1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.518 2009/05/19 19:04:58 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 } 95 return pNew; 96 } 97 98 /* 99 ** Delete the given Select structure and all of its substructures. 100 */ 101 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 102 if( p ){ 103 clearSelect(db, p); 104 sqlite3DbFree(db, p); 105 } 106 } 107 108 /* 109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 110 ** type of join. Return an integer constant that expresses that type 111 ** in terms of the following bit values: 112 ** 113 ** JT_INNER 114 ** JT_CROSS 115 ** JT_OUTER 116 ** JT_NATURAL 117 ** JT_LEFT 118 ** JT_RIGHT 119 ** 120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 121 ** 122 ** If an illegal or unsupported join type is seen, then still return 123 ** a join type, but put an error in the pParse structure. 124 */ 125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 126 int jointype = 0; 127 Token *apAll[3]; 128 Token *p; 129 /* 0123456789 123456789 123456789 123 */ 130 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 131 static const struct { 132 u8 i; /* Beginning of keyword text in zKeyText[] */ 133 u8 nChar; /* Length of the keyword in characters */ 134 u8 code; /* Join type mask */ 135 } aKeyword[] = { 136 /* natural */ { 0, 7, JT_NATURAL }, 137 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 138 /* outer */ { 10, 5, JT_OUTER }, 139 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 140 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 141 /* inner */ { 23, 5, JT_INNER }, 142 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 143 }; 144 int i, j; 145 apAll[0] = pA; 146 apAll[1] = pB; 147 apAll[2] = pC; 148 for(i=0; i<3 && apAll[i]; i++){ 149 p = apAll[i]; 150 for(j=0; j<ArraySize(aKeyword); j++){ 151 if( p->n==aKeyword[j].nChar 152 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 153 jointype |= aKeyword[j].code; 154 break; 155 } 156 } 157 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 158 if( j>=ArraySize(aKeyword) ){ 159 jointype |= JT_ERROR; 160 break; 161 } 162 } 163 if( 164 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 165 (jointype & JT_ERROR)!=0 166 ){ 167 const char *zSp = " "; 168 assert( pB!=0 ); 169 if( pC==0 ){ zSp++; } 170 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 171 "%T %T%s%T", pA, pB, zSp, pC); 172 jointype = JT_INNER; 173 }else if( (jointype & JT_OUTER)!=0 174 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 175 sqlite3ErrorMsg(pParse, 176 "RIGHT and FULL OUTER JOINs are not currently supported"); 177 jointype = JT_INNER; 178 } 179 return jointype; 180 } 181 182 /* 183 ** Return the index of a column in a table. Return -1 if the column 184 ** is not contained in the table. 185 */ 186 static int columnIndex(Table *pTab, const char *zCol){ 187 int i; 188 for(i=0; i<pTab->nCol; i++){ 189 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 190 } 191 return -1; 192 } 193 194 /* 195 ** Set the value of a token to a '\000'-terminated string. 196 */ 197 static void setToken(Token *p, const char *z){ 198 p->z = (u8*)z; 199 p->n = z ? sqlite3Strlen30(z) : 0; 200 p->dyn = 0; 201 p->quoted = 0; 202 } 203 204 /* 205 ** Create an expression node for an identifier with the name of zName 206 */ 207 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 208 Token dummy; 209 setToken(&dummy, zName); 210 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 211 } 212 213 /* 214 ** Add a term to the WHERE expression in *ppExpr that requires the 215 ** zCol column to be equal in the two tables pTab1 and pTab2. 216 */ 217 static void addWhereTerm( 218 Parse *pParse, /* Parsing context */ 219 const char *zCol, /* Name of the column */ 220 const Table *pTab1, /* First table */ 221 const char *zAlias1, /* Alias for first table. May be NULL */ 222 const Table *pTab2, /* Second table */ 223 const char *zAlias2, /* Alias for second table. May be NULL */ 224 int iRightJoinTable, /* VDBE cursor for the right table */ 225 Expr **ppExpr, /* Add the equality term to this expression */ 226 int isOuterJoin /* True if dealing with an OUTER join */ 227 ){ 228 Expr *pE1a, *pE1b, *pE1c; 229 Expr *pE2a, *pE2b, *pE2c; 230 Expr *pE; 231 232 pE1a = sqlite3CreateIdExpr(pParse, zCol); 233 pE2a = sqlite3CreateIdExpr(pParse, zCol); 234 if( zAlias1==0 ){ 235 zAlias1 = pTab1->zName; 236 } 237 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 238 if( zAlias2==0 ){ 239 zAlias2 = pTab2->zName; 240 } 241 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 242 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 243 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 244 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 245 if( pE && isOuterJoin ){ 246 ExprSetProperty(pE, EP_FromJoin); 247 pE->iRightJoinTable = iRightJoinTable; 248 } 249 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 250 } 251 252 /* 253 ** Set the EP_FromJoin property on all terms of the given expression. 254 ** And set the Expr.iRightJoinTable to iTable for every term in the 255 ** expression. 256 ** 257 ** The EP_FromJoin property is used on terms of an expression to tell 258 ** the LEFT OUTER JOIN processing logic that this term is part of the 259 ** join restriction specified in the ON or USING clause and not a part 260 ** of the more general WHERE clause. These terms are moved over to the 261 ** WHERE clause during join processing but we need to remember that they 262 ** originated in the ON or USING clause. 263 ** 264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 265 ** expression depends on table iRightJoinTable even if that table is not 266 ** explicitly mentioned in the expression. That information is needed 267 ** for cases like this: 268 ** 269 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 270 ** 271 ** The where clause needs to defer the handling of the t1.x=5 272 ** term until after the t2 loop of the join. In that way, a 273 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 274 ** defer the handling of t1.x=5, it will be processed immediately 275 ** after the t1 loop and rows with t1.x!=5 will never appear in 276 ** the output, which is incorrect. 277 */ 278 static void setJoinExpr(Expr *p, int iTable){ 279 while( p ){ 280 ExprSetProperty(p, EP_FromJoin); 281 p->iRightJoinTable = iTable; 282 setJoinExpr(p->pLeft, iTable); 283 p = p->pRight; 284 } 285 } 286 287 /* 288 ** This routine processes the join information for a SELECT statement. 289 ** ON and USING clauses are converted into extra terms of the WHERE clause. 290 ** NATURAL joins also create extra WHERE clause terms. 291 ** 292 ** The terms of a FROM clause are contained in the Select.pSrc structure. 293 ** The left most table is the first entry in Select.pSrc. The right-most 294 ** table is the last entry. The join operator is held in the entry to 295 ** the left. Thus entry 0 contains the join operator for the join between 296 ** entries 0 and 1. Any ON or USING clauses associated with the join are 297 ** also attached to the left entry. 298 ** 299 ** This routine returns the number of errors encountered. 300 */ 301 static int sqliteProcessJoin(Parse *pParse, Select *p){ 302 SrcList *pSrc; /* All tables in the FROM clause */ 303 int i, j; /* Loop counters */ 304 struct SrcList_item *pLeft; /* Left table being joined */ 305 struct SrcList_item *pRight; /* Right table being joined */ 306 307 pSrc = p->pSrc; 308 pLeft = &pSrc->a[0]; 309 pRight = &pLeft[1]; 310 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 311 Table *pLeftTab = pLeft->pTab; 312 Table *pRightTab = pRight->pTab; 313 int isOuter; 314 315 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 316 isOuter = (pRight->jointype & JT_OUTER)!=0; 317 318 /* When the NATURAL keyword is present, add WHERE clause terms for 319 ** every column that the two tables have in common. 320 */ 321 if( pRight->jointype & JT_NATURAL ){ 322 if( pRight->pOn || pRight->pUsing ){ 323 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 324 "an ON or USING clause", 0); 325 return 1; 326 } 327 for(j=0; j<pLeftTab->nCol; j++){ 328 char *zName = pLeftTab->aCol[j].zName; 329 if( columnIndex(pRightTab, zName)>=0 ){ 330 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 331 pRightTab, pRight->zAlias, 332 pRight->iCursor, &p->pWhere, isOuter); 333 334 } 335 } 336 } 337 338 /* Disallow both ON and USING clauses in the same join 339 */ 340 if( pRight->pOn && pRight->pUsing ){ 341 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 342 "clauses in the same join"); 343 return 1; 344 } 345 346 /* Add the ON clause to the end of the WHERE clause, connected by 347 ** an AND operator. 348 */ 349 if( pRight->pOn ){ 350 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 351 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 352 pRight->pOn = 0; 353 } 354 355 /* Create extra terms on the WHERE clause for each column named 356 ** in the USING clause. Example: If the two tables to be joined are 357 ** A and B and the USING clause names X, Y, and Z, then add this 358 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 359 ** Report an error if any column mentioned in the USING clause is 360 ** not contained in both tables to be joined. 361 */ 362 if( pRight->pUsing ){ 363 IdList *pList = pRight->pUsing; 364 for(j=0; j<pList->nId; j++){ 365 char *zName = pList->a[j].zName; 366 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 367 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 368 "not present in both tables", zName); 369 return 1; 370 } 371 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 372 pRightTab, pRight->zAlias, 373 pRight->iCursor, &p->pWhere, isOuter); 374 } 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Insert code into "v" that will push the record on the top of the 382 ** stack into the sorter. 383 */ 384 static void pushOntoSorter( 385 Parse *pParse, /* Parser context */ 386 ExprList *pOrderBy, /* The ORDER BY clause */ 387 Select *pSelect, /* The whole SELECT statement */ 388 int regData /* Register holding data to be sorted */ 389 ){ 390 Vdbe *v = pParse->pVdbe; 391 int nExpr = pOrderBy->nExpr; 392 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 393 int regRecord = sqlite3GetTempReg(pParse); 394 sqlite3ExprCacheClear(pParse); 395 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 396 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 397 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 398 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 399 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 400 sqlite3ReleaseTempReg(pParse, regRecord); 401 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 402 if( pSelect->iLimit ){ 403 int addr1, addr2; 404 int iLimit; 405 if( pSelect->iOffset ){ 406 iLimit = pSelect->iOffset+1; 407 }else{ 408 iLimit = pSelect->iLimit; 409 } 410 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 411 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 412 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 413 sqlite3VdbeJumpHere(v, addr1); 414 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 415 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 416 sqlite3VdbeJumpHere(v, addr2); 417 pSelect->iLimit = 0; 418 } 419 } 420 421 /* 422 ** Add code to implement the OFFSET 423 */ 424 static void codeOffset( 425 Vdbe *v, /* Generate code into this VM */ 426 Select *p, /* The SELECT statement being coded */ 427 int iContinue /* Jump here to skip the current record */ 428 ){ 429 if( p->iOffset && iContinue!=0 ){ 430 int addr; 431 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 432 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 433 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 434 VdbeComment((v, "skip OFFSET records")); 435 sqlite3VdbeJumpHere(v, addr); 436 } 437 } 438 439 /* 440 ** Add code that will check to make sure the N registers starting at iMem 441 ** form a distinct entry. iTab is a sorting index that holds previously 442 ** seen combinations of the N values. A new entry is made in iTab 443 ** if the current N values are new. 444 ** 445 ** A jump to addrRepeat is made and the N+1 values are popped from the 446 ** stack if the top N elements are not distinct. 447 */ 448 static void codeDistinct( 449 Parse *pParse, /* Parsing and code generating context */ 450 int iTab, /* A sorting index used to test for distinctness */ 451 int addrRepeat, /* Jump to here if not distinct */ 452 int N, /* Number of elements */ 453 int iMem /* First element */ 454 ){ 455 Vdbe *v; 456 int r1; 457 458 v = pParse->pVdbe; 459 r1 = sqlite3GetTempReg(pParse); 460 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 461 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 462 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 463 sqlite3ReleaseTempReg(pParse, r1); 464 } 465 466 /* 467 ** Generate an error message when a SELECT is used within a subexpression 468 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 469 ** column. We do this in a subroutine because the error occurs in multiple 470 ** places. 471 */ 472 static int checkForMultiColumnSelectError( 473 Parse *pParse, /* Parse context. */ 474 SelectDest *pDest, /* Destination of SELECT results */ 475 int nExpr /* Number of result columns returned by SELECT */ 476 ){ 477 int eDest = pDest->eDest; 478 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 479 sqlite3ErrorMsg(pParse, "only a single result allowed for " 480 "a SELECT that is part of an expression"); 481 return 1; 482 }else{ 483 return 0; 484 } 485 } 486 487 /* 488 ** This routine generates the code for the inside of the inner loop 489 ** of a SELECT. 490 ** 491 ** If srcTab and nColumn are both zero, then the pEList expressions 492 ** are evaluated in order to get the data for this row. If nColumn>0 493 ** then data is pulled from srcTab and pEList is used only to get the 494 ** datatypes for each column. 495 */ 496 static void selectInnerLoop( 497 Parse *pParse, /* The parser context */ 498 Select *p, /* The complete select statement being coded */ 499 ExprList *pEList, /* List of values being extracted */ 500 int srcTab, /* Pull data from this table */ 501 int nColumn, /* Number of columns in the source table */ 502 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 503 int distinct, /* If >=0, make sure results are distinct */ 504 SelectDest *pDest, /* How to dispose of the results */ 505 int iContinue, /* Jump here to continue with next row */ 506 int iBreak /* Jump here to break out of the inner loop */ 507 ){ 508 Vdbe *v = pParse->pVdbe; 509 int i; 510 int hasDistinct; /* True if the DISTINCT keyword is present */ 511 int regResult; /* Start of memory holding result set */ 512 int eDest = pDest->eDest; /* How to dispose of results */ 513 int iParm = pDest->iParm; /* First argument to disposal method */ 514 int nResultCol; /* Number of result columns */ 515 516 assert( v ); 517 if( NEVER(v==0) ) return; 518 assert( pEList!=0 ); 519 hasDistinct = distinct>=0; 520 if( pOrderBy==0 && !hasDistinct ){ 521 codeOffset(v, p, iContinue); 522 } 523 524 /* Pull the requested columns. 525 */ 526 if( nColumn>0 ){ 527 nResultCol = nColumn; 528 }else{ 529 nResultCol = pEList->nExpr; 530 } 531 if( pDest->iMem==0 ){ 532 pDest->iMem = pParse->nMem+1; 533 pDest->nMem = nResultCol; 534 pParse->nMem += nResultCol; 535 }else{ 536 assert( pDest->nMem==nResultCol ); 537 } 538 regResult = pDest->iMem; 539 if( nColumn>0 ){ 540 for(i=0; i<nColumn; i++){ 541 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 542 } 543 }else if( eDest!=SRT_Exists ){ 544 /* If the destination is an EXISTS(...) expression, the actual 545 ** values returned by the SELECT are not required. 546 */ 547 sqlite3ExprCacheClear(pParse); 548 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 549 } 550 nColumn = nResultCol; 551 552 /* If the DISTINCT keyword was present on the SELECT statement 553 ** and this row has been seen before, then do not make this row 554 ** part of the result. 555 */ 556 if( hasDistinct ){ 557 assert( pEList!=0 ); 558 assert( pEList->nExpr==nColumn ); 559 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 560 if( pOrderBy==0 ){ 561 codeOffset(v, p, iContinue); 562 } 563 } 564 565 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 566 return; 567 } 568 569 switch( eDest ){ 570 /* In this mode, write each query result to the key of the temporary 571 ** table iParm. 572 */ 573 #ifndef SQLITE_OMIT_COMPOUND_SELECT 574 case SRT_Union: { 575 int r1; 576 r1 = sqlite3GetTempReg(pParse); 577 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 578 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 579 sqlite3ReleaseTempReg(pParse, r1); 580 break; 581 } 582 583 /* Construct a record from the query result, but instead of 584 ** saving that record, use it as a key to delete elements from 585 ** the temporary table iParm. 586 */ 587 case SRT_Except: { 588 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 589 break; 590 } 591 #endif 592 593 /* Store the result as data using a unique key. 594 */ 595 case SRT_Table: 596 case SRT_EphemTab: { 597 int r1 = sqlite3GetTempReg(pParse); 598 testcase( eDest==SRT_Table ); 599 testcase( eDest==SRT_EphemTab ); 600 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 601 if( pOrderBy ){ 602 pushOntoSorter(pParse, pOrderBy, p, r1); 603 }else{ 604 int r2 = sqlite3GetTempReg(pParse); 605 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 606 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 607 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 608 sqlite3ReleaseTempReg(pParse, r2); 609 } 610 sqlite3ReleaseTempReg(pParse, r1); 611 break; 612 } 613 614 #ifndef SQLITE_OMIT_SUBQUERY 615 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 616 ** then there should be a single item on the stack. Write this 617 ** item into the set table with bogus data. 618 */ 619 case SRT_Set: { 620 assert( nColumn==1 ); 621 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 622 if( pOrderBy ){ 623 /* At first glance you would think we could optimize out the 624 ** ORDER BY in this case since the order of entries in the set 625 ** does not matter. But there might be a LIMIT clause, in which 626 ** case the order does matter */ 627 pushOntoSorter(pParse, pOrderBy, p, regResult); 628 }else{ 629 int r1 = sqlite3GetTempReg(pParse); 630 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 631 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 632 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 633 sqlite3ReleaseTempReg(pParse, r1); 634 } 635 break; 636 } 637 638 /* If any row exist in the result set, record that fact and abort. 639 */ 640 case SRT_Exists: { 641 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 642 /* The LIMIT clause will terminate the loop for us */ 643 break; 644 } 645 646 /* If this is a scalar select that is part of an expression, then 647 ** store the results in the appropriate memory cell and break out 648 ** of the scan loop. 649 */ 650 case SRT_Mem: { 651 assert( nColumn==1 ); 652 if( pOrderBy ){ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 656 /* The LIMIT clause will jump out of the loop for us */ 657 } 658 break; 659 } 660 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 661 662 /* Send the data to the callback function or to a subroutine. In the 663 ** case of a subroutine, the subroutine itself is responsible for 664 ** popping the data from the stack. 665 */ 666 case SRT_Coroutine: 667 case SRT_Output: { 668 testcase( eDest==SRT_Coroutine ); 669 testcase( eDest==SRT_Output ); 670 if( pOrderBy ){ 671 int r1 = sqlite3GetTempReg(pParse); 672 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 673 pushOntoSorter(pParse, pOrderBy, p, r1); 674 sqlite3ReleaseTempReg(pParse, r1); 675 }else if( eDest==SRT_Coroutine ){ 676 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 677 }else{ 678 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 679 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 680 } 681 break; 682 } 683 684 #if !defined(SQLITE_OMIT_TRIGGER) 685 /* Discard the results. This is used for SELECT statements inside 686 ** the body of a TRIGGER. The purpose of such selects is to call 687 ** user-defined functions that have side effects. We do not care 688 ** about the actual results of the select. 689 */ 690 default: { 691 assert( eDest==SRT_Discard ); 692 break; 693 } 694 #endif 695 } 696 697 /* Jump to the end of the loop if the LIMIT is reached. 698 */ 699 if( p->iLimit ){ 700 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 701 ** pushOntoSorter() would have cleared p->iLimit */ 702 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 703 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 704 } 705 } 706 707 /* 708 ** Given an expression list, generate a KeyInfo structure that records 709 ** the collating sequence for each expression in that expression list. 710 ** 711 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 712 ** KeyInfo structure is appropriate for initializing a virtual index to 713 ** implement that clause. If the ExprList is the result set of a SELECT 714 ** then the KeyInfo structure is appropriate for initializing a virtual 715 ** index to implement a DISTINCT test. 716 ** 717 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 718 ** function is responsible for seeing that this structure is eventually 719 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 720 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 721 */ 722 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 723 sqlite3 *db = pParse->db; 724 int nExpr; 725 KeyInfo *pInfo; 726 struct ExprList_item *pItem; 727 int i; 728 729 nExpr = pList->nExpr; 730 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 731 if( pInfo ){ 732 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 733 pInfo->nField = (u16)nExpr; 734 pInfo->enc = ENC(db); 735 pInfo->db = db; 736 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 737 CollSeq *pColl; 738 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 739 if( !pColl ){ 740 pColl = db->pDfltColl; 741 } 742 pInfo->aColl[i] = pColl; 743 pInfo->aSortOrder[i] = pItem->sortOrder; 744 } 745 } 746 return pInfo; 747 } 748 749 750 /* 751 ** If the inner loop was generated using a non-null pOrderBy argument, 752 ** then the results were placed in a sorter. After the loop is terminated 753 ** we need to run the sorter and output the results. The following 754 ** routine generates the code needed to do that. 755 */ 756 static void generateSortTail( 757 Parse *pParse, /* Parsing context */ 758 Select *p, /* The SELECT statement */ 759 Vdbe *v, /* Generate code into this VDBE */ 760 int nColumn, /* Number of columns of data */ 761 SelectDest *pDest /* Write the sorted results here */ 762 ){ 763 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 764 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 765 int addr; 766 int iTab; 767 int pseudoTab = 0; 768 ExprList *pOrderBy = p->pOrderBy; 769 770 int eDest = pDest->eDest; 771 int iParm = pDest->iParm; 772 773 int regRow; 774 int regRowid; 775 776 iTab = pOrderBy->iECursor; 777 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 778 pseudoTab = pParse->nTab++; 779 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn); 780 } 781 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 782 codeOffset(v, p, addrContinue); 783 regRow = sqlite3GetTempReg(pParse); 784 regRowid = sqlite3GetTempReg(pParse); 785 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 786 switch( eDest ){ 787 case SRT_Table: 788 case SRT_EphemTab: { 789 testcase( eDest==SRT_Table ); 790 testcase( eDest==SRT_EphemTab ); 791 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 792 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 793 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 794 break; 795 } 796 #ifndef SQLITE_OMIT_SUBQUERY 797 case SRT_Set: { 798 assert( nColumn==1 ); 799 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 800 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 801 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 802 break; 803 } 804 case SRT_Mem: { 805 assert( nColumn==1 ); 806 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 807 /* The LIMIT clause will terminate the loop for us */ 808 break; 809 } 810 #endif 811 default: { 812 int i; 813 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 814 testcase( eDest==SRT_Output ); 815 testcase( eDest==SRT_Coroutine ); 816 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 817 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 818 for(i=0; i<nColumn; i++){ 819 assert( regRow!=pDest->iMem+i ); 820 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 821 } 822 if( eDest==SRT_Output ){ 823 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 824 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 825 }else{ 826 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 827 } 828 break; 829 } 830 } 831 sqlite3ReleaseTempReg(pParse, regRow); 832 sqlite3ReleaseTempReg(pParse, regRowid); 833 834 /* LIMIT has been implemented by the pushOntoSorter() routine. 835 */ 836 assert( p->iLimit==0 ); 837 838 /* The bottom of the loop 839 */ 840 sqlite3VdbeResolveLabel(v, addrContinue); 841 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 842 sqlite3VdbeResolveLabel(v, addrBreak); 843 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 844 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 845 } 846 } 847 848 /* 849 ** Return a pointer to a string containing the 'declaration type' of the 850 ** expression pExpr. The string may be treated as static by the caller. 851 ** 852 ** The declaration type is the exact datatype definition extracted from the 853 ** original CREATE TABLE statement if the expression is a column. The 854 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 855 ** is considered a column can be complex in the presence of subqueries. The 856 ** result-set expression in all of the following SELECT statements is 857 ** considered a column by this function. 858 ** 859 ** SELECT col FROM tbl; 860 ** SELECT (SELECT col FROM tbl; 861 ** SELECT (SELECT col FROM tbl); 862 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 863 ** 864 ** The declaration type for any expression other than a column is NULL. 865 */ 866 static const char *columnType( 867 NameContext *pNC, 868 Expr *pExpr, 869 const char **pzOriginDb, 870 const char **pzOriginTab, 871 const char **pzOriginCol 872 ){ 873 char const *zType = 0; 874 char const *zOriginDb = 0; 875 char const *zOriginTab = 0; 876 char const *zOriginCol = 0; 877 int j; 878 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 879 880 switch( pExpr->op ){ 881 case TK_AGG_COLUMN: 882 case TK_COLUMN: { 883 /* The expression is a column. Locate the table the column is being 884 ** extracted from in NameContext.pSrcList. This table may be real 885 ** database table or a subquery. 886 */ 887 Table *pTab = 0; /* Table structure column is extracted from */ 888 Select *pS = 0; /* Select the column is extracted from */ 889 int iCol = pExpr->iColumn; /* Index of column in pTab */ 890 testcase( pExpr->op==TK_AGG_COLUMN ); 891 testcase( pExpr->op==TK_COLUMN ); 892 while( pNC && !pTab ){ 893 SrcList *pTabList = pNC->pSrcList; 894 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 895 if( j<pTabList->nSrc ){ 896 pTab = pTabList->a[j].pTab; 897 pS = pTabList->a[j].pSelect; 898 }else{ 899 pNC = pNC->pNext; 900 } 901 } 902 903 if( pTab==0 ){ 904 /* FIX ME: 905 ** This can occurs if you have something like "SELECT new.x;" inside 906 ** a trigger. In other words, if you reference the special "new" 907 ** table in the result set of a select. We do not have a good way 908 ** to find the actual table type, so call it "TEXT". This is really 909 ** something of a bug, but I do not know how to fix it. 910 ** 911 ** This code does not produce the correct answer - it just prevents 912 ** a segfault. See ticket #1229. 913 */ 914 zType = "TEXT"; 915 break; 916 } 917 918 assert( pTab ); 919 if( pS ){ 920 /* The "table" is actually a sub-select or a view in the FROM clause 921 ** of the SELECT statement. Return the declaration type and origin 922 ** data for the result-set column of the sub-select. 923 */ 924 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 925 /* If iCol is less than zero, then the expression requests the 926 ** rowid of the sub-select or view. This expression is legal (see 927 ** test case misc2.2.2) - it always evaluates to NULL. 928 */ 929 NameContext sNC; 930 Expr *p = pS->pEList->a[iCol].pExpr; 931 sNC.pSrcList = pS->pSrc; 932 sNC.pNext = 0; 933 sNC.pParse = pNC->pParse; 934 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 935 } 936 }else if( ALWAYS(pTab->pSchema) ){ 937 /* A real table */ 938 assert( !pS ); 939 if( iCol<0 ) iCol = pTab->iPKey; 940 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 941 if( iCol<0 ){ 942 zType = "INTEGER"; 943 zOriginCol = "rowid"; 944 }else{ 945 zType = pTab->aCol[iCol].zType; 946 zOriginCol = pTab->aCol[iCol].zName; 947 } 948 zOriginTab = pTab->zName; 949 if( pNC->pParse ){ 950 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 951 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 952 } 953 } 954 break; 955 } 956 #ifndef SQLITE_OMIT_SUBQUERY 957 case TK_SELECT: { 958 /* The expression is a sub-select. Return the declaration type and 959 ** origin info for the single column in the result set of the SELECT 960 ** statement. 961 */ 962 NameContext sNC; 963 Select *pS = pExpr->x.pSelect; 964 Expr *p = pS->pEList->a[0].pExpr; 965 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 966 sNC.pSrcList = pS->pSrc; 967 sNC.pNext = pNC; 968 sNC.pParse = pNC->pParse; 969 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 970 break; 971 } 972 #endif 973 } 974 975 if( pzOriginDb ){ 976 assert( pzOriginTab && pzOriginCol ); 977 *pzOriginDb = zOriginDb; 978 *pzOriginTab = zOriginTab; 979 *pzOriginCol = zOriginCol; 980 } 981 return zType; 982 } 983 984 /* 985 ** Generate code that will tell the VDBE the declaration types of columns 986 ** in the result set. 987 */ 988 static void generateColumnTypes( 989 Parse *pParse, /* Parser context */ 990 SrcList *pTabList, /* List of tables */ 991 ExprList *pEList /* Expressions defining the result set */ 992 ){ 993 #ifndef SQLITE_OMIT_DECLTYPE 994 Vdbe *v = pParse->pVdbe; 995 int i; 996 NameContext sNC; 997 sNC.pSrcList = pTabList; 998 sNC.pParse = pParse; 999 for(i=0; i<pEList->nExpr; i++){ 1000 Expr *p = pEList->a[i].pExpr; 1001 const char *zType; 1002 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1003 const char *zOrigDb = 0; 1004 const char *zOrigTab = 0; 1005 const char *zOrigCol = 0; 1006 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1007 1008 /* The vdbe must make its own copy of the column-type and other 1009 ** column specific strings, in case the schema is reset before this 1010 ** virtual machine is deleted. 1011 */ 1012 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1013 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1014 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1015 #else 1016 zType = columnType(&sNC, p, 0, 0, 0); 1017 #endif 1018 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1019 } 1020 #endif /* SQLITE_OMIT_DECLTYPE */ 1021 } 1022 1023 /* 1024 ** Generate code that will tell the VDBE the names of columns 1025 ** in the result set. This information is used to provide the 1026 ** azCol[] values in the callback. 1027 */ 1028 static void generateColumnNames( 1029 Parse *pParse, /* Parser context */ 1030 SrcList *pTabList, /* List of tables */ 1031 ExprList *pEList /* Expressions defining the result set */ 1032 ){ 1033 Vdbe *v = pParse->pVdbe; 1034 int i, j; 1035 sqlite3 *db = pParse->db; 1036 int fullNames, shortNames; 1037 1038 #ifndef SQLITE_OMIT_EXPLAIN 1039 /* If this is an EXPLAIN, skip this step */ 1040 if( pParse->explain ){ 1041 return; 1042 } 1043 #endif 1044 1045 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1046 pParse->colNamesSet = 1; 1047 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1048 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1049 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1050 for(i=0; i<pEList->nExpr; i++){ 1051 Expr *p; 1052 p = pEList->a[i].pExpr; 1053 if( NEVER(p==0) ) continue; 1054 if( pEList->a[i].zName ){ 1055 char *zName = pEList->a[i].zName; 1056 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1057 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1058 Table *pTab; 1059 char *zCol; 1060 int iCol = p->iColumn; 1061 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1062 if( pTabList->a[j].iCursor==p->iTable ) break; 1063 } 1064 assert( j<pTabList->nSrc ); 1065 pTab = pTabList->a[j].pTab; 1066 if( iCol<0 ) iCol = pTab->iPKey; 1067 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1068 if( iCol<0 ){ 1069 zCol = "rowid"; 1070 }else{ 1071 zCol = pTab->aCol[iCol].zName; 1072 } 1073 if( !shortNames && !fullNames ){ 1074 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1075 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1076 }else if( fullNames ){ 1077 char *zName = 0; 1078 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1079 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1080 }else{ 1081 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1082 } 1083 }else{ 1084 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1085 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1086 } 1087 } 1088 generateColumnTypes(pParse, pTabList, pEList); 1089 } 1090 1091 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1092 /* 1093 ** Name of the connection operator, used for error messages. 1094 */ 1095 static const char *selectOpName(int id){ 1096 char *z; 1097 switch( id ){ 1098 case TK_ALL: z = "UNION ALL"; break; 1099 case TK_INTERSECT: z = "INTERSECT"; break; 1100 case TK_EXCEPT: z = "EXCEPT"; break; 1101 default: z = "UNION"; break; 1102 } 1103 return z; 1104 } 1105 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1106 1107 /* 1108 ** Given a an expression list (which is really the list of expressions 1109 ** that form the result set of a SELECT statement) compute appropriate 1110 ** column names for a table that would hold the expression list. 1111 ** 1112 ** All column names will be unique. 1113 ** 1114 ** Only the column names are computed. Column.zType, Column.zColl, 1115 ** and other fields of Column are zeroed. 1116 ** 1117 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1118 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1119 */ 1120 static int selectColumnsFromExprList( 1121 Parse *pParse, /* Parsing context */ 1122 ExprList *pEList, /* Expr list from which to derive column names */ 1123 int *pnCol, /* Write the number of columns here */ 1124 Column **paCol /* Write the new column list here */ 1125 ){ 1126 sqlite3 *db = pParse->db; /* Database connection */ 1127 int i, j; /* Loop counters */ 1128 int cnt; /* Index added to make the name unique */ 1129 Column *aCol, *pCol; /* For looping over result columns */ 1130 int nCol; /* Number of columns in the result set */ 1131 Expr *p; /* Expression for a single result column */ 1132 char *zName; /* Column name */ 1133 int nName; /* Size of name in zName[] */ 1134 1135 *pnCol = nCol = pEList->nExpr; 1136 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1137 if( aCol==0 ) return SQLITE_NOMEM; 1138 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1139 /* Get an appropriate name for the column 1140 */ 1141 p = pEList->a[i].pExpr; 1142 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1143 if( (zName = pEList->a[i].zName)!=0 ){ 1144 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1145 zName = sqlite3DbStrDup(db, zName); 1146 }else{ 1147 Expr *pColExpr = p; /* The expression that is the result column name */ 1148 Table *pTab; /* Table associated with this expression */ 1149 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1150 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1151 /* For columns use the column name name */ 1152 int iCol = pColExpr->iColumn; 1153 pTab = pColExpr->pTab; 1154 if( iCol<0 ) iCol = pTab->iPKey; 1155 zName = sqlite3MPrintf(db, "%s", 1156 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1157 }else{ 1158 /* Use the original text of the column expression as its name */ 1159 Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token); 1160 zName = sqlite3MPrintf(db, "%T", pToken); 1161 } 1162 } 1163 if( db->mallocFailed ){ 1164 sqlite3DbFree(db, zName); 1165 break; 1166 } 1167 1168 /* Make sure the column name is unique. If the name is not unique, 1169 ** append a integer to the name so that it becomes unique. 1170 */ 1171 nName = sqlite3Strlen30(zName); 1172 for(j=cnt=0; j<i; j++){ 1173 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1174 char *zNewName; 1175 zName[nName] = 0; 1176 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1177 sqlite3DbFree(db, zName); 1178 zName = zNewName; 1179 j = -1; 1180 if( zName==0 ) break; 1181 } 1182 } 1183 pCol->zName = zName; 1184 } 1185 if( db->mallocFailed ){ 1186 for(j=0; j<i; j++){ 1187 sqlite3DbFree(db, aCol[j].zName); 1188 } 1189 sqlite3DbFree(db, aCol); 1190 *paCol = 0; 1191 *pnCol = 0; 1192 return SQLITE_NOMEM; 1193 } 1194 return SQLITE_OK; 1195 } 1196 1197 /* 1198 ** Add type and collation information to a column list based on 1199 ** a SELECT statement. 1200 ** 1201 ** The column list presumably came from selectColumnNamesFromExprList(). 1202 ** The column list has only names, not types or collations. This 1203 ** routine goes through and adds the types and collations. 1204 ** 1205 ** This routine requires that all identifiers in the SELECT 1206 ** statement be resolved. 1207 */ 1208 static void selectAddColumnTypeAndCollation( 1209 Parse *pParse, /* Parsing contexts */ 1210 int nCol, /* Number of columns */ 1211 Column *aCol, /* List of columns */ 1212 Select *pSelect /* SELECT used to determine types and collations */ 1213 ){ 1214 sqlite3 *db = pParse->db; 1215 NameContext sNC; 1216 Column *pCol; 1217 CollSeq *pColl; 1218 int i; 1219 Expr *p; 1220 struct ExprList_item *a; 1221 1222 assert( pSelect!=0 ); 1223 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1224 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1225 if( db->mallocFailed ) return; 1226 memset(&sNC, 0, sizeof(sNC)); 1227 sNC.pSrcList = pSelect->pSrc; 1228 a = pSelect->pEList->a; 1229 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1230 p = a[i].pExpr; 1231 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1232 pCol->affinity = sqlite3ExprAffinity(p); 1233 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1234 pColl = sqlite3ExprCollSeq(pParse, p); 1235 if( pColl ){ 1236 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1237 } 1238 } 1239 } 1240 1241 /* 1242 ** Given a SELECT statement, generate a Table structure that describes 1243 ** the result set of that SELECT. 1244 */ 1245 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1246 Table *pTab; 1247 sqlite3 *db = pParse->db; 1248 int savedFlags; 1249 1250 savedFlags = db->flags; 1251 db->flags &= ~SQLITE_FullColNames; 1252 db->flags |= SQLITE_ShortColNames; 1253 sqlite3SelectPrep(pParse, pSelect, 0); 1254 if( pParse->nErr ) return 0; 1255 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1256 db->flags = savedFlags; 1257 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1258 if( pTab==0 ){ 1259 return 0; 1260 } 1261 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1262 ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */ 1263 assert( db->lookaside.bEnabled==0 ); 1264 pTab->dbMem = 0; 1265 pTab->nRef = 1; 1266 pTab->zName = 0; 1267 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1268 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1269 pTab->iPKey = -1; 1270 if( db->mallocFailed ){ 1271 sqlite3DeleteTable(pTab); 1272 return 0; 1273 } 1274 return pTab; 1275 } 1276 1277 /* 1278 ** Get a VDBE for the given parser context. Create a new one if necessary. 1279 ** If an error occurs, return NULL and leave a message in pParse. 1280 */ 1281 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1282 Vdbe *v = pParse->pVdbe; 1283 if( v==0 ){ 1284 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1285 #ifndef SQLITE_OMIT_TRACE 1286 if( v ){ 1287 sqlite3VdbeAddOp0(v, OP_Trace); 1288 } 1289 #endif 1290 } 1291 return v; 1292 } 1293 1294 1295 /* 1296 ** Compute the iLimit and iOffset fields of the SELECT based on the 1297 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1298 ** that appear in the original SQL statement after the LIMIT and OFFSET 1299 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1300 ** are the integer memory register numbers for counters used to compute 1301 ** the limit and offset. If there is no limit and/or offset, then 1302 ** iLimit and iOffset are negative. 1303 ** 1304 ** This routine changes the values of iLimit and iOffset only if 1305 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1306 ** iOffset should have been preset to appropriate default values 1307 ** (usually but not always -1) prior to calling this routine. 1308 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1309 ** redefined. The UNION ALL operator uses this property to force 1310 ** the reuse of the same limit and offset registers across multiple 1311 ** SELECT statements. 1312 */ 1313 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1314 Vdbe *v = 0; 1315 int iLimit = 0; 1316 int iOffset; 1317 int addr1; 1318 if( p->iLimit ) return; 1319 1320 /* 1321 ** "LIMIT -1" always shows all rows. There is some 1322 ** contraversy about what the correct behavior should be. 1323 ** The current implementation interprets "LIMIT 0" to mean 1324 ** no rows. 1325 */ 1326 sqlite3ExprCacheClear(pParse); 1327 assert( p->pOffset==0 || p->pLimit!=0 ); 1328 if( p->pLimit ){ 1329 p->iLimit = iLimit = ++pParse->nMem; 1330 v = sqlite3GetVdbe(pParse); 1331 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1332 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1333 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1334 VdbeComment((v, "LIMIT counter")); 1335 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1336 if( p->pOffset ){ 1337 p->iOffset = iOffset = ++pParse->nMem; 1338 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1339 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1340 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1341 VdbeComment((v, "OFFSET counter")); 1342 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1343 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1344 sqlite3VdbeJumpHere(v, addr1); 1345 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1346 VdbeComment((v, "LIMIT+OFFSET")); 1347 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1348 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1349 sqlite3VdbeJumpHere(v, addr1); 1350 } 1351 } 1352 } 1353 1354 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1355 /* 1356 ** Return the appropriate collating sequence for the iCol-th column of 1357 ** the result set for the compound-select statement "p". Return NULL if 1358 ** the column has no default collating sequence. 1359 ** 1360 ** The collating sequence for the compound select is taken from the 1361 ** left-most term of the select that has a collating sequence. 1362 */ 1363 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1364 CollSeq *pRet; 1365 if( p->pPrior ){ 1366 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1367 }else{ 1368 pRet = 0; 1369 } 1370 assert( iCol>=0 ); 1371 if( pRet==0 && iCol<p->pEList->nExpr ){ 1372 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1373 } 1374 return pRet; 1375 } 1376 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1377 1378 /* Forward reference */ 1379 static int multiSelectOrderBy( 1380 Parse *pParse, /* Parsing context */ 1381 Select *p, /* The right-most of SELECTs to be coded */ 1382 SelectDest *pDest /* What to do with query results */ 1383 ); 1384 1385 1386 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1387 /* 1388 ** This routine is called to process a compound query form from 1389 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1390 ** INTERSECT 1391 ** 1392 ** "p" points to the right-most of the two queries. the query on the 1393 ** left is p->pPrior. The left query could also be a compound query 1394 ** in which case this routine will be called recursively. 1395 ** 1396 ** The results of the total query are to be written into a destination 1397 ** of type eDest with parameter iParm. 1398 ** 1399 ** Example 1: Consider a three-way compound SQL statement. 1400 ** 1401 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1402 ** 1403 ** This statement is parsed up as follows: 1404 ** 1405 ** SELECT c FROM t3 1406 ** | 1407 ** `-----> SELECT b FROM t2 1408 ** | 1409 ** `------> SELECT a FROM t1 1410 ** 1411 ** The arrows in the diagram above represent the Select.pPrior pointer. 1412 ** So if this routine is called with p equal to the t3 query, then 1413 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1414 ** 1415 ** Notice that because of the way SQLite parses compound SELECTs, the 1416 ** individual selects always group from left to right. 1417 */ 1418 static int multiSelect( 1419 Parse *pParse, /* Parsing context */ 1420 Select *p, /* The right-most of SELECTs to be coded */ 1421 SelectDest *pDest /* What to do with query results */ 1422 ){ 1423 int rc = SQLITE_OK; /* Success code from a subroutine */ 1424 Select *pPrior; /* Another SELECT immediately to our left */ 1425 Vdbe *v; /* Generate code to this VDBE */ 1426 SelectDest dest; /* Alternative data destination */ 1427 Select *pDelete = 0; /* Chain of simple selects to delete */ 1428 sqlite3 *db; /* Database connection */ 1429 1430 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1431 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1432 */ 1433 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1434 db = pParse->db; 1435 pPrior = p->pPrior; 1436 assert( pPrior->pRightmost!=pPrior ); 1437 assert( pPrior->pRightmost==p->pRightmost ); 1438 dest = *pDest; 1439 if( pPrior->pOrderBy ){ 1440 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1441 selectOpName(p->op)); 1442 rc = 1; 1443 goto multi_select_end; 1444 } 1445 if( pPrior->pLimit ){ 1446 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1447 selectOpName(p->op)); 1448 rc = 1; 1449 goto multi_select_end; 1450 } 1451 1452 v = sqlite3GetVdbe(pParse); 1453 assert( v!=0 ); /* The VDBE already created by calling function */ 1454 1455 /* Create the destination temporary table if necessary 1456 */ 1457 if( dest.eDest==SRT_EphemTab ){ 1458 assert( p->pEList ); 1459 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1460 dest.eDest = SRT_Table; 1461 } 1462 1463 /* Make sure all SELECTs in the statement have the same number of elements 1464 ** in their result sets. 1465 */ 1466 assert( p->pEList && pPrior->pEList ); 1467 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1468 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1469 " do not have the same number of result columns", selectOpName(p->op)); 1470 rc = 1; 1471 goto multi_select_end; 1472 } 1473 1474 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1475 */ 1476 if( p->pOrderBy ){ 1477 return multiSelectOrderBy(pParse, p, pDest); 1478 } 1479 1480 /* Generate code for the left and right SELECT statements. 1481 */ 1482 switch( p->op ){ 1483 case TK_ALL: { 1484 int addr = 0; 1485 assert( !pPrior->pLimit ); 1486 pPrior->pLimit = p->pLimit; 1487 pPrior->pOffset = p->pOffset; 1488 rc = sqlite3Select(pParse, pPrior, &dest); 1489 p->pLimit = 0; 1490 p->pOffset = 0; 1491 if( rc ){ 1492 goto multi_select_end; 1493 } 1494 p->pPrior = 0; 1495 p->iLimit = pPrior->iLimit; 1496 p->iOffset = pPrior->iOffset; 1497 if( p->iLimit ){ 1498 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1499 VdbeComment((v, "Jump ahead if LIMIT reached")); 1500 } 1501 rc = sqlite3Select(pParse, p, &dest); 1502 testcase( rc!=SQLITE_OK ); 1503 pDelete = p->pPrior; 1504 p->pPrior = pPrior; 1505 if( addr ){ 1506 sqlite3VdbeJumpHere(v, addr); 1507 } 1508 break; 1509 } 1510 case TK_EXCEPT: 1511 case TK_UNION: { 1512 int unionTab; /* Cursor number of the temporary table holding result */ 1513 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1514 int priorOp; /* The SRT_ operation to apply to prior selects */ 1515 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1516 int addr; 1517 SelectDest uniondest; 1518 1519 testcase( p->op==TK_EXCEPT ); 1520 testcase( p->op==TK_UNION ); 1521 priorOp = SRT_Union; 1522 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1523 /* We can reuse a temporary table generated by a SELECT to our 1524 ** right. 1525 */ 1526 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1527 ** of a 3-way or more compound */ 1528 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1529 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1530 unionTab = dest.iParm; 1531 }else{ 1532 /* We will need to create our own temporary table to hold the 1533 ** intermediate results. 1534 */ 1535 unionTab = pParse->nTab++; 1536 assert( p->pOrderBy==0 ); 1537 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1538 assert( p->addrOpenEphm[0] == -1 ); 1539 p->addrOpenEphm[0] = addr; 1540 p->pRightmost->selFlags |= SF_UsesEphemeral; 1541 assert( p->pEList ); 1542 } 1543 1544 /* Code the SELECT statements to our left 1545 */ 1546 assert( !pPrior->pOrderBy ); 1547 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1548 rc = sqlite3Select(pParse, pPrior, &uniondest); 1549 if( rc ){ 1550 goto multi_select_end; 1551 } 1552 1553 /* Code the current SELECT statement 1554 */ 1555 if( p->op==TK_EXCEPT ){ 1556 op = SRT_Except; 1557 }else{ 1558 assert( p->op==TK_UNION ); 1559 op = SRT_Union; 1560 } 1561 p->pPrior = 0; 1562 pLimit = p->pLimit; 1563 p->pLimit = 0; 1564 pOffset = p->pOffset; 1565 p->pOffset = 0; 1566 uniondest.eDest = op; 1567 rc = sqlite3Select(pParse, p, &uniondest); 1568 testcase( rc!=SQLITE_OK ); 1569 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1570 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1571 sqlite3ExprListDelete(db, p->pOrderBy); 1572 pDelete = p->pPrior; 1573 p->pPrior = pPrior; 1574 p->pOrderBy = 0; 1575 sqlite3ExprDelete(db, p->pLimit); 1576 p->pLimit = pLimit; 1577 p->pOffset = pOffset; 1578 p->iLimit = 0; 1579 p->iOffset = 0; 1580 1581 /* Convert the data in the temporary table into whatever form 1582 ** it is that we currently need. 1583 */ 1584 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1585 if( dest.eDest!=priorOp ){ 1586 int iCont, iBreak, iStart; 1587 assert( p->pEList ); 1588 if( dest.eDest==SRT_Output ){ 1589 Select *pFirst = p; 1590 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1591 generateColumnNames(pParse, 0, pFirst->pEList); 1592 } 1593 iBreak = sqlite3VdbeMakeLabel(v); 1594 iCont = sqlite3VdbeMakeLabel(v); 1595 computeLimitRegisters(pParse, p, iBreak); 1596 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1597 iStart = sqlite3VdbeCurrentAddr(v); 1598 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1599 0, -1, &dest, iCont, iBreak); 1600 sqlite3VdbeResolveLabel(v, iCont); 1601 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1602 sqlite3VdbeResolveLabel(v, iBreak); 1603 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1604 } 1605 break; 1606 } 1607 default: assert( p->op==TK_INTERSECT ); { 1608 int tab1, tab2; 1609 int iCont, iBreak, iStart; 1610 Expr *pLimit, *pOffset; 1611 int addr; 1612 SelectDest intersectdest; 1613 int r1; 1614 1615 /* INTERSECT is different from the others since it requires 1616 ** two temporary tables. Hence it has its own case. Begin 1617 ** by allocating the tables we will need. 1618 */ 1619 tab1 = pParse->nTab++; 1620 tab2 = pParse->nTab++; 1621 assert( p->pOrderBy==0 ); 1622 1623 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1624 assert( p->addrOpenEphm[0] == -1 ); 1625 p->addrOpenEphm[0] = addr; 1626 p->pRightmost->selFlags |= SF_UsesEphemeral; 1627 assert( p->pEList ); 1628 1629 /* Code the SELECTs to our left into temporary table "tab1". 1630 */ 1631 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1632 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1633 if( rc ){ 1634 goto multi_select_end; 1635 } 1636 1637 /* Code the current SELECT into temporary table "tab2" 1638 */ 1639 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1640 assert( p->addrOpenEphm[1] == -1 ); 1641 p->addrOpenEphm[1] = addr; 1642 p->pPrior = 0; 1643 pLimit = p->pLimit; 1644 p->pLimit = 0; 1645 pOffset = p->pOffset; 1646 p->pOffset = 0; 1647 intersectdest.iParm = tab2; 1648 rc = sqlite3Select(pParse, p, &intersectdest); 1649 testcase( rc!=SQLITE_OK ); 1650 pDelete = p->pPrior; 1651 p->pPrior = pPrior; 1652 sqlite3ExprDelete(db, p->pLimit); 1653 p->pLimit = pLimit; 1654 p->pOffset = pOffset; 1655 1656 /* Generate code to take the intersection of the two temporary 1657 ** tables. 1658 */ 1659 assert( p->pEList ); 1660 if( dest.eDest==SRT_Output ){ 1661 Select *pFirst = p; 1662 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1663 generateColumnNames(pParse, 0, pFirst->pEList); 1664 } 1665 iBreak = sqlite3VdbeMakeLabel(v); 1666 iCont = sqlite3VdbeMakeLabel(v); 1667 computeLimitRegisters(pParse, p, iBreak); 1668 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1669 r1 = sqlite3GetTempReg(pParse); 1670 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1671 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1672 sqlite3ReleaseTempReg(pParse, r1); 1673 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1674 0, -1, &dest, iCont, iBreak); 1675 sqlite3VdbeResolveLabel(v, iCont); 1676 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1677 sqlite3VdbeResolveLabel(v, iBreak); 1678 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1679 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1680 break; 1681 } 1682 } 1683 1684 /* Compute collating sequences used by 1685 ** temporary tables needed to implement the compound select. 1686 ** Attach the KeyInfo structure to all temporary tables. 1687 ** 1688 ** This section is run by the right-most SELECT statement only. 1689 ** SELECT statements to the left always skip this part. The right-most 1690 ** SELECT might also skip this part if it has no ORDER BY clause and 1691 ** no temp tables are required. 1692 */ 1693 if( p->selFlags & SF_UsesEphemeral ){ 1694 int i; /* Loop counter */ 1695 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1696 Select *pLoop; /* For looping through SELECT statements */ 1697 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1698 int nCol; /* Number of columns in result set */ 1699 1700 assert( p->pRightmost==p ); 1701 nCol = p->pEList->nExpr; 1702 pKeyInfo = sqlite3DbMallocZero(db, 1703 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1704 if( !pKeyInfo ){ 1705 rc = SQLITE_NOMEM; 1706 goto multi_select_end; 1707 } 1708 1709 pKeyInfo->enc = ENC(db); 1710 pKeyInfo->nField = (u16)nCol; 1711 1712 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1713 *apColl = multiSelectCollSeq(pParse, p, i); 1714 if( 0==*apColl ){ 1715 *apColl = db->pDfltColl; 1716 } 1717 } 1718 1719 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1720 for(i=0; i<2; i++){ 1721 int addr = pLoop->addrOpenEphm[i]; 1722 if( addr<0 ){ 1723 /* If [0] is unused then [1] is also unused. So we can 1724 ** always safely abort as soon as the first unused slot is found */ 1725 assert( pLoop->addrOpenEphm[1]<0 ); 1726 break; 1727 } 1728 sqlite3VdbeChangeP2(v, addr, nCol); 1729 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1730 pLoop->addrOpenEphm[i] = -1; 1731 } 1732 } 1733 sqlite3DbFree(db, pKeyInfo); 1734 } 1735 1736 multi_select_end: 1737 pDest->iMem = dest.iMem; 1738 pDest->nMem = dest.nMem; 1739 sqlite3SelectDelete(db, pDelete); 1740 return rc; 1741 } 1742 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1743 1744 /* 1745 ** Code an output subroutine for a coroutine implementation of a 1746 ** SELECT statment. 1747 ** 1748 ** The data to be output is contained in pIn->iMem. There are 1749 ** pIn->nMem columns to be output. pDest is where the output should 1750 ** be sent. 1751 ** 1752 ** regReturn is the number of the register holding the subroutine 1753 ** return address. 1754 ** 1755 ** If regPrev>0 then it is a the first register in a vector that 1756 ** records the previous output. mem[regPrev] is a flag that is false 1757 ** if there has been no previous output. If regPrev>0 then code is 1758 ** generated to suppress duplicates. pKeyInfo is used for comparing 1759 ** keys. 1760 ** 1761 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1762 ** iBreak. 1763 */ 1764 static int generateOutputSubroutine( 1765 Parse *pParse, /* Parsing context */ 1766 Select *p, /* The SELECT statement */ 1767 SelectDest *pIn, /* Coroutine supplying data */ 1768 SelectDest *pDest, /* Where to send the data */ 1769 int regReturn, /* The return address register */ 1770 int regPrev, /* Previous result register. No uniqueness if 0 */ 1771 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1772 int p4type, /* The p4 type for pKeyInfo */ 1773 int iBreak /* Jump here if we hit the LIMIT */ 1774 ){ 1775 Vdbe *v = pParse->pVdbe; 1776 int iContinue; 1777 int addr; 1778 1779 addr = sqlite3VdbeCurrentAddr(v); 1780 iContinue = sqlite3VdbeMakeLabel(v); 1781 1782 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1783 */ 1784 if( regPrev ){ 1785 int j1, j2; 1786 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1787 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1788 (char*)pKeyInfo, p4type); 1789 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1790 sqlite3VdbeJumpHere(v, j1); 1791 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1792 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1793 } 1794 if( pParse->db->mallocFailed ) return 0; 1795 1796 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1797 */ 1798 codeOffset(v, p, iContinue); 1799 1800 switch( pDest->eDest ){ 1801 /* Store the result as data using a unique key. 1802 */ 1803 case SRT_Table: 1804 case SRT_EphemTab: { 1805 int r1 = sqlite3GetTempReg(pParse); 1806 int r2 = sqlite3GetTempReg(pParse); 1807 testcase( pDest->eDest==SRT_Table ); 1808 testcase( pDest->eDest==SRT_EphemTab ); 1809 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1810 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1811 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1812 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1813 sqlite3ReleaseTempReg(pParse, r2); 1814 sqlite3ReleaseTempReg(pParse, r1); 1815 break; 1816 } 1817 1818 #ifndef SQLITE_OMIT_SUBQUERY 1819 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1820 ** then there should be a single item on the stack. Write this 1821 ** item into the set table with bogus data. 1822 */ 1823 case SRT_Set: { 1824 int r1; 1825 assert( pIn->nMem==1 ); 1826 p->affinity = 1827 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1828 r1 = sqlite3GetTempReg(pParse); 1829 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1830 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1831 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1832 sqlite3ReleaseTempReg(pParse, r1); 1833 break; 1834 } 1835 1836 #if 0 /* Never occurs on an ORDER BY query */ 1837 /* If any row exist in the result set, record that fact and abort. 1838 */ 1839 case SRT_Exists: { 1840 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1841 /* The LIMIT clause will terminate the loop for us */ 1842 break; 1843 } 1844 #endif 1845 1846 /* If this is a scalar select that is part of an expression, then 1847 ** store the results in the appropriate memory cell and break out 1848 ** of the scan loop. 1849 */ 1850 case SRT_Mem: { 1851 assert( pIn->nMem==1 ); 1852 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1853 /* The LIMIT clause will jump out of the loop for us */ 1854 break; 1855 } 1856 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1857 1858 /* The results are stored in a sequence of registers 1859 ** starting at pDest->iMem. Then the co-routine yields. 1860 */ 1861 case SRT_Coroutine: { 1862 if( pDest->iMem==0 ){ 1863 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1864 pDest->nMem = pIn->nMem; 1865 } 1866 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1867 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1868 break; 1869 } 1870 1871 /* If none of the above, then the result destination must be 1872 ** SRT_Output. This routine is never called with any other 1873 ** destination other than the ones handled above or SRT_Output. 1874 ** 1875 ** For SRT_Output, results are stored in a sequence of registers. 1876 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1877 ** return the next row of result. 1878 */ 1879 default: { 1880 assert( pDest->eDest==SRT_Output ); 1881 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1882 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1883 break; 1884 } 1885 } 1886 1887 /* Jump to the end of the loop if the LIMIT is reached. 1888 */ 1889 if( p->iLimit ){ 1890 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1891 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1892 } 1893 1894 /* Generate the subroutine return 1895 */ 1896 sqlite3VdbeResolveLabel(v, iContinue); 1897 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1898 1899 return addr; 1900 } 1901 1902 /* 1903 ** Alternative compound select code generator for cases when there 1904 ** is an ORDER BY clause. 1905 ** 1906 ** We assume a query of the following form: 1907 ** 1908 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1909 ** 1910 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1911 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1912 ** co-routines. Then run the co-routines in parallel and merge the results 1913 ** into the output. In addition to the two coroutines (called selectA and 1914 ** selectB) there are 7 subroutines: 1915 ** 1916 ** outA: Move the output of the selectA coroutine into the output 1917 ** of the compound query. 1918 ** 1919 ** outB: Move the output of the selectB coroutine into the output 1920 ** of the compound query. (Only generated for UNION and 1921 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1922 ** appears only in B.) 1923 ** 1924 ** AltB: Called when there is data from both coroutines and A<B. 1925 ** 1926 ** AeqB: Called when there is data from both coroutines and A==B. 1927 ** 1928 ** AgtB: Called when there is data from both coroutines and A>B. 1929 ** 1930 ** EofA: Called when data is exhausted from selectA. 1931 ** 1932 ** EofB: Called when data is exhausted from selectB. 1933 ** 1934 ** The implementation of the latter five subroutines depend on which 1935 ** <operator> is used: 1936 ** 1937 ** 1938 ** UNION ALL UNION EXCEPT INTERSECT 1939 ** ------------- ----------------- -------------- ----------------- 1940 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1941 ** 1942 ** AeqB: outA, nextA nextA nextA outA, nextA 1943 ** 1944 ** AgtB: outB, nextB outB, nextB nextB nextB 1945 ** 1946 ** EofA: outB, nextB outB, nextB halt halt 1947 ** 1948 ** EofB: outA, nextA outA, nextA outA, nextA halt 1949 ** 1950 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1951 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1952 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1953 ** following nextX causes a jump to the end of the select processing. 1954 ** 1955 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1956 ** within the output subroutine. The regPrev register set holds the previously 1957 ** output value. A comparison is made against this value and the output 1958 ** is skipped if the next results would be the same as the previous. 1959 ** 1960 ** The implementation plan is to implement the two coroutines and seven 1961 ** subroutines first, then put the control logic at the bottom. Like this: 1962 ** 1963 ** goto Init 1964 ** coA: coroutine for left query (A) 1965 ** coB: coroutine for right query (B) 1966 ** outA: output one row of A 1967 ** outB: output one row of B (UNION and UNION ALL only) 1968 ** EofA: ... 1969 ** EofB: ... 1970 ** AltB: ... 1971 ** AeqB: ... 1972 ** AgtB: ... 1973 ** Init: initialize coroutine registers 1974 ** yield coA 1975 ** if eof(A) goto EofA 1976 ** yield coB 1977 ** if eof(B) goto EofB 1978 ** Cmpr: Compare A, B 1979 ** Jump AltB, AeqB, AgtB 1980 ** End: ... 1981 ** 1982 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 1983 ** actually called using Gosub and they do not Return. EofA and EofB loop 1984 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 1985 ** and AgtB jump to either L2 or to one of EofA or EofB. 1986 */ 1987 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1988 static int multiSelectOrderBy( 1989 Parse *pParse, /* Parsing context */ 1990 Select *p, /* The right-most of SELECTs to be coded */ 1991 SelectDest *pDest /* What to do with query results */ 1992 ){ 1993 int i, j; /* Loop counters */ 1994 Select *pPrior; /* Another SELECT immediately to our left */ 1995 Vdbe *v; /* Generate code to this VDBE */ 1996 SelectDest destA; /* Destination for coroutine A */ 1997 SelectDest destB; /* Destination for coroutine B */ 1998 int regAddrA; /* Address register for select-A coroutine */ 1999 int regEofA; /* Flag to indicate when select-A is complete */ 2000 int regAddrB; /* Address register for select-B coroutine */ 2001 int regEofB; /* Flag to indicate when select-B is complete */ 2002 int addrSelectA; /* Address of the select-A coroutine */ 2003 int addrSelectB; /* Address of the select-B coroutine */ 2004 int regOutA; /* Address register for the output-A subroutine */ 2005 int regOutB; /* Address register for the output-B subroutine */ 2006 int addrOutA; /* Address of the output-A subroutine */ 2007 int addrOutB = 0; /* Address of the output-B subroutine */ 2008 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2009 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2010 int addrAltB; /* Address of the A<B subroutine */ 2011 int addrAeqB; /* Address of the A==B subroutine */ 2012 int addrAgtB; /* Address of the A>B subroutine */ 2013 int regLimitA; /* Limit register for select-A */ 2014 int regLimitB; /* Limit register for select-A */ 2015 int regPrev; /* A range of registers to hold previous output */ 2016 int savedLimit; /* Saved value of p->iLimit */ 2017 int savedOffset; /* Saved value of p->iOffset */ 2018 int labelCmpr; /* Label for the start of the merge algorithm */ 2019 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2020 int j1; /* Jump instructions that get retargetted */ 2021 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2022 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2023 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2024 sqlite3 *db; /* Database connection */ 2025 ExprList *pOrderBy; /* The ORDER BY clause */ 2026 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2027 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2028 2029 assert( p->pOrderBy!=0 ); 2030 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2031 db = pParse->db; 2032 v = pParse->pVdbe; 2033 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2034 labelEnd = sqlite3VdbeMakeLabel(v); 2035 labelCmpr = sqlite3VdbeMakeLabel(v); 2036 2037 2038 /* Patch up the ORDER BY clause 2039 */ 2040 op = p->op; 2041 pPrior = p->pPrior; 2042 assert( pPrior->pOrderBy==0 ); 2043 pOrderBy = p->pOrderBy; 2044 assert( pOrderBy ); 2045 nOrderBy = pOrderBy->nExpr; 2046 2047 /* For operators other than UNION ALL we have to make sure that 2048 ** the ORDER BY clause covers every term of the result set. Add 2049 ** terms to the ORDER BY clause as necessary. 2050 */ 2051 if( op!=TK_ALL ){ 2052 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2053 struct ExprList_item *pItem; 2054 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2055 assert( pItem->iCol>0 ); 2056 if( pItem->iCol==i ) break; 2057 } 2058 if( j==nOrderBy ){ 2059 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2060 if( pNew==0 ) return SQLITE_NOMEM; 2061 pNew->flags |= EP_IntValue; 2062 pNew->iTable = i; 2063 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2064 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2065 } 2066 } 2067 } 2068 2069 /* Compute the comparison permutation and keyinfo that is used with 2070 ** the permutation used to determine if the next 2071 ** row of results comes from selectA or selectB. Also add explicit 2072 ** collations to the ORDER BY clause terms so that when the subqueries 2073 ** to the right and the left are evaluated, they use the correct 2074 ** collation. 2075 */ 2076 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2077 if( aPermute ){ 2078 struct ExprList_item *pItem; 2079 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2080 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2081 aPermute[i] = pItem->iCol - 1; 2082 } 2083 pKeyMerge = 2084 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2085 if( pKeyMerge ){ 2086 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2087 pKeyMerge->nField = (u16)nOrderBy; 2088 pKeyMerge->enc = ENC(db); 2089 for(i=0; i<nOrderBy; i++){ 2090 CollSeq *pColl; 2091 Expr *pTerm = pOrderBy->a[i].pExpr; 2092 if( pTerm->flags & EP_ExpCollate ){ 2093 pColl = pTerm->pColl; 2094 }else{ 2095 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2096 pTerm->flags |= EP_ExpCollate; 2097 pTerm->pColl = pColl; 2098 } 2099 pKeyMerge->aColl[i] = pColl; 2100 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2101 } 2102 } 2103 }else{ 2104 pKeyMerge = 0; 2105 } 2106 2107 /* Reattach the ORDER BY clause to the query. 2108 */ 2109 p->pOrderBy = pOrderBy; 2110 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2111 2112 /* Allocate a range of temporary registers and the KeyInfo needed 2113 ** for the logic that removes duplicate result rows when the 2114 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2115 */ 2116 if( op==TK_ALL ){ 2117 regPrev = 0; 2118 }else{ 2119 int nExpr = p->pEList->nExpr; 2120 assert( nOrderBy>=nExpr || db->mallocFailed ); 2121 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2122 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2123 pKeyDup = sqlite3DbMallocZero(db, 2124 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2125 if( pKeyDup ){ 2126 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2127 pKeyDup->nField = (u16)nExpr; 2128 pKeyDup->enc = ENC(db); 2129 for(i=0; i<nExpr; i++){ 2130 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2131 pKeyDup->aSortOrder[i] = 0; 2132 } 2133 } 2134 } 2135 2136 /* Separate the left and the right query from one another 2137 */ 2138 p->pPrior = 0; 2139 pPrior->pRightmost = 0; 2140 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2141 if( pPrior->pPrior==0 ){ 2142 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2143 } 2144 2145 /* Compute the limit registers */ 2146 computeLimitRegisters(pParse, p, labelEnd); 2147 if( p->iLimit && op==TK_ALL ){ 2148 regLimitA = ++pParse->nMem; 2149 regLimitB = ++pParse->nMem; 2150 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2151 regLimitA); 2152 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2153 }else{ 2154 regLimitA = regLimitB = 0; 2155 } 2156 sqlite3ExprDelete(db, p->pLimit); 2157 p->pLimit = 0; 2158 sqlite3ExprDelete(db, p->pOffset); 2159 p->pOffset = 0; 2160 2161 regAddrA = ++pParse->nMem; 2162 regEofA = ++pParse->nMem; 2163 regAddrB = ++pParse->nMem; 2164 regEofB = ++pParse->nMem; 2165 regOutA = ++pParse->nMem; 2166 regOutB = ++pParse->nMem; 2167 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2168 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2169 2170 /* Jump past the various subroutines and coroutines to the main 2171 ** merge loop 2172 */ 2173 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2174 addrSelectA = sqlite3VdbeCurrentAddr(v); 2175 2176 2177 /* Generate a coroutine to evaluate the SELECT statement to the 2178 ** left of the compound operator - the "A" select. 2179 */ 2180 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2181 pPrior->iLimit = regLimitA; 2182 sqlite3Select(pParse, pPrior, &destA); 2183 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2184 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2185 VdbeNoopComment((v, "End coroutine for left SELECT")); 2186 2187 /* Generate a coroutine to evaluate the SELECT statement on 2188 ** the right - the "B" select 2189 */ 2190 addrSelectB = sqlite3VdbeCurrentAddr(v); 2191 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2192 savedLimit = p->iLimit; 2193 savedOffset = p->iOffset; 2194 p->iLimit = regLimitB; 2195 p->iOffset = 0; 2196 sqlite3Select(pParse, p, &destB); 2197 p->iLimit = savedLimit; 2198 p->iOffset = savedOffset; 2199 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2200 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2201 VdbeNoopComment((v, "End coroutine for right SELECT")); 2202 2203 /* Generate a subroutine that outputs the current row of the A 2204 ** select as the next output row of the compound select. 2205 */ 2206 VdbeNoopComment((v, "Output routine for A")); 2207 addrOutA = generateOutputSubroutine(pParse, 2208 p, &destA, pDest, regOutA, 2209 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2210 2211 /* Generate a subroutine that outputs the current row of the B 2212 ** select as the next output row of the compound select. 2213 */ 2214 if( op==TK_ALL || op==TK_UNION ){ 2215 VdbeNoopComment((v, "Output routine for B")); 2216 addrOutB = generateOutputSubroutine(pParse, 2217 p, &destB, pDest, regOutB, 2218 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2219 } 2220 2221 /* Generate a subroutine to run when the results from select A 2222 ** are exhausted and only data in select B remains. 2223 */ 2224 VdbeNoopComment((v, "eof-A subroutine")); 2225 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2226 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2227 }else{ 2228 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2229 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2230 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2231 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2232 } 2233 2234 /* Generate a subroutine to run when the results from select B 2235 ** are exhausted and only data in select A remains. 2236 */ 2237 if( op==TK_INTERSECT ){ 2238 addrEofB = addrEofA; 2239 }else{ 2240 VdbeNoopComment((v, "eof-B subroutine")); 2241 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2242 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2243 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2244 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2245 } 2246 2247 /* Generate code to handle the case of A<B 2248 */ 2249 VdbeNoopComment((v, "A-lt-B subroutine")); 2250 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2251 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2252 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2253 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2254 2255 /* Generate code to handle the case of A==B 2256 */ 2257 if( op==TK_ALL ){ 2258 addrAeqB = addrAltB; 2259 }else if( op==TK_INTERSECT ){ 2260 addrAeqB = addrAltB; 2261 addrAltB++; 2262 }else{ 2263 VdbeNoopComment((v, "A-eq-B subroutine")); 2264 addrAeqB = 2265 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2266 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2267 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2268 } 2269 2270 /* Generate code to handle the case of A>B 2271 */ 2272 VdbeNoopComment((v, "A-gt-B subroutine")); 2273 addrAgtB = sqlite3VdbeCurrentAddr(v); 2274 if( op==TK_ALL || op==TK_UNION ){ 2275 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2276 } 2277 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2278 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2279 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2280 2281 /* This code runs once to initialize everything. 2282 */ 2283 sqlite3VdbeJumpHere(v, j1); 2284 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2285 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2286 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2287 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2288 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2289 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2290 2291 /* Implement the main merge loop 2292 */ 2293 sqlite3VdbeResolveLabel(v, labelCmpr); 2294 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2295 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2296 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2297 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2298 2299 /* Release temporary registers 2300 */ 2301 if( regPrev ){ 2302 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2303 } 2304 2305 /* Jump to the this point in order to terminate the query. 2306 */ 2307 sqlite3VdbeResolveLabel(v, labelEnd); 2308 2309 /* Set the number of output columns 2310 */ 2311 if( pDest->eDest==SRT_Output ){ 2312 Select *pFirst = pPrior; 2313 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2314 generateColumnNames(pParse, 0, pFirst->pEList); 2315 } 2316 2317 /* Reassembly the compound query so that it will be freed correctly 2318 ** by the calling function */ 2319 if( p->pPrior ){ 2320 sqlite3SelectDelete(db, p->pPrior); 2321 } 2322 p->pPrior = pPrior; 2323 2324 /*** TBD: Insert subroutine calls to close cursors on incomplete 2325 **** subqueries ****/ 2326 return SQLITE_OK; 2327 } 2328 #endif 2329 2330 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2331 /* Forward Declarations */ 2332 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2333 static void substSelect(sqlite3*, Select *, int, ExprList *); 2334 2335 /* 2336 ** Scan through the expression pExpr. Replace every reference to 2337 ** a column in table number iTable with a copy of the iColumn-th 2338 ** entry in pEList. (But leave references to the ROWID column 2339 ** unchanged.) 2340 ** 2341 ** This routine is part of the flattening procedure. A subquery 2342 ** whose result set is defined by pEList appears as entry in the 2343 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2344 ** FORM clause entry is iTable. This routine make the necessary 2345 ** changes to pExpr so that it refers directly to the source table 2346 ** of the subquery rather the result set of the subquery. 2347 */ 2348 static void substExpr( 2349 sqlite3 *db, /* Report malloc errors to this connection */ 2350 Expr *pExpr, /* Expr in which substitution occurs */ 2351 int iTable, /* Table to be substituted */ 2352 ExprList *pEList /* Substitute expressions */ 2353 ){ 2354 if( pExpr==0 ) return; 2355 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2356 if( pExpr->iColumn<0 ){ 2357 pExpr->op = TK_NULL; 2358 }else{ 2359 Expr *pNew; 2360 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2361 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2362 pNew = pEList->a[pExpr->iColumn].pExpr; 2363 assert( pNew!=0 ); 2364 pExpr->op = pNew->op; 2365 assert( pExpr->pLeft==0 ); 2366 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0); 2367 assert( pExpr->pRight==0 ); 2368 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0); 2369 pExpr->iTable = pNew->iTable; 2370 pExpr->pTab = pNew->pTab; 2371 pExpr->iColumn = pNew->iColumn; 2372 pExpr->iAgg = pNew->iAgg; 2373 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2374 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2375 assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 ); 2376 if( ExprHasProperty(pNew, EP_xIsSelect) ){ 2377 pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0); 2378 }else{ 2379 pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0); 2380 } 2381 pExpr->flags = pNew->flags; 2382 pExpr->pAggInfo = pNew->pAggInfo; 2383 pNew->pAggInfo = 0; 2384 } 2385 }else{ 2386 substExpr(db, pExpr->pLeft, iTable, pEList); 2387 substExpr(db, pExpr->pRight, iTable, pEList); 2388 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2389 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2390 }else{ 2391 substExprList(db, pExpr->x.pList, iTable, pEList); 2392 } 2393 } 2394 } 2395 static void substExprList( 2396 sqlite3 *db, /* Report malloc errors here */ 2397 ExprList *pList, /* List to scan and in which to make substitutes */ 2398 int iTable, /* Table to be substituted */ 2399 ExprList *pEList /* Substitute values */ 2400 ){ 2401 int i; 2402 if( pList==0 ) return; 2403 for(i=0; i<pList->nExpr; i++){ 2404 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2405 } 2406 } 2407 static void substSelect( 2408 sqlite3 *db, /* Report malloc errors here */ 2409 Select *p, /* SELECT statement in which to make substitutions */ 2410 int iTable, /* Table to be replaced */ 2411 ExprList *pEList /* Substitute values */ 2412 ){ 2413 SrcList *pSrc; 2414 struct SrcList_item *pItem; 2415 int i; 2416 if( !p ) return; 2417 substExprList(db, p->pEList, iTable, pEList); 2418 substExprList(db, p->pGroupBy, iTable, pEList); 2419 substExprList(db, p->pOrderBy, iTable, pEList); 2420 substExpr(db, p->pHaving, iTable, pEList); 2421 substExpr(db, p->pWhere, iTable, pEList); 2422 substSelect(db, p->pPrior, iTable, pEList); 2423 pSrc = p->pSrc; 2424 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2425 if( ALWAYS(pSrc) ){ 2426 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2427 substSelect(db, pItem->pSelect, iTable, pEList); 2428 } 2429 } 2430 } 2431 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2432 2433 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2434 /* 2435 ** This routine attempts to flatten subqueries in order to speed 2436 ** execution. It returns 1 if it makes changes and 0 if no flattening 2437 ** occurs. 2438 ** 2439 ** To understand the concept of flattening, consider the following 2440 ** query: 2441 ** 2442 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2443 ** 2444 ** The default way of implementing this query is to execute the 2445 ** subquery first and store the results in a temporary table, then 2446 ** run the outer query on that temporary table. This requires two 2447 ** passes over the data. Furthermore, because the temporary table 2448 ** has no indices, the WHERE clause on the outer query cannot be 2449 ** optimized. 2450 ** 2451 ** This routine attempts to rewrite queries such as the above into 2452 ** a single flat select, like this: 2453 ** 2454 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2455 ** 2456 ** The code generated for this simpification gives the same result 2457 ** but only has to scan the data once. And because indices might 2458 ** exist on the table t1, a complete scan of the data might be 2459 ** avoided. 2460 ** 2461 ** Flattening is only attempted if all of the following are true: 2462 ** 2463 ** (1) The subquery and the outer query do not both use aggregates. 2464 ** 2465 ** (2) The subquery is not an aggregate or the outer query is not a join. 2466 ** 2467 ** (3) The subquery is not the right operand of a left outer join 2468 ** (Originally ticket #306. Strenghtened by ticket #3300) 2469 ** 2470 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2471 ** 2472 ** (5) The subquery is not DISTINCT or the outer query does not use 2473 ** aggregates. 2474 ** 2475 ** (6) The subquery does not use aggregates or the outer query is not 2476 ** DISTINCT. 2477 ** 2478 ** (7) The subquery has a FROM clause. 2479 ** 2480 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2481 ** 2482 ** (9) The subquery does not use LIMIT or the outer query does not use 2483 ** aggregates. 2484 ** 2485 ** (10) The subquery does not use aggregates or the outer query does not 2486 ** use LIMIT. 2487 ** 2488 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2489 ** 2490 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2491 ** a separate restriction deriving from ticket #350. 2492 ** 2493 ** (13) The subquery and outer query do not both use LIMIT 2494 ** 2495 ** (14) The subquery does not use OFFSET 2496 ** 2497 ** (15) The outer query is not part of a compound select or the 2498 ** subquery does not have both an ORDER BY and a LIMIT clause. 2499 ** (See ticket #2339) 2500 ** 2501 ** (16) The outer query is not an aggregate or the subquery does 2502 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2503 ** until we introduced the group_concat() function. 2504 ** 2505 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2506 ** compound clause made up entirely of non-aggregate queries, and 2507 ** the parent query: 2508 ** 2509 ** * is not itself part of a compound select, 2510 ** * is not an aggregate or DISTINCT query, and 2511 ** * has no other tables or sub-selects in the FROM clause. 2512 ** 2513 ** The parent and sub-query may contain WHERE clauses. Subject to 2514 ** rules (11), (13) and (14), they may also contain ORDER BY, 2515 ** LIMIT and OFFSET clauses. 2516 ** 2517 ** (18) If the sub-query is a compound select, then all terms of the 2518 ** ORDER by clause of the parent must be simple references to 2519 ** columns of the sub-query. 2520 ** 2521 ** (19) The subquery does not use LIMIT or the outer query does not 2522 ** have a WHERE clause. 2523 ** 2524 ** (20) If the sub-query is a compound select, then it must not use 2525 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2526 ** somewhat by saying that the terms of the ORDER BY clause must 2527 ** appear as unmodified result columns in the outer query. But 2528 ** have other optimizations in mind to deal with that case. 2529 ** 2530 ** In this routine, the "p" parameter is a pointer to the outer query. 2531 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2532 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2533 ** 2534 ** If flattening is not attempted, this routine is a no-op and returns 0. 2535 ** If flattening is attempted this routine returns 1. 2536 ** 2537 ** All of the expression analysis must occur on both the outer query and 2538 ** the subquery before this routine runs. 2539 */ 2540 static int flattenSubquery( 2541 Parse *pParse, /* Parsing context */ 2542 Select *p, /* The parent or outer SELECT statement */ 2543 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2544 int isAgg, /* True if outer SELECT uses aggregate functions */ 2545 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2546 ){ 2547 const char *zSavedAuthContext = pParse->zAuthContext; 2548 Select *pParent; 2549 Select *pSub; /* The inner query or "subquery" */ 2550 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2551 SrcList *pSrc; /* The FROM clause of the outer query */ 2552 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2553 ExprList *pList; /* The result set of the outer query */ 2554 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2555 int i; /* Loop counter */ 2556 Expr *pWhere; /* The WHERE clause */ 2557 struct SrcList_item *pSubitem; /* The subquery */ 2558 sqlite3 *db = pParse->db; 2559 2560 /* Check to see if flattening is permitted. Return 0 if not. 2561 */ 2562 assert( p!=0 ); 2563 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2564 pSrc = p->pSrc; 2565 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2566 pSubitem = &pSrc->a[iFrom]; 2567 iParent = pSubitem->iCursor; 2568 pSub = pSubitem->pSelect; 2569 assert( pSub!=0 ); 2570 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2571 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2572 pSubSrc = pSub->pSrc; 2573 assert( pSubSrc ); 2574 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2575 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2576 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2577 ** became arbitrary expressions, we were forced to add restrictions (13) 2578 ** and (14). */ 2579 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2580 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2581 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2582 return 0; /* Restriction (15) */ 2583 } 2584 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2585 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2586 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2587 return 0; 2588 } 2589 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2590 return 0; /* Restriction (6) */ 2591 } 2592 if( p->pOrderBy && pSub->pOrderBy ){ 2593 return 0; /* Restriction (11) */ 2594 } 2595 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2596 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2597 2598 /* OBSOLETE COMMENT 1: 2599 ** Restriction 3: If the subquery is a join, make sure the subquery is 2600 ** not used as the right operand of an outer join. Examples of why this 2601 ** is not allowed: 2602 ** 2603 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2604 ** 2605 ** If we flatten the above, we would get 2606 ** 2607 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2608 ** 2609 ** which is not at all the same thing. 2610 ** 2611 ** OBSOLETE COMMENT 2: 2612 ** Restriction 12: If the subquery is the right operand of a left outer 2613 ** join, make sure the subquery has no WHERE clause. 2614 ** An examples of why this is not allowed: 2615 ** 2616 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2617 ** 2618 ** If we flatten the above, we would get 2619 ** 2620 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2621 ** 2622 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2623 ** effectively converts the OUTER JOIN into an INNER JOIN. 2624 ** 2625 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2626 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2627 ** is fraught with danger. Best to avoid the whole thing. If the 2628 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2629 */ 2630 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2631 return 0; 2632 } 2633 2634 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2635 ** use only the UNION ALL operator. And none of the simple select queries 2636 ** that make up the compound SELECT are allowed to be aggregate or distinct 2637 ** queries. 2638 */ 2639 if( pSub->pPrior ){ 2640 if( pSub->pOrderBy ){ 2641 return 0; /* Restriction 20 */ 2642 } 2643 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2644 return 0; 2645 } 2646 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2647 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2648 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2649 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2650 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2651 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2652 ){ 2653 return 0; 2654 } 2655 } 2656 2657 /* Restriction 18. */ 2658 if( p->pOrderBy ){ 2659 int ii; 2660 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2661 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2662 } 2663 } 2664 } 2665 2666 /***** If we reach this point, flattening is permitted. *****/ 2667 2668 /* Authorize the subquery */ 2669 pParse->zAuthContext = pSubitem->zName; 2670 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2671 pParse->zAuthContext = zSavedAuthContext; 2672 2673 /* If the sub-query is a compound SELECT statement, then (by restrictions 2674 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2675 ** be of the form: 2676 ** 2677 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2678 ** 2679 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2680 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2681 ** OFFSET clauses and joins them to the left-hand-side of the original 2682 ** using UNION ALL operators. In this case N is the number of simple 2683 ** select statements in the compound sub-query. 2684 ** 2685 ** Example: 2686 ** 2687 ** SELECT a+1 FROM ( 2688 ** SELECT x FROM tab 2689 ** UNION ALL 2690 ** SELECT y FROM tab 2691 ** UNION ALL 2692 ** SELECT abs(z*2) FROM tab2 2693 ** ) WHERE a!=5 ORDER BY 1 2694 ** 2695 ** Transformed into: 2696 ** 2697 ** SELECT x+1 FROM tab WHERE x+1!=5 2698 ** UNION ALL 2699 ** SELECT y+1 FROM tab WHERE y+1!=5 2700 ** UNION ALL 2701 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2702 ** ORDER BY 1 2703 ** 2704 ** We call this the "compound-subquery flattening". 2705 */ 2706 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2707 Select *pNew; 2708 ExprList *pOrderBy = p->pOrderBy; 2709 Expr *pLimit = p->pLimit; 2710 Select *pPrior = p->pPrior; 2711 p->pOrderBy = 0; 2712 p->pSrc = 0; 2713 p->pPrior = 0; 2714 p->pLimit = 0; 2715 pNew = sqlite3SelectDup(db, p, 0); 2716 p->pLimit = pLimit; 2717 p->pOrderBy = pOrderBy; 2718 p->pSrc = pSrc; 2719 p->op = TK_ALL; 2720 p->pRightmost = 0; 2721 if( pNew==0 ){ 2722 pNew = pPrior; 2723 }else{ 2724 pNew->pPrior = pPrior; 2725 pNew->pRightmost = 0; 2726 } 2727 p->pPrior = pNew; 2728 if( db->mallocFailed ) return 1; 2729 } 2730 2731 /* Begin flattening the iFrom-th entry of the FROM clause 2732 ** in the outer query. 2733 */ 2734 pSub = pSub1 = pSubitem->pSelect; 2735 2736 /* Delete the transient table structure associated with the 2737 ** subquery 2738 */ 2739 sqlite3DbFree(db, pSubitem->zDatabase); 2740 sqlite3DbFree(db, pSubitem->zName); 2741 sqlite3DbFree(db, pSubitem->zAlias); 2742 pSubitem->zDatabase = 0; 2743 pSubitem->zName = 0; 2744 pSubitem->zAlias = 0; 2745 pSubitem->pSelect = 0; 2746 2747 /* Defer deleting the Table object associated with the 2748 ** subquery until code generation is 2749 ** complete, since there may still exist Expr.pTab entries that 2750 ** refer to the subquery even after flattening. Ticket #3346. 2751 ** 2752 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2753 */ 2754 if( ALWAYS(pSubitem->pTab!=0) ){ 2755 Table *pTabToDel = pSubitem->pTab; 2756 if( pTabToDel->nRef==1 ){ 2757 pTabToDel->pNextZombie = pParse->pZombieTab; 2758 pParse->pZombieTab = pTabToDel; 2759 }else{ 2760 pTabToDel->nRef--; 2761 } 2762 pSubitem->pTab = 0; 2763 } 2764 2765 /* The following loop runs once for each term in a compound-subquery 2766 ** flattening (as described above). If we are doing a different kind 2767 ** of flattening - a flattening other than a compound-subquery flattening - 2768 ** then this loop only runs once. 2769 ** 2770 ** This loop moves all of the FROM elements of the subquery into the 2771 ** the FROM clause of the outer query. Before doing this, remember 2772 ** the cursor number for the original outer query FROM element in 2773 ** iParent. The iParent cursor will never be used. Subsequent code 2774 ** will scan expressions looking for iParent references and replace 2775 ** those references with expressions that resolve to the subquery FROM 2776 ** elements we are now copying in. 2777 */ 2778 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2779 int nSubSrc; 2780 u8 jointype = 0; 2781 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2782 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2783 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2784 2785 if( pSrc ){ 2786 assert( pParent==p ); /* First time through the loop */ 2787 jointype = pSubitem->jointype; 2788 }else{ 2789 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2790 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2791 if( pSrc==0 ){ 2792 assert( db->mallocFailed ); 2793 break; 2794 } 2795 } 2796 2797 /* The subquery uses a single slot of the FROM clause of the outer 2798 ** query. If the subquery has more than one element in its FROM clause, 2799 ** then expand the outer query to make space for it to hold all elements 2800 ** of the subquery. 2801 ** 2802 ** Example: 2803 ** 2804 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2805 ** 2806 ** The outer query has 3 slots in its FROM clause. One slot of the 2807 ** outer query (the middle slot) is used by the subquery. The next 2808 ** block of code will expand the out query to 4 slots. The middle 2809 ** slot is expanded to two slots in order to make space for the 2810 ** two elements in the FROM clause of the subquery. 2811 */ 2812 if( nSubSrc>1 ){ 2813 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2814 if( db->mallocFailed ){ 2815 break; 2816 } 2817 } 2818 2819 /* Transfer the FROM clause terms from the subquery into the 2820 ** outer query. 2821 */ 2822 for(i=0; i<nSubSrc; i++){ 2823 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2824 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2825 } 2826 pSrc->a[iFrom].jointype = jointype; 2827 2828 /* Now begin substituting subquery result set expressions for 2829 ** references to the iParent in the outer query. 2830 ** 2831 ** Example: 2832 ** 2833 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2834 ** \ \_____________ subquery __________/ / 2835 ** \_____________________ outer query ______________________________/ 2836 ** 2837 ** We look at every expression in the outer query and every place we see 2838 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2839 */ 2840 pList = pParent->pEList; 2841 for(i=0; i<pList->nExpr; i++){ 2842 if( pList->a[i].zName==0 ){ 2843 Expr *pExpr = pList->a[i].pExpr; 2844 if( ALWAYS(pExpr->span.z!=0) ){ 2845 pList->a[i].zName = 2846 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2847 } 2848 } 2849 } 2850 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2851 if( isAgg ){ 2852 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2853 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2854 } 2855 if( pSub->pOrderBy ){ 2856 assert( pParent->pOrderBy==0 ); 2857 pParent->pOrderBy = pSub->pOrderBy; 2858 pSub->pOrderBy = 0; 2859 }else if( pParent->pOrderBy ){ 2860 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2861 } 2862 if( pSub->pWhere ){ 2863 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2864 }else{ 2865 pWhere = 0; 2866 } 2867 if( subqueryIsAgg ){ 2868 assert( pParent->pHaving==0 ); 2869 pParent->pHaving = pParent->pWhere; 2870 pParent->pWhere = pWhere; 2871 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2872 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2873 sqlite3ExprDup(db, pSub->pHaving, 0)); 2874 assert( pParent->pGroupBy==0 ); 2875 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2876 }else{ 2877 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2878 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2879 } 2880 2881 /* The flattened query is distinct if either the inner or the 2882 ** outer query is distinct. 2883 */ 2884 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2885 2886 /* 2887 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2888 ** 2889 ** One is tempted to try to add a and b to combine the limits. But this 2890 ** does not work if either limit is negative. 2891 */ 2892 if( pSub->pLimit ){ 2893 pParent->pLimit = pSub->pLimit; 2894 pSub->pLimit = 0; 2895 } 2896 } 2897 2898 /* Finially, delete what is left of the subquery and return 2899 ** success. 2900 */ 2901 sqlite3SelectDelete(db, pSub1); 2902 2903 return 1; 2904 } 2905 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2906 2907 /* 2908 ** Analyze the SELECT statement passed as an argument to see if it 2909 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2910 ** it is, or 0 otherwise. At present, a query is considered to be 2911 ** a min()/max() query if: 2912 ** 2913 ** 1. There is a single object in the FROM clause. 2914 ** 2915 ** 2. There is a single expression in the result set, and it is 2916 ** either min(x) or max(x), where x is a column reference. 2917 */ 2918 static u8 minMaxQuery(Select *p){ 2919 Expr *pExpr; 2920 ExprList *pEList = p->pEList; 2921 2922 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2923 pExpr = pEList->a[0].pExpr; 2924 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2925 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2926 pEList = pExpr->x.pList; 2927 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2928 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2929 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 2930 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2931 return WHERE_ORDERBY_MIN; 2932 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2933 return WHERE_ORDERBY_MAX; 2934 } 2935 return WHERE_ORDERBY_NORMAL; 2936 } 2937 2938 /* 2939 ** The select statement passed as the first argument is an aggregate query. 2940 ** The second argment is the associated aggregate-info object. This 2941 ** function tests if the SELECT is of the form: 2942 ** 2943 ** SELECT count(*) FROM <tbl> 2944 ** 2945 ** where table is a database table, not a sub-select or view. If the query 2946 ** does match this pattern, then a pointer to the Table object representing 2947 ** <tbl> is returned. Otherwise, 0 is returned. 2948 */ 2949 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2950 Table *pTab; 2951 Expr *pExpr; 2952 2953 assert( !p->pGroupBy ); 2954 2955 if( p->pWhere || p->pEList->nExpr!=1 2956 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2957 ){ 2958 return 0; 2959 } 2960 pTab = p->pSrc->a[0].pTab; 2961 pExpr = p->pEList->a[0].pExpr; 2962 assert( pTab && !pTab->pSelect && pExpr ); 2963 2964 if( IsVirtual(pTab) ) return 0; 2965 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2966 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2967 if( pExpr->flags&EP_Distinct ) return 0; 2968 2969 return pTab; 2970 } 2971 2972 /* 2973 ** If the source-list item passed as an argument was augmented with an 2974 ** INDEXED BY clause, then try to locate the specified index. If there 2975 ** was such a clause and the named index cannot be found, return 2976 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2977 ** pFrom->pIndex and return SQLITE_OK. 2978 */ 2979 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2980 if( pFrom->pTab && pFrom->zIndex ){ 2981 Table *pTab = pFrom->pTab; 2982 char *zIndex = pFrom->zIndex; 2983 Index *pIdx; 2984 for(pIdx=pTab->pIndex; 2985 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 2986 pIdx=pIdx->pNext 2987 ); 2988 if( !pIdx ){ 2989 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 2990 return SQLITE_ERROR; 2991 } 2992 pFrom->pIndex = pIdx; 2993 } 2994 return SQLITE_OK; 2995 } 2996 2997 /* 2998 ** This routine is a Walker callback for "expanding" a SELECT statement. 2999 ** "Expanding" means to do the following: 3000 ** 3001 ** (1) Make sure VDBE cursor numbers have been assigned to every 3002 ** element of the FROM clause. 3003 ** 3004 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3005 ** defines FROM clause. When views appear in the FROM clause, 3006 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3007 ** that implements the view. A copy is made of the view's SELECT 3008 ** statement so that we can freely modify or delete that statement 3009 ** without worrying about messing up the presistent representation 3010 ** of the view. 3011 ** 3012 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3013 ** on joins and the ON and USING clause of joins. 3014 ** 3015 ** (4) Scan the list of columns in the result set (pEList) looking 3016 ** for instances of the "*" operator or the TABLE.* operator. 3017 ** If found, expand each "*" to be every column in every table 3018 ** and TABLE.* to be every column in TABLE. 3019 ** 3020 */ 3021 static int selectExpander(Walker *pWalker, Select *p){ 3022 Parse *pParse = pWalker->pParse; 3023 int i, j, k; 3024 SrcList *pTabList; 3025 ExprList *pEList; 3026 struct SrcList_item *pFrom; 3027 sqlite3 *db = pParse->db; 3028 3029 if( db->mallocFailed ){ 3030 return WRC_Abort; 3031 } 3032 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3033 return WRC_Prune; 3034 } 3035 p->selFlags |= SF_Expanded; 3036 pTabList = p->pSrc; 3037 pEList = p->pEList; 3038 3039 /* Make sure cursor numbers have been assigned to all entries in 3040 ** the FROM clause of the SELECT statement. 3041 */ 3042 sqlite3SrcListAssignCursors(pParse, pTabList); 3043 3044 /* Look up every table named in the FROM clause of the select. If 3045 ** an entry of the FROM clause is a subquery instead of a table or view, 3046 ** then create a transient table structure to describe the subquery. 3047 */ 3048 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3049 Table *pTab; 3050 if( pFrom->pTab!=0 ){ 3051 /* This statement has already been prepared. There is no need 3052 ** to go further. */ 3053 assert( i==0 ); 3054 return WRC_Prune; 3055 } 3056 if( pFrom->zName==0 ){ 3057 #ifndef SQLITE_OMIT_SUBQUERY 3058 Select *pSel = pFrom->pSelect; 3059 /* A sub-query in the FROM clause of a SELECT */ 3060 assert( pSel!=0 ); 3061 assert( pFrom->pTab==0 ); 3062 sqlite3WalkSelect(pWalker, pSel); 3063 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3064 if( pTab==0 ) return WRC_Abort; 3065 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 3066 pTab->nRef = 1; 3067 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3068 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3069 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3070 pTab->iPKey = -1; 3071 pTab->tabFlags |= TF_Ephemeral; 3072 #endif 3073 }else{ 3074 /* An ordinary table or view name in the FROM clause */ 3075 assert( pFrom->pTab==0 ); 3076 pFrom->pTab = pTab = 3077 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3078 if( pTab==0 ) return WRC_Abort; 3079 pTab->nRef++; 3080 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3081 if( pTab->pSelect || IsVirtual(pTab) ){ 3082 /* We reach here if the named table is a really a view */ 3083 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3084 assert( pFrom->pSelect==0 ); 3085 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3086 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3087 } 3088 #endif 3089 } 3090 3091 /* Locate the index named by the INDEXED BY clause, if any. */ 3092 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3093 return WRC_Abort; 3094 } 3095 } 3096 3097 /* Process NATURAL keywords, and ON and USING clauses of joins. 3098 */ 3099 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3100 return WRC_Abort; 3101 } 3102 3103 /* For every "*" that occurs in the column list, insert the names of 3104 ** all columns in all tables. And for every TABLE.* insert the names 3105 ** of all columns in TABLE. The parser inserted a special expression 3106 ** with the TK_ALL operator for each "*" that it found in the column list. 3107 ** The following code just has to locate the TK_ALL expressions and expand 3108 ** each one to the list of all columns in all tables. 3109 ** 3110 ** The first loop just checks to see if there are any "*" operators 3111 ** that need expanding. 3112 */ 3113 for(k=0; k<pEList->nExpr; k++){ 3114 Expr *pE = pEList->a[k].pExpr; 3115 if( pE->op==TK_ALL ) break; 3116 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3117 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3118 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3119 } 3120 if( k<pEList->nExpr ){ 3121 /* 3122 ** If we get here it means the result set contains one or more "*" 3123 ** operators that need to be expanded. Loop through each expression 3124 ** in the result set and expand them one by one. 3125 */ 3126 struct ExprList_item *a = pEList->a; 3127 ExprList *pNew = 0; 3128 int flags = pParse->db->flags; 3129 int longNames = (flags & SQLITE_FullColNames)!=0 3130 && (flags & SQLITE_ShortColNames)==0; 3131 3132 for(k=0; k<pEList->nExpr; k++){ 3133 Expr *pE = a[k].pExpr; 3134 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3135 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3136 /* This particular expression does not need to be expanded. 3137 */ 3138 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 3139 if( pNew ){ 3140 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3141 } 3142 a[k].pExpr = 0; 3143 a[k].zName = 0; 3144 }else{ 3145 /* This expression is a "*" or a "TABLE.*" and needs to be 3146 ** expanded. */ 3147 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3148 char *zTName; /* text of name of TABLE */ 3149 if( pE->op==TK_DOT ){ 3150 assert( pE->pLeft!=0 ); 3151 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 3152 }else{ 3153 zTName = 0; 3154 } 3155 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3156 Table *pTab = pFrom->pTab; 3157 char *zTabName = pFrom->zAlias; 3158 if( zTabName==0 ){ 3159 zTabName = pTab->zName; 3160 } 3161 if( db->mallocFailed ) break; 3162 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3163 continue; 3164 } 3165 tableSeen = 1; 3166 for(j=0; j<pTab->nCol; j++){ 3167 Expr *pExpr, *pRight; 3168 char *zName = pTab->aCol[j].zName; 3169 3170 /* If a column is marked as 'hidden' (currently only possible 3171 ** for virtual tables), do not include it in the expanded 3172 ** result-set list. 3173 */ 3174 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3175 assert(IsVirtual(pTab)); 3176 continue; 3177 } 3178 3179 if( i>0 && zTName==0 ){ 3180 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3181 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3182 columnIndex(pLeft->pTab, zName)>=0 ){ 3183 /* In a NATURAL join, omit the join columns from the 3184 ** table on the right */ 3185 continue; 3186 } 3187 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3188 /* In a join with a USING clause, omit columns in the 3189 ** using clause from the table on the right. */ 3190 continue; 3191 } 3192 } 3193 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3194 if( pRight==0 ) break; 3195 setToken(&pRight->token, zName); 3196 if( longNames || pTabList->nSrc>1 ){ 3197 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3198 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3199 if( pExpr==0 ) break; 3200 setToken(&pLeft->token, zTabName); 3201 setToken(&pExpr->span, 3202 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 3203 pExpr->span.dyn = 1; 3204 pExpr->token.z = 0; 3205 pExpr->token.n = 0; 3206 pExpr->token.dyn = 0; 3207 }else{ 3208 pExpr = pRight; 3209 pExpr->span = pExpr->token; 3210 pExpr->span.dyn = 0; 3211 } 3212 if( longNames ){ 3213 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 3214 }else{ 3215 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 3216 } 3217 } 3218 } 3219 if( !tableSeen ){ 3220 if( zTName ){ 3221 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3222 }else{ 3223 sqlite3ErrorMsg(pParse, "no tables specified"); 3224 } 3225 } 3226 sqlite3DbFree(db, zTName); 3227 } 3228 } 3229 sqlite3ExprListDelete(db, pEList); 3230 p->pEList = pNew; 3231 } 3232 #if SQLITE_MAX_COLUMN 3233 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3234 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3235 } 3236 #endif 3237 return WRC_Continue; 3238 } 3239 3240 /* 3241 ** No-op routine for the parse-tree walker. 3242 ** 3243 ** When this routine is the Walker.xExprCallback then expression trees 3244 ** are walked without any actions being taken at each node. Presumably, 3245 ** when this routine is used for Walker.xExprCallback then 3246 ** Walker.xSelectCallback is set to do something useful for every 3247 ** subquery in the parser tree. 3248 */ 3249 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3250 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3251 return WRC_Continue; 3252 } 3253 3254 /* 3255 ** This routine "expands" a SELECT statement and all of its subqueries. 3256 ** For additional information on what it means to "expand" a SELECT 3257 ** statement, see the comment on the selectExpand worker callback above. 3258 ** 3259 ** Expanding a SELECT statement is the first step in processing a 3260 ** SELECT statement. The SELECT statement must be expanded before 3261 ** name resolution is performed. 3262 ** 3263 ** If anything goes wrong, an error message is written into pParse. 3264 ** The calling function can detect the problem by looking at pParse->nErr 3265 ** and/or pParse->db->mallocFailed. 3266 */ 3267 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3268 Walker w; 3269 w.xSelectCallback = selectExpander; 3270 w.xExprCallback = exprWalkNoop; 3271 w.pParse = pParse; 3272 sqlite3WalkSelect(&w, pSelect); 3273 } 3274 3275 3276 #ifndef SQLITE_OMIT_SUBQUERY 3277 /* 3278 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3279 ** interface. 3280 ** 3281 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3282 ** information to the Table structure that represents the result set 3283 ** of that subquery. 3284 ** 3285 ** The Table structure that represents the result set was constructed 3286 ** by selectExpander() but the type and collation information was omitted 3287 ** at that point because identifiers had not yet been resolved. This 3288 ** routine is called after identifier resolution. 3289 */ 3290 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3291 Parse *pParse; 3292 int i; 3293 SrcList *pTabList; 3294 struct SrcList_item *pFrom; 3295 3296 assert( p->selFlags & SF_Resolved ); 3297 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 3298 p->selFlags |= SF_HasTypeInfo; 3299 pParse = pWalker->pParse; 3300 pTabList = p->pSrc; 3301 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3302 Table *pTab = pFrom->pTab; 3303 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3304 /* A sub-query in the FROM clause of a SELECT */ 3305 Select *pSel = pFrom->pSelect; 3306 assert( pSel ); 3307 while( pSel->pPrior ) pSel = pSel->pPrior; 3308 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3309 } 3310 } 3311 return WRC_Continue; 3312 } 3313 #endif 3314 3315 3316 /* 3317 ** This routine adds datatype and collating sequence information to 3318 ** the Table structures of all FROM-clause subqueries in a 3319 ** SELECT statement. 3320 ** 3321 ** Use this routine after name resolution. 3322 */ 3323 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3324 #ifndef SQLITE_OMIT_SUBQUERY 3325 Walker w; 3326 w.xSelectCallback = selectAddSubqueryTypeInfo; 3327 w.xExprCallback = exprWalkNoop; 3328 w.pParse = pParse; 3329 sqlite3WalkSelect(&w, pSelect); 3330 #endif 3331 } 3332 3333 3334 /* 3335 ** This routine sets of a SELECT statement for processing. The 3336 ** following is accomplished: 3337 ** 3338 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3339 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3340 ** * ON and USING clauses are shifted into WHERE statements 3341 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3342 ** * Identifiers in expression are matched to tables. 3343 ** 3344 ** This routine acts recursively on all subqueries within the SELECT. 3345 */ 3346 void sqlite3SelectPrep( 3347 Parse *pParse, /* The parser context */ 3348 Select *p, /* The SELECT statement being coded. */ 3349 NameContext *pOuterNC /* Name context for container */ 3350 ){ 3351 sqlite3 *db; 3352 if( NEVER(p==0) ) return; 3353 db = pParse->db; 3354 if( p->selFlags & SF_HasTypeInfo ) return; 3355 sqlite3SelectExpand(pParse, p); 3356 if( pParse->nErr || db->mallocFailed ) return; 3357 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3358 if( pParse->nErr || db->mallocFailed ) return; 3359 sqlite3SelectAddTypeInfo(pParse, p); 3360 } 3361 3362 /* 3363 ** Reset the aggregate accumulator. 3364 ** 3365 ** The aggregate accumulator is a set of memory cells that hold 3366 ** intermediate results while calculating an aggregate. This 3367 ** routine simply stores NULLs in all of those memory cells. 3368 */ 3369 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3370 Vdbe *v = pParse->pVdbe; 3371 int i; 3372 struct AggInfo_func *pFunc; 3373 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3374 return; 3375 } 3376 for(i=0; i<pAggInfo->nColumn; i++){ 3377 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3378 } 3379 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3380 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3381 if( pFunc->iDistinct>=0 ){ 3382 Expr *pE = pFunc->pExpr; 3383 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3384 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3385 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3386 "argument"); 3387 pFunc->iDistinct = -1; 3388 }else{ 3389 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3390 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3391 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3392 } 3393 } 3394 } 3395 } 3396 3397 /* 3398 ** Invoke the OP_AggFinalize opcode for every aggregate function 3399 ** in the AggInfo structure. 3400 */ 3401 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3402 Vdbe *v = pParse->pVdbe; 3403 int i; 3404 struct AggInfo_func *pF; 3405 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3406 ExprList *pList = pF->pExpr->x.pList; 3407 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3408 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3409 (void*)pF->pFunc, P4_FUNCDEF); 3410 } 3411 } 3412 3413 /* 3414 ** Update the accumulator memory cells for an aggregate based on 3415 ** the current cursor position. 3416 */ 3417 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3418 Vdbe *v = pParse->pVdbe; 3419 int i; 3420 struct AggInfo_func *pF; 3421 struct AggInfo_col *pC; 3422 3423 pAggInfo->directMode = 1; 3424 sqlite3ExprCacheClear(pParse); 3425 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3426 int nArg; 3427 int addrNext = 0; 3428 int regAgg; 3429 ExprList *pList = pF->pExpr->x.pList; 3430 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3431 if( pList ){ 3432 nArg = pList->nExpr; 3433 regAgg = sqlite3GetTempRange(pParse, nArg); 3434 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3435 }else{ 3436 nArg = 0; 3437 regAgg = 0; 3438 } 3439 if( pF->iDistinct>=0 ){ 3440 addrNext = sqlite3VdbeMakeLabel(v); 3441 assert( nArg==1 ); 3442 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3443 } 3444 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3445 CollSeq *pColl = 0; 3446 struct ExprList_item *pItem; 3447 int j; 3448 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3449 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3450 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3451 } 3452 if( !pColl ){ 3453 pColl = pParse->db->pDfltColl; 3454 } 3455 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3456 } 3457 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3458 (void*)pF->pFunc, P4_FUNCDEF); 3459 sqlite3VdbeChangeP5(v, (u8)nArg); 3460 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3461 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3462 if( addrNext ){ 3463 sqlite3VdbeResolveLabel(v, addrNext); 3464 sqlite3ExprCacheClear(pParse); 3465 } 3466 } 3467 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3468 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3469 } 3470 pAggInfo->directMode = 0; 3471 sqlite3ExprCacheClear(pParse); 3472 } 3473 3474 /* 3475 ** Generate code for the SELECT statement given in the p argument. 3476 ** 3477 ** The results are distributed in various ways depending on the 3478 ** contents of the SelectDest structure pointed to by argument pDest 3479 ** as follows: 3480 ** 3481 ** pDest->eDest Result 3482 ** ------------ ------------------------------------------- 3483 ** SRT_Output Generate a row of output (using the OP_ResultRow 3484 ** opcode) for each row in the result set. 3485 ** 3486 ** SRT_Mem Only valid if the result is a single column. 3487 ** Store the first column of the first result row 3488 ** in register pDest->iParm then abandon the rest 3489 ** of the query. This destination implies "LIMIT 1". 3490 ** 3491 ** SRT_Set The result must be a single column. Store each 3492 ** row of result as the key in table pDest->iParm. 3493 ** Apply the affinity pDest->affinity before storing 3494 ** results. Used to implement "IN (SELECT ...)". 3495 ** 3496 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3497 ** 3498 ** SRT_Except Remove results from the temporary table pDest->iParm. 3499 ** 3500 ** SRT_Table Store results in temporary table pDest->iParm. 3501 ** This is like SRT_EphemTab except that the table 3502 ** is assumed to already be open. 3503 ** 3504 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3505 ** the result there. The cursor is left open after 3506 ** returning. This is like SRT_Table except that 3507 ** this destination uses OP_OpenEphemeral to create 3508 ** the table first. 3509 ** 3510 ** SRT_Coroutine Generate a co-routine that returns a new row of 3511 ** results each time it is invoked. The entry point 3512 ** of the co-routine is stored in register pDest->iParm. 3513 ** 3514 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3515 ** set is not empty. 3516 ** 3517 ** SRT_Discard Throw the results away. This is used by SELECT 3518 ** statements within triggers whose only purpose is 3519 ** the side-effects of functions. 3520 ** 3521 ** This routine returns the number of errors. If any errors are 3522 ** encountered, then an appropriate error message is left in 3523 ** pParse->zErrMsg. 3524 ** 3525 ** This routine does NOT free the Select structure passed in. The 3526 ** calling function needs to do that. 3527 */ 3528 int sqlite3Select( 3529 Parse *pParse, /* The parser context */ 3530 Select *p, /* The SELECT statement being coded. */ 3531 SelectDest *pDest /* What to do with the query results */ 3532 ){ 3533 int i, j; /* Loop counters */ 3534 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3535 Vdbe *v; /* The virtual machine under construction */ 3536 int isAgg; /* True for select lists like "count(*)" */ 3537 ExprList *pEList; /* List of columns to extract. */ 3538 SrcList *pTabList; /* List of tables to select from */ 3539 Expr *pWhere; /* The WHERE clause. May be NULL */ 3540 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3541 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3542 Expr *pHaving; /* The HAVING clause. May be NULL */ 3543 int isDistinct; /* True if the DISTINCT keyword is present */ 3544 int distinct; /* Table to use for the distinct set */ 3545 int rc = 1; /* Value to return from this function */ 3546 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3547 AggInfo sAggInfo; /* Information used by aggregate queries */ 3548 int iEnd; /* Address of the end of the query */ 3549 sqlite3 *db; /* The database connection */ 3550 3551 db = pParse->db; 3552 if( p==0 || db->mallocFailed || pParse->nErr ){ 3553 return 1; 3554 } 3555 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3556 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3557 3558 if( IgnorableOrderby(pDest) ){ 3559 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3560 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3561 /* If ORDER BY makes no difference in the output then neither does 3562 ** DISTINCT so it can be removed too. */ 3563 sqlite3ExprListDelete(db, p->pOrderBy); 3564 p->pOrderBy = 0; 3565 p->selFlags &= ~SF_Distinct; 3566 } 3567 sqlite3SelectPrep(pParse, p, 0); 3568 pOrderBy = p->pOrderBy; 3569 pTabList = p->pSrc; 3570 pEList = p->pEList; 3571 if( pParse->nErr || db->mallocFailed ){ 3572 goto select_end; 3573 } 3574 isAgg = (p->selFlags & SF_Aggregate)!=0; 3575 assert( pEList!=0 ); 3576 3577 /* Begin generating code. 3578 */ 3579 v = sqlite3GetVdbe(pParse); 3580 if( v==0 ) goto select_end; 3581 3582 /* Generate code for all sub-queries in the FROM clause 3583 */ 3584 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3585 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3586 struct SrcList_item *pItem = &pTabList->a[i]; 3587 SelectDest dest; 3588 Select *pSub = pItem->pSelect; 3589 int isAggSub; 3590 3591 if( pSub==0 || pItem->isPopulated ) continue; 3592 3593 /* Increment Parse.nHeight by the height of the largest expression 3594 ** tree refered to by this, the parent select. The child select 3595 ** may contain expression trees of at most 3596 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3597 ** more conservative than necessary, but much easier than enforcing 3598 ** an exact limit. 3599 */ 3600 pParse->nHeight += sqlite3SelectExprHeight(p); 3601 3602 /* Check to see if the subquery can be absorbed into the parent. */ 3603 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3604 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3605 if( isAggSub ){ 3606 isAgg = 1; 3607 p->selFlags |= SF_Aggregate; 3608 } 3609 i = -1; 3610 }else{ 3611 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3612 assert( pItem->isPopulated==0 ); 3613 sqlite3Select(pParse, pSub, &dest); 3614 pItem->isPopulated = 1; 3615 } 3616 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3617 goto select_end; 3618 } 3619 pParse->nHeight -= sqlite3SelectExprHeight(p); 3620 pTabList = p->pSrc; 3621 if( !IgnorableOrderby(pDest) ){ 3622 pOrderBy = p->pOrderBy; 3623 } 3624 } 3625 pEList = p->pEList; 3626 #endif 3627 pWhere = p->pWhere; 3628 pGroupBy = p->pGroupBy; 3629 pHaving = p->pHaving; 3630 isDistinct = (p->selFlags & SF_Distinct)!=0; 3631 3632 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3633 /* If there is are a sequence of queries, do the earlier ones first. 3634 */ 3635 if( p->pPrior ){ 3636 if( p->pRightmost==0 ){ 3637 Select *pLoop, *pRight = 0; 3638 int cnt = 0; 3639 int mxSelect; 3640 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3641 pLoop->pRightmost = p; 3642 pLoop->pNext = pRight; 3643 pRight = pLoop; 3644 } 3645 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3646 if( mxSelect && cnt>mxSelect ){ 3647 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3648 return 1; 3649 } 3650 } 3651 return multiSelect(pParse, p, pDest); 3652 } 3653 #endif 3654 3655 /* If writing to memory or generating a set 3656 ** only a single column may be output. 3657 */ 3658 #ifndef SQLITE_OMIT_SUBQUERY 3659 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3660 goto select_end; 3661 } 3662 #endif 3663 3664 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3665 ** GROUP BY might use an index, DISTINCT never does. 3666 */ 3667 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3668 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3669 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3670 pGroupBy = p->pGroupBy; 3671 p->selFlags &= ~SF_Distinct; 3672 isDistinct = 0; 3673 } 3674 3675 /* If there is an ORDER BY clause, then this sorting 3676 ** index might end up being unused if the data can be 3677 ** extracted in pre-sorted order. If that is the case, then the 3678 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3679 ** we figure out that the sorting index is not needed. The addrSortIndex 3680 ** variable is used to facilitate that change. 3681 */ 3682 if( pOrderBy ){ 3683 KeyInfo *pKeyInfo; 3684 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3685 pOrderBy->iECursor = pParse->nTab++; 3686 p->addrOpenEphm[2] = addrSortIndex = 3687 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3688 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3689 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3690 }else{ 3691 addrSortIndex = -1; 3692 } 3693 3694 /* If the output is destined for a temporary table, open that table. 3695 */ 3696 if( pDest->eDest==SRT_EphemTab ){ 3697 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3698 } 3699 3700 /* Set the limiter. 3701 */ 3702 iEnd = sqlite3VdbeMakeLabel(v); 3703 computeLimitRegisters(pParse, p, iEnd); 3704 3705 /* Open a virtual index to use for the distinct set. 3706 */ 3707 if( isDistinct ){ 3708 KeyInfo *pKeyInfo; 3709 assert( isAgg || pGroupBy ); 3710 distinct = pParse->nTab++; 3711 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3712 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3713 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3714 }else{ 3715 distinct = -1; 3716 } 3717 3718 /* Aggregate and non-aggregate queries are handled differently */ 3719 if( !isAgg && pGroupBy==0 ){ 3720 /* This case is for non-aggregate queries 3721 ** Begin the database scan 3722 */ 3723 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3724 if( pWInfo==0 ) goto select_end; 3725 3726 /* If sorting index that was created by a prior OP_OpenEphemeral 3727 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3728 ** into an OP_Noop. 3729 */ 3730 if( addrSortIndex>=0 && pOrderBy==0 ){ 3731 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3732 p->addrOpenEphm[2] = -1; 3733 } 3734 3735 /* Use the standard inner loop 3736 */ 3737 assert(!isDistinct); 3738 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3739 pWInfo->iContinue, pWInfo->iBreak); 3740 3741 /* End the database scan loop. 3742 */ 3743 sqlite3WhereEnd(pWInfo); 3744 }else{ 3745 /* This is the processing for aggregate queries */ 3746 NameContext sNC; /* Name context for processing aggregate information */ 3747 int iAMem; /* First Mem address for storing current GROUP BY */ 3748 int iBMem; /* First Mem address for previous GROUP BY */ 3749 int iUseFlag; /* Mem address holding flag indicating that at least 3750 ** one row of the input to the aggregator has been 3751 ** processed */ 3752 int iAbortFlag; /* Mem address which causes query abort if positive */ 3753 int groupBySort; /* Rows come from source in GROUP BY order */ 3754 int addrEnd; /* End of processing for this SELECT */ 3755 3756 /* Remove any and all aliases between the result set and the 3757 ** GROUP BY clause. 3758 */ 3759 if( pGroupBy ){ 3760 int k; /* Loop counter */ 3761 struct ExprList_item *pItem; /* For looping over expression in a list */ 3762 3763 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3764 pItem->iAlias = 0; 3765 } 3766 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3767 pItem->iAlias = 0; 3768 } 3769 } 3770 3771 3772 /* Create a label to jump to when we want to abort the query */ 3773 addrEnd = sqlite3VdbeMakeLabel(v); 3774 3775 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3776 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3777 ** SELECT statement. 3778 */ 3779 memset(&sNC, 0, sizeof(sNC)); 3780 sNC.pParse = pParse; 3781 sNC.pSrcList = pTabList; 3782 sNC.pAggInfo = &sAggInfo; 3783 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3784 sAggInfo.pGroupBy = pGroupBy; 3785 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3786 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3787 if( pHaving ){ 3788 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3789 } 3790 sAggInfo.nAccumulator = sAggInfo.nColumn; 3791 for(i=0; i<sAggInfo.nFunc; i++){ 3792 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3793 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3794 } 3795 if( db->mallocFailed ) goto select_end; 3796 3797 /* Processing for aggregates with GROUP BY is very different and 3798 ** much more complex than aggregates without a GROUP BY. 3799 */ 3800 if( pGroupBy ){ 3801 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3802 int j1; /* A-vs-B comparision jump */ 3803 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3804 int regOutputRow; /* Return address register for output subroutine */ 3805 int addrSetAbort; /* Set the abort flag and return */ 3806 int addrTopOfLoop; /* Top of the input loop */ 3807 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3808 int addrReset; /* Subroutine for resetting the accumulator */ 3809 int regReset; /* Return address register for reset subroutine */ 3810 3811 /* If there is a GROUP BY clause we might need a sorting index to 3812 ** implement it. Allocate that sorting index now. If it turns out 3813 ** that we do not need it after all, the OpenEphemeral instruction 3814 ** will be converted into a Noop. 3815 */ 3816 sAggInfo.sortingIdx = pParse->nTab++; 3817 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3818 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3819 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3820 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3821 3822 /* Initialize memory locations used by GROUP BY aggregate processing 3823 */ 3824 iUseFlag = ++pParse->nMem; 3825 iAbortFlag = ++pParse->nMem; 3826 regOutputRow = ++pParse->nMem; 3827 addrOutputRow = sqlite3VdbeMakeLabel(v); 3828 regReset = ++pParse->nMem; 3829 addrReset = sqlite3VdbeMakeLabel(v); 3830 iAMem = pParse->nMem + 1; 3831 pParse->nMem += pGroupBy->nExpr; 3832 iBMem = pParse->nMem + 1; 3833 pParse->nMem += pGroupBy->nExpr; 3834 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3835 VdbeComment((v, "clear abort flag")); 3836 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3837 VdbeComment((v, "indicate accumulator empty")); 3838 3839 /* Begin a loop that will extract all source rows in GROUP BY order. 3840 ** This might involve two separate loops with an OP_Sort in between, or 3841 ** it might be a single loop that uses an index to extract information 3842 ** in the right order to begin with. 3843 */ 3844 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3845 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3846 if( pWInfo==0 ) goto select_end; 3847 if( pGroupBy==0 ){ 3848 /* The optimizer is able to deliver rows in group by order so 3849 ** we do not have to sort. The OP_OpenEphemeral table will be 3850 ** cancelled later because we still need to use the pKeyInfo 3851 */ 3852 pGroupBy = p->pGroupBy; 3853 groupBySort = 0; 3854 }else{ 3855 /* Rows are coming out in undetermined order. We have to push 3856 ** each row into a sorting index, terminate the first loop, 3857 ** then loop over the sorting index in order to get the output 3858 ** in sorted order 3859 */ 3860 int regBase; 3861 int regRecord; 3862 int nCol; 3863 int nGroupBy; 3864 3865 groupBySort = 1; 3866 nGroupBy = pGroupBy->nExpr; 3867 nCol = nGroupBy + 1; 3868 j = nGroupBy+1; 3869 for(i=0; i<sAggInfo.nColumn; i++){ 3870 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3871 nCol++; 3872 j++; 3873 } 3874 } 3875 regBase = sqlite3GetTempRange(pParse, nCol); 3876 sqlite3ExprCacheClear(pParse); 3877 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3878 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3879 j = nGroupBy+1; 3880 for(i=0; i<sAggInfo.nColumn; i++){ 3881 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3882 if( pCol->iSorterColumn>=j ){ 3883 int r1 = j + regBase; 3884 int r2; 3885 3886 r2 = sqlite3ExprCodeGetColumn(pParse, 3887 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3888 if( r1!=r2 ){ 3889 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3890 } 3891 j++; 3892 } 3893 } 3894 regRecord = sqlite3GetTempReg(pParse); 3895 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3896 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3897 sqlite3ReleaseTempReg(pParse, regRecord); 3898 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3899 sqlite3WhereEnd(pWInfo); 3900 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3901 VdbeComment((v, "GROUP BY sort")); 3902 sAggInfo.useSortingIdx = 1; 3903 sqlite3ExprCacheClear(pParse); 3904 } 3905 3906 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3907 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3908 ** Then compare the current GROUP BY terms against the GROUP BY terms 3909 ** from the previous row currently stored in a0, a1, a2... 3910 */ 3911 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3912 sqlite3ExprCacheClear(pParse); 3913 for(j=0; j<pGroupBy->nExpr; j++){ 3914 if( groupBySort ){ 3915 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3916 }else{ 3917 sAggInfo.directMode = 1; 3918 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3919 } 3920 } 3921 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3922 (char*)pKeyInfo, P4_KEYINFO); 3923 j1 = sqlite3VdbeCurrentAddr(v); 3924 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3925 3926 /* Generate code that runs whenever the GROUP BY changes. 3927 ** Changes in the GROUP BY are detected by the previous code 3928 ** block. If there were no changes, this block is skipped. 3929 ** 3930 ** This code copies current group by terms in b0,b1,b2,... 3931 ** over to a0,a1,a2. It then calls the output subroutine 3932 ** and resets the aggregate accumulator registers in preparation 3933 ** for the next GROUP BY batch. 3934 */ 3935 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3936 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3937 VdbeComment((v, "output one row")); 3938 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3939 VdbeComment((v, "check abort flag")); 3940 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3941 VdbeComment((v, "reset accumulator")); 3942 3943 /* Update the aggregate accumulators based on the content of 3944 ** the current row 3945 */ 3946 sqlite3VdbeJumpHere(v, j1); 3947 updateAccumulator(pParse, &sAggInfo); 3948 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3949 VdbeComment((v, "indicate data in accumulator")); 3950 3951 /* End of the loop 3952 */ 3953 if( groupBySort ){ 3954 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3955 }else{ 3956 sqlite3WhereEnd(pWInfo); 3957 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3958 } 3959 3960 /* Output the final row of result 3961 */ 3962 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3963 VdbeComment((v, "output final row")); 3964 3965 /* Jump over the subroutines 3966 */ 3967 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 3968 3969 /* Generate a subroutine that outputs a single row of the result 3970 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3971 ** is less than or equal to zero, the subroutine is a no-op. If 3972 ** the processing calls for the query to abort, this subroutine 3973 ** increments the iAbortFlag memory location before returning in 3974 ** order to signal the caller to abort. 3975 */ 3976 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3977 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3978 VdbeComment((v, "set abort flag")); 3979 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3980 sqlite3VdbeResolveLabel(v, addrOutputRow); 3981 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3982 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3983 VdbeComment((v, "Groupby result generator entry point")); 3984 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3985 finalizeAggFunctions(pParse, &sAggInfo); 3986 if( pHaving ){ 3987 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3988 } 3989 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3990 distinct, pDest, 3991 addrOutputRow+1, addrSetAbort); 3992 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3993 VdbeComment((v, "end groupby result generator")); 3994 3995 /* Generate a subroutine that will reset the group-by accumulator 3996 */ 3997 sqlite3VdbeResolveLabel(v, addrReset); 3998 resetAccumulator(pParse, &sAggInfo); 3999 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4000 4001 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4002 else { 4003 ExprList *pDel = 0; 4004 #ifndef SQLITE_OMIT_BTREECOUNT 4005 Table *pTab; 4006 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4007 /* If isSimpleCount() returns a pointer to a Table structure, then 4008 ** the SQL statement is of the form: 4009 ** 4010 ** SELECT count(*) FROM <tbl> 4011 ** 4012 ** where the Table structure returned represents table <tbl>. 4013 ** 4014 ** This statement is so common that it is optimized specially. The 4015 ** OP_Count instruction is executed either on the intkey table that 4016 ** contains the data for table <tbl> or on one of its indexes. It 4017 ** is better to execute the op on an index, as indexes are almost 4018 ** always spread across less pages than their corresponding tables. 4019 */ 4020 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4021 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4022 Index *pIdx; /* Iterator variable */ 4023 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4024 Index *pBest = 0; /* Best index found so far */ 4025 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4026 4027 sqlite3CodeVerifySchema(pParse, iDb); 4028 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4029 4030 /* Search for the index that has the least amount of columns. If 4031 ** there is such an index, and it has less columns than the table 4032 ** does, then we can assume that it consumes less space on disk and 4033 ** will therefore be cheaper to scan to determine the query result. 4034 ** In this case set iRoot to the root page number of the index b-tree 4035 ** and pKeyInfo to the KeyInfo structure required to navigate the 4036 ** index. 4037 ** 4038 ** In practice the KeyInfo structure will not be used. It is only 4039 ** passed to keep OP_OpenRead happy. 4040 */ 4041 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4042 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4043 pBest = pIdx; 4044 } 4045 } 4046 if( pBest && pBest->nColumn<pTab->nCol ){ 4047 iRoot = pBest->tnum; 4048 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4049 } 4050 4051 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4052 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4053 if( pKeyInfo ){ 4054 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4055 } 4056 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4057 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4058 }else 4059 #endif /* SQLITE_OMIT_BTREECOUNT */ 4060 { 4061 /* Check if the query is of one of the following forms: 4062 ** 4063 ** SELECT min(x) FROM ... 4064 ** SELECT max(x) FROM ... 4065 ** 4066 ** If it is, then ask the code in where.c to attempt to sort results 4067 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4068 ** If where.c is able to produce results sorted in this order, then 4069 ** add vdbe code to break out of the processing loop after the 4070 ** first iteration (since the first iteration of the loop is 4071 ** guaranteed to operate on the row with the minimum or maximum 4072 ** value of x, the only row required). 4073 ** 4074 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4075 ** modify behaviour as follows: 4076 ** 4077 ** + If the query is a "SELECT min(x)", then the loop coded by 4078 ** where.c should not iterate over any values with a NULL value 4079 ** for x. 4080 ** 4081 ** + The optimizer code in where.c (the thing that decides which 4082 ** index or indices to use) should place a different priority on 4083 ** satisfying the 'ORDER BY' clause than it does in other cases. 4084 ** Refer to code and comments in where.c for details. 4085 */ 4086 ExprList *pMinMax = 0; 4087 u8 flag = minMaxQuery(p); 4088 if( flag ){ 4089 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4090 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4091 pDel = pMinMax; 4092 if( pMinMax && !db->mallocFailed ){ 4093 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4094 pMinMax->a[0].pExpr->op = TK_COLUMN; 4095 } 4096 } 4097 4098 /* This case runs if the aggregate has no GROUP BY clause. The 4099 ** processing is much simpler since there is only a single row 4100 ** of output. 4101 */ 4102 resetAccumulator(pParse, &sAggInfo); 4103 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4104 if( pWInfo==0 ){ 4105 sqlite3ExprListDelete(db, pDel); 4106 goto select_end; 4107 } 4108 updateAccumulator(pParse, &sAggInfo); 4109 if( !pMinMax && flag ){ 4110 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4111 VdbeComment((v, "%s() by index", 4112 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4113 } 4114 sqlite3WhereEnd(pWInfo); 4115 finalizeAggFunctions(pParse, &sAggInfo); 4116 } 4117 4118 pOrderBy = 0; 4119 if( pHaving ){ 4120 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4121 } 4122 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4123 pDest, addrEnd, addrEnd); 4124 sqlite3ExprListDelete(db, pDel); 4125 } 4126 sqlite3VdbeResolveLabel(v, addrEnd); 4127 4128 } /* endif aggregate query */ 4129 4130 /* If there is an ORDER BY clause, then we need to sort the results 4131 ** and send them to the callback one by one. 4132 */ 4133 if( pOrderBy ){ 4134 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4135 } 4136 4137 /* Jump here to skip this query 4138 */ 4139 sqlite3VdbeResolveLabel(v, iEnd); 4140 4141 /* The SELECT was successfully coded. Set the return code to 0 4142 ** to indicate no errors. 4143 */ 4144 rc = 0; 4145 4146 /* Control jumps to here if an error is encountered above, or upon 4147 ** successful coding of the SELECT. 4148 */ 4149 select_end: 4150 4151 /* Identify column names if results of the SELECT are to be output. 4152 */ 4153 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4154 generateColumnNames(pParse, pTabList, pEList); 4155 } 4156 4157 sqlite3DbFree(db, sAggInfo.aCol); 4158 sqlite3DbFree(db, sAggInfo.aFunc); 4159 return rc; 4160 } 4161 4162 #if defined(SQLITE_DEBUG) 4163 /* 4164 ******************************************************************************* 4165 ** The following code is used for testing and debugging only. The code 4166 ** that follows does not appear in normal builds. 4167 ** 4168 ** These routines are used to print out the content of all or part of a 4169 ** parse structures such as Select or Expr. Such printouts are useful 4170 ** for helping to understand what is happening inside the code generator 4171 ** during the execution of complex SELECT statements. 4172 ** 4173 ** These routine are not called anywhere from within the normal 4174 ** code base. Then are intended to be called from within the debugger 4175 ** or from temporary "printf" statements inserted for debugging. 4176 */ 4177 void sqlite3PrintExpr(Expr *p){ 4178 if( p->token.z && p->token.n>0 ){ 4179 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4180 }else{ 4181 sqlite3DebugPrintf("(%d", p->op); 4182 } 4183 if( p->pLeft ){ 4184 sqlite3DebugPrintf(" "); 4185 sqlite3PrintExpr(p->pLeft); 4186 } 4187 if( p->pRight ){ 4188 sqlite3DebugPrintf(" "); 4189 sqlite3PrintExpr(p->pRight); 4190 } 4191 sqlite3DebugPrintf(")"); 4192 } 4193 void sqlite3PrintExprList(ExprList *pList){ 4194 int i; 4195 for(i=0; i<pList->nExpr; i++){ 4196 sqlite3PrintExpr(pList->a[i].pExpr); 4197 if( i<pList->nExpr-1 ){ 4198 sqlite3DebugPrintf(", "); 4199 } 4200 } 4201 } 4202 void sqlite3PrintSelect(Select *p, int indent){ 4203 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4204 sqlite3PrintExprList(p->pEList); 4205 sqlite3DebugPrintf("\n"); 4206 if( p->pSrc ){ 4207 char *zPrefix; 4208 int i; 4209 zPrefix = "FROM"; 4210 for(i=0; i<p->pSrc->nSrc; i++){ 4211 struct SrcList_item *pItem = &p->pSrc->a[i]; 4212 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4213 zPrefix = ""; 4214 if( pItem->pSelect ){ 4215 sqlite3DebugPrintf("(\n"); 4216 sqlite3PrintSelect(pItem->pSelect, indent+10); 4217 sqlite3DebugPrintf("%*s)", indent+8, ""); 4218 }else if( pItem->zName ){ 4219 sqlite3DebugPrintf("%s", pItem->zName); 4220 } 4221 if( pItem->pTab ){ 4222 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4223 } 4224 if( pItem->zAlias ){ 4225 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4226 } 4227 if( i<p->pSrc->nSrc-1 ){ 4228 sqlite3DebugPrintf(","); 4229 } 4230 sqlite3DebugPrintf("\n"); 4231 } 4232 } 4233 if( p->pWhere ){ 4234 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4235 sqlite3PrintExpr(p->pWhere); 4236 sqlite3DebugPrintf("\n"); 4237 } 4238 if( p->pGroupBy ){ 4239 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4240 sqlite3PrintExprList(p->pGroupBy); 4241 sqlite3DebugPrintf("\n"); 4242 } 4243 if( p->pHaving ){ 4244 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4245 sqlite3PrintExpr(p->pHaving); 4246 sqlite3DebugPrintf("\n"); 4247 } 4248 if( p->pOrderBy ){ 4249 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4250 sqlite3PrintExprList(p->pOrderBy); 4251 sqlite3DebugPrintf("\n"); 4252 } 4253 } 4254 /* End of the structure debug printing code 4255 *****************************************************************************/ 4256 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4257