; i<nKey; i++){
938         sqlite3VdbeAddOp2(v, OP_SCopy,
939                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
940                           r2+i);
941       }
942       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
943       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
944       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
945       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
946       sqlite3ReleaseTempReg(pParse, r1);
947       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
948       break;
949     }
950 #endif /* SQLITE_OMIT_CTE */
951 
952 
953 
954 #if !defined(SQLITE_OMIT_TRIGGER)
955     /* Discard the results.  This is used for SELECT statements inside
956     ** the body of a TRIGGER.  The purpose of such selects is to call
957     ** user-defined functions that have side effects.  We do not care
958     ** about the actual results of the select.
959     */
960     default: {
961       assert( eDest==SRT_Discard );
962       break;
963     }
964 #endif
965   }
966 
967   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
968   ** there is a sorter, in which case the sorter has already limited
969   ** the output for us.
970   */
971   if( pSort==0 && p->iLimit ){
972     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
973   }
974 }
975 
976 /*
977 ** Allocate a KeyInfo object sufficient for an index of N key columns and
978 ** X extra columns.
979 */
980 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
981   KeyInfo *p = sqlite3DbMallocZero(0,
982                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
983   if( p ){
984     p->aSortOrder = (u8*)&p->aColl[N+X];
985     p->nField = (u16)N;
986     p->nXField = (u16)X;
987     p->enc = ENC(db);
988     p->db = db;
989     p->nRef = 1;
990   }else{
991     db->mallocFailed = 1;
992   }
993   return p;
994 }
995 
996 /*
997 ** Deallocate a KeyInfo object
998 */
999 void sqlite3KeyInfoUnref(KeyInfo *p){
1000   if( p ){
1001     assert( p->nRef>0 );
1002     p->nRef--;
1003     if( p->nRef==0 ) sqlite3DbFree(0, p);
1004   }
1005 }
1006 
1007 /*
1008 ** Make a new pointer to a KeyInfo object
1009 */
1010 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1011   if( p ){
1012     assert( p->nRef>0 );
1013     p->nRef++;
1014   }
1015   return p;
1016 }
1017 
1018 #ifdef SQLITE_DEBUG
1019 /*
1020 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1021 ** can only be changed if this is just a single reference to the object.
1022 **
1023 ** This routine is used only inside of assert() statements.
1024 */
1025 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1026 #endif /* SQLITE_DEBUG */
1027 
1028 /*
1029 ** Given an expression list, generate a KeyInfo structure that records
1030 ** the collating sequence for each expression in that expression list.
1031 **
1032 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1033 ** KeyInfo structure is appropriate for initializing a virtual index to
1034 ** implement that clause.  If the ExprList is the result set of a SELECT
1035 ** then the KeyInfo structure is appropriate for initializing a virtual
1036 ** index to implement a DISTINCT test.
1037 **
1038 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1039 ** function is responsible for seeing that this structure is eventually
1040 ** freed.
1041 */
1042 static KeyInfo *keyInfoFromExprList(
1043   Parse *pParse,       /* Parsing context */
1044   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1045   int iStart,          /* Begin with this column of pList */
1046   int nExtra           /* Add this many extra columns to the end */
1047 ){
1048   int nExpr;
1049   KeyInfo *pInfo;
1050   struct ExprList_item *pItem;
1051   sqlite3 *db = pParse->db;
1052   int i;
1053 
1054   nExpr = pList->nExpr;
1055   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1056   if( pInfo ){
1057     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1058     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1059       CollSeq *pColl;
1060       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1061       if( !pColl ) pColl = db->pDfltColl;
1062       pInfo->aColl[i-iStart] = pColl;
1063       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1064     }
1065   }
1066   return pInfo;
1067 }
1068 
1069 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1070 /*
1071 ** Name of the connection operator, used for error messages.
1072 */
1073 static const char *selectOpName(int id){
1074   char *z;
1075   switch( id ){
1076     case TK_ALL:       z = "UNION ALL";   break;
1077     case TK_INTERSECT: z = "INTERSECT";   break;
1078     case TK_EXCEPT:    z = "EXCEPT";      break;
1079     default:           z = "UNION";       break;
1080   }
1081   return z;
1082 }
1083 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1084 
1085 #ifndef SQLITE_OMIT_EXPLAIN
1086 /*
1087 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1088 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1089 ** where the caption is of the form:
1090 **
1091 **   "USE TEMP B-TREE FOR xxx"
1092 **
1093 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1094 ** is determined by the zUsage argument.
1095 */
1096 static void explainTempTable(Parse *pParse, const char *zUsage){
1097   if( pParse->explain==2 ){
1098     Vdbe *v = pParse->pVdbe;
1099     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1100     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1101   }
1102 }
1103 
1104 /*
1105 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1106 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1107 ** in sqlite3Select() to assign values to structure member variables that
1108 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1109 ** code with #ifndef directives.
1110 */
1111 # define explainSetInteger(a, b) a = b
1112 
1113 #else
1114 /* No-op versions of the explainXXX() functions and macros. */
1115 # define explainTempTable(y,z)
1116 # define explainSetInteger(y,z)
1117 #endif
1118 
1119 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1120 /*
1121 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1122 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1123 ** where the caption is of one of the two forms:
1124 **
1125 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1126 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1127 **
1128 ** where iSub1 and iSub2 are the integers passed as the corresponding
1129 ** function parameters, and op is the text representation of the parameter
1130 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1131 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1132 ** false, or the second form if it is true.
1133 */
1134 static void explainComposite(
1135   Parse *pParse,                  /* Parse context */
1136   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1137   int iSub1,                      /* Subquery id 1 */
1138   int iSub2,                      /* Subquery id 2 */
1139   int bUseTmp                     /* True if a temp table was used */
1140 ){
1141   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1142   if( pParse->explain==2 ){
1143     Vdbe *v = pParse->pVdbe;
1144     char *zMsg = sqlite3MPrintf(
1145         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1146         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1147     );
1148     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1149   }
1150 }
1151 #else
1152 /* No-op versions of the explainXXX() functions and macros. */
1153 # define explainComposite(v,w,x,y,z)
1154 #endif
1155 
1156 /*
1157 ** If the inner loop was generated using a non-null pOrderBy argument,
1158 ** then the results were placed in a sorter.  After the loop is terminated
1159 ** we need to run the sorter and output the results.  The following
1160 ** routine generates the code needed to do that.
1161 */
1162 static void generateSortTail(
1163   Parse *pParse,    /* Parsing context */
1164   Select *p,        /* The SELECT statement */
1165   SortCtx *pSort,   /* Information on the ORDER BY clause */
1166   int nColumn,      /* Number of columns of data */
1167   SelectDest *pDest /* Write the sorted results here */
1168 ){
1169   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1170   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1171   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1172   int addr;
1173   int addrOnce = 0;
1174   int iTab;
1175   ExprList *pOrderBy = pSort->pOrderBy;
1176   int eDest = pDest->eDest;
1177   int iParm = pDest->iSDParm;
1178   int regRow;
1179   int regRowid;
1180   int nKey;
1181   int iSortTab;                   /* Sorter cursor to read from */
1182   int nSortData;                  /* Trailing values to read from sorter */
1183   int i;
1184   int bSeq;                       /* True if sorter record includes seq. no. */
1185 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1186   struct ExprList_item *aOutEx = p->pEList->a;
1187 #endif
1188 
1189   if( pSort->labelBkOut ){
1190     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1191     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1192     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1193   }
1194   iTab = pSort->iECursor;
1195   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1196     regRowid = 0;
1197     regRow = pDest->iSdst;
1198     nSortData = nColumn;
1199   }else{
1200     regRowid = sqlite3GetTempReg(pParse);
1201     regRow = sqlite3GetTempReg(pParse);
1202     nSortData = 1;
1203   }
1204   nKey = pOrderBy->nExpr - pSort->nOBSat;
1205   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1206     int regSortOut = ++pParse->nMem;
1207     iSortTab = pParse->nTab++;
1208     if( pSort->labelBkOut ){
1209       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1210     }
1211     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1212     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1213     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1214     VdbeCoverage(v);
1215     codeOffset(v, p->iOffset, addrContinue);
1216     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1217     bSeq = 0;
1218   }else{
1219     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1220     codeOffset(v, p->iOffset, addrContinue);
1221     iSortTab = iTab;
1222     bSeq = 1;
1223   }
1224   for(i=0; i<nSortData; i++){
1225     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1226     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1227   }
1228   switch( eDest ){
1229     case SRT_Table:
1230     case SRT_EphemTab: {
1231       testcase( eDest==SRT_Table );
1232       testcase( eDest==SRT_EphemTab );
1233       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1234       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1235       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1236       break;
1237     }
1238 #ifndef SQLITE_OMIT_SUBQUERY
1239     case SRT_Set: {
1240       assert( nColumn==1 );
1241       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1242                         &pDest->affSdst, 1);
1243       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1244       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1245       break;
1246     }
1247     case SRT_Mem: {
1248       assert( nColumn==1 );
1249       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1250       /* The LIMIT clause will terminate the loop for us */
1251       break;
1252     }
1253 #endif
1254     default: {
1255       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1256       testcase( eDest==SRT_Output );
1257       testcase( eDest==SRT_Coroutine );
1258       if( eDest==SRT_Output ){
1259         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1260         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1261       }else{
1262         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1263       }
1264       break;
1265     }
1266   }
1267   if( regRowid ){
1268     sqlite3ReleaseTempReg(pParse, regRow);
1269     sqlite3ReleaseTempReg(pParse, regRowid);
1270   }
1271   /* The bottom of the loop
1272   */
1273   sqlite3VdbeResolveLabel(v, addrContinue);
1274   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1275     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1276   }else{
1277     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1278   }
1279   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1280   sqlite3VdbeResolveLabel(v, addrBreak);
1281 }
1282 
1283 /*
1284 ** Return a pointer to a string containing the 'declaration type' of the
1285 ** expression pExpr. The string may be treated as static by the caller.
1286 **
1287 ** Also try to estimate the size of the returned value and return that
1288 ** result in *pEstWidth.
1289 **
1290 ** The declaration type is the exact datatype definition extracted from the
1291 ** original CREATE TABLE statement if the expression is a column. The
1292 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1293 ** is considered a column can be complex in the presence of subqueries. The
1294 ** result-set expression in all of the following SELECT statements is
1295 ** considered a column by this function.
1296 **
1297 **   SELECT col FROM tbl;
1298 **   SELECT (SELECT col FROM tbl;
1299 **   SELECT (SELECT col FROM tbl);
1300 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1301 **
1302 ** The declaration type for any expression other than a column is NULL.
1303 **
1304 ** This routine has either 3 or 6 parameters depending on whether or not
1305 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1306 */
1307 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1308 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1309 static const char *columnTypeImpl(
1310   NameContext *pNC,
1311   Expr *pExpr,
1312   const char **pzOrigDb,
1313   const char **pzOrigTab,
1314   const char **pzOrigCol,
1315   u8 *pEstWidth
1316 ){
1317   char const *zOrigDb = 0;
1318   char const *zOrigTab = 0;
1319   char const *zOrigCol = 0;
1320 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1322 static const char *columnTypeImpl(
1323   NameContext *pNC,
1324   Expr *pExpr,
1325   u8 *pEstWidth
1326 ){
1327 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1328   char const *zType = 0;
1329   int j;
1330   u8 estWidth = 1;
1331 
1332   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1333   switch( pExpr->op ){
1334     case TK_AGG_COLUMN:
1335     case TK_COLUMN: {
1336       /* The expression is a column. Locate the table the column is being
1337       ** extracted from in NameContext.pSrcList. This table may be real
1338       ** database table or a subquery.
1339       */
1340       Table *pTab = 0;            /* Table structure column is extracted from */
1341       Select *pS = 0;             /* Select the column is extracted from */
1342       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1343       testcase( pExpr->op==TK_AGG_COLUMN );
1344       testcase( pExpr->op==TK_COLUMN );
1345       while( pNC && !pTab ){
1346         SrcList *pTabList = pNC->pSrcList;
1347         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1348         if( j<pTabList->nSrc ){
1349           pTab = pTabList->a[j].pTab;
1350           pS = pTabList->a[j].pSelect;
1351         }else{
1352           pNC = pNC->pNext;
1353         }
1354       }
1355 
1356       if( pTab==0 ){
1357         /* At one time, code such as "SELECT new.x" within a trigger would
1358         ** cause this condition to run.  Since then, we have restructured how
1359         ** trigger code is generated and so this condition is no longer
1360         ** possible. However, it can still be true for statements like
1361         ** the following:
1362         **
1363         **   CREATE TABLE t1(col INTEGER);
1364         **   SELECT (SELECT t1.col) FROM FROM t1;
1365         **
1366         ** when columnType() is called on the expression "t1.col" in the
1367         ** sub-select. In this case, set the column type to NULL, even
1368         ** though it should really be "INTEGER".
1369         **
1370         ** This is not a problem, as the column type of "t1.col" is never
1371         ** used. When columnType() is called on the expression
1372         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1373         ** branch below.  */
1374         break;
1375       }
1376 
1377       assert( pTab && pExpr->pTab==pTab );
1378       if( pS ){
1379         /* The "table" is actually a sub-select or a view in the FROM clause
1380         ** of the SELECT statement. Return the declaration type and origin
1381         ** data for the result-set column of the sub-select.
1382         */
1383         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1384           /* If iCol is less than zero, then the expression requests the
1385           ** rowid of the sub-select or view. This expression is legal (see
1386           ** test case misc2.2.2) - it always evaluates to NULL.
1387           */
1388           NameContext sNC;
1389           Expr *p = pS->pEList->a[iCol].pExpr;
1390           sNC.pSrcList = pS->pSrc;
1391           sNC.pNext = pNC;
1392           sNC.pParse = pNC->pParse;
1393           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1394         }
1395       }else if( pTab->pSchema ){
1396         /* A real table */
1397         assert( !pS );
1398         if( iCol<0 ) iCol = pTab->iPKey;
1399         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1400 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1401         if( iCol<0 ){
1402           zType = "INTEGER";
1403           zOrigCol = "rowid";
1404         }else{
1405           zType = pTab->aCol[iCol].zType;
1406           zOrigCol = pTab->aCol[iCol].zName;
1407           estWidth = pTab->aCol[iCol].szEst;
1408         }
1409         zOrigTab = pTab->zName;
1410         if( pNC->pParse ){
1411           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1412           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1413         }
1414 #else
1415         if( iCol<0 ){
1416           zType = "INTEGER";
1417         }else{
1418           zType = pTab->aCol[iCol].zType;
1419           estWidth = pTab->aCol[iCol].szEst;
1420         }
1421 #endif
1422       }
1423       break;
1424     }
1425 #ifndef SQLITE_OMIT_SUBQUERY
1426     case TK_SELECT: {
1427       /* The expression is a sub-select. Return the declaration type and
1428       ** origin info for the single column in the result set of the SELECT
1429       ** statement.
1430       */
1431       NameContext sNC;
1432       Select *pS = pExpr->x.pSelect;
1433       Expr *p = pS->pEList->a[0].pExpr;
1434       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1435       sNC.pSrcList = pS->pSrc;
1436       sNC.pNext = pNC;
1437       sNC.pParse = pNC->pParse;
1438       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1439       break;
1440     }
1441 #endif
1442   }
1443 
1444 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1445   if( pzOrigDb ){
1446     assert( pzOrigTab && pzOrigCol );
1447     *pzOrigDb = zOrigDb;
1448     *pzOrigTab = zOrigTab;
1449     *pzOrigCol = zOrigCol;
1450   }
1451 #endif
1452   if( pEstWidth ) *pEstWidth = estWidth;
1453   return zType;
1454 }
1455 
1456 /*
1457 ** Generate code that will tell the VDBE the declaration types of columns
1458 ** in the result set.
1459 */
1460 static void generateColumnTypes(
1461   Parse *pParse,      /* Parser context */
1462   SrcList *pTabList,  /* List of tables */
1463   ExprList *pEList    /* Expressions defining the result set */
1464 ){
1465 #ifndef SQLITE_OMIT_DECLTYPE
1466   Vdbe *v = pParse->pVdbe;
1467   int i;
1468   NameContext sNC;
1469   sNC.pSrcList = pTabList;
1470   sNC.pParse = pParse;
1471   for(i=0; i<pEList->nExpr; i++){
1472     Expr *p = pEList->a[i].pExpr;
1473     const char *zType;
1474 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1475     const char *zOrigDb = 0;
1476     const char *zOrigTab = 0;
1477     const char *zOrigCol = 0;
1478     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1479 
1480     /* The vdbe must make its own copy of the column-type and other
1481     ** column specific strings, in case the schema is reset before this
1482     ** virtual machine is deleted.
1483     */
1484     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1485     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1486     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1487 #else
1488     zType = columnType(&sNC, p, 0, 0, 0, 0);
1489 #endif
1490     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1491   }
1492 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1493 }
1494 
1495 /*
1496 ** Generate code that will tell the VDBE the names of columns
1497 ** in the result set.  This information is used to provide the
1498 ** azCol[] values in the callback.
1499 */
1500 static void generateColumnNames(
1501   Parse *pParse,      /* Parser context */
1502   SrcList *pTabList,  /* List of tables */
1503   ExprList *pEList    /* Expressions defining the result set */
1504 ){
1505   Vdbe *v = pParse->pVdbe;
1506   int i, j;
1507   sqlite3 *db = pParse->db;
1508   int fullNames, shortNames;
1509 
1510 #ifndef SQLITE_OMIT_EXPLAIN
1511   /* If this is an EXPLAIN, skip this step */
1512   if( pParse->explain ){
1513     return;
1514   }
1515 #endif
1516 
1517   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1518   pParse->colNamesSet = 1;
1519   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1520   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1521   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1522   for(i=0; i<pEList->nExpr; i++){
1523     Expr *p;
1524     p = pEList->a[i].pExpr;
1525     if( NEVER(p==0) ) continue;
1526     if( pEList->a[i].zName ){
1527       char *zName = pEList->a[i].zName;
1528       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1529     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1530       Table *pTab;
1531       char *zCol;
1532       int iCol = p->iColumn;
1533       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1534         if( pTabList->a[j].iCursor==p->iTable ) break;
1535       }
1536       assert( j<pTabList->nSrc );
1537       pTab = pTabList->a[j].pTab;
1538       if( iCol<0 ) iCol = pTab->iPKey;
1539       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1540       if( iCol<0 ){
1541         zCol = "rowid";
1542       }else{
1543         zCol = pTab->aCol[iCol].zName;
1544       }
1545       if( !shortNames && !fullNames ){
1546         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1547             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1548       }else if( fullNames ){
1549         char *zName = 0;
1550         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1551         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1552       }else{
1553         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1554       }
1555     }else{
1556       const char *z = pEList->a[i].zSpan;
1557       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1558       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1559     }
1560   }
1561   generateColumnTypes(pParse, pTabList, pEList);
1562 }
1563 
1564 /*
1565 ** Given an expression list (which is really the list of expressions
1566 ** that form the result set of a SELECT statement) compute appropriate
1567 ** column names for a table that would hold the expression list.
1568 **
1569 ** All column names will be unique.
1570 **
1571 ** Only the column names are computed.  Column.zType, Column.zColl,
1572 ** and other fields of Column are zeroed.
1573 **
1574 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1575 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1576 */
1577 static int selectColumnsFromExprList(
1578   Parse *pParse,          /* Parsing context */
1579   ExprList *pEList,       /* Expr list from which to derive column names */
1580   i16 *pnCol,             /* Write the number of columns here */
1581   Column **paCol          /* Write the new column list here */
1582 ){
1583   sqlite3 *db = pParse->db;   /* Database connection */
1584   int i, j;                   /* Loop counters */
1585   int cnt;                    /* Index added to make the name unique */
1586   Column *aCol, *pCol;        /* For looping over result columns */
1587   int nCol;                   /* Number of columns in the result set */
1588   Expr *p;                    /* Expression for a single result column */
1589   char *zName;                /* Column name */
1590   int nName;                  /* Size of name in zName[] */
1591 
1592   if( pEList ){
1593     nCol = pEList->nExpr;
1594     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1595     testcase( aCol==0 );
1596   }else{
1597     nCol = 0;
1598     aCol = 0;
1599   }
1600   *pnCol = nCol;
1601   *paCol = aCol;
1602 
1603   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1604     /* Get an appropriate name for the column
1605     */
1606     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1607     if( (zName = pEList->a[i].zName)!=0 ){
1608       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1609       zName = sqlite3DbStrDup(db, zName);
1610     }else{
1611       Expr *pColExpr = p;  /* The expression that is the result column name */
1612       Table *pTab;         /* Table associated with this expression */
1613       while( pColExpr->op==TK_DOT ){
1614         pColExpr = pColExpr->pRight;
1615         assert( pColExpr!=0 );
1616       }
1617       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1618         /* For columns use the column name name */
1619         int iCol = pColExpr->iColumn;
1620         pTab = pColExpr->pTab;
1621         if( iCol<0 ) iCol = pTab->iPKey;
1622         zName = sqlite3MPrintf(db, "%s",
1623                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1624       }else if( pColExpr->op==TK_ID ){
1625         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1626         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1627       }else{
1628         /* Use the original text of the column expression as its name */
1629         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1630       }
1631     }
1632     if( db->mallocFailed ){
1633       sqlite3DbFree(db, zName);
1634       break;
1635     }
1636 
1637     /* Make sure the column name is unique.  If the name is not unique,
1638     ** append an integer to the name so that it becomes unique.
1639     */
1640     nName = sqlite3Strlen30(zName);
1641     for(j=cnt=0; j<i; j++){
1642       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1643         char *zNewName;
1644         int k;
1645         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1646         if( k>=0 && zName[k]==':' ) nName = k;
1647         zName[nName] = 0;
1648         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1649         sqlite3DbFree(db, zName);
1650         zName = zNewName;
1651         j = -1;
1652         if( zName==0 ) break;
1653       }
1654     }
1655     pCol->zName = zName;
1656   }
1657   if( db->mallocFailed ){
1658     for(j=0; j<i; j++){
1659       sqlite3DbFree(db, aCol[j].zName);
1660     }
1661     sqlite3DbFree(db, aCol);
1662     *paCol = 0;
1663     *pnCol = 0;
1664     return SQLITE_NOMEM;
1665   }
1666   return SQLITE_OK;
1667 }
1668 
1669 /*
1670 ** Add type and collation information to a column list based on
1671 ** a SELECT statement.
1672 **
1673 ** The column list presumably came from selectColumnNamesFromExprList().
1674 ** The column list has only names, not types or collations.  This
1675 ** routine goes through and adds the types and collations.
1676 **
1677 ** This routine requires that all identifiers in the SELECT
1678 ** statement be resolved.
1679 */
1680 static void selectAddColumnTypeAndCollation(
1681   Parse *pParse,        /* Parsing contexts */
1682   Table *pTab,          /* Add column type information to this table */
1683   Select *pSelect       /* SELECT used to determine types and collations */
1684 ){
1685   sqlite3 *db = pParse->db;
1686   NameContext sNC;
1687   Column *pCol;
1688   CollSeq *pColl;
1689   int i;
1690   Expr *p;
1691   struct ExprList_item *a;
1692   u64 szAll = 0;
1693 
1694   assert( pSelect!=0 );
1695   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1696   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1697   if( db->mallocFailed ) return;
1698   memset(&sNC, 0, sizeof(sNC));
1699   sNC.pSrcList = pSelect->pSrc;
1700   a = pSelect->pEList->a;
1701   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1702     p = a[i].pExpr;
1703     if( pCol->zType==0 ){
1704       pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1705     }
1706     szAll += pCol->szEst;
1707     pCol->affinity = sqlite3ExprAffinity(p);
1708     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1709     pColl = sqlite3ExprCollSeq(pParse, p);
1710     if( pColl && pCol->zColl==0 ){
1711       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1712     }
1713   }
1714   pTab->szTabRow = sqlite3LogEst(szAll*4);
1715 }
1716 
1717 /*
1718 ** Given a SELECT statement, generate a Table structure that describes
1719 ** the result set of that SELECT.
1720 */
1721 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1722   Table *pTab;
1723   sqlite3 *db = pParse->db;
1724   int savedFlags;
1725 
1726   savedFlags = db->flags;
1727   db->flags &= ~SQLITE_FullColNames;
1728   db->flags |= SQLITE_ShortColNames;
1729   sqlite3SelectPrep(pParse, pSelect, 0);
1730   if( pParse->nErr ) return 0;
1731   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1732   db->flags = savedFlags;
1733   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1734   if( pTab==0 ){
1735     return 0;
1736   }
1737   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1738   ** is disabled */
1739   assert( db->lookaside.bEnabled==0 );
1740   pTab->nRef = 1;
1741   pTab->zName = 0;
1742   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1743   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1744   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1745   pTab->iPKey = -1;
1746   if( db->mallocFailed ){
1747     sqlite3DeleteTable(db, pTab);
1748     return 0;
1749   }
1750   return pTab;
1751 }
1752 
1753 /*
1754 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1755 ** If an error occurs, return NULL and leave a message in pParse.
1756 */
1757 Vdbe *sqlite3GetVdbe(Parse *pParse){
1758   Vdbe *v = pParse->pVdbe;
1759   if( v==0 ){
1760     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1761     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1762     if( pParse->pToplevel==0
1763      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1764     ){
1765       pParse->okConstFactor = 1;
1766     }
1767 
1768   }
1769   return v;
1770 }
1771 
1772 
1773 /*
1774 ** Compute the iLimit and iOffset fields of the SELECT based on the
1775 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1776 ** that appear in the original SQL statement after the LIMIT and OFFSET
1777 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1778 ** are the integer memory register numbers for counters used to compute
1779 ** the limit and offset.  If there is no limit and/or offset, then
1780 ** iLimit and iOffset are negative.
1781 **
1782 ** This routine changes the values of iLimit and iOffset only if
1783 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1784 ** iOffset should have been preset to appropriate default values (zero)
1785 ** prior to calling this routine.
1786 **
1787 ** The iOffset register (if it exists) is initialized to the value
1788 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1789 ** iOffset+1 is initialized to LIMIT+OFFSET.
1790 **
1791 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1792 ** redefined.  The UNION ALL operator uses this property to force
1793 ** the reuse of the same limit and offset registers across multiple
1794 ** SELECT statements.
1795 */
1796 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1797   Vdbe *v = 0;
1798   int iLimit = 0;
1799   int iOffset;
1800   int addr1, n;
1801   if( p->iLimit ) return;
1802 
1803   /*
1804   ** "LIMIT -1" always shows all rows.  There is some
1805   ** controversy about what the correct behavior should be.
1806   ** The current implementation interprets "LIMIT 0" to mean
1807   ** no rows.
1808   */
1809   sqlite3ExprCacheClear(pParse);
1810   assert( p->pOffset==0 || p->pLimit!=0 );
1811   if( p->pLimit ){
1812     p->iLimit = iLimit = ++pParse->nMem;
1813     v = sqlite3GetVdbe(pParse);
1814     assert( v!=0 );
1815     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1816       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1817       VdbeComment((v, "LIMIT counter"));
1818       if( n==0 ){
1819         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1820       }else if( n>=0 && p->nSelectRow>(u64)n ){
1821         p->nSelectRow = n;
1822       }
1823     }else{
1824       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1825       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1826       VdbeComment((v, "LIMIT counter"));
1827       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1828     }
1829     if( p->pOffset ){
1830       p->iOffset = iOffset = ++pParse->nMem;
1831       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1832       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1833       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1834       VdbeComment((v, "OFFSET counter"));
1835       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1836       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1837       sqlite3VdbeJumpHere(v, addr1);
1838       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1839       VdbeComment((v, "LIMIT+OFFSET"));
1840       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1841       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1842       sqlite3VdbeJumpHere(v, addr1);
1843     }
1844   }
1845 }
1846 
1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1848 /*
1849 ** Return the appropriate collating sequence for the iCol-th column of
1850 ** the result set for the compound-select statement "p".  Return NULL if
1851 ** the column has no default collating sequence.
1852 **
1853 ** The collating sequence for the compound select is taken from the
1854 ** left-most term of the select that has a collating sequence.
1855 */
1856 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1857   CollSeq *pRet;
1858   if( p->pPrior ){
1859     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1860   }else{
1861     pRet = 0;
1862   }
1863   assert( iCol>=0 );
1864   if( pRet==0 && iCol<p->pEList->nExpr ){
1865     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1866   }
1867   return pRet;
1868 }
1869 
1870 /*
1871 ** The select statement passed as the second parameter is a compound SELECT
1872 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1873 ** structure suitable for implementing the ORDER BY.
1874 **
1875 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1876 ** function is responsible for ensuring that this structure is eventually
1877 ** freed.
1878 */
1879 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1880   ExprList *pOrderBy = p->pOrderBy;
1881   int nOrderBy = p->pOrderBy->nExpr;
1882   sqlite3 *db = pParse->db;
1883   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1884   if( pRet ){
1885     int i;
1886     for(i=0; i<nOrderBy; i++){
1887       struct ExprList_item *pItem = &pOrderBy->a[i];
1888       Expr *pTerm = pItem->pExpr;
1889       CollSeq *pColl;
1890 
1891       if( pTerm->flags & EP_Collate ){
1892         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1893       }else{
1894         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1895         if( pColl==0 ) pColl = db->pDfltColl;
1896         pOrderBy->a[i].pExpr =
1897           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1898       }
1899       assert( sqlite3KeyInfoIsWriteable(pRet) );
1900       pRet->aColl[i] = pColl;
1901       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1902     }
1903   }
1904 
1905   return pRet;
1906 }
1907 
1908 #ifndef SQLITE_OMIT_CTE
1909 /*
1910 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1911 ** query of the form:
1912 **
1913 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1914 **                         \___________/             \_______________/
1915 **                           p->pPrior                      p
1916 **
1917 **
1918 ** There is exactly one reference to the recursive-table in the FROM clause
1919 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1920 **
1921 ** The setup-query runs once to generate an initial set of rows that go
1922 ** into a Queue table.  Rows are extracted from the Queue table one by
1923 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1924 ** extracted row (now in the iCurrent table) becomes the content of the
1925 ** recursive-table for a recursive-query run.  The output of the recursive-query
1926 ** is added back into the Queue table.  Then another row is extracted from Queue
1927 ** and the iteration continues until the Queue table is empty.
1928 **
1929 ** If the compound query operator is UNION then no duplicate rows are ever
1930 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1931 ** that have ever been inserted into Queue and causes duplicates to be
1932 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1933 **
1934 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1935 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1936 ** an ORDER BY, the Queue table is just a FIFO.
1937 **
1938 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1939 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1940 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1941 ** with a positive value, then the first OFFSET outputs are discarded rather
1942 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1943 ** rows have been skipped.
1944 */
1945 static void generateWithRecursiveQuery(
1946   Parse *pParse,        /* Parsing context */
1947   Select *p,            /* The recursive SELECT to be coded */
1948   SelectDest *pDest     /* What to do with query results */
1949 ){
1950   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1951   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1952   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1953   Select *pSetup = p->pPrior;   /* The setup query */
1954   int addrTop;                  /* Top of the loop */
1955   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1956   int iCurrent = 0;             /* The Current table */
1957   int regCurrent;               /* Register holding Current table */
1958   int iQueue;                   /* The Queue table */
1959   int iDistinct = 0;            /* To ensure unique results if UNION */
1960   int eDest = SRT_Fifo;         /* How to write to Queue */
1961   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1962   int i;                        /* Loop counter */
1963   int rc;                       /* Result code */
1964   ExprList *pOrderBy;           /* The ORDER BY clause */
1965   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1966   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1967 
1968   /* Obtain authorization to do a recursive query */
1969   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1970 
1971   /* Process the LIMIT and OFFSET clauses, if they exist */
1972   addrBreak = sqlite3VdbeMakeLabel(v);
1973   computeLimitRegisters(pParse, p, addrBreak);
1974   pLimit = p->pLimit;
1975   pOffset = p->pOffset;
1976   regLimit = p->iLimit;
1977   regOffset = p->iOffset;
1978   p->pLimit = p->pOffset = 0;
1979   p->iLimit = p->iOffset = 0;
1980   pOrderBy = p->pOrderBy;
1981 
1982   /* Locate the cursor number of the Current table */
1983   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1984     if( pSrc->a[i].isRecursive ){
1985       iCurrent = pSrc->a[i].iCursor;
1986       break;
1987     }
1988   }
1989 
1990   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1991   ** the Distinct table must be exactly one greater than Queue in order
1992   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1993   iQueue = pParse->nTab++;
1994   if( p->op==TK_UNION ){
1995     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1996     iDistinct = pParse->nTab++;
1997   }else{
1998     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1999   }
2000   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2001 
2002   /* Allocate cursors for Current, Queue, and Distinct. */
2003   regCurrent = ++pParse->nMem;
2004   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2005   if( pOrderBy ){
2006     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2007     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2008                       (char*)pKeyInfo, P4_KEYINFO);
2009     destQueue.pOrderBy = pOrderBy;
2010   }else{
2011     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2012   }
2013   VdbeComment((v, "Queue table"));
2014   if( iDistinct ){
2015     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2016     p->selFlags |= SF_UsesEphemeral;
2017   }
2018 
2019   /* Detach the ORDER BY clause from the compound SELECT */
2020   p->pOrderBy = 0;
2021 
2022   /* Store the results of the setup-query in Queue. */
2023   pSetup->pNext = 0;
2024   rc = sqlite3Select(pParse, pSetup, &destQueue);
2025   pSetup->pNext = p;
2026   if( rc ) goto end_of_recursive_query;
2027 
2028   /* Find the next row in the Queue and output that row */
2029   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2030 
2031   /* Transfer the next row in Queue over to Current */
2032   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2033   if( pOrderBy ){
2034     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2035   }else{
2036     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2037   }
2038   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2039 
2040   /* Output the single row in Current */
2041   addrCont = sqlite3VdbeMakeLabel(v);
2042   codeOffset(v, regOffset, addrCont);
2043   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2044       0, 0, pDest, addrCont, addrBreak);
2045   if( regLimit ){
2046     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2047     VdbeCoverage(v);
2048   }
2049   sqlite3VdbeResolveLabel(v, addrCont);
2050 
2051   /* Execute the recursive SELECT taking the single row in Current as
2052   ** the value for the recursive-table. Store the results in the Queue.
2053   */
2054   p->pPrior = 0;
2055   sqlite3Select(pParse, p, &destQueue);
2056   assert( p->pPrior==0 );
2057   p->pPrior = pSetup;
2058 
2059   /* Keep running the loop until the Queue is empty */
2060   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2061   sqlite3VdbeResolveLabel(v, addrBreak);
2062 
2063 end_of_recursive_query:
2064   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2065   p->pOrderBy = pOrderBy;
2066   p->pLimit = pLimit;
2067   p->pOffset = pOffset;
2068   return;
2069 }
2070 #endif /* SQLITE_OMIT_CTE */
2071 
2072 /* Forward references */
2073 static int multiSelectOrderBy(
2074   Parse *pParse,        /* Parsing context */
2075   Select *p,            /* The right-most of SELECTs to be coded */
2076   SelectDest *pDest     /* What to do with query results */
2077 );
2078 
2079 /*
2080 ** Error message for when two or more terms of a compound select have different
2081 ** size result sets.
2082 */
2083 static void selectWrongNumTermsError(Parse *pParse, Select *p){
2084   if( p->selFlags & SF_Values ){
2085     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2086   }else{
2087     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2088       " do not have the same number of result columns", selectOpName(p->op));
2089   }
2090 }
2091 
2092 /*
2093 ** Handle the special case of a compound-select that originates from a
2094 ** VALUES clause.  By handling this as a special case, we avoid deep
2095 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2096 ** on a VALUES clause.
2097 **
2098 ** Because the Select object originates from a VALUES clause:
2099 **   (1) It has no LIMIT or OFFSET
2100 **   (2) All terms are UNION ALL
2101 **   (3) There is no ORDER BY clause
2102 */
2103 static int multiSelectValues(
2104   Parse *pParse,        /* Parsing context */
2105   Select *p,            /* The right-most of SELECTs to be coded */
2106   SelectDest *pDest     /* What to do with query results */
2107 ){
2108   Select *pPrior;
2109   int nExpr = p->pEList->nExpr;
2110   int nRow = 1;
2111   int rc = 0;
2112   assert( p->selFlags & SF_MultiValue );
2113   do{
2114     assert( p->selFlags & SF_Values );
2115     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2116     assert( p->pLimit==0 );
2117     assert( p->pOffset==0 );
2118     if( p->pEList->nExpr!=nExpr ){
2119       selectWrongNumTermsError(pParse, p);
2120       return 1;
2121     }
2122     if( p->pPrior==0 ) break;
2123     assert( p->pPrior->pNext==p );
2124     p = p->pPrior;
2125     nRow++;
2126   }while(1);
2127   while( p ){
2128     pPrior = p->pPrior;
2129     p->pPrior = 0;
2130     rc = sqlite3Select(pParse, p, pDest);
2131     p->pPrior = pPrior;
2132     if( rc ) break;
2133     p->nSelectRow = nRow;
2134     p = p->pNext;
2135   }
2136   return rc;
2137 }
2138 
2139 /*
2140 ** This routine is called to process a compound query form from
2141 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2142 ** INTERSECT
2143 **
2144 ** "p" points to the right-most of the two queries.  the query on the
2145 ** left is p->pPrior.  The left query could also be a compound query
2146 ** in which case this routine will be called recursively.
2147 **
2148 ** The results of the total query are to be written into a destination
2149 ** of type eDest with parameter iParm.
2150 **
2151 ** Example 1:  Consider a three-way compound SQL statement.
2152 **
2153 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2154 **
2155 ** This statement is parsed up as follows:
2156 **
2157 **     SELECT c FROM t3
2158 **      |
2159 **      `----->  SELECT b FROM t2
2160 **                |
2161 **                `------>  SELECT a FROM t1
2162 **
2163 ** The arrows in the diagram above represent the Select.pPrior pointer.
2164 ** So if this routine is called with p equal to the t3 query, then
2165 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2166 **
2167 ** Notice that because of the way SQLite parses compound SELECTs, the
2168 ** individual selects always group from left to right.
2169 */
2170 static int multiSelect(
2171   Parse *pParse,        /* Parsing context */
2172   Select *p,            /* The right-most of SELECTs to be coded */
2173   SelectDest *pDest     /* What to do with query results */
2174 ){
2175   int rc = SQLITE_OK;   /* Success code from a subroutine */
2176   Select *pPrior;       /* Another SELECT immediately to our left */
2177   Vdbe *v;              /* Generate code to this VDBE */
2178   SelectDest dest;      /* Alternative data destination */
2179   Select *pDelete = 0;  /* Chain of simple selects to delete */
2180   sqlite3 *db;          /* Database connection */
2181 #ifndef SQLITE_OMIT_EXPLAIN
2182   int iSub1 = 0;        /* EQP id of left-hand query */
2183   int iSub2 = 0;        /* EQP id of right-hand query */
2184 #endif
2185 
2186   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2187   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2188   */
2189   assert( p && p->pPrior );  /* Calling function guarantees this much */
2190   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2191   db = pParse->db;
2192   pPrior = p->pPrior;
2193   dest = *pDest;
2194   if( pPrior->pOrderBy ){
2195     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2196       selectOpName(p->op));
2197     rc = 1;
2198     goto multi_select_end;
2199   }
2200   if( pPrior->pLimit ){
2201     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2202       selectOpName(p->op));
2203     rc = 1;
2204     goto multi_select_end;
2205   }
2206 
2207   v = sqlite3GetVdbe(pParse);
2208   assert( v!=0 );  /* The VDBE already created by calling function */
2209 
2210   /* Create the destination temporary table if necessary
2211   */
2212   if( dest.eDest==SRT_EphemTab ){
2213     assert( p->pEList );
2214     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2215     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2216     dest.eDest = SRT_Table;
2217   }
2218 
2219   /* Special handling for a compound-select that originates as a VALUES clause.
2220   */
2221   if( p->selFlags & SF_MultiValue ){
2222     rc = multiSelectValues(pParse, p, &dest);
2223     goto multi_select_end;
2224   }
2225 
2226   /* Make sure all SELECTs in the statement have the same number of elements
2227   ** in their result sets.
2228   */
2229   assert( p->pEList && pPrior->pEList );
2230   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2231     selectWrongNumTermsError(pParse, p);
2232     rc = 1;
2233     goto multi_select_end;
2234   }
2235 
2236 #ifndef SQLITE_OMIT_CTE
2237   if( p->selFlags & SF_Recursive ){
2238     generateWithRecursiveQuery(pParse, p, &dest);
2239   }else
2240 #endif
2241 
2242   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2243   */
2244   if( p->pOrderBy ){
2245     return multiSelectOrderBy(pParse, p, pDest);
2246   }else
2247 
2248   /* Generate code for the left and right SELECT statements.
2249   */
2250   switch( p->op ){
2251     case TK_ALL: {
2252       int addr = 0;
2253       int nLimit;
2254       assert( !pPrior->pLimit );
2255       pPrior->iLimit = p->iLimit;
2256       pPrior->iOffset = p->iOffset;
2257       pPrior->pLimit = p->pLimit;
2258       pPrior->pOffset = p->pOffset;
2259       explainSetInteger(iSub1, pParse->iNextSelectId);
2260       rc = sqlite3Select(pParse, pPrior, &dest);
2261       p->pLimit = 0;
2262       p->pOffset = 0;
2263       if( rc ){
2264         goto multi_select_end;
2265       }
2266       p->pPrior = 0;
2267       p->iLimit = pPrior->iLimit;
2268       p->iOffset = pPrior->iOffset;
2269       if( p->iLimit ){
2270         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2271         VdbeComment((v, "Jump ahead if LIMIT reached"));
2272       }
2273       explainSetInteger(iSub2, pParse->iNextSelectId);
2274       rc = sqlite3Select(pParse, p, &dest);
2275       testcase( rc!=SQLITE_OK );
2276       pDelete = p->pPrior;
2277       p->pPrior = pPrior;
2278       p->nSelectRow += pPrior->nSelectRow;
2279       if( pPrior->pLimit
2280        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2281        && nLimit>0 && p->nSelectRow > (u64)nLimit
2282       ){
2283         p->nSelectRow = nLimit;
2284       }
2285       if( addr ){
2286         sqlite3VdbeJumpHere(v, addr);
2287       }
2288       break;
2289     }
2290     case TK_EXCEPT:
2291     case TK_UNION: {
2292       int unionTab;    /* Cursor number of the temporary table holding result */
2293       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2294       int priorOp;     /* The SRT_ operation to apply to prior selects */
2295       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2296       int addr;
2297       SelectDest uniondest;
2298 
2299       testcase( p->op==TK_EXCEPT );
2300       testcase( p->op==TK_UNION );
2301       priorOp = SRT_Union;
2302       if( dest.eDest==priorOp ){
2303         /* We can reuse a temporary table generated by a SELECT to our
2304         ** right.
2305         */
2306         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2307         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2308         unionTab = dest.iSDParm;
2309       }else{
2310         /* We will need to create our own temporary table to hold the
2311         ** intermediate results.
2312         */
2313         unionTab = pParse->nTab++;
2314         assert( p->pOrderBy==0 );
2315         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2316         assert( p->addrOpenEphm[0] == -1 );
2317         p->addrOpenEphm[0] = addr;
2318         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2319         assert( p->pEList );
2320       }
2321 
2322       /* Code the SELECT statements to our left
2323       */
2324       assert( !pPrior->pOrderBy );
2325       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2326       explainSetInteger(iSub1, pParse->iNextSelectId);
2327       rc = sqlite3Select(pParse, pPrior, &uniondest);
2328       if( rc ){
2329         goto multi_select_end;
2330       }
2331 
2332       /* Code the current SELECT statement
2333       */
2334       if( p->op==TK_EXCEPT ){
2335         op = SRT_Except;
2336       }else{
2337         assert( p->op==TK_UNION );
2338         op = SRT_Union;
2339       }
2340       p->pPrior = 0;
2341       pLimit = p->pLimit;
2342       p->pLimit = 0;
2343       pOffset = p->pOffset;
2344       p->pOffset = 0;
2345       uniondest.eDest = op;
2346       explainSetInteger(iSub2, pParse->iNextSelectId);
2347       rc = sqlite3Select(pParse, p, &uniondest);
2348       testcase( rc!=SQLITE_OK );
2349       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2350       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2351       sqlite3ExprListDelete(db, p->pOrderBy);
2352       pDelete = p->pPrior;
2353       p->pPrior = pPrior;
2354       p->pOrderBy = 0;
2355       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2356       sqlite3ExprDelete(db, p->pLimit);
2357       p->pLimit = pLimit;
2358       p->pOffset = pOffset;
2359       p->iLimit = 0;
2360       p->iOffset = 0;
2361 
2362       /* Convert the data in the temporary table into whatever form
2363       ** it is that we currently need.
2364       */
2365       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2366       if( dest.eDest!=priorOp ){
2367         int iCont, iBreak, iStart;
2368         assert( p->pEList );
2369         if( dest.eDest==SRT_Output ){
2370           Select *pFirst = p;
2371           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2372           generateColumnNames(pParse, 0, pFirst->pEList);
2373         }
2374         iBreak = sqlite3VdbeMakeLabel(v);
2375         iCont = sqlite3VdbeMakeLabel(v);
2376         computeLimitRegisters(pParse, p, iBreak);
2377         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2378         iStart = sqlite3VdbeCurrentAddr(v);
2379         selectInnerLoop(pParse, p, p->pEList, unionTab,
2380                         0, 0, &dest, iCont, iBreak);
2381         sqlite3VdbeResolveLabel(v, iCont);
2382         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2383         sqlite3VdbeResolveLabel(v, iBreak);
2384         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2385       }
2386       break;
2387     }
2388     default: assert( p->op==TK_INTERSECT ); {
2389       int tab1, tab2;
2390       int iCont, iBreak, iStart;
2391       Expr *pLimit, *pOffset;
2392       int addr;
2393       SelectDest intersectdest;
2394       int r1;
2395 
2396       /* INTERSECT is different from the others since it requires
2397       ** two temporary tables.  Hence it has its own case.  Begin
2398       ** by allocating the tables we will need.
2399       */
2400       tab1 = pParse->nTab++;
2401       tab2 = pParse->nTab++;
2402       assert( p->pOrderBy==0 );
2403 
2404       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2405       assert( p->addrOpenEphm[0] == -1 );
2406       p->addrOpenEphm[0] = addr;
2407       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2408       assert( p->pEList );
2409 
2410       /* Code the SELECTs to our left into temporary table "tab1".
2411       */
2412       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2413       explainSetInteger(iSub1, pParse->iNextSelectId);
2414       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2415       if( rc ){
2416         goto multi_select_end;
2417       }
2418 
2419       /* Code the current SELECT into temporary table "tab2"
2420       */
2421       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2422       assert( p->addrOpenEphm[1] == -1 );
2423       p->addrOpenEphm[1] = addr;
2424       p->pPrior = 0;
2425       pLimit = p->pLimit;
2426       p->pLimit = 0;
2427       pOffset = p->pOffset;
2428       p->pOffset = 0;
2429       intersectdest.iSDParm = tab2;
2430       explainSetInteger(iSub2, pParse->iNextSelectId);
2431       rc = sqlite3Select(pParse, p, &intersectdest);
2432       testcase( rc!=SQLITE_OK );
2433       pDelete = p->pPrior;
2434       p->pPrior = pPrior;
2435       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2436       sqlite3ExprDelete(db, p->pLimit);
2437       p->pLimit = pLimit;
2438       p->pOffset = pOffset;
2439 
2440       /* Generate code to take the intersection of the two temporary
2441       ** tables.
2442       */
2443       assert( p->pEList );
2444       if( dest.eDest==SRT_Output ){
2445         Select *pFirst = p;
2446         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2447         generateColumnNames(pParse, 0, pFirst->pEList);
2448       }
2449       iBreak = sqlite3VdbeMakeLabel(v);
2450       iCont = sqlite3VdbeMakeLabel(v);
2451       computeLimitRegisters(pParse, p, iBreak);
2452       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2453       r1 = sqlite3GetTempReg(pParse);
2454       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2455       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2456       sqlite3ReleaseTempReg(pParse, r1);
2457       selectInnerLoop(pParse, p, p->pEList, tab1,
2458                       0, 0, &dest, iCont, iBreak);
2459       sqlite3VdbeResolveLabel(v, iCont);
2460       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2461       sqlite3VdbeResolveLabel(v, iBreak);
2462       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2463       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2464       break;
2465     }
2466   }
2467 
2468   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2469 
2470   /* Compute collating sequences used by
2471   ** temporary tables needed to implement the compound select.
2472   ** Attach the KeyInfo structure to all temporary tables.
2473   **
2474   ** This section is run by the right-most SELECT statement only.
2475   ** SELECT statements to the left always skip this part.  The right-most
2476   ** SELECT might also skip this part if it has no ORDER BY clause and
2477   ** no temp tables are required.
2478   */
2479   if( p->selFlags & SF_UsesEphemeral ){
2480     int i;                        /* Loop counter */
2481     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2482     Select *pLoop;                /* For looping through SELECT statements */
2483     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2484     int nCol;                     /* Number of columns in result set */
2485 
2486     assert( p->pNext==0 );
2487     nCol = p->pEList->nExpr;
2488     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2489     if( !pKeyInfo ){
2490       rc = SQLITE_NOMEM;
2491       goto multi_select_end;
2492     }
2493     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2494       *apColl = multiSelectCollSeq(pParse, p, i);
2495       if( 0==*apColl ){
2496         *apColl = db->pDfltColl;
2497       }
2498     }
2499 
2500     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2501       for(i=0; i<2; i++){
2502         int addr = pLoop->addrOpenEphm[i];
2503         if( addr<0 ){
2504           /* If [0] is unused then [1] is also unused.  So we can
2505           ** always safely abort as soon as the first unused slot is found */
2506           assert( pLoop->addrOpenEphm[1]<0 );
2507           break;
2508         }
2509         sqlite3VdbeChangeP2(v, addr, nCol);
2510         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2511                             P4_KEYINFO);
2512         pLoop->addrOpenEphm[i] = -1;
2513       }
2514     }
2515     sqlite3KeyInfoUnref(pKeyInfo);
2516   }
2517 
2518 multi_select_end:
2519   pDest->iSdst = dest.iSdst;
2520   pDest->nSdst = dest.nSdst;
2521   sqlite3SelectDelete(db, pDelete);
2522   return rc;
2523 }
2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2525 
2526 /*
2527 ** Code an output subroutine for a coroutine implementation of a
2528 ** SELECT statment.
2529 **
2530 ** The data to be output is contained in pIn->iSdst.  There are
2531 ** pIn->nSdst columns to be output.  pDest is where the output should
2532 ** be sent.
2533 **
2534 ** regReturn is the number of the register holding the subroutine
2535 ** return address.
2536 **
2537 ** If regPrev>0 then it is the first register in a vector that
2538 ** records the previous output.  mem[regPrev] is a flag that is false
2539 ** if there has been no previous output.  If regPrev>0 then code is
2540 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2541 ** keys.
2542 **
2543 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2544 ** iBreak.
2545 */
2546 static int generateOutputSubroutine(
2547   Parse *pParse,          /* Parsing context */
2548   Select *p,              /* The SELECT statement */
2549   SelectDest *pIn,        /* Coroutine supplying data */
2550   SelectDest *pDest,      /* Where to send the data */
2551   int regReturn,          /* The return address register */
2552   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2553   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2554   int iBreak              /* Jump here if we hit the LIMIT */
2555 ){
2556   Vdbe *v = pParse->pVdbe;
2557   int iContinue;
2558   int addr;
2559 
2560   addr = sqlite3VdbeCurrentAddr(v);
2561   iContinue = sqlite3VdbeMakeLabel(v);
2562 
2563   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2564   */
2565   if( regPrev ){
2566     int j1, j2;
2567     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2568     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2569                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2570     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2571     sqlite3VdbeJumpHere(v, j1);
2572     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2573     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2574   }
2575   if( pParse->db->mallocFailed ) return 0;
2576 
2577   /* Suppress the first OFFSET entries if there is an OFFSET clause
2578   */
2579   codeOffset(v, p->iOffset, iContinue);
2580 
2581   switch( pDest->eDest ){
2582     /* Store the result as data using a unique key.
2583     */
2584     case SRT_Table:
2585     case SRT_EphemTab: {
2586       int r1 = sqlite3GetTempReg(pParse);
2587       int r2 = sqlite3GetTempReg(pParse);
2588       testcase( pDest->eDest==SRT_Table );
2589       testcase( pDest->eDest==SRT_EphemTab );
2590       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2591       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2592       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2593       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2594       sqlite3ReleaseTempReg(pParse, r2);
2595       sqlite3ReleaseTempReg(pParse, r1);
2596       break;
2597     }
2598 
2599 #ifndef SQLITE_OMIT_SUBQUERY
2600     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2601     ** then there should be a single item on the stack.  Write this
2602     ** item into the set table with bogus data.
2603     */
2604     case SRT_Set: {
2605       int r1;
2606       assert( pIn->nSdst==1 || pParse->nErr>0 );
2607       pDest->affSdst =
2608          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2609       r1 = sqlite3GetTempReg(pParse);
2610       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2611       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2612       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2613       sqlite3ReleaseTempReg(pParse, r1);
2614       break;
2615     }
2616 
2617 #if 0  /* Never occurs on an ORDER BY query */
2618     /* If any row exist in the result set, record that fact and abort.
2619     */
2620     case SRT_Exists: {
2621       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2622       /* The LIMIT clause will terminate the loop for us */
2623       break;
2624     }
2625 #endif
2626 
2627     /* If this is a scalar select that is part of an expression, then
2628     ** store the results in the appropriate memory cell and break out
2629     ** of the scan loop.
2630     */
2631     case SRT_Mem: {
2632       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2633       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2634       /* The LIMIT clause will jump out of the loop for us */
2635       break;
2636     }
2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2638 
2639     /* The results are stored in a sequence of registers
2640     ** starting at pDest->iSdst.  Then the co-routine yields.
2641     */
2642     case SRT_Coroutine: {
2643       if( pDest->iSdst==0 ){
2644         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2645         pDest->nSdst = pIn->nSdst;
2646       }
2647       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2648       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2649       break;
2650     }
2651 
2652     /* If none of the above, then the result destination must be
2653     ** SRT_Output.  This routine is never called with any other
2654     ** destination other than the ones handled above or SRT_Output.
2655     **
2656     ** For SRT_Output, results are stored in a sequence of registers.
2657     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2658     ** return the next row of result.
2659     */
2660     default: {
2661       assert( pDest->eDest==SRT_Output );
2662       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2663       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2664       break;
2665     }
2666   }
2667 
2668   /* Jump to the end of the loop if the LIMIT is reached.
2669   */
2670   if( p->iLimit ){
2671     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2672   }
2673 
2674   /* Generate the subroutine return
2675   */
2676   sqlite3VdbeResolveLabel(v, iContinue);
2677   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2678 
2679   return addr;
2680 }
2681 
2682 /*
2683 ** Alternative compound select code generator for cases when there
2684 ** is an ORDER BY clause.
2685 **
2686 ** We assume a query of the following form:
2687 **
2688 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2689 **
2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2692 ** co-routines.  Then run the co-routines in parallel and merge the results
2693 ** into the output.  In addition to the two coroutines (called selectA and
2694 ** selectB) there are 7 subroutines:
2695 **
2696 **    outA:    Move the output of the selectA coroutine into the output
2697 **             of the compound query.
2698 **
2699 **    outB:    Move the output of the selectB coroutine into the output
2700 **             of the compound query.  (Only generated for UNION and
2701 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2702 **             appears only in B.)
2703 **
2704 **    AltB:    Called when there is data from both coroutines and A<B.
2705 **
2706 **    AeqB:    Called when there is data from both coroutines and A==B.
2707 **
2708 **    AgtB:    Called when there is data from both coroutines and A>B.
2709 **
2710 **    EofA:    Called when data is exhausted from selectA.
2711 **
2712 **    EofB:    Called when data is exhausted from selectB.
2713 **
2714 ** The implementation of the latter five subroutines depend on which
2715 ** <operator> is used:
2716 **
2717 **
2718 **             UNION ALL         UNION            EXCEPT          INTERSECT
2719 **          -------------  -----------------  --------------  -----------------
2720 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2721 **
2722 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2723 **
2724 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2725 **
2726 **   EofA:   outB, nextB      outB, nextB          halt             halt
2727 **
2728 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2729 **
2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2732 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2733 ** following nextX causes a jump to the end of the select processing.
2734 **
2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2736 ** within the output subroutine.  The regPrev register set holds the previously
2737 ** output value.  A comparison is made against this value and the output
2738 ** is skipped if the next results would be the same as the previous.
2739 **
2740 ** The implementation plan is to implement the two coroutines and seven
2741 ** subroutines first, then put the control logic at the bottom.  Like this:
2742 **
2743 **          goto Init
2744 **     coA: coroutine for left query (A)
2745 **     coB: coroutine for right query (B)
2746 **    outA: output one row of A
2747 **    outB: output one row of B (UNION and UNION ALL only)
2748 **    EofA: ...
2749 **    EofB: ...
2750 **    AltB: ...
2751 **    AeqB: ...
2752 **    AgtB: ...
2753 **    Init: initialize coroutine registers
2754 **          yield coA
2755 **          if eof(A) goto EofA
2756 **          yield coB
2757 **          if eof(B) goto EofB
2758 **    Cmpr: Compare A, B
2759 **          Jump AltB, AeqB, AgtB
2760 **     End: ...
2761 **
2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2763 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2764 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2765 ** and AgtB jump to either L2 or to one of EofA or EofB.
2766 */
2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2768 static int multiSelectOrderBy(
2769   Parse *pParse,        /* Parsing context */
2770   Select *p,            /* The right-most of SELECTs to be coded */
2771   SelectDest *pDest     /* What to do with query results */
2772 ){
2773   int i, j;             /* Loop counters */
2774   Select *pPrior;       /* Another SELECT immediately to our left */
2775   Vdbe *v;              /* Generate code to this VDBE */
2776   SelectDest destA;     /* Destination for coroutine A */
2777   SelectDest destB;     /* Destination for coroutine B */
2778   int regAddrA;         /* Address register for select-A coroutine */
2779   int regAddrB;         /* Address register for select-B coroutine */
2780   int addrSelectA;      /* Address of the select-A coroutine */
2781   int addrSelectB;      /* Address of the select-B coroutine */
2782   int regOutA;          /* Address register for the output-A subroutine */
2783   int regOutB;          /* Address register for the output-B subroutine */
2784   int addrOutA;         /* Address of the output-A subroutine */
2785   int addrOutB = 0;     /* Address of the output-B subroutine */
2786   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2787   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2788   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2789   int addrAltB;         /* Address of the A<B subroutine */
2790   int addrAeqB;         /* Address of the A==B subroutine */
2791   int addrAgtB;         /* Address of the A>B subroutine */
2792   int regLimitA;        /* Limit register for select-A */
2793   int regLimitB;        /* Limit register for select-A */
2794   int regPrev;          /* A range of registers to hold previous output */
2795   int savedLimit;       /* Saved value of p->iLimit */
2796   int savedOffset;      /* Saved value of p->iOffset */
2797   int labelCmpr;        /* Label for the start of the merge algorithm */
2798   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2799   int j1;               /* Jump instructions that get retargetted */
2800   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2801   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2802   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2803   sqlite3 *db;          /* Database connection */
2804   ExprList *pOrderBy;   /* The ORDER BY clause */
2805   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2806   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2807 #ifndef SQLITE_OMIT_EXPLAIN
2808   int iSub1;            /* EQP id of left-hand query */
2809   int iSub2;            /* EQP id of right-hand query */
2810 #endif
2811 
2812   assert( p->pOrderBy!=0 );
2813   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2814   db = pParse->db;
2815   v = pParse->pVdbe;
2816   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2817   labelEnd = sqlite3VdbeMakeLabel(v);
2818   labelCmpr = sqlite3VdbeMakeLabel(v);
2819 
2820 
2821   /* Patch up the ORDER BY clause
2822   */
2823   op = p->op;
2824   pPrior = p->pPrior;
2825   assert( pPrior->pOrderBy==0 );
2826   pOrderBy = p->pOrderBy;
2827   assert( pOrderBy );
2828   nOrderBy = pOrderBy->nExpr;
2829 
2830   /* For operators other than UNION ALL we have to make sure that
2831   ** the ORDER BY clause covers every term of the result set.  Add
2832   ** terms to the ORDER BY clause as necessary.
2833   */
2834   if( op!=TK_ALL ){
2835     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2836       struct ExprList_item *pItem;
2837       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2838         assert( pItem->u.x.iOrderByCol>0 );
2839         if( pItem->u.x.iOrderByCol==i ) break;
2840       }
2841       if( j==nOrderBy ){
2842         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2843         if( pNew==0 ) return SQLITE_NOMEM;
2844         pNew->flags |= EP_IntValue;
2845         pNew->u.iValue = i;
2846         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2847         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2848       }
2849     }
2850   }
2851 
2852   /* Compute the comparison permutation and keyinfo that is used with
2853   ** the permutation used to determine if the next
2854   ** row of results comes from selectA or selectB.  Also add explicit
2855   ** collations to the ORDER BY clause terms so that when the subqueries
2856   ** to the right and the left are evaluated, they use the correct
2857   ** collation.
2858   */
2859   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2860   if( aPermute ){
2861     struct ExprList_item *pItem;
2862     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2863       assert( pItem->u.x.iOrderByCol>0 );
2864       /* assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ) is also true
2865       ** but only for well-formed SELECT statements. */
2866       testcase( pItem->u.x.iOrderByCol > p->pEList->nExpr );
2867       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2868     }
2869     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2870   }else{
2871     pKeyMerge = 0;
2872   }
2873 
2874   /* Reattach the ORDER BY clause to the query.
2875   */
2876   p->pOrderBy = pOrderBy;
2877   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2878 
2879   /* Allocate a range of temporary registers and the KeyInfo needed
2880   ** for the logic that removes duplicate result rows when the
2881   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2882   */
2883   if( op==TK_ALL ){
2884     regPrev = 0;
2885   }else{
2886     int nExpr = p->pEList->nExpr;
2887     assert( nOrderBy>=nExpr || db->mallocFailed );
2888     regPrev = pParse->nMem+1;
2889     pParse->nMem += nExpr+1;
2890     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2891     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2892     if( pKeyDup ){
2893       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2894       for(i=0; i<nExpr; i++){
2895         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2896         pKeyDup->aSortOrder[i] = 0;
2897       }
2898     }
2899   }
2900 
2901   /* Separate the left and the right query from one another
2902   */
2903   p->pPrior = 0;
2904   pPrior->pNext = 0;
2905   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2906   if( pPrior->pPrior==0 ){
2907     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2908   }
2909 
2910   /* Compute the limit registers */
2911   computeLimitRegisters(pParse, p, labelEnd);
2912   if( p->iLimit && op==TK_ALL ){
2913     regLimitA = ++pParse->nMem;
2914     regLimitB = ++pParse->nMem;
2915     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2916                                   regLimitA);
2917     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2918   }else{
2919     regLimitA = regLimitB = 0;
2920   }
2921   sqlite3ExprDelete(db, p->pLimit);
2922   p->pLimit = 0;
2923   sqlite3ExprDelete(db, p->pOffset);
2924   p->pOffset = 0;
2925 
2926   regAddrA = ++pParse->nMem;
2927   regAddrB = ++pParse->nMem;
2928   regOutA = ++pParse->nMem;
2929   regOutB = ++pParse->nMem;
2930   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2931   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2932 
2933   /* Generate a coroutine to evaluate the SELECT statement to the
2934   ** left of the compound operator - the "A" select.
2935   */
2936   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2937   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2938   VdbeComment((v, "left SELECT"));
2939   pPrior->iLimit = regLimitA;
2940   explainSetInteger(iSub1, pParse->iNextSelectId);
2941   sqlite3Select(pParse, pPrior, &destA);
2942   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2943   sqlite3VdbeJumpHere(v, j1);
2944 
2945   /* Generate a coroutine to evaluate the SELECT statement on
2946   ** the right - the "B" select
2947   */
2948   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2949   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2950   VdbeComment((v, "right SELECT"));
2951   savedLimit = p->iLimit;
2952   savedOffset = p->iOffset;
2953   p->iLimit = regLimitB;
2954   p->iOffset = 0;
2955   explainSetInteger(iSub2, pParse->iNextSelectId);
2956   sqlite3Select(pParse, p, &destB);
2957   p->iLimit = savedLimit;
2958   p->iOffset = savedOffset;
2959   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2960 
2961   /* Generate a subroutine that outputs the current row of the A
2962   ** select as the next output row of the compound select.
2963   */
2964   VdbeNoopComment((v, "Output routine for A"));
2965   addrOutA = generateOutputSubroutine(pParse,
2966                  p, &destA, pDest, regOutA,
2967                  regPrev, pKeyDup, labelEnd);
2968 
2969   /* Generate a subroutine that outputs the current row of the B
2970   ** select as the next output row of the compound select.
2971   */
2972   if( op==TK_ALL || op==TK_UNION ){
2973     VdbeNoopComment((v, "Output routine for B"));
2974     addrOutB = generateOutputSubroutine(pParse,
2975                  p, &destB, pDest, regOutB,
2976                  regPrev, pKeyDup, labelEnd);
2977   }
2978   sqlite3KeyInfoUnref(pKeyDup);
2979 
2980   /* Generate a subroutine to run when the results from select A
2981   ** are exhausted and only data in select B remains.
2982   */
2983   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2984     addrEofA_noB = addrEofA = labelEnd;
2985   }else{
2986     VdbeNoopComment((v, "eof-A subroutine"));
2987     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2988     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2989                                      VdbeCoverage(v);
2990     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2991     p->nSelectRow += pPrior->nSelectRow;
2992   }
2993 
2994   /* Generate a subroutine to run when the results from select B
2995   ** are exhausted and only data in select A remains.
2996   */
2997   if( op==TK_INTERSECT ){
2998     addrEofB = addrEofA;
2999     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3000   }else{
3001     VdbeNoopComment((v, "eof-B subroutine"));
3002     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3003     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3004     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3005   }
3006 
3007   /* Generate code to handle the case of A<B
3008   */
3009   VdbeNoopComment((v, "A-lt-B subroutine"));
3010   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3011   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3012   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3013 
3014   /* Generate code to handle the case of A==B
3015   */
3016   if( op==TK_ALL ){
3017     addrAeqB = addrAltB;
3018   }else if( op==TK_INTERSECT ){
3019     addrAeqB = addrAltB;
3020     addrAltB++;
3021   }else{
3022     VdbeNoopComment((v, "A-eq-B subroutine"));
3023     addrAeqB =
3024     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3025     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3026   }
3027 
3028   /* Generate code to handle the case of A>B
3029   */
3030   VdbeNoopComment((v, "A-gt-B subroutine"));
3031   addrAgtB = sqlite3VdbeCurrentAddr(v);
3032   if( op==TK_ALL || op==TK_UNION ){
3033     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3034   }
3035   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3036   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3037 
3038   /* This code runs once to initialize everything.
3039   */
3040   sqlite3VdbeJumpHere(v, j1);
3041   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3042   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3043 
3044   /* Implement the main merge loop
3045   */
3046   sqlite3VdbeResolveLabel(v, labelCmpr);
3047   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3048   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3049                          (char*)pKeyMerge, P4_KEYINFO);
3050   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3051   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3052 
3053   /* Jump to the this point in order to terminate the query.
3054   */
3055   sqlite3VdbeResolveLabel(v, labelEnd);
3056 
3057   /* Set the number of output columns
3058   */
3059   if( pDest->eDest==SRT_Output ){
3060     Select *pFirst = pPrior;
3061     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3062     generateColumnNames(pParse, 0, pFirst->pEList);
3063   }
3064 
3065   /* Reassembly the compound query so that it will be freed correctly
3066   ** by the calling function */
3067   if( p->pPrior ){
3068     sqlite3SelectDelete(db, p->pPrior);
3069   }
3070   p->pPrior = pPrior;
3071   pPrior->pNext = p;
3072 
3073   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3074   **** subqueries ****/
3075   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3076   return pParse->nErr!=0;
3077 }
3078 #endif
3079 
3080 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3081 /* Forward Declarations */
3082 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3083 static void substSelect(sqlite3*, Select *, int, ExprList *);
3084 
3085 /*
3086 ** Scan through the expression pExpr.  Replace every reference to
3087 ** a column in table number iTable with a copy of the iColumn-th
3088 ** entry in pEList.  (But leave references to the ROWID column
3089 ** unchanged.)
3090 **
3091 ** This routine is part of the flattening procedure.  A subquery
3092 ** whose result set is defined by pEList appears as entry in the
3093 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3094 ** FORM clause entry is iTable.  This routine make the necessary
3095 ** changes to pExpr so that it refers directly to the source table
3096 ** of the subquery rather the result set of the subquery.
3097 */
3098 static Expr *substExpr(
3099   sqlite3 *db,        /* Report malloc errors to this connection */
3100   Expr *pExpr,        /* Expr in which substitution occurs */
3101   int iTable,         /* Table to be substituted */
3102   ExprList *pEList    /* Substitute expressions */
3103 ){
3104   if( pExpr==0 ) return 0;
3105   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3106     if( pExpr->iColumn<0 ){
3107       pExpr->op = TK_NULL;
3108     }else{
3109       Expr *pNew;
3110       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3111       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3112       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3113       sqlite3ExprDelete(db, pExpr);
3114       pExpr = pNew;
3115     }
3116   }else{
3117     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3118     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3119     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3120       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3121     }else{
3122       substExprList(db, pExpr->x.pList, iTable, pEList);
3123     }
3124   }
3125   return pExpr;
3126 }
3127 static void substExprList(
3128   sqlite3 *db,         /* Report malloc errors here */
3129   ExprList *pList,     /* List to scan and in which to make substitutes */
3130   int iTable,          /* Table to be substituted */
3131   ExprList *pEList     /* Substitute values */
3132 ){
3133   int i;
3134   if( pList==0 ) return;
3135   for(i=0; i<pList->nExpr; i++){
3136     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3137   }
3138 }
3139 static void substSelect(
3140   sqlite3 *db,         /* Report malloc errors here */
3141   Select *p,           /* SELECT statement in which to make substitutions */
3142   int iTable,          /* Table to be replaced */
3143   ExprList *pEList     /* Substitute values */
3144 ){
3145   SrcList *pSrc;
3146   struct SrcList_item *pItem;
3147   int i;
3148   if( !p ) return;
3149   substExprList(db, p->pEList, iTable, pEList);
3150   substExprList(db, p->pGroupBy, iTable, pEList);
3151   substExprList(db, p->pOrderBy, iTable, pEList);
3152   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3153   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3154   substSelect(db, p->pPrior, iTable, pEList);
3155   pSrc = p->pSrc;
3156   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3157   if( ALWAYS(pSrc) ){
3158     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3159       substSelect(db, pItem->pSelect, iTable, pEList);
3160     }
3161   }
3162 }
3163 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3164 
3165 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3166 /*
3167 ** This routine attempts to flatten subqueries as a performance optimization.
3168 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3169 **
3170 ** To understand the concept of flattening, consider the following
3171 ** query:
3172 **
3173 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3174 **
3175 ** The default way of implementing this query is to execute the
3176 ** subquery first and store the results in a temporary table, then
3177 ** run the outer query on that temporary table.  This requires two
3178 ** passes over the data.  Furthermore, because the temporary table
3179 ** has no indices, the WHERE clause on the outer query cannot be
3180 ** optimized.
3181 **
3182 ** This routine attempts to rewrite queries such as the above into
3183 ** a single flat select, like this:
3184 **
3185 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3186 **
3187 ** The code generated for this simplification gives the same result
3188 ** but only has to scan the data once.  And because indices might
3189 ** exist on the table t1, a complete scan of the data might be
3190 ** avoided.
3191 **
3192 ** Flattening is only attempted if all of the following are true:
3193 **
3194 **   (1)  The subquery and the outer query do not both use aggregates.
3195 **
3196 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3197 **        and (2b) the outer query does not use subqueries other than the one
3198 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3199 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3200 **
3201 **   (3)  The subquery is not the right operand of a left outer join
3202 **        (Originally ticket #306.  Strengthened by ticket #3300)
3203 **
3204 **   (4)  The subquery is not DISTINCT.
3205 **
3206 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3207 **        sub-queries that were excluded from this optimization. Restriction
3208 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3209 **
3210 **   (6)  The subquery does not use aggregates or the outer query is not
3211 **        DISTINCT.
3212 **
3213 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3214 **        A FROM clause, consider adding a FROM close with the special
3215 **        table sqlite_once that consists of a single row containing a
3216 **        single NULL.
3217 **
3218 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3219 **
3220 **   (9)  The subquery does not use LIMIT or the outer query does not use
3221 **        aggregates.
3222 **
3223 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3224 **        accidently carried the comment forward until 2014-09-15.  Original
3225 **        text: "The subquery does not use aggregates or the outer query does not
3226 **        use LIMIT."
3227 **
3228 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3229 **
3230 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3231 **        a separate restriction deriving from ticket #350.
3232 **
3233 **  (13)  The subquery and outer query do not both use LIMIT.
3234 **
3235 **  (14)  The subquery does not use OFFSET.
3236 **
3237 **  (15)  The outer query is not part of a compound select or the
3238 **        subquery does not have a LIMIT clause.
3239 **        (See ticket #2339 and ticket [02a8e81d44]).
3240 **
3241 **  (16)  The outer query is not an aggregate or the subquery does
3242 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3243 **        until we introduced the group_concat() function.
3244 **
3245 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3246 **        compound clause made up entirely of non-aggregate queries, and
3247 **        the parent query:
3248 **
3249 **          * is not itself part of a compound select,
3250 **          * is not an aggregate or DISTINCT query, and
3251 **          * is not a join
3252 **
3253 **        The parent and sub-query may contain WHERE clauses. Subject to
3254 **        rules (11), (13) and (14), they may also contain ORDER BY,
3255 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3256 **        operator other than UNION ALL because all the other compound
3257 **        operators have an implied DISTINCT which is disallowed by
3258 **        restriction (4).
3259 **
3260 **        Also, each component of the sub-query must return the same number
3261 **        of result columns. This is actually a requirement for any compound
3262 **        SELECT statement, but all the code here does is make sure that no
3263 **        such (illegal) sub-query is flattened. The caller will detect the
3264 **        syntax error and return a detailed message.
3265 **
3266 **  (18)  If the sub-query is a compound select, then all terms of the
3267 **        ORDER by clause of the parent must be simple references to
3268 **        columns of the sub-query.
3269 **
3270 **  (19)  The subquery does not use LIMIT or the outer query does not
3271 **        have a WHERE clause.
3272 **
3273 **  (20)  If the sub-query is a compound select, then it must not use
3274 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3275 **        somewhat by saying that the terms of the ORDER BY clause must
3276 **        appear as unmodified result columns in the outer query.  But we
3277 **        have other optimizations in mind to deal with that case.
3278 **
3279 **  (21)  The subquery does not use LIMIT or the outer query is not
3280 **        DISTINCT.  (See ticket [752e1646fc]).
3281 **
3282 **  (22)  The subquery is not a recursive CTE.
3283 **
3284 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3285 **        compound query. This restriction is because transforming the
3286 **        parent to a compound query confuses the code that handles
3287 **        recursive queries in multiSelect().
3288 **
3289 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3290 **        or max() functions.  (Without this restriction, a query like:
3291 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3292 **        return the value X for which Y was maximal.)
3293 **
3294 **
3295 ** In this routine, the "p" parameter is a pointer to the outer query.
3296 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3297 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3298 **
3299 ** If flattening is not attempted, this routine is a no-op and returns 0.
3300 ** If flattening is attempted this routine returns 1.
3301 **
3302 ** All of the expression analysis must occur on both the outer query and
3303 ** the subquery before this routine runs.
3304 */
3305 static int flattenSubquery(
3306   Parse *pParse,       /* Parsing context */
3307   Select *p,           /* The parent or outer SELECT statement */
3308   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3309   int isAgg,           /* True if outer SELECT uses aggregate functions */
3310   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3311 ){
3312   const char *zSavedAuthContext = pParse->zAuthContext;
3313   Select *pParent;
3314   Select *pSub;       /* The inner query or "subquery" */
3315   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3316   SrcList *pSrc;      /* The FROM clause of the outer query */
3317   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3318   ExprList *pList;    /* The result set of the outer query */
3319   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3320   int i;              /* Loop counter */
3321   Expr *pWhere;                    /* The WHERE clause */
3322   struct SrcList_item *pSubitem;   /* The subquery */
3323   sqlite3 *db = pParse->db;
3324 
3325   /* Check to see if flattening is permitted.  Return 0 if not.
3326   */
3327   assert( p!=0 );
3328   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3329   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3330   pSrc = p->pSrc;
3331   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3332   pSubitem = &pSrc->a[iFrom];
3333   iParent = pSubitem->iCursor;
3334   pSub = pSubitem->pSelect;
3335   assert( pSub!=0 );
3336   if( subqueryIsAgg ){
3337     if( isAgg ) return 0;                                /* Restriction (1)   */
3338     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3339     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3340      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3341      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3342     ){
3343       return 0;                                          /* Restriction (2b)  */
3344     }
3345   }
3346 
3347   pSubSrc = pSub->pSrc;
3348   assert( pSubSrc );
3349   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3350   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3351   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3352   ** became arbitrary expressions, we were forced to add restrictions (13)
3353   ** and (14). */
3354   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3355   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3356   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3357     return 0;                                            /* Restriction (15) */
3358   }
3359   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3360   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3361   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3362      return 0;         /* Restrictions (8)(9) */
3363   }
3364   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3365      return 0;         /* Restriction (6)  */
3366   }
3367   if( p->pOrderBy && pSub->pOrderBy ){
3368      return 0;                                           /* Restriction (11) */
3369   }
3370   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3371   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3372   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3373      return 0;         /* Restriction (21) */
3374   }
3375   testcase( pSub->selFlags & SF_Recursive );
3376   testcase( pSub->selFlags & SF_MinMaxAgg );
3377   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3378     return 0; /* Restrictions (22) and (24) */
3379   }
3380   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3381     return 0; /* Restriction (23) */
3382   }
3383 
3384   /* OBSOLETE COMMENT 1:
3385   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3386   ** not used as the right operand of an outer join.  Examples of why this
3387   ** is not allowed:
3388   **
3389   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3390   **
3391   ** If we flatten the above, we would get
3392   **
3393   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3394   **
3395   ** which is not at all the same thing.
3396   **
3397   ** OBSOLETE COMMENT 2:
3398   ** Restriction 12:  If the subquery is the right operand of a left outer
3399   ** join, make sure the subquery has no WHERE clause.
3400   ** An examples of why this is not allowed:
3401   **
3402   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3403   **
3404   ** If we flatten the above, we would get
3405   **
3406   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3407   **
3408   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3409   ** effectively converts the OUTER JOIN into an INNER JOIN.
3410   **
3411   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3412   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3413   ** is fraught with danger.  Best to avoid the whole thing.  If the
3414   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3415   */
3416   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3417     return 0;
3418   }
3419 
3420   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3421   ** use only the UNION ALL operator. And none of the simple select queries
3422   ** that make up the compound SELECT are allowed to be aggregate or distinct
3423   ** queries.
3424   */
3425   if( pSub->pPrior ){
3426     if( pSub->pOrderBy ){
3427       return 0;  /* Restriction 20 */
3428     }
3429     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3430       return 0;
3431     }
3432     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3433       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3434       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3435       assert( pSub->pSrc!=0 );
3436       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3437        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3438        || pSub1->pSrc->nSrc<1
3439        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3440       ){
3441         return 0;
3442       }
3443       testcase( pSub1->pSrc->nSrc>1 );
3444     }
3445 
3446     /* Restriction 18. */
3447     if( p->pOrderBy ){
3448       int ii;
3449       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3450         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3451       }
3452     }
3453   }
3454 
3455   /***** If we reach this point, flattening is permitted. *****/
3456   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3457                    pSub->zSelName, pSub, iFrom));
3458 
3459   /* Authorize the subquery */
3460   pParse->zAuthContext = pSubitem->zName;
3461   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3462   testcase( i==SQLITE_DENY );
3463   pParse->zAuthContext = zSavedAuthContext;
3464 
3465   /* If the sub-query is a compound SELECT statement, then (by restrictions
3466   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3467   ** be of the form:
3468   **
3469   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3470   **
3471   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3472   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3473   ** OFFSET clauses and joins them to the left-hand-side of the original
3474   ** using UNION ALL operators. In this case N is the number of simple
3475   ** select statements in the compound sub-query.
3476   **
3477   ** Example:
3478   **
3479   **     SELECT a+1 FROM (
3480   **        SELECT x FROM tab
3481   **        UNION ALL
3482   **        SELECT y FROM tab
3483   **        UNION ALL
3484   **        SELECT abs(z*2) FROM tab2
3485   **     ) WHERE a!=5 ORDER BY 1
3486   **
3487   ** Transformed into:
3488   **
3489   **     SELECT x+1 FROM tab WHERE x+1!=5
3490   **     UNION ALL
3491   **     SELECT y+1 FROM tab WHERE y+1!=5
3492   **     UNION ALL
3493   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3494   **     ORDER BY 1
3495   **
3496   ** We call this the "compound-subquery flattening".
3497   */
3498   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3499     Select *pNew;
3500     ExprList *pOrderBy = p->pOrderBy;
3501     Expr *pLimit = p->pLimit;
3502     Expr *pOffset = p->pOffset;
3503     Select *pPrior = p->pPrior;
3504     p->pOrderBy = 0;
3505     p->pSrc = 0;
3506     p->pPrior = 0;
3507     p->pLimit = 0;
3508     p->pOffset = 0;
3509     pNew = sqlite3SelectDup(db, p, 0);
3510     sqlite3SelectSetName(pNew, pSub->zSelName);
3511     p->pOffset = pOffset;
3512     p->pLimit = pLimit;
3513     p->pOrderBy = pOrderBy;
3514     p->pSrc = pSrc;
3515     p->op = TK_ALL;
3516     if( pNew==0 ){
3517       p->pPrior = pPrior;
3518     }else{
3519       pNew->pPrior = pPrior;
3520       if( pPrior ) pPrior->pNext = pNew;
3521       pNew->pNext = p;
3522       p->pPrior = pNew;
3523       SELECTTRACE(2,pParse,p,
3524          ("compound-subquery flattener creates %s.%p as peer\n",
3525          pNew->zSelName, pNew));
3526     }
3527     if( db->mallocFailed ) return 1;
3528   }
3529 
3530   /* Begin flattening the iFrom-th entry of the FROM clause
3531   ** in the outer query.
3532   */
3533   pSub = pSub1 = pSubitem->pSelect;
3534 
3535   /* Delete the transient table structure associated with the
3536   ** subquery
3537   */
3538   sqlite3DbFree(db, pSubitem->zDatabase);
3539   sqlite3DbFree(db, pSubitem->zName);
3540   sqlite3DbFree(db, pSubitem->zAlias);
3541   pSubitem->zDatabase = 0;
3542   pSubitem->zName = 0;
3543   pSubitem->zAlias = 0;
3544   pSubitem->pSelect = 0;
3545 
3546   /* Defer deleting the Table object associated with the
3547   ** subquery until code generation is
3548   ** complete, since there may still exist Expr.pTab entries that
3549   ** refer to the subquery even after flattening.  Ticket #3346.
3550   **
3551   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3552   */
3553   if( ALWAYS(pSubitem->pTab!=0) ){
3554     Table *pTabToDel = pSubitem->pTab;
3555     if( pTabToDel->nRef==1 ){
3556       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3557       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3558       pToplevel->pZombieTab = pTabToDel;
3559     }else{
3560       pTabToDel->nRef--;
3561     }
3562     pSubitem->pTab = 0;
3563   }
3564 
3565   /* The following loop runs once for each term in a compound-subquery
3566   ** flattening (as described above).  If we are doing a different kind
3567   ** of flattening - a flattening other than a compound-subquery flattening -
3568   ** then this loop only runs once.
3569   **
3570   ** This loop moves all of the FROM elements of the subquery into the
3571   ** the FROM clause of the outer query.  Before doing this, remember
3572   ** the cursor number for the original outer query FROM element in
3573   ** iParent.  The iParent cursor will never be used.  Subsequent code
3574   ** will scan expressions looking for iParent references and replace
3575   ** those references with expressions that resolve to the subquery FROM
3576   ** elements we are now copying in.
3577   */
3578   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3579     int nSubSrc;
3580     u8 jointype = 0;
3581     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3582     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3583     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3584 
3585     if( pSrc ){
3586       assert( pParent==p );  /* First time through the loop */
3587       jointype = pSubitem->jointype;
3588     }else{
3589       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3590       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3591       if( pSrc==0 ){
3592         assert( db->mallocFailed );
3593         break;
3594       }
3595     }
3596 
3597     /* The subquery uses a single slot of the FROM clause of the outer
3598     ** query.  If the subquery has more than one element in its FROM clause,
3599     ** then expand the outer query to make space for it to hold all elements
3600     ** of the subquery.
3601     **
3602     ** Example:
3603     **
3604     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3605     **
3606     ** The outer query has 3 slots in its FROM clause.  One slot of the
3607     ** outer query (the middle slot) is used by the subquery.  The next
3608     ** block of code will expand the out query to 4 slots.  The middle
3609     ** slot is expanded to two slots in order to make space for the
3610     ** two elements in the FROM clause of the subquery.
3611     */
3612     if( nSubSrc>1 ){
3613       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3614       if( db->mallocFailed ){
3615         break;
3616       }
3617     }
3618 
3619     /* Transfer the FROM clause terms from the subquery into the
3620     ** outer query.
3621     */
3622     for(i=0; i<nSubSrc; i++){
3623       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3624       pSrc->a[i+iFrom] = pSubSrc->a[i];
3625       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3626     }
3627     pSrc->a[iFrom].jointype = jointype;
3628 
3629     /* Now begin substituting subquery result set expressions for
3630     ** references to the iParent in the outer query.
3631     **
3632     ** Example:
3633     **
3634     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3635     **   \                     \_____________ subquery __________/          /
3636     **    \_____________________ outer query ______________________________/
3637     **
3638     ** We look at every expression in the outer query and every place we see
3639     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3640     */
3641     pList = pParent->pEList;
3642     for(i=0; i<pList->nExpr; i++){
3643       if( pList->a[i].zName==0 ){
3644         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3645         sqlite3Dequote(zName);
3646         pList->a[i].zName = zName;
3647       }
3648     }
3649     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3650     if( isAgg ){
3651       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3652       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3653     }
3654     if( pSub->pOrderBy ){
3655       /* At this point, any non-zero iOrderByCol values indicate that the
3656       ** ORDER BY column expression is identical to the iOrderByCol'th
3657       ** expression returned by SELECT statement pSub. Since these values
3658       ** do not necessarily correspond to columns in SELECT statement pParent,
3659       ** zero them before transfering the ORDER BY clause.
3660       **
3661       ** Not doing this may cause an error if a subsequent call to this
3662       ** function attempts to flatten a compound sub-query into pParent
3663       ** (the only way this can happen is if the compound sub-query is
3664       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3665       ExprList *pOrderBy = pSub->pOrderBy;
3666       for(i=0; i<pOrderBy->nExpr; i++){
3667         pOrderBy->a[i].u.x.iOrderByCol = 0;
3668       }
3669       assert( pParent->pOrderBy==0 );
3670       assert( pSub->pPrior==0 );
3671       pParent->pOrderBy = pOrderBy;
3672       pSub->pOrderBy = 0;
3673     }else if( pParent->pOrderBy ){
3674       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3675     }
3676     if( pSub->pWhere ){
3677       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3678     }else{
3679       pWhere = 0;
3680     }
3681     if( subqueryIsAgg ){
3682       assert( pParent->pHaving==0 );
3683       pParent->pHaving = pParent->pWhere;
3684       pParent->pWhere = pWhere;
3685       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3686       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3687                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3688       assert( pParent->pGroupBy==0 );
3689       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3690     }else{
3691       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3692       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3693     }
3694 
3695     /* The flattened query is distinct if either the inner or the
3696     ** outer query is distinct.
3697     */
3698     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3699 
3700     /*
3701     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3702     **
3703     ** One is tempted to try to add a and b to combine the limits.  But this
3704     ** does not work if either limit is negative.
3705     */
3706     if( pSub->pLimit ){
3707       pParent->pLimit = pSub->pLimit;
3708       pSub->pLimit = 0;
3709     }
3710   }
3711 
3712   /* Finially, delete what is left of the subquery and return
3713   ** success.
3714   */
3715   sqlite3SelectDelete(db, pSub1);
3716 
3717 #if SELECTTRACE_ENABLED
3718   if( sqlite3SelectTrace & 0x100 ){
3719     sqlite3DebugPrintf("After flattening:\n");
3720     sqlite3TreeViewSelect(0, p, 0);
3721   }
3722 #endif
3723 
3724   return 1;
3725 }
3726 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3727 
3728 /*
3729 ** Based on the contents of the AggInfo structure indicated by the first
3730 ** argument, this function checks if the following are true:
3731 **
3732 **    * the query contains just a single aggregate function,
3733 **    * the aggregate function is either min() or max(), and
3734 **    * the argument to the aggregate function is a column value.
3735 **
3736 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3737 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3738 ** list of arguments passed to the aggregate before returning.
3739 **
3740 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3741 ** WHERE_ORDERBY_NORMAL is returned.
3742 */
3743 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3744   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3745 
3746   *ppMinMax = 0;
3747   if( pAggInfo->nFunc==1 ){
3748     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3749     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3750 
3751     assert( pExpr->op==TK_AGG_FUNCTION );
3752     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3753       const char *zFunc = pExpr->u.zToken;
3754       if( sqlite3StrICmp(zFunc, "min")==0 ){
3755         eRet = WHERE_ORDERBY_MIN;
3756         *ppMinMax = pEList;
3757       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3758         eRet = WHERE_ORDERBY_MAX;
3759         *ppMinMax = pEList;
3760       }
3761     }
3762   }
3763 
3764   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3765   return eRet;
3766 }
3767 
3768 /*
3769 ** The select statement passed as the first argument is an aggregate query.
3770 ** The second argument is the associated aggregate-info object. This
3771 ** function tests if the SELECT is of the form:
3772 **
3773 **   SELECT count(*) FROM <tbl>
3774 **
3775 ** where table is a database table, not a sub-select or view. If the query
3776 ** does match this pattern, then a pointer to the Table object representing
3777 ** <tbl> is returned. Otherwise, 0 is returned.
3778 */
3779 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3780   Table *pTab;
3781   Expr *pExpr;
3782 
3783   assert( !p->pGroupBy );
3784 
3785   if( p->pWhere || p->pEList->nExpr!=1
3786    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3787   ){
3788     return 0;
3789   }
3790   pTab = p->pSrc->a[0].pTab;
3791   pExpr = p->pEList->a[0].pExpr;
3792   assert( pTab && !pTab->pSelect && pExpr );
3793 
3794   if( IsVirtual(pTab) ) return 0;
3795   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3796   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3797   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3798   if( pExpr->flags&EP_Distinct ) return 0;
3799 
3800   return pTab;
3801 }
3802 
3803 /*
3804 ** If the source-list item passed as an argument was augmented with an
3805 ** INDEXED BY clause, then try to locate the specified index. If there
3806 ** was such a clause and the named index cannot be found, return
3807 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3808 ** pFrom->pIndex and return SQLITE_OK.
3809 */
3810 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3811   if( pFrom->pTab && pFrom->zIndex ){
3812     Table *pTab = pFrom->pTab;
3813     char *zIndex = pFrom->zIndex;
3814     Index *pIdx;
3815     for(pIdx=pTab->pIndex;
3816         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3817         pIdx=pIdx->pNext
3818     );
3819     if( !pIdx ){
3820       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3821       pParse->checkSchema = 1;
3822       return SQLITE_ERROR;
3823     }
3824     pFrom->pIndex = pIdx;
3825   }
3826   return SQLITE_OK;
3827 }
3828 /*
3829 ** Detect compound SELECT statements that use an ORDER BY clause with
3830 ** an alternative collating sequence.
3831 **
3832 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3833 **
3834 ** These are rewritten as a subquery:
3835 **
3836 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3837 **     ORDER BY ... COLLATE ...
3838 **
3839 ** This transformation is necessary because the multiSelectOrderBy() routine
3840 ** above that generates the code for a compound SELECT with an ORDER BY clause
3841 ** uses a merge algorithm that requires the same collating sequence on the
3842 ** result columns as on the ORDER BY clause.  See ticket
3843 ** http://www.sqlite.org/src/info/6709574d2a
3844 **
3845 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3846 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3847 ** there are COLLATE terms in the ORDER BY.
3848 */
3849 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3850   int i;
3851   Select *pNew;
3852   Select *pX;
3853   sqlite3 *db;
3854   struct ExprList_item *a;
3855   SrcList *pNewSrc;
3856   Parse *pParse;
3857   Token dummy;
3858 
3859   if( p->pPrior==0 ) return WRC_Continue;
3860   if( p->pOrderBy==0 ) return WRC_Continue;
3861   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3862   if( pX==0 ) return WRC_Continue;
3863   a = p->pOrderBy->a;
3864   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3865     if( a[i].pExpr->flags & EP_Collate ) break;
3866   }
3867   if( i<0 ) return WRC_Continue;
3868 
3869   /* If we reach this point, that means the transformation is required. */
3870 
3871   pParse = pWalker->pParse;
3872   db = pParse->db;
3873   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3874   if( pNew==0 ) return WRC_Abort;
3875   memset(&dummy, 0, sizeof(dummy));
3876   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3877   if( pNewSrc==0 ) return WRC_Abort;
3878   *pNew = *p;
3879   p->pSrc = pNewSrc;
3880   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3881   p->op = TK_SELECT;
3882   p->pWhere = 0;
3883   pNew->pGroupBy = 0;
3884   pNew->pHaving = 0;
3885   pNew->pOrderBy = 0;
3886   p->pPrior = 0;
3887   p->pNext = 0;
3888   p->pWith = 0;
3889   p->selFlags &= ~SF_Compound;
3890   assert( (p->selFlags & SF_Converted)==0 );
3891   p->selFlags |= SF_Converted;
3892   assert( pNew->pPrior!=0 );
3893   pNew->pPrior->pNext = pNew;
3894   pNew->pLimit = 0;
3895   pNew->pOffset = 0;
3896   return WRC_Continue;
3897 }
3898 
3899 #ifndef SQLITE_OMIT_CTE
3900 /*
3901 ** Argument pWith (which may be NULL) points to a linked list of nested
3902 ** WITH contexts, from inner to outermost. If the table identified by
3903 ** FROM clause element pItem is really a common-table-expression (CTE)
3904 ** then return a pointer to the CTE definition for that table. Otherwise
3905 ** return NULL.
3906 **
3907 ** If a non-NULL value is returned, set *ppContext to point to the With
3908 ** object that the returned CTE belongs to.
3909 */
3910 static struct Cte *searchWith(
3911   With *pWith,                    /* Current outermost WITH clause */
3912   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3913   With **ppContext                /* OUT: WITH clause return value belongs to */
3914 ){
3915   const char *zName;
3916   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3917     With *p;
3918     for(p=pWith; p; p=p->pOuter){
3919       int i;
3920       for(i=0; i<p->nCte; i++){
3921         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3922           *ppContext = p;
3923           return &p->a[i];
3924         }
3925       }
3926     }
3927   }
3928   return 0;
3929 }
3930 
3931 /* The code generator maintains a stack of active WITH clauses
3932 ** with the inner-most WITH clause being at the top of the stack.
3933 **
3934 ** This routine pushes the WITH clause passed as the second argument
3935 ** onto the top of the stack. If argument bFree is true, then this
3936 ** WITH clause will never be popped from the stack. In this case it
3937 ** should be freed along with the Parse object. In other cases, when
3938 ** bFree==0, the With object will be freed along with the SELECT
3939 ** statement with which it is associated.
3940 */
3941 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3942   assert( bFree==0 || pParse->pWith==0 );
3943   if( pWith ){
3944     pWith->pOuter = pParse->pWith;
3945     pParse->pWith = pWith;
3946     pParse->bFreeWith = bFree;
3947   }
3948 }
3949 
3950 /*
3951 ** This function checks if argument pFrom refers to a CTE declared by
3952 ** a WITH clause on the stack currently maintained by the parser. And,
3953 ** if currently processing a CTE expression, if it is a recursive
3954 ** reference to the current CTE.
3955 **
3956 ** If pFrom falls into either of the two categories above, pFrom->pTab
3957 ** and other fields are populated accordingly. The caller should check
3958 ** (pFrom->pTab!=0) to determine whether or not a successful match
3959 ** was found.
3960 **
3961 ** Whether or not a match is found, SQLITE_OK is returned if no error
3962 ** occurs. If an error does occur, an error message is stored in the
3963 ** parser and some error code other than SQLITE_OK returned.
3964 */
3965 static int withExpand(
3966   Walker *pWalker,
3967   struct SrcList_item *pFrom
3968 ){
3969   Parse *pParse = pWalker->pParse;
3970   sqlite3 *db = pParse->db;
3971   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3972   With *pWith;                    /* WITH clause that pCte belongs to */
3973 
3974   assert( pFrom->pTab==0 );
3975 
3976   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3977   if( pCte ){
3978     Table *pTab;
3979     ExprList *pEList;
3980     Select *pSel;
3981     Select *pLeft;                /* Left-most SELECT statement */
3982     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3983     With *pSavedWith;             /* Initial value of pParse->pWith */
3984 
3985     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3986     ** recursive reference to CTE pCte. Leave an error in pParse and return
3987     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3988     ** In this case, proceed.  */
3989     if( pCte->zErr ){
3990       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3991       return SQLITE_ERROR;
3992     }
3993 
3994     assert( pFrom->pTab==0 );
3995     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3996     if( pTab==0 ) return WRC_Abort;
3997     pTab->nRef = 1;
3998     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3999     pTab->iPKey = -1;
4000     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4001     pTab->tabFlags |= TF_Ephemeral;
4002     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4003     if( db->mallocFailed ) return SQLITE_NOMEM;
4004     assert( pFrom->pSelect );
4005 
4006     /* Check if this is a recursive CTE. */
4007     pSel = pFrom->pSelect;
4008     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4009     if( bMayRecursive ){
4010       int i;
4011       SrcList *pSrc = pFrom->pSelect->pSrc;
4012       for(i=0; i<pSrc->nSrc; i++){
4013         struct SrcList_item *pItem = &pSrc->a[i];
4014         if( pItem->zDatabase==0
4015          && pItem->zName!=0
4016          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4017           ){
4018           pItem->pTab = pTab;
4019           pItem->isRecursive = 1;
4020           pTab->nRef++;
4021           pSel->selFlags |= SF_Recursive;
4022         }
4023       }
4024     }
4025 
4026     /* Only one recursive reference is permitted. */
4027     if( pTab->nRef>2 ){
4028       sqlite3ErrorMsg(
4029           pParse, "multiple references to recursive table: %s", pCte->zName
4030       );
4031       return SQLITE_ERROR;
4032     }
4033     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4034 
4035     pCte->zErr = "circular reference: %s";
4036     pSavedWith = pParse->pWith;
4037     pParse->pWith = pWith;
4038     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4039 
4040     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4041     pEList = pLeft->pEList;
4042     if( pCte->pCols ){
4043       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4044         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4045             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4046         );
4047         pParse->pWith = pSavedWith;
4048         return SQLITE_ERROR;
4049       }
4050       pEList = pCte->pCols;
4051     }
4052 
4053     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4054     if( bMayRecursive ){
4055       if( pSel->selFlags & SF_Recursive ){
4056         pCte->zErr = "multiple recursive references: %s";
4057       }else{
4058         pCte->zErr = "recursive reference in a subquery: %s";
4059       }
4060       sqlite3WalkSelect(pWalker, pSel);
4061     }
4062     pCte->zErr = 0;
4063     pParse->pWith = pSavedWith;
4064   }
4065 
4066   return SQLITE_OK;
4067 }
4068 #endif
4069 
4070 #ifndef SQLITE_OMIT_CTE
4071 /*
4072 ** If the SELECT passed as the second argument has an associated WITH
4073 ** clause, pop it from the stack stored as part of the Parse object.
4074 **
4075 ** This function is used as the xSelectCallback2() callback by
4076 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4077 ** names and other FROM clause elements.
4078 */
4079 static void selectPopWith(Walker *pWalker, Select *p){
4080   Parse *pParse = pWalker->pParse;
4081   With *pWith = findRightmost(p)->pWith;
4082   if( pWith!=0 ){
4083     assert( pParse->pWith==pWith );
4084     pParse->pWith = pWith->pOuter;
4085   }
4086 }
4087 #else
4088 #define selectPopWith 0
4089 #endif
4090 
4091 /*
4092 ** This routine is a Walker callback for "expanding" a SELECT statement.
4093 ** "Expanding" means to do the following:
4094 **
4095 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4096 **         element of the FROM clause.
4097 **
4098 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4099 **         defines FROM clause.  When views appear in the FROM clause,
4100 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4101 **         that implements the view.  A copy is made of the view's SELECT
4102 **         statement so that we can freely modify or delete that statement
4103 **         without worrying about messing up the persistent representation
4104 **         of the view.
4105 **
4106 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4107 **         on joins and the ON and USING clause of joins.
4108 **
4109 **    (4)  Scan the list of columns in the result set (pEList) looking
4110 **         for instances of the "*" operator or the TABLE.* operator.
4111 **         If found, expand each "*" to be every column in every table
4112 **         and TABLE.* to be every column in TABLE.
4113 **
4114 */
4115 static int selectExpander(Walker *pWalker, Select *p){
4116   Parse *pParse = pWalker->pParse;
4117   int i, j, k;
4118   SrcList *pTabList;
4119   ExprList *pEList;
4120   struct SrcList_item *pFrom;
4121   sqlite3 *db = pParse->db;
4122   Expr *pE, *pRight, *pExpr;
4123   u16 selFlags = p->selFlags;
4124 
4125   p->selFlags |= SF_Expanded;
4126   if( db->mallocFailed  ){
4127     return WRC_Abort;
4128   }
4129   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4130     return WRC_Prune;
4131   }
4132   pTabList = p->pSrc;
4133   pEList = p->pEList;
4134   if( pWalker->xSelectCallback2==selectPopWith ){
4135     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4136   }
4137 
4138   /* Make sure cursor numbers have been assigned to all entries in
4139   ** the FROM clause of the SELECT statement.
4140   */
4141   sqlite3SrcListAssignCursors(pParse, pTabList);
4142 
4143   /* Look up every table named in the FROM clause of the select.  If
4144   ** an entry of the FROM clause is a subquery instead of a table or view,
4145   ** then create a transient table structure to describe the subquery.
4146   */
4147   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4148     Table *pTab;
4149     assert( pFrom->isRecursive==0 || pFrom->pTab );
4150     if( pFrom->isRecursive ) continue;
4151     if( pFrom->pTab!=0 ){
4152       /* This statement has already been prepared.  There is no need
4153       ** to go further. */
4154       assert( i==0 );
4155 #ifndef SQLITE_OMIT_CTE
4156       selectPopWith(pWalker, p);
4157 #endif
4158       return WRC_Prune;
4159     }
4160 #ifndef SQLITE_OMIT_CTE
4161     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4162     if( pFrom->pTab ) {} else
4163 #endif
4164     if( pFrom->zName==0 ){
4165 #ifndef SQLITE_OMIT_SUBQUERY
4166       Select *pSel = pFrom->pSelect;
4167       /* A sub-query in the FROM clause of a SELECT */
4168       assert( pSel!=0 );
4169       assert( pFrom->pTab==0 );
4170       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4171       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4172       if( pTab==0 ) return WRC_Abort;
4173       pTab->nRef = 1;
4174       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4175       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4176       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4177       pTab->iPKey = -1;
4178       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4179       pTab->tabFlags |= TF_Ephemeral;
4180 #endif
4181     }else{
4182       /* An ordinary table or view name in the FROM clause */
4183       assert( pFrom->pTab==0 );
4184       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4185       if( pTab==0 ) return WRC_Abort;
4186       if( pTab->nRef==0xffff ){
4187         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4188            pTab->zName);
4189         pFrom->pTab = 0;
4190         return WRC_Abort;
4191       }
4192       pTab->nRef++;
4193 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4194       if( pTab->pSelect || IsVirtual(pTab) ){
4195         /* We reach here if the named table is a really a view */
4196         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4197         assert( pFrom->pSelect==0 );
4198         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4199         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4200         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4201       }
4202 #endif
4203     }
4204 
4205     /* Locate the index named by the INDEXED BY clause, if any. */
4206     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4207       return WRC_Abort;
4208     }
4209   }
4210 
4211   /* Process NATURAL keywords, and ON and USING clauses of joins.
4212   */
4213   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4214     return WRC_Abort;
4215   }
4216 
4217   /* For every "*" that occurs in the column list, insert the names of
4218   ** all columns in all tables.  And for every TABLE.* insert the names
4219   ** of all columns in TABLE.  The parser inserted a special expression
4220   ** with the TK_ALL operator for each "*" that it found in the column list.
4221   ** The following code just has to locate the TK_ALL expressions and expand
4222   ** each one to the list of all columns in all tables.
4223   **
4224   ** The first loop just checks to see if there are any "*" operators
4225   ** that need expanding.
4226   */
4227   for(k=0; k<pEList->nExpr; k++){
4228     pE = pEList->a[k].pExpr;
4229     if( pE->op==TK_ALL ) break;
4230     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4231     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4232     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4233   }
4234   if( k<pEList->nExpr ){
4235     /*
4236     ** If we get here it means the result set contains one or more "*"
4237     ** operators that need to be expanded.  Loop through each expression
4238     ** in the result set and expand them one by one.
4239     */
4240     struct ExprList_item *a = pEList->a;
4241     ExprList *pNew = 0;
4242     int flags = pParse->db->flags;
4243     int longNames = (flags & SQLITE_FullColNames)!=0
4244                       && (flags & SQLITE_ShortColNames)==0;
4245 
4246     /* When processing FROM-clause subqueries, it is always the case
4247     ** that full_column_names=OFF and short_column_names=ON.  The
4248     ** sqlite3ResultSetOfSelect() routine makes it so. */
4249     assert( (p->selFlags & SF_NestedFrom)==0
4250           || ((flags & SQLITE_FullColNames)==0 &&
4251               (flags & SQLITE_ShortColNames)!=0) );
4252 
4253     for(k=0; k<pEList->nExpr; k++){
4254       pE = a[k].pExpr;
4255       pRight = pE->pRight;
4256       assert( pE->op!=TK_DOT || pRight!=0 );
4257       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4258         /* This particular expression does not need to be expanded.
4259         */
4260         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4261         if( pNew ){
4262           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4263           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4264           a[k].zName = 0;
4265           a[k].zSpan = 0;
4266         }
4267         a[k].pExpr = 0;
4268       }else{
4269         /* This expression is a "*" or a "TABLE.*" and needs to be
4270         ** expanded. */
4271         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4272         char *zTName = 0;       /* text of name of TABLE */
4273         if( pE->op==TK_DOT ){
4274           assert( pE->pLeft!=0 );
4275           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4276           zTName = pE->pLeft->u.zToken;
4277         }
4278         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4279           Table *pTab = pFrom->pTab;
4280           Select *pSub = pFrom->pSelect;
4281           char *zTabName = pFrom->zAlias;
4282           const char *zSchemaName = 0;
4283           int iDb;
4284           if( zTabName==0 ){
4285             zTabName = pTab->zName;
4286           }
4287           if( db->mallocFailed ) break;
4288           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4289             pSub = 0;
4290             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4291               continue;
4292             }
4293             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4294             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4295           }
4296           for(j=0; j<pTab->nCol; j++){
4297             char *zName = pTab->aCol[j].zName;
4298             char *zColname;  /* The computed column name */
4299             char *zToFree;   /* Malloced string that needs to be freed */
4300             Token sColname;  /* Computed column name as a token */
4301 
4302             assert( zName );
4303             if( zTName && pSub
4304              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4305             ){
4306               continue;
4307             }
4308 
4309             /* If a column is marked as 'hidden' (currently only possible
4310             ** for virtual tables), do not include it in the expanded
4311             ** result-set list.
4312             */
4313             if( IsHiddenColumn(&pTab->aCol[j]) ){
4314               assert(IsVirtual(pTab));
4315               continue;
4316             }
4317             tableSeen = 1;
4318 
4319             if( i>0 && zTName==0 ){
4320               if( (pFrom->jointype & JT_NATURAL)!=0
4321                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4322               ){
4323                 /* In a NATURAL join, omit the join columns from the
4324                 ** table to the right of the join */
4325                 continue;
4326               }
4327               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4328                 /* In a join with a USING clause, omit columns in the
4329                 ** using clause from the table on the right. */
4330                 continue;
4331               }
4332             }
4333             pRight = sqlite3Expr(db, TK_ID, zName);
4334             zColname = zName;
4335             zToFree = 0;
4336             if( longNames || pTabList->nSrc>1 ){
4337               Expr *pLeft;
4338               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4339               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4340               if( zSchemaName ){
4341                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4342                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4343               }
4344               if( longNames ){
4345                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4346                 zToFree = zColname;
4347               }
4348             }else{
4349               pExpr = pRight;
4350             }
4351             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4352             sColname.z = zColname;
4353             sColname.n = sqlite3Strlen30(zColname);
4354             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4355             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4356               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4357               if( pSub ){
4358                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4359                 testcase( pX->zSpan==0 );
4360               }else{
4361                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4362                                            zSchemaName, zTabName, zColname);
4363                 testcase( pX->zSpan==0 );
4364               }
4365               pX->bSpanIsTab = 1;
4366             }
4367             sqlite3DbFree(db, zToFree);
4368           }
4369         }
4370         if( !tableSeen ){
4371           if( zTName ){
4372             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4373           }else{
4374             sqlite3ErrorMsg(pParse, "no tables specified");
4375           }
4376         }
4377       }
4378     }
4379     sqlite3ExprListDelete(db, pEList);
4380     p->pEList = pNew;
4381   }
4382 #if SQLITE_MAX_COLUMN
4383   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4384     sqlite3ErrorMsg(pParse, "too many columns in result set");
4385   }
4386 #endif
4387   return WRC_Continue;
4388 }
4389 
4390 /*
4391 ** No-op routine for the parse-tree walker.
4392 **
4393 ** When this routine is the Walker.xExprCallback then expression trees
4394 ** are walked without any actions being taken at each node.  Presumably,
4395 ** when this routine is used for Walker.xExprCallback then
4396 ** Walker.xSelectCallback is set to do something useful for every
4397 ** subquery in the parser tree.
4398 */
4399 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4400   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4401   return WRC_Continue;
4402 }
4403 
4404 /*
4405 ** This routine "expands" a SELECT statement and all of its subqueries.
4406 ** For additional information on what it means to "expand" a SELECT
4407 ** statement, see the comment on the selectExpand worker callback above.
4408 **
4409 ** Expanding a SELECT statement is the first step in processing a
4410 ** SELECT statement.  The SELECT statement must be expanded before
4411 ** name resolution is performed.
4412 **
4413 ** If anything goes wrong, an error message is written into pParse.
4414 ** The calling function can detect the problem by looking at pParse->nErr
4415 ** and/or pParse->db->mallocFailed.
4416 */
4417 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4418   Walker w;
4419   memset(&w, 0, sizeof(w));
4420   w.xExprCallback = exprWalkNoop;
4421   w.pParse = pParse;
4422   if( pParse->hasCompound ){
4423     w.xSelectCallback = convertCompoundSelectToSubquery;
4424     sqlite3WalkSelect(&w, pSelect);
4425   }
4426   w.xSelectCallback = selectExpander;
4427   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4428     w.xSelectCallback2 = selectPopWith;
4429   }
4430   sqlite3WalkSelect(&w, pSelect);
4431 }
4432 
4433 
4434 #ifndef SQLITE_OMIT_SUBQUERY
4435 /*
4436 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4437 ** interface.
4438 **
4439 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4440 ** information to the Table structure that represents the result set
4441 ** of that subquery.
4442 **
4443 ** The Table structure that represents the result set was constructed
4444 ** by selectExpander() but the type and collation information was omitted
4445 ** at that point because identifiers had not yet been resolved.  This
4446 ** routine is called after identifier resolution.
4447 */
4448 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4449   Parse *pParse;
4450   int i;
4451   SrcList *pTabList;
4452   struct SrcList_item *pFrom;
4453 
4454   assert( p->selFlags & SF_Resolved );
4455   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4456     p->selFlags |= SF_HasTypeInfo;
4457     pParse = pWalker->pParse;
4458     pTabList = p->pSrc;
4459     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4460       Table *pTab = pFrom->pTab;
4461       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4462         /* A sub-query in the FROM clause of a SELECT */
4463         Select *pSel = pFrom->pSelect;
4464         if( pSel ){
4465           while( pSel->pPrior ) pSel = pSel->pPrior;
4466           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4467         }
4468       }
4469     }
4470   }
4471 }
4472 #endif
4473 
4474 
4475 /*
4476 ** This routine adds datatype and collating sequence information to
4477 ** the Table structures of all FROM-clause subqueries in a
4478 ** SELECT statement.
4479 **
4480 ** Use this routine after name resolution.
4481 */
4482 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4483 #ifndef SQLITE_OMIT_SUBQUERY
4484   Walker w;
4485   memset(&w, 0, sizeof(w));
4486   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4487   w.xExprCallback = exprWalkNoop;
4488   w.pParse = pParse;
4489   sqlite3WalkSelect(&w, pSelect);
4490 #endif
4491 }
4492 
4493 
4494 /*
4495 ** This routine sets up a SELECT statement for processing.  The
4496 ** following is accomplished:
4497 **
4498 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4499 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4500 **     *  ON and USING clauses are shifted into WHERE statements
4501 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4502 **     *  Identifiers in expression are matched to tables.
4503 **
4504 ** This routine acts recursively on all subqueries within the SELECT.
4505 */
4506 void sqlite3SelectPrep(
4507   Parse *pParse,         /* The parser context */
4508   Select *p,             /* The SELECT statement being coded. */
4509   NameContext *pOuterNC  /* Name context for container */
4510 ){
4511   sqlite3 *db;
4512   if( NEVER(p==0) ) return;
4513   db = pParse->db;
4514   if( db->mallocFailed ) return;
4515   if( p->selFlags & SF_HasTypeInfo ) return;
4516   sqlite3SelectExpand(pParse, p);
4517   if( pParse->nErr || db->mallocFailed ) return;
4518   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4519   if( pParse->nErr || db->mallocFailed ) return;
4520   sqlite3SelectAddTypeInfo(pParse, p);
4521 }
4522 
4523 /*
4524 ** Reset the aggregate accumulator.
4525 **
4526 ** The aggregate accumulator is a set of memory cells that hold
4527 ** intermediate results while calculating an aggregate.  This
4528 ** routine generates code that stores NULLs in all of those memory
4529 ** cells.
4530 */
4531 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4532   Vdbe *v = pParse->pVdbe;
4533   int i;
4534   struct AggInfo_func *pFunc;
4535   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4536   if( nReg==0 ) return;
4537 #ifdef SQLITE_DEBUG
4538   /* Verify that all AggInfo registers are within the range specified by
4539   ** AggInfo.mnReg..AggInfo.mxReg */
4540   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4541   for(i=0; i<pAggInfo->nColumn; i++){
4542     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4543          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4544   }
4545   for(i=0; i<pAggInfo->nFunc; i++){
4546     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4547          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4548   }
4549 #endif
4550   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4551   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4552     if( pFunc->iDistinct>=0 ){
4553       Expr *pE = pFunc->pExpr;
4554       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4555       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4556         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4557            "argument");
4558         pFunc->iDistinct = -1;
4559       }else{
4560         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4561         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4562                           (char*)pKeyInfo, P4_KEYINFO);
4563       }
4564     }
4565   }
4566 }
4567 
4568 /*
4569 ** Invoke the OP_AggFinalize opcode for every aggregate function
4570 ** in the AggInfo structure.
4571 */
4572 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4573   Vdbe *v = pParse->pVdbe;
4574   int i;
4575   struct AggInfo_func *pF;
4576   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4577     ExprList *pList = pF->pExpr->x.pList;
4578     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4579     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4580                       (void*)pF->pFunc, P4_FUNCDEF);
4581   }
4582 }
4583 
4584 /*
4585 ** Update the accumulator memory cells for an aggregate based on
4586 ** the current cursor position.
4587 */
4588 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4589   Vdbe *v = pParse->pVdbe;
4590   int i;
4591   int regHit = 0;
4592   int addrHitTest = 0;
4593   struct AggInfo_func *pF;
4594   struct AggInfo_col *pC;
4595 
4596   pAggInfo->directMode = 1;
4597   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4598     int nArg;
4599     int addrNext = 0;
4600     int regAgg;
4601     ExprList *pList = pF->pExpr->x.pList;
4602     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4603     if( pList ){
4604       nArg = pList->nExpr;
4605       regAgg = sqlite3GetTempRange(pParse, nArg);
4606       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4607     }else{
4608       nArg = 0;
4609       regAgg = 0;
4610     }
4611     if( pF->iDistinct>=0 ){
4612       addrNext = sqlite3VdbeMakeLabel(v);
4613       testcase( nArg==0 );  /* Error condition */
4614       testcase( nArg>1 );   /* Also an error */
4615       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4616     }
4617     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4618       CollSeq *pColl = 0;
4619       struct ExprList_item *pItem;
4620       int j;
4621       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4622       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4623         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4624       }
4625       if( !pColl ){
4626         pColl = pParse->db->pDfltColl;
4627       }
4628       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4629       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4630     }
4631     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4632                       (void*)pF->pFunc, P4_FUNCDEF);
4633     sqlite3VdbeChangeP5(v, (u8)nArg);
4634     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4635     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4636     if( addrNext ){
4637       sqlite3VdbeResolveLabel(v, addrNext);
4638       sqlite3ExprCacheClear(pParse);
4639     }
4640   }
4641 
4642   /* Before populating the accumulator registers, clear the column cache.
4643   ** Otherwise, if any of the required column values are already present
4644   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4645   ** to pC->iMem. But by the time the value is used, the original register
4646   ** may have been used, invalidating the underlying buffer holding the
4647   ** text or blob value. See ticket [883034dcb5].
4648   **
4649   ** Another solution would be to change the OP_SCopy used to copy cached
4650   ** values to an OP_Copy.
4651   */
4652   if( regHit ){
4653     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4654   }
4655   sqlite3ExprCacheClear(pParse);
4656   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4657     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4658   }
4659   pAggInfo->directMode = 0;
4660   sqlite3ExprCacheClear(pParse);
4661   if( addrHitTest ){
4662     sqlite3VdbeJumpHere(v, addrHitTest);
4663   }
4664 }
4665 
4666 /*
4667 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4668 ** count(*) query ("SELECT count(*) FROM pTab").
4669 */
4670 #ifndef SQLITE_OMIT_EXPLAIN
4671 static void explainSimpleCount(
4672   Parse *pParse,                  /* Parse context */
4673   Table *pTab,                    /* Table being queried */
4674   Index *pIdx                     /* Index used to optimize scan, or NULL */
4675 ){
4676   if( pParse->explain==2 ){
4677     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4678     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4679         pTab->zName,
4680         bCover ? " USING COVERING INDEX " : "",
4681         bCover ? pIdx->zName : ""
4682     );
4683     sqlite3VdbeAddOp4(
4684         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4685     );
4686   }
4687 }
4688 #else
4689 # define explainSimpleCount(a,b,c)
4690 #endif
4691 
4692 /*
4693 ** Generate code for the SELECT statement given in the p argument.
4694 **
4695 ** The results are returned according to the SelectDest structure.
4696 ** See comments in sqliteInt.h for further information.
4697 **
4698 ** This routine returns the number of errors.  If any errors are
4699 ** encountered, then an appropriate error message is left in
4700 ** pParse->zErrMsg.
4701 **
4702 ** This routine does NOT free the Select structure passed in.  The
4703 ** calling function needs to do that.
4704 */
4705 int sqlite3Select(
4706   Parse *pParse,         /* The parser context */
4707   Select *p,             /* The SELECT statement being coded. */
4708   SelectDest *pDest      /* What to do with the query results */
4709 ){
4710   int i, j;              /* Loop counters */
4711   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4712   Vdbe *v;               /* The virtual machine under construction */
4713   int isAgg;             /* True for select lists like "count(*)" */
4714   ExprList *pEList;      /* List of columns to extract. */
4715   SrcList *pTabList;     /* List of tables to select from */
4716   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4717   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4718   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4719   int rc = 1;            /* Value to return from this function */
4720   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4721   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4722   AggInfo sAggInfo;      /* Information used by aggregate queries */
4723   int iEnd;              /* Address of the end of the query */
4724   sqlite3 *db;           /* The database connection */
4725 
4726 #ifndef SQLITE_OMIT_EXPLAIN
4727   int iRestoreSelectId = pParse->iSelectId;
4728   pParse->iSelectId = pParse->iNextSelectId++;
4729 #endif
4730 
4731   db = pParse->db;
4732   if( p==0 || db->mallocFailed || pParse->nErr ){
4733     return 1;
4734   }
4735   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4736   memset(&sAggInfo, 0, sizeof(sAggInfo));
4737 #if SELECTTRACE_ENABLED
4738   pParse->nSelectIndent++;
4739   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4740   if( sqlite3SelectTrace & 0x100 ){
4741     sqlite3TreeViewSelect(0, p, 0);
4742   }
4743 #endif
4744 
4745   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4746   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4747   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4748   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4749   if( IgnorableOrderby(pDest) ){
4750     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4751            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4752            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4753            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4754     /* If ORDER BY makes no difference in the output then neither does
4755     ** DISTINCT so it can be removed too. */
4756     sqlite3ExprListDelete(db, p->pOrderBy);
4757     p->pOrderBy = 0;
4758     p->selFlags &= ~SF_Distinct;
4759   }
4760   sqlite3SelectPrep(pParse, p, 0);
4761   memset(&sSort, 0, sizeof(sSort));
4762   sSort.pOrderBy = p->pOrderBy;
4763   pTabList = p->pSrc;
4764   pEList = p->pEList;
4765   if( pParse->nErr || db->mallocFailed ){
4766     goto select_end;
4767   }
4768   isAgg = (p->selFlags & SF_Aggregate)!=0;
4769   assert( pEList!=0 );
4770 #if SELECTTRACE_ENABLED
4771   if( sqlite3SelectTrace & 0x100 ){
4772     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4773     sqlite3TreeViewSelect(0, p, 0);
4774   }
4775 #endif
4776 
4777 
4778   /* Begin generating code.
4779   */
4780   v = sqlite3GetVdbe(pParse);
4781   if( v==0 ) goto select_end;
4782 
4783   /* If writing to memory or generating a set
4784   ** only a single column may be output.
4785   */
4786 #ifndef SQLITE_OMIT_SUBQUERY
4787   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4788     goto select_end;
4789   }
4790 #endif
4791 
4792   /* Generate code for all sub-queries in the FROM clause
4793   */
4794 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4795   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4796     struct SrcList_item *pItem = &pTabList->a[i];
4797     SelectDest dest;
4798     Select *pSub = pItem->pSelect;
4799     int isAggSub;
4800 
4801     if( pSub==0 ) continue;
4802 
4803     /* Sometimes the code for a subquery will be generated more than
4804     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4805     ** for example.  In that case, do not regenerate the code to manifest
4806     ** a view or the co-routine to implement a view.  The first instance
4807     ** is sufficient, though the subroutine to manifest the view does need
4808     ** to be invoked again. */
4809     if( pItem->addrFillSub ){
4810       if( pItem->viaCoroutine==0 ){
4811         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4812       }
4813       continue;
4814     }
4815 
4816     /* Increment Parse.nHeight by the height of the largest expression
4817     ** tree referred to by this, the parent select. The child select
4818     ** may contain expression trees of at most
4819     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4820     ** more conservative than necessary, but much easier than enforcing
4821     ** an exact limit.
4822     */
4823     pParse->nHeight += sqlite3SelectExprHeight(p);
4824 
4825     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4826     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4827       /* This subquery can be absorbed into its parent. */
4828       if( isAggSub ){
4829         isAgg = 1;
4830         p->selFlags |= SF_Aggregate;
4831       }
4832       i = -1;
4833     }else if( pTabList->nSrc==1
4834            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4835     ){
4836       /* Implement a co-routine that will return a single row of the result
4837       ** set on each invocation.
4838       */
4839       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4840       pItem->regReturn = ++pParse->nMem;
4841       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4842       VdbeComment((v, "%s", pItem->pTab->zName));
4843       pItem->addrFillSub = addrTop;
4844       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4845       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4846       sqlite3Select(pParse, pSub, &dest);
4847       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4848       pItem->viaCoroutine = 1;
4849       pItem->regResult = dest.iSdst;
4850       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4851       sqlite3VdbeJumpHere(v, addrTop-1);
4852       sqlite3ClearTempRegCache(pParse);
4853     }else{
4854       /* Generate a subroutine that will fill an ephemeral table with
4855       ** the content of this subquery.  pItem->addrFillSub will point
4856       ** to the address of the generated subroutine.  pItem->regReturn
4857       ** is a register allocated to hold the subroutine return address
4858       */
4859       int topAddr;
4860       int onceAddr = 0;
4861       int retAddr;
4862       assert( pItem->addrFillSub==0 );
4863       pItem->regReturn = ++pParse->nMem;
4864       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4865       pItem->addrFillSub = topAddr+1;
4866       if( pItem->isCorrelated==0 ){
4867         /* If the subquery is not correlated and if we are not inside of
4868         ** a trigger, then we only need to compute the value of the subquery
4869         ** once. */
4870         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4871         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4872       }else{
4873         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4874       }
4875       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4876       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4877       sqlite3Select(pParse, pSub, &dest);
4878       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4879       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4880       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4881       VdbeComment((v, "end %s", pItem->pTab->zName));
4882       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4883       sqlite3ClearTempRegCache(pParse);
4884     }
4885     if( /*pParse->nErr ||*/ db->mallocFailed ){
4886       goto select_end;
4887     }
4888     pParse->nHeight -= sqlite3SelectExprHeight(p);
4889     pTabList = p->pSrc;
4890     if( !IgnorableOrderby(pDest) ){
4891       sSort.pOrderBy = p->pOrderBy;
4892     }
4893   }
4894   pEList = p->pEList;
4895 #endif
4896   pWhere = p->pWhere;
4897   pGroupBy = p->pGroupBy;
4898   pHaving = p->pHaving;
4899   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4900 
4901 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4902   /* If there is are a sequence of queries, do the earlier ones first.
4903   */
4904   if( p->pPrior ){
4905     rc = multiSelect(pParse, p, pDest);
4906     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4907 #if SELECTTRACE_ENABLED
4908     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4909     pParse->nSelectIndent--;
4910 #endif
4911     return rc;
4912   }
4913 #endif
4914 
4915   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4916   ** if the select-list is the same as the ORDER BY list, then this query
4917   ** can be rewritten as a GROUP BY. In other words, this:
4918   **
4919   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4920   **
4921   ** is transformed to:
4922   **
4923   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
4924   **
4925   ** The second form is preferred as a single index (or temp-table) may be
4926   ** used for both the ORDER BY and DISTINCT processing. As originally
4927   ** written the query must use a temp-table for at least one of the ORDER
4928   ** BY and DISTINCT, and an index or separate temp-table for the other.
4929   */
4930   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4931    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4932   ){
4933     p->selFlags &= ~SF_Distinct;
4934     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4935     pGroupBy = p->pGroupBy;
4936     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4937     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4938     ** original setting of the SF_Distinct flag, not the current setting */
4939     assert( sDistinct.isTnct );
4940   }
4941 
4942   /* If there is an ORDER BY clause, then this sorting
4943   ** index might end up being unused if the data can be
4944   ** extracted in pre-sorted order.  If that is the case, then the
4945   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4946   ** we figure out that the sorting index is not needed.  The addrSortIndex
4947   ** variable is used to facilitate that change.
4948   */
4949   if( sSort.pOrderBy ){
4950     KeyInfo *pKeyInfo;
4951     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
4952     sSort.iECursor = pParse->nTab++;
4953     sSort.addrSortIndex =
4954       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4955           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4956           (char*)pKeyInfo, P4_KEYINFO
4957       );
4958   }else{
4959     sSort.addrSortIndex = -1;
4960   }
4961 
4962   /* If the output is destined for a temporary table, open that table.
4963   */
4964   if( pDest->eDest==SRT_EphemTab ){
4965     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4966   }
4967 
4968   /* Set the limiter.
4969   */
4970   iEnd = sqlite3VdbeMakeLabel(v);
4971   p->nSelectRow = LARGEST_INT64;
4972   computeLimitRegisters(pParse, p, iEnd);
4973   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4974     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4975     sSort.sortFlags |= SORTFLAG_UseSorter;
4976   }
4977 
4978   /* Open a virtual index to use for the distinct set.
4979   */
4980   if( p->selFlags & SF_Distinct ){
4981     sDistinct.tabTnct = pParse->nTab++;
4982     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4983                                 sDistinct.tabTnct, 0, 0,
4984                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4985                                 P4_KEYINFO);
4986     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4987     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4988   }else{
4989     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4990   }
4991 
4992   if( !isAgg && pGroupBy==0 ){
4993     /* No aggregate functions and no GROUP BY clause */
4994     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4995 
4996     /* Begin the database scan. */
4997     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4998                                p->pEList, wctrlFlags, 0);
4999     if( pWInfo==0 ) goto select_end;
5000     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5001       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5002     }
5003     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5004       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5005     }
5006     if( sSort.pOrderBy ){
5007       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5008       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5009         sSort.pOrderBy = 0;
5010       }
5011     }
5012 
5013     /* If sorting index that was created by a prior OP_OpenEphemeral
5014     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5015     ** into an OP_Noop.
5016     */
5017     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5018       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5019     }
5020 
5021     /* Use the standard inner loop. */
5022     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5023                     sqlite3WhereContinueLabel(pWInfo),
5024                     sqlite3WhereBreakLabel(pWInfo));
5025 
5026     /* End the database scan loop.
5027     */
5028     sqlite3WhereEnd(pWInfo);
5029   }else{
5030     /* This case when there exist aggregate functions or a GROUP BY clause
5031     ** or both */
5032     NameContext sNC;    /* Name context for processing aggregate information */
5033     int iAMem;          /* First Mem address for storing current GROUP BY */
5034     int iBMem;          /* First Mem address for previous GROUP BY */
5035     int iUseFlag;       /* Mem address holding flag indicating that at least
5036                         ** one row of the input to the aggregator has been
5037                         ** processed */
5038     int iAbortFlag;     /* Mem address which causes query abort if positive */
5039     int groupBySort;    /* Rows come from source in GROUP BY order */
5040     int addrEnd;        /* End of processing for this SELECT */
5041     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5042     int sortOut = 0;    /* Output register from the sorter */
5043     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5044 
5045     /* Remove any and all aliases between the result set and the
5046     ** GROUP BY clause.
5047     */
5048     if( pGroupBy ){
5049       int k;                        /* Loop counter */
5050       struct ExprList_item *pItem;  /* For looping over expression in a list */
5051 
5052       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5053         pItem->u.x.iAlias = 0;
5054       }
5055       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5056         pItem->u.x.iAlias = 0;
5057       }
5058       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5059     }else{
5060       p->nSelectRow = 1;
5061     }
5062 
5063 
5064     /* If there is both a GROUP BY and an ORDER BY clause and they are
5065     ** identical, then it may be possible to disable the ORDER BY clause
5066     ** on the grounds that the GROUP BY will cause elements to come out
5067     ** in the correct order. It also may not - the GROUP BY may use a
5068     ** database index that causes rows to be grouped together as required
5069     ** but not actually sorted. Either way, record the fact that the
5070     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5071     ** variable.  */
5072     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5073       orderByGrp = 1;
5074     }
5075 
5076     /* Create a label to jump to when we want to abort the query */
5077     addrEnd = sqlite3VdbeMakeLabel(v);
5078 
5079     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5080     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5081     ** SELECT statement.
5082     */
5083     memset(&sNC, 0, sizeof(sNC));
5084     sNC.pParse = pParse;
5085     sNC.pSrcList = pTabList;
5086     sNC.pAggInfo = &sAggInfo;
5087     sAggInfo.mnReg = pParse->nMem+1;
5088     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5089     sAggInfo.pGroupBy = pGroupBy;
5090     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5091     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5092     if( pHaving ){
5093       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5094     }
5095     sAggInfo.nAccumulator = sAggInfo.nColumn;
5096     for(i=0; i<sAggInfo.nFunc; i++){
5097       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5098       sNC.ncFlags |= NC_InAggFunc;
5099       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5100       sNC.ncFlags &= ~NC_InAggFunc;
5101     }
5102     sAggInfo.mxReg = pParse->nMem;
5103     if( db->mallocFailed ) goto select_end;
5104 
5105     /* Processing for aggregates with GROUP BY is very different and
5106     ** much more complex than aggregates without a GROUP BY.
5107     */
5108     if( pGroupBy ){
5109       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5110       int j1;             /* A-vs-B comparision jump */
5111       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5112       int regOutputRow;   /* Return address register for output subroutine */
5113       int addrSetAbort;   /* Set the abort flag and return */
5114       int addrTopOfLoop;  /* Top of the input loop */
5115       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5116       int addrReset;      /* Subroutine for resetting the accumulator */
5117       int regReset;       /* Return address register for reset subroutine */
5118 
5119       /* If there is a GROUP BY clause we might need a sorting index to
5120       ** implement it.  Allocate that sorting index now.  If it turns out
5121       ** that we do not need it after all, the OP_SorterOpen instruction
5122       ** will be converted into a Noop.
5123       */
5124       sAggInfo.sortingIdx = pParse->nTab++;
5125       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5126       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5127           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5128           0, (char*)pKeyInfo, P4_KEYINFO);
5129 
5130       /* Initialize memory locations used by GROUP BY aggregate processing
5131       */
5132       iUseFlag = ++pParse->nMem;
5133       iAbortFlag = ++pParse->nMem;
5134       regOutputRow = ++pParse->nMem;
5135       addrOutputRow = sqlite3VdbeMakeLabel(v);
5136       regReset = ++pParse->nMem;
5137       addrReset = sqlite3VdbeMakeLabel(v);
5138       iAMem = pParse->nMem + 1;
5139       pParse->nMem += pGroupBy->nExpr;
5140       iBMem = pParse->nMem + 1;
5141       pParse->nMem += pGroupBy->nExpr;
5142       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5143       VdbeComment((v, "clear abort flag"));
5144       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5145       VdbeComment((v, "indicate accumulator empty"));
5146       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5147 
5148       /* Begin a loop that will extract all source rows in GROUP BY order.
5149       ** This might involve two separate loops with an OP_Sort in between, or
5150       ** it might be a single loop that uses an index to extract information
5151       ** in the right order to begin with.
5152       */
5153       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5154       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5155           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5156       );
5157       if( pWInfo==0 ) goto select_end;
5158       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5159         /* The optimizer is able to deliver rows in group by order so
5160         ** we do not have to sort.  The OP_OpenEphemeral table will be
5161         ** cancelled later because we still need to use the pKeyInfo
5162         */
5163         groupBySort = 0;
5164       }else{
5165         /* Rows are coming out in undetermined order.  We have to push
5166         ** each row into a sorting index, terminate the first loop,
5167         ** then loop over the sorting index in order to get the output
5168         ** in sorted order
5169         */
5170         int regBase;
5171         int regRecord;
5172         int nCol;
5173         int nGroupBy;
5174 
5175         explainTempTable(pParse,
5176             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5177                     "DISTINCT" : "GROUP BY");
5178 
5179         groupBySort = 1;
5180         nGroupBy = pGroupBy->nExpr;
5181         nCol = nGroupBy;
5182         j = nGroupBy;
5183         for(i=0; i<sAggInfo.nColumn; i++){
5184           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5185             nCol++;
5186             j++;
5187           }
5188         }
5189         regBase = sqlite3GetTempRange(pParse, nCol);
5190         sqlite3ExprCacheClear(pParse);
5191         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5192         j = nGroupBy;
5193         for(i=0; i<sAggInfo.nColumn; i++){
5194           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5195           if( pCol->iSorterColumn>=j ){
5196             int r1 = j + regBase;
5197             int r2;
5198 
5199             r2 = sqlite3ExprCodeGetColumn(pParse,
5200                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5201             if( r1!=r2 ){
5202               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5203             }
5204             j++;
5205           }
5206         }
5207         regRecord = sqlite3GetTempReg(pParse);
5208         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5209         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5210         sqlite3ReleaseTempReg(pParse, regRecord);
5211         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5212         sqlite3WhereEnd(pWInfo);
5213         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5214         sortOut = sqlite3GetTempReg(pParse);
5215         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5216         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5217         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5218         sAggInfo.useSortingIdx = 1;
5219         sqlite3ExprCacheClear(pParse);
5220 
5221       }
5222 
5223       /* If the index or temporary table used by the GROUP BY sort
5224       ** will naturally deliver rows in the order required by the ORDER BY
5225       ** clause, cancel the ephemeral table open coded earlier.
5226       **
5227       ** This is an optimization - the correct answer should result regardless.
5228       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5229       ** disable this optimization for testing purposes.  */
5230       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5231        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5232       ){
5233         sSort.pOrderBy = 0;
5234         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5235       }
5236 
5237       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5238       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5239       ** Then compare the current GROUP BY terms against the GROUP BY terms
5240       ** from the previous row currently stored in a0, a1, a2...
5241       */
5242       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5243       sqlite3ExprCacheClear(pParse);
5244       if( groupBySort ){
5245         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5246       }
5247       for(j=0; j<pGroupBy->nExpr; j++){
5248         if( groupBySort ){
5249           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5250         }else{
5251           sAggInfo.directMode = 1;
5252           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5253         }
5254       }
5255       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5256                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5257       j1 = sqlite3VdbeCurrentAddr(v);
5258       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5259 
5260       /* Generate code that runs whenever the GROUP BY changes.
5261       ** Changes in the GROUP BY are detected by the previous code
5262       ** block.  If there were no changes, this block is skipped.
5263       **
5264       ** This code copies current group by terms in b0,b1,b2,...
5265       ** over to a0,a1,a2.  It then calls the output subroutine
5266       ** and resets the aggregate accumulator registers in preparation
5267       ** for the next GROUP BY batch.
5268       */
5269       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5270       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5271       VdbeComment((v, "output one row"));
5272       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5273       VdbeComment((v, "check abort flag"));
5274       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5275       VdbeComment((v, "reset accumulator"));
5276 
5277       /* Update the aggregate accumulators based on the content of
5278       ** the current row
5279       */
5280       sqlite3VdbeJumpHere(v, j1);
5281       updateAccumulator(pParse, &sAggInfo);
5282       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5283       VdbeComment((v, "indicate data in accumulator"));
5284 
5285       /* End of the loop
5286       */
5287       if( groupBySort ){
5288         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5289         VdbeCoverage(v);
5290       }else{
5291         sqlite3WhereEnd(pWInfo);
5292         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5293       }
5294 
5295       /* Output the final row of result
5296       */
5297       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5298       VdbeComment((v, "output final row"));
5299 
5300       /* Jump over the subroutines
5301       */
5302       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5303 
5304       /* Generate a subroutine that outputs a single row of the result
5305       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5306       ** is less than or equal to zero, the subroutine is a no-op.  If
5307       ** the processing calls for the query to abort, this subroutine
5308       ** increments the iAbortFlag memory location before returning in
5309       ** order to signal the caller to abort.
5310       */
5311       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5312       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5313       VdbeComment((v, "set abort flag"));
5314       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5315       sqlite3VdbeResolveLabel(v, addrOutputRow);
5316       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5317       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5318       VdbeComment((v, "Groupby result generator entry point"));
5319       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5320       finalizeAggFunctions(pParse, &sAggInfo);
5321       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5322       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5323                       &sDistinct, pDest,
5324                       addrOutputRow+1, addrSetAbort);
5325       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5326       VdbeComment((v, "end groupby result generator"));
5327 
5328       /* Generate a subroutine that will reset the group-by accumulator
5329       */
5330       sqlite3VdbeResolveLabel(v, addrReset);
5331       resetAccumulator(pParse, &sAggInfo);
5332       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5333 
5334     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5335     else {
5336       ExprList *pDel = 0;
5337 #ifndef SQLITE_OMIT_BTREECOUNT
5338       Table *pTab;
5339       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5340         /* If isSimpleCount() returns a pointer to a Table structure, then
5341         ** the SQL statement is of the form:
5342         **
5343         **   SELECT count(*) FROM <tbl>
5344         **
5345         ** where the Table structure returned represents table <tbl>.
5346         **
5347         ** This statement is so common that it is optimized specially. The
5348         ** OP_Count instruction is executed either on the intkey table that
5349         ** contains the data for table <tbl> or on one of its indexes. It
5350         ** is better to execute the op on an index, as indexes are almost
5351         ** always spread across less pages than their corresponding tables.
5352         */
5353         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5354         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5355         Index *pIdx;                         /* Iterator variable */
5356         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5357         Index *pBest = 0;                    /* Best index found so far */
5358         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5359 
5360         sqlite3CodeVerifySchema(pParse, iDb);
5361         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5362 
5363         /* Search for the index that has the lowest scan cost.
5364         **
5365         ** (2011-04-15) Do not do a full scan of an unordered index.
5366         **
5367         ** (2013-10-03) Do not count the entries in a partial index.
5368         **
5369         ** In practice the KeyInfo structure will not be used. It is only
5370         ** passed to keep OP_OpenRead happy.
5371         */
5372         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5373         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5374           if( pIdx->bUnordered==0
5375            && pIdx->szIdxRow<pTab->szTabRow
5376            && pIdx->pPartIdxWhere==0
5377            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5378           ){
5379             pBest = pIdx;
5380           }
5381         }
5382         if( pBest ){
5383           iRoot = pBest->tnum;
5384           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5385         }
5386 
5387         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5388         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5389         if( pKeyInfo ){
5390           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5391         }
5392         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5393         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5394         explainSimpleCount(pParse, pTab, pBest);
5395       }else
5396 #endif /* SQLITE_OMIT_BTREECOUNT */
5397       {
5398         /* Check if the query is of one of the following forms:
5399         **
5400         **   SELECT min(x) FROM ...
5401         **   SELECT max(x) FROM ...
5402         **
5403         ** If it is, then ask the code in where.c to attempt to sort results
5404         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5405         ** If where.c is able to produce results sorted in this order, then
5406         ** add vdbe code to break out of the processing loop after the
5407         ** first iteration (since the first iteration of the loop is
5408         ** guaranteed to operate on the row with the minimum or maximum
5409         ** value of x, the only row required).
5410         **
5411         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5412         ** modify behavior as follows:
5413         **
5414         **   + If the query is a "SELECT min(x)", then the loop coded by
5415         **     where.c should not iterate over any values with a NULL value
5416         **     for x.
5417         **
5418         **   + The optimizer code in where.c (the thing that decides which
5419         **     index or indices to use) should place a different priority on
5420         **     satisfying the 'ORDER BY' clause than it does in other cases.
5421         **     Refer to code and comments in where.c for details.
5422         */
5423         ExprList *pMinMax = 0;
5424         u8 flag = WHERE_ORDERBY_NORMAL;
5425 
5426         assert( p->pGroupBy==0 );
5427         assert( flag==0 );
5428         if( p->pHaving==0 ){
5429           flag = minMaxQuery(&sAggInfo, &pMinMax);
5430         }
5431         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5432 
5433         if( flag ){
5434           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5435           pDel = pMinMax;
5436           if( pMinMax && !db->mallocFailed ){
5437             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5438             pMinMax->a[0].pExpr->op = TK_COLUMN;
5439           }
5440         }
5441 
5442         /* This case runs if the aggregate has no GROUP BY clause.  The
5443         ** processing is much simpler since there is only a single row
5444         ** of output.
5445         */
5446         resetAccumulator(pParse, &sAggInfo);
5447         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5448         if( pWInfo==0 ){
5449           sqlite3ExprListDelete(db, pDel);
5450           goto select_end;
5451         }
5452         updateAccumulator(pParse, &sAggInfo);
5453         assert( pMinMax==0 || pMinMax->nExpr==1 );
5454         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5455           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5456           VdbeComment((v, "%s() by index",
5457                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5458         }
5459         sqlite3WhereEnd(pWInfo);
5460         finalizeAggFunctions(pParse, &sAggInfo);
5461       }
5462 
5463       sSort.pOrderBy = 0;
5464       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5465       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5466                       pDest, addrEnd, addrEnd);
5467       sqlite3ExprListDelete(db, pDel);
5468     }
5469     sqlite3VdbeResolveLabel(v, addrEnd);
5470 
5471   } /* endif aggregate query */
5472 
5473   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5474     explainTempTable(pParse, "DISTINCT");
5475   }
5476 
5477   /* If there is an ORDER BY clause, then we need to sort the results
5478   ** and send them to the callback one by one.
5479   */
5480   if( sSort.pOrderBy ){
5481     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5482     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5483   }
5484 
5485   /* Jump here to skip this query
5486   */
5487   sqlite3VdbeResolveLabel(v, iEnd);
5488 
5489   /* The SELECT has been coded. If there is an error in the Parse structure,
5490   ** set the return code to 1. Otherwise 0. */
5491   rc = (pParse->nErr>0);
5492 
5493   /* Control jumps to here if an error is encountered above, or upon
5494   ** successful coding of the SELECT.
5495   */
5496 select_end:
5497   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5498 
5499   /* Identify column names if results of the SELECT are to be output.
5500   */
5501   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5502     generateColumnNames(pParse, pTabList, pEList);
5503   }
5504 
5505   sqlite3DbFree(db, sAggInfo.aCol);
5506   sqlite3DbFree(db, sAggInfo.aFunc);
5507 #if SELECTTRACE_ENABLED
5508   SELECTTRACE(1,pParse,p,("end processing\n"));
5509   pParse->nSelectIndent--;
5510 #endif
5511   return rc;
5512 }
5513 
5514 #ifdef SQLITE_DEBUG
5515 /*
5516 ** Generate a human-readable description of a the Select object.
5517 */
5518 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5519   int n = 0;
5520   pView = sqlite3TreeViewPush(pView, moreToFollow);
5521   sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)",
5522     ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5523     ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p
5524   );
5525   if( p->pSrc && p->pSrc->nSrc ) n++;
5526   if( p->pWhere ) n++;
5527   if( p->pGroupBy ) n++;
5528   if( p->pHaving ) n++;
5529   if( p->pOrderBy ) n++;
5530   if( p->pLimit ) n++;
5531   if( p->pOffset ) n++;
5532   if( p->pPrior ) n++;
5533   sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5534   if( p->pSrc && p->pSrc->nSrc ){
5535     int i;
5536     pView = sqlite3TreeViewPush(pView, (n--)>0);
5537     sqlite3TreeViewLine(pView, "FROM");
5538     for(i=0; i<p->pSrc->nSrc; i++){
5539       struct SrcList_item *pItem = &p->pSrc->a[i];
5540       StrAccum x;
5541       char zLine[100];
5542       sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
5543       sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5544       if( pItem->zDatabase ){
5545         sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5546       }else if( pItem->zName ){
5547         sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5548       }
5549       if( pItem->pTab ){
5550         sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5551       }
5552       if( pItem->zAlias ){
5553         sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5554       }
5555       if( pItem->jointype & JT_LEFT ){
5556         sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5557       }
5558       sqlite3StrAccumFinish(&x);
5559       sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5560       if( pItem->pSelect ){
5561         sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5562       }
5563       sqlite3TreeViewPop(pView);
5564     }
5565     sqlite3TreeViewPop(pView);
5566   }
5567   if( p->pWhere ){
5568     sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5569     sqlite3TreeViewExpr(pView, p->pWhere, 0);
5570     sqlite3TreeViewPop(pView);
5571   }
5572   if( p->pGroupBy ){
5573     sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5574   }
5575   if( p->pHaving ){
5576     sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5577     sqlite3TreeViewExpr(pView, p->pHaving, 0);
5578     sqlite3TreeViewPop(pView);
5579   }
5580   if( p->pOrderBy ){
5581     sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5582   }
5583   if( p->pLimit ){
5584     sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5585     sqlite3TreeViewExpr(pView, p->pLimit, 0);
5586     sqlite3TreeViewPop(pView);
5587   }
5588   if( p->pOffset ){
5589     sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5590     sqlite3TreeViewExpr(pView, p->pOffset, 0);
5591     sqlite3TreeViewPop(pView);
5592   }
5593   if( p->pPrior ){
5594     const char *zOp = "UNION";
5595     switch( p->op ){
5596       case TK_ALL:         zOp = "UNION ALL";  break;
5597       case TK_INTERSECT:   zOp = "INTERSECT";  break;
5598       case TK_EXCEPT:      zOp = "EXCEPT";     break;
5599     }
5600     sqlite3TreeViewItem(pView, zOp, (n--)>0);
5601     sqlite3TreeViewSelect(pView, p->pPrior, 0);
5602     sqlite3TreeViewPop(pView);
5603   }
5604   sqlite3TreeViewPop(pView);
5605 }
5606 #endif /* SQLITE_DEBUG */
5607