xref: /sqlite-3.40.0/src/select.c (revision 1ed93e90)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.518 2009/05/19 19:04:58 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = (u8)eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }
95   return pNew;
96 }
97 
98 /*
99 ** Delete the given Select structure and all of its substructures.
100 */
101 void sqlite3SelectDelete(sqlite3 *db, Select *p){
102   if( p ){
103     clearSelect(db, p);
104     sqlite3DbFree(db, p);
105   }
106 }
107 
108 /*
109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
110 ** type of join.  Return an integer constant that expresses that type
111 ** in terms of the following bit values:
112 **
113 **     JT_INNER
114 **     JT_CROSS
115 **     JT_OUTER
116 **     JT_NATURAL
117 **     JT_LEFT
118 **     JT_RIGHT
119 **
120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
121 **
122 ** If an illegal or unsupported join type is seen, then still return
123 ** a join type, but put an error in the pParse structure.
124 */
125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
126   int jointype = 0;
127   Token *apAll[3];
128   Token *p;
129                              /*   0123456789 123456789 123456789 123 */
130   static const char zKeyText[] = "naturaleftouterightfullinnercross";
131   static const struct {
132     u8 i;        /* Beginning of keyword text in zKeyText[] */
133     u8 nChar;    /* Length of the keyword in characters */
134     u8 code;     /* Join type mask */
135   } aKeyword[] = {
136     /* natural */ { 0,  7, JT_NATURAL                },
137     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
138     /* outer   */ { 10, 5, JT_OUTER                  },
139     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
140     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
141     /* inner   */ { 23, 5, JT_INNER                  },
142     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
143   };
144   int i, j;
145   apAll[0] = pA;
146   apAll[1] = pB;
147   apAll[2] = pC;
148   for(i=0; i<3 && apAll[i]; i++){
149     p = apAll[i];
150     for(j=0; j<ArraySize(aKeyword); j++){
151       if( p->n==aKeyword[j].nChar
152           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
153         jointype |= aKeyword[j].code;
154         break;
155       }
156     }
157     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
158     if( j>=ArraySize(aKeyword) ){
159       jointype |= JT_ERROR;
160       break;
161     }
162   }
163   if(
164      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
165      (jointype & JT_ERROR)!=0
166   ){
167     const char *zSp = " ";
168     assert( pB!=0 );
169     if( pC==0 ){ zSp++; }
170     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
171        "%T %T%s%T", pA, pB, zSp, pC);
172     jointype = JT_INNER;
173   }else if( (jointype & JT_OUTER)!=0
174          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
175     sqlite3ErrorMsg(pParse,
176       "RIGHT and FULL OUTER JOINs are not currently supported");
177     jointype = JT_INNER;
178   }
179   return jointype;
180 }
181 
182 /*
183 ** Return the index of a column in a table.  Return -1 if the column
184 ** is not contained in the table.
185 */
186 static int columnIndex(Table *pTab, const char *zCol){
187   int i;
188   for(i=0; i<pTab->nCol; i++){
189     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
190   }
191   return -1;
192 }
193 
194 /*
195 ** Set the value of a token to a '\000'-terminated string.
196 */
197 static void setToken(Token *p, const char *z){
198   p->z = (u8*)z;
199   p->n = z ? sqlite3Strlen30(z) : 0;
200   p->dyn = 0;
201   p->quoted = 0;
202 }
203 
204 /*
205 ** Create an expression node for an identifier with the name of zName
206 */
207 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
208   Token dummy;
209   setToken(&dummy, zName);
210   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
211 }
212 
213 /*
214 ** Add a term to the WHERE expression in *ppExpr that requires the
215 ** zCol column to be equal in the two tables pTab1 and pTab2.
216 */
217 static void addWhereTerm(
218   Parse *pParse,           /* Parsing context */
219   const char *zCol,        /* Name of the column */
220   const Table *pTab1,      /* First table */
221   const char *zAlias1,     /* Alias for first table.  May be NULL */
222   const Table *pTab2,      /* Second table */
223   const char *zAlias2,     /* Alias for second table.  May be NULL */
224   int iRightJoinTable,     /* VDBE cursor for the right table */
225   Expr **ppExpr,           /* Add the equality term to this expression */
226   int isOuterJoin          /* True if dealing with an OUTER join */
227 ){
228   Expr *pE1a, *pE1b, *pE1c;
229   Expr *pE2a, *pE2b, *pE2c;
230   Expr *pE;
231 
232   pE1a = sqlite3CreateIdExpr(pParse, zCol);
233   pE2a = sqlite3CreateIdExpr(pParse, zCol);
234   if( zAlias1==0 ){
235     zAlias1 = pTab1->zName;
236   }
237   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
238   if( zAlias2==0 ){
239     zAlias2 = pTab2->zName;
240   }
241   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
242   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
243   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
244   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
245   if( pE && isOuterJoin ){
246     ExprSetProperty(pE, EP_FromJoin);
247     pE->iRightJoinTable = iRightJoinTable;
248   }
249   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
250 }
251 
252 /*
253 ** Set the EP_FromJoin property on all terms of the given expression.
254 ** And set the Expr.iRightJoinTable to iTable for every term in the
255 ** expression.
256 **
257 ** The EP_FromJoin property is used on terms of an expression to tell
258 ** the LEFT OUTER JOIN processing logic that this term is part of the
259 ** join restriction specified in the ON or USING clause and not a part
260 ** of the more general WHERE clause.  These terms are moved over to the
261 ** WHERE clause during join processing but we need to remember that they
262 ** originated in the ON or USING clause.
263 **
264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
265 ** expression depends on table iRightJoinTable even if that table is not
266 ** explicitly mentioned in the expression.  That information is needed
267 ** for cases like this:
268 **
269 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
270 **
271 ** The where clause needs to defer the handling of the t1.x=5
272 ** term until after the t2 loop of the join.  In that way, a
273 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
274 ** defer the handling of t1.x=5, it will be processed immediately
275 ** after the t1 loop and rows with t1.x!=5 will never appear in
276 ** the output, which is incorrect.
277 */
278 static void setJoinExpr(Expr *p, int iTable){
279   while( p ){
280     ExprSetProperty(p, EP_FromJoin);
281     p->iRightJoinTable = iTable;
282     setJoinExpr(p->pLeft, iTable);
283     p = p->pRight;
284   }
285 }
286 
287 /*
288 ** This routine processes the join information for a SELECT statement.
289 ** ON and USING clauses are converted into extra terms of the WHERE clause.
290 ** NATURAL joins also create extra WHERE clause terms.
291 **
292 ** The terms of a FROM clause are contained in the Select.pSrc structure.
293 ** The left most table is the first entry in Select.pSrc.  The right-most
294 ** table is the last entry.  The join operator is held in the entry to
295 ** the left.  Thus entry 0 contains the join operator for the join between
296 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
297 ** also attached to the left entry.
298 **
299 ** This routine returns the number of errors encountered.
300 */
301 static int sqliteProcessJoin(Parse *pParse, Select *p){
302   SrcList *pSrc;                  /* All tables in the FROM clause */
303   int i, j;                       /* Loop counters */
304   struct SrcList_item *pLeft;     /* Left table being joined */
305   struct SrcList_item *pRight;    /* Right table being joined */
306 
307   pSrc = p->pSrc;
308   pLeft = &pSrc->a[0];
309   pRight = &pLeft[1];
310   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
311     Table *pLeftTab = pLeft->pTab;
312     Table *pRightTab = pRight->pTab;
313     int isOuter;
314 
315     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
316     isOuter = (pRight->jointype & JT_OUTER)!=0;
317 
318     /* When the NATURAL keyword is present, add WHERE clause terms for
319     ** every column that the two tables have in common.
320     */
321     if( pRight->jointype & JT_NATURAL ){
322       if( pRight->pOn || pRight->pUsing ){
323         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
324            "an ON or USING clause", 0);
325         return 1;
326       }
327       for(j=0; j<pLeftTab->nCol; j++){
328         char *zName = pLeftTab->aCol[j].zName;
329         if( columnIndex(pRightTab, zName)>=0 ){
330           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
331                               pRightTab, pRight->zAlias,
332                               pRight->iCursor, &p->pWhere, isOuter);
333 
334         }
335       }
336     }
337 
338     /* Disallow both ON and USING clauses in the same join
339     */
340     if( pRight->pOn && pRight->pUsing ){
341       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
342         "clauses in the same join");
343       return 1;
344     }
345 
346     /* Add the ON clause to the end of the WHERE clause, connected by
347     ** an AND operator.
348     */
349     if( pRight->pOn ){
350       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
351       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
352       pRight->pOn = 0;
353     }
354 
355     /* Create extra terms on the WHERE clause for each column named
356     ** in the USING clause.  Example: If the two tables to be joined are
357     ** A and B and the USING clause names X, Y, and Z, then add this
358     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
359     ** Report an error if any column mentioned in the USING clause is
360     ** not contained in both tables to be joined.
361     */
362     if( pRight->pUsing ){
363       IdList *pList = pRight->pUsing;
364       for(j=0; j<pList->nId; j++){
365         char *zName = pList->a[j].zName;
366         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
367           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
368             "not present in both tables", zName);
369           return 1;
370         }
371         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
372                             pRightTab, pRight->zAlias,
373                             pRight->iCursor, &p->pWhere, isOuter);
374       }
375     }
376   }
377   return 0;
378 }
379 
380 /*
381 ** Insert code into "v" that will push the record on the top of the
382 ** stack into the sorter.
383 */
384 static void pushOntoSorter(
385   Parse *pParse,         /* Parser context */
386   ExprList *pOrderBy,    /* The ORDER BY clause */
387   Select *pSelect,       /* The whole SELECT statement */
388   int regData            /* Register holding data to be sorted */
389 ){
390   Vdbe *v = pParse->pVdbe;
391   int nExpr = pOrderBy->nExpr;
392   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
393   int regRecord = sqlite3GetTempReg(pParse);
394   sqlite3ExprCacheClear(pParse);
395   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
396   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
397   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
398   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
399   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
400   sqlite3ReleaseTempReg(pParse, regRecord);
401   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
402   if( pSelect->iLimit ){
403     int addr1, addr2;
404     int iLimit;
405     if( pSelect->iOffset ){
406       iLimit = pSelect->iOffset+1;
407     }else{
408       iLimit = pSelect->iLimit;
409     }
410     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
411     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
412     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
413     sqlite3VdbeJumpHere(v, addr1);
414     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
415     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
416     sqlite3VdbeJumpHere(v, addr2);
417     pSelect->iLimit = 0;
418   }
419 }
420 
421 /*
422 ** Add code to implement the OFFSET
423 */
424 static void codeOffset(
425   Vdbe *v,          /* Generate code into this VM */
426   Select *p,        /* The SELECT statement being coded */
427   int iContinue     /* Jump here to skip the current record */
428 ){
429   if( p->iOffset && iContinue!=0 ){
430     int addr;
431     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
432     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
433     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
434     VdbeComment((v, "skip OFFSET records"));
435     sqlite3VdbeJumpHere(v, addr);
436   }
437 }
438 
439 /*
440 ** Add code that will check to make sure the N registers starting at iMem
441 ** form a distinct entry.  iTab is a sorting index that holds previously
442 ** seen combinations of the N values.  A new entry is made in iTab
443 ** if the current N values are new.
444 **
445 ** A jump to addrRepeat is made and the N+1 values are popped from the
446 ** stack if the top N elements are not distinct.
447 */
448 static void codeDistinct(
449   Parse *pParse,     /* Parsing and code generating context */
450   int iTab,          /* A sorting index used to test for distinctness */
451   int addrRepeat,    /* Jump to here if not distinct */
452   int N,             /* Number of elements */
453   int iMem           /* First element */
454 ){
455   Vdbe *v;
456   int r1;
457 
458   v = pParse->pVdbe;
459   r1 = sqlite3GetTempReg(pParse);
460   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
461   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
462   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
463   sqlite3ReleaseTempReg(pParse, r1);
464 }
465 
466 /*
467 ** Generate an error message when a SELECT is used within a subexpression
468 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
469 ** column.  We do this in a subroutine because the error occurs in multiple
470 ** places.
471 */
472 static int checkForMultiColumnSelectError(
473   Parse *pParse,       /* Parse context. */
474   SelectDest *pDest,   /* Destination of SELECT results */
475   int nExpr            /* Number of result columns returned by SELECT */
476 ){
477   int eDest = pDest->eDest;
478   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
479     sqlite3ErrorMsg(pParse, "only a single result allowed for "
480        "a SELECT that is part of an expression");
481     return 1;
482   }else{
483     return 0;
484   }
485 }
486 
487 /*
488 ** This routine generates the code for the inside of the inner loop
489 ** of a SELECT.
490 **
491 ** If srcTab and nColumn are both zero, then the pEList expressions
492 ** are evaluated in order to get the data for this row.  If nColumn>0
493 ** then data is pulled from srcTab and pEList is used only to get the
494 ** datatypes for each column.
495 */
496 static void selectInnerLoop(
497   Parse *pParse,          /* The parser context */
498   Select *p,              /* The complete select statement being coded */
499   ExprList *pEList,       /* List of values being extracted */
500   int srcTab,             /* Pull data from this table */
501   int nColumn,            /* Number of columns in the source table */
502   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
503   int distinct,           /* If >=0, make sure results are distinct */
504   SelectDest *pDest,      /* How to dispose of the results */
505   int iContinue,          /* Jump here to continue with next row */
506   int iBreak              /* Jump here to break out of the inner loop */
507 ){
508   Vdbe *v = pParse->pVdbe;
509   int i;
510   int hasDistinct;        /* True if the DISTINCT keyword is present */
511   int regResult;              /* Start of memory holding result set */
512   int eDest = pDest->eDest;   /* How to dispose of results */
513   int iParm = pDest->iParm;   /* First argument to disposal method */
514   int nResultCol;             /* Number of result columns */
515 
516   assert( v );
517   if( NEVER(v==0) ) return;
518   assert( pEList!=0 );
519   hasDistinct = distinct>=0;
520   if( pOrderBy==0 && !hasDistinct ){
521     codeOffset(v, p, iContinue);
522   }
523 
524   /* Pull the requested columns.
525   */
526   if( nColumn>0 ){
527     nResultCol = nColumn;
528   }else{
529     nResultCol = pEList->nExpr;
530   }
531   if( pDest->iMem==0 ){
532     pDest->iMem = pParse->nMem+1;
533     pDest->nMem = nResultCol;
534     pParse->nMem += nResultCol;
535   }else{
536     assert( pDest->nMem==nResultCol );
537   }
538   regResult = pDest->iMem;
539   if( nColumn>0 ){
540     for(i=0; i<nColumn; i++){
541       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
542     }
543   }else if( eDest!=SRT_Exists ){
544     /* If the destination is an EXISTS(...) expression, the actual
545     ** values returned by the SELECT are not required.
546     */
547     sqlite3ExprCacheClear(pParse);
548     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
549   }
550   nColumn = nResultCol;
551 
552   /* If the DISTINCT keyword was present on the SELECT statement
553   ** and this row has been seen before, then do not make this row
554   ** part of the result.
555   */
556   if( hasDistinct ){
557     assert( pEList!=0 );
558     assert( pEList->nExpr==nColumn );
559     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
560     if( pOrderBy==0 ){
561       codeOffset(v, p, iContinue);
562     }
563   }
564 
565   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
566     return;
567   }
568 
569   switch( eDest ){
570     /* In this mode, write each query result to the key of the temporary
571     ** table iParm.
572     */
573 #ifndef SQLITE_OMIT_COMPOUND_SELECT
574     case SRT_Union: {
575       int r1;
576       r1 = sqlite3GetTempReg(pParse);
577       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
578       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
579       sqlite3ReleaseTempReg(pParse, r1);
580       break;
581     }
582 
583     /* Construct a record from the query result, but instead of
584     ** saving that record, use it as a key to delete elements from
585     ** the temporary table iParm.
586     */
587     case SRT_Except: {
588       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
589       break;
590     }
591 #endif
592 
593     /* Store the result as data using a unique key.
594     */
595     case SRT_Table:
596     case SRT_EphemTab: {
597       int r1 = sqlite3GetTempReg(pParse);
598       testcase( eDest==SRT_Table );
599       testcase( eDest==SRT_EphemTab );
600       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
601       if( pOrderBy ){
602         pushOntoSorter(pParse, pOrderBy, p, r1);
603       }else{
604         int r2 = sqlite3GetTempReg(pParse);
605         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
606         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
607         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
608         sqlite3ReleaseTempReg(pParse, r2);
609       }
610       sqlite3ReleaseTempReg(pParse, r1);
611       break;
612     }
613 
614 #ifndef SQLITE_OMIT_SUBQUERY
615     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
616     ** then there should be a single item on the stack.  Write this
617     ** item into the set table with bogus data.
618     */
619     case SRT_Set: {
620       assert( nColumn==1 );
621       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
622       if( pOrderBy ){
623         /* At first glance you would think we could optimize out the
624         ** ORDER BY in this case since the order of entries in the set
625         ** does not matter.  But there might be a LIMIT clause, in which
626         ** case the order does matter */
627         pushOntoSorter(pParse, pOrderBy, p, regResult);
628       }else{
629         int r1 = sqlite3GetTempReg(pParse);
630         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
631         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
632         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
633         sqlite3ReleaseTempReg(pParse, r1);
634       }
635       break;
636     }
637 
638     /* If any row exist in the result set, record that fact and abort.
639     */
640     case SRT_Exists: {
641       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
642       /* The LIMIT clause will terminate the loop for us */
643       break;
644     }
645 
646     /* If this is a scalar select that is part of an expression, then
647     ** store the results in the appropriate memory cell and break out
648     ** of the scan loop.
649     */
650     case SRT_Mem: {
651       assert( nColumn==1 );
652       if( pOrderBy ){
653         pushOntoSorter(pParse, pOrderBy, p, regResult);
654       }else{
655         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
656         /* The LIMIT clause will jump out of the loop for us */
657       }
658       break;
659     }
660 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
661 
662     /* Send the data to the callback function or to a subroutine.  In the
663     ** case of a subroutine, the subroutine itself is responsible for
664     ** popping the data from the stack.
665     */
666     case SRT_Coroutine:
667     case SRT_Output: {
668       testcase( eDest==SRT_Coroutine );
669       testcase( eDest==SRT_Output );
670       if( pOrderBy ){
671         int r1 = sqlite3GetTempReg(pParse);
672         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
673         pushOntoSorter(pParse, pOrderBy, p, r1);
674         sqlite3ReleaseTempReg(pParse, r1);
675       }else if( eDest==SRT_Coroutine ){
676         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
677       }else{
678         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
679         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
680       }
681       break;
682     }
683 
684 #if !defined(SQLITE_OMIT_TRIGGER)
685     /* Discard the results.  This is used for SELECT statements inside
686     ** the body of a TRIGGER.  The purpose of such selects is to call
687     ** user-defined functions that have side effects.  We do not care
688     ** about the actual results of the select.
689     */
690     default: {
691       assert( eDest==SRT_Discard );
692       break;
693     }
694 #endif
695   }
696 
697   /* Jump to the end of the loop if the LIMIT is reached.
698   */
699   if( p->iLimit ){
700     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
701                             ** pushOntoSorter() would have cleared p->iLimit */
702     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
703     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
704   }
705 }
706 
707 /*
708 ** Given an expression list, generate a KeyInfo structure that records
709 ** the collating sequence for each expression in that expression list.
710 **
711 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
712 ** KeyInfo structure is appropriate for initializing a virtual index to
713 ** implement that clause.  If the ExprList is the result set of a SELECT
714 ** then the KeyInfo structure is appropriate for initializing a virtual
715 ** index to implement a DISTINCT test.
716 **
717 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
718 ** function is responsible for seeing that this structure is eventually
719 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
720 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
721 */
722 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
723   sqlite3 *db = pParse->db;
724   int nExpr;
725   KeyInfo *pInfo;
726   struct ExprList_item *pItem;
727   int i;
728 
729   nExpr = pList->nExpr;
730   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
731   if( pInfo ){
732     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
733     pInfo->nField = (u16)nExpr;
734     pInfo->enc = ENC(db);
735     pInfo->db = db;
736     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
737       CollSeq *pColl;
738       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
739       if( !pColl ){
740         pColl = db->pDfltColl;
741       }
742       pInfo->aColl[i] = pColl;
743       pInfo->aSortOrder[i] = pItem->sortOrder;
744     }
745   }
746   return pInfo;
747 }
748 
749 
750 /*
751 ** If the inner loop was generated using a non-null pOrderBy argument,
752 ** then the results were placed in a sorter.  After the loop is terminated
753 ** we need to run the sorter and output the results.  The following
754 ** routine generates the code needed to do that.
755 */
756 static void generateSortTail(
757   Parse *pParse,    /* Parsing context */
758   Select *p,        /* The SELECT statement */
759   Vdbe *v,          /* Generate code into this VDBE */
760   int nColumn,      /* Number of columns of data */
761   SelectDest *pDest /* Write the sorted results here */
762 ){
763   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
764   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
765   int addr;
766   int iTab;
767   int pseudoTab = 0;
768   ExprList *pOrderBy = p->pOrderBy;
769 
770   int eDest = pDest->eDest;
771   int iParm = pDest->iParm;
772 
773   int regRow;
774   int regRowid;
775 
776   iTab = pOrderBy->iECursor;
777   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
778     pseudoTab = pParse->nTab++;
779     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn);
780   }
781   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
782   codeOffset(v, p, addrContinue);
783   regRow = sqlite3GetTempReg(pParse);
784   regRowid = sqlite3GetTempReg(pParse);
785   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
786   switch( eDest ){
787     case SRT_Table:
788     case SRT_EphemTab: {
789       testcase( eDest==SRT_Table );
790       testcase( eDest==SRT_EphemTab );
791       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
792       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
793       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
794       break;
795     }
796 #ifndef SQLITE_OMIT_SUBQUERY
797     case SRT_Set: {
798       assert( nColumn==1 );
799       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
800       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
801       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
802       break;
803     }
804     case SRT_Mem: {
805       assert( nColumn==1 );
806       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
807       /* The LIMIT clause will terminate the loop for us */
808       break;
809     }
810 #endif
811     default: {
812       int i;
813       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
814       testcase( eDest==SRT_Output );
815       testcase( eDest==SRT_Coroutine );
816       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
817       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
818       for(i=0; i<nColumn; i++){
819         assert( regRow!=pDest->iMem+i );
820         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
821       }
822       if( eDest==SRT_Output ){
823         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
824         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
825       }else{
826         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
827       }
828       break;
829     }
830   }
831   sqlite3ReleaseTempReg(pParse, regRow);
832   sqlite3ReleaseTempReg(pParse, regRowid);
833 
834   /* LIMIT has been implemented by the pushOntoSorter() routine.
835   */
836   assert( p->iLimit==0 );
837 
838   /* The bottom of the loop
839   */
840   sqlite3VdbeResolveLabel(v, addrContinue);
841   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
842   sqlite3VdbeResolveLabel(v, addrBreak);
843   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
844     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
845   }
846 }
847 
848 /*
849 ** Return a pointer to a string containing the 'declaration type' of the
850 ** expression pExpr. The string may be treated as static by the caller.
851 **
852 ** The declaration type is the exact datatype definition extracted from the
853 ** original CREATE TABLE statement if the expression is a column. The
854 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
855 ** is considered a column can be complex in the presence of subqueries. The
856 ** result-set expression in all of the following SELECT statements is
857 ** considered a column by this function.
858 **
859 **   SELECT col FROM tbl;
860 **   SELECT (SELECT col FROM tbl;
861 **   SELECT (SELECT col FROM tbl);
862 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
863 **
864 ** The declaration type for any expression other than a column is NULL.
865 */
866 static const char *columnType(
867   NameContext *pNC,
868   Expr *pExpr,
869   const char **pzOriginDb,
870   const char **pzOriginTab,
871   const char **pzOriginCol
872 ){
873   char const *zType = 0;
874   char const *zOriginDb = 0;
875   char const *zOriginTab = 0;
876   char const *zOriginCol = 0;
877   int j;
878   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
879 
880   switch( pExpr->op ){
881     case TK_AGG_COLUMN:
882     case TK_COLUMN: {
883       /* The expression is a column. Locate the table the column is being
884       ** extracted from in NameContext.pSrcList. This table may be real
885       ** database table or a subquery.
886       */
887       Table *pTab = 0;            /* Table structure column is extracted from */
888       Select *pS = 0;             /* Select the column is extracted from */
889       int iCol = pExpr->iColumn;  /* Index of column in pTab */
890       testcase( pExpr->op==TK_AGG_COLUMN );
891       testcase( pExpr->op==TK_COLUMN );
892       while( pNC && !pTab ){
893         SrcList *pTabList = pNC->pSrcList;
894         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
895         if( j<pTabList->nSrc ){
896           pTab = pTabList->a[j].pTab;
897           pS = pTabList->a[j].pSelect;
898         }else{
899           pNC = pNC->pNext;
900         }
901       }
902 
903       if( pTab==0 ){
904         /* FIX ME:
905         ** This can occurs if you have something like "SELECT new.x;" inside
906         ** a trigger.  In other words, if you reference the special "new"
907         ** table in the result set of a select.  We do not have a good way
908         ** to find the actual table type, so call it "TEXT".  This is really
909         ** something of a bug, but I do not know how to fix it.
910         **
911         ** This code does not produce the correct answer - it just prevents
912         ** a segfault.  See ticket #1229.
913         */
914         zType = "TEXT";
915         break;
916       }
917 
918       assert( pTab );
919       if( pS ){
920         /* The "table" is actually a sub-select or a view in the FROM clause
921         ** of the SELECT statement. Return the declaration type and origin
922         ** data for the result-set column of the sub-select.
923         */
924         if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
925           /* If iCol is less than zero, then the expression requests the
926           ** rowid of the sub-select or view. This expression is legal (see
927           ** test case misc2.2.2) - it always evaluates to NULL.
928           */
929           NameContext sNC;
930           Expr *p = pS->pEList->a[iCol].pExpr;
931           sNC.pSrcList = pS->pSrc;
932           sNC.pNext = 0;
933           sNC.pParse = pNC->pParse;
934           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
935         }
936       }else if( ALWAYS(pTab->pSchema) ){
937         /* A real table */
938         assert( !pS );
939         if( iCol<0 ) iCol = pTab->iPKey;
940         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
941         if( iCol<0 ){
942           zType = "INTEGER";
943           zOriginCol = "rowid";
944         }else{
945           zType = pTab->aCol[iCol].zType;
946           zOriginCol = pTab->aCol[iCol].zName;
947         }
948         zOriginTab = pTab->zName;
949         if( pNC->pParse ){
950           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
951           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
952         }
953       }
954       break;
955     }
956 #ifndef SQLITE_OMIT_SUBQUERY
957     case TK_SELECT: {
958       /* The expression is a sub-select. Return the declaration type and
959       ** origin info for the single column in the result set of the SELECT
960       ** statement.
961       */
962       NameContext sNC;
963       Select *pS = pExpr->x.pSelect;
964       Expr *p = pS->pEList->a[0].pExpr;
965       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
966       sNC.pSrcList = pS->pSrc;
967       sNC.pNext = pNC;
968       sNC.pParse = pNC->pParse;
969       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
970       break;
971     }
972 #endif
973   }
974 
975   if( pzOriginDb ){
976     assert( pzOriginTab && pzOriginCol );
977     *pzOriginDb = zOriginDb;
978     *pzOriginTab = zOriginTab;
979     *pzOriginCol = zOriginCol;
980   }
981   return zType;
982 }
983 
984 /*
985 ** Generate code that will tell the VDBE the declaration types of columns
986 ** in the result set.
987 */
988 static void generateColumnTypes(
989   Parse *pParse,      /* Parser context */
990   SrcList *pTabList,  /* List of tables */
991   ExprList *pEList    /* Expressions defining the result set */
992 ){
993 #ifndef SQLITE_OMIT_DECLTYPE
994   Vdbe *v = pParse->pVdbe;
995   int i;
996   NameContext sNC;
997   sNC.pSrcList = pTabList;
998   sNC.pParse = pParse;
999   for(i=0; i<pEList->nExpr; i++){
1000     Expr *p = pEList->a[i].pExpr;
1001     const char *zType;
1002 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1003     const char *zOrigDb = 0;
1004     const char *zOrigTab = 0;
1005     const char *zOrigCol = 0;
1006     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1007 
1008     /* The vdbe must make its own copy of the column-type and other
1009     ** column specific strings, in case the schema is reset before this
1010     ** virtual machine is deleted.
1011     */
1012     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1013     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1014     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1015 #else
1016     zType = columnType(&sNC, p, 0, 0, 0);
1017 #endif
1018     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1019   }
1020 #endif /* SQLITE_OMIT_DECLTYPE */
1021 }
1022 
1023 /*
1024 ** Generate code that will tell the VDBE the names of columns
1025 ** in the result set.  This information is used to provide the
1026 ** azCol[] values in the callback.
1027 */
1028 static void generateColumnNames(
1029   Parse *pParse,      /* Parser context */
1030   SrcList *pTabList,  /* List of tables */
1031   ExprList *pEList    /* Expressions defining the result set */
1032 ){
1033   Vdbe *v = pParse->pVdbe;
1034   int i, j;
1035   sqlite3 *db = pParse->db;
1036   int fullNames, shortNames;
1037 
1038 #ifndef SQLITE_OMIT_EXPLAIN
1039   /* If this is an EXPLAIN, skip this step */
1040   if( pParse->explain ){
1041     return;
1042   }
1043 #endif
1044 
1045   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1046   pParse->colNamesSet = 1;
1047   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1048   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1049   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1050   for(i=0; i<pEList->nExpr; i++){
1051     Expr *p;
1052     p = pEList->a[i].pExpr;
1053     if( NEVER(p==0) ) continue;
1054     if( pEList->a[i].zName ){
1055       char *zName = pEList->a[i].zName;
1056       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1057     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1058       Table *pTab;
1059       char *zCol;
1060       int iCol = p->iColumn;
1061       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1062         if( pTabList->a[j].iCursor==p->iTable ) break;
1063       }
1064       assert( j<pTabList->nSrc );
1065       pTab = pTabList->a[j].pTab;
1066       if( iCol<0 ) iCol = pTab->iPKey;
1067       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1068       if( iCol<0 ){
1069         zCol = "rowid";
1070       }else{
1071         zCol = pTab->aCol[iCol].zName;
1072       }
1073       if( !shortNames && !fullNames ){
1074         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1075             sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1076       }else if( fullNames ){
1077         char *zName = 0;
1078         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1079         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1080       }else{
1081         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1082       }
1083     }else{
1084       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1085           sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1086     }
1087   }
1088   generateColumnTypes(pParse, pTabList, pEList);
1089 }
1090 
1091 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1092 /*
1093 ** Name of the connection operator, used for error messages.
1094 */
1095 static const char *selectOpName(int id){
1096   char *z;
1097   switch( id ){
1098     case TK_ALL:       z = "UNION ALL";   break;
1099     case TK_INTERSECT: z = "INTERSECT";   break;
1100     case TK_EXCEPT:    z = "EXCEPT";      break;
1101     default:           z = "UNION";       break;
1102   }
1103   return z;
1104 }
1105 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1106 
1107 /*
1108 ** Given a an expression list (which is really the list of expressions
1109 ** that form the result set of a SELECT statement) compute appropriate
1110 ** column names for a table that would hold the expression list.
1111 **
1112 ** All column names will be unique.
1113 **
1114 ** Only the column names are computed.  Column.zType, Column.zColl,
1115 ** and other fields of Column are zeroed.
1116 **
1117 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1118 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1119 */
1120 static int selectColumnsFromExprList(
1121   Parse *pParse,          /* Parsing context */
1122   ExprList *pEList,       /* Expr list from which to derive column names */
1123   int *pnCol,             /* Write the number of columns here */
1124   Column **paCol          /* Write the new column list here */
1125 ){
1126   sqlite3 *db = pParse->db;   /* Database connection */
1127   int i, j;                   /* Loop counters */
1128   int cnt;                    /* Index added to make the name unique */
1129   Column *aCol, *pCol;        /* For looping over result columns */
1130   int nCol;                   /* Number of columns in the result set */
1131   Expr *p;                    /* Expression for a single result column */
1132   char *zName;                /* Column name */
1133   int nName;                  /* Size of name in zName[] */
1134 
1135   *pnCol = nCol = pEList->nExpr;
1136   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1137   if( aCol==0 ) return SQLITE_NOMEM;
1138   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1139     /* Get an appropriate name for the column
1140     */
1141     p = pEList->a[i].pExpr;
1142     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1143     if( (zName = pEList->a[i].zName)!=0 ){
1144       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1145       zName = sqlite3DbStrDup(db, zName);
1146     }else{
1147       Expr *pColExpr = p;  /* The expression that is the result column name */
1148       Table *pTab;         /* Table associated with this expression */
1149       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1150       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1151         /* For columns use the column name name */
1152         int iCol = pColExpr->iColumn;
1153         pTab = pColExpr->pTab;
1154         if( iCol<0 ) iCol = pTab->iPKey;
1155         zName = sqlite3MPrintf(db, "%s",
1156                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1157       }else{
1158         /* Use the original text of the column expression as its name */
1159         Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token);
1160         zName = sqlite3MPrintf(db, "%T", pToken);
1161       }
1162     }
1163     if( db->mallocFailed ){
1164       sqlite3DbFree(db, zName);
1165       break;
1166     }
1167 
1168     /* Make sure the column name is unique.  If the name is not unique,
1169     ** append a integer to the name so that it becomes unique.
1170     */
1171     nName = sqlite3Strlen30(zName);
1172     for(j=cnt=0; j<i; j++){
1173       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1174         char *zNewName;
1175         zName[nName] = 0;
1176         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1177         sqlite3DbFree(db, zName);
1178         zName = zNewName;
1179         j = -1;
1180         if( zName==0 ) break;
1181       }
1182     }
1183     pCol->zName = zName;
1184   }
1185   if( db->mallocFailed ){
1186     for(j=0; j<i; j++){
1187       sqlite3DbFree(db, aCol[j].zName);
1188     }
1189     sqlite3DbFree(db, aCol);
1190     *paCol = 0;
1191     *pnCol = 0;
1192     return SQLITE_NOMEM;
1193   }
1194   return SQLITE_OK;
1195 }
1196 
1197 /*
1198 ** Add type and collation information to a column list based on
1199 ** a SELECT statement.
1200 **
1201 ** The column list presumably came from selectColumnNamesFromExprList().
1202 ** The column list has only names, not types or collations.  This
1203 ** routine goes through and adds the types and collations.
1204 **
1205 ** This routine requires that all identifiers in the SELECT
1206 ** statement be resolved.
1207 */
1208 static void selectAddColumnTypeAndCollation(
1209   Parse *pParse,        /* Parsing contexts */
1210   int nCol,             /* Number of columns */
1211   Column *aCol,         /* List of columns */
1212   Select *pSelect       /* SELECT used to determine types and collations */
1213 ){
1214   sqlite3 *db = pParse->db;
1215   NameContext sNC;
1216   Column *pCol;
1217   CollSeq *pColl;
1218   int i;
1219   Expr *p;
1220   struct ExprList_item *a;
1221 
1222   assert( pSelect!=0 );
1223   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1224   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1225   if( db->mallocFailed ) return;
1226   memset(&sNC, 0, sizeof(sNC));
1227   sNC.pSrcList = pSelect->pSrc;
1228   a = pSelect->pEList->a;
1229   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1230     p = a[i].pExpr;
1231     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1232     pCol->affinity = sqlite3ExprAffinity(p);
1233     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1234     pColl = sqlite3ExprCollSeq(pParse, p);
1235     if( pColl ){
1236       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1237     }
1238   }
1239 }
1240 
1241 /*
1242 ** Given a SELECT statement, generate a Table structure that describes
1243 ** the result set of that SELECT.
1244 */
1245 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1246   Table *pTab;
1247   sqlite3 *db = pParse->db;
1248   int savedFlags;
1249 
1250   savedFlags = db->flags;
1251   db->flags &= ~SQLITE_FullColNames;
1252   db->flags |= SQLITE_ShortColNames;
1253   sqlite3SelectPrep(pParse, pSelect, 0);
1254   if( pParse->nErr ) return 0;
1255   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1256   db->flags = savedFlags;
1257   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1258   if( pTab==0 ){
1259     return 0;
1260   }
1261   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1262   ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
1263   assert( db->lookaside.bEnabled==0 );
1264   pTab->dbMem = 0;
1265   pTab->nRef = 1;
1266   pTab->zName = 0;
1267   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1268   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1269   pTab->iPKey = -1;
1270   if( db->mallocFailed ){
1271     sqlite3DeleteTable(pTab);
1272     return 0;
1273   }
1274   return pTab;
1275 }
1276 
1277 /*
1278 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1279 ** If an error occurs, return NULL and leave a message in pParse.
1280 */
1281 Vdbe *sqlite3GetVdbe(Parse *pParse){
1282   Vdbe *v = pParse->pVdbe;
1283   if( v==0 ){
1284     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1285 #ifndef SQLITE_OMIT_TRACE
1286     if( v ){
1287       sqlite3VdbeAddOp0(v, OP_Trace);
1288     }
1289 #endif
1290   }
1291   return v;
1292 }
1293 
1294 
1295 /*
1296 ** Compute the iLimit and iOffset fields of the SELECT based on the
1297 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1298 ** that appear in the original SQL statement after the LIMIT and OFFSET
1299 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1300 ** are the integer memory register numbers for counters used to compute
1301 ** the limit and offset.  If there is no limit and/or offset, then
1302 ** iLimit and iOffset are negative.
1303 **
1304 ** This routine changes the values of iLimit and iOffset only if
1305 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1306 ** iOffset should have been preset to appropriate default values
1307 ** (usually but not always -1) prior to calling this routine.
1308 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1309 ** redefined.  The UNION ALL operator uses this property to force
1310 ** the reuse of the same limit and offset registers across multiple
1311 ** SELECT statements.
1312 */
1313 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1314   Vdbe *v = 0;
1315   int iLimit = 0;
1316   int iOffset;
1317   int addr1;
1318   if( p->iLimit ) return;
1319 
1320   /*
1321   ** "LIMIT -1" always shows all rows.  There is some
1322   ** contraversy about what the correct behavior should be.
1323   ** The current implementation interprets "LIMIT 0" to mean
1324   ** no rows.
1325   */
1326   sqlite3ExprCacheClear(pParse);
1327   assert( p->pOffset==0 || p->pLimit!=0 );
1328   if( p->pLimit ){
1329     p->iLimit = iLimit = ++pParse->nMem;
1330     v = sqlite3GetVdbe(pParse);
1331     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1332     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1333     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1334     VdbeComment((v, "LIMIT counter"));
1335     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1336     if( p->pOffset ){
1337       p->iOffset = iOffset = ++pParse->nMem;
1338       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1339       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1340       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1341       VdbeComment((v, "OFFSET counter"));
1342       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1343       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1344       sqlite3VdbeJumpHere(v, addr1);
1345       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1346       VdbeComment((v, "LIMIT+OFFSET"));
1347       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1348       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1349       sqlite3VdbeJumpHere(v, addr1);
1350     }
1351   }
1352 }
1353 
1354 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1355 /*
1356 ** Return the appropriate collating sequence for the iCol-th column of
1357 ** the result set for the compound-select statement "p".  Return NULL if
1358 ** the column has no default collating sequence.
1359 **
1360 ** The collating sequence for the compound select is taken from the
1361 ** left-most term of the select that has a collating sequence.
1362 */
1363 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1364   CollSeq *pRet;
1365   if( p->pPrior ){
1366     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1367   }else{
1368     pRet = 0;
1369   }
1370   assert( iCol>=0 );
1371   if( pRet==0 && iCol<p->pEList->nExpr ){
1372     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1373   }
1374   return pRet;
1375 }
1376 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1377 
1378 /* Forward reference */
1379 static int multiSelectOrderBy(
1380   Parse *pParse,        /* Parsing context */
1381   Select *p,            /* The right-most of SELECTs to be coded */
1382   SelectDest *pDest     /* What to do with query results */
1383 );
1384 
1385 
1386 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1387 /*
1388 ** This routine is called to process a compound query form from
1389 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1390 ** INTERSECT
1391 **
1392 ** "p" points to the right-most of the two queries.  the query on the
1393 ** left is p->pPrior.  The left query could also be a compound query
1394 ** in which case this routine will be called recursively.
1395 **
1396 ** The results of the total query are to be written into a destination
1397 ** of type eDest with parameter iParm.
1398 **
1399 ** Example 1:  Consider a three-way compound SQL statement.
1400 **
1401 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1402 **
1403 ** This statement is parsed up as follows:
1404 **
1405 **     SELECT c FROM t3
1406 **      |
1407 **      `----->  SELECT b FROM t2
1408 **                |
1409 **                `------>  SELECT a FROM t1
1410 **
1411 ** The arrows in the diagram above represent the Select.pPrior pointer.
1412 ** So if this routine is called with p equal to the t3 query, then
1413 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1414 **
1415 ** Notice that because of the way SQLite parses compound SELECTs, the
1416 ** individual selects always group from left to right.
1417 */
1418 static int multiSelect(
1419   Parse *pParse,        /* Parsing context */
1420   Select *p,            /* The right-most of SELECTs to be coded */
1421   SelectDest *pDest     /* What to do with query results */
1422 ){
1423   int rc = SQLITE_OK;   /* Success code from a subroutine */
1424   Select *pPrior;       /* Another SELECT immediately to our left */
1425   Vdbe *v;              /* Generate code to this VDBE */
1426   SelectDest dest;      /* Alternative data destination */
1427   Select *pDelete = 0;  /* Chain of simple selects to delete */
1428   sqlite3 *db;          /* Database connection */
1429 
1430   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1431   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1432   */
1433   assert( p && p->pPrior );  /* Calling function guarantees this much */
1434   db = pParse->db;
1435   pPrior = p->pPrior;
1436   assert( pPrior->pRightmost!=pPrior );
1437   assert( pPrior->pRightmost==p->pRightmost );
1438   dest = *pDest;
1439   if( pPrior->pOrderBy ){
1440     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1441       selectOpName(p->op));
1442     rc = 1;
1443     goto multi_select_end;
1444   }
1445   if( pPrior->pLimit ){
1446     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1447       selectOpName(p->op));
1448     rc = 1;
1449     goto multi_select_end;
1450   }
1451 
1452   v = sqlite3GetVdbe(pParse);
1453   assert( v!=0 );  /* The VDBE already created by calling function */
1454 
1455   /* Create the destination temporary table if necessary
1456   */
1457   if( dest.eDest==SRT_EphemTab ){
1458     assert( p->pEList );
1459     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1460     dest.eDest = SRT_Table;
1461   }
1462 
1463   /* Make sure all SELECTs in the statement have the same number of elements
1464   ** in their result sets.
1465   */
1466   assert( p->pEList && pPrior->pEList );
1467   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1468     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1469       " do not have the same number of result columns", selectOpName(p->op));
1470     rc = 1;
1471     goto multi_select_end;
1472   }
1473 
1474   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1475   */
1476   if( p->pOrderBy ){
1477     return multiSelectOrderBy(pParse, p, pDest);
1478   }
1479 
1480   /* Generate code for the left and right SELECT statements.
1481   */
1482   switch( p->op ){
1483     case TK_ALL: {
1484       int addr = 0;
1485       assert( !pPrior->pLimit );
1486       pPrior->pLimit = p->pLimit;
1487       pPrior->pOffset = p->pOffset;
1488       rc = sqlite3Select(pParse, pPrior, &dest);
1489       p->pLimit = 0;
1490       p->pOffset = 0;
1491       if( rc ){
1492         goto multi_select_end;
1493       }
1494       p->pPrior = 0;
1495       p->iLimit = pPrior->iLimit;
1496       p->iOffset = pPrior->iOffset;
1497       if( p->iLimit ){
1498         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1499         VdbeComment((v, "Jump ahead if LIMIT reached"));
1500       }
1501       rc = sqlite3Select(pParse, p, &dest);
1502       testcase( rc!=SQLITE_OK );
1503       pDelete = p->pPrior;
1504       p->pPrior = pPrior;
1505       if( addr ){
1506         sqlite3VdbeJumpHere(v, addr);
1507       }
1508       break;
1509     }
1510     case TK_EXCEPT:
1511     case TK_UNION: {
1512       int unionTab;    /* Cursor number of the temporary table holding result */
1513       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1514       int priorOp;     /* The SRT_ operation to apply to prior selects */
1515       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1516       int addr;
1517       SelectDest uniondest;
1518 
1519       testcase( p->op==TK_EXCEPT );
1520       testcase( p->op==TK_UNION );
1521       priorOp = SRT_Union;
1522       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1523         /* We can reuse a temporary table generated by a SELECT to our
1524         ** right.
1525         */
1526         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1527                                      ** of a 3-way or more compound */
1528         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1529         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1530         unionTab = dest.iParm;
1531       }else{
1532         /* We will need to create our own temporary table to hold the
1533         ** intermediate results.
1534         */
1535         unionTab = pParse->nTab++;
1536         assert( p->pOrderBy==0 );
1537         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1538         assert( p->addrOpenEphm[0] == -1 );
1539         p->addrOpenEphm[0] = addr;
1540         p->pRightmost->selFlags |= SF_UsesEphemeral;
1541         assert( p->pEList );
1542       }
1543 
1544       /* Code the SELECT statements to our left
1545       */
1546       assert( !pPrior->pOrderBy );
1547       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1548       rc = sqlite3Select(pParse, pPrior, &uniondest);
1549       if( rc ){
1550         goto multi_select_end;
1551       }
1552 
1553       /* Code the current SELECT statement
1554       */
1555       if( p->op==TK_EXCEPT ){
1556         op = SRT_Except;
1557       }else{
1558         assert( p->op==TK_UNION );
1559         op = SRT_Union;
1560       }
1561       p->pPrior = 0;
1562       pLimit = p->pLimit;
1563       p->pLimit = 0;
1564       pOffset = p->pOffset;
1565       p->pOffset = 0;
1566       uniondest.eDest = op;
1567       rc = sqlite3Select(pParse, p, &uniondest);
1568       testcase( rc!=SQLITE_OK );
1569       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1570       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1571       sqlite3ExprListDelete(db, p->pOrderBy);
1572       pDelete = p->pPrior;
1573       p->pPrior = pPrior;
1574       p->pOrderBy = 0;
1575       sqlite3ExprDelete(db, p->pLimit);
1576       p->pLimit = pLimit;
1577       p->pOffset = pOffset;
1578       p->iLimit = 0;
1579       p->iOffset = 0;
1580 
1581       /* Convert the data in the temporary table into whatever form
1582       ** it is that we currently need.
1583       */
1584       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1585       if( dest.eDest!=priorOp ){
1586         int iCont, iBreak, iStart;
1587         assert( p->pEList );
1588         if( dest.eDest==SRT_Output ){
1589           Select *pFirst = p;
1590           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1591           generateColumnNames(pParse, 0, pFirst->pEList);
1592         }
1593         iBreak = sqlite3VdbeMakeLabel(v);
1594         iCont = sqlite3VdbeMakeLabel(v);
1595         computeLimitRegisters(pParse, p, iBreak);
1596         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1597         iStart = sqlite3VdbeCurrentAddr(v);
1598         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1599                         0, -1, &dest, iCont, iBreak);
1600         sqlite3VdbeResolveLabel(v, iCont);
1601         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1602         sqlite3VdbeResolveLabel(v, iBreak);
1603         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1604       }
1605       break;
1606     }
1607     default: assert( p->op==TK_INTERSECT ); {
1608       int tab1, tab2;
1609       int iCont, iBreak, iStart;
1610       Expr *pLimit, *pOffset;
1611       int addr;
1612       SelectDest intersectdest;
1613       int r1;
1614 
1615       /* INTERSECT is different from the others since it requires
1616       ** two temporary tables.  Hence it has its own case.  Begin
1617       ** by allocating the tables we will need.
1618       */
1619       tab1 = pParse->nTab++;
1620       tab2 = pParse->nTab++;
1621       assert( p->pOrderBy==0 );
1622 
1623       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1624       assert( p->addrOpenEphm[0] == -1 );
1625       p->addrOpenEphm[0] = addr;
1626       p->pRightmost->selFlags |= SF_UsesEphemeral;
1627       assert( p->pEList );
1628 
1629       /* Code the SELECTs to our left into temporary table "tab1".
1630       */
1631       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1632       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1633       if( rc ){
1634         goto multi_select_end;
1635       }
1636 
1637       /* Code the current SELECT into temporary table "tab2"
1638       */
1639       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1640       assert( p->addrOpenEphm[1] == -1 );
1641       p->addrOpenEphm[1] = addr;
1642       p->pPrior = 0;
1643       pLimit = p->pLimit;
1644       p->pLimit = 0;
1645       pOffset = p->pOffset;
1646       p->pOffset = 0;
1647       intersectdest.iParm = tab2;
1648       rc = sqlite3Select(pParse, p, &intersectdest);
1649       testcase( rc!=SQLITE_OK );
1650       pDelete = p->pPrior;
1651       p->pPrior = pPrior;
1652       sqlite3ExprDelete(db, p->pLimit);
1653       p->pLimit = pLimit;
1654       p->pOffset = pOffset;
1655 
1656       /* Generate code to take the intersection of the two temporary
1657       ** tables.
1658       */
1659       assert( p->pEList );
1660       if( dest.eDest==SRT_Output ){
1661         Select *pFirst = p;
1662         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1663         generateColumnNames(pParse, 0, pFirst->pEList);
1664       }
1665       iBreak = sqlite3VdbeMakeLabel(v);
1666       iCont = sqlite3VdbeMakeLabel(v);
1667       computeLimitRegisters(pParse, p, iBreak);
1668       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1669       r1 = sqlite3GetTempReg(pParse);
1670       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1671       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1672       sqlite3ReleaseTempReg(pParse, r1);
1673       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1674                       0, -1, &dest, iCont, iBreak);
1675       sqlite3VdbeResolveLabel(v, iCont);
1676       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1677       sqlite3VdbeResolveLabel(v, iBreak);
1678       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1679       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1680       break;
1681     }
1682   }
1683 
1684   /* Compute collating sequences used by
1685   ** temporary tables needed to implement the compound select.
1686   ** Attach the KeyInfo structure to all temporary tables.
1687   **
1688   ** This section is run by the right-most SELECT statement only.
1689   ** SELECT statements to the left always skip this part.  The right-most
1690   ** SELECT might also skip this part if it has no ORDER BY clause and
1691   ** no temp tables are required.
1692   */
1693   if( p->selFlags & SF_UsesEphemeral ){
1694     int i;                        /* Loop counter */
1695     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1696     Select *pLoop;                /* For looping through SELECT statements */
1697     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1698     int nCol;                     /* Number of columns in result set */
1699 
1700     assert( p->pRightmost==p );
1701     nCol = p->pEList->nExpr;
1702     pKeyInfo = sqlite3DbMallocZero(db,
1703                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1704     if( !pKeyInfo ){
1705       rc = SQLITE_NOMEM;
1706       goto multi_select_end;
1707     }
1708 
1709     pKeyInfo->enc = ENC(db);
1710     pKeyInfo->nField = (u16)nCol;
1711 
1712     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1713       *apColl = multiSelectCollSeq(pParse, p, i);
1714       if( 0==*apColl ){
1715         *apColl = db->pDfltColl;
1716       }
1717     }
1718 
1719     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1720       for(i=0; i<2; i++){
1721         int addr = pLoop->addrOpenEphm[i];
1722         if( addr<0 ){
1723           /* If [0] is unused then [1] is also unused.  So we can
1724           ** always safely abort as soon as the first unused slot is found */
1725           assert( pLoop->addrOpenEphm[1]<0 );
1726           break;
1727         }
1728         sqlite3VdbeChangeP2(v, addr, nCol);
1729         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1730         pLoop->addrOpenEphm[i] = -1;
1731       }
1732     }
1733     sqlite3DbFree(db, pKeyInfo);
1734   }
1735 
1736 multi_select_end:
1737   pDest->iMem = dest.iMem;
1738   pDest->nMem = dest.nMem;
1739   sqlite3SelectDelete(db, pDelete);
1740   return rc;
1741 }
1742 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1743 
1744 /*
1745 ** Code an output subroutine for a coroutine implementation of a
1746 ** SELECT statment.
1747 **
1748 ** The data to be output is contained in pIn->iMem.  There are
1749 ** pIn->nMem columns to be output.  pDest is where the output should
1750 ** be sent.
1751 **
1752 ** regReturn is the number of the register holding the subroutine
1753 ** return address.
1754 **
1755 ** If regPrev>0 then it is a the first register in a vector that
1756 ** records the previous output.  mem[regPrev] is a flag that is false
1757 ** if there has been no previous output.  If regPrev>0 then code is
1758 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1759 ** keys.
1760 **
1761 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1762 ** iBreak.
1763 */
1764 static int generateOutputSubroutine(
1765   Parse *pParse,          /* Parsing context */
1766   Select *p,              /* The SELECT statement */
1767   SelectDest *pIn,        /* Coroutine supplying data */
1768   SelectDest *pDest,      /* Where to send the data */
1769   int regReturn,          /* The return address register */
1770   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1771   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1772   int p4type,             /* The p4 type for pKeyInfo */
1773   int iBreak              /* Jump here if we hit the LIMIT */
1774 ){
1775   Vdbe *v = pParse->pVdbe;
1776   int iContinue;
1777   int addr;
1778 
1779   addr = sqlite3VdbeCurrentAddr(v);
1780   iContinue = sqlite3VdbeMakeLabel(v);
1781 
1782   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1783   */
1784   if( regPrev ){
1785     int j1, j2;
1786     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1787     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1788                               (char*)pKeyInfo, p4type);
1789     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1790     sqlite3VdbeJumpHere(v, j1);
1791     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1792     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1793   }
1794   if( pParse->db->mallocFailed ) return 0;
1795 
1796   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1797   */
1798   codeOffset(v, p, iContinue);
1799 
1800   switch( pDest->eDest ){
1801     /* Store the result as data using a unique key.
1802     */
1803     case SRT_Table:
1804     case SRT_EphemTab: {
1805       int r1 = sqlite3GetTempReg(pParse);
1806       int r2 = sqlite3GetTempReg(pParse);
1807       testcase( pDest->eDest==SRT_Table );
1808       testcase( pDest->eDest==SRT_EphemTab );
1809       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1810       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1811       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1812       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1813       sqlite3ReleaseTempReg(pParse, r2);
1814       sqlite3ReleaseTempReg(pParse, r1);
1815       break;
1816     }
1817 
1818 #ifndef SQLITE_OMIT_SUBQUERY
1819     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1820     ** then there should be a single item on the stack.  Write this
1821     ** item into the set table with bogus data.
1822     */
1823     case SRT_Set: {
1824       int r1;
1825       assert( pIn->nMem==1 );
1826       p->affinity =
1827          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1828       r1 = sqlite3GetTempReg(pParse);
1829       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1830       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1831       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1832       sqlite3ReleaseTempReg(pParse, r1);
1833       break;
1834     }
1835 
1836 #if 0  /* Never occurs on an ORDER BY query */
1837     /* If any row exist in the result set, record that fact and abort.
1838     */
1839     case SRT_Exists: {
1840       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1841       /* The LIMIT clause will terminate the loop for us */
1842       break;
1843     }
1844 #endif
1845 
1846     /* If this is a scalar select that is part of an expression, then
1847     ** store the results in the appropriate memory cell and break out
1848     ** of the scan loop.
1849     */
1850     case SRT_Mem: {
1851       assert( pIn->nMem==1 );
1852       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1853       /* The LIMIT clause will jump out of the loop for us */
1854       break;
1855     }
1856 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1857 
1858     /* The results are stored in a sequence of registers
1859     ** starting at pDest->iMem.  Then the co-routine yields.
1860     */
1861     case SRT_Coroutine: {
1862       if( pDest->iMem==0 ){
1863         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1864         pDest->nMem = pIn->nMem;
1865       }
1866       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1867       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1868       break;
1869     }
1870 
1871     /* If none of the above, then the result destination must be
1872     ** SRT_Output.  This routine is never called with any other
1873     ** destination other than the ones handled above or SRT_Output.
1874     **
1875     ** For SRT_Output, results are stored in a sequence of registers.
1876     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
1877     ** return the next row of result.
1878     */
1879     default: {
1880       assert( pDest->eDest==SRT_Output );
1881       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1882       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1883       break;
1884     }
1885   }
1886 
1887   /* Jump to the end of the loop if the LIMIT is reached.
1888   */
1889   if( p->iLimit ){
1890     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1891     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1892   }
1893 
1894   /* Generate the subroutine return
1895   */
1896   sqlite3VdbeResolveLabel(v, iContinue);
1897   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1898 
1899   return addr;
1900 }
1901 
1902 /*
1903 ** Alternative compound select code generator for cases when there
1904 ** is an ORDER BY clause.
1905 **
1906 ** We assume a query of the following form:
1907 **
1908 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1909 **
1910 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1911 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1912 ** co-routines.  Then run the co-routines in parallel and merge the results
1913 ** into the output.  In addition to the two coroutines (called selectA and
1914 ** selectB) there are 7 subroutines:
1915 **
1916 **    outA:    Move the output of the selectA coroutine into the output
1917 **             of the compound query.
1918 **
1919 **    outB:    Move the output of the selectB coroutine into the output
1920 **             of the compound query.  (Only generated for UNION and
1921 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1922 **             appears only in B.)
1923 **
1924 **    AltB:    Called when there is data from both coroutines and A<B.
1925 **
1926 **    AeqB:    Called when there is data from both coroutines and A==B.
1927 **
1928 **    AgtB:    Called when there is data from both coroutines and A>B.
1929 **
1930 **    EofA:    Called when data is exhausted from selectA.
1931 **
1932 **    EofB:    Called when data is exhausted from selectB.
1933 **
1934 ** The implementation of the latter five subroutines depend on which
1935 ** <operator> is used:
1936 **
1937 **
1938 **             UNION ALL         UNION            EXCEPT          INTERSECT
1939 **          -------------  -----------------  --------------  -----------------
1940 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1941 **
1942 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1943 **
1944 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1945 **
1946 **   EofA:   outB, nextB      outB, nextB          halt             halt
1947 **
1948 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1949 **
1950 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1951 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1952 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1953 ** following nextX causes a jump to the end of the select processing.
1954 **
1955 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1956 ** within the output subroutine.  The regPrev register set holds the previously
1957 ** output value.  A comparison is made against this value and the output
1958 ** is skipped if the next results would be the same as the previous.
1959 **
1960 ** The implementation plan is to implement the two coroutines and seven
1961 ** subroutines first, then put the control logic at the bottom.  Like this:
1962 **
1963 **          goto Init
1964 **     coA: coroutine for left query (A)
1965 **     coB: coroutine for right query (B)
1966 **    outA: output one row of A
1967 **    outB: output one row of B (UNION and UNION ALL only)
1968 **    EofA: ...
1969 **    EofB: ...
1970 **    AltB: ...
1971 **    AeqB: ...
1972 **    AgtB: ...
1973 **    Init: initialize coroutine registers
1974 **          yield coA
1975 **          if eof(A) goto EofA
1976 **          yield coB
1977 **          if eof(B) goto EofB
1978 **    Cmpr: Compare A, B
1979 **          Jump AltB, AeqB, AgtB
1980 **     End: ...
1981 **
1982 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
1983 ** actually called using Gosub and they do not Return.  EofA and EofB loop
1984 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
1985 ** and AgtB jump to either L2 or to one of EofA or EofB.
1986 */
1987 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1988 static int multiSelectOrderBy(
1989   Parse *pParse,        /* Parsing context */
1990   Select *p,            /* The right-most of SELECTs to be coded */
1991   SelectDest *pDest     /* What to do with query results */
1992 ){
1993   int i, j;             /* Loop counters */
1994   Select *pPrior;       /* Another SELECT immediately to our left */
1995   Vdbe *v;              /* Generate code to this VDBE */
1996   SelectDest destA;     /* Destination for coroutine A */
1997   SelectDest destB;     /* Destination for coroutine B */
1998   int regAddrA;         /* Address register for select-A coroutine */
1999   int regEofA;          /* Flag to indicate when select-A is complete */
2000   int regAddrB;         /* Address register for select-B coroutine */
2001   int regEofB;          /* Flag to indicate when select-B is complete */
2002   int addrSelectA;      /* Address of the select-A coroutine */
2003   int addrSelectB;      /* Address of the select-B coroutine */
2004   int regOutA;          /* Address register for the output-A subroutine */
2005   int regOutB;          /* Address register for the output-B subroutine */
2006   int addrOutA;         /* Address of the output-A subroutine */
2007   int addrOutB = 0;     /* Address of the output-B subroutine */
2008   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2009   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2010   int addrAltB;         /* Address of the A<B subroutine */
2011   int addrAeqB;         /* Address of the A==B subroutine */
2012   int addrAgtB;         /* Address of the A>B subroutine */
2013   int regLimitA;        /* Limit register for select-A */
2014   int regLimitB;        /* Limit register for select-A */
2015   int regPrev;          /* A range of registers to hold previous output */
2016   int savedLimit;       /* Saved value of p->iLimit */
2017   int savedOffset;      /* Saved value of p->iOffset */
2018   int labelCmpr;        /* Label for the start of the merge algorithm */
2019   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2020   int j1;               /* Jump instructions that get retargetted */
2021   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2022   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2023   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2024   sqlite3 *db;          /* Database connection */
2025   ExprList *pOrderBy;   /* The ORDER BY clause */
2026   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2027   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2028 
2029   assert( p->pOrderBy!=0 );
2030   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2031   db = pParse->db;
2032   v = pParse->pVdbe;
2033   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2034   labelEnd = sqlite3VdbeMakeLabel(v);
2035   labelCmpr = sqlite3VdbeMakeLabel(v);
2036 
2037 
2038   /* Patch up the ORDER BY clause
2039   */
2040   op = p->op;
2041   pPrior = p->pPrior;
2042   assert( pPrior->pOrderBy==0 );
2043   pOrderBy = p->pOrderBy;
2044   assert( pOrderBy );
2045   nOrderBy = pOrderBy->nExpr;
2046 
2047   /* For operators other than UNION ALL we have to make sure that
2048   ** the ORDER BY clause covers every term of the result set.  Add
2049   ** terms to the ORDER BY clause as necessary.
2050   */
2051   if( op!=TK_ALL ){
2052     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2053       struct ExprList_item *pItem;
2054       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2055         assert( pItem->iCol>0 );
2056         if( pItem->iCol==i ) break;
2057       }
2058       if( j==nOrderBy ){
2059         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2060         if( pNew==0 ) return SQLITE_NOMEM;
2061         pNew->flags |= EP_IntValue;
2062         pNew->iTable = i;
2063         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2064         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2065       }
2066     }
2067   }
2068 
2069   /* Compute the comparison permutation and keyinfo that is used with
2070   ** the permutation used to determine if the next
2071   ** row of results comes from selectA or selectB.  Also add explicit
2072   ** collations to the ORDER BY clause terms so that when the subqueries
2073   ** to the right and the left are evaluated, they use the correct
2074   ** collation.
2075   */
2076   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2077   if( aPermute ){
2078     struct ExprList_item *pItem;
2079     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2080       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2081       aPermute[i] = pItem->iCol - 1;
2082     }
2083     pKeyMerge =
2084       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2085     if( pKeyMerge ){
2086       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2087       pKeyMerge->nField = (u16)nOrderBy;
2088       pKeyMerge->enc = ENC(db);
2089       for(i=0; i<nOrderBy; i++){
2090         CollSeq *pColl;
2091         Expr *pTerm = pOrderBy->a[i].pExpr;
2092         if( pTerm->flags & EP_ExpCollate ){
2093           pColl = pTerm->pColl;
2094         }else{
2095           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2096           pTerm->flags |= EP_ExpCollate;
2097           pTerm->pColl = pColl;
2098         }
2099         pKeyMerge->aColl[i] = pColl;
2100         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2101       }
2102     }
2103   }else{
2104     pKeyMerge = 0;
2105   }
2106 
2107   /* Reattach the ORDER BY clause to the query.
2108   */
2109   p->pOrderBy = pOrderBy;
2110   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2111 
2112   /* Allocate a range of temporary registers and the KeyInfo needed
2113   ** for the logic that removes duplicate result rows when the
2114   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2115   */
2116   if( op==TK_ALL ){
2117     regPrev = 0;
2118   }else{
2119     int nExpr = p->pEList->nExpr;
2120     assert( nOrderBy>=nExpr || db->mallocFailed );
2121     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2122     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2123     pKeyDup = sqlite3DbMallocZero(db,
2124                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2125     if( pKeyDup ){
2126       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2127       pKeyDup->nField = (u16)nExpr;
2128       pKeyDup->enc = ENC(db);
2129       for(i=0; i<nExpr; i++){
2130         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2131         pKeyDup->aSortOrder[i] = 0;
2132       }
2133     }
2134   }
2135 
2136   /* Separate the left and the right query from one another
2137   */
2138   p->pPrior = 0;
2139   pPrior->pRightmost = 0;
2140   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2141   if( pPrior->pPrior==0 ){
2142     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2143   }
2144 
2145   /* Compute the limit registers */
2146   computeLimitRegisters(pParse, p, labelEnd);
2147   if( p->iLimit && op==TK_ALL ){
2148     regLimitA = ++pParse->nMem;
2149     regLimitB = ++pParse->nMem;
2150     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2151                                   regLimitA);
2152     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2153   }else{
2154     regLimitA = regLimitB = 0;
2155   }
2156   sqlite3ExprDelete(db, p->pLimit);
2157   p->pLimit = 0;
2158   sqlite3ExprDelete(db, p->pOffset);
2159   p->pOffset = 0;
2160 
2161   regAddrA = ++pParse->nMem;
2162   regEofA = ++pParse->nMem;
2163   regAddrB = ++pParse->nMem;
2164   regEofB = ++pParse->nMem;
2165   regOutA = ++pParse->nMem;
2166   regOutB = ++pParse->nMem;
2167   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2168   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2169 
2170   /* Jump past the various subroutines and coroutines to the main
2171   ** merge loop
2172   */
2173   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2174   addrSelectA = sqlite3VdbeCurrentAddr(v);
2175 
2176 
2177   /* Generate a coroutine to evaluate the SELECT statement to the
2178   ** left of the compound operator - the "A" select.
2179   */
2180   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2181   pPrior->iLimit = regLimitA;
2182   sqlite3Select(pParse, pPrior, &destA);
2183   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2184   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2185   VdbeNoopComment((v, "End coroutine for left SELECT"));
2186 
2187   /* Generate a coroutine to evaluate the SELECT statement on
2188   ** the right - the "B" select
2189   */
2190   addrSelectB = sqlite3VdbeCurrentAddr(v);
2191   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2192   savedLimit = p->iLimit;
2193   savedOffset = p->iOffset;
2194   p->iLimit = regLimitB;
2195   p->iOffset = 0;
2196   sqlite3Select(pParse, p, &destB);
2197   p->iLimit = savedLimit;
2198   p->iOffset = savedOffset;
2199   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2200   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2201   VdbeNoopComment((v, "End coroutine for right SELECT"));
2202 
2203   /* Generate a subroutine that outputs the current row of the A
2204   ** select as the next output row of the compound select.
2205   */
2206   VdbeNoopComment((v, "Output routine for A"));
2207   addrOutA = generateOutputSubroutine(pParse,
2208                  p, &destA, pDest, regOutA,
2209                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2210 
2211   /* Generate a subroutine that outputs the current row of the B
2212   ** select as the next output row of the compound select.
2213   */
2214   if( op==TK_ALL || op==TK_UNION ){
2215     VdbeNoopComment((v, "Output routine for B"));
2216     addrOutB = generateOutputSubroutine(pParse,
2217                  p, &destB, pDest, regOutB,
2218                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2219   }
2220 
2221   /* Generate a subroutine to run when the results from select A
2222   ** are exhausted and only data in select B remains.
2223   */
2224   VdbeNoopComment((v, "eof-A subroutine"));
2225   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2226     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2227   }else{
2228     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2229     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2230     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2231     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2232   }
2233 
2234   /* Generate a subroutine to run when the results from select B
2235   ** are exhausted and only data in select A remains.
2236   */
2237   if( op==TK_INTERSECT ){
2238     addrEofB = addrEofA;
2239   }else{
2240     VdbeNoopComment((v, "eof-B subroutine"));
2241     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2242     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2243     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2244     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2245   }
2246 
2247   /* Generate code to handle the case of A<B
2248   */
2249   VdbeNoopComment((v, "A-lt-B subroutine"));
2250   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2251   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2252   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2253   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2254 
2255   /* Generate code to handle the case of A==B
2256   */
2257   if( op==TK_ALL ){
2258     addrAeqB = addrAltB;
2259   }else if( op==TK_INTERSECT ){
2260     addrAeqB = addrAltB;
2261     addrAltB++;
2262   }else{
2263     VdbeNoopComment((v, "A-eq-B subroutine"));
2264     addrAeqB =
2265     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2266     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2267     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2268   }
2269 
2270   /* Generate code to handle the case of A>B
2271   */
2272   VdbeNoopComment((v, "A-gt-B subroutine"));
2273   addrAgtB = sqlite3VdbeCurrentAddr(v);
2274   if( op==TK_ALL || op==TK_UNION ){
2275     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2276   }
2277   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2278   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2279   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2280 
2281   /* This code runs once to initialize everything.
2282   */
2283   sqlite3VdbeJumpHere(v, j1);
2284   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2285   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2286   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2287   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2288   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2289   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2290 
2291   /* Implement the main merge loop
2292   */
2293   sqlite3VdbeResolveLabel(v, labelCmpr);
2294   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2295   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2296                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2297   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2298 
2299   /* Release temporary registers
2300   */
2301   if( regPrev ){
2302     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2303   }
2304 
2305   /* Jump to the this point in order to terminate the query.
2306   */
2307   sqlite3VdbeResolveLabel(v, labelEnd);
2308 
2309   /* Set the number of output columns
2310   */
2311   if( pDest->eDest==SRT_Output ){
2312     Select *pFirst = pPrior;
2313     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2314     generateColumnNames(pParse, 0, pFirst->pEList);
2315   }
2316 
2317   /* Reassembly the compound query so that it will be freed correctly
2318   ** by the calling function */
2319   if( p->pPrior ){
2320     sqlite3SelectDelete(db, p->pPrior);
2321   }
2322   p->pPrior = pPrior;
2323 
2324   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2325   **** subqueries ****/
2326   return SQLITE_OK;
2327 }
2328 #endif
2329 
2330 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2331 /* Forward Declarations */
2332 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2333 static void substSelect(sqlite3*, Select *, int, ExprList *);
2334 
2335 /*
2336 ** Scan through the expression pExpr.  Replace every reference to
2337 ** a column in table number iTable with a copy of the iColumn-th
2338 ** entry in pEList.  (But leave references to the ROWID column
2339 ** unchanged.)
2340 **
2341 ** This routine is part of the flattening procedure.  A subquery
2342 ** whose result set is defined by pEList appears as entry in the
2343 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2344 ** FORM clause entry is iTable.  This routine make the necessary
2345 ** changes to pExpr so that it refers directly to the source table
2346 ** of the subquery rather the result set of the subquery.
2347 */
2348 static void substExpr(
2349   sqlite3 *db,        /* Report malloc errors to this connection */
2350   Expr *pExpr,        /* Expr in which substitution occurs */
2351   int iTable,         /* Table to be substituted */
2352   ExprList *pEList    /* Substitute expressions */
2353 ){
2354   if( pExpr==0 ) return;
2355   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2356     if( pExpr->iColumn<0 ){
2357       pExpr->op = TK_NULL;
2358     }else{
2359       Expr *pNew;
2360       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2361       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2362       pNew = pEList->a[pExpr->iColumn].pExpr;
2363       assert( pNew!=0 );
2364       pExpr->op = pNew->op;
2365       assert( pExpr->pLeft==0 );
2366       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0);
2367       assert( pExpr->pRight==0 );
2368       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0);
2369       pExpr->iTable = pNew->iTable;
2370       pExpr->pTab = pNew->pTab;
2371       pExpr->iColumn = pNew->iColumn;
2372       pExpr->iAgg = pNew->iAgg;
2373       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2374       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2375       assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 );
2376       if( ExprHasProperty(pNew, EP_xIsSelect) ){
2377         pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0);
2378       }else{
2379         pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0);
2380       }
2381       pExpr->flags = pNew->flags;
2382       pExpr->pAggInfo = pNew->pAggInfo;
2383       pNew->pAggInfo = 0;
2384     }
2385   }else{
2386     substExpr(db, pExpr->pLeft, iTable, pEList);
2387     substExpr(db, pExpr->pRight, iTable, pEList);
2388     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2389       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2390     }else{
2391       substExprList(db, pExpr->x.pList, iTable, pEList);
2392     }
2393   }
2394 }
2395 static void substExprList(
2396   sqlite3 *db,         /* Report malloc errors here */
2397   ExprList *pList,     /* List to scan and in which to make substitutes */
2398   int iTable,          /* Table to be substituted */
2399   ExprList *pEList     /* Substitute values */
2400 ){
2401   int i;
2402   if( pList==0 ) return;
2403   for(i=0; i<pList->nExpr; i++){
2404     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2405   }
2406 }
2407 static void substSelect(
2408   sqlite3 *db,         /* Report malloc errors here */
2409   Select *p,           /* SELECT statement in which to make substitutions */
2410   int iTable,          /* Table to be replaced */
2411   ExprList *pEList     /* Substitute values */
2412 ){
2413   SrcList *pSrc;
2414   struct SrcList_item *pItem;
2415   int i;
2416   if( !p ) return;
2417   substExprList(db, p->pEList, iTable, pEList);
2418   substExprList(db, p->pGroupBy, iTable, pEList);
2419   substExprList(db, p->pOrderBy, iTable, pEList);
2420   substExpr(db, p->pHaving, iTable, pEList);
2421   substExpr(db, p->pWhere, iTable, pEList);
2422   substSelect(db, p->pPrior, iTable, pEList);
2423   pSrc = p->pSrc;
2424   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2425   if( ALWAYS(pSrc) ){
2426     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2427       substSelect(db, pItem->pSelect, iTable, pEList);
2428     }
2429   }
2430 }
2431 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2432 
2433 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2434 /*
2435 ** This routine attempts to flatten subqueries in order to speed
2436 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2437 ** occurs.
2438 **
2439 ** To understand the concept of flattening, consider the following
2440 ** query:
2441 **
2442 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2443 **
2444 ** The default way of implementing this query is to execute the
2445 ** subquery first and store the results in a temporary table, then
2446 ** run the outer query on that temporary table.  This requires two
2447 ** passes over the data.  Furthermore, because the temporary table
2448 ** has no indices, the WHERE clause on the outer query cannot be
2449 ** optimized.
2450 **
2451 ** This routine attempts to rewrite queries such as the above into
2452 ** a single flat select, like this:
2453 **
2454 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2455 **
2456 ** The code generated for this simpification gives the same result
2457 ** but only has to scan the data once.  And because indices might
2458 ** exist on the table t1, a complete scan of the data might be
2459 ** avoided.
2460 **
2461 ** Flattening is only attempted if all of the following are true:
2462 **
2463 **   (1)  The subquery and the outer query do not both use aggregates.
2464 **
2465 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2466 **
2467 **   (3)  The subquery is not the right operand of a left outer join
2468 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2469 **
2470 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2471 **
2472 **   (5)  The subquery is not DISTINCT or the outer query does not use
2473 **        aggregates.
2474 **
2475 **   (6)  The subquery does not use aggregates or the outer query is not
2476 **        DISTINCT.
2477 **
2478 **   (7)  The subquery has a FROM clause.
2479 **
2480 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2481 **
2482 **   (9)  The subquery does not use LIMIT or the outer query does not use
2483 **        aggregates.
2484 **
2485 **  (10)  The subquery does not use aggregates or the outer query does not
2486 **        use LIMIT.
2487 **
2488 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2489 **
2490 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2491 **        a separate restriction deriving from ticket #350.
2492 **
2493 **  (13)  The subquery and outer query do not both use LIMIT
2494 **
2495 **  (14)  The subquery does not use OFFSET
2496 **
2497 **  (15)  The outer query is not part of a compound select or the
2498 **        subquery does not have both an ORDER BY and a LIMIT clause.
2499 **        (See ticket #2339)
2500 **
2501 **  (16)  The outer query is not an aggregate or the subquery does
2502 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2503 **        until we introduced the group_concat() function.
2504 **
2505 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2506 **        compound clause made up entirely of non-aggregate queries, and
2507 **        the parent query:
2508 **
2509 **          * is not itself part of a compound select,
2510 **          * is not an aggregate or DISTINCT query, and
2511 **          * has no other tables or sub-selects in the FROM clause.
2512 **
2513 **        The parent and sub-query may contain WHERE clauses. Subject to
2514 **        rules (11), (13) and (14), they may also contain ORDER BY,
2515 **        LIMIT and OFFSET clauses.
2516 **
2517 **  (18)  If the sub-query is a compound select, then all terms of the
2518 **        ORDER by clause of the parent must be simple references to
2519 **        columns of the sub-query.
2520 **
2521 **  (19)  The subquery does not use LIMIT or the outer query does not
2522 **        have a WHERE clause.
2523 **
2524 **  (20)  If the sub-query is a compound select, then it must not use
2525 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2526 **        somewhat by saying that the terms of the ORDER BY clause must
2527 **        appear as unmodified result columns in the outer query.  But
2528 **        have other optimizations in mind to deal with that case.
2529 **
2530 ** In this routine, the "p" parameter is a pointer to the outer query.
2531 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2532 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2533 **
2534 ** If flattening is not attempted, this routine is a no-op and returns 0.
2535 ** If flattening is attempted this routine returns 1.
2536 **
2537 ** All of the expression analysis must occur on both the outer query and
2538 ** the subquery before this routine runs.
2539 */
2540 static int flattenSubquery(
2541   Parse *pParse,       /* Parsing context */
2542   Select *p,           /* The parent or outer SELECT statement */
2543   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2544   int isAgg,           /* True if outer SELECT uses aggregate functions */
2545   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2546 ){
2547   const char *zSavedAuthContext = pParse->zAuthContext;
2548   Select *pParent;
2549   Select *pSub;       /* The inner query or "subquery" */
2550   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2551   SrcList *pSrc;      /* The FROM clause of the outer query */
2552   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2553   ExprList *pList;    /* The result set of the outer query */
2554   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2555   int i;              /* Loop counter */
2556   Expr *pWhere;                    /* The WHERE clause */
2557   struct SrcList_item *pSubitem;   /* The subquery */
2558   sqlite3 *db = pParse->db;
2559 
2560   /* Check to see if flattening is permitted.  Return 0 if not.
2561   */
2562   assert( p!=0 );
2563   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2564   pSrc = p->pSrc;
2565   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2566   pSubitem = &pSrc->a[iFrom];
2567   iParent = pSubitem->iCursor;
2568   pSub = pSubitem->pSelect;
2569   assert( pSub!=0 );
2570   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2571   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2572   pSubSrc = pSub->pSrc;
2573   assert( pSubSrc );
2574   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2575   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2576   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2577   ** became arbitrary expressions, we were forced to add restrictions (13)
2578   ** and (14). */
2579   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2580   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2581   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2582     return 0;                                            /* Restriction (15) */
2583   }
2584   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2585   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2586          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2587      return 0;
2588   }
2589   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2590      return 0;         /* Restriction (6)  */
2591   }
2592   if( p->pOrderBy && pSub->pOrderBy ){
2593      return 0;                                           /* Restriction (11) */
2594   }
2595   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2596   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2597 
2598   /* OBSOLETE COMMENT 1:
2599   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2600   ** not used as the right operand of an outer join.  Examples of why this
2601   ** is not allowed:
2602   **
2603   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2604   **
2605   ** If we flatten the above, we would get
2606   **
2607   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2608   **
2609   ** which is not at all the same thing.
2610   **
2611   ** OBSOLETE COMMENT 2:
2612   ** Restriction 12:  If the subquery is the right operand of a left outer
2613   ** join, make sure the subquery has no WHERE clause.
2614   ** An examples of why this is not allowed:
2615   **
2616   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2617   **
2618   ** If we flatten the above, we would get
2619   **
2620   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2621   **
2622   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2623   ** effectively converts the OUTER JOIN into an INNER JOIN.
2624   **
2625   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2626   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2627   ** is fraught with danger.  Best to avoid the whole thing.  If the
2628   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2629   */
2630   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2631     return 0;
2632   }
2633 
2634   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2635   ** use only the UNION ALL operator. And none of the simple select queries
2636   ** that make up the compound SELECT are allowed to be aggregate or distinct
2637   ** queries.
2638   */
2639   if( pSub->pPrior ){
2640     if( pSub->pOrderBy ){
2641       return 0;  /* Restriction 20 */
2642     }
2643     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2644       return 0;
2645     }
2646     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2647       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2648       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2649       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2650        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2651        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2652       ){
2653         return 0;
2654       }
2655     }
2656 
2657     /* Restriction 18. */
2658     if( p->pOrderBy ){
2659       int ii;
2660       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2661         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2662       }
2663     }
2664   }
2665 
2666   /***** If we reach this point, flattening is permitted. *****/
2667 
2668   /* Authorize the subquery */
2669   pParse->zAuthContext = pSubitem->zName;
2670   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2671   pParse->zAuthContext = zSavedAuthContext;
2672 
2673   /* If the sub-query is a compound SELECT statement, then (by restrictions
2674   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2675   ** be of the form:
2676   **
2677   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2678   **
2679   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2680   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2681   ** OFFSET clauses and joins them to the left-hand-side of the original
2682   ** using UNION ALL operators. In this case N is the number of simple
2683   ** select statements in the compound sub-query.
2684   **
2685   ** Example:
2686   **
2687   **     SELECT a+1 FROM (
2688   **        SELECT x FROM tab
2689   **        UNION ALL
2690   **        SELECT y FROM tab
2691   **        UNION ALL
2692   **        SELECT abs(z*2) FROM tab2
2693   **     ) WHERE a!=5 ORDER BY 1
2694   **
2695   ** Transformed into:
2696   **
2697   **     SELECT x+1 FROM tab WHERE x+1!=5
2698   **     UNION ALL
2699   **     SELECT y+1 FROM tab WHERE y+1!=5
2700   **     UNION ALL
2701   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2702   **     ORDER BY 1
2703   **
2704   ** We call this the "compound-subquery flattening".
2705   */
2706   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2707     Select *pNew;
2708     ExprList *pOrderBy = p->pOrderBy;
2709     Expr *pLimit = p->pLimit;
2710     Select *pPrior = p->pPrior;
2711     p->pOrderBy = 0;
2712     p->pSrc = 0;
2713     p->pPrior = 0;
2714     p->pLimit = 0;
2715     pNew = sqlite3SelectDup(db, p, 0);
2716     p->pLimit = pLimit;
2717     p->pOrderBy = pOrderBy;
2718     p->pSrc = pSrc;
2719     p->op = TK_ALL;
2720     p->pRightmost = 0;
2721     if( pNew==0 ){
2722       pNew = pPrior;
2723     }else{
2724       pNew->pPrior = pPrior;
2725       pNew->pRightmost = 0;
2726     }
2727     p->pPrior = pNew;
2728     if( db->mallocFailed ) return 1;
2729   }
2730 
2731   /* Begin flattening the iFrom-th entry of the FROM clause
2732   ** in the outer query.
2733   */
2734   pSub = pSub1 = pSubitem->pSelect;
2735 
2736   /* Delete the transient table structure associated with the
2737   ** subquery
2738   */
2739   sqlite3DbFree(db, pSubitem->zDatabase);
2740   sqlite3DbFree(db, pSubitem->zName);
2741   sqlite3DbFree(db, pSubitem->zAlias);
2742   pSubitem->zDatabase = 0;
2743   pSubitem->zName = 0;
2744   pSubitem->zAlias = 0;
2745   pSubitem->pSelect = 0;
2746 
2747   /* Defer deleting the Table object associated with the
2748   ** subquery until code generation is
2749   ** complete, since there may still exist Expr.pTab entries that
2750   ** refer to the subquery even after flattening.  Ticket #3346.
2751   **
2752   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2753   */
2754   if( ALWAYS(pSubitem->pTab!=0) ){
2755     Table *pTabToDel = pSubitem->pTab;
2756     if( pTabToDel->nRef==1 ){
2757       pTabToDel->pNextZombie = pParse->pZombieTab;
2758       pParse->pZombieTab = pTabToDel;
2759     }else{
2760       pTabToDel->nRef--;
2761     }
2762     pSubitem->pTab = 0;
2763   }
2764 
2765   /* The following loop runs once for each term in a compound-subquery
2766   ** flattening (as described above).  If we are doing a different kind
2767   ** of flattening - a flattening other than a compound-subquery flattening -
2768   ** then this loop only runs once.
2769   **
2770   ** This loop moves all of the FROM elements of the subquery into the
2771   ** the FROM clause of the outer query.  Before doing this, remember
2772   ** the cursor number for the original outer query FROM element in
2773   ** iParent.  The iParent cursor will never be used.  Subsequent code
2774   ** will scan expressions looking for iParent references and replace
2775   ** those references with expressions that resolve to the subquery FROM
2776   ** elements we are now copying in.
2777   */
2778   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2779     int nSubSrc;
2780     u8 jointype = 0;
2781     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2782     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2783     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2784 
2785     if( pSrc ){
2786       assert( pParent==p );  /* First time through the loop */
2787       jointype = pSubitem->jointype;
2788     }else{
2789       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2790       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2791       if( pSrc==0 ){
2792         assert( db->mallocFailed );
2793         break;
2794       }
2795     }
2796 
2797     /* The subquery uses a single slot of the FROM clause of the outer
2798     ** query.  If the subquery has more than one element in its FROM clause,
2799     ** then expand the outer query to make space for it to hold all elements
2800     ** of the subquery.
2801     **
2802     ** Example:
2803     **
2804     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2805     **
2806     ** The outer query has 3 slots in its FROM clause.  One slot of the
2807     ** outer query (the middle slot) is used by the subquery.  The next
2808     ** block of code will expand the out query to 4 slots.  The middle
2809     ** slot is expanded to two slots in order to make space for the
2810     ** two elements in the FROM clause of the subquery.
2811     */
2812     if( nSubSrc>1 ){
2813       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2814       if( db->mallocFailed ){
2815         break;
2816       }
2817     }
2818 
2819     /* Transfer the FROM clause terms from the subquery into the
2820     ** outer query.
2821     */
2822     for(i=0; i<nSubSrc; i++){
2823       pSrc->a[i+iFrom] = pSubSrc->a[i];
2824       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2825     }
2826     pSrc->a[iFrom].jointype = jointype;
2827 
2828     /* Now begin substituting subquery result set expressions for
2829     ** references to the iParent in the outer query.
2830     **
2831     ** Example:
2832     **
2833     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2834     **   \                     \_____________ subquery __________/          /
2835     **    \_____________________ outer query ______________________________/
2836     **
2837     ** We look at every expression in the outer query and every place we see
2838     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2839     */
2840     pList = pParent->pEList;
2841     for(i=0; i<pList->nExpr; i++){
2842       if( pList->a[i].zName==0 ){
2843         Expr *pExpr = pList->a[i].pExpr;
2844         if( ALWAYS(pExpr->span.z!=0) ){
2845           pList->a[i].zName =
2846                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2847         }
2848       }
2849     }
2850     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2851     if( isAgg ){
2852       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2853       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2854     }
2855     if( pSub->pOrderBy ){
2856       assert( pParent->pOrderBy==0 );
2857       pParent->pOrderBy = pSub->pOrderBy;
2858       pSub->pOrderBy = 0;
2859     }else if( pParent->pOrderBy ){
2860       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2861     }
2862     if( pSub->pWhere ){
2863       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2864     }else{
2865       pWhere = 0;
2866     }
2867     if( subqueryIsAgg ){
2868       assert( pParent->pHaving==0 );
2869       pParent->pHaving = pParent->pWhere;
2870       pParent->pWhere = pWhere;
2871       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2872       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2873                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2874       assert( pParent->pGroupBy==0 );
2875       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2876     }else{
2877       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2878       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2879     }
2880 
2881     /* The flattened query is distinct if either the inner or the
2882     ** outer query is distinct.
2883     */
2884     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2885 
2886     /*
2887     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2888     **
2889     ** One is tempted to try to add a and b to combine the limits.  But this
2890     ** does not work if either limit is negative.
2891     */
2892     if( pSub->pLimit ){
2893       pParent->pLimit = pSub->pLimit;
2894       pSub->pLimit = 0;
2895     }
2896   }
2897 
2898   /* Finially, delete what is left of the subquery and return
2899   ** success.
2900   */
2901   sqlite3SelectDelete(db, pSub1);
2902 
2903   return 1;
2904 }
2905 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2906 
2907 /*
2908 ** Analyze the SELECT statement passed as an argument to see if it
2909 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2910 ** it is, or 0 otherwise. At present, a query is considered to be
2911 ** a min()/max() query if:
2912 **
2913 **   1. There is a single object in the FROM clause.
2914 **
2915 **   2. There is a single expression in the result set, and it is
2916 **      either min(x) or max(x), where x is a column reference.
2917 */
2918 static u8 minMaxQuery(Select *p){
2919   Expr *pExpr;
2920   ExprList *pEList = p->pEList;
2921 
2922   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2923   pExpr = pEList->a[0].pExpr;
2924   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2925   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
2926   pEList = pExpr->x.pList;
2927   if( pEList==0 || pEList->nExpr!=1 ) return 0;
2928   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2929   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
2930   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2931     return WHERE_ORDERBY_MIN;
2932   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2933     return WHERE_ORDERBY_MAX;
2934   }
2935   return WHERE_ORDERBY_NORMAL;
2936 }
2937 
2938 /*
2939 ** The select statement passed as the first argument is an aggregate query.
2940 ** The second argment is the associated aggregate-info object. This
2941 ** function tests if the SELECT is of the form:
2942 **
2943 **   SELECT count(*) FROM <tbl>
2944 **
2945 ** where table is a database table, not a sub-select or view. If the query
2946 ** does match this pattern, then a pointer to the Table object representing
2947 ** <tbl> is returned. Otherwise, 0 is returned.
2948 */
2949 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2950   Table *pTab;
2951   Expr *pExpr;
2952 
2953   assert( !p->pGroupBy );
2954 
2955   if( p->pWhere || p->pEList->nExpr!=1
2956    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2957   ){
2958     return 0;
2959   }
2960   pTab = p->pSrc->a[0].pTab;
2961   pExpr = p->pEList->a[0].pExpr;
2962   assert( pTab && !pTab->pSelect && pExpr );
2963 
2964   if( IsVirtual(pTab) ) return 0;
2965   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2966   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
2967   if( pExpr->flags&EP_Distinct ) return 0;
2968 
2969   return pTab;
2970 }
2971 
2972 /*
2973 ** If the source-list item passed as an argument was augmented with an
2974 ** INDEXED BY clause, then try to locate the specified index. If there
2975 ** was such a clause and the named index cannot be found, return
2976 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
2977 ** pFrom->pIndex and return SQLITE_OK.
2978 */
2979 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
2980   if( pFrom->pTab && pFrom->zIndex ){
2981     Table *pTab = pFrom->pTab;
2982     char *zIndex = pFrom->zIndex;
2983     Index *pIdx;
2984     for(pIdx=pTab->pIndex;
2985         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
2986         pIdx=pIdx->pNext
2987     );
2988     if( !pIdx ){
2989       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
2990       return SQLITE_ERROR;
2991     }
2992     pFrom->pIndex = pIdx;
2993   }
2994   return SQLITE_OK;
2995 }
2996 
2997 /*
2998 ** This routine is a Walker callback for "expanding" a SELECT statement.
2999 ** "Expanding" means to do the following:
3000 **
3001 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3002 **         element of the FROM clause.
3003 **
3004 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3005 **         defines FROM clause.  When views appear in the FROM clause,
3006 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3007 **         that implements the view.  A copy is made of the view's SELECT
3008 **         statement so that we can freely modify or delete that statement
3009 **         without worrying about messing up the presistent representation
3010 **         of the view.
3011 **
3012 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3013 **         on joins and the ON and USING clause of joins.
3014 **
3015 **    (4)  Scan the list of columns in the result set (pEList) looking
3016 **         for instances of the "*" operator or the TABLE.* operator.
3017 **         If found, expand each "*" to be every column in every table
3018 **         and TABLE.* to be every column in TABLE.
3019 **
3020 */
3021 static int selectExpander(Walker *pWalker, Select *p){
3022   Parse *pParse = pWalker->pParse;
3023   int i, j, k;
3024   SrcList *pTabList;
3025   ExprList *pEList;
3026   struct SrcList_item *pFrom;
3027   sqlite3 *db = pParse->db;
3028 
3029   if( db->mallocFailed  ){
3030     return WRC_Abort;
3031   }
3032   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3033     return WRC_Prune;
3034   }
3035   p->selFlags |= SF_Expanded;
3036   pTabList = p->pSrc;
3037   pEList = p->pEList;
3038 
3039   /* Make sure cursor numbers have been assigned to all entries in
3040   ** the FROM clause of the SELECT statement.
3041   */
3042   sqlite3SrcListAssignCursors(pParse, pTabList);
3043 
3044   /* Look up every table named in the FROM clause of the select.  If
3045   ** an entry of the FROM clause is a subquery instead of a table or view,
3046   ** then create a transient table structure to describe the subquery.
3047   */
3048   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3049     Table *pTab;
3050     if( pFrom->pTab!=0 ){
3051       /* This statement has already been prepared.  There is no need
3052       ** to go further. */
3053       assert( i==0 );
3054       return WRC_Prune;
3055     }
3056     if( pFrom->zName==0 ){
3057 #ifndef SQLITE_OMIT_SUBQUERY
3058       Select *pSel = pFrom->pSelect;
3059       /* A sub-query in the FROM clause of a SELECT */
3060       assert( pSel!=0 );
3061       assert( pFrom->pTab==0 );
3062       sqlite3WalkSelect(pWalker, pSel);
3063       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3064       if( pTab==0 ) return WRC_Abort;
3065       pTab->dbMem = db->lookaside.bEnabled ? db : 0;
3066       pTab->nRef = 1;
3067       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3068       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3069       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3070       pTab->iPKey = -1;
3071       pTab->tabFlags |= TF_Ephemeral;
3072 #endif
3073     }else{
3074       /* An ordinary table or view name in the FROM clause */
3075       assert( pFrom->pTab==0 );
3076       pFrom->pTab = pTab =
3077         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3078       if( pTab==0 ) return WRC_Abort;
3079       pTab->nRef++;
3080 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3081       if( pTab->pSelect || IsVirtual(pTab) ){
3082         /* We reach here if the named table is a really a view */
3083         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3084         assert( pFrom->pSelect==0 );
3085         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3086         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3087       }
3088 #endif
3089     }
3090 
3091     /* Locate the index named by the INDEXED BY clause, if any. */
3092     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3093       return WRC_Abort;
3094     }
3095   }
3096 
3097   /* Process NATURAL keywords, and ON and USING clauses of joins.
3098   */
3099   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3100     return WRC_Abort;
3101   }
3102 
3103   /* For every "*" that occurs in the column list, insert the names of
3104   ** all columns in all tables.  And for every TABLE.* insert the names
3105   ** of all columns in TABLE.  The parser inserted a special expression
3106   ** with the TK_ALL operator for each "*" that it found in the column list.
3107   ** The following code just has to locate the TK_ALL expressions and expand
3108   ** each one to the list of all columns in all tables.
3109   **
3110   ** The first loop just checks to see if there are any "*" operators
3111   ** that need expanding.
3112   */
3113   for(k=0; k<pEList->nExpr; k++){
3114     Expr *pE = pEList->a[k].pExpr;
3115     if( pE->op==TK_ALL ) break;
3116     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3117     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3118     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3119   }
3120   if( k<pEList->nExpr ){
3121     /*
3122     ** If we get here it means the result set contains one or more "*"
3123     ** operators that need to be expanded.  Loop through each expression
3124     ** in the result set and expand them one by one.
3125     */
3126     struct ExprList_item *a = pEList->a;
3127     ExprList *pNew = 0;
3128     int flags = pParse->db->flags;
3129     int longNames = (flags & SQLITE_FullColNames)!=0
3130                       && (flags & SQLITE_ShortColNames)==0;
3131 
3132     for(k=0; k<pEList->nExpr; k++){
3133       Expr *pE = a[k].pExpr;
3134       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3135       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3136         /* This particular expression does not need to be expanded.
3137         */
3138         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
3139         if( pNew ){
3140           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3141         }
3142         a[k].pExpr = 0;
3143         a[k].zName = 0;
3144       }else{
3145         /* This expression is a "*" or a "TABLE.*" and needs to be
3146         ** expanded. */
3147         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3148         char *zTName;            /* text of name of TABLE */
3149         if( pE->op==TK_DOT ){
3150           assert( pE->pLeft!=0 );
3151           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
3152         }else{
3153           zTName = 0;
3154         }
3155         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3156           Table *pTab = pFrom->pTab;
3157           char *zTabName = pFrom->zAlias;
3158           if( zTabName==0 ){
3159             zTabName = pTab->zName;
3160           }
3161           if( db->mallocFailed ) break;
3162           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3163             continue;
3164           }
3165           tableSeen = 1;
3166           for(j=0; j<pTab->nCol; j++){
3167             Expr *pExpr, *pRight;
3168             char *zName = pTab->aCol[j].zName;
3169 
3170             /* If a column is marked as 'hidden' (currently only possible
3171             ** for virtual tables), do not include it in the expanded
3172             ** result-set list.
3173             */
3174             if( IsHiddenColumn(&pTab->aCol[j]) ){
3175               assert(IsVirtual(pTab));
3176               continue;
3177             }
3178 
3179             if( i>0 && zTName==0 ){
3180               struct SrcList_item *pLeft = &pTabList->a[i-1];
3181               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3182                         columnIndex(pLeft->pTab, zName)>=0 ){
3183                 /* In a NATURAL join, omit the join columns from the
3184                 ** table on the right */
3185                 continue;
3186               }
3187               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3188                 /* In a join with a USING clause, omit columns in the
3189                 ** using clause from the table on the right. */
3190                 continue;
3191               }
3192             }
3193             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3194             if( pRight==0 ) break;
3195             setToken(&pRight->token, zName);
3196             if( longNames || pTabList->nSrc>1 ){
3197               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3198               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3199               if( pExpr==0 ) break;
3200               setToken(&pLeft->token, zTabName);
3201               setToken(&pExpr->span,
3202                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
3203               pExpr->span.dyn = 1;
3204               pExpr->token.z = 0;
3205               pExpr->token.n = 0;
3206               pExpr->token.dyn = 0;
3207             }else{
3208               pExpr = pRight;
3209               pExpr->span = pExpr->token;
3210               pExpr->span.dyn = 0;
3211             }
3212             if( longNames ){
3213               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
3214             }else{
3215               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
3216             }
3217           }
3218         }
3219         if( !tableSeen ){
3220           if( zTName ){
3221             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3222           }else{
3223             sqlite3ErrorMsg(pParse, "no tables specified");
3224           }
3225         }
3226         sqlite3DbFree(db, zTName);
3227       }
3228     }
3229     sqlite3ExprListDelete(db, pEList);
3230     p->pEList = pNew;
3231   }
3232 #if SQLITE_MAX_COLUMN
3233   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3234     sqlite3ErrorMsg(pParse, "too many columns in result set");
3235   }
3236 #endif
3237   return WRC_Continue;
3238 }
3239 
3240 /*
3241 ** No-op routine for the parse-tree walker.
3242 **
3243 ** When this routine is the Walker.xExprCallback then expression trees
3244 ** are walked without any actions being taken at each node.  Presumably,
3245 ** when this routine is used for Walker.xExprCallback then
3246 ** Walker.xSelectCallback is set to do something useful for every
3247 ** subquery in the parser tree.
3248 */
3249 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3250   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3251   return WRC_Continue;
3252 }
3253 
3254 /*
3255 ** This routine "expands" a SELECT statement and all of its subqueries.
3256 ** For additional information on what it means to "expand" a SELECT
3257 ** statement, see the comment on the selectExpand worker callback above.
3258 **
3259 ** Expanding a SELECT statement is the first step in processing a
3260 ** SELECT statement.  The SELECT statement must be expanded before
3261 ** name resolution is performed.
3262 **
3263 ** If anything goes wrong, an error message is written into pParse.
3264 ** The calling function can detect the problem by looking at pParse->nErr
3265 ** and/or pParse->db->mallocFailed.
3266 */
3267 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3268   Walker w;
3269   w.xSelectCallback = selectExpander;
3270   w.xExprCallback = exprWalkNoop;
3271   w.pParse = pParse;
3272   sqlite3WalkSelect(&w, pSelect);
3273 }
3274 
3275 
3276 #ifndef SQLITE_OMIT_SUBQUERY
3277 /*
3278 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3279 ** interface.
3280 **
3281 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3282 ** information to the Table structure that represents the result set
3283 ** of that subquery.
3284 **
3285 ** The Table structure that represents the result set was constructed
3286 ** by selectExpander() but the type and collation information was omitted
3287 ** at that point because identifiers had not yet been resolved.  This
3288 ** routine is called after identifier resolution.
3289 */
3290 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3291   Parse *pParse;
3292   int i;
3293   SrcList *pTabList;
3294   struct SrcList_item *pFrom;
3295 
3296   assert( p->selFlags & SF_Resolved );
3297   assert( (p->selFlags & SF_HasTypeInfo)==0 );
3298   p->selFlags |= SF_HasTypeInfo;
3299   pParse = pWalker->pParse;
3300   pTabList = p->pSrc;
3301   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3302     Table *pTab = pFrom->pTab;
3303     if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3304       /* A sub-query in the FROM clause of a SELECT */
3305       Select *pSel = pFrom->pSelect;
3306       assert( pSel );
3307       while( pSel->pPrior ) pSel = pSel->pPrior;
3308       selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3309     }
3310   }
3311   return WRC_Continue;
3312 }
3313 #endif
3314 
3315 
3316 /*
3317 ** This routine adds datatype and collating sequence information to
3318 ** the Table structures of all FROM-clause subqueries in a
3319 ** SELECT statement.
3320 **
3321 ** Use this routine after name resolution.
3322 */
3323 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3324 #ifndef SQLITE_OMIT_SUBQUERY
3325   Walker w;
3326   w.xSelectCallback = selectAddSubqueryTypeInfo;
3327   w.xExprCallback = exprWalkNoop;
3328   w.pParse = pParse;
3329   sqlite3WalkSelect(&w, pSelect);
3330 #endif
3331 }
3332 
3333 
3334 /*
3335 ** This routine sets of a SELECT statement for processing.  The
3336 ** following is accomplished:
3337 **
3338 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3339 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3340 **     *  ON and USING clauses are shifted into WHERE statements
3341 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3342 **     *  Identifiers in expression are matched to tables.
3343 **
3344 ** This routine acts recursively on all subqueries within the SELECT.
3345 */
3346 void sqlite3SelectPrep(
3347   Parse *pParse,         /* The parser context */
3348   Select *p,             /* The SELECT statement being coded. */
3349   NameContext *pOuterNC  /* Name context for container */
3350 ){
3351   sqlite3 *db;
3352   if( NEVER(p==0) ) return;
3353   db = pParse->db;
3354   if( p->selFlags & SF_HasTypeInfo ) return;
3355   sqlite3SelectExpand(pParse, p);
3356   if( pParse->nErr || db->mallocFailed ) return;
3357   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3358   if( pParse->nErr || db->mallocFailed ) return;
3359   sqlite3SelectAddTypeInfo(pParse, p);
3360 }
3361 
3362 /*
3363 ** Reset the aggregate accumulator.
3364 **
3365 ** The aggregate accumulator is a set of memory cells that hold
3366 ** intermediate results while calculating an aggregate.  This
3367 ** routine simply stores NULLs in all of those memory cells.
3368 */
3369 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3370   Vdbe *v = pParse->pVdbe;
3371   int i;
3372   struct AggInfo_func *pFunc;
3373   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3374     return;
3375   }
3376   for(i=0; i<pAggInfo->nColumn; i++){
3377     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3378   }
3379   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3380     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3381     if( pFunc->iDistinct>=0 ){
3382       Expr *pE = pFunc->pExpr;
3383       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3384       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3385         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3386            "argument");
3387         pFunc->iDistinct = -1;
3388       }else{
3389         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3390         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3391                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3392       }
3393     }
3394   }
3395 }
3396 
3397 /*
3398 ** Invoke the OP_AggFinalize opcode for every aggregate function
3399 ** in the AggInfo structure.
3400 */
3401 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3402   Vdbe *v = pParse->pVdbe;
3403   int i;
3404   struct AggInfo_func *pF;
3405   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3406     ExprList *pList = pF->pExpr->x.pList;
3407     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3408     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3409                       (void*)pF->pFunc, P4_FUNCDEF);
3410   }
3411 }
3412 
3413 /*
3414 ** Update the accumulator memory cells for an aggregate based on
3415 ** the current cursor position.
3416 */
3417 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3418   Vdbe *v = pParse->pVdbe;
3419   int i;
3420   struct AggInfo_func *pF;
3421   struct AggInfo_col *pC;
3422 
3423   pAggInfo->directMode = 1;
3424   sqlite3ExprCacheClear(pParse);
3425   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3426     int nArg;
3427     int addrNext = 0;
3428     int regAgg;
3429     ExprList *pList = pF->pExpr->x.pList;
3430     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3431     if( pList ){
3432       nArg = pList->nExpr;
3433       regAgg = sqlite3GetTempRange(pParse, nArg);
3434       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3435     }else{
3436       nArg = 0;
3437       regAgg = 0;
3438     }
3439     if( pF->iDistinct>=0 ){
3440       addrNext = sqlite3VdbeMakeLabel(v);
3441       assert( nArg==1 );
3442       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3443     }
3444     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3445       CollSeq *pColl = 0;
3446       struct ExprList_item *pItem;
3447       int j;
3448       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3449       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3450         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3451       }
3452       if( !pColl ){
3453         pColl = pParse->db->pDfltColl;
3454       }
3455       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3456     }
3457     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3458                       (void*)pF->pFunc, P4_FUNCDEF);
3459     sqlite3VdbeChangeP5(v, (u8)nArg);
3460     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3461     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3462     if( addrNext ){
3463       sqlite3VdbeResolveLabel(v, addrNext);
3464       sqlite3ExprCacheClear(pParse);
3465     }
3466   }
3467   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3468     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3469   }
3470   pAggInfo->directMode = 0;
3471   sqlite3ExprCacheClear(pParse);
3472 }
3473 
3474 /*
3475 ** Generate code for the SELECT statement given in the p argument.
3476 **
3477 ** The results are distributed in various ways depending on the
3478 ** contents of the SelectDest structure pointed to by argument pDest
3479 ** as follows:
3480 **
3481 **     pDest->eDest    Result
3482 **     ------------    -------------------------------------------
3483 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3484 **                     opcode) for each row in the result set.
3485 **
3486 **     SRT_Mem         Only valid if the result is a single column.
3487 **                     Store the first column of the first result row
3488 **                     in register pDest->iParm then abandon the rest
3489 **                     of the query.  This destination implies "LIMIT 1".
3490 **
3491 **     SRT_Set         The result must be a single column.  Store each
3492 **                     row of result as the key in table pDest->iParm.
3493 **                     Apply the affinity pDest->affinity before storing
3494 **                     results.  Used to implement "IN (SELECT ...)".
3495 **
3496 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3497 **
3498 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3499 **
3500 **     SRT_Table       Store results in temporary table pDest->iParm.
3501 **                     This is like SRT_EphemTab except that the table
3502 **                     is assumed to already be open.
3503 **
3504 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3505 **                     the result there. The cursor is left open after
3506 **                     returning.  This is like SRT_Table except that
3507 **                     this destination uses OP_OpenEphemeral to create
3508 **                     the table first.
3509 **
3510 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3511 **                     results each time it is invoked.  The entry point
3512 **                     of the co-routine is stored in register pDest->iParm.
3513 **
3514 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3515 **                     set is not empty.
3516 **
3517 **     SRT_Discard     Throw the results away.  This is used by SELECT
3518 **                     statements within triggers whose only purpose is
3519 **                     the side-effects of functions.
3520 **
3521 ** This routine returns the number of errors.  If any errors are
3522 ** encountered, then an appropriate error message is left in
3523 ** pParse->zErrMsg.
3524 **
3525 ** This routine does NOT free the Select structure passed in.  The
3526 ** calling function needs to do that.
3527 */
3528 int sqlite3Select(
3529   Parse *pParse,         /* The parser context */
3530   Select *p,             /* The SELECT statement being coded. */
3531   SelectDest *pDest      /* What to do with the query results */
3532 ){
3533   int i, j;              /* Loop counters */
3534   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3535   Vdbe *v;               /* The virtual machine under construction */
3536   int isAgg;             /* True for select lists like "count(*)" */
3537   ExprList *pEList;      /* List of columns to extract. */
3538   SrcList *pTabList;     /* List of tables to select from */
3539   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3540   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3541   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3542   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3543   int isDistinct;        /* True if the DISTINCT keyword is present */
3544   int distinct;          /* Table to use for the distinct set */
3545   int rc = 1;            /* Value to return from this function */
3546   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3547   AggInfo sAggInfo;      /* Information used by aggregate queries */
3548   int iEnd;              /* Address of the end of the query */
3549   sqlite3 *db;           /* The database connection */
3550 
3551   db = pParse->db;
3552   if( p==0 || db->mallocFailed || pParse->nErr ){
3553     return 1;
3554   }
3555   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3556   memset(&sAggInfo, 0, sizeof(sAggInfo));
3557 
3558   if( IgnorableOrderby(pDest) ){
3559     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3560            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3561     /* If ORDER BY makes no difference in the output then neither does
3562     ** DISTINCT so it can be removed too. */
3563     sqlite3ExprListDelete(db, p->pOrderBy);
3564     p->pOrderBy = 0;
3565     p->selFlags &= ~SF_Distinct;
3566   }
3567   sqlite3SelectPrep(pParse, p, 0);
3568   pOrderBy = p->pOrderBy;
3569   pTabList = p->pSrc;
3570   pEList = p->pEList;
3571   if( pParse->nErr || db->mallocFailed ){
3572     goto select_end;
3573   }
3574   isAgg = (p->selFlags & SF_Aggregate)!=0;
3575   assert( pEList!=0 );
3576 
3577   /* Begin generating code.
3578   */
3579   v = sqlite3GetVdbe(pParse);
3580   if( v==0 ) goto select_end;
3581 
3582   /* Generate code for all sub-queries in the FROM clause
3583   */
3584 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3585   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3586     struct SrcList_item *pItem = &pTabList->a[i];
3587     SelectDest dest;
3588     Select *pSub = pItem->pSelect;
3589     int isAggSub;
3590 
3591     if( pSub==0 || pItem->isPopulated ) continue;
3592 
3593     /* Increment Parse.nHeight by the height of the largest expression
3594     ** tree refered to by this, the parent select. The child select
3595     ** may contain expression trees of at most
3596     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3597     ** more conservative than necessary, but much easier than enforcing
3598     ** an exact limit.
3599     */
3600     pParse->nHeight += sqlite3SelectExprHeight(p);
3601 
3602     /* Check to see if the subquery can be absorbed into the parent. */
3603     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3604     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3605       if( isAggSub ){
3606         isAgg = 1;
3607         p->selFlags |= SF_Aggregate;
3608       }
3609       i = -1;
3610     }else{
3611       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3612       assert( pItem->isPopulated==0 );
3613       sqlite3Select(pParse, pSub, &dest);
3614       pItem->isPopulated = 1;
3615     }
3616     if( /*pParse->nErr ||*/ db->mallocFailed ){
3617       goto select_end;
3618     }
3619     pParse->nHeight -= sqlite3SelectExprHeight(p);
3620     pTabList = p->pSrc;
3621     if( !IgnorableOrderby(pDest) ){
3622       pOrderBy = p->pOrderBy;
3623     }
3624   }
3625   pEList = p->pEList;
3626 #endif
3627   pWhere = p->pWhere;
3628   pGroupBy = p->pGroupBy;
3629   pHaving = p->pHaving;
3630   isDistinct = (p->selFlags & SF_Distinct)!=0;
3631 
3632 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3633   /* If there is are a sequence of queries, do the earlier ones first.
3634   */
3635   if( p->pPrior ){
3636     if( p->pRightmost==0 ){
3637       Select *pLoop, *pRight = 0;
3638       int cnt = 0;
3639       int mxSelect;
3640       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3641         pLoop->pRightmost = p;
3642         pLoop->pNext = pRight;
3643         pRight = pLoop;
3644       }
3645       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3646       if( mxSelect && cnt>mxSelect ){
3647         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3648         return 1;
3649       }
3650     }
3651     return multiSelect(pParse, p, pDest);
3652   }
3653 #endif
3654 
3655   /* If writing to memory or generating a set
3656   ** only a single column may be output.
3657   */
3658 #ifndef SQLITE_OMIT_SUBQUERY
3659   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3660     goto select_end;
3661   }
3662 #endif
3663 
3664   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3665   ** GROUP BY might use an index, DISTINCT never does.
3666   */
3667   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3668   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3669     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3670     pGroupBy = p->pGroupBy;
3671     p->selFlags &= ~SF_Distinct;
3672     isDistinct = 0;
3673   }
3674 
3675   /* If there is an ORDER BY clause, then this sorting
3676   ** index might end up being unused if the data can be
3677   ** extracted in pre-sorted order.  If that is the case, then the
3678   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3679   ** we figure out that the sorting index is not needed.  The addrSortIndex
3680   ** variable is used to facilitate that change.
3681   */
3682   if( pOrderBy ){
3683     KeyInfo *pKeyInfo;
3684     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3685     pOrderBy->iECursor = pParse->nTab++;
3686     p->addrOpenEphm[2] = addrSortIndex =
3687       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3688                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3689                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3690   }else{
3691     addrSortIndex = -1;
3692   }
3693 
3694   /* If the output is destined for a temporary table, open that table.
3695   */
3696   if( pDest->eDest==SRT_EphemTab ){
3697     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3698   }
3699 
3700   /* Set the limiter.
3701   */
3702   iEnd = sqlite3VdbeMakeLabel(v);
3703   computeLimitRegisters(pParse, p, iEnd);
3704 
3705   /* Open a virtual index to use for the distinct set.
3706   */
3707   if( isDistinct ){
3708     KeyInfo *pKeyInfo;
3709     assert( isAgg || pGroupBy );
3710     distinct = pParse->nTab++;
3711     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3712     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3713                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3714   }else{
3715     distinct = -1;
3716   }
3717 
3718   /* Aggregate and non-aggregate queries are handled differently */
3719   if( !isAgg && pGroupBy==0 ){
3720     /* This case is for non-aggregate queries
3721     ** Begin the database scan
3722     */
3723     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3724     if( pWInfo==0 ) goto select_end;
3725 
3726     /* If sorting index that was created by a prior OP_OpenEphemeral
3727     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3728     ** into an OP_Noop.
3729     */
3730     if( addrSortIndex>=0 && pOrderBy==0 ){
3731       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3732       p->addrOpenEphm[2] = -1;
3733     }
3734 
3735     /* Use the standard inner loop
3736     */
3737     assert(!isDistinct);
3738     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3739                     pWInfo->iContinue, pWInfo->iBreak);
3740 
3741     /* End the database scan loop.
3742     */
3743     sqlite3WhereEnd(pWInfo);
3744   }else{
3745     /* This is the processing for aggregate queries */
3746     NameContext sNC;    /* Name context for processing aggregate information */
3747     int iAMem;          /* First Mem address for storing current GROUP BY */
3748     int iBMem;          /* First Mem address for previous GROUP BY */
3749     int iUseFlag;       /* Mem address holding flag indicating that at least
3750                         ** one row of the input to the aggregator has been
3751                         ** processed */
3752     int iAbortFlag;     /* Mem address which causes query abort if positive */
3753     int groupBySort;    /* Rows come from source in GROUP BY order */
3754     int addrEnd;        /* End of processing for this SELECT */
3755 
3756     /* Remove any and all aliases between the result set and the
3757     ** GROUP BY clause.
3758     */
3759     if( pGroupBy ){
3760       int k;                        /* Loop counter */
3761       struct ExprList_item *pItem;  /* For looping over expression in a list */
3762 
3763       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3764         pItem->iAlias = 0;
3765       }
3766       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3767         pItem->iAlias = 0;
3768       }
3769     }
3770 
3771 
3772     /* Create a label to jump to when we want to abort the query */
3773     addrEnd = sqlite3VdbeMakeLabel(v);
3774 
3775     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3776     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3777     ** SELECT statement.
3778     */
3779     memset(&sNC, 0, sizeof(sNC));
3780     sNC.pParse = pParse;
3781     sNC.pSrcList = pTabList;
3782     sNC.pAggInfo = &sAggInfo;
3783     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3784     sAggInfo.pGroupBy = pGroupBy;
3785     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3786     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3787     if( pHaving ){
3788       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3789     }
3790     sAggInfo.nAccumulator = sAggInfo.nColumn;
3791     for(i=0; i<sAggInfo.nFunc; i++){
3792       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3793       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3794     }
3795     if( db->mallocFailed ) goto select_end;
3796 
3797     /* Processing for aggregates with GROUP BY is very different and
3798     ** much more complex than aggregates without a GROUP BY.
3799     */
3800     if( pGroupBy ){
3801       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3802       int j1;             /* A-vs-B comparision jump */
3803       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3804       int regOutputRow;   /* Return address register for output subroutine */
3805       int addrSetAbort;   /* Set the abort flag and return */
3806       int addrTopOfLoop;  /* Top of the input loop */
3807       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3808       int addrReset;      /* Subroutine for resetting the accumulator */
3809       int regReset;       /* Return address register for reset subroutine */
3810 
3811       /* If there is a GROUP BY clause we might need a sorting index to
3812       ** implement it.  Allocate that sorting index now.  If it turns out
3813       ** that we do not need it after all, the OpenEphemeral instruction
3814       ** will be converted into a Noop.
3815       */
3816       sAggInfo.sortingIdx = pParse->nTab++;
3817       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3818       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3819           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3820           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3821 
3822       /* Initialize memory locations used by GROUP BY aggregate processing
3823       */
3824       iUseFlag = ++pParse->nMem;
3825       iAbortFlag = ++pParse->nMem;
3826       regOutputRow = ++pParse->nMem;
3827       addrOutputRow = sqlite3VdbeMakeLabel(v);
3828       regReset = ++pParse->nMem;
3829       addrReset = sqlite3VdbeMakeLabel(v);
3830       iAMem = pParse->nMem + 1;
3831       pParse->nMem += pGroupBy->nExpr;
3832       iBMem = pParse->nMem + 1;
3833       pParse->nMem += pGroupBy->nExpr;
3834       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3835       VdbeComment((v, "clear abort flag"));
3836       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3837       VdbeComment((v, "indicate accumulator empty"));
3838 
3839       /* Begin a loop that will extract all source rows in GROUP BY order.
3840       ** This might involve two separate loops with an OP_Sort in between, or
3841       ** it might be a single loop that uses an index to extract information
3842       ** in the right order to begin with.
3843       */
3844       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3845       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3846       if( pWInfo==0 ) goto select_end;
3847       if( pGroupBy==0 ){
3848         /* The optimizer is able to deliver rows in group by order so
3849         ** we do not have to sort.  The OP_OpenEphemeral table will be
3850         ** cancelled later because we still need to use the pKeyInfo
3851         */
3852         pGroupBy = p->pGroupBy;
3853         groupBySort = 0;
3854       }else{
3855         /* Rows are coming out in undetermined order.  We have to push
3856         ** each row into a sorting index, terminate the first loop,
3857         ** then loop over the sorting index in order to get the output
3858         ** in sorted order
3859         */
3860         int regBase;
3861         int regRecord;
3862         int nCol;
3863         int nGroupBy;
3864 
3865         groupBySort = 1;
3866         nGroupBy = pGroupBy->nExpr;
3867         nCol = nGroupBy + 1;
3868         j = nGroupBy+1;
3869         for(i=0; i<sAggInfo.nColumn; i++){
3870           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3871             nCol++;
3872             j++;
3873           }
3874         }
3875         regBase = sqlite3GetTempRange(pParse, nCol);
3876         sqlite3ExprCacheClear(pParse);
3877         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3878         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3879         j = nGroupBy+1;
3880         for(i=0; i<sAggInfo.nColumn; i++){
3881           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3882           if( pCol->iSorterColumn>=j ){
3883             int r1 = j + regBase;
3884             int r2;
3885 
3886             r2 = sqlite3ExprCodeGetColumn(pParse,
3887                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3888             if( r1!=r2 ){
3889               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3890             }
3891             j++;
3892           }
3893         }
3894         regRecord = sqlite3GetTempReg(pParse);
3895         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3896         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3897         sqlite3ReleaseTempReg(pParse, regRecord);
3898         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3899         sqlite3WhereEnd(pWInfo);
3900         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3901         VdbeComment((v, "GROUP BY sort"));
3902         sAggInfo.useSortingIdx = 1;
3903         sqlite3ExprCacheClear(pParse);
3904       }
3905 
3906       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3907       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3908       ** Then compare the current GROUP BY terms against the GROUP BY terms
3909       ** from the previous row currently stored in a0, a1, a2...
3910       */
3911       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3912       sqlite3ExprCacheClear(pParse);
3913       for(j=0; j<pGroupBy->nExpr; j++){
3914         if( groupBySort ){
3915           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3916         }else{
3917           sAggInfo.directMode = 1;
3918           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3919         }
3920       }
3921       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3922                           (char*)pKeyInfo, P4_KEYINFO);
3923       j1 = sqlite3VdbeCurrentAddr(v);
3924       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3925 
3926       /* Generate code that runs whenever the GROUP BY changes.
3927       ** Changes in the GROUP BY are detected by the previous code
3928       ** block.  If there were no changes, this block is skipped.
3929       **
3930       ** This code copies current group by terms in b0,b1,b2,...
3931       ** over to a0,a1,a2.  It then calls the output subroutine
3932       ** and resets the aggregate accumulator registers in preparation
3933       ** for the next GROUP BY batch.
3934       */
3935       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3936       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3937       VdbeComment((v, "output one row"));
3938       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3939       VdbeComment((v, "check abort flag"));
3940       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3941       VdbeComment((v, "reset accumulator"));
3942 
3943       /* Update the aggregate accumulators based on the content of
3944       ** the current row
3945       */
3946       sqlite3VdbeJumpHere(v, j1);
3947       updateAccumulator(pParse, &sAggInfo);
3948       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3949       VdbeComment((v, "indicate data in accumulator"));
3950 
3951       /* End of the loop
3952       */
3953       if( groupBySort ){
3954         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3955       }else{
3956         sqlite3WhereEnd(pWInfo);
3957         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3958       }
3959 
3960       /* Output the final row of result
3961       */
3962       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3963       VdbeComment((v, "output final row"));
3964 
3965       /* Jump over the subroutines
3966       */
3967       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
3968 
3969       /* Generate a subroutine that outputs a single row of the result
3970       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3971       ** is less than or equal to zero, the subroutine is a no-op.  If
3972       ** the processing calls for the query to abort, this subroutine
3973       ** increments the iAbortFlag memory location before returning in
3974       ** order to signal the caller to abort.
3975       */
3976       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3977       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3978       VdbeComment((v, "set abort flag"));
3979       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3980       sqlite3VdbeResolveLabel(v, addrOutputRow);
3981       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3982       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3983       VdbeComment((v, "Groupby result generator entry point"));
3984       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3985       finalizeAggFunctions(pParse, &sAggInfo);
3986       if( pHaving ){
3987         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3988       }
3989       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3990                       distinct, pDest,
3991                       addrOutputRow+1, addrSetAbort);
3992       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3993       VdbeComment((v, "end groupby result generator"));
3994 
3995       /* Generate a subroutine that will reset the group-by accumulator
3996       */
3997       sqlite3VdbeResolveLabel(v, addrReset);
3998       resetAccumulator(pParse, &sAggInfo);
3999       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4000 
4001     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4002     else {
4003       ExprList *pDel = 0;
4004 #ifndef SQLITE_OMIT_BTREECOUNT
4005       Table *pTab;
4006       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4007         /* If isSimpleCount() returns a pointer to a Table structure, then
4008         ** the SQL statement is of the form:
4009         **
4010         **   SELECT count(*) FROM <tbl>
4011         **
4012         ** where the Table structure returned represents table <tbl>.
4013         **
4014         ** This statement is so common that it is optimized specially. The
4015         ** OP_Count instruction is executed either on the intkey table that
4016         ** contains the data for table <tbl> or on one of its indexes. It
4017         ** is better to execute the op on an index, as indexes are almost
4018         ** always spread across less pages than their corresponding tables.
4019         */
4020         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4021         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4022         Index *pIdx;                         /* Iterator variable */
4023         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4024         Index *pBest = 0;                    /* Best index found so far */
4025         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4026 
4027         sqlite3CodeVerifySchema(pParse, iDb);
4028         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4029 
4030         /* Search for the index that has the least amount of columns. If
4031         ** there is such an index, and it has less columns than the table
4032         ** does, then we can assume that it consumes less space on disk and
4033         ** will therefore be cheaper to scan to determine the query result.
4034         ** In this case set iRoot to the root page number of the index b-tree
4035         ** and pKeyInfo to the KeyInfo structure required to navigate the
4036         ** index.
4037         **
4038         ** In practice the KeyInfo structure will not be used. It is only
4039         ** passed to keep OP_OpenRead happy.
4040         */
4041         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4042           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4043             pBest = pIdx;
4044           }
4045         }
4046         if( pBest && pBest->nColumn<pTab->nCol ){
4047           iRoot = pBest->tnum;
4048           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4049         }
4050 
4051         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4052         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4053         if( pKeyInfo ){
4054           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4055         }
4056         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4057         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4058       }else
4059 #endif /* SQLITE_OMIT_BTREECOUNT */
4060       {
4061         /* Check if the query is of one of the following forms:
4062         **
4063         **   SELECT min(x) FROM ...
4064         **   SELECT max(x) FROM ...
4065         **
4066         ** If it is, then ask the code in where.c to attempt to sort results
4067         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4068         ** If where.c is able to produce results sorted in this order, then
4069         ** add vdbe code to break out of the processing loop after the
4070         ** first iteration (since the first iteration of the loop is
4071         ** guaranteed to operate on the row with the minimum or maximum
4072         ** value of x, the only row required).
4073         **
4074         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4075         ** modify behaviour as follows:
4076         **
4077         **   + If the query is a "SELECT min(x)", then the loop coded by
4078         **     where.c should not iterate over any values with a NULL value
4079         **     for x.
4080         **
4081         **   + The optimizer code in where.c (the thing that decides which
4082         **     index or indices to use) should place a different priority on
4083         **     satisfying the 'ORDER BY' clause than it does in other cases.
4084         **     Refer to code and comments in where.c for details.
4085         */
4086         ExprList *pMinMax = 0;
4087         u8 flag = minMaxQuery(p);
4088         if( flag ){
4089           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4090           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4091           pDel = pMinMax;
4092           if( pMinMax && !db->mallocFailed ){
4093             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4094             pMinMax->a[0].pExpr->op = TK_COLUMN;
4095           }
4096         }
4097 
4098         /* This case runs if the aggregate has no GROUP BY clause.  The
4099         ** processing is much simpler since there is only a single row
4100         ** of output.
4101         */
4102         resetAccumulator(pParse, &sAggInfo);
4103         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4104         if( pWInfo==0 ){
4105           sqlite3ExprListDelete(db, pDel);
4106           goto select_end;
4107         }
4108         updateAccumulator(pParse, &sAggInfo);
4109         if( !pMinMax && flag ){
4110           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4111           VdbeComment((v, "%s() by index",
4112                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4113         }
4114         sqlite3WhereEnd(pWInfo);
4115         finalizeAggFunctions(pParse, &sAggInfo);
4116       }
4117 
4118       pOrderBy = 0;
4119       if( pHaving ){
4120         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4121       }
4122       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4123                       pDest, addrEnd, addrEnd);
4124       sqlite3ExprListDelete(db, pDel);
4125     }
4126     sqlite3VdbeResolveLabel(v, addrEnd);
4127 
4128   } /* endif aggregate query */
4129 
4130   /* If there is an ORDER BY clause, then we need to sort the results
4131   ** and send them to the callback one by one.
4132   */
4133   if( pOrderBy ){
4134     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4135   }
4136 
4137   /* Jump here to skip this query
4138   */
4139   sqlite3VdbeResolveLabel(v, iEnd);
4140 
4141   /* The SELECT was successfully coded.   Set the return code to 0
4142   ** to indicate no errors.
4143   */
4144   rc = 0;
4145 
4146   /* Control jumps to here if an error is encountered above, or upon
4147   ** successful coding of the SELECT.
4148   */
4149 select_end:
4150 
4151   /* Identify column names if results of the SELECT are to be output.
4152   */
4153   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4154     generateColumnNames(pParse, pTabList, pEList);
4155   }
4156 
4157   sqlite3DbFree(db, sAggInfo.aCol);
4158   sqlite3DbFree(db, sAggInfo.aFunc);
4159   return rc;
4160 }
4161 
4162 #if defined(SQLITE_DEBUG)
4163 /*
4164 *******************************************************************************
4165 ** The following code is used for testing and debugging only.  The code
4166 ** that follows does not appear in normal builds.
4167 **
4168 ** These routines are used to print out the content of all or part of a
4169 ** parse structures such as Select or Expr.  Such printouts are useful
4170 ** for helping to understand what is happening inside the code generator
4171 ** during the execution of complex SELECT statements.
4172 **
4173 ** These routine are not called anywhere from within the normal
4174 ** code base.  Then are intended to be called from within the debugger
4175 ** or from temporary "printf" statements inserted for debugging.
4176 */
4177 void sqlite3PrintExpr(Expr *p){
4178   if( p->token.z && p->token.n>0 ){
4179     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4180   }else{
4181     sqlite3DebugPrintf("(%d", p->op);
4182   }
4183   if( p->pLeft ){
4184     sqlite3DebugPrintf(" ");
4185     sqlite3PrintExpr(p->pLeft);
4186   }
4187   if( p->pRight ){
4188     sqlite3DebugPrintf(" ");
4189     sqlite3PrintExpr(p->pRight);
4190   }
4191   sqlite3DebugPrintf(")");
4192 }
4193 void sqlite3PrintExprList(ExprList *pList){
4194   int i;
4195   for(i=0; i<pList->nExpr; i++){
4196     sqlite3PrintExpr(pList->a[i].pExpr);
4197     if( i<pList->nExpr-1 ){
4198       sqlite3DebugPrintf(", ");
4199     }
4200   }
4201 }
4202 void sqlite3PrintSelect(Select *p, int indent){
4203   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4204   sqlite3PrintExprList(p->pEList);
4205   sqlite3DebugPrintf("\n");
4206   if( p->pSrc ){
4207     char *zPrefix;
4208     int i;
4209     zPrefix = "FROM";
4210     for(i=0; i<p->pSrc->nSrc; i++){
4211       struct SrcList_item *pItem = &p->pSrc->a[i];
4212       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4213       zPrefix = "";
4214       if( pItem->pSelect ){
4215         sqlite3DebugPrintf("(\n");
4216         sqlite3PrintSelect(pItem->pSelect, indent+10);
4217         sqlite3DebugPrintf("%*s)", indent+8, "");
4218       }else if( pItem->zName ){
4219         sqlite3DebugPrintf("%s", pItem->zName);
4220       }
4221       if( pItem->pTab ){
4222         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4223       }
4224       if( pItem->zAlias ){
4225         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4226       }
4227       if( i<p->pSrc->nSrc-1 ){
4228         sqlite3DebugPrintf(",");
4229       }
4230       sqlite3DebugPrintf("\n");
4231     }
4232   }
4233   if( p->pWhere ){
4234     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4235     sqlite3PrintExpr(p->pWhere);
4236     sqlite3DebugPrintf("\n");
4237   }
4238   if( p->pGroupBy ){
4239     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4240     sqlite3PrintExprList(p->pGroupBy);
4241     sqlite3DebugPrintf("\n");
4242   }
4243   if( p->pHaving ){
4244     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4245     sqlite3PrintExpr(p->pHaving);
4246     sqlite3DebugPrintf("\n");
4247   }
4248   if( p->pOrderBy ){
4249     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4250     sqlite3PrintExprList(p->pOrderBy);
4251     sqlite3DebugPrintf("\n");
4252   }
4253 }
4254 /* End of the structure debug printing code
4255 *****************************************************************************/
4256 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4257