xref: /sqlite-3.40.0/src/select.c (revision 1e25d20c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90       sqlite3WindowListDelete(db, p->pWinDefn);
91     }
92 #endif
93     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94     if( bFree ) sqlite3DbFreeNN(db, p);
95     p = pPrior;
96     bFree = 1;
97   }
98 }
99 
100 /*
101 ** Initialize a SelectDest structure.
102 */
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104   pDest->eDest = (u8)eDest;
105   pDest->iSDParm = iParm;
106   pDest->iSDParm2 = 0;
107   pDest->zAffSdst = 0;
108   pDest->iSdst = 0;
109   pDest->nSdst = 0;
110 }
111 
112 
113 /*
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
116 */
117 Select *sqlite3SelectNew(
118   Parse *pParse,        /* Parsing context */
119   ExprList *pEList,     /* which columns to include in the result */
120   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
121   Expr *pWhere,         /* the WHERE clause */
122   ExprList *pGroupBy,   /* the GROUP BY clause */
123   Expr *pHaving,        /* the HAVING clause */
124   ExprList *pOrderBy,   /* the ORDER BY clause */
125   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
126   Expr *pLimit          /* LIMIT value.  NULL means not used */
127 ){
128   Select *pNew, *pAllocated;
129   Select standin;
130   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131   if( pNew==0 ){
132     assert( pParse->db->mallocFailed );
133     pNew = &standin;
134   }
135   if( pEList==0 ){
136     pEList = sqlite3ExprListAppend(pParse, 0,
137                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
138   }
139   pNew->pEList = pEList;
140   pNew->op = TK_SELECT;
141   pNew->selFlags = selFlags;
142   pNew->iLimit = 0;
143   pNew->iOffset = 0;
144   pNew->selId = ++pParse->nSelect;
145   pNew->addrOpenEphm[0] = -1;
146   pNew->addrOpenEphm[1] = -1;
147   pNew->nSelectRow = 0;
148   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149   pNew->pSrc = pSrc;
150   pNew->pWhere = pWhere;
151   pNew->pGroupBy = pGroupBy;
152   pNew->pHaving = pHaving;
153   pNew->pOrderBy = pOrderBy;
154   pNew->pPrior = 0;
155   pNew->pNext = 0;
156   pNew->pLimit = pLimit;
157   pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159   pNew->pWin = 0;
160   pNew->pWinDefn = 0;
161 #endif
162   if( pParse->db->mallocFailed ) {
163     clearSelect(pParse->db, pNew, pNew!=&standin);
164     pAllocated = 0;
165   }else{
166     assert( pNew->pSrc!=0 || pParse->nErr>0 );
167   }
168   return pAllocated;
169 }
170 
171 
172 /*
173 ** Delete the given Select structure and all of its substructures.
174 */
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
177 }
178 
179 /*
180 ** Return a pointer to the right-most SELECT statement in a compound.
181 */
182 static Select *findRightmost(Select *p){
183   while( p->pNext ) p = p->pNext;
184   return p;
185 }
186 
187 /*
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join.  Return an integer constant that expresses that type
190 ** in terms of the following bit values:
191 **
192 **     JT_INNER
193 **     JT_CROSS
194 **     JT_OUTER
195 **     JT_NATURAL
196 **     JT_LEFT
197 **     JT_RIGHT
198 **
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
200 **
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
203 */
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205   int jointype = 0;
206   Token *apAll[3];
207   Token *p;
208                              /*   0123456789 123456789 123456789 123 */
209   static const char zKeyText[] = "naturaleftouterightfullinnercross";
210   static const struct {
211     u8 i;        /* Beginning of keyword text in zKeyText[] */
212     u8 nChar;    /* Length of the keyword in characters */
213     u8 code;     /* Join type mask */
214   } aKeyword[] = {
215     /* natural */ { 0,  7, JT_NATURAL                },
216     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
217     /* outer   */ { 10, 5, JT_OUTER                  },
218     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
219     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220     /* inner   */ { 23, 5, JT_INNER                  },
221     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
222   };
223   int i, j;
224   apAll[0] = pA;
225   apAll[1] = pB;
226   apAll[2] = pC;
227   for(i=0; i<3 && apAll[i]; i++){
228     p = apAll[i];
229     for(j=0; j<ArraySize(aKeyword); j++){
230       if( p->n==aKeyword[j].nChar
231           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232         jointype |= aKeyword[j].code;
233         break;
234       }
235     }
236     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237     if( j>=ArraySize(aKeyword) ){
238       jointype |= JT_ERROR;
239       break;
240     }
241   }
242   if(
243      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244      (jointype & JT_ERROR)!=0
245   ){
246     const char *zSp = " ";
247     assert( pB!=0 );
248     if( pC==0 ){ zSp++; }
249     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250        "%T %T%s%T", pA, pB, zSp, pC);
251     jointype = JT_INNER;
252   }else if( (jointype & JT_OUTER)!=0
253          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254     sqlite3ErrorMsg(pParse,
255       "RIGHT and FULL OUTER JOINs are not currently supported");
256     jointype = JT_INNER;
257   }
258   return jointype;
259 }
260 
261 /*
262 ** Return the index of a column in a table.  Return -1 if the column
263 ** is not contained in the table.
264 */
265 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
266   int i;
267   u8 h = sqlite3StrIHash(zCol);
268   Column *pCol;
269   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
271   }
272   return -1;
273 }
274 
275 /*
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
278 **
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
281 **
282 ** If not found, return FALSE.
283 */
284 static int tableAndColumnIndex(
285   SrcList *pSrc,       /* Array of tables to search */
286   int N,               /* Number of tables in pSrc->a[] to search */
287   const char *zCol,    /* Name of the column we are looking for */
288   int *piTab,          /* Write index of pSrc->a[] here */
289   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290   int bIgnoreHidden    /* True to ignore hidden columns */
291 ){
292   int i;               /* For looping over tables in pSrc */
293   int iCol;            /* Index of column matching zCol */
294 
295   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
296   for(i=0; i<N; i++){
297     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
298     if( iCol>=0
299      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
300     ){
301       if( piTab ){
302         *piTab = i;
303         *piCol = iCol;
304       }
305       return 1;
306     }
307   }
308   return 0;
309 }
310 
311 /*
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
315 **
316 **    (tab1.col1 = tab2.col2)
317 **
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
321 */
322 static void addWhereTerm(
323   Parse *pParse,                  /* Parsing context */
324   SrcList *pSrc,                  /* List of tables in FROM clause */
325   int iLeft,                      /* Index of first table to join in pSrc */
326   int iColLeft,                   /* Index of column in first table */
327   int iRight,                     /* Index of second table in pSrc */
328   int iColRight,                  /* Index of column in second table */
329   int isOuterJoin,                /* True if this is an OUTER join */
330   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
331 ){
332   sqlite3 *db = pParse->db;
333   Expr *pE1;
334   Expr *pE2;
335   Expr *pEq;
336 
337   assert( iLeft<iRight );
338   assert( pSrc->nSrc>iRight );
339   assert( pSrc->a[iLeft].pTab );
340   assert( pSrc->a[iRight].pTab );
341 
342   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
344 
345   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346   if( pEq && isOuterJoin ){
347     ExprSetProperty(pEq, EP_FromJoin);
348     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349     ExprSetVVAProperty(pEq, EP_NoReduce);
350     pEq->iRightJoinTable = pE2->iTable;
351   }
352   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
353 }
354 
355 /*
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
359 **
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause.  These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
366 **
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression.  That information is needed
370 ** for cases like this:
371 **
372 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
373 **
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join.  In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
380 */
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382   while( p ){
383     ExprSetProperty(p, EP_FromJoin);
384     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385     ExprSetVVAProperty(p, EP_NoReduce);
386     p->iRightJoinTable = iTable;
387     if( p->op==TK_FUNCTION && p->x.pList ){
388       int i;
389       for(i=0; i<p->x.pList->nExpr; i++){
390         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
391       }
392     }
393     sqlite3SetJoinExpr(p->pLeft, iTable);
394     p = p->pRight;
395   }
396 }
397 
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
401 **
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
403 */
404 static void unsetJoinExpr(Expr *p, int iTable){
405   while( p ){
406     if( ExprHasProperty(p, EP_FromJoin)
407      && (iTable<0 || p->iRightJoinTable==iTable) ){
408       ExprClearProperty(p, EP_FromJoin);
409     }
410     if( p->op==TK_FUNCTION && p->x.pList ){
411       int i;
412       for(i=0; i<p->x.pList->nExpr; i++){
413         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
414       }
415     }
416     unsetJoinExpr(p->pLeft, iTable);
417     p = p->pRight;
418   }
419 }
420 
421 /*
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
425 **
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc.  The right-most
428 ** table is the last entry.  The join operator is held in the entry to
429 ** the left.  Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
432 **
433 ** This routine returns the number of errors encountered.
434 */
435 static int sqliteProcessJoin(Parse *pParse, Select *p){
436   SrcList *pSrc;                  /* All tables in the FROM clause */
437   int i, j;                       /* Loop counters */
438   struct SrcList_item *pLeft;     /* Left table being joined */
439   struct SrcList_item *pRight;    /* Right table being joined */
440 
441   pSrc = p->pSrc;
442   pLeft = &pSrc->a[0];
443   pRight = &pLeft[1];
444   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
445     Table *pRightTab = pRight->pTab;
446     int isOuter;
447 
448     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
449     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
450 
451     /* When the NATURAL keyword is present, add WHERE clause terms for
452     ** every column that the two tables have in common.
453     */
454     if( pRight->fg.jointype & JT_NATURAL ){
455       if( pRight->pOn || pRight->pUsing ){
456         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
457            "an ON or USING clause", 0);
458         return 1;
459       }
460       for(j=0; j<pRightTab->nCol; j++){
461         char *zName;   /* Name of column in the right table */
462         int iLeft;     /* Matching left table */
463         int iLeftCol;  /* Matching column in the left table */
464 
465         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
466         zName = pRightTab->aCol[j].zName;
467         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
468           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
469                 isOuter, &p->pWhere);
470         }
471       }
472     }
473 
474     /* Disallow both ON and USING clauses in the same join
475     */
476     if( pRight->pOn && pRight->pUsing ){
477       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
478         "clauses in the same join");
479       return 1;
480     }
481 
482     /* Add the ON clause to the end of the WHERE clause, connected by
483     ** an AND operator.
484     */
485     if( pRight->pOn ){
486       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
487       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
488       pRight->pOn = 0;
489     }
490 
491     /* Create extra terms on the WHERE clause for each column named
492     ** in the USING clause.  Example: If the two tables to be joined are
493     ** A and B and the USING clause names X, Y, and Z, then add this
494     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495     ** Report an error if any column mentioned in the USING clause is
496     ** not contained in both tables to be joined.
497     */
498     if( pRight->pUsing ){
499       IdList *pList = pRight->pUsing;
500       for(j=0; j<pList->nId; j++){
501         char *zName;     /* Name of the term in the USING clause */
502         int iLeft;       /* Table on the left with matching column name */
503         int iLeftCol;    /* Column number of matching column on the left */
504         int iRightCol;   /* Column number of matching column on the right */
505 
506         zName = pList->a[j].zName;
507         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
508         if( iRightCol<0
509          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
510         ){
511           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
512             "not present in both tables", zName);
513           return 1;
514         }
515         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
516                      isOuter, &p->pWhere);
517       }
518     }
519   }
520   return 0;
521 }
522 
523 /*
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
526 */
527 typedef struct RowLoadInfo RowLoadInfo;
528 struct RowLoadInfo {
529   int regResult;               /* Store results in array of registers here */
530   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532   ExprList *pExtra;            /* Extra columns needed by sorter refs */
533   int regExtraResult;          /* Where to load the extra columns */
534 #endif
535 };
536 
537 /*
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
540 */
541 static void innerLoopLoadRow(
542   Parse *pParse,             /* Statement under construction */
543   Select *pSelect,           /* The query being coded */
544   RowLoadInfo *pInfo         /* Info needed to complete the row load */
545 ){
546   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
547                           0, pInfo->ecelFlags);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   if( pInfo->pExtra ){
550     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
551     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
552   }
553 #endif
554 }
555 
556 /*
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
559 **
560 ** Return the register in which the result is stored.
561 */
562 static int makeSorterRecord(
563   Parse *pParse,
564   SortCtx *pSort,
565   Select *pSelect,
566   int regBase,
567   int nBase
568 ){
569   int nOBSat = pSort->nOBSat;
570   Vdbe *v = pParse->pVdbe;
571   int regOut = ++pParse->nMem;
572   if( pSort->pDeferredRowLoad ){
573     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
574   }
575   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
576   return regOut;
577 }
578 
579 /*
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
582 */
583 static void pushOntoSorter(
584   Parse *pParse,         /* Parser context */
585   SortCtx *pSort,        /* Information about the ORDER BY clause */
586   Select *pSelect,       /* The whole SELECT statement */
587   int regData,           /* First register holding data to be sorted */
588   int regOrigData,       /* First register holding data before packing */
589   int nData,             /* Number of elements in the regData data array */
590   int nPrefixReg         /* No. of reg prior to regData available for use */
591 ){
592   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
593   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
594   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
595   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
596   int regBase;                                     /* Regs for sorter record */
597   int regRecord = 0;                               /* Assembled sorter record */
598   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
599   int op;                            /* Opcode to add sorter record to sorter */
600   int iLimit;                        /* LIMIT counter */
601   int iSkip = 0;                     /* End of the sorter insert loop */
602 
603   assert( bSeq==0 || bSeq==1 );
604 
605   /* Three cases:
606   **   (1) The data to be sorted has already been packed into a Record
607   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
608   **       will be completely unrelated to regOrigData.
609   **   (2) All output columns are included in the sort record.  In that
610   **       case regData==regOrigData.
611   **   (3) Some output columns are omitted from the sort record due to
612   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613   **       SQLITE_ECEL_OMITREF optimization, or due to the
614   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
615   **       regOrigData is 0 to prevent this routine from trying to copy
616   **       values that might not yet exist.
617   */
618   assert( nData==1 || regData==regOrigData || regOrigData==0 );
619 
620   if( nPrefixReg ){
621     assert( nPrefixReg==nExpr+bSeq );
622     regBase = regData - nPrefixReg;
623   }else{
624     regBase = pParse->nMem + 1;
625     pParse->nMem += nBase;
626   }
627   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
628   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
629   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
630   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
631                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
632   if( bSeq ){
633     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
634   }
635   if( nPrefixReg==0 && nData>0 ){
636     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
637   }
638   if( nOBSat>0 ){
639     int regPrevKey;   /* The first nOBSat columns of the previous row */
640     int addrFirst;    /* Address of the OP_IfNot opcode */
641     int addrJmp;      /* Address of the OP_Jump opcode */
642     VdbeOp *pOp;      /* Opcode that opens the sorter */
643     int nKey;         /* Number of sorting key columns, including OP_Sequence */
644     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
645 
646     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
647     regPrevKey = pParse->nMem+1;
648     pParse->nMem += pSort->nOBSat;
649     nKey = nExpr - pSort->nOBSat + bSeq;
650     if( bSeq ){
651       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
652     }else{
653       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
654     }
655     VdbeCoverage(v);
656     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
657     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
658     if( pParse->db->mallocFailed ) return;
659     pOp->p2 = nKey + nData;
660     pKI = pOp->p4.pKeyInfo;
661     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
662     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
663     testcase( pKI->nAllField > pKI->nKeyField+2 );
664     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
665                                            pKI->nAllField-pKI->nKeyField-1);
666     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667     addrJmp = sqlite3VdbeCurrentAddr(v);
668     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
669     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
670     pSort->regReturn = ++pParse->nMem;
671     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
672     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
673     if( iLimit ){
674       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
675       VdbeCoverage(v);
676     }
677     sqlite3VdbeJumpHere(v, addrFirst);
678     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
679     sqlite3VdbeJumpHere(v, addrJmp);
680   }
681   if( iLimit ){
682     /* At this point the values for the new sorter entry are stored
683     ** in an array of registers. They need to be composed into a record
684     ** and inserted into the sorter if either (a) there are currently
685     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686     ** the largest record currently in the sorter. If (b) is true and there
687     ** are already LIMIT+OFFSET items in the sorter, delete the largest
688     ** entry before inserting the new one. This way there are never more
689     ** than LIMIT+OFFSET items in the sorter.
690     **
691     ** If the new record does not need to be inserted into the sorter,
692     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693     ** value is not zero, then it is a label of where to jump.  Otherwise,
694     ** just bypass the row insert logic.  See the header comment on the
695     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
696     */
697     int iCsr = pSort->iECursor;
698     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
699     VdbeCoverage(v);
700     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
701     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
702                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
705   }
706   if( regRecord==0 ){
707     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
708   }
709   if( pSort->sortFlags & SORTFLAG_UseSorter ){
710     op = OP_SorterInsert;
711   }else{
712     op = OP_IdxInsert;
713   }
714   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
715                        regBase+nOBSat, nBase-nOBSat);
716   if( iSkip ){
717     sqlite3VdbeChangeP2(v, iSkip,
718          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
719   }
720 }
721 
722 /*
723 ** Add code to implement the OFFSET
724 */
725 static void codeOffset(
726   Vdbe *v,          /* Generate code into this VM */
727   int iOffset,      /* Register holding the offset counter */
728   int iContinue     /* Jump here to skip the current record */
729 ){
730   if( iOffset>0 ){
731     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
732     VdbeComment((v, "OFFSET"));
733   }
734 }
735 
736 /*
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry.  iTab is a sorting index that holds previously
739 ** seen combinations of the N values.  A new entry is made in iTab
740 ** if the current N values are new.
741 **
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
744 */
745 static void codeDistinct(
746   Parse *pParse,     /* Parsing and code generating context */
747   int iTab,          /* A sorting index used to test for distinctness */
748   int addrRepeat,    /* Jump to here if not distinct */
749   int N,             /* Number of elements */
750   int iMem           /* First element */
751 ){
752   Vdbe *v;
753   int r1;
754 
755   v = pParse->pVdbe;
756   r1 = sqlite3GetTempReg(pParse);
757   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
758   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
759   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
760   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761   sqlite3ReleaseTempReg(pParse, r1);
762 }
763 
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
765 /*
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
771 **
772 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
773 **
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
780 **
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
787 ** sorter records.
788 */
789 static void selectExprDefer(
790   Parse *pParse,                  /* Leave any error here */
791   SortCtx *pSort,                 /* Sorter context */
792   ExprList *pEList,               /* Expressions destined for sorter */
793   ExprList **ppExtra              /* Expressions to append to sorter record */
794 ){
795   int i;
796   int nDefer = 0;
797   ExprList *pExtra = 0;
798   for(i=0; i<pEList->nExpr; i++){
799     struct ExprList_item *pItem = &pEList->a[i];
800     if( pItem->u.x.iOrderByCol==0 ){
801       Expr *pExpr = pItem->pExpr;
802       Table *pTab = pExpr->y.pTab;
803       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
804        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
805       ){
806         int j;
807         for(j=0; j<nDefer; j++){
808           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
809         }
810         if( j==nDefer ){
811           if( nDefer==ArraySize(pSort->aDefer) ){
812             continue;
813           }else{
814             int nKey = 1;
815             int k;
816             Index *pPk = 0;
817             if( !HasRowid(pTab) ){
818               pPk = sqlite3PrimaryKeyIndex(pTab);
819               nKey = pPk->nKeyCol;
820             }
821             for(k=0; k<nKey; k++){
822               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
823               if( pNew ){
824                 pNew->iTable = pExpr->iTable;
825                 pNew->y.pTab = pExpr->y.pTab;
826                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
827                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
828               }
829             }
830             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
831             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
832             pSort->aDefer[nDefer].nKey = nKey;
833             nDefer++;
834           }
835         }
836         pItem->bSorterRef = 1;
837       }
838     }
839   }
840   pSort->nDefer = (u8)nDefer;
841   *ppExtra = pExtra;
842 }
843 #endif
844 
845 /*
846 ** This routine generates the code for the inside of the inner loop
847 ** of a SELECT.
848 **
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row.  If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
853 */
854 static void selectInnerLoop(
855   Parse *pParse,          /* The parser context */
856   Select *p,              /* The complete select statement being coded */
857   int srcTab,             /* Pull data from this table if non-negative */
858   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
859   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
860   SelectDest *pDest,      /* How to dispose of the results */
861   int iContinue,          /* Jump here to continue with next row */
862   int iBreak              /* Jump here to break out of the inner loop */
863 ){
864   Vdbe *v = pParse->pVdbe;
865   int i;
866   int hasDistinct;            /* True if the DISTINCT keyword is present */
867   int eDest = pDest->eDest;   /* How to dispose of results */
868   int iParm = pDest->iSDParm; /* First argument to disposal method */
869   int nResultCol;             /* Number of result columns */
870   int nPrefixReg = 0;         /* Number of extra registers before regResult */
871   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
872 
873   /* Usually, regResult is the first cell in an array of memory cells
874   ** containing the current result row. In this case regOrig is set to the
875   ** same value. However, if the results are being sent to the sorter, the
876   ** values for any expressions that are also part of the sort-key are omitted
877   ** from this array. In this case regOrig is set to zero.  */
878   int regResult;              /* Start of memory holding current results */
879   int regOrig;                /* Start of memory holding full result (or 0) */
880 
881   assert( v );
882   assert( p->pEList!=0 );
883   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
884   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
885   if( pSort==0 && !hasDistinct ){
886     assert( iContinue!=0 );
887     codeOffset(v, p->iOffset, iContinue);
888   }
889 
890   /* Pull the requested columns.
891   */
892   nResultCol = p->pEList->nExpr;
893 
894   if( pDest->iSdst==0 ){
895     if( pSort ){
896       nPrefixReg = pSort->pOrderBy->nExpr;
897       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
898       pParse->nMem += nPrefixReg;
899     }
900     pDest->iSdst = pParse->nMem+1;
901     pParse->nMem += nResultCol;
902   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
903     /* This is an error condition that can result, for example, when a SELECT
904     ** on the right-hand side of an INSERT contains more result columns than
905     ** there are columns in the table on the left.  The error will be caught
906     ** and reported later.  But we need to make sure enough memory is allocated
907     ** to avoid other spurious errors in the meantime. */
908     pParse->nMem += nResultCol;
909   }
910   pDest->nSdst = nResultCol;
911   regOrig = regResult = pDest->iSdst;
912   if( srcTab>=0 ){
913     for(i=0; i<nResultCol; i++){
914       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
915       VdbeComment((v, "%s", p->pEList->a[i].zEName));
916     }
917   }else if( eDest!=SRT_Exists ){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919     ExprList *pExtra = 0;
920 #endif
921     /* If the destination is an EXISTS(...) expression, the actual
922     ** values returned by the SELECT are not required.
923     */
924     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
925     ExprList *pEList;
926     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
927       ecelFlags = SQLITE_ECEL_DUP;
928     }else{
929       ecelFlags = 0;
930     }
931     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
932       /* For each expression in p->pEList that is a copy of an expression in
933       ** the ORDER BY clause (pSort->pOrderBy), set the associated
934       ** iOrderByCol value to one more than the index of the ORDER BY
935       ** expression within the sort-key that pushOntoSorter() will generate.
936       ** This allows the p->pEList field to be omitted from the sorted record,
937       ** saving space and CPU cycles.  */
938       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
939 
940       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
941         int j;
942         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
943           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
944         }
945       }
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
948       if( pExtra && pParse->db->mallocFailed==0 ){
949         /* If there are any extra PK columns to add to the sorter records,
950         ** allocate extra memory cells and adjust the OpenEphemeral
951         ** instruction to account for the larger records. This is only
952         ** required if there are one or more WITHOUT ROWID tables with
953         ** composite primary keys in the SortCtx.aDefer[] array.  */
954         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
955         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
956         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
957         pParse->nMem += pExtra->nExpr;
958       }
959 #endif
960 
961       /* Adjust nResultCol to account for columns that are omitted
962       ** from the sorter by the optimizations in this branch */
963       pEList = p->pEList;
964       for(i=0; i<pEList->nExpr; i++){
965         if( pEList->a[i].u.x.iOrderByCol>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967          || pEList->a[i].bSorterRef
968 #endif
969         ){
970           nResultCol--;
971           regOrig = 0;
972         }
973       }
974 
975       testcase( regOrig );
976       testcase( eDest==SRT_Set );
977       testcase( eDest==SRT_Mem );
978       testcase( eDest==SRT_Coroutine );
979       testcase( eDest==SRT_Output );
980       assert( eDest==SRT_Set || eDest==SRT_Mem
981            || eDest==SRT_Coroutine || eDest==SRT_Output
982            || eDest==SRT_Upfrom );
983     }
984     sRowLoadInfo.regResult = regResult;
985     sRowLoadInfo.ecelFlags = ecelFlags;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987     sRowLoadInfo.pExtra = pExtra;
988     sRowLoadInfo.regExtraResult = regResult + nResultCol;
989     if( pExtra ) nResultCol += pExtra->nExpr;
990 #endif
991     if( p->iLimit
992      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
993      && nPrefixReg>0
994     ){
995       assert( pSort!=0 );
996       assert( hasDistinct==0 );
997       pSort->pDeferredRowLoad = &sRowLoadInfo;
998       regOrig = 0;
999     }else{
1000       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1001     }
1002   }
1003 
1004   /* If the DISTINCT keyword was present on the SELECT statement
1005   ** and this row has been seen before, then do not make this row
1006   ** part of the result.
1007   */
1008   if( hasDistinct ){
1009     switch( pDistinct->eTnctType ){
1010       case WHERE_DISTINCT_ORDERED: {
1011         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1012         int iJump;              /* Jump destination */
1013         int regPrev;            /* Previous row content */
1014 
1015         /* Allocate space for the previous row */
1016         regPrev = pParse->nMem+1;
1017         pParse->nMem += nResultCol;
1018 
1019         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020         ** sets the MEM_Cleared bit on the first register of the
1021         ** previous value.  This will cause the OP_Ne below to always
1022         ** fail on the first iteration of the loop even if the first
1023         ** row is all NULLs.
1024         */
1025         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1026         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1027         pOp->opcode = OP_Null;
1028         pOp->p1 = 1;
1029         pOp->p2 = regPrev;
1030         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1031 
1032         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1033         for(i=0; i<nResultCol; i++){
1034           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1035           if( i<nResultCol-1 ){
1036             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1037             VdbeCoverage(v);
1038           }else{
1039             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1040             VdbeCoverage(v);
1041            }
1042           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1043           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1044         }
1045         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1046         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1047         break;
1048       }
1049 
1050       case WHERE_DISTINCT_UNIQUE: {
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         break;
1053       }
1054 
1055       default: {
1056         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1057         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1058                      regResult);
1059         break;
1060       }
1061     }
1062     if( pSort==0 ){
1063       codeOffset(v, p->iOffset, iContinue);
1064     }
1065   }
1066 
1067   switch( eDest ){
1068     /* In this mode, write each query result to the key of the temporary
1069     ** table iParm.
1070     */
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072     case SRT_Union: {
1073       int r1;
1074       r1 = sqlite3GetTempReg(pParse);
1075       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1076       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1077       sqlite3ReleaseTempReg(pParse, r1);
1078       break;
1079     }
1080 
1081     /* Construct a record from the query result, but instead of
1082     ** saving that record, use it as a key to delete elements from
1083     ** the temporary table iParm.
1084     */
1085     case SRT_Except: {
1086       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1087       break;
1088     }
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1090 
1091     /* Store the result as data using a unique key.
1092     */
1093     case SRT_Fifo:
1094     case SRT_DistFifo:
1095     case SRT_Table:
1096     case SRT_EphemTab: {
1097       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1098       testcase( eDest==SRT_Table );
1099       testcase( eDest==SRT_EphemTab );
1100       testcase( eDest==SRT_Fifo );
1101       testcase( eDest==SRT_DistFifo );
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1103 #ifndef SQLITE_OMIT_CTE
1104       if( eDest==SRT_DistFifo ){
1105         /* If the destination is DistFifo, then cursor (iParm+1) is open
1106         ** on an ephemeral index. If the current row is already present
1107         ** in the index, do not write it to the output. If not, add the
1108         ** current row to the index and proceed with writing it to the
1109         ** output table as well.  */
1110         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1111         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1112         VdbeCoverage(v);
1113         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1114         assert( pSort==0 );
1115       }
1116 #endif
1117       if( pSort ){
1118         assert( regResult==regOrig );
1119         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1120       }else{
1121         int r2 = sqlite3GetTempReg(pParse);
1122         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1123         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1124         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1125         sqlite3ReleaseTempReg(pParse, r2);
1126       }
1127       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1128       break;
1129     }
1130 
1131     case SRT_Upfrom: {
1132       if( pSort ){
1133         pushOntoSorter(
1134             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1135       }else{
1136         int i2 = pDest->iSDParm2;
1137         int r1 = sqlite3GetTempReg(pParse);
1138 
1139         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140         ** might still be trying to return one row, because that is what
1141         ** aggregates do.  Don't record that empty row in the output table. */
1142         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1143 
1144         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1145                           regResult+(i2<0), nResultCol-(i2<0), r1);
1146         if( i2<0 ){
1147           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1148         }else{
1149           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1150         }
1151       }
1152       break;
1153     }
1154 
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157     ** then there should be a single item on the stack.  Write this
1158     ** item into the set table with bogus data.
1159     */
1160     case SRT_Set: {
1161       if( pSort ){
1162         /* At first glance you would think we could optimize out the
1163         ** ORDER BY in this case since the order of entries in the set
1164         ** does not matter.  But there might be a LIMIT clause, in which
1165         ** case the order does matter */
1166         pushOntoSorter(
1167             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1168       }else{
1169         int r1 = sqlite3GetTempReg(pParse);
1170         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1171         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1172             r1, pDest->zAffSdst, nResultCol);
1173         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174         sqlite3ReleaseTempReg(pParse, r1);
1175       }
1176       break;
1177     }
1178 
1179 
1180     /* If any row exist in the result set, record that fact and abort.
1181     */
1182     case SRT_Exists: {
1183       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1184       /* The LIMIT clause will terminate the loop for us */
1185       break;
1186     }
1187 
1188     /* If this is a scalar select that is part of an expression, then
1189     ** store the results in the appropriate memory cell or array of
1190     ** memory cells and break out of the scan loop.
1191     */
1192     case SRT_Mem: {
1193       if( pSort ){
1194         assert( nResultCol<=pDest->nSdst );
1195         pushOntoSorter(
1196             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1197       }else{
1198         assert( nResultCol==pDest->nSdst );
1199         assert( regResult==iParm );
1200         /* The LIMIT clause will jump out of the loop for us */
1201       }
1202       break;
1203     }
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1205 
1206     case SRT_Coroutine:       /* Send data to a co-routine */
1207     case SRT_Output: {        /* Return the results */
1208       testcase( eDest==SRT_Coroutine );
1209       testcase( eDest==SRT_Output );
1210       if( pSort ){
1211         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1212                        nPrefixReg);
1213       }else if( eDest==SRT_Coroutine ){
1214         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1215       }else{
1216         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1217       }
1218       break;
1219     }
1220 
1221 #ifndef SQLITE_OMIT_CTE
1222     /* Write the results into a priority queue that is order according to
1223     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1224     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1225     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226     ** final OP_Sequence column.  The last column is the record as a blob.
1227     */
1228     case SRT_DistQueue:
1229     case SRT_Queue: {
1230       int nKey;
1231       int r1, r2, r3;
1232       int addrTest = 0;
1233       ExprList *pSO;
1234       pSO = pDest->pOrderBy;
1235       assert( pSO );
1236       nKey = pSO->nExpr;
1237       r1 = sqlite3GetTempReg(pParse);
1238       r2 = sqlite3GetTempRange(pParse, nKey+2);
1239       r3 = r2+nKey+1;
1240       if( eDest==SRT_DistQueue ){
1241         /* If the destination is DistQueue, then cursor (iParm+1) is open
1242         ** on a second ephemeral index that holds all values every previously
1243         ** added to the queue. */
1244         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1245                                         regResult, nResultCol);
1246         VdbeCoverage(v);
1247       }
1248       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1249       if( eDest==SRT_DistQueue ){
1250         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1251         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1252       }
1253       for(i=0; i<nKey; i++){
1254         sqlite3VdbeAddOp2(v, OP_SCopy,
1255                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1256                           r2+i);
1257       }
1258       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1259       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1260       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1261       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1262       sqlite3ReleaseTempReg(pParse, r1);
1263       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1264       break;
1265     }
1266 #endif /* SQLITE_OMIT_CTE */
1267 
1268 
1269 
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271     /* Discard the results.  This is used for SELECT statements inside
1272     ** the body of a TRIGGER.  The purpose of such selects is to call
1273     ** user-defined functions that have side effects.  We do not care
1274     ** about the actual results of the select.
1275     */
1276     default: {
1277       assert( eDest==SRT_Discard );
1278       break;
1279     }
1280 #endif
1281   }
1282 
1283   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1284   ** there is a sorter, in which case the sorter has already limited
1285   ** the output for us.
1286   */
1287   if( pSort==0 && p->iLimit ){
1288     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1289   }
1290 }
1291 
1292 /*
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1294 ** X extra columns.
1295 */
1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1297   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1298   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1299   if( p ){
1300     p->aSortFlags = (u8*)&p->aColl[N+X];
1301     p->nKeyField = (u16)N;
1302     p->nAllField = (u16)(N+X);
1303     p->enc = ENC(db);
1304     p->db = db;
1305     p->nRef = 1;
1306     memset(&p[1], 0, nExtra);
1307   }else{
1308     sqlite3OomFault(db);
1309   }
1310   return p;
1311 }
1312 
1313 /*
1314 ** Deallocate a KeyInfo object
1315 */
1316 void sqlite3KeyInfoUnref(KeyInfo *p){
1317   if( p ){
1318     assert( p->nRef>0 );
1319     p->nRef--;
1320     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1321   }
1322 }
1323 
1324 /*
1325 ** Make a new pointer to a KeyInfo object
1326 */
1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1328   if( p ){
1329     assert( p->nRef>0 );
1330     p->nRef++;
1331   }
1332   return p;
1333 }
1334 
1335 #ifdef SQLITE_DEBUG
1336 /*
1337 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1339 **
1340 ** This routine is used only inside of assert() statements.
1341 */
1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1343 #endif /* SQLITE_DEBUG */
1344 
1345 /*
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1348 **
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause.  If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1354 **
1355 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1356 ** function is responsible for seeing that this structure is eventually
1357 ** freed.
1358 */
1359 KeyInfo *sqlite3KeyInfoFromExprList(
1360   Parse *pParse,       /* Parsing context */
1361   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1362   int iStart,          /* Begin with this column of pList */
1363   int nExtra           /* Add this many extra columns to the end */
1364 ){
1365   int nExpr;
1366   KeyInfo *pInfo;
1367   struct ExprList_item *pItem;
1368   sqlite3 *db = pParse->db;
1369   int i;
1370 
1371   nExpr = pList->nExpr;
1372   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1373   if( pInfo ){
1374     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1375     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1376       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1377       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1378     }
1379   }
1380   return pInfo;
1381 }
1382 
1383 /*
1384 ** Name of the connection operator, used for error messages.
1385 */
1386 static const char *selectOpName(int id){
1387   char *z;
1388   switch( id ){
1389     case TK_ALL:       z = "UNION ALL";   break;
1390     case TK_INTERSECT: z = "INTERSECT";   break;
1391     case TK_EXCEPT:    z = "EXCEPT";      break;
1392     default:           z = "UNION";       break;
1393   }
1394   return z;
1395 }
1396 
1397 #ifndef SQLITE_OMIT_EXPLAIN
1398 /*
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1402 **
1403 **   "USE TEMP B-TREE FOR xxx"
1404 **
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1407 */
1408 static void explainTempTable(Parse *pParse, const char *zUsage){
1409   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1410 }
1411 
1412 /*
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1418 */
1419 # define explainSetInteger(a, b) a = b
1420 
1421 #else
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1425 #endif
1426 
1427 
1428 /*
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter.  After the loop is terminated
1431 ** we need to run the sorter and output the results.  The following
1432 ** routine generates the code needed to do that.
1433 */
1434 static void generateSortTail(
1435   Parse *pParse,    /* Parsing context */
1436   Select *p,        /* The SELECT statement */
1437   SortCtx *pSort,   /* Information on the ORDER BY clause */
1438   int nColumn,      /* Number of columns of data */
1439   SelectDest *pDest /* Write the sorted results here */
1440 ){
1441   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1442   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1443   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1444   int addr;                       /* Top of output loop. Jump for Next. */
1445   int addrOnce = 0;
1446   int iTab;
1447   ExprList *pOrderBy = pSort->pOrderBy;
1448   int eDest = pDest->eDest;
1449   int iParm = pDest->iSDParm;
1450   int regRow;
1451   int regRowid;
1452   int iCol;
1453   int nKey;                       /* Number of key columns in sorter record */
1454   int iSortTab;                   /* Sorter cursor to read from */
1455   int i;
1456   int bSeq;                       /* True if sorter record includes seq. no. */
1457   int nRefKey = 0;
1458   struct ExprList_item *aOutEx = p->pEList->a;
1459 
1460   assert( addrBreak<0 );
1461   if( pSort->labelBkOut ){
1462     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1463     sqlite3VdbeGoto(v, addrBreak);
1464     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1465   }
1466 
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468   /* Open any cursors needed for sorter-reference expressions */
1469   for(i=0; i<pSort->nDefer; i++){
1470     Table *pTab = pSort->aDefer[i].pTab;
1471     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1472     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1473     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1474   }
1475 #endif
1476 
1477   iTab = pSort->iECursor;
1478   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1479     regRowid = 0;
1480     regRow = pDest->iSdst;
1481   }else{
1482     regRowid = sqlite3GetTempReg(pParse);
1483     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1484       regRow = sqlite3GetTempReg(pParse);
1485       nColumn = 0;
1486     }else{
1487       regRow = sqlite3GetTempRange(pParse, nColumn);
1488     }
1489   }
1490   nKey = pOrderBy->nExpr - pSort->nOBSat;
1491   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1492     int regSortOut = ++pParse->nMem;
1493     iSortTab = pParse->nTab++;
1494     if( pSort->labelBkOut ){
1495       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1496     }
1497     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1498         nKey+1+nColumn+nRefKey);
1499     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1500     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1501     VdbeCoverage(v);
1502     codeOffset(v, p->iOffset, addrContinue);
1503     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1504     bSeq = 0;
1505   }else{
1506     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1507     codeOffset(v, p->iOffset, addrContinue);
1508     iSortTab = iTab;
1509     bSeq = 1;
1510   }
1511   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513     if( aOutEx[i].bSorterRef ) continue;
1514 #endif
1515     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1516   }
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518   if( pSort->nDefer ){
1519     int iKey = iCol+1;
1520     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1521 
1522     for(i=0; i<pSort->nDefer; i++){
1523       int iCsr = pSort->aDefer[i].iCsr;
1524       Table *pTab = pSort->aDefer[i].pTab;
1525       int nKey = pSort->aDefer[i].nKey;
1526 
1527       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528       if( HasRowid(pTab) ){
1529         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1530         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1531             sqlite3VdbeCurrentAddr(v)+1, regKey);
1532       }else{
1533         int k;
1534         int iJmp;
1535         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1536         for(k=0; k<nKey; k++){
1537           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1538         }
1539         iJmp = sqlite3VdbeCurrentAddr(v);
1540         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1541         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1542         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1543       }
1544     }
1545     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1546   }
1547 #endif
1548   for(i=nColumn-1; i>=0; i--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550     if( aOutEx[i].bSorterRef ){
1551       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1552     }else
1553 #endif
1554     {
1555       int iRead;
1556       if( aOutEx[i].u.x.iOrderByCol ){
1557         iRead = aOutEx[i].u.x.iOrderByCol-1;
1558       }else{
1559         iRead = iCol--;
1560       }
1561       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1562       VdbeComment((v, "%s", aOutEx[i].zEName));
1563     }
1564   }
1565   switch( eDest ){
1566     case SRT_Table:
1567     case SRT_EphemTab: {
1568       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1569       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1570       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1571       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1572       break;
1573     }
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575     case SRT_Set: {
1576       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1577       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1578                         pDest->zAffSdst, nColumn);
1579       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1580       break;
1581     }
1582     case SRT_Mem: {
1583       /* The LIMIT clause will terminate the loop for us */
1584       break;
1585     }
1586 #endif
1587     case SRT_Upfrom: {
1588       int i2 = pDest->iSDParm2;
1589       int r1 = sqlite3GetTempReg(pParse);
1590       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1591       if( i2<0 ){
1592         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1593       }else{
1594         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1595       }
1596       break;
1597     }
1598     default: {
1599       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1600       testcase( eDest==SRT_Output );
1601       testcase( eDest==SRT_Coroutine );
1602       if( eDest==SRT_Output ){
1603         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1604       }else{
1605         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1606       }
1607       break;
1608     }
1609   }
1610   if( regRowid ){
1611     if( eDest==SRT_Set ){
1612       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1613     }else{
1614       sqlite3ReleaseTempReg(pParse, regRow);
1615     }
1616     sqlite3ReleaseTempReg(pParse, regRowid);
1617   }
1618   /* The bottom of the loop
1619   */
1620   sqlite3VdbeResolveLabel(v, addrContinue);
1621   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1622     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1623   }else{
1624     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1625   }
1626   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1627   sqlite3VdbeResolveLabel(v, addrBreak);
1628 }
1629 
1630 /*
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1633 **
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1636 **
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1643 **
1644 **   SELECT col FROM tbl;
1645 **   SELECT (SELECT col FROM tbl;
1646 **   SELECT (SELECT col FROM tbl);
1647 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1648 **
1649 ** The declaration type for any expression other than a column is NULL.
1650 **
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1653 */
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1658 #endif
1659 static const char *columnTypeImpl(
1660   NameContext *pNC,
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1662   Expr *pExpr
1663 #else
1664   Expr *pExpr,
1665   const char **pzOrigDb,
1666   const char **pzOrigTab,
1667   const char **pzOrigCol
1668 #endif
1669 ){
1670   char const *zType = 0;
1671   int j;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673   char const *zOrigDb = 0;
1674   char const *zOrigTab = 0;
1675   char const *zOrigCol = 0;
1676 #endif
1677 
1678   assert( pExpr!=0 );
1679   assert( pNC->pSrcList!=0 );
1680   switch( pExpr->op ){
1681     case TK_COLUMN: {
1682       /* The expression is a column. Locate the table the column is being
1683       ** extracted from in NameContext.pSrcList. This table may be real
1684       ** database table or a subquery.
1685       */
1686       Table *pTab = 0;            /* Table structure column is extracted from */
1687       Select *pS = 0;             /* Select the column is extracted from */
1688       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1689       while( pNC && !pTab ){
1690         SrcList *pTabList = pNC->pSrcList;
1691         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1692         if( j<pTabList->nSrc ){
1693           pTab = pTabList->a[j].pTab;
1694           pS = pTabList->a[j].pSelect;
1695         }else{
1696           pNC = pNC->pNext;
1697         }
1698       }
1699 
1700       if( pTab==0 ){
1701         /* At one time, code such as "SELECT new.x" within a trigger would
1702         ** cause this condition to run.  Since then, we have restructured how
1703         ** trigger code is generated and so this condition is no longer
1704         ** possible. However, it can still be true for statements like
1705         ** the following:
1706         **
1707         **   CREATE TABLE t1(col INTEGER);
1708         **   SELECT (SELECT t1.col) FROM FROM t1;
1709         **
1710         ** when columnType() is called on the expression "t1.col" in the
1711         ** sub-select. In this case, set the column type to NULL, even
1712         ** though it should really be "INTEGER".
1713         **
1714         ** This is not a problem, as the column type of "t1.col" is never
1715         ** used. When columnType() is called on the expression
1716         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1717         ** branch below.  */
1718         break;
1719       }
1720 
1721       assert( pTab && pExpr->y.pTab==pTab );
1722       if( pS ){
1723         /* The "table" is actually a sub-select or a view in the FROM clause
1724         ** of the SELECT statement. Return the declaration type and origin
1725         ** data for the result-set column of the sub-select.
1726         */
1727         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1728           /* If iCol is less than zero, then the expression requests the
1729           ** rowid of the sub-select or view. This expression is legal (see
1730           ** test case misc2.2.2) - it always evaluates to NULL.
1731           */
1732           NameContext sNC;
1733           Expr *p = pS->pEList->a[iCol].pExpr;
1734           sNC.pSrcList = pS->pSrc;
1735           sNC.pNext = pNC;
1736           sNC.pParse = pNC->pParse;
1737           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1738         }
1739       }else{
1740         /* A real table or a CTE table */
1741         assert( !pS );
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743         if( iCol<0 ) iCol = pTab->iPKey;
1744         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745         if( iCol<0 ){
1746           zType = "INTEGER";
1747           zOrigCol = "rowid";
1748         }else{
1749           zOrigCol = pTab->aCol[iCol].zName;
1750           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1751         }
1752         zOrigTab = pTab->zName;
1753         if( pNC->pParse && pTab->pSchema ){
1754           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1755           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1756         }
1757 #else
1758         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1759         if( iCol<0 ){
1760           zType = "INTEGER";
1761         }else{
1762           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1763         }
1764 #endif
1765       }
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case TK_SELECT: {
1770       /* The expression is a sub-select. Return the declaration type and
1771       ** origin info for the single column in the result set of the SELECT
1772       ** statement.
1773       */
1774       NameContext sNC;
1775       Select *pS = pExpr->x.pSelect;
1776       Expr *p = pS->pEList->a[0].pExpr;
1777       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1778       sNC.pSrcList = pS->pSrc;
1779       sNC.pNext = pNC;
1780       sNC.pParse = pNC->pParse;
1781       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1782       break;
1783     }
1784 #endif
1785   }
1786 
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1788   if( pzOrigDb ){
1789     assert( pzOrigTab && pzOrigCol );
1790     *pzOrigDb = zOrigDb;
1791     *pzOrigTab = zOrigTab;
1792     *pzOrigCol = zOrigCol;
1793   }
1794 #endif
1795   return zType;
1796 }
1797 
1798 /*
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1801 */
1802 static void generateColumnTypes(
1803   Parse *pParse,      /* Parser context */
1804   SrcList *pTabList,  /* List of tables */
1805   ExprList *pEList    /* Expressions defining the result set */
1806 ){
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808   Vdbe *v = pParse->pVdbe;
1809   int i;
1810   NameContext sNC;
1811   sNC.pSrcList = pTabList;
1812   sNC.pParse = pParse;
1813   sNC.pNext = 0;
1814   for(i=0; i<pEList->nExpr; i++){
1815     Expr *p = pEList->a[i].pExpr;
1816     const char *zType;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818     const char *zOrigDb = 0;
1819     const char *zOrigTab = 0;
1820     const char *zOrigCol = 0;
1821     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1822 
1823     /* The vdbe must make its own copy of the column-type and other
1824     ** column specific strings, in case the schema is reset before this
1825     ** virtual machine is deleted.
1826     */
1827     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1828     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1829     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1830 #else
1831     zType = columnType(&sNC, p, 0, 0, 0);
1832 #endif
1833     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1834   }
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1836 }
1837 
1838 
1839 /*
1840 ** Compute the column names for a SELECT statement.
1841 **
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee.  However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes.  Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1848 **
1849 ** See Also: sqlite3ColumnsFromExprList()
1850 **
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1853 ** applications should operate this way.  Nevertheless, we need to support the
1854 ** other modes for legacy:
1855 **
1856 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1857 **                              originally appears in the SELECT statement.  In
1858 **                              other words, the zSpan of the result expression.
1859 **
1860 **    short=ON, full=OFF:       (This is the default setting).  If the result
1861 **                              refers directly to a table column, then the
1862 **                              result column name is just the table column
1863 **                              name: COLUMN.  Otherwise use zSpan.
1864 **
1865 **    full=ON, short=ANY:       If the result refers directly to a table column,
1866 **                              then the result column name with the table name
1867 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1868 */
1869 static void generateColumnNames(
1870   Parse *pParse,      /* Parser context */
1871   Select *pSelect     /* Generate column names for this SELECT statement */
1872 ){
1873   Vdbe *v = pParse->pVdbe;
1874   int i;
1875   Table *pTab;
1876   SrcList *pTabList;
1877   ExprList *pEList;
1878   sqlite3 *db = pParse->db;
1879   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1881 
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883   /* If this is an EXPLAIN, skip this step */
1884   if( pParse->explain ){
1885     return;
1886   }
1887 #endif
1888 
1889   if( pParse->colNamesSet ) return;
1890   /* Column names are determined by the left-most term of a compound select */
1891   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1892   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1893   pTabList = pSelect->pSrc;
1894   pEList = pSelect->pEList;
1895   assert( v!=0 );
1896   assert( pTabList!=0 );
1897   pParse->colNamesSet = 1;
1898   fullName = (db->flags & SQLITE_FullColNames)!=0;
1899   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1900   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1901   for(i=0; i<pEList->nExpr; i++){
1902     Expr *p = pEList->a[i].pExpr;
1903 
1904     assert( p!=0 );
1905     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1906     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1907     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1908       /* An AS clause always takes first priority */
1909       char *zName = pEList->a[i].zEName;
1910       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1911     }else if( srcName && p->op==TK_COLUMN ){
1912       char *zCol;
1913       int iCol = p->iColumn;
1914       pTab = p->y.pTab;
1915       assert( pTab!=0 );
1916       if( iCol<0 ) iCol = pTab->iPKey;
1917       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1918       if( iCol<0 ){
1919         zCol = "rowid";
1920       }else{
1921         zCol = pTab->aCol[iCol].zName;
1922       }
1923       if( fullName ){
1924         char *zName = 0;
1925         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1926         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1927       }else{
1928         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1929       }
1930     }else{
1931       const char *z = pEList->a[i].zEName;
1932       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1933       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1934     }
1935   }
1936   generateColumnTypes(pParse, pTabList, pEList);
1937 }
1938 
1939 /*
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1943 **
1944 ** All column names will be unique.
1945 **
1946 ** Only the column names are computed.  Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1948 **
1949 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1951 **
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee.  However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes.  Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1958 **
1959 ** See Also: generateColumnNames()
1960 */
1961 int sqlite3ColumnsFromExprList(
1962   Parse *pParse,          /* Parsing context */
1963   ExprList *pEList,       /* Expr list from which to derive column names */
1964   i16 *pnCol,             /* Write the number of columns here */
1965   Column **paCol          /* Write the new column list here */
1966 ){
1967   sqlite3 *db = pParse->db;   /* Database connection */
1968   int i, j;                   /* Loop counters */
1969   u32 cnt;                    /* Index added to make the name unique */
1970   Column *aCol, *pCol;        /* For looping over result columns */
1971   int nCol;                   /* Number of columns in the result set */
1972   char *zName;                /* Column name */
1973   int nName;                  /* Size of name in zName[] */
1974   Hash ht;                    /* Hash table of column names */
1975   Table *pTab;
1976 
1977   sqlite3HashInit(&ht);
1978   if( pEList ){
1979     nCol = pEList->nExpr;
1980     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1981     testcase( aCol==0 );
1982     if( nCol>32767 ) nCol = 32767;
1983   }else{
1984     nCol = 0;
1985     aCol = 0;
1986   }
1987   assert( nCol==(i16)nCol );
1988   *pnCol = nCol;
1989   *paCol = aCol;
1990 
1991   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1992     /* Get an appropriate name for the column
1993     */
1994     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1995       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1996     }else{
1997       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1998       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
1999         pColExpr = pColExpr->pRight;
2000         assert( pColExpr!=0 );
2001       }
2002       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2003         /* For columns use the column name name */
2004         int iCol = pColExpr->iColumn;
2005         if( iCol<0 ) iCol = pTab->iPKey;
2006         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2007       }else if( pColExpr->op==TK_ID ){
2008         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2009         zName = pColExpr->u.zToken;
2010       }else{
2011         /* Use the original text of the column expression as its name */
2012         zName = pEList->a[i].zEName;
2013       }
2014     }
2015     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2016       zName = sqlite3DbStrDup(db, zName);
2017     }else{
2018       zName = sqlite3MPrintf(db,"column%d",i+1);
2019     }
2020 
2021     /* Make sure the column name is unique.  If the name is not unique,
2022     ** append an integer to the name so that it becomes unique.
2023     */
2024     cnt = 0;
2025     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2026       nName = sqlite3Strlen30(zName);
2027       if( nName>0 ){
2028         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2029         if( zName[j]==':' ) nName = j;
2030       }
2031       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2032       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2033     }
2034     pCol->zName = zName;
2035     pCol->hName = sqlite3StrIHash(zName);
2036     sqlite3ColumnPropertiesFromName(0, pCol);
2037     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2038       sqlite3OomFault(db);
2039     }
2040   }
2041   sqlite3HashClear(&ht);
2042   if( db->mallocFailed ){
2043     for(j=0; j<i; j++){
2044       sqlite3DbFree(db, aCol[j].zName);
2045     }
2046     sqlite3DbFree(db, aCol);
2047     *paCol = 0;
2048     *pnCol = 0;
2049     return SQLITE_NOMEM_BKPT;
2050   }
2051   return SQLITE_OK;
2052 }
2053 
2054 /*
2055 ** Add type and collation information to a column list based on
2056 ** a SELECT statement.
2057 **
2058 ** The column list presumably came from selectColumnNamesFromExprList().
2059 ** The column list has only names, not types or collations.  This
2060 ** routine goes through and adds the types and collations.
2061 **
2062 ** This routine requires that all identifiers in the SELECT
2063 ** statement be resolved.
2064 */
2065 void sqlite3SelectAddColumnTypeAndCollation(
2066   Parse *pParse,        /* Parsing contexts */
2067   Table *pTab,          /* Add column type information to this table */
2068   Select *pSelect,      /* SELECT used to determine types and collations */
2069   char aff              /* Default affinity for columns */
2070 ){
2071   sqlite3 *db = pParse->db;
2072   NameContext sNC;
2073   Column *pCol;
2074   CollSeq *pColl;
2075   int i;
2076   Expr *p;
2077   struct ExprList_item *a;
2078 
2079   assert( pSelect!=0 );
2080   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2081   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2082   if( db->mallocFailed ) return;
2083   memset(&sNC, 0, sizeof(sNC));
2084   sNC.pSrcList = pSelect->pSrc;
2085   a = pSelect->pEList->a;
2086   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2087     const char *zType;
2088     int n, m;
2089     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2090     p = a[i].pExpr;
2091     zType = columnType(&sNC, p, 0, 0, 0);
2092     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2093     pCol->affinity = sqlite3ExprAffinity(p);
2094     if( zType ){
2095       m = sqlite3Strlen30(zType);
2096       n = sqlite3Strlen30(pCol->zName);
2097       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2098       if( pCol->zName ){
2099         memcpy(&pCol->zName[n+1], zType, m+1);
2100         pCol->colFlags |= COLFLAG_HASTYPE;
2101       }
2102     }
2103     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2104     pColl = sqlite3ExprCollSeq(pParse, p);
2105     if( pColl && pCol->zColl==0 ){
2106       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2107     }
2108   }
2109   pTab->szTabRow = 1; /* Any non-zero value works */
2110 }
2111 
2112 /*
2113 ** Given a SELECT statement, generate a Table structure that describes
2114 ** the result set of that SELECT.
2115 */
2116 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2117   Table *pTab;
2118   sqlite3 *db = pParse->db;
2119   u64 savedFlags;
2120 
2121   savedFlags = db->flags;
2122   db->flags &= ~(u64)SQLITE_FullColNames;
2123   db->flags |= SQLITE_ShortColNames;
2124   sqlite3SelectPrep(pParse, pSelect, 0);
2125   db->flags = savedFlags;
2126   if( pParse->nErr ) return 0;
2127   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2128   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2129   if( pTab==0 ){
2130     return 0;
2131   }
2132   pTab->nTabRef = 1;
2133   pTab->zName = 0;
2134   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2135   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2136   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2137   pTab->iPKey = -1;
2138   if( db->mallocFailed ){
2139     sqlite3DeleteTable(db, pTab);
2140     return 0;
2141   }
2142   return pTab;
2143 }
2144 
2145 /*
2146 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2147 ** If an error occurs, return NULL and leave a message in pParse.
2148 */
2149 Vdbe *sqlite3GetVdbe(Parse *pParse){
2150   if( pParse->pVdbe ){
2151     return pParse->pVdbe;
2152   }
2153   if( pParse->pToplevel==0
2154    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2155   ){
2156     pParse->okConstFactor = 1;
2157   }
2158   return sqlite3VdbeCreate(pParse);
2159 }
2160 
2161 
2162 /*
2163 ** Compute the iLimit and iOffset fields of the SELECT based on the
2164 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2165 ** that appear in the original SQL statement after the LIMIT and OFFSET
2166 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2167 ** are the integer memory register numbers for counters used to compute
2168 ** the limit and offset.  If there is no limit and/or offset, then
2169 ** iLimit and iOffset are negative.
2170 **
2171 ** This routine changes the values of iLimit and iOffset only if
2172 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2173 ** and iOffset should have been preset to appropriate default values (zero)
2174 ** prior to calling this routine.
2175 **
2176 ** The iOffset register (if it exists) is initialized to the value
2177 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2178 ** iOffset+1 is initialized to LIMIT+OFFSET.
2179 **
2180 ** Only if pLimit->pLeft!=0 do the limit registers get
2181 ** redefined.  The UNION ALL operator uses this property to force
2182 ** the reuse of the same limit and offset registers across multiple
2183 ** SELECT statements.
2184 */
2185 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2186   Vdbe *v = 0;
2187   int iLimit = 0;
2188   int iOffset;
2189   int n;
2190   Expr *pLimit = p->pLimit;
2191 
2192   if( p->iLimit ) return;
2193 
2194   /*
2195   ** "LIMIT -1" always shows all rows.  There is some
2196   ** controversy about what the correct behavior should be.
2197   ** The current implementation interprets "LIMIT 0" to mean
2198   ** no rows.
2199   */
2200   if( pLimit ){
2201     assert( pLimit->op==TK_LIMIT );
2202     assert( pLimit->pLeft!=0 );
2203     p->iLimit = iLimit = ++pParse->nMem;
2204     v = sqlite3GetVdbe(pParse);
2205     assert( v!=0 );
2206     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2207       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2208       VdbeComment((v, "LIMIT counter"));
2209       if( n==0 ){
2210         sqlite3VdbeGoto(v, iBreak);
2211       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2212         p->nSelectRow = sqlite3LogEst((u64)n);
2213         p->selFlags |= SF_FixedLimit;
2214       }
2215     }else{
2216       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2217       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2218       VdbeComment((v, "LIMIT counter"));
2219       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2220     }
2221     if( pLimit->pRight ){
2222       p->iOffset = iOffset = ++pParse->nMem;
2223       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2224       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2225       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2226       VdbeComment((v, "OFFSET counter"));
2227       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2228       VdbeComment((v, "LIMIT+OFFSET"));
2229     }
2230   }
2231 }
2232 
2233 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2234 /*
2235 ** Return the appropriate collating sequence for the iCol-th column of
2236 ** the result set for the compound-select statement "p".  Return NULL if
2237 ** the column has no default collating sequence.
2238 **
2239 ** The collating sequence for the compound select is taken from the
2240 ** left-most term of the select that has a collating sequence.
2241 */
2242 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2243   CollSeq *pRet;
2244   if( p->pPrior ){
2245     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2246   }else{
2247     pRet = 0;
2248   }
2249   assert( iCol>=0 );
2250   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2251   ** have been thrown during name resolution and we would not have gotten
2252   ** this far */
2253   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2254     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2255   }
2256   return pRet;
2257 }
2258 
2259 /*
2260 ** The select statement passed as the second parameter is a compound SELECT
2261 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2262 ** structure suitable for implementing the ORDER BY.
2263 **
2264 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2265 ** function is responsible for ensuring that this structure is eventually
2266 ** freed.
2267 */
2268 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2269   ExprList *pOrderBy = p->pOrderBy;
2270   int nOrderBy = p->pOrderBy->nExpr;
2271   sqlite3 *db = pParse->db;
2272   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2273   if( pRet ){
2274     int i;
2275     for(i=0; i<nOrderBy; i++){
2276       struct ExprList_item *pItem = &pOrderBy->a[i];
2277       Expr *pTerm = pItem->pExpr;
2278       CollSeq *pColl;
2279 
2280       if( pTerm->flags & EP_Collate ){
2281         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2282       }else{
2283         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2284         if( pColl==0 ) pColl = db->pDfltColl;
2285         pOrderBy->a[i].pExpr =
2286           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2287       }
2288       assert( sqlite3KeyInfoIsWriteable(pRet) );
2289       pRet->aColl[i] = pColl;
2290       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2291     }
2292   }
2293 
2294   return pRet;
2295 }
2296 
2297 #ifndef SQLITE_OMIT_CTE
2298 /*
2299 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2300 ** query of the form:
2301 **
2302 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2303 **                         \___________/             \_______________/
2304 **                           p->pPrior                      p
2305 **
2306 **
2307 ** There is exactly one reference to the recursive-table in the FROM clause
2308 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2309 **
2310 ** The setup-query runs once to generate an initial set of rows that go
2311 ** into a Queue table.  Rows are extracted from the Queue table one by
2312 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2313 ** extracted row (now in the iCurrent table) becomes the content of the
2314 ** recursive-table for a recursive-query run.  The output of the recursive-query
2315 ** is added back into the Queue table.  Then another row is extracted from Queue
2316 ** and the iteration continues until the Queue table is empty.
2317 **
2318 ** If the compound query operator is UNION then no duplicate rows are ever
2319 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2320 ** that have ever been inserted into Queue and causes duplicates to be
2321 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2322 **
2323 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2324 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2325 ** an ORDER BY, the Queue table is just a FIFO.
2326 **
2327 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2328 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2329 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2330 ** with a positive value, then the first OFFSET outputs are discarded rather
2331 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2332 ** rows have been skipped.
2333 */
2334 static void generateWithRecursiveQuery(
2335   Parse *pParse,        /* Parsing context */
2336   Select *p,            /* The recursive SELECT to be coded */
2337   SelectDest *pDest     /* What to do with query results */
2338 ){
2339   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2340   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2341   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2342   Select *pSetup = p->pPrior;   /* The setup query */
2343   Select *pFirstRec;            /* Left-most recursive term */
2344   int addrTop;                  /* Top of the loop */
2345   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2346   int iCurrent = 0;             /* The Current table */
2347   int regCurrent;               /* Register holding Current table */
2348   int iQueue;                   /* The Queue table */
2349   int iDistinct = 0;            /* To ensure unique results if UNION */
2350   int eDest = SRT_Fifo;         /* How to write to Queue */
2351   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2352   int i;                        /* Loop counter */
2353   int rc;                       /* Result code */
2354   ExprList *pOrderBy;           /* The ORDER BY clause */
2355   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2356   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2357 
2358 #ifndef SQLITE_OMIT_WINDOWFUNC
2359   if( p->pWin ){
2360     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2361     return;
2362   }
2363 #endif
2364 
2365   /* Obtain authorization to do a recursive query */
2366   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2367 
2368   /* Process the LIMIT and OFFSET clauses, if they exist */
2369   addrBreak = sqlite3VdbeMakeLabel(pParse);
2370   p->nSelectRow = 320;  /* 4 billion rows */
2371   computeLimitRegisters(pParse, p, addrBreak);
2372   pLimit = p->pLimit;
2373   regLimit = p->iLimit;
2374   regOffset = p->iOffset;
2375   p->pLimit = 0;
2376   p->iLimit = p->iOffset = 0;
2377   pOrderBy = p->pOrderBy;
2378 
2379   /* Locate the cursor number of the Current table */
2380   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2381     if( pSrc->a[i].fg.isRecursive ){
2382       iCurrent = pSrc->a[i].iCursor;
2383       break;
2384     }
2385   }
2386 
2387   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2388   ** the Distinct table must be exactly one greater than Queue in order
2389   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2390   iQueue = pParse->nTab++;
2391   if( p->op==TK_UNION ){
2392     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2393     iDistinct = pParse->nTab++;
2394   }else{
2395     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2396   }
2397   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2398 
2399   /* Allocate cursors for Current, Queue, and Distinct. */
2400   regCurrent = ++pParse->nMem;
2401   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2402   if( pOrderBy ){
2403     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2404     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2405                       (char*)pKeyInfo, P4_KEYINFO);
2406     destQueue.pOrderBy = pOrderBy;
2407   }else{
2408     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2409   }
2410   VdbeComment((v, "Queue table"));
2411   if( iDistinct ){
2412     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2413     p->selFlags |= SF_UsesEphemeral;
2414   }
2415 
2416   /* Detach the ORDER BY clause from the compound SELECT */
2417   p->pOrderBy = 0;
2418 
2419   /* Figure out how many elements of the compound SELECT are part of the
2420   ** recursive query.  Make sure no recursive elements use aggregate
2421   ** functions.  Mark the recursive elements as UNION ALL even if they
2422   ** are really UNION because the distinctness will be enforced by the
2423   ** iDistinct table.  pFirstRec is left pointing to the left-most
2424   ** recursive term of the CTE.
2425   */
2426   pFirstRec = p;
2427   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2428     if( pFirstRec->selFlags & SF_Aggregate ){
2429       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2430       goto end_of_recursive_query;
2431     }
2432     pFirstRec->op = TK_ALL;
2433     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2434   }
2435 
2436   /* Store the results of the setup-query in Queue. */
2437   pSetup = pFirstRec->pPrior;
2438   pSetup->pNext = 0;
2439   ExplainQueryPlan((pParse, 1, "SETUP"));
2440   rc = sqlite3Select(pParse, pSetup, &destQueue);
2441   pSetup->pNext = p;
2442   if( rc ) goto end_of_recursive_query;
2443 
2444   /* Find the next row in the Queue and output that row */
2445   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2446 
2447   /* Transfer the next row in Queue over to Current */
2448   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2449   if( pOrderBy ){
2450     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2451   }else{
2452     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2453   }
2454   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2455 
2456   /* Output the single row in Current */
2457   addrCont = sqlite3VdbeMakeLabel(pParse);
2458   codeOffset(v, regOffset, addrCont);
2459   selectInnerLoop(pParse, p, iCurrent,
2460       0, 0, pDest, addrCont, addrBreak);
2461   if( regLimit ){
2462     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2463     VdbeCoverage(v);
2464   }
2465   sqlite3VdbeResolveLabel(v, addrCont);
2466 
2467   /* Execute the recursive SELECT taking the single row in Current as
2468   ** the value for the recursive-table. Store the results in the Queue.
2469   */
2470   pFirstRec->pPrior = 0;
2471   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2472   sqlite3Select(pParse, p, &destQueue);
2473   assert( pFirstRec->pPrior==0 );
2474   pFirstRec->pPrior = pSetup;
2475 
2476   /* Keep running the loop until the Queue is empty */
2477   sqlite3VdbeGoto(v, addrTop);
2478   sqlite3VdbeResolveLabel(v, addrBreak);
2479 
2480 end_of_recursive_query:
2481   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2482   p->pOrderBy = pOrderBy;
2483   p->pLimit = pLimit;
2484   return;
2485 }
2486 #endif /* SQLITE_OMIT_CTE */
2487 
2488 /* Forward references */
2489 static int multiSelectOrderBy(
2490   Parse *pParse,        /* Parsing context */
2491   Select *p,            /* The right-most of SELECTs to be coded */
2492   SelectDest *pDest     /* What to do with query results */
2493 );
2494 
2495 /*
2496 ** Handle the special case of a compound-select that originates from a
2497 ** VALUES clause.  By handling this as a special case, we avoid deep
2498 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2499 ** on a VALUES clause.
2500 **
2501 ** Because the Select object originates from a VALUES clause:
2502 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2503 **   (2) All terms are UNION ALL
2504 **   (3) There is no ORDER BY clause
2505 **
2506 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2507 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2508 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2509 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2510 */
2511 static int multiSelectValues(
2512   Parse *pParse,        /* Parsing context */
2513   Select *p,            /* The right-most of SELECTs to be coded */
2514   SelectDest *pDest     /* What to do with query results */
2515 ){
2516   int nRow = 1;
2517   int rc = 0;
2518   int bShowAll = p->pLimit==0;
2519   assert( p->selFlags & SF_MultiValue );
2520   do{
2521     assert( p->selFlags & SF_Values );
2522     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2523     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2524 #ifndef SQLITE_OMIT_WINDOWFUNC
2525     if( p->pWin ) return -1;
2526 #endif
2527     if( p->pPrior==0 ) break;
2528     assert( p->pPrior->pNext==p );
2529     p = p->pPrior;
2530     nRow += bShowAll;
2531   }while(1);
2532   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2533                     nRow==1 ? "" : "S"));
2534   while( p ){
2535     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2536     if( !bShowAll ) break;
2537     p->nSelectRow = nRow;
2538     p = p->pNext;
2539   }
2540   return rc;
2541 }
2542 
2543 /*
2544 ** Return true if the SELECT statement which is known to be the recursive
2545 ** part of a recursive CTE still has its anchor terms attached.  If the
2546 ** anchor terms have already been removed, then return false.
2547 */
2548 static int hasAnchor(Select *p){
2549   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2550   return p!=0;
2551 }
2552 
2553 /*
2554 ** This routine is called to process a compound query form from
2555 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2556 ** INTERSECT
2557 **
2558 ** "p" points to the right-most of the two queries.  the query on the
2559 ** left is p->pPrior.  The left query could also be a compound query
2560 ** in which case this routine will be called recursively.
2561 **
2562 ** The results of the total query are to be written into a destination
2563 ** of type eDest with parameter iParm.
2564 **
2565 ** Example 1:  Consider a three-way compound SQL statement.
2566 **
2567 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2568 **
2569 ** This statement is parsed up as follows:
2570 **
2571 **     SELECT c FROM t3
2572 **      |
2573 **      `----->  SELECT b FROM t2
2574 **                |
2575 **                `------>  SELECT a FROM t1
2576 **
2577 ** The arrows in the diagram above represent the Select.pPrior pointer.
2578 ** So if this routine is called with p equal to the t3 query, then
2579 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2580 **
2581 ** Notice that because of the way SQLite parses compound SELECTs, the
2582 ** individual selects always group from left to right.
2583 */
2584 static int multiSelect(
2585   Parse *pParse,        /* Parsing context */
2586   Select *p,            /* The right-most of SELECTs to be coded */
2587   SelectDest *pDest     /* What to do with query results */
2588 ){
2589   int rc = SQLITE_OK;   /* Success code from a subroutine */
2590   Select *pPrior;       /* Another SELECT immediately to our left */
2591   Vdbe *v;              /* Generate code to this VDBE */
2592   SelectDest dest;      /* Alternative data destination */
2593   Select *pDelete = 0;  /* Chain of simple selects to delete */
2594   sqlite3 *db;          /* Database connection */
2595 
2596   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2597   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2598   */
2599   assert( p && p->pPrior );  /* Calling function guarantees this much */
2600   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2601   assert( p->selFlags & SF_Compound );
2602   db = pParse->db;
2603   pPrior = p->pPrior;
2604   dest = *pDest;
2605   if( pPrior->pOrderBy || pPrior->pLimit ){
2606     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2607       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2608     rc = 1;
2609     goto multi_select_end;
2610   }
2611 
2612   v = sqlite3GetVdbe(pParse);
2613   assert( v!=0 );  /* The VDBE already created by calling function */
2614 
2615   /* Create the destination temporary table if necessary
2616   */
2617   if( dest.eDest==SRT_EphemTab ){
2618     assert( p->pEList );
2619     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2620     dest.eDest = SRT_Table;
2621   }
2622 
2623   /* Special handling for a compound-select that originates as a VALUES clause.
2624   */
2625   if( p->selFlags & SF_MultiValue ){
2626     rc = multiSelectValues(pParse, p, &dest);
2627     if( rc>=0 ) goto multi_select_end;
2628     rc = SQLITE_OK;
2629   }
2630 
2631   /* Make sure all SELECTs in the statement have the same number of elements
2632   ** in their result sets.
2633   */
2634   assert( p->pEList && pPrior->pEList );
2635   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2636 
2637 #ifndef SQLITE_OMIT_CTE
2638   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2639     generateWithRecursiveQuery(pParse, p, &dest);
2640   }else
2641 #endif
2642 
2643   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2644   */
2645   if( p->pOrderBy ){
2646     return multiSelectOrderBy(pParse, p, pDest);
2647   }else{
2648 
2649 #ifndef SQLITE_OMIT_EXPLAIN
2650     if( pPrior->pPrior==0 ){
2651       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2652       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2653     }
2654 #endif
2655 
2656     /* Generate code for the left and right SELECT statements.
2657     */
2658     switch( p->op ){
2659       case TK_ALL: {
2660         int addr = 0;
2661         int nLimit;
2662         assert( !pPrior->pLimit );
2663         pPrior->iLimit = p->iLimit;
2664         pPrior->iOffset = p->iOffset;
2665         pPrior->pLimit = p->pLimit;
2666         rc = sqlite3Select(pParse, pPrior, &dest);
2667         p->pLimit = 0;
2668         if( rc ){
2669           goto multi_select_end;
2670         }
2671         p->pPrior = 0;
2672         p->iLimit = pPrior->iLimit;
2673         p->iOffset = pPrior->iOffset;
2674         if( p->iLimit ){
2675           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2676           VdbeComment((v, "Jump ahead if LIMIT reached"));
2677           if( p->iOffset ){
2678             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2679                               p->iLimit, p->iOffset+1, p->iOffset);
2680           }
2681         }
2682         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2683         rc = sqlite3Select(pParse, p, &dest);
2684         testcase( rc!=SQLITE_OK );
2685         pDelete = p->pPrior;
2686         p->pPrior = pPrior;
2687         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2688         if( pPrior->pLimit
2689          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2690          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2691         ){
2692           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2693         }
2694         if( addr ){
2695           sqlite3VdbeJumpHere(v, addr);
2696         }
2697         break;
2698       }
2699       case TK_EXCEPT:
2700       case TK_UNION: {
2701         int unionTab;    /* Cursor number of the temp table holding result */
2702         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2703         int priorOp;     /* The SRT_ operation to apply to prior selects */
2704         Expr *pLimit;    /* Saved values of p->nLimit  */
2705         int addr;
2706         SelectDest uniondest;
2707 
2708         testcase( p->op==TK_EXCEPT );
2709         testcase( p->op==TK_UNION );
2710         priorOp = SRT_Union;
2711         if( dest.eDest==priorOp ){
2712           /* We can reuse a temporary table generated by a SELECT to our
2713           ** right.
2714           */
2715           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2716           unionTab = dest.iSDParm;
2717         }else{
2718           /* We will need to create our own temporary table to hold the
2719           ** intermediate results.
2720           */
2721           unionTab = pParse->nTab++;
2722           assert( p->pOrderBy==0 );
2723           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2724           assert( p->addrOpenEphm[0] == -1 );
2725           p->addrOpenEphm[0] = addr;
2726           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2727           assert( p->pEList );
2728         }
2729 
2730 
2731         /* Code the SELECT statements to our left
2732         */
2733         assert( !pPrior->pOrderBy );
2734         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2735         rc = sqlite3Select(pParse, pPrior, &uniondest);
2736         if( rc ){
2737           goto multi_select_end;
2738         }
2739 
2740         /* Code the current SELECT statement
2741         */
2742         if( p->op==TK_EXCEPT ){
2743           op = SRT_Except;
2744         }else{
2745           assert( p->op==TK_UNION );
2746           op = SRT_Union;
2747         }
2748         p->pPrior = 0;
2749         pLimit = p->pLimit;
2750         p->pLimit = 0;
2751         uniondest.eDest = op;
2752         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2753                           selectOpName(p->op)));
2754         rc = sqlite3Select(pParse, p, &uniondest);
2755         testcase( rc!=SQLITE_OK );
2756         assert( p->pOrderBy==0 );
2757         pDelete = p->pPrior;
2758         p->pPrior = pPrior;
2759         p->pOrderBy = 0;
2760         if( p->op==TK_UNION ){
2761           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2762         }
2763         sqlite3ExprDelete(db, p->pLimit);
2764         p->pLimit = pLimit;
2765         p->iLimit = 0;
2766         p->iOffset = 0;
2767 
2768         /* Convert the data in the temporary table into whatever form
2769         ** it is that we currently need.
2770         */
2771         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2772         assert( p->pEList || db->mallocFailed );
2773         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2774           int iCont, iBreak, iStart;
2775           iBreak = sqlite3VdbeMakeLabel(pParse);
2776           iCont = sqlite3VdbeMakeLabel(pParse);
2777           computeLimitRegisters(pParse, p, iBreak);
2778           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2779           iStart = sqlite3VdbeCurrentAddr(v);
2780           selectInnerLoop(pParse, p, unionTab,
2781                           0, 0, &dest, iCont, iBreak);
2782           sqlite3VdbeResolveLabel(v, iCont);
2783           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2784           sqlite3VdbeResolveLabel(v, iBreak);
2785           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2786         }
2787         break;
2788       }
2789       default: assert( p->op==TK_INTERSECT ); {
2790         int tab1, tab2;
2791         int iCont, iBreak, iStart;
2792         Expr *pLimit;
2793         int addr;
2794         SelectDest intersectdest;
2795         int r1;
2796 
2797         /* INTERSECT is different from the others since it requires
2798         ** two temporary tables.  Hence it has its own case.  Begin
2799         ** by allocating the tables we will need.
2800         */
2801         tab1 = pParse->nTab++;
2802         tab2 = pParse->nTab++;
2803         assert( p->pOrderBy==0 );
2804 
2805         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2806         assert( p->addrOpenEphm[0] == -1 );
2807         p->addrOpenEphm[0] = addr;
2808         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2809         assert( p->pEList );
2810 
2811         /* Code the SELECTs to our left into temporary table "tab1".
2812         */
2813         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2814         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2815         if( rc ){
2816           goto multi_select_end;
2817         }
2818 
2819         /* Code the current SELECT into temporary table "tab2"
2820         */
2821         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2822         assert( p->addrOpenEphm[1] == -1 );
2823         p->addrOpenEphm[1] = addr;
2824         p->pPrior = 0;
2825         pLimit = p->pLimit;
2826         p->pLimit = 0;
2827         intersectdest.iSDParm = tab2;
2828         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2829                           selectOpName(p->op)));
2830         rc = sqlite3Select(pParse, p, &intersectdest);
2831         testcase( rc!=SQLITE_OK );
2832         pDelete = p->pPrior;
2833         p->pPrior = pPrior;
2834         if( p->nSelectRow>pPrior->nSelectRow ){
2835           p->nSelectRow = pPrior->nSelectRow;
2836         }
2837         sqlite3ExprDelete(db, p->pLimit);
2838         p->pLimit = pLimit;
2839 
2840         /* Generate code to take the intersection of the two temporary
2841         ** tables.
2842         */
2843         if( rc ) break;
2844         assert( p->pEList );
2845         iBreak = sqlite3VdbeMakeLabel(pParse);
2846         iCont = sqlite3VdbeMakeLabel(pParse);
2847         computeLimitRegisters(pParse, p, iBreak);
2848         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2849         r1 = sqlite3GetTempReg(pParse);
2850         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2851         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2852         VdbeCoverage(v);
2853         sqlite3ReleaseTempReg(pParse, r1);
2854         selectInnerLoop(pParse, p, tab1,
2855                         0, 0, &dest, iCont, iBreak);
2856         sqlite3VdbeResolveLabel(v, iCont);
2857         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2858         sqlite3VdbeResolveLabel(v, iBreak);
2859         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2860         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2861         break;
2862       }
2863     }
2864 
2865   #ifndef SQLITE_OMIT_EXPLAIN
2866     if( p->pNext==0 ){
2867       ExplainQueryPlanPop(pParse);
2868     }
2869   #endif
2870   }
2871   if( pParse->nErr ) goto multi_select_end;
2872 
2873   /* Compute collating sequences used by
2874   ** temporary tables needed to implement the compound select.
2875   ** Attach the KeyInfo structure to all temporary tables.
2876   **
2877   ** This section is run by the right-most SELECT statement only.
2878   ** SELECT statements to the left always skip this part.  The right-most
2879   ** SELECT might also skip this part if it has no ORDER BY clause and
2880   ** no temp tables are required.
2881   */
2882   if( p->selFlags & SF_UsesEphemeral ){
2883     int i;                        /* Loop counter */
2884     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2885     Select *pLoop;                /* For looping through SELECT statements */
2886     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2887     int nCol;                     /* Number of columns in result set */
2888 
2889     assert( p->pNext==0 );
2890     nCol = p->pEList->nExpr;
2891     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2892     if( !pKeyInfo ){
2893       rc = SQLITE_NOMEM_BKPT;
2894       goto multi_select_end;
2895     }
2896     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2897       *apColl = multiSelectCollSeq(pParse, p, i);
2898       if( 0==*apColl ){
2899         *apColl = db->pDfltColl;
2900       }
2901     }
2902 
2903     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2904       for(i=0; i<2; i++){
2905         int addr = pLoop->addrOpenEphm[i];
2906         if( addr<0 ){
2907           /* If [0] is unused then [1] is also unused.  So we can
2908           ** always safely abort as soon as the first unused slot is found */
2909           assert( pLoop->addrOpenEphm[1]<0 );
2910           break;
2911         }
2912         sqlite3VdbeChangeP2(v, addr, nCol);
2913         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2914                             P4_KEYINFO);
2915         pLoop->addrOpenEphm[i] = -1;
2916       }
2917     }
2918     sqlite3KeyInfoUnref(pKeyInfo);
2919   }
2920 
2921 multi_select_end:
2922   pDest->iSdst = dest.iSdst;
2923   pDest->nSdst = dest.nSdst;
2924   sqlite3SelectDelete(db, pDelete);
2925   return rc;
2926 }
2927 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2928 
2929 /*
2930 ** Error message for when two or more terms of a compound select have different
2931 ** size result sets.
2932 */
2933 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2934   if( p->selFlags & SF_Values ){
2935     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2936   }else{
2937     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2938       " do not have the same number of result columns", selectOpName(p->op));
2939   }
2940 }
2941 
2942 /*
2943 ** Code an output subroutine for a coroutine implementation of a
2944 ** SELECT statment.
2945 **
2946 ** The data to be output is contained in pIn->iSdst.  There are
2947 ** pIn->nSdst columns to be output.  pDest is where the output should
2948 ** be sent.
2949 **
2950 ** regReturn is the number of the register holding the subroutine
2951 ** return address.
2952 **
2953 ** If regPrev>0 then it is the first register in a vector that
2954 ** records the previous output.  mem[regPrev] is a flag that is false
2955 ** if there has been no previous output.  If regPrev>0 then code is
2956 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2957 ** keys.
2958 **
2959 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2960 ** iBreak.
2961 */
2962 static int generateOutputSubroutine(
2963   Parse *pParse,          /* Parsing context */
2964   Select *p,              /* The SELECT statement */
2965   SelectDest *pIn,        /* Coroutine supplying data */
2966   SelectDest *pDest,      /* Where to send the data */
2967   int regReturn,          /* The return address register */
2968   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2969   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2970   int iBreak              /* Jump here if we hit the LIMIT */
2971 ){
2972   Vdbe *v = pParse->pVdbe;
2973   int iContinue;
2974   int addr;
2975 
2976   addr = sqlite3VdbeCurrentAddr(v);
2977   iContinue = sqlite3VdbeMakeLabel(pParse);
2978 
2979   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2980   */
2981   if( regPrev ){
2982     int addr1, addr2;
2983     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2984     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2985                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2986     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2987     sqlite3VdbeJumpHere(v, addr1);
2988     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2989     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2990   }
2991   if( pParse->db->mallocFailed ) return 0;
2992 
2993   /* Suppress the first OFFSET entries if there is an OFFSET clause
2994   */
2995   codeOffset(v, p->iOffset, iContinue);
2996 
2997   assert( pDest->eDest!=SRT_Exists );
2998   assert( pDest->eDest!=SRT_Table );
2999   switch( pDest->eDest ){
3000     /* Store the result as data using a unique key.
3001     */
3002     case SRT_EphemTab: {
3003       int r1 = sqlite3GetTempReg(pParse);
3004       int r2 = sqlite3GetTempReg(pParse);
3005       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3006       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3007       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3008       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3009       sqlite3ReleaseTempReg(pParse, r2);
3010       sqlite3ReleaseTempReg(pParse, r1);
3011       break;
3012     }
3013 
3014 #ifndef SQLITE_OMIT_SUBQUERY
3015     /* If we are creating a set for an "expr IN (SELECT ...)".
3016     */
3017     case SRT_Set: {
3018       int r1;
3019       testcase( pIn->nSdst>1 );
3020       r1 = sqlite3GetTempReg(pParse);
3021       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3022           r1, pDest->zAffSdst, pIn->nSdst);
3023       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3024                            pIn->iSdst, pIn->nSdst);
3025       sqlite3ReleaseTempReg(pParse, r1);
3026       break;
3027     }
3028 
3029     /* If this is a scalar select that is part of an expression, then
3030     ** store the results in the appropriate memory cell and break out
3031     ** of the scan loop.  Note that the select might return multiple columns
3032     ** if it is the RHS of a row-value IN operator.
3033     */
3034     case SRT_Mem: {
3035       if( pParse->nErr==0 ){
3036         testcase( pIn->nSdst>1 );
3037         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3038       }
3039       /* The LIMIT clause will jump out of the loop for us */
3040       break;
3041     }
3042 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3043 
3044     /* The results are stored in a sequence of registers
3045     ** starting at pDest->iSdst.  Then the co-routine yields.
3046     */
3047     case SRT_Coroutine: {
3048       if( pDest->iSdst==0 ){
3049         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3050         pDest->nSdst = pIn->nSdst;
3051       }
3052       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3053       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3054       break;
3055     }
3056 
3057     /* If none of the above, then the result destination must be
3058     ** SRT_Output.  This routine is never called with any other
3059     ** destination other than the ones handled above or SRT_Output.
3060     **
3061     ** For SRT_Output, results are stored in a sequence of registers.
3062     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3063     ** return the next row of result.
3064     */
3065     default: {
3066       assert( pDest->eDest==SRT_Output );
3067       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3068       break;
3069     }
3070   }
3071 
3072   /* Jump to the end of the loop if the LIMIT is reached.
3073   */
3074   if( p->iLimit ){
3075     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3076   }
3077 
3078   /* Generate the subroutine return
3079   */
3080   sqlite3VdbeResolveLabel(v, iContinue);
3081   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3082 
3083   return addr;
3084 }
3085 
3086 /*
3087 ** Alternative compound select code generator for cases when there
3088 ** is an ORDER BY clause.
3089 **
3090 ** We assume a query of the following form:
3091 **
3092 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3093 **
3094 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3095 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3096 ** co-routines.  Then run the co-routines in parallel and merge the results
3097 ** into the output.  In addition to the two coroutines (called selectA and
3098 ** selectB) there are 7 subroutines:
3099 **
3100 **    outA:    Move the output of the selectA coroutine into the output
3101 **             of the compound query.
3102 **
3103 **    outB:    Move the output of the selectB coroutine into the output
3104 **             of the compound query.  (Only generated for UNION and
3105 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3106 **             appears only in B.)
3107 **
3108 **    AltB:    Called when there is data from both coroutines and A<B.
3109 **
3110 **    AeqB:    Called when there is data from both coroutines and A==B.
3111 **
3112 **    AgtB:    Called when there is data from both coroutines and A>B.
3113 **
3114 **    EofA:    Called when data is exhausted from selectA.
3115 **
3116 **    EofB:    Called when data is exhausted from selectB.
3117 **
3118 ** The implementation of the latter five subroutines depend on which
3119 ** <operator> is used:
3120 **
3121 **
3122 **             UNION ALL         UNION            EXCEPT          INTERSECT
3123 **          -------------  -----------------  --------------  -----------------
3124 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3125 **
3126 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3127 **
3128 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3129 **
3130 **   EofA:   outB, nextB      outB, nextB          halt             halt
3131 **
3132 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3133 **
3134 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3135 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3136 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3137 ** following nextX causes a jump to the end of the select processing.
3138 **
3139 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3140 ** within the output subroutine.  The regPrev register set holds the previously
3141 ** output value.  A comparison is made against this value and the output
3142 ** is skipped if the next results would be the same as the previous.
3143 **
3144 ** The implementation plan is to implement the two coroutines and seven
3145 ** subroutines first, then put the control logic at the bottom.  Like this:
3146 **
3147 **          goto Init
3148 **     coA: coroutine for left query (A)
3149 **     coB: coroutine for right query (B)
3150 **    outA: output one row of A
3151 **    outB: output one row of B (UNION and UNION ALL only)
3152 **    EofA: ...
3153 **    EofB: ...
3154 **    AltB: ...
3155 **    AeqB: ...
3156 **    AgtB: ...
3157 **    Init: initialize coroutine registers
3158 **          yield coA
3159 **          if eof(A) goto EofA
3160 **          yield coB
3161 **          if eof(B) goto EofB
3162 **    Cmpr: Compare A, B
3163 **          Jump AltB, AeqB, AgtB
3164 **     End: ...
3165 **
3166 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3167 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3168 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3169 ** and AgtB jump to either L2 or to one of EofA or EofB.
3170 */
3171 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3172 static int multiSelectOrderBy(
3173   Parse *pParse,        /* Parsing context */
3174   Select *p,            /* The right-most of SELECTs to be coded */
3175   SelectDest *pDest     /* What to do with query results */
3176 ){
3177   int i, j;             /* Loop counters */
3178   Select *pPrior;       /* Another SELECT immediately to our left */
3179   Vdbe *v;              /* Generate code to this VDBE */
3180   SelectDest destA;     /* Destination for coroutine A */
3181   SelectDest destB;     /* Destination for coroutine B */
3182   int regAddrA;         /* Address register for select-A coroutine */
3183   int regAddrB;         /* Address register for select-B coroutine */
3184   int addrSelectA;      /* Address of the select-A coroutine */
3185   int addrSelectB;      /* Address of the select-B coroutine */
3186   int regOutA;          /* Address register for the output-A subroutine */
3187   int regOutB;          /* Address register for the output-B subroutine */
3188   int addrOutA;         /* Address of the output-A subroutine */
3189   int addrOutB = 0;     /* Address of the output-B subroutine */
3190   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3191   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3192   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3193   int addrAltB;         /* Address of the A<B subroutine */
3194   int addrAeqB;         /* Address of the A==B subroutine */
3195   int addrAgtB;         /* Address of the A>B subroutine */
3196   int regLimitA;        /* Limit register for select-A */
3197   int regLimitB;        /* Limit register for select-A */
3198   int regPrev;          /* A range of registers to hold previous output */
3199   int savedLimit;       /* Saved value of p->iLimit */
3200   int savedOffset;      /* Saved value of p->iOffset */
3201   int labelCmpr;        /* Label for the start of the merge algorithm */
3202   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3203   int addr1;            /* Jump instructions that get retargetted */
3204   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3205   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3206   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3207   sqlite3 *db;          /* Database connection */
3208   ExprList *pOrderBy;   /* The ORDER BY clause */
3209   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3210   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3211 
3212   assert( p->pOrderBy!=0 );
3213   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3214   db = pParse->db;
3215   v = pParse->pVdbe;
3216   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3217   labelEnd = sqlite3VdbeMakeLabel(pParse);
3218   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3219 
3220 
3221   /* Patch up the ORDER BY clause
3222   */
3223   op = p->op;
3224   pPrior = p->pPrior;
3225   assert( pPrior->pOrderBy==0 );
3226   pOrderBy = p->pOrderBy;
3227   assert( pOrderBy );
3228   nOrderBy = pOrderBy->nExpr;
3229 
3230   /* For operators other than UNION ALL we have to make sure that
3231   ** the ORDER BY clause covers every term of the result set.  Add
3232   ** terms to the ORDER BY clause as necessary.
3233   */
3234   if( op!=TK_ALL ){
3235     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3236       struct ExprList_item *pItem;
3237       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3238         assert( pItem->u.x.iOrderByCol>0 );
3239         if( pItem->u.x.iOrderByCol==i ) break;
3240       }
3241       if( j==nOrderBy ){
3242         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3243         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3244         pNew->flags |= EP_IntValue;
3245         pNew->u.iValue = i;
3246         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3247         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3248       }
3249     }
3250   }
3251 
3252   /* Compute the comparison permutation and keyinfo that is used with
3253   ** the permutation used to determine if the next
3254   ** row of results comes from selectA or selectB.  Also add explicit
3255   ** collations to the ORDER BY clause terms so that when the subqueries
3256   ** to the right and the left are evaluated, they use the correct
3257   ** collation.
3258   */
3259   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3260   if( aPermute ){
3261     struct ExprList_item *pItem;
3262     aPermute[0] = nOrderBy;
3263     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3264       assert( pItem->u.x.iOrderByCol>0 );
3265       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3266       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3267     }
3268     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3269   }else{
3270     pKeyMerge = 0;
3271   }
3272 
3273   /* Reattach the ORDER BY clause to the query.
3274   */
3275   p->pOrderBy = pOrderBy;
3276   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3277 
3278   /* Allocate a range of temporary registers and the KeyInfo needed
3279   ** for the logic that removes duplicate result rows when the
3280   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3281   */
3282   if( op==TK_ALL ){
3283     regPrev = 0;
3284   }else{
3285     int nExpr = p->pEList->nExpr;
3286     assert( nOrderBy>=nExpr || db->mallocFailed );
3287     regPrev = pParse->nMem+1;
3288     pParse->nMem += nExpr+1;
3289     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3290     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3291     if( pKeyDup ){
3292       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3293       for(i=0; i<nExpr; i++){
3294         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3295         pKeyDup->aSortFlags[i] = 0;
3296       }
3297     }
3298   }
3299 
3300   /* Separate the left and the right query from one another
3301   */
3302   p->pPrior = 0;
3303   pPrior->pNext = 0;
3304   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3305   if( pPrior->pPrior==0 ){
3306     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3307   }
3308 
3309   /* Compute the limit registers */
3310   computeLimitRegisters(pParse, p, labelEnd);
3311   if( p->iLimit && op==TK_ALL ){
3312     regLimitA = ++pParse->nMem;
3313     regLimitB = ++pParse->nMem;
3314     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3315                                   regLimitA);
3316     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3317   }else{
3318     regLimitA = regLimitB = 0;
3319   }
3320   sqlite3ExprDelete(db, p->pLimit);
3321   p->pLimit = 0;
3322 
3323   regAddrA = ++pParse->nMem;
3324   regAddrB = ++pParse->nMem;
3325   regOutA = ++pParse->nMem;
3326   regOutB = ++pParse->nMem;
3327   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3328   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3329 
3330   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3331 
3332   /* Generate a coroutine to evaluate the SELECT statement to the
3333   ** left of the compound operator - the "A" select.
3334   */
3335   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3336   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3337   VdbeComment((v, "left SELECT"));
3338   pPrior->iLimit = regLimitA;
3339   ExplainQueryPlan((pParse, 1, "LEFT"));
3340   sqlite3Select(pParse, pPrior, &destA);
3341   sqlite3VdbeEndCoroutine(v, regAddrA);
3342   sqlite3VdbeJumpHere(v, addr1);
3343 
3344   /* Generate a coroutine to evaluate the SELECT statement on
3345   ** the right - the "B" select
3346   */
3347   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3348   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3349   VdbeComment((v, "right SELECT"));
3350   savedLimit = p->iLimit;
3351   savedOffset = p->iOffset;
3352   p->iLimit = regLimitB;
3353   p->iOffset = 0;
3354   ExplainQueryPlan((pParse, 1, "RIGHT"));
3355   sqlite3Select(pParse, p, &destB);
3356   p->iLimit = savedLimit;
3357   p->iOffset = savedOffset;
3358   sqlite3VdbeEndCoroutine(v, regAddrB);
3359 
3360   /* Generate a subroutine that outputs the current row of the A
3361   ** select as the next output row of the compound select.
3362   */
3363   VdbeNoopComment((v, "Output routine for A"));
3364   addrOutA = generateOutputSubroutine(pParse,
3365                  p, &destA, pDest, regOutA,
3366                  regPrev, pKeyDup, labelEnd);
3367 
3368   /* Generate a subroutine that outputs the current row of the B
3369   ** select as the next output row of the compound select.
3370   */
3371   if( op==TK_ALL || op==TK_UNION ){
3372     VdbeNoopComment((v, "Output routine for B"));
3373     addrOutB = generateOutputSubroutine(pParse,
3374                  p, &destB, pDest, regOutB,
3375                  regPrev, pKeyDup, labelEnd);
3376   }
3377   sqlite3KeyInfoUnref(pKeyDup);
3378 
3379   /* Generate a subroutine to run when the results from select A
3380   ** are exhausted and only data in select B remains.
3381   */
3382   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3383     addrEofA_noB = addrEofA = labelEnd;
3384   }else{
3385     VdbeNoopComment((v, "eof-A subroutine"));
3386     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3387     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3388                                      VdbeCoverage(v);
3389     sqlite3VdbeGoto(v, addrEofA);
3390     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3391   }
3392 
3393   /* Generate a subroutine to run when the results from select B
3394   ** are exhausted and only data in select A remains.
3395   */
3396   if( op==TK_INTERSECT ){
3397     addrEofB = addrEofA;
3398     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3399   }else{
3400     VdbeNoopComment((v, "eof-B subroutine"));
3401     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3402     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3403     sqlite3VdbeGoto(v, addrEofB);
3404   }
3405 
3406   /* Generate code to handle the case of A<B
3407   */
3408   VdbeNoopComment((v, "A-lt-B subroutine"));
3409   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3410   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3411   sqlite3VdbeGoto(v, labelCmpr);
3412 
3413   /* Generate code to handle the case of A==B
3414   */
3415   if( op==TK_ALL ){
3416     addrAeqB = addrAltB;
3417   }else if( op==TK_INTERSECT ){
3418     addrAeqB = addrAltB;
3419     addrAltB++;
3420   }else{
3421     VdbeNoopComment((v, "A-eq-B subroutine"));
3422     addrAeqB =
3423     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3424     sqlite3VdbeGoto(v, labelCmpr);
3425   }
3426 
3427   /* Generate code to handle the case of A>B
3428   */
3429   VdbeNoopComment((v, "A-gt-B subroutine"));
3430   addrAgtB = sqlite3VdbeCurrentAddr(v);
3431   if( op==TK_ALL || op==TK_UNION ){
3432     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3433   }
3434   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3435   sqlite3VdbeGoto(v, labelCmpr);
3436 
3437   /* This code runs once to initialize everything.
3438   */
3439   sqlite3VdbeJumpHere(v, addr1);
3440   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3441   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3442 
3443   /* Implement the main merge loop
3444   */
3445   sqlite3VdbeResolveLabel(v, labelCmpr);
3446   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3447   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3448                          (char*)pKeyMerge, P4_KEYINFO);
3449   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3450   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3451 
3452   /* Jump to the this point in order to terminate the query.
3453   */
3454   sqlite3VdbeResolveLabel(v, labelEnd);
3455 
3456   /* Reassembly the compound query so that it will be freed correctly
3457   ** by the calling function */
3458   if( p->pPrior ){
3459     sqlite3SelectDelete(db, p->pPrior);
3460   }
3461   p->pPrior = pPrior;
3462   pPrior->pNext = p;
3463 
3464   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3465   **** subqueries ****/
3466   ExplainQueryPlanPop(pParse);
3467   return pParse->nErr!=0;
3468 }
3469 #endif
3470 
3471 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3472 
3473 /* An instance of the SubstContext object describes an substitution edit
3474 ** to be performed on a parse tree.
3475 **
3476 ** All references to columns in table iTable are to be replaced by corresponding
3477 ** expressions in pEList.
3478 */
3479 typedef struct SubstContext {
3480   Parse *pParse;            /* The parsing context */
3481   int iTable;               /* Replace references to this table */
3482   int iNewTable;            /* New table number */
3483   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3484   ExprList *pEList;         /* Replacement expressions */
3485 } SubstContext;
3486 
3487 /* Forward Declarations */
3488 static void substExprList(SubstContext*, ExprList*);
3489 static void substSelect(SubstContext*, Select*, int);
3490 
3491 /*
3492 ** Scan through the expression pExpr.  Replace every reference to
3493 ** a column in table number iTable with a copy of the iColumn-th
3494 ** entry in pEList.  (But leave references to the ROWID column
3495 ** unchanged.)
3496 **
3497 ** This routine is part of the flattening procedure.  A subquery
3498 ** whose result set is defined by pEList appears as entry in the
3499 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3500 ** FORM clause entry is iTable.  This routine makes the necessary
3501 ** changes to pExpr so that it refers directly to the source table
3502 ** of the subquery rather the result set of the subquery.
3503 */
3504 static Expr *substExpr(
3505   SubstContext *pSubst,  /* Description of the substitution */
3506   Expr *pExpr            /* Expr in which substitution occurs */
3507 ){
3508   if( pExpr==0 ) return 0;
3509   if( ExprHasProperty(pExpr, EP_FromJoin)
3510    && pExpr->iRightJoinTable==pSubst->iTable
3511   ){
3512     pExpr->iRightJoinTable = pSubst->iNewTable;
3513   }
3514   if( pExpr->op==TK_COLUMN
3515    && pExpr->iTable==pSubst->iTable
3516    && !ExprHasProperty(pExpr, EP_FixedCol)
3517   ){
3518     if( pExpr->iColumn<0 ){
3519       pExpr->op = TK_NULL;
3520     }else{
3521       Expr *pNew;
3522       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3523       Expr ifNullRow;
3524       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3525       assert( pExpr->pRight==0 );
3526       if( sqlite3ExprIsVector(pCopy) ){
3527         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3528       }else{
3529         sqlite3 *db = pSubst->pParse->db;
3530         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3531           memset(&ifNullRow, 0, sizeof(ifNullRow));
3532           ifNullRow.op = TK_IF_NULL_ROW;
3533           ifNullRow.pLeft = pCopy;
3534           ifNullRow.iTable = pSubst->iNewTable;
3535           ifNullRow.flags = EP_IfNullRow;
3536           pCopy = &ifNullRow;
3537         }
3538         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3539         pNew = sqlite3ExprDup(db, pCopy, 0);
3540         if( pNew && pSubst->isLeftJoin ){
3541           ExprSetProperty(pNew, EP_CanBeNull);
3542         }
3543         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3544           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3545         }
3546         sqlite3ExprDelete(db, pExpr);
3547         pExpr = pNew;
3548 
3549         /* Ensure that the expression now has an implicit collation sequence,
3550         ** just as it did when it was a column of a view or sub-query. */
3551         if( pExpr ){
3552           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3553             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3554             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3555                 (pColl ? pColl->zName : "BINARY")
3556             );
3557           }
3558           ExprClearProperty(pExpr, EP_Collate);
3559         }
3560       }
3561     }
3562   }else{
3563     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3564       pExpr->iTable = pSubst->iNewTable;
3565     }
3566     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3567     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3568     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3569       substSelect(pSubst, pExpr->x.pSelect, 1);
3570     }else{
3571       substExprList(pSubst, pExpr->x.pList);
3572     }
3573 #ifndef SQLITE_OMIT_WINDOWFUNC
3574     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3575       Window *pWin = pExpr->y.pWin;
3576       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3577       substExprList(pSubst, pWin->pPartition);
3578       substExprList(pSubst, pWin->pOrderBy);
3579     }
3580 #endif
3581   }
3582   return pExpr;
3583 }
3584 static void substExprList(
3585   SubstContext *pSubst, /* Description of the substitution */
3586   ExprList *pList       /* List to scan and in which to make substitutes */
3587 ){
3588   int i;
3589   if( pList==0 ) return;
3590   for(i=0; i<pList->nExpr; i++){
3591     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3592   }
3593 }
3594 static void substSelect(
3595   SubstContext *pSubst, /* Description of the substitution */
3596   Select *p,            /* SELECT statement in which to make substitutions */
3597   int doPrior           /* Do substitutes on p->pPrior too */
3598 ){
3599   SrcList *pSrc;
3600   struct SrcList_item *pItem;
3601   int i;
3602   if( !p ) return;
3603   do{
3604     substExprList(pSubst, p->pEList);
3605     substExprList(pSubst, p->pGroupBy);
3606     substExprList(pSubst, p->pOrderBy);
3607     p->pHaving = substExpr(pSubst, p->pHaving);
3608     p->pWhere = substExpr(pSubst, p->pWhere);
3609     pSrc = p->pSrc;
3610     assert( pSrc!=0 );
3611     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3612       substSelect(pSubst, pItem->pSelect, 1);
3613       if( pItem->fg.isTabFunc ){
3614         substExprList(pSubst, pItem->u1.pFuncArg);
3615       }
3616     }
3617   }while( doPrior && (p = p->pPrior)!=0 );
3618 }
3619 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3620 
3621 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3622 /*
3623 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3624 ** clause of that SELECT.
3625 **
3626 ** This routine scans the entire SELECT statement and recomputes the
3627 ** pSrcItem->colUsed mask.
3628 */
3629 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3630   struct SrcList_item *pItem;
3631   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3632   pItem = pWalker->u.pSrcItem;
3633   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3634   if( pExpr->iColumn<0 ) return WRC_Continue;
3635   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3636   return WRC_Continue;
3637 }
3638 static void recomputeColumnsUsed(
3639   Select *pSelect,                 /* The complete SELECT statement */
3640   struct SrcList_item *pSrcItem    /* Which FROM clause item to recompute */
3641 ){
3642   Walker w;
3643   if( NEVER(pSrcItem->pTab==0) ) return;
3644   memset(&w, 0, sizeof(w));
3645   w.xExprCallback = recomputeColumnsUsedExpr;
3646   w.xSelectCallback = sqlite3SelectWalkNoop;
3647   w.u.pSrcItem = pSrcItem;
3648   pSrcItem->colUsed = 0;
3649   sqlite3WalkSelect(&w, pSelect);
3650 }
3651 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3652 
3653 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3654 /*
3655 ** Assign new cursor numbers to each of the items in pSrc. For each
3656 ** new cursor number assigned, set an entry in the aCsrMap[] array
3657 ** to map the old cursor number to the new:
3658 **
3659 **     aCsrMap[iOld] = iNew;
3660 **
3661 ** The array is guaranteed by the caller to be large enough for all
3662 ** existing cursor numbers in pSrc.
3663 **
3664 ** If pSrc contains any sub-selects, call this routine recursively
3665 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3666 */
3667 static void srclistRenumberCursors(
3668   Parse *pParse,                  /* Parse context */
3669   int *aCsrMap,                   /* Array to store cursor mappings in */
3670   SrcList *pSrc,                  /* FROM clause to renumber */
3671   int iExcept                     /* FROM clause item to skip */
3672 ){
3673   int i;
3674   struct SrcList_item *pItem;
3675   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3676     if( i!=iExcept ){
3677       Select *p;
3678       pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++;
3679       for(p=pItem->pSelect; p; p=p->pPrior){
3680         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3681       }
3682     }
3683   }
3684 }
3685 
3686 /*
3687 ** Expression walker callback used by renumberCursors() to update
3688 ** Expr objects to match newly assigned cursor numbers.
3689 */
3690 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3691   int *aCsrMap = pWalker->u.aiCol;
3692   int op = pExpr->op;
3693   if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){
3694     pExpr->iTable = aCsrMap[pExpr->iTable];
3695   }
3696   if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3697     pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3698   }
3699   return WRC_Continue;
3700 }
3701 
3702 /*
3703 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3704 ** of the SELECT statement passed as the second argument, and to each
3705 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3706 ** Except, do not assign a new cursor number to the iExcept'th element in
3707 ** the FROM clause of (*p). Update all expressions and other references
3708 ** to refer to the new cursor numbers.
3709 **
3710 ** Argument aCsrMap is an array that may be used for temporary working
3711 ** space. Two guarantees are made by the caller:
3712 **
3713 **   * the array is larger than the largest cursor number used within the
3714 **     select statement passed as an argument, and
3715 **
3716 **   * the array entries for all cursor numbers that do *not* appear in
3717 **     FROM clauses of the select statement as described above are
3718 **     initialized to zero.
3719 */
3720 static void renumberCursors(
3721   Parse *pParse,                  /* Parse context */
3722   Select *p,                      /* Select to renumber cursors within */
3723   int iExcept,                    /* FROM clause item to skip */
3724   int *aCsrMap                    /* Working space */
3725 ){
3726   Walker w;
3727   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3728   memset(&w, 0, sizeof(w));
3729   w.u.aiCol = aCsrMap;
3730   w.xExprCallback = renumberCursorsCb;
3731   w.xSelectCallback = sqlite3SelectWalkNoop;
3732   sqlite3WalkSelect(&w, p);
3733 }
3734 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3735 
3736 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3737 /*
3738 ** This routine attempts to flatten subqueries as a performance optimization.
3739 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3740 **
3741 ** To understand the concept of flattening, consider the following
3742 ** query:
3743 **
3744 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3745 **
3746 ** The default way of implementing this query is to execute the
3747 ** subquery first and store the results in a temporary table, then
3748 ** run the outer query on that temporary table.  This requires two
3749 ** passes over the data.  Furthermore, because the temporary table
3750 ** has no indices, the WHERE clause on the outer query cannot be
3751 ** optimized.
3752 **
3753 ** This routine attempts to rewrite queries such as the above into
3754 ** a single flat select, like this:
3755 **
3756 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3757 **
3758 ** The code generated for this simplification gives the same result
3759 ** but only has to scan the data once.  And because indices might
3760 ** exist on the table t1, a complete scan of the data might be
3761 ** avoided.
3762 **
3763 ** Flattening is subject to the following constraints:
3764 **
3765 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3766 **        The subquery and the outer query cannot both be aggregates.
3767 **
3768 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3769 **        (2) If the subquery is an aggregate then
3770 **        (2a) the outer query must not be a join and
3771 **        (2b) the outer query must not use subqueries
3772 **             other than the one FROM-clause subquery that is a candidate
3773 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3774 **             from 2015-02-09.)
3775 **
3776 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3777 **        (3a) the subquery may not be a join and
3778 **        (3b) the FROM clause of the subquery may not contain a virtual
3779 **             table and
3780 **        (3c) the outer query may not be an aggregate.
3781 **        (3d) the outer query may not be DISTINCT.
3782 **
3783 **   (4)  The subquery can not be DISTINCT.
3784 **
3785 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3786 **        sub-queries that were excluded from this optimization. Restriction
3787 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3788 **
3789 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3790 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3791 **
3792 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3793 **        A FROM clause, consider adding a FROM clause with the special
3794 **        table sqlite_once that consists of a single row containing a
3795 **        single NULL.
3796 **
3797 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3798 **
3799 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3800 **
3801 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3802 **        accidently carried the comment forward until 2014-09-15.  Original
3803 **        constraint: "If the subquery is aggregate then the outer query
3804 **        may not use LIMIT."
3805 **
3806 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3807 **
3808 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3809 **        a separate restriction deriving from ticket #350.
3810 **
3811 **  (13)  The subquery and outer query may not both use LIMIT.
3812 **
3813 **  (14)  The subquery may not use OFFSET.
3814 **
3815 **  (15)  If the outer query is part of a compound select, then the
3816 **        subquery may not use LIMIT.
3817 **        (See ticket #2339 and ticket [02a8e81d44]).
3818 **
3819 **  (16)  If the outer query is aggregate, then the subquery may not
3820 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3821 **        until we introduced the group_concat() function.
3822 **
3823 **  (17)  If the subquery is a compound select, then
3824 **        (17a) all compound operators must be a UNION ALL, and
3825 **        (17b) no terms within the subquery compound may be aggregate
3826 **              or DISTINCT, and
3827 **        (17c) every term within the subquery compound must have a FROM clause
3828 **        (17d) the outer query may not be
3829 **              (17d1) aggregate, or
3830 **              (17d2) DISTINCT
3831 **        (17e) the subquery may not contain window functions, and
3832 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3833 **
3834 **        The parent and sub-query may contain WHERE clauses. Subject to
3835 **        rules (11), (13) and (14), they may also contain ORDER BY,
3836 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3837 **        operator other than UNION ALL because all the other compound
3838 **        operators have an implied DISTINCT which is disallowed by
3839 **        restriction (4).
3840 **
3841 **        Also, each component of the sub-query must return the same number
3842 **        of result columns. This is actually a requirement for any compound
3843 **        SELECT statement, but all the code here does is make sure that no
3844 **        such (illegal) sub-query is flattened. The caller will detect the
3845 **        syntax error and return a detailed message.
3846 **
3847 **  (18)  If the sub-query is a compound select, then all terms of the
3848 **        ORDER BY clause of the parent must be copies of a term returned
3849 **        by the parent query.
3850 **
3851 **  (19)  If the subquery uses LIMIT then the outer query may not
3852 **        have a WHERE clause.
3853 **
3854 **  (20)  If the sub-query is a compound select, then it must not use
3855 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3856 **        somewhat by saying that the terms of the ORDER BY clause must
3857 **        appear as unmodified result columns in the outer query.  But we
3858 **        have other optimizations in mind to deal with that case.
3859 **
3860 **  (21)  If the subquery uses LIMIT then the outer query may not be
3861 **        DISTINCT.  (See ticket [752e1646fc]).
3862 **
3863 **  (22)  The subquery may not be a recursive CTE.
3864 **
3865 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3866 **        a compound query.  This restriction is because transforming the
3867 **        parent to a compound query confuses the code that handles
3868 **        recursive queries in multiSelect().
3869 **
3870 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3871 **        The subquery may not be an aggregate that uses the built-in min() or
3872 **        or max() functions.  (Without this restriction, a query like:
3873 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3874 **        return the value X for which Y was maximal.)
3875 **
3876 **  (25)  If either the subquery or the parent query contains a window
3877 **        function in the select list or ORDER BY clause, flattening
3878 **        is not attempted.
3879 **
3880 **
3881 ** In this routine, the "p" parameter is a pointer to the outer query.
3882 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3883 ** uses aggregates.
3884 **
3885 ** If flattening is not attempted, this routine is a no-op and returns 0.
3886 ** If flattening is attempted this routine returns 1.
3887 **
3888 ** All of the expression analysis must occur on both the outer query and
3889 ** the subquery before this routine runs.
3890 */
3891 static int flattenSubquery(
3892   Parse *pParse,       /* Parsing context */
3893   Select *p,           /* The parent or outer SELECT statement */
3894   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3895   int isAgg            /* True if outer SELECT uses aggregate functions */
3896 ){
3897   const char *zSavedAuthContext = pParse->zAuthContext;
3898   Select *pParent;    /* Current UNION ALL term of the other query */
3899   Select *pSub;       /* The inner query or "subquery" */
3900   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3901   SrcList *pSrc;      /* The FROM clause of the outer query */
3902   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3903   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3904   int iNewParent = -1;/* Replacement table for iParent */
3905   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3906   int i;              /* Loop counter */
3907   Expr *pWhere;                    /* The WHERE clause */
3908   struct SrcList_item *pSubitem;   /* The subquery */
3909   sqlite3 *db = pParse->db;
3910   Walker w;                        /* Walker to persist agginfo data */
3911   int *aCsrMap = 0;
3912 
3913   /* Check to see if flattening is permitted.  Return 0 if not.
3914   */
3915   assert( p!=0 );
3916   assert( p->pPrior==0 );
3917   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3918   pSrc = p->pSrc;
3919   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3920   pSubitem = &pSrc->a[iFrom];
3921   iParent = pSubitem->iCursor;
3922   pSub = pSubitem->pSelect;
3923   assert( pSub!=0 );
3924 
3925 #ifndef SQLITE_OMIT_WINDOWFUNC
3926   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3927 #endif
3928 
3929   pSubSrc = pSub->pSrc;
3930   assert( pSubSrc );
3931   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3932   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3933   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3934   ** became arbitrary expressions, we were forced to add restrictions (13)
3935   ** and (14). */
3936   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3937   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3938   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3939     return 0;                                            /* Restriction (15) */
3940   }
3941   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3942   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3943   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3944      return 0;         /* Restrictions (8)(9) */
3945   }
3946   if( p->pOrderBy && pSub->pOrderBy ){
3947      return 0;                                           /* Restriction (11) */
3948   }
3949   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3950   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3951   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3952      return 0;         /* Restriction (21) */
3953   }
3954   if( pSub->selFlags & (SF_Recursive) ){
3955     return 0; /* Restrictions (22) */
3956   }
3957 
3958   /*
3959   ** If the subquery is the right operand of a LEFT JOIN, then the
3960   ** subquery may not be a join itself (3a). Example of why this is not
3961   ** allowed:
3962   **
3963   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3964   **
3965   ** If we flatten the above, we would get
3966   **
3967   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3968   **
3969   ** which is not at all the same thing.
3970   **
3971   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3972   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3973   ** aggregates are processed - there is no mechanism to determine if
3974   ** the LEFT JOIN table should be all-NULL.
3975   **
3976   ** See also tickets #306, #350, and #3300.
3977   */
3978   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3979     isLeftJoin = 1;
3980     if( pSubSrc->nSrc>1                   /* (3a) */
3981      || isAgg                             /* (3b) */
3982      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3983      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3984     ){
3985       return 0;
3986     }
3987   }
3988 #ifdef SQLITE_EXTRA_IFNULLROW
3989   else if( iFrom>0 && !isAgg ){
3990     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3991     ** every reference to any result column from subquery in a join, even
3992     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3993     ** opcode. */
3994     isLeftJoin = -1;
3995   }
3996 #endif
3997 
3998   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3999   ** use only the UNION ALL operator. And none of the simple select queries
4000   ** that make up the compound SELECT are allowed to be aggregate or distinct
4001   ** queries.
4002   */
4003   if( pSub->pPrior ){
4004     if( pSub->pOrderBy ){
4005       return 0;  /* Restriction (20) */
4006     }
4007     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4008       return 0; /* (17d1), (17d2), or (17f) */
4009     }
4010     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4011       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4012       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4013       assert( pSub->pSrc!=0 );
4014       assert( (pSub->selFlags & SF_Recursive)==0 );
4015       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4016       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4017        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4018        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4019 #ifndef SQLITE_OMIT_WINDOWFUNC
4020        || pSub1->pWin                                          /* (17e) */
4021 #endif
4022       ){
4023         return 0;
4024       }
4025       testcase( pSub1->pSrc->nSrc>1 );
4026     }
4027 
4028     /* Restriction (18). */
4029     if( p->pOrderBy ){
4030       int ii;
4031       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4032         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4033       }
4034     }
4035 
4036     /* Restriction (23) */
4037     if( (p->selFlags & SF_Recursive) ) return 0;
4038 
4039     if( pSrc->nSrc>1 ){
4040       aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4041     }
4042   }
4043 
4044   /***** If we reach this point, flattening is permitted. *****/
4045   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4046                    pSub->selId, pSub, iFrom));
4047 
4048   /* Authorize the subquery */
4049   pParse->zAuthContext = pSubitem->zName;
4050   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4051   testcase( i==SQLITE_DENY );
4052   pParse->zAuthContext = zSavedAuthContext;
4053 
4054   /* Delete the transient structures associated with thesubquery */
4055   pSub1 = pSubitem->pSelect;
4056   sqlite3DbFree(db, pSubitem->zDatabase);
4057   sqlite3DbFree(db, pSubitem->zName);
4058   sqlite3DbFree(db, pSubitem->zAlias);
4059   pSubitem->zDatabase = 0;
4060   pSubitem->zName = 0;
4061   pSubitem->zAlias = 0;
4062   pSubitem->pSelect = 0;
4063   assert( pSubitem->pOn==0 );
4064 
4065   /* If the sub-query is a compound SELECT statement, then (by restrictions
4066   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4067   ** be of the form:
4068   **
4069   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4070   **
4071   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4072   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4073   ** OFFSET clauses and joins them to the left-hand-side of the original
4074   ** using UNION ALL operators. In this case N is the number of simple
4075   ** select statements in the compound sub-query.
4076   **
4077   ** Example:
4078   **
4079   **     SELECT a+1 FROM (
4080   **        SELECT x FROM tab
4081   **        UNION ALL
4082   **        SELECT y FROM tab
4083   **        UNION ALL
4084   **        SELECT abs(z*2) FROM tab2
4085   **     ) WHERE a!=5 ORDER BY 1
4086   **
4087   ** Transformed into:
4088   **
4089   **     SELECT x+1 FROM tab WHERE x+1!=5
4090   **     UNION ALL
4091   **     SELECT y+1 FROM tab WHERE y+1!=5
4092   **     UNION ALL
4093   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4094   **     ORDER BY 1
4095   **
4096   ** We call this the "compound-subquery flattening".
4097   */
4098   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4099     Select *pNew;
4100     ExprList *pOrderBy = p->pOrderBy;
4101     Expr *pLimit = p->pLimit;
4102     Select *pPrior = p->pPrior;
4103     Table *pItemTab = pSubitem->pTab;
4104     pSubitem->pTab = 0;
4105     p->pOrderBy = 0;
4106     p->pPrior = 0;
4107     p->pLimit = 0;
4108     pNew = sqlite3SelectDup(db, p, 0);
4109     p->pLimit = pLimit;
4110     p->pOrderBy = pOrderBy;
4111     p->op = TK_ALL;
4112     pSubitem->pTab = pItemTab;
4113     if( pNew==0 ){
4114       p->pPrior = pPrior;
4115     }else{
4116       if( aCsrMap && db->mallocFailed==0 ){
4117         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4118       }
4119       pNew->pPrior = pPrior;
4120       if( pPrior ) pPrior->pNext = pNew;
4121       pNew->pNext = p;
4122       p->pPrior = pNew;
4123       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4124                               " creates %u as peer\n",pNew->selId));
4125     }
4126     assert( pSubitem->pSelect==0 );
4127   }
4128   sqlite3DbFree(db, aCsrMap);
4129   if( db->mallocFailed ){
4130     pSubitem->pSelect = pSub1;
4131     return 1;
4132   }
4133 
4134   /* Defer deleting the Table object associated with the
4135   ** subquery until code generation is
4136   ** complete, since there may still exist Expr.pTab entries that
4137   ** refer to the subquery even after flattening.  Ticket #3346.
4138   **
4139   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4140   */
4141   if( ALWAYS(pSubitem->pTab!=0) ){
4142     Table *pTabToDel = pSubitem->pTab;
4143     if( pTabToDel->nTabRef==1 ){
4144       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4145       sqlite3ParserAddCleanup(pToplevel,
4146          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4147          pTabToDel);
4148       testcase( pToplevel->earlyCleanup );
4149     }else{
4150       pTabToDel->nTabRef--;
4151     }
4152     pSubitem->pTab = 0;
4153   }
4154 
4155   /* The following loop runs once for each term in a compound-subquery
4156   ** flattening (as described above).  If we are doing a different kind
4157   ** of flattening - a flattening other than a compound-subquery flattening -
4158   ** then this loop only runs once.
4159   **
4160   ** This loop moves all of the FROM elements of the subquery into the
4161   ** the FROM clause of the outer query.  Before doing this, remember
4162   ** the cursor number for the original outer query FROM element in
4163   ** iParent.  The iParent cursor will never be used.  Subsequent code
4164   ** will scan expressions looking for iParent references and replace
4165   ** those references with expressions that resolve to the subquery FROM
4166   ** elements we are now copying in.
4167   */
4168   pSub = pSub1;
4169   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4170     int nSubSrc;
4171     u8 jointype = 0;
4172     assert( pSub!=0 );
4173     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4174     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4175     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4176 
4177     if( pParent==p ){
4178       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4179     }
4180 
4181     /* The subquery uses a single slot of the FROM clause of the outer
4182     ** query.  If the subquery has more than one element in its FROM clause,
4183     ** then expand the outer query to make space for it to hold all elements
4184     ** of the subquery.
4185     **
4186     ** Example:
4187     **
4188     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4189     **
4190     ** The outer query has 3 slots in its FROM clause.  One slot of the
4191     ** outer query (the middle slot) is used by the subquery.  The next
4192     ** block of code will expand the outer query FROM clause to 4 slots.
4193     ** The middle slot is expanded to two slots in order to make space
4194     ** for the two elements in the FROM clause of the subquery.
4195     */
4196     if( nSubSrc>1 ){
4197       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4198       if( pSrc==0 ) break;
4199       pParent->pSrc = pSrc;
4200     }
4201 
4202     /* Transfer the FROM clause terms from the subquery into the
4203     ** outer query.
4204     */
4205     for(i=0; i<nSubSrc; i++){
4206       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4207       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4208       pSrc->a[i+iFrom] = pSubSrc->a[i];
4209       iNewParent = pSubSrc->a[i].iCursor;
4210       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4211     }
4212     pSrc->a[iFrom].fg.jointype = jointype;
4213 
4214     /* Now begin substituting subquery result set expressions for
4215     ** references to the iParent in the outer query.
4216     **
4217     ** Example:
4218     **
4219     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4220     **   \                     \_____________ subquery __________/          /
4221     **    \_____________________ outer query ______________________________/
4222     **
4223     ** We look at every expression in the outer query and every place we see
4224     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4225     */
4226     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4227       /* At this point, any non-zero iOrderByCol values indicate that the
4228       ** ORDER BY column expression is identical to the iOrderByCol'th
4229       ** expression returned by SELECT statement pSub. Since these values
4230       ** do not necessarily correspond to columns in SELECT statement pParent,
4231       ** zero them before transfering the ORDER BY clause.
4232       **
4233       ** Not doing this may cause an error if a subsequent call to this
4234       ** function attempts to flatten a compound sub-query into pParent
4235       ** (the only way this can happen is if the compound sub-query is
4236       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4237       ExprList *pOrderBy = pSub->pOrderBy;
4238       for(i=0; i<pOrderBy->nExpr; i++){
4239         pOrderBy->a[i].u.x.iOrderByCol = 0;
4240       }
4241       assert( pParent->pOrderBy==0 );
4242       pParent->pOrderBy = pOrderBy;
4243       pSub->pOrderBy = 0;
4244     }
4245     pWhere = pSub->pWhere;
4246     pSub->pWhere = 0;
4247     if( isLeftJoin>0 ){
4248       sqlite3SetJoinExpr(pWhere, iNewParent);
4249     }
4250     if( pWhere ){
4251       if( pParent->pWhere ){
4252         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4253       }else{
4254         pParent->pWhere = pWhere;
4255       }
4256     }
4257     if( db->mallocFailed==0 ){
4258       SubstContext x;
4259       x.pParse = pParse;
4260       x.iTable = iParent;
4261       x.iNewTable = iNewParent;
4262       x.isLeftJoin = isLeftJoin;
4263       x.pEList = pSub->pEList;
4264       substSelect(&x, pParent, 0);
4265     }
4266 
4267     /* The flattened query is a compound if either the inner or the
4268     ** outer query is a compound. */
4269     pParent->selFlags |= pSub->selFlags & SF_Compound;
4270     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4271 
4272     /*
4273     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4274     **
4275     ** One is tempted to try to add a and b to combine the limits.  But this
4276     ** does not work if either limit is negative.
4277     */
4278     if( pSub->pLimit ){
4279       pParent->pLimit = pSub->pLimit;
4280       pSub->pLimit = 0;
4281     }
4282 
4283     /* Recompute the SrcList_item.colUsed masks for the flattened
4284     ** tables. */
4285     for(i=0; i<nSubSrc; i++){
4286       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4287     }
4288   }
4289 
4290   /* Finially, delete what is left of the subquery and return
4291   ** success.
4292   */
4293   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4294   sqlite3WalkSelect(&w,pSub1);
4295   sqlite3SelectDelete(db, pSub1);
4296 
4297 #if SELECTTRACE_ENABLED
4298   if( sqlite3SelectTrace & 0x100 ){
4299     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4300     sqlite3TreeViewSelect(0, p, 0);
4301   }
4302 #endif
4303 
4304   return 1;
4305 }
4306 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4307 
4308 /*
4309 ** A structure to keep track of all of the column values that are fixed to
4310 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4311 */
4312 typedef struct WhereConst WhereConst;
4313 struct WhereConst {
4314   Parse *pParse;   /* Parsing context */
4315   int nConst;      /* Number for COLUMN=CONSTANT terms */
4316   int nChng;       /* Number of times a constant is propagated */
4317   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4318 };
4319 
4320 /*
4321 ** Add a new entry to the pConst object.  Except, do not add duplicate
4322 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4323 **
4324 ** The caller guarantees the pColumn is a column and pValue is a constant.
4325 ** This routine has to do some additional checks before completing the
4326 ** insert.
4327 */
4328 static void constInsert(
4329   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4330   Expr *pColumn,       /* The COLUMN part of the constraint */
4331   Expr *pValue,        /* The VALUE part of the constraint */
4332   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4333 ){
4334   int i;
4335   assert( pColumn->op==TK_COLUMN );
4336   assert( sqlite3ExprIsConstant(pValue) );
4337 
4338   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4339   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4340   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4341     return;
4342   }
4343 
4344   /* 2018-10-25 ticket [cf5ed20f]
4345   ** Make sure the same pColumn is not inserted more than once */
4346   for(i=0; i<pConst->nConst; i++){
4347     const Expr *pE2 = pConst->apExpr[i*2];
4348     assert( pE2->op==TK_COLUMN );
4349     if( pE2->iTable==pColumn->iTable
4350      && pE2->iColumn==pColumn->iColumn
4351     ){
4352       return;  /* Already present.  Return without doing anything. */
4353     }
4354   }
4355 
4356   pConst->nConst++;
4357   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4358                          pConst->nConst*2*sizeof(Expr*));
4359   if( pConst->apExpr==0 ){
4360     pConst->nConst = 0;
4361   }else{
4362     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4363     pConst->apExpr[pConst->nConst*2-1] = pValue;
4364   }
4365 }
4366 
4367 /*
4368 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4369 ** is a constant expression and where the term must be true because it
4370 ** is part of the AND-connected terms of the expression.  For each term
4371 ** found, add it to the pConst structure.
4372 */
4373 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4374   Expr *pRight, *pLeft;
4375   if( pExpr==0 ) return;
4376   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4377   if( pExpr->op==TK_AND ){
4378     findConstInWhere(pConst, pExpr->pRight);
4379     findConstInWhere(pConst, pExpr->pLeft);
4380     return;
4381   }
4382   if( pExpr->op!=TK_EQ ) return;
4383   pRight = pExpr->pRight;
4384   pLeft = pExpr->pLeft;
4385   assert( pRight!=0 );
4386   assert( pLeft!=0 );
4387   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4388     constInsert(pConst,pRight,pLeft,pExpr);
4389   }
4390   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4391     constInsert(pConst,pLeft,pRight,pExpr);
4392   }
4393 }
4394 
4395 /*
4396 ** This is a Walker expression callback.  pExpr is a candidate expression
4397 ** to be replaced by a value.  If pExpr is equivalent to one of the
4398 ** columns named in pWalker->u.pConst, then overwrite it with its
4399 ** corresponding value.
4400 */
4401 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4402   int i;
4403   WhereConst *pConst;
4404   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4405   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4406     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4407     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4408     return WRC_Continue;
4409   }
4410   pConst = pWalker->u.pConst;
4411   for(i=0; i<pConst->nConst; i++){
4412     Expr *pColumn = pConst->apExpr[i*2];
4413     if( pColumn==pExpr ) continue;
4414     if( pColumn->iTable!=pExpr->iTable ) continue;
4415     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4416     /* A match is found.  Add the EP_FixedCol property */
4417     pConst->nChng++;
4418     ExprClearProperty(pExpr, EP_Leaf);
4419     ExprSetProperty(pExpr, EP_FixedCol);
4420     assert( pExpr->pLeft==0 );
4421     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4422     break;
4423   }
4424   return WRC_Prune;
4425 }
4426 
4427 /*
4428 ** The WHERE-clause constant propagation optimization.
4429 **
4430 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4431 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4432 ** part of a ON clause from a LEFT JOIN, then throughout the query
4433 ** replace all other occurrences of COLUMN with CONSTANT.
4434 **
4435 ** For example, the query:
4436 **
4437 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4438 **
4439 ** Is transformed into
4440 **
4441 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4442 **
4443 ** Return true if any transformations where made and false if not.
4444 **
4445 ** Implementation note:  Constant propagation is tricky due to affinity
4446 ** and collating sequence interactions.  Consider this example:
4447 **
4448 **    CREATE TABLE t1(a INT,b TEXT);
4449 **    INSERT INTO t1 VALUES(123,'0123');
4450 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4451 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4452 **
4453 ** The two SELECT statements above should return different answers.  b=a
4454 ** is alway true because the comparison uses numeric affinity, but b=123
4455 ** is false because it uses text affinity and '0123' is not the same as '123'.
4456 ** To work around this, the expression tree is not actually changed from
4457 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4458 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4459 ** routines know to generate the constant "123" instead of looking up the
4460 ** column value.  Also, to avoid collation problems, this optimization is
4461 ** only attempted if the "a=123" term uses the default BINARY collation.
4462 */
4463 static int propagateConstants(
4464   Parse *pParse,   /* The parsing context */
4465   Select *p        /* The query in which to propagate constants */
4466 ){
4467   WhereConst x;
4468   Walker w;
4469   int nChng = 0;
4470   x.pParse = pParse;
4471   do{
4472     x.nConst = 0;
4473     x.nChng = 0;
4474     x.apExpr = 0;
4475     findConstInWhere(&x, p->pWhere);
4476     if( x.nConst ){
4477       memset(&w, 0, sizeof(w));
4478       w.pParse = pParse;
4479       w.xExprCallback = propagateConstantExprRewrite;
4480       w.xSelectCallback = sqlite3SelectWalkNoop;
4481       w.xSelectCallback2 = 0;
4482       w.walkerDepth = 0;
4483       w.u.pConst = &x;
4484       sqlite3WalkExpr(&w, p->pWhere);
4485       sqlite3DbFree(x.pParse->db, x.apExpr);
4486       nChng += x.nChng;
4487     }
4488   }while( x.nChng );
4489   return nChng;
4490 }
4491 
4492 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4493 /*
4494 ** Make copies of relevant WHERE clause terms of the outer query into
4495 ** the WHERE clause of subquery.  Example:
4496 **
4497 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4498 **
4499 ** Transformed into:
4500 **
4501 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4502 **     WHERE x=5 AND y=10;
4503 **
4504 ** The hope is that the terms added to the inner query will make it more
4505 ** efficient.
4506 **
4507 ** Do not attempt this optimization if:
4508 **
4509 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4510 **           disallow this optimization for aggregate subqueries, but now
4511 **           it is allowed by putting the extra terms on the HAVING clause.
4512 **           The added HAVING clause is pointless if the subquery lacks
4513 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4514 **           so there does not appear to be any reason to add extra logic
4515 **           to suppress it. **)
4516 **
4517 **   (2) The inner query is the recursive part of a common table expression.
4518 **
4519 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4520 **       clause would change the meaning of the LIMIT).
4521 **
4522 **   (4) The inner query is the right operand of a LEFT JOIN and the
4523 **       expression to be pushed down does not come from the ON clause
4524 **       on that LEFT JOIN.
4525 **
4526 **   (5) The WHERE clause expression originates in the ON or USING clause
4527 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4528 **       left join.  An example:
4529 **
4530 **           SELECT *
4531 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4532 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4533 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4534 **
4535 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4536 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4537 **       then the (1,1,NULL) row would be suppressed.
4538 **
4539 **   (6) The inner query features one or more window-functions (since
4540 **       changes to the WHERE clause of the inner query could change the
4541 **       window over which window functions are calculated).
4542 **
4543 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4544 ** terms are duplicated into the subquery.
4545 */
4546 static int pushDownWhereTerms(
4547   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4548   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4549   Expr *pWhere,         /* The WHERE clause of the outer query */
4550   int iCursor,          /* Cursor number of the subquery */
4551   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4552 ){
4553   Expr *pNew;
4554   int nChng = 0;
4555   Select *pSel;
4556   if( pWhere==0 ) return 0;
4557   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4558 
4559 #ifndef SQLITE_OMIT_WINDOWFUNC
4560   for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4561     if( pSel->pWin ) return 0;    /* restriction (6) */
4562   }
4563 #endif
4564 
4565 #ifdef SQLITE_DEBUG
4566   /* Only the first term of a compound can have a WITH clause.  But make
4567   ** sure no other terms are marked SF_Recursive in case something changes
4568   ** in the future.
4569   */
4570   {
4571     Select *pX;
4572     for(pX=pSubq; pX; pX=pX->pPrior){
4573       assert( (pX->selFlags & (SF_Recursive))==0 );
4574     }
4575   }
4576 #endif
4577 
4578   if( pSubq->pLimit!=0 ){
4579     return 0; /* restriction (3) */
4580   }
4581   while( pWhere->op==TK_AND ){
4582     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4583                                 iCursor, isLeftJoin);
4584     pWhere = pWhere->pLeft;
4585   }
4586   if( isLeftJoin
4587    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4588          || pWhere->iRightJoinTable!=iCursor)
4589   ){
4590     return 0; /* restriction (4) */
4591   }
4592   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4593     return 0; /* restriction (5) */
4594   }
4595   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4596     nChng++;
4597     pSubq->selFlags |= SF_PushDown;
4598     while( pSubq ){
4599       SubstContext x;
4600       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4601       unsetJoinExpr(pNew, -1);
4602       x.pParse = pParse;
4603       x.iTable = iCursor;
4604       x.iNewTable = iCursor;
4605       x.isLeftJoin = 0;
4606       x.pEList = pSubq->pEList;
4607       pNew = substExpr(&x, pNew);
4608       if( pSubq->selFlags & SF_Aggregate ){
4609         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4610       }else{
4611         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4612       }
4613       pSubq = pSubq->pPrior;
4614     }
4615   }
4616   return nChng;
4617 }
4618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4619 
4620 /*
4621 ** The pFunc is the only aggregate function in the query.  Check to see
4622 ** if the query is a candidate for the min/max optimization.
4623 **
4624 ** If the query is a candidate for the min/max optimization, then set
4625 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4626 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4627 ** whether pFunc is a min() or max() function.
4628 **
4629 ** If the query is not a candidate for the min/max optimization, return
4630 ** WHERE_ORDERBY_NORMAL (which must be zero).
4631 **
4632 ** This routine must be called after aggregate functions have been
4633 ** located but before their arguments have been subjected to aggregate
4634 ** analysis.
4635 */
4636 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4637   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4638   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4639   const char *zFunc;                    /* Name of aggregate function pFunc */
4640   ExprList *pOrderBy;
4641   u8 sortFlags = 0;
4642 
4643   assert( *ppMinMax==0 );
4644   assert( pFunc->op==TK_AGG_FUNCTION );
4645   assert( !IsWindowFunc(pFunc) );
4646   if( pEList==0
4647    || pEList->nExpr!=1
4648    || ExprHasProperty(pFunc, EP_WinFunc)
4649    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4650   ){
4651     return eRet;
4652   }
4653   zFunc = pFunc->u.zToken;
4654   if( sqlite3StrICmp(zFunc, "min")==0 ){
4655     eRet = WHERE_ORDERBY_MIN;
4656     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4657       sortFlags = KEYINFO_ORDER_BIGNULL;
4658     }
4659   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4660     eRet = WHERE_ORDERBY_MAX;
4661     sortFlags = KEYINFO_ORDER_DESC;
4662   }else{
4663     return eRet;
4664   }
4665   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4666   assert( pOrderBy!=0 || db->mallocFailed );
4667   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4668   return eRet;
4669 }
4670 
4671 /*
4672 ** The select statement passed as the first argument is an aggregate query.
4673 ** The second argument is the associated aggregate-info object. This
4674 ** function tests if the SELECT is of the form:
4675 **
4676 **   SELECT count(*) FROM <tbl>
4677 **
4678 ** where table is a database table, not a sub-select or view. If the query
4679 ** does match this pattern, then a pointer to the Table object representing
4680 ** <tbl> is returned. Otherwise, 0 is returned.
4681 */
4682 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4683   Table *pTab;
4684   Expr *pExpr;
4685 
4686   assert( !p->pGroupBy );
4687 
4688   if( p->pWhere || p->pEList->nExpr!=1
4689    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4690   ){
4691     return 0;
4692   }
4693   pTab = p->pSrc->a[0].pTab;
4694   pExpr = p->pEList->a[0].pExpr;
4695   assert( pTab && !pTab->pSelect && pExpr );
4696 
4697   if( IsVirtual(pTab) ) return 0;
4698   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4699   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4700   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4701   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4702 
4703   return pTab;
4704 }
4705 
4706 /*
4707 ** If the source-list item passed as an argument was augmented with an
4708 ** INDEXED BY clause, then try to locate the specified index. If there
4709 ** was such a clause and the named index cannot be found, return
4710 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4711 ** pFrom->pIndex and return SQLITE_OK.
4712 */
4713 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4714   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4715     Table *pTab = pFrom->pTab;
4716     char *zIndexedBy = pFrom->u1.zIndexedBy;
4717     Index *pIdx;
4718     for(pIdx=pTab->pIndex;
4719         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4720         pIdx=pIdx->pNext
4721     );
4722     if( !pIdx ){
4723       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4724       pParse->checkSchema = 1;
4725       return SQLITE_ERROR;
4726     }
4727     pFrom->pIBIndex = pIdx;
4728   }
4729   return SQLITE_OK;
4730 }
4731 /*
4732 ** Detect compound SELECT statements that use an ORDER BY clause with
4733 ** an alternative collating sequence.
4734 **
4735 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4736 **
4737 ** These are rewritten as a subquery:
4738 **
4739 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4740 **     ORDER BY ... COLLATE ...
4741 **
4742 ** This transformation is necessary because the multiSelectOrderBy() routine
4743 ** above that generates the code for a compound SELECT with an ORDER BY clause
4744 ** uses a merge algorithm that requires the same collating sequence on the
4745 ** result columns as on the ORDER BY clause.  See ticket
4746 ** http://www.sqlite.org/src/info/6709574d2a
4747 **
4748 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4749 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4750 ** there are COLLATE terms in the ORDER BY.
4751 */
4752 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4753   int i;
4754   Select *pNew;
4755   Select *pX;
4756   sqlite3 *db;
4757   struct ExprList_item *a;
4758   SrcList *pNewSrc;
4759   Parse *pParse;
4760   Token dummy;
4761 
4762   if( p->pPrior==0 ) return WRC_Continue;
4763   if( p->pOrderBy==0 ) return WRC_Continue;
4764   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4765   if( pX==0 ) return WRC_Continue;
4766   a = p->pOrderBy->a;
4767 #ifndef SQLITE_OMIT_WINDOWFUNC
4768   /* If iOrderByCol is already non-zero, then it has already been matched
4769   ** to a result column of the SELECT statement. This occurs when the
4770   ** SELECT is rewritten for window-functions processing and then passed
4771   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4772   ** by this function is not required in this case. */
4773   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4774 #endif
4775   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4776     if( a[i].pExpr->flags & EP_Collate ) break;
4777   }
4778   if( i<0 ) return WRC_Continue;
4779 
4780   /* If we reach this point, that means the transformation is required. */
4781 
4782   pParse = pWalker->pParse;
4783   db = pParse->db;
4784   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4785   if( pNew==0 ) return WRC_Abort;
4786   memset(&dummy, 0, sizeof(dummy));
4787   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4788   if( pNewSrc==0 ) return WRC_Abort;
4789   *pNew = *p;
4790   p->pSrc = pNewSrc;
4791   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4792   p->op = TK_SELECT;
4793   p->pWhere = 0;
4794   pNew->pGroupBy = 0;
4795   pNew->pHaving = 0;
4796   pNew->pOrderBy = 0;
4797   p->pPrior = 0;
4798   p->pNext = 0;
4799   p->pWith = 0;
4800 #ifndef SQLITE_OMIT_WINDOWFUNC
4801   p->pWinDefn = 0;
4802 #endif
4803   p->selFlags &= ~SF_Compound;
4804   assert( (p->selFlags & SF_Converted)==0 );
4805   p->selFlags |= SF_Converted;
4806   assert( pNew->pPrior!=0 );
4807   pNew->pPrior->pNext = pNew;
4808   pNew->pLimit = 0;
4809   return WRC_Continue;
4810 }
4811 
4812 /*
4813 ** Check to see if the FROM clause term pFrom has table-valued function
4814 ** arguments.  If it does, leave an error message in pParse and return
4815 ** non-zero, since pFrom is not allowed to be a table-valued function.
4816 */
4817 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4818   if( pFrom->fg.isTabFunc ){
4819     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4820     return 1;
4821   }
4822   return 0;
4823 }
4824 
4825 #ifndef SQLITE_OMIT_CTE
4826 /*
4827 ** Argument pWith (which may be NULL) points to a linked list of nested
4828 ** WITH contexts, from inner to outermost. If the table identified by
4829 ** FROM clause element pItem is really a common-table-expression (CTE)
4830 ** then return a pointer to the CTE definition for that table. Otherwise
4831 ** return NULL.
4832 **
4833 ** If a non-NULL value is returned, set *ppContext to point to the With
4834 ** object that the returned CTE belongs to.
4835 */
4836 static struct Cte *searchWith(
4837   With *pWith,                    /* Current innermost WITH clause */
4838   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4839   With **ppContext                /* OUT: WITH clause return value belongs to */
4840 ){
4841   const char *zName;
4842   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4843     With *p;
4844     for(p=pWith; p; p=p->pOuter){
4845       int i;
4846       for(i=0; i<p->nCte; i++){
4847         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4848           *ppContext = p;
4849           return &p->a[i];
4850         }
4851       }
4852     }
4853   }
4854   return 0;
4855 }
4856 
4857 /* The code generator maintains a stack of active WITH clauses
4858 ** with the inner-most WITH clause being at the top of the stack.
4859 **
4860 ** This routine pushes the WITH clause passed as the second argument
4861 ** onto the top of the stack. If argument bFree is true, then this
4862 ** WITH clause will never be popped from the stack. In this case it
4863 ** should be freed along with the Parse object. In other cases, when
4864 ** bFree==0, the With object will be freed along with the SELECT
4865 ** statement with which it is associated.
4866 */
4867 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4868   if( pWith ){
4869     assert( pParse->pWith!=pWith );
4870     pWith->pOuter = pParse->pWith;
4871     pParse->pWith = pWith;
4872     if( bFree ){
4873       sqlite3ParserAddCleanup(pParse,
4874          (void(*)(sqlite3*,void*))sqlite3WithDelete,
4875          pWith);
4876       testcase( pParse->earlyCleanup );
4877     }
4878   }
4879 }
4880 
4881 /*
4882 ** This function checks if argument pFrom refers to a CTE declared by
4883 ** a WITH clause on the stack currently maintained by the parser. And,
4884 ** if currently processing a CTE expression, if it is a recursive
4885 ** reference to the current CTE.
4886 **
4887 ** If pFrom falls into either of the two categories above, pFrom->pTab
4888 ** and other fields are populated accordingly. The caller should check
4889 ** (pFrom->pTab!=0) to determine whether or not a successful match
4890 ** was found.
4891 **
4892 ** Whether or not a match is found, SQLITE_OK is returned if no error
4893 ** occurs. If an error does occur, an error message is stored in the
4894 ** parser and some error code other than SQLITE_OK returned.
4895 */
4896 static int withExpand(
4897   Walker *pWalker,
4898   struct SrcList_item *pFrom
4899 ){
4900   Parse *pParse = pWalker->pParse;
4901   sqlite3 *db = pParse->db;
4902   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4903   With *pWith;                    /* WITH clause that pCte belongs to */
4904 
4905   assert( pFrom->pTab==0 );
4906   if( pParse->nErr ){
4907     return SQLITE_ERROR;
4908   }
4909 
4910   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4911   if( pCte ){
4912     Table *pTab;
4913     ExprList *pEList;
4914     Select *pSel;
4915     Select *pLeft;                /* Left-most SELECT statement */
4916     Select *pRecTerm;             /* Left-most recursive term */
4917     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4918     With *pSavedWith;             /* Initial value of pParse->pWith */
4919     int iRecTab = -1;             /* Cursor for recursive table */
4920 
4921     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4922     ** recursive reference to CTE pCte. Leave an error in pParse and return
4923     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4924     ** In this case, proceed.  */
4925     if( pCte->zCteErr ){
4926       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4927       return SQLITE_ERROR;
4928     }
4929     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4930 
4931     assert( pFrom->pTab==0 );
4932     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4933     if( pTab==0 ) return WRC_Abort;
4934     pTab->nTabRef = 1;
4935     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4936     pTab->iPKey = -1;
4937     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4938     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4939     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4940     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4941     assert( pFrom->pSelect );
4942 
4943     /* Check if this is a recursive CTE. */
4944     pRecTerm = pSel = pFrom->pSelect;
4945     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4946     while( bMayRecursive && pRecTerm->op==pSel->op ){
4947       int i;
4948       SrcList *pSrc = pRecTerm->pSrc;
4949       assert( pRecTerm->pPrior!=0 );
4950       for(i=0; i<pSrc->nSrc; i++){
4951         struct SrcList_item *pItem = &pSrc->a[i];
4952         if( pItem->zDatabase==0
4953          && pItem->zName!=0
4954          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4955         ){
4956           pItem->pTab = pTab;
4957           pTab->nTabRef++;
4958           pItem->fg.isRecursive = 1;
4959           if( pRecTerm->selFlags & SF_Recursive ){
4960             sqlite3ErrorMsg(pParse,
4961                "multiple references to recursive table: %s", pCte->zName
4962             );
4963             return SQLITE_ERROR;
4964           }
4965           pRecTerm->selFlags |= SF_Recursive;
4966           if( iRecTab<0 ) iRecTab = pParse->nTab++;
4967           pItem->iCursor = iRecTab;
4968         }
4969       }
4970       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
4971       pRecTerm = pRecTerm->pPrior;
4972     }
4973 
4974     pCte->zCteErr = "circular reference: %s";
4975     pSavedWith = pParse->pWith;
4976     pParse->pWith = pWith;
4977     if( pSel->selFlags & SF_Recursive ){
4978       assert( pRecTerm!=0 );
4979       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
4980       assert( pRecTerm->pNext!=0 );
4981       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
4982       assert( pRecTerm->pWith==0 );
4983       pRecTerm->pWith = pSel->pWith;
4984       sqlite3WalkSelect(pWalker, pRecTerm);
4985       pRecTerm->pWith = 0;
4986     }else{
4987       sqlite3WalkSelect(pWalker, pSel);
4988     }
4989     pParse->pWith = pWith;
4990 
4991     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4992     pEList = pLeft->pEList;
4993     if( pCte->pCols ){
4994       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4995         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4996             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4997         );
4998         pParse->pWith = pSavedWith;
4999         return SQLITE_ERROR;
5000       }
5001       pEList = pCte->pCols;
5002     }
5003 
5004     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5005     if( bMayRecursive ){
5006       if( pSel->selFlags & SF_Recursive ){
5007         pCte->zCteErr = "multiple recursive references: %s";
5008       }else{
5009         pCte->zCteErr = "recursive reference in a subquery: %s";
5010       }
5011       sqlite3WalkSelect(pWalker, pSel);
5012     }
5013     pCte->zCteErr = 0;
5014     pParse->pWith = pSavedWith;
5015   }
5016 
5017   return SQLITE_OK;
5018 }
5019 #endif
5020 
5021 #ifndef SQLITE_OMIT_CTE
5022 /*
5023 ** If the SELECT passed as the second argument has an associated WITH
5024 ** clause, pop it from the stack stored as part of the Parse object.
5025 **
5026 ** This function is used as the xSelectCallback2() callback by
5027 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5028 ** names and other FROM clause elements.
5029 */
5030 static void selectPopWith(Walker *pWalker, Select *p){
5031   Parse *pParse = pWalker->pParse;
5032   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5033     With *pWith = findRightmost(p)->pWith;
5034     if( pWith!=0 ){
5035       assert( pParse->pWith==pWith || pParse->nErr );
5036       pParse->pWith = pWith->pOuter;
5037     }
5038   }
5039 }
5040 #else
5041 #define selectPopWith 0
5042 #endif
5043 
5044 /*
5045 ** The SrcList_item structure passed as the second argument represents a
5046 ** sub-query in the FROM clause of a SELECT statement. This function
5047 ** allocates and populates the SrcList_item.pTab object. If successful,
5048 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5049 ** SQLITE_NOMEM.
5050 */
5051 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
5052   Select *pSel = pFrom->pSelect;
5053   Table *pTab;
5054 
5055   assert( pSel );
5056   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5057   if( pTab==0 ) return SQLITE_NOMEM;
5058   pTab->nTabRef = 1;
5059   if( pFrom->zAlias ){
5060     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5061   }else{
5062     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5063   }
5064   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5065   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5066   pTab->iPKey = -1;
5067   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5068   pTab->tabFlags |= TF_Ephemeral;
5069 
5070   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5071 }
5072 
5073 /*
5074 ** This routine is a Walker callback for "expanding" a SELECT statement.
5075 ** "Expanding" means to do the following:
5076 **
5077 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5078 **         element of the FROM clause.
5079 **
5080 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5081 **         defines FROM clause.  When views appear in the FROM clause,
5082 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5083 **         that implements the view.  A copy is made of the view's SELECT
5084 **         statement so that we can freely modify or delete that statement
5085 **         without worrying about messing up the persistent representation
5086 **         of the view.
5087 **
5088 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5089 **         on joins and the ON and USING clause of joins.
5090 **
5091 **    (4)  Scan the list of columns in the result set (pEList) looking
5092 **         for instances of the "*" operator or the TABLE.* operator.
5093 **         If found, expand each "*" to be every column in every table
5094 **         and TABLE.* to be every column in TABLE.
5095 **
5096 */
5097 static int selectExpander(Walker *pWalker, Select *p){
5098   Parse *pParse = pWalker->pParse;
5099   int i, j, k;
5100   SrcList *pTabList;
5101   ExprList *pEList;
5102   struct SrcList_item *pFrom;
5103   sqlite3 *db = pParse->db;
5104   Expr *pE, *pRight, *pExpr;
5105   u16 selFlags = p->selFlags;
5106   u32 elistFlags = 0;
5107 
5108   p->selFlags |= SF_Expanded;
5109   if( db->mallocFailed  ){
5110     return WRC_Abort;
5111   }
5112   assert( p->pSrc!=0 );
5113   if( (selFlags & SF_Expanded)!=0 ){
5114     return WRC_Prune;
5115   }
5116   if( pWalker->eCode ){
5117     /* Renumber selId because it has been copied from a view */
5118     p->selId = ++pParse->nSelect;
5119   }
5120   pTabList = p->pSrc;
5121   pEList = p->pEList;
5122   sqlite3WithPush(pParse, p->pWith, 0);
5123 
5124   /* Make sure cursor numbers have been assigned to all entries in
5125   ** the FROM clause of the SELECT statement.
5126   */
5127   sqlite3SrcListAssignCursors(pParse, pTabList);
5128 
5129   /* Look up every table named in the FROM clause of the select.  If
5130   ** an entry of the FROM clause is a subquery instead of a table or view,
5131   ** then create a transient table structure to describe the subquery.
5132   */
5133   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5134     Table *pTab;
5135     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5136     if( pFrom->pTab ) continue;
5137     assert( pFrom->fg.isRecursive==0 );
5138 #ifndef SQLITE_OMIT_CTE
5139     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
5140     if( pFrom->pTab ) {} else
5141 #endif
5142     if( pFrom->zName==0 ){
5143 #ifndef SQLITE_OMIT_SUBQUERY
5144       Select *pSel = pFrom->pSelect;
5145       /* A sub-query in the FROM clause of a SELECT */
5146       assert( pSel!=0 );
5147       assert( pFrom->pTab==0 );
5148       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5149       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5150 #endif
5151     }else{
5152       /* An ordinary table or view name in the FROM clause */
5153       assert( pFrom->pTab==0 );
5154       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5155       if( pTab==0 ) return WRC_Abort;
5156       if( pTab->nTabRef>=0xffff ){
5157         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5158            pTab->zName);
5159         pFrom->pTab = 0;
5160         return WRC_Abort;
5161       }
5162       pTab->nTabRef++;
5163       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5164         return WRC_Abort;
5165       }
5166 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5167       if( IsVirtual(pTab) || pTab->pSelect ){
5168         i16 nCol;
5169         u8 eCodeOrig = pWalker->eCode;
5170         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5171         assert( pFrom->pSelect==0 );
5172         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5173           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5174             pTab->zName);
5175         }
5176 #ifndef SQLITE_OMIT_VIRTUALTABLE
5177         if( IsVirtual(pTab)
5178          && pFrom->fg.fromDDL
5179          && ALWAYS(pTab->pVTable!=0)
5180          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5181         ){
5182           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5183                                   pTab->zName);
5184         }
5185 #endif
5186         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5187         nCol = pTab->nCol;
5188         pTab->nCol = -1;
5189         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5190         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5191         pWalker->eCode = eCodeOrig;
5192         pTab->nCol = nCol;
5193       }
5194 #endif
5195     }
5196 
5197     /* Locate the index named by the INDEXED BY clause, if any. */
5198     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5199       return WRC_Abort;
5200     }
5201   }
5202 
5203   /* Process NATURAL keywords, and ON and USING clauses of joins.
5204   */
5205   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5206     return WRC_Abort;
5207   }
5208 
5209   /* For every "*" that occurs in the column list, insert the names of
5210   ** all columns in all tables.  And for every TABLE.* insert the names
5211   ** of all columns in TABLE.  The parser inserted a special expression
5212   ** with the TK_ASTERISK operator for each "*" that it found in the column
5213   ** list.  The following code just has to locate the TK_ASTERISK
5214   ** expressions and expand each one to the list of all columns in
5215   ** all tables.
5216   **
5217   ** The first loop just checks to see if there are any "*" operators
5218   ** that need expanding.
5219   */
5220   for(k=0; k<pEList->nExpr; k++){
5221     pE = pEList->a[k].pExpr;
5222     if( pE->op==TK_ASTERISK ) break;
5223     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5224     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5225     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5226     elistFlags |= pE->flags;
5227   }
5228   if( k<pEList->nExpr ){
5229     /*
5230     ** If we get here it means the result set contains one or more "*"
5231     ** operators that need to be expanded.  Loop through each expression
5232     ** in the result set and expand them one by one.
5233     */
5234     struct ExprList_item *a = pEList->a;
5235     ExprList *pNew = 0;
5236     int flags = pParse->db->flags;
5237     int longNames = (flags & SQLITE_FullColNames)!=0
5238                       && (flags & SQLITE_ShortColNames)==0;
5239 
5240     for(k=0; k<pEList->nExpr; k++){
5241       pE = a[k].pExpr;
5242       elistFlags |= pE->flags;
5243       pRight = pE->pRight;
5244       assert( pE->op!=TK_DOT || pRight!=0 );
5245       if( pE->op!=TK_ASTERISK
5246        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5247       ){
5248         /* This particular expression does not need to be expanded.
5249         */
5250         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5251         if( pNew ){
5252           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5253           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5254           a[k].zEName = 0;
5255         }
5256         a[k].pExpr = 0;
5257       }else{
5258         /* This expression is a "*" or a "TABLE.*" and needs to be
5259         ** expanded. */
5260         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5261         char *zTName = 0;       /* text of name of TABLE */
5262         if( pE->op==TK_DOT ){
5263           assert( pE->pLeft!=0 );
5264           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5265           zTName = pE->pLeft->u.zToken;
5266         }
5267         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5268           Table *pTab = pFrom->pTab;
5269           Select *pSub = pFrom->pSelect;
5270           char *zTabName = pFrom->zAlias;
5271           const char *zSchemaName = 0;
5272           int iDb;
5273           if( zTabName==0 ){
5274             zTabName = pTab->zName;
5275           }
5276           if( db->mallocFailed ) break;
5277           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5278             pSub = 0;
5279             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5280               continue;
5281             }
5282             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5283             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5284           }
5285           for(j=0; j<pTab->nCol; j++){
5286             char *zName = pTab->aCol[j].zName;
5287             char *zColname;  /* The computed column name */
5288             char *zToFree;   /* Malloced string that needs to be freed */
5289             Token sColname;  /* Computed column name as a token */
5290 
5291             assert( zName );
5292             if( zTName && pSub
5293              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5294             ){
5295               continue;
5296             }
5297 
5298             /* If a column is marked as 'hidden', omit it from the expanded
5299             ** result-set list unless the SELECT has the SF_IncludeHidden
5300             ** bit set.
5301             */
5302             if( (p->selFlags & SF_IncludeHidden)==0
5303              && IsHiddenColumn(&pTab->aCol[j])
5304             ){
5305               continue;
5306             }
5307             tableSeen = 1;
5308 
5309             if( i>0 && zTName==0 ){
5310               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5311                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5312               ){
5313                 /* In a NATURAL join, omit the join columns from the
5314                 ** table to the right of the join */
5315                 continue;
5316               }
5317               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5318                 /* In a join with a USING clause, omit columns in the
5319                 ** using clause from the table on the right. */
5320                 continue;
5321               }
5322             }
5323             pRight = sqlite3Expr(db, TK_ID, zName);
5324             zColname = zName;
5325             zToFree = 0;
5326             if( longNames || pTabList->nSrc>1 ){
5327               Expr *pLeft;
5328               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5329               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5330               if( zSchemaName ){
5331                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5332                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5333               }
5334               if( longNames ){
5335                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5336                 zToFree = zColname;
5337               }
5338             }else{
5339               pExpr = pRight;
5340             }
5341             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5342             sqlite3TokenInit(&sColname, zColname);
5343             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5344             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5345               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5346               sqlite3DbFree(db, pX->zEName);
5347               if( pSub ){
5348                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5349                 testcase( pX->zEName==0 );
5350               }else{
5351                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5352                                            zSchemaName, zTabName, zColname);
5353                 testcase( pX->zEName==0 );
5354               }
5355               pX->eEName = ENAME_TAB;
5356             }
5357             sqlite3DbFree(db, zToFree);
5358           }
5359         }
5360         if( !tableSeen ){
5361           if( zTName ){
5362             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5363           }else{
5364             sqlite3ErrorMsg(pParse, "no tables specified");
5365           }
5366         }
5367       }
5368     }
5369     sqlite3ExprListDelete(db, pEList);
5370     p->pEList = pNew;
5371   }
5372   if( p->pEList ){
5373     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5374       sqlite3ErrorMsg(pParse, "too many columns in result set");
5375       return WRC_Abort;
5376     }
5377     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5378       p->selFlags |= SF_ComplexResult;
5379     }
5380   }
5381   return WRC_Continue;
5382 }
5383 
5384 #if SQLITE_DEBUG
5385 /*
5386 ** Always assert.  This xSelectCallback2 implementation proves that the
5387 ** xSelectCallback2 is never invoked.
5388 */
5389 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5390   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5391   assert( 0 );
5392 }
5393 #endif
5394 /*
5395 ** This routine "expands" a SELECT statement and all of its subqueries.
5396 ** For additional information on what it means to "expand" a SELECT
5397 ** statement, see the comment on the selectExpand worker callback above.
5398 **
5399 ** Expanding a SELECT statement is the first step in processing a
5400 ** SELECT statement.  The SELECT statement must be expanded before
5401 ** name resolution is performed.
5402 **
5403 ** If anything goes wrong, an error message is written into pParse.
5404 ** The calling function can detect the problem by looking at pParse->nErr
5405 ** and/or pParse->db->mallocFailed.
5406 */
5407 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5408   Walker w;
5409   w.xExprCallback = sqlite3ExprWalkNoop;
5410   w.pParse = pParse;
5411   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5412     w.xSelectCallback = convertCompoundSelectToSubquery;
5413     w.xSelectCallback2 = 0;
5414     sqlite3WalkSelect(&w, pSelect);
5415   }
5416   w.xSelectCallback = selectExpander;
5417   w.xSelectCallback2 = selectPopWith;
5418   w.eCode = 0;
5419   sqlite3WalkSelect(&w, pSelect);
5420 }
5421 
5422 
5423 #ifndef SQLITE_OMIT_SUBQUERY
5424 /*
5425 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5426 ** interface.
5427 **
5428 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5429 ** information to the Table structure that represents the result set
5430 ** of that subquery.
5431 **
5432 ** The Table structure that represents the result set was constructed
5433 ** by selectExpander() but the type and collation information was omitted
5434 ** at that point because identifiers had not yet been resolved.  This
5435 ** routine is called after identifier resolution.
5436 */
5437 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5438   Parse *pParse;
5439   int i;
5440   SrcList *pTabList;
5441   struct SrcList_item *pFrom;
5442 
5443   assert( p->selFlags & SF_Resolved );
5444   if( p->selFlags & SF_HasTypeInfo ) return;
5445   p->selFlags |= SF_HasTypeInfo;
5446   pParse = pWalker->pParse;
5447   pTabList = p->pSrc;
5448   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5449     Table *pTab = pFrom->pTab;
5450     assert( pTab!=0 );
5451     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5452       /* A sub-query in the FROM clause of a SELECT */
5453       Select *pSel = pFrom->pSelect;
5454       if( pSel ){
5455         while( pSel->pPrior ) pSel = pSel->pPrior;
5456         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5457                                                SQLITE_AFF_NONE);
5458       }
5459     }
5460   }
5461 }
5462 #endif
5463 
5464 
5465 /*
5466 ** This routine adds datatype and collating sequence information to
5467 ** the Table structures of all FROM-clause subqueries in a
5468 ** SELECT statement.
5469 **
5470 ** Use this routine after name resolution.
5471 */
5472 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5473 #ifndef SQLITE_OMIT_SUBQUERY
5474   Walker w;
5475   w.xSelectCallback = sqlite3SelectWalkNoop;
5476   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5477   w.xExprCallback = sqlite3ExprWalkNoop;
5478   w.pParse = pParse;
5479   sqlite3WalkSelect(&w, pSelect);
5480 #endif
5481 }
5482 
5483 
5484 /*
5485 ** This routine sets up a SELECT statement for processing.  The
5486 ** following is accomplished:
5487 **
5488 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5489 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5490 **     *  ON and USING clauses are shifted into WHERE statements
5491 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5492 **     *  Identifiers in expression are matched to tables.
5493 **
5494 ** This routine acts recursively on all subqueries within the SELECT.
5495 */
5496 void sqlite3SelectPrep(
5497   Parse *pParse,         /* The parser context */
5498   Select *p,             /* The SELECT statement being coded. */
5499   NameContext *pOuterNC  /* Name context for container */
5500 ){
5501   assert( p!=0 || pParse->db->mallocFailed );
5502   if( pParse->db->mallocFailed ) return;
5503   if( p->selFlags & SF_HasTypeInfo ) return;
5504   sqlite3SelectExpand(pParse, p);
5505   if( pParse->nErr || pParse->db->mallocFailed ) return;
5506   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5507   if( pParse->nErr || pParse->db->mallocFailed ) return;
5508   sqlite3SelectAddTypeInfo(pParse, p);
5509 }
5510 
5511 /*
5512 ** Reset the aggregate accumulator.
5513 **
5514 ** The aggregate accumulator is a set of memory cells that hold
5515 ** intermediate results while calculating an aggregate.  This
5516 ** routine generates code that stores NULLs in all of those memory
5517 ** cells.
5518 */
5519 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5520   Vdbe *v = pParse->pVdbe;
5521   int i;
5522   struct AggInfo_func *pFunc;
5523   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5524   if( nReg==0 ) return;
5525   if( pParse->nErr || pParse->db->mallocFailed ) return;
5526 #ifdef SQLITE_DEBUG
5527   /* Verify that all AggInfo registers are within the range specified by
5528   ** AggInfo.mnReg..AggInfo.mxReg */
5529   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5530   for(i=0; i<pAggInfo->nColumn; i++){
5531     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5532          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5533   }
5534   for(i=0; i<pAggInfo->nFunc; i++){
5535     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5536          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5537   }
5538 #endif
5539   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5540   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5541     if( pFunc->iDistinct>=0 ){
5542       Expr *pE = pFunc->pFExpr;
5543       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5544       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5545         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5546            "argument");
5547         pFunc->iDistinct = -1;
5548       }else{
5549         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5550         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5551                           (char*)pKeyInfo, P4_KEYINFO);
5552       }
5553     }
5554   }
5555 }
5556 
5557 /*
5558 ** Invoke the OP_AggFinalize opcode for every aggregate function
5559 ** in the AggInfo structure.
5560 */
5561 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5562   Vdbe *v = pParse->pVdbe;
5563   int i;
5564   struct AggInfo_func *pF;
5565   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5566     ExprList *pList = pF->pFExpr->x.pList;
5567     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5568     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5569     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5570   }
5571 }
5572 
5573 
5574 /*
5575 ** Update the accumulator memory cells for an aggregate based on
5576 ** the current cursor position.
5577 **
5578 ** If regAcc is non-zero and there are no min() or max() aggregates
5579 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5580 ** registers if register regAcc contains 0. The caller will take care
5581 ** of setting and clearing regAcc.
5582 */
5583 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5584   Vdbe *v = pParse->pVdbe;
5585   int i;
5586   int regHit = 0;
5587   int addrHitTest = 0;
5588   struct AggInfo_func *pF;
5589   struct AggInfo_col *pC;
5590 
5591   pAggInfo->directMode = 1;
5592   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5593     int nArg;
5594     int addrNext = 0;
5595     int regAgg;
5596     ExprList *pList = pF->pFExpr->x.pList;
5597     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5598     assert( !IsWindowFunc(pF->pFExpr) );
5599     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5600       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5601       if( pAggInfo->nAccumulator
5602        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5603        && regAcc
5604       ){
5605         /* If regAcc==0, there there exists some min() or max() function
5606         ** without a FILTER clause that will ensure the magnet registers
5607         ** are populated. */
5608         if( regHit==0 ) regHit = ++pParse->nMem;
5609         /* If this is the first row of the group (regAcc contains 0), clear the
5610         ** "magnet" register regHit so that the accumulator registers
5611         ** are populated if the FILTER clause jumps over the the
5612         ** invocation of min() or max() altogether. Or, if this is not
5613         ** the first row (regAcc contains 1), set the magnet register so that
5614         ** the accumulators are not populated unless the min()/max() is invoked
5615         ** and indicates that they should be.  */
5616         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5617       }
5618       addrNext = sqlite3VdbeMakeLabel(pParse);
5619       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5620     }
5621     if( pList ){
5622       nArg = pList->nExpr;
5623       regAgg = sqlite3GetTempRange(pParse, nArg);
5624       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5625     }else{
5626       nArg = 0;
5627       regAgg = 0;
5628     }
5629     if( pF->iDistinct>=0 ){
5630       if( addrNext==0 ){
5631         addrNext = sqlite3VdbeMakeLabel(pParse);
5632       }
5633       testcase( nArg==0 );  /* Error condition */
5634       testcase( nArg>1 );   /* Also an error */
5635       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5636     }
5637     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5638       CollSeq *pColl = 0;
5639       struct ExprList_item *pItem;
5640       int j;
5641       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5642       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5643         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5644       }
5645       if( !pColl ){
5646         pColl = pParse->db->pDfltColl;
5647       }
5648       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5649       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5650     }
5651     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5652     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5653     sqlite3VdbeChangeP5(v, (u8)nArg);
5654     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5655     if( addrNext ){
5656       sqlite3VdbeResolveLabel(v, addrNext);
5657     }
5658   }
5659   if( regHit==0 && pAggInfo->nAccumulator ){
5660     regHit = regAcc;
5661   }
5662   if( regHit ){
5663     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5664   }
5665   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5666     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5667   }
5668 
5669   pAggInfo->directMode = 0;
5670   if( addrHitTest ){
5671     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5672   }
5673 }
5674 
5675 /*
5676 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5677 ** count(*) query ("SELECT count(*) FROM pTab").
5678 */
5679 #ifndef SQLITE_OMIT_EXPLAIN
5680 static void explainSimpleCount(
5681   Parse *pParse,                  /* Parse context */
5682   Table *pTab,                    /* Table being queried */
5683   Index *pIdx                     /* Index used to optimize scan, or NULL */
5684 ){
5685   if( pParse->explain==2 ){
5686     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5687     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5688         pTab->zName,
5689         bCover ? " USING COVERING INDEX " : "",
5690         bCover ? pIdx->zName : ""
5691     );
5692   }
5693 }
5694 #else
5695 # define explainSimpleCount(a,b,c)
5696 #endif
5697 
5698 /*
5699 ** sqlite3WalkExpr() callback used by havingToWhere().
5700 **
5701 ** If the node passed to the callback is a TK_AND node, return
5702 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5703 **
5704 ** Otherwise, return WRC_Prune. In this case, also check if the
5705 ** sub-expression matches the criteria for being moved to the WHERE
5706 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5707 ** within the HAVING expression with a constant "1".
5708 */
5709 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5710   if( pExpr->op!=TK_AND ){
5711     Select *pS = pWalker->u.pSelect;
5712     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5713      && ExprAlwaysFalse(pExpr)==0
5714     ){
5715       sqlite3 *db = pWalker->pParse->db;
5716       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5717       if( pNew ){
5718         Expr *pWhere = pS->pWhere;
5719         SWAP(Expr, *pNew, *pExpr);
5720         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5721         pS->pWhere = pNew;
5722         pWalker->eCode = 1;
5723       }
5724     }
5725     return WRC_Prune;
5726   }
5727   return WRC_Continue;
5728 }
5729 
5730 /*
5731 ** Transfer eligible terms from the HAVING clause of a query, which is
5732 ** processed after grouping, to the WHERE clause, which is processed before
5733 ** grouping. For example, the query:
5734 **
5735 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5736 **
5737 ** can be rewritten as:
5738 **
5739 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5740 **
5741 ** A term of the HAVING expression is eligible for transfer if it consists
5742 ** entirely of constants and expressions that are also GROUP BY terms that
5743 ** use the "BINARY" collation sequence.
5744 */
5745 static void havingToWhere(Parse *pParse, Select *p){
5746   Walker sWalker;
5747   memset(&sWalker, 0, sizeof(sWalker));
5748   sWalker.pParse = pParse;
5749   sWalker.xExprCallback = havingToWhereExprCb;
5750   sWalker.u.pSelect = p;
5751   sqlite3WalkExpr(&sWalker, p->pHaving);
5752 #if SELECTTRACE_ENABLED
5753   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5754     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5755     sqlite3TreeViewSelect(0, p, 0);
5756   }
5757 #endif
5758 }
5759 
5760 /*
5761 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5762 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5763 ** then return 0.
5764 */
5765 static struct SrcList_item *isSelfJoinView(
5766   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5767   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5768 ){
5769   struct SrcList_item *pItem;
5770   assert( pThis->pSelect!=0 );
5771   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
5772   for(pItem = pTabList->a; pItem<pThis; pItem++){
5773     Select *pS1;
5774     if( pItem->pSelect==0 ) continue;
5775     if( pItem->fg.viaCoroutine ) continue;
5776     if( pItem->zName==0 ) continue;
5777     assert( pItem->pTab!=0 );
5778     assert( pThis->pTab!=0 );
5779     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5780     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5781     pS1 = pItem->pSelect;
5782     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5783       /* The query flattener left two different CTE tables with identical
5784       ** names in the same FROM clause. */
5785       continue;
5786     }
5787     if( pItem->pSelect->selFlags & SF_PushDown ){
5788       /* The view was modified by some other optimization such as
5789       ** pushDownWhereTerms() */
5790       continue;
5791     }
5792     return pItem;
5793   }
5794   return 0;
5795 }
5796 
5797 /*
5798 ** Deallocate a single AggInfo object
5799 */
5800 static void agginfoFree(sqlite3 *db, AggInfo *p){
5801   sqlite3DbFree(db, p->aCol);
5802   sqlite3DbFree(db, p->aFunc);
5803   sqlite3DbFreeNN(db, p);
5804 }
5805 
5806 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5807 /*
5808 ** Attempt to transform a query of the form
5809 **
5810 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5811 **
5812 ** Into this:
5813 **
5814 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5815 **
5816 ** The transformation only works if all of the following are true:
5817 **
5818 **   *  The subquery is a UNION ALL of two or more terms
5819 **   *  The subquery does not have a LIMIT clause
5820 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5821 **   *  The outer query is a simple count(*) with no WHERE clause or other
5822 **      extraneous syntax.
5823 **
5824 ** Return TRUE if the optimization is undertaken.
5825 */
5826 static int countOfViewOptimization(Parse *pParse, Select *p){
5827   Select *pSub, *pPrior;
5828   Expr *pExpr;
5829   Expr *pCount;
5830   sqlite3 *db;
5831   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5832   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5833   if( p->pWhere ) return 0;
5834   if( p->pGroupBy ) return 0;
5835   pExpr = p->pEList->a[0].pExpr;
5836   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5837   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5838   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5839   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5840   pSub = p->pSrc->a[0].pSelect;
5841   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5842   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5843   do{
5844     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5845     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5846     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5847     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5848     pSub = pSub->pPrior;                              /* Repeat over compound */
5849   }while( pSub );
5850 
5851   /* If we reach this point then it is OK to perform the transformation */
5852 
5853   db = pParse->db;
5854   pCount = pExpr;
5855   pExpr = 0;
5856   pSub = p->pSrc->a[0].pSelect;
5857   p->pSrc->a[0].pSelect = 0;
5858   sqlite3SrcListDelete(db, p->pSrc);
5859   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5860   while( pSub ){
5861     Expr *pTerm;
5862     pPrior = pSub->pPrior;
5863     pSub->pPrior = 0;
5864     pSub->pNext = 0;
5865     pSub->selFlags |= SF_Aggregate;
5866     pSub->selFlags &= ~SF_Compound;
5867     pSub->nSelectRow = 0;
5868     sqlite3ExprListDelete(db, pSub->pEList);
5869     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5870     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5871     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5872     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5873     if( pExpr==0 ){
5874       pExpr = pTerm;
5875     }else{
5876       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5877     }
5878     pSub = pPrior;
5879   }
5880   p->pEList->a[0].pExpr = pExpr;
5881   p->selFlags &= ~SF_Aggregate;
5882 
5883 #if SELECTTRACE_ENABLED
5884   if( sqlite3SelectTrace & 0x400 ){
5885     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5886     sqlite3TreeViewSelect(0, p, 0);
5887   }
5888 #endif
5889   return 1;
5890 }
5891 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5892 
5893 /*
5894 ** Generate code for the SELECT statement given in the p argument.
5895 **
5896 ** The results are returned according to the SelectDest structure.
5897 ** See comments in sqliteInt.h for further information.
5898 **
5899 ** This routine returns the number of errors.  If any errors are
5900 ** encountered, then an appropriate error message is left in
5901 ** pParse->zErrMsg.
5902 **
5903 ** This routine does NOT free the Select structure passed in.  The
5904 ** calling function needs to do that.
5905 */
5906 int sqlite3Select(
5907   Parse *pParse,         /* The parser context */
5908   Select *p,             /* The SELECT statement being coded. */
5909   SelectDest *pDest      /* What to do with the query results */
5910 ){
5911   int i, j;              /* Loop counters */
5912   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5913   Vdbe *v;               /* The virtual machine under construction */
5914   int isAgg;             /* True for select lists like "count(*)" */
5915   ExprList *pEList = 0;  /* List of columns to extract. */
5916   SrcList *pTabList;     /* List of tables to select from */
5917   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5918   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5919   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5920   AggInfo *pAggInfo = 0; /* Aggregate information */
5921   int rc = 1;            /* Value to return from this function */
5922   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5923   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5924   int iEnd;              /* Address of the end of the query */
5925   sqlite3 *db;           /* The database connection */
5926   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5927   u8 minMaxFlag;                 /* Flag for min/max queries */
5928 
5929   db = pParse->db;
5930   v = sqlite3GetVdbe(pParse);
5931   if( p==0 || db->mallocFailed || pParse->nErr ){
5932     return 1;
5933   }
5934   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5935 #if SELECTTRACE_ENABLED
5936   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5937   if( sqlite3SelectTrace & 0x100 ){
5938     sqlite3TreeViewSelect(0, p, 0);
5939   }
5940 #endif
5941 
5942   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5943   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5944   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5945   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5946   if( IgnorableDistinct(pDest) ){
5947     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
5948            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
5949            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
5950     /* All of these destinations are also able to ignore the ORDER BY clause */
5951     sqlite3ExprListDelete(db, p->pOrderBy);
5952     p->pOrderBy = 0;
5953     p->selFlags &= ~SF_Distinct;
5954     p->selFlags |= SF_NoopOrderBy;
5955   }
5956   sqlite3SelectPrep(pParse, p, 0);
5957   if( pParse->nErr || db->mallocFailed ){
5958     goto select_end;
5959   }
5960   assert( p->pEList!=0 );
5961 #if SELECTTRACE_ENABLED
5962   if( sqlite3SelectTrace & 0x104 ){
5963     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5964     sqlite3TreeViewSelect(0, p, 0);
5965   }
5966 #endif
5967 
5968   /* If the SF_UpdateFrom flag is set, then this function is being called
5969   ** as part of populating the temp table for an UPDATE...FROM statement.
5970   ** In this case, it is an error if the target object (pSrc->a[0]) name
5971   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
5972   if( p->selFlags & SF_UpdateFrom ){
5973     struct SrcList_item *p0 = &p->pSrc->a[0];
5974     for(i=1; i<p->pSrc->nSrc; i++){
5975       struct SrcList_item *p1 = &p->pSrc->a[i];
5976       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
5977         sqlite3ErrorMsg(pParse,
5978             "target object/alias may not appear in FROM clause: %s",
5979             p0->zAlias ? p0->zAlias : p0->pTab->zName
5980         );
5981         goto select_end;
5982       }
5983     }
5984   }
5985 
5986   if( pDest->eDest==SRT_Output ){
5987     generateColumnNames(pParse, p);
5988   }
5989 
5990 #ifndef SQLITE_OMIT_WINDOWFUNC
5991   rc = sqlite3WindowRewrite(pParse, p);
5992   if( rc ){
5993     assert( db->mallocFailed || pParse->nErr>0 );
5994     goto select_end;
5995   }
5996 #if SELECTTRACE_ENABLED
5997   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5998     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5999     sqlite3TreeViewSelect(0, p, 0);
6000   }
6001 #endif
6002 #endif /* SQLITE_OMIT_WINDOWFUNC */
6003   pTabList = p->pSrc;
6004   isAgg = (p->selFlags & SF_Aggregate)!=0;
6005   memset(&sSort, 0, sizeof(sSort));
6006   sSort.pOrderBy = p->pOrderBy;
6007 
6008   /* Try to do various optimizations (flattening subqueries, and strength
6009   ** reduction of join operators) in the FROM clause up into the main query
6010   */
6011 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6012   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6013     struct SrcList_item *pItem = &pTabList->a[i];
6014     Select *pSub = pItem->pSelect;
6015     Table *pTab = pItem->pTab;
6016 
6017     /* The expander should have already created transient Table objects
6018     ** even for FROM clause elements such as subqueries that do not correspond
6019     ** to a real table */
6020     assert( pTab!=0 );
6021 
6022     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6023     ** of the LEFT JOIN used in the WHERE clause.
6024     */
6025     if( (pItem->fg.jointype & JT_LEFT)!=0
6026      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6027      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6028     ){
6029       SELECTTRACE(0x100,pParse,p,
6030                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6031       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6032       unsetJoinExpr(p->pWhere, pItem->iCursor);
6033     }
6034 
6035     /* No futher action if this term of the FROM clause is no a subquery */
6036     if( pSub==0 ) continue;
6037 
6038     /* Catch mismatch in the declared columns of a view and the number of
6039     ** columns in the SELECT on the RHS */
6040     if( pTab->nCol!=pSub->pEList->nExpr ){
6041       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6042                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6043       goto select_end;
6044     }
6045 
6046     /* Do not try to flatten an aggregate subquery.
6047     **
6048     ** Flattening an aggregate subquery is only possible if the outer query
6049     ** is not a join.  But if the outer query is not a join, then the subquery
6050     ** will be implemented as a co-routine and there is no advantage to
6051     ** flattening in that case.
6052     */
6053     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6054     assert( pSub->pGroupBy==0 );
6055 
6056     /* If the outer query contains a "complex" result set (that is,
6057     ** if the result set of the outer query uses functions or subqueries)
6058     ** and if the subquery contains an ORDER BY clause and if
6059     ** it will be implemented as a co-routine, then do not flatten.  This
6060     ** restriction allows SQL constructs like this:
6061     **
6062     **  SELECT expensive_function(x)
6063     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6064     **
6065     ** The expensive_function() is only computed on the 10 rows that
6066     ** are output, rather than every row of the table.
6067     **
6068     ** The requirement that the outer query have a complex result set
6069     ** means that flattening does occur on simpler SQL constraints without
6070     ** the expensive_function() like:
6071     **
6072     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6073     */
6074     if( pSub->pOrderBy!=0
6075      && i==0
6076      && (p->selFlags & SF_ComplexResult)!=0
6077      && (pTabList->nSrc==1
6078          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6079     ){
6080       continue;
6081     }
6082 
6083     if( flattenSubquery(pParse, p, i, isAgg) ){
6084       if( pParse->nErr ) goto select_end;
6085       /* This subquery can be absorbed into its parent. */
6086       i = -1;
6087     }
6088     pTabList = p->pSrc;
6089     if( db->mallocFailed ) goto select_end;
6090     if( !IgnorableOrderby(pDest) ){
6091       sSort.pOrderBy = p->pOrderBy;
6092     }
6093   }
6094 #endif
6095 
6096 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6097   /* Handle compound SELECT statements using the separate multiSelect()
6098   ** procedure.
6099   */
6100   if( p->pPrior ){
6101     rc = multiSelect(pParse, p, pDest);
6102 #if SELECTTRACE_ENABLED
6103     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6104     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6105       sqlite3TreeViewSelect(0, p, 0);
6106     }
6107 #endif
6108     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6109     return rc;
6110   }
6111 #endif
6112 
6113   /* Do the WHERE-clause constant propagation optimization if this is
6114   ** a join.  No need to speed time on this operation for non-join queries
6115   ** as the equivalent optimization will be handled by query planner in
6116   ** sqlite3WhereBegin().
6117   */
6118   if( pTabList->nSrc>1
6119    && OptimizationEnabled(db, SQLITE_PropagateConst)
6120    && propagateConstants(pParse, p)
6121   ){
6122 #if SELECTTRACE_ENABLED
6123     if( sqlite3SelectTrace & 0x100 ){
6124       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6125       sqlite3TreeViewSelect(0, p, 0);
6126     }
6127 #endif
6128   }else{
6129     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6130   }
6131 
6132 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6133   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6134    && countOfViewOptimization(pParse, p)
6135   ){
6136     if( db->mallocFailed ) goto select_end;
6137     pEList = p->pEList;
6138     pTabList = p->pSrc;
6139   }
6140 #endif
6141 
6142   /* For each term in the FROM clause, do two things:
6143   ** (1) Authorized unreferenced tables
6144   ** (2) Generate code for all sub-queries
6145   */
6146   for(i=0; i<pTabList->nSrc; i++){
6147     struct SrcList_item *pItem = &pTabList->a[i];
6148     SelectDest dest;
6149     Select *pSub;
6150 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6151     const char *zSavedAuthContext;
6152 #endif
6153 
6154     /* Issue SQLITE_READ authorizations with a fake column name for any
6155     ** tables that are referenced but from which no values are extracted.
6156     ** Examples of where these kinds of null SQLITE_READ authorizations
6157     ** would occur:
6158     **
6159     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6160     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6161     **
6162     ** The fake column name is an empty string.  It is possible for a table to
6163     ** have a column named by the empty string, in which case there is no way to
6164     ** distinguish between an unreferenced table and an actual reference to the
6165     ** "" column. The original design was for the fake column name to be a NULL,
6166     ** which would be unambiguous.  But legacy authorization callbacks might
6167     ** assume the column name is non-NULL and segfault.  The use of an empty
6168     ** string for the fake column name seems safer.
6169     */
6170     if( pItem->colUsed==0 && pItem->zName!=0 ){
6171       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6172     }
6173 
6174 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6175     /* Generate code for all sub-queries in the FROM clause
6176     */
6177     pSub = pItem->pSelect;
6178     if( pSub==0 ) continue;
6179 
6180     /* The code for a subquery should only be generated once, though it is
6181     ** technically harmless for it to be generated multiple times. The
6182     ** following assert() will detect if something changes to cause
6183     ** the same subquery to be coded multiple times, as a signal to the
6184     ** developers to try to optimize the situation.
6185     **
6186     ** Update 2019-07-24:
6187     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6188     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6189     ** coded twice.  So this assert() now becomes a testcase().  It should
6190     ** be very rare, though.
6191     */
6192     testcase( pItem->addrFillSub!=0 );
6193 
6194     /* Increment Parse.nHeight by the height of the largest expression
6195     ** tree referred to by this, the parent select. The child select
6196     ** may contain expression trees of at most
6197     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6198     ** more conservative than necessary, but much easier than enforcing
6199     ** an exact limit.
6200     */
6201     pParse->nHeight += sqlite3SelectExprHeight(p);
6202 
6203     /* Make copies of constant WHERE-clause terms in the outer query down
6204     ** inside the subquery.  This can help the subquery to run more efficiently.
6205     */
6206     if( OptimizationEnabled(db, SQLITE_PushDown)
6207      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6208                            (pItem->fg.jointype & JT_OUTER)!=0)
6209     ){
6210 #if SELECTTRACE_ENABLED
6211       if( sqlite3SelectTrace & 0x100 ){
6212         SELECTTRACE(0x100,pParse,p,
6213             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6214         sqlite3TreeViewSelect(0, p, 0);
6215       }
6216 #endif
6217       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6218     }else{
6219       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6220     }
6221 
6222     zSavedAuthContext = pParse->zAuthContext;
6223     pParse->zAuthContext = pItem->zName;
6224 
6225     /* Generate code to implement the subquery
6226     **
6227     ** The subquery is implemented as a co-routine if the subquery is
6228     ** guaranteed to be the outer loop (so that it does not need to be
6229     ** computed more than once)
6230     **
6231     ** TODO: Are there other reasons beside (1) to use a co-routine
6232     ** implementation?
6233     */
6234     if( i==0
6235      && (pTabList->nSrc==1
6236             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6237     ){
6238       /* Implement a co-routine that will return a single row of the result
6239       ** set on each invocation.
6240       */
6241       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6242 
6243       pItem->regReturn = ++pParse->nMem;
6244       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6245       VdbeComment((v, "%s", pItem->pTab->zName));
6246       pItem->addrFillSub = addrTop;
6247       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6248       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6249       sqlite3Select(pParse, pSub, &dest);
6250       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6251       pItem->fg.viaCoroutine = 1;
6252       pItem->regResult = dest.iSdst;
6253       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6254       sqlite3VdbeJumpHere(v, addrTop-1);
6255       sqlite3ClearTempRegCache(pParse);
6256     }else{
6257       /* Generate a subroutine that will fill an ephemeral table with
6258       ** the content of this subquery.  pItem->addrFillSub will point
6259       ** to the address of the generated subroutine.  pItem->regReturn
6260       ** is a register allocated to hold the subroutine return address
6261       */
6262       int topAddr;
6263       int onceAddr = 0;
6264       int retAddr;
6265       struct SrcList_item *pPrior;
6266 
6267       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6268       pItem->regReturn = ++pParse->nMem;
6269       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6270       pItem->addrFillSub = topAddr+1;
6271       if( pItem->fg.isCorrelated==0 ){
6272         /* If the subquery is not correlated and if we are not inside of
6273         ** a trigger, then we only need to compute the value of the subquery
6274         ** once. */
6275         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6276         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6277       }else{
6278         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6279       }
6280       pPrior = isSelfJoinView(pTabList, pItem);
6281       if( pPrior ){
6282         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6283         assert( pPrior->pSelect!=0 );
6284         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6285       }else{
6286         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6287         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6288         sqlite3Select(pParse, pSub, &dest);
6289       }
6290       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6291       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6292       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6293       VdbeComment((v, "end %s", pItem->pTab->zName));
6294       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6295       sqlite3ClearTempRegCache(pParse);
6296     }
6297     if( db->mallocFailed ) goto select_end;
6298     pParse->nHeight -= sqlite3SelectExprHeight(p);
6299     pParse->zAuthContext = zSavedAuthContext;
6300 #endif
6301   }
6302 
6303   /* Various elements of the SELECT copied into local variables for
6304   ** convenience */
6305   pEList = p->pEList;
6306   pWhere = p->pWhere;
6307   pGroupBy = p->pGroupBy;
6308   pHaving = p->pHaving;
6309   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6310 
6311 #if SELECTTRACE_ENABLED
6312   if( sqlite3SelectTrace & 0x400 ){
6313     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6314     sqlite3TreeViewSelect(0, p, 0);
6315   }
6316 #endif
6317 
6318   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6319   ** if the select-list is the same as the ORDER BY list, then this query
6320   ** can be rewritten as a GROUP BY. In other words, this:
6321   **
6322   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6323   **
6324   ** is transformed to:
6325   **
6326   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6327   **
6328   ** The second form is preferred as a single index (or temp-table) may be
6329   ** used for both the ORDER BY and DISTINCT processing. As originally
6330   ** written the query must use a temp-table for at least one of the ORDER
6331   ** BY and DISTINCT, and an index or separate temp-table for the other.
6332   */
6333   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6334    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6335 #ifndef SQLITE_OMIT_WINDOWFUNC
6336    && p->pWin==0
6337 #endif
6338   ){
6339     p->selFlags &= ~SF_Distinct;
6340     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6341     p->selFlags |= SF_Aggregate;
6342     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6343     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6344     ** original setting of the SF_Distinct flag, not the current setting */
6345     assert( sDistinct.isTnct );
6346 
6347 #if SELECTTRACE_ENABLED
6348     if( sqlite3SelectTrace & 0x400 ){
6349       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6350       sqlite3TreeViewSelect(0, p, 0);
6351     }
6352 #endif
6353   }
6354 
6355   /* If there is an ORDER BY clause, then create an ephemeral index to
6356   ** do the sorting.  But this sorting ephemeral index might end up
6357   ** being unused if the data can be extracted in pre-sorted order.
6358   ** If that is the case, then the OP_OpenEphemeral instruction will be
6359   ** changed to an OP_Noop once we figure out that the sorting index is
6360   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6361   ** that change.
6362   */
6363   if( sSort.pOrderBy ){
6364     KeyInfo *pKeyInfo;
6365     pKeyInfo = sqlite3KeyInfoFromExprList(
6366         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6367     sSort.iECursor = pParse->nTab++;
6368     sSort.addrSortIndex =
6369       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6370           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6371           (char*)pKeyInfo, P4_KEYINFO
6372       );
6373   }else{
6374     sSort.addrSortIndex = -1;
6375   }
6376 
6377   /* If the output is destined for a temporary table, open that table.
6378   */
6379   if( pDest->eDest==SRT_EphemTab ){
6380     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6381   }
6382 
6383   /* Set the limiter.
6384   */
6385   iEnd = sqlite3VdbeMakeLabel(pParse);
6386   if( (p->selFlags & SF_FixedLimit)==0 ){
6387     p->nSelectRow = 320;  /* 4 billion rows */
6388   }
6389   computeLimitRegisters(pParse, p, iEnd);
6390   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6391     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6392     sSort.sortFlags |= SORTFLAG_UseSorter;
6393   }
6394 
6395   /* Open an ephemeral index to use for the distinct set.
6396   */
6397   if( p->selFlags & SF_Distinct ){
6398     sDistinct.tabTnct = pParse->nTab++;
6399     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6400                        sDistinct.tabTnct, 0, 0,
6401                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6402                        P4_KEYINFO);
6403     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6404     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6405   }else{
6406     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6407   }
6408 
6409   if( !isAgg && pGroupBy==0 ){
6410     /* No aggregate functions and no GROUP BY clause */
6411     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6412                    | (p->selFlags & SF_FixedLimit);
6413 #ifndef SQLITE_OMIT_WINDOWFUNC
6414     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6415     if( pWin ){
6416       sqlite3WindowCodeInit(pParse, p);
6417     }
6418 #endif
6419     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6420 
6421 
6422     /* Begin the database scan. */
6423     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6424     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6425                                p->pEList, wctrlFlags, p->nSelectRow);
6426     if( pWInfo==0 ) goto select_end;
6427     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6428       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6429     }
6430     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6431       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6432     }
6433     if( sSort.pOrderBy ){
6434       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6435       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6436       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6437         sSort.pOrderBy = 0;
6438       }
6439     }
6440     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6441 
6442     /* If sorting index that was created by a prior OP_OpenEphemeral
6443     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6444     ** into an OP_Noop.
6445     */
6446     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6447       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6448     }
6449 
6450     assert( p->pEList==pEList );
6451 #ifndef SQLITE_OMIT_WINDOWFUNC
6452     if( pWin ){
6453       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6454       int iCont = sqlite3VdbeMakeLabel(pParse);
6455       int iBreak = sqlite3VdbeMakeLabel(pParse);
6456       int regGosub = ++pParse->nMem;
6457 
6458       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6459 
6460       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6461       sqlite3VdbeResolveLabel(v, addrGosub);
6462       VdbeNoopComment((v, "inner-loop subroutine"));
6463       sSort.labelOBLopt = 0;
6464       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6465       sqlite3VdbeResolveLabel(v, iCont);
6466       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6467       VdbeComment((v, "end inner-loop subroutine"));
6468       sqlite3VdbeResolveLabel(v, iBreak);
6469     }else
6470 #endif /* SQLITE_OMIT_WINDOWFUNC */
6471     {
6472       /* Use the standard inner loop. */
6473       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6474           sqlite3WhereContinueLabel(pWInfo),
6475           sqlite3WhereBreakLabel(pWInfo));
6476 
6477       /* End the database scan loop.
6478       */
6479       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6480       sqlite3WhereEnd(pWInfo);
6481     }
6482   }else{
6483     /* This case when there exist aggregate functions or a GROUP BY clause
6484     ** or both */
6485     NameContext sNC;    /* Name context for processing aggregate information */
6486     int iAMem;          /* First Mem address for storing current GROUP BY */
6487     int iBMem;          /* First Mem address for previous GROUP BY */
6488     int iUseFlag;       /* Mem address holding flag indicating that at least
6489                         ** one row of the input to the aggregator has been
6490                         ** processed */
6491     int iAbortFlag;     /* Mem address which causes query abort if positive */
6492     int groupBySort;    /* Rows come from source in GROUP BY order */
6493     int addrEnd;        /* End of processing for this SELECT */
6494     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6495     int sortOut = 0;    /* Output register from the sorter */
6496     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6497 
6498     /* Remove any and all aliases between the result set and the
6499     ** GROUP BY clause.
6500     */
6501     if( pGroupBy ){
6502       int k;                        /* Loop counter */
6503       struct ExprList_item *pItem;  /* For looping over expression in a list */
6504 
6505       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6506         pItem->u.x.iAlias = 0;
6507       }
6508       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6509         pItem->u.x.iAlias = 0;
6510       }
6511       assert( 66==sqlite3LogEst(100) );
6512       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6513 
6514       /* If there is both a GROUP BY and an ORDER BY clause and they are
6515       ** identical, then it may be possible to disable the ORDER BY clause
6516       ** on the grounds that the GROUP BY will cause elements to come out
6517       ** in the correct order. It also may not - the GROUP BY might use a
6518       ** database index that causes rows to be grouped together as required
6519       ** but not actually sorted. Either way, record the fact that the
6520       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6521       ** variable.  */
6522       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6523         int ii;
6524         /* The GROUP BY processing doesn't care whether rows are delivered in
6525         ** ASC or DESC order - only that each group is returned contiguously.
6526         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6527         ** ORDER BY to maximize the chances of rows being delivered in an
6528         ** order that makes the ORDER BY redundant.  */
6529         for(ii=0; ii<pGroupBy->nExpr; ii++){
6530           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6531           pGroupBy->a[ii].sortFlags = sortFlags;
6532         }
6533         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6534           orderByGrp = 1;
6535         }
6536       }
6537     }else{
6538       assert( 0==sqlite3LogEst(1) );
6539       p->nSelectRow = 0;
6540     }
6541 
6542     /* Create a label to jump to when we want to abort the query */
6543     addrEnd = sqlite3VdbeMakeLabel(pParse);
6544 
6545     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6546     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6547     ** SELECT statement.
6548     */
6549     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6550     if( pAggInfo ){
6551       sqlite3ParserAddCleanup(pParse,
6552           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6553     }
6554     if( db->mallocFailed ){
6555       goto select_end;
6556     }
6557     pAggInfo->selId = p->selId;
6558     memset(&sNC, 0, sizeof(sNC));
6559     sNC.pParse = pParse;
6560     sNC.pSrcList = pTabList;
6561     sNC.uNC.pAggInfo = pAggInfo;
6562     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6563     pAggInfo->mnReg = pParse->nMem+1;
6564     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6565     pAggInfo->pGroupBy = pGroupBy;
6566     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6567     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6568     if( pHaving ){
6569       if( pGroupBy ){
6570         assert( pWhere==p->pWhere );
6571         assert( pHaving==p->pHaving );
6572         assert( pGroupBy==p->pGroupBy );
6573         havingToWhere(pParse, p);
6574         pWhere = p->pWhere;
6575       }
6576       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6577     }
6578     pAggInfo->nAccumulator = pAggInfo->nColumn;
6579     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6580       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6581     }else{
6582       minMaxFlag = WHERE_ORDERBY_NORMAL;
6583     }
6584     for(i=0; i<pAggInfo->nFunc; i++){
6585       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6586       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6587       sNC.ncFlags |= NC_InAggFunc;
6588       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6589 #ifndef SQLITE_OMIT_WINDOWFUNC
6590       assert( !IsWindowFunc(pExpr) );
6591       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6592         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6593       }
6594 #endif
6595       sNC.ncFlags &= ~NC_InAggFunc;
6596     }
6597     pAggInfo->mxReg = pParse->nMem;
6598     if( db->mallocFailed ) goto select_end;
6599 #if SELECTTRACE_ENABLED
6600     if( sqlite3SelectTrace & 0x400 ){
6601       int ii;
6602       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6603       sqlite3TreeViewSelect(0, p, 0);
6604       if( minMaxFlag ){
6605         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
6606         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
6607       }
6608       for(ii=0; ii<pAggInfo->nColumn; ii++){
6609         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6610             ii, pAggInfo->aCol[ii].iMem);
6611         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6612       }
6613       for(ii=0; ii<pAggInfo->nFunc; ii++){
6614         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6615             ii, pAggInfo->aFunc[ii].iMem);
6616         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6617       }
6618     }
6619 #endif
6620 
6621 
6622     /* Processing for aggregates with GROUP BY is very different and
6623     ** much more complex than aggregates without a GROUP BY.
6624     */
6625     if( pGroupBy ){
6626       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6627       int addr1;          /* A-vs-B comparision jump */
6628       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6629       int regOutputRow;   /* Return address register for output subroutine */
6630       int addrSetAbort;   /* Set the abort flag and return */
6631       int addrTopOfLoop;  /* Top of the input loop */
6632       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6633       int addrReset;      /* Subroutine for resetting the accumulator */
6634       int regReset;       /* Return address register for reset subroutine */
6635 
6636       /* If there is a GROUP BY clause we might need a sorting index to
6637       ** implement it.  Allocate that sorting index now.  If it turns out
6638       ** that we do not need it after all, the OP_SorterOpen instruction
6639       ** will be converted into a Noop.
6640       */
6641       pAggInfo->sortingIdx = pParse->nTab++;
6642       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6643                                             0, pAggInfo->nColumn);
6644       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6645           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6646           0, (char*)pKeyInfo, P4_KEYINFO);
6647 
6648       /* Initialize memory locations used by GROUP BY aggregate processing
6649       */
6650       iUseFlag = ++pParse->nMem;
6651       iAbortFlag = ++pParse->nMem;
6652       regOutputRow = ++pParse->nMem;
6653       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6654       regReset = ++pParse->nMem;
6655       addrReset = sqlite3VdbeMakeLabel(pParse);
6656       iAMem = pParse->nMem + 1;
6657       pParse->nMem += pGroupBy->nExpr;
6658       iBMem = pParse->nMem + 1;
6659       pParse->nMem += pGroupBy->nExpr;
6660       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6661       VdbeComment((v, "clear abort flag"));
6662       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6663 
6664       /* Begin a loop that will extract all source rows in GROUP BY order.
6665       ** This might involve two separate loops with an OP_Sort in between, or
6666       ** it might be a single loop that uses an index to extract information
6667       ** in the right order to begin with.
6668       */
6669       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6670       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6671       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6672           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6673       );
6674       if( pWInfo==0 ) goto select_end;
6675       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6676       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6677         /* The optimizer is able to deliver rows in group by order so
6678         ** we do not have to sort.  The OP_OpenEphemeral table will be
6679         ** cancelled later because we still need to use the pKeyInfo
6680         */
6681         groupBySort = 0;
6682       }else{
6683         /* Rows are coming out in undetermined order.  We have to push
6684         ** each row into a sorting index, terminate the first loop,
6685         ** then loop over the sorting index in order to get the output
6686         ** in sorted order
6687         */
6688         int regBase;
6689         int regRecord;
6690         int nCol;
6691         int nGroupBy;
6692 
6693         explainTempTable(pParse,
6694             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6695                     "DISTINCT" : "GROUP BY");
6696 
6697         groupBySort = 1;
6698         nGroupBy = pGroupBy->nExpr;
6699         nCol = nGroupBy;
6700         j = nGroupBy;
6701         for(i=0; i<pAggInfo->nColumn; i++){
6702           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6703             nCol++;
6704             j++;
6705           }
6706         }
6707         regBase = sqlite3GetTempRange(pParse, nCol);
6708         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6709         j = nGroupBy;
6710         for(i=0; i<pAggInfo->nColumn; i++){
6711           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6712           if( pCol->iSorterColumn>=j ){
6713             int r1 = j + regBase;
6714             sqlite3ExprCodeGetColumnOfTable(v,
6715                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6716             j++;
6717           }
6718         }
6719         regRecord = sqlite3GetTempReg(pParse);
6720         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6721         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6722         sqlite3ReleaseTempReg(pParse, regRecord);
6723         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6724         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6725         sqlite3WhereEnd(pWInfo);
6726         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6727         sortOut = sqlite3GetTempReg(pParse);
6728         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6729         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6730         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6731         pAggInfo->useSortingIdx = 1;
6732       }
6733 
6734       /* If the index or temporary table used by the GROUP BY sort
6735       ** will naturally deliver rows in the order required by the ORDER BY
6736       ** clause, cancel the ephemeral table open coded earlier.
6737       **
6738       ** This is an optimization - the correct answer should result regardless.
6739       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6740       ** disable this optimization for testing purposes.  */
6741       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6742        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6743       ){
6744         sSort.pOrderBy = 0;
6745         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6746       }
6747 
6748       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6749       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6750       ** Then compare the current GROUP BY terms against the GROUP BY terms
6751       ** from the previous row currently stored in a0, a1, a2...
6752       */
6753       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6754       if( groupBySort ){
6755         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6756                           sortOut, sortPTab);
6757       }
6758       for(j=0; j<pGroupBy->nExpr; j++){
6759         if( groupBySort ){
6760           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6761         }else{
6762           pAggInfo->directMode = 1;
6763           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6764         }
6765       }
6766       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6767                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6768       addr1 = sqlite3VdbeCurrentAddr(v);
6769       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6770 
6771       /* Generate code that runs whenever the GROUP BY changes.
6772       ** Changes in the GROUP BY are detected by the previous code
6773       ** block.  If there were no changes, this block is skipped.
6774       **
6775       ** This code copies current group by terms in b0,b1,b2,...
6776       ** over to a0,a1,a2.  It then calls the output subroutine
6777       ** and resets the aggregate accumulator registers in preparation
6778       ** for the next GROUP BY batch.
6779       */
6780       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6781       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6782       VdbeComment((v, "output one row"));
6783       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6784       VdbeComment((v, "check abort flag"));
6785       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6786       VdbeComment((v, "reset accumulator"));
6787 
6788       /* Update the aggregate accumulators based on the content of
6789       ** the current row
6790       */
6791       sqlite3VdbeJumpHere(v, addr1);
6792       updateAccumulator(pParse, iUseFlag, pAggInfo);
6793       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6794       VdbeComment((v, "indicate data in accumulator"));
6795 
6796       /* End of the loop
6797       */
6798       if( groupBySort ){
6799         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
6800         VdbeCoverage(v);
6801       }else{
6802         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6803         sqlite3WhereEnd(pWInfo);
6804         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6805       }
6806 
6807       /* Output the final row of result
6808       */
6809       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6810       VdbeComment((v, "output final row"));
6811 
6812       /* Jump over the subroutines
6813       */
6814       sqlite3VdbeGoto(v, addrEnd);
6815 
6816       /* Generate a subroutine that outputs a single row of the result
6817       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6818       ** is less than or equal to zero, the subroutine is a no-op.  If
6819       ** the processing calls for the query to abort, this subroutine
6820       ** increments the iAbortFlag memory location before returning in
6821       ** order to signal the caller to abort.
6822       */
6823       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6824       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6825       VdbeComment((v, "set abort flag"));
6826       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6827       sqlite3VdbeResolveLabel(v, addrOutputRow);
6828       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6829       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6830       VdbeCoverage(v);
6831       VdbeComment((v, "Groupby result generator entry point"));
6832       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6833       finalizeAggFunctions(pParse, pAggInfo);
6834       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6835       selectInnerLoop(pParse, p, -1, &sSort,
6836                       &sDistinct, pDest,
6837                       addrOutputRow+1, addrSetAbort);
6838       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6839       VdbeComment((v, "end groupby result generator"));
6840 
6841       /* Generate a subroutine that will reset the group-by accumulator
6842       */
6843       sqlite3VdbeResolveLabel(v, addrReset);
6844       resetAccumulator(pParse, pAggInfo);
6845       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6846       VdbeComment((v, "indicate accumulator empty"));
6847       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6848 
6849     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6850     else {
6851       Table *pTab;
6852       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6853         /* If isSimpleCount() returns a pointer to a Table structure, then
6854         ** the SQL statement is of the form:
6855         **
6856         **   SELECT count(*) FROM <tbl>
6857         **
6858         ** where the Table structure returned represents table <tbl>.
6859         **
6860         ** This statement is so common that it is optimized specially. The
6861         ** OP_Count instruction is executed either on the intkey table that
6862         ** contains the data for table <tbl> or on one of its indexes. It
6863         ** is better to execute the op on an index, as indexes are almost
6864         ** always spread across less pages than their corresponding tables.
6865         */
6866         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6867         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6868         Index *pIdx;                         /* Iterator variable */
6869         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6870         Index *pBest = 0;                    /* Best index found so far */
6871         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
6872 
6873         sqlite3CodeVerifySchema(pParse, iDb);
6874         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6875 
6876         /* Search for the index that has the lowest scan cost.
6877         **
6878         ** (2011-04-15) Do not do a full scan of an unordered index.
6879         **
6880         ** (2013-10-03) Do not count the entries in a partial index.
6881         **
6882         ** In practice the KeyInfo structure will not be used. It is only
6883         ** passed to keep OP_OpenRead happy.
6884         */
6885         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6886         if( !p->pSrc->a[0].fg.notIndexed ){
6887           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6888             if( pIdx->bUnordered==0
6889              && pIdx->szIdxRow<pTab->szTabRow
6890              && pIdx->pPartIdxWhere==0
6891              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6892             ){
6893               pBest = pIdx;
6894             }
6895           }
6896         }
6897         if( pBest ){
6898           iRoot = pBest->tnum;
6899           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6900         }
6901 
6902         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6903         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
6904         if( pKeyInfo ){
6905           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6906         }
6907         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
6908         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6909         explainSimpleCount(pParse, pTab, pBest);
6910       }else{
6911         int regAcc = 0;           /* "populate accumulators" flag */
6912 
6913         /* If there are accumulator registers but no min() or max() functions
6914         ** without FILTER clauses, allocate register regAcc. Register regAcc
6915         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6916         ** The code generated by updateAccumulator() uses this to ensure
6917         ** that the accumulator registers are (a) updated only once if
6918         ** there are no min() or max functions or (b) always updated for the
6919         ** first row visited by the aggregate, so that they are updated at
6920         ** least once even if the FILTER clause means the min() or max()
6921         ** function visits zero rows.  */
6922         if( pAggInfo->nAccumulator ){
6923           for(i=0; i<pAggInfo->nFunc; i++){
6924             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
6925               continue;
6926             }
6927             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
6928               break;
6929             }
6930           }
6931           if( i==pAggInfo->nFunc ){
6932             regAcc = ++pParse->nMem;
6933             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6934           }
6935         }
6936 
6937         /* This case runs if the aggregate has no GROUP BY clause.  The
6938         ** processing is much simpler since there is only a single row
6939         ** of output.
6940         */
6941         assert( p->pGroupBy==0 );
6942         resetAccumulator(pParse, pAggInfo);
6943 
6944         /* If this query is a candidate for the min/max optimization, then
6945         ** minMaxFlag will have been previously set to either
6946         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6947         ** be an appropriate ORDER BY expression for the optimization.
6948         */
6949         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6950         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6951 
6952         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6953         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6954                                    0, minMaxFlag, 0);
6955         if( pWInfo==0 ){
6956           goto select_end;
6957         }
6958         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6959         updateAccumulator(pParse, regAcc, pAggInfo);
6960         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6961         if( minMaxFlag ){
6962           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
6963         }
6964         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6965         sqlite3WhereEnd(pWInfo);
6966         finalizeAggFunctions(pParse, pAggInfo);
6967       }
6968 
6969       sSort.pOrderBy = 0;
6970       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6971       selectInnerLoop(pParse, p, -1, 0, 0,
6972                       pDest, addrEnd, addrEnd);
6973     }
6974     sqlite3VdbeResolveLabel(v, addrEnd);
6975 
6976   } /* endif aggregate query */
6977 
6978   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6979     explainTempTable(pParse, "DISTINCT");
6980   }
6981 
6982   /* If there is an ORDER BY clause, then we need to sort the results
6983   ** and send them to the callback one by one.
6984   */
6985   if( sSort.pOrderBy ){
6986     explainTempTable(pParse,
6987                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6988     assert( p->pEList==pEList );
6989     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6990   }
6991 
6992   /* Jump here to skip this query
6993   */
6994   sqlite3VdbeResolveLabel(v, iEnd);
6995 
6996   /* The SELECT has been coded. If there is an error in the Parse structure,
6997   ** set the return code to 1. Otherwise 0. */
6998   rc = (pParse->nErr>0);
6999 
7000   /* Control jumps to here if an error is encountered above, or upon
7001   ** successful coding of the SELECT.
7002   */
7003 select_end:
7004   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7005 #ifdef SQLITE_DEBUG
7006   if( pAggInfo && !db->mallocFailed ){
7007     for(i=0; i<pAggInfo->nColumn; i++){
7008       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7009       assert( pExpr!=0 );
7010       assert( pExpr->pAggInfo==pAggInfo );
7011       assert( pExpr->iAgg==i );
7012     }
7013     for(i=0; i<pAggInfo->nFunc; i++){
7014       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7015       assert( pExpr!=0 );
7016       assert( pExpr->pAggInfo==pAggInfo );
7017       assert( pExpr->iAgg==i );
7018     }
7019   }
7020 #endif
7021 
7022 #if SELECTTRACE_ENABLED
7023   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7024   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7025     sqlite3TreeViewSelect(0, p, 0);
7026   }
7027 #endif
7028   ExplainQueryPlanPop(pParse);
7029   return rc;
7030 }
7031