xref: /sqlite-3.40.0/src/select.c (revision 1d40cdbd)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
100     if( bFree ) sqlite3DbFreeNN(db, p);
101     p = pPrior;
102     bFree = 1;
103   }
104 }
105 
106 /*
107 ** Initialize a SelectDest structure.
108 */
109 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
110   pDest->eDest = (u8)eDest;
111   pDest->iSDParm = iParm;
112   pDest->zAffSdst = 0;
113   pDest->iSdst = 0;
114   pDest->nSdst = 0;
115 }
116 
117 
118 /*
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
121 */
122 Select *sqlite3SelectNew(
123   Parse *pParse,        /* Parsing context */
124   ExprList *pEList,     /* which columns to include in the result */
125   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
126   Expr *pWhere,         /* the WHERE clause */
127   ExprList *pGroupBy,   /* the GROUP BY clause */
128   Expr *pHaving,        /* the HAVING clause */
129   ExprList *pOrderBy,   /* the ORDER BY clause */
130   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
131   Expr *pLimit          /* LIMIT value.  NULL means not used */
132 ){
133   Select *pNew;
134   Select standin;
135   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136   if( pNew==0 ){
137     assert( pParse->db->mallocFailed );
138     pNew = &standin;
139   }
140   if( pEList==0 ){
141     pEList = sqlite3ExprListAppend(pParse, 0,
142                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
143   }
144   pNew->pEList = pEList;
145   pNew->op = TK_SELECT;
146   pNew->selFlags = selFlags;
147   pNew->iLimit = 0;
148   pNew->iOffset = 0;
149 #if SELECTTRACE_ENABLED
150   pNew->zSelName[0] = 0;
151 #endif
152   pNew->addrOpenEphm[0] = -1;
153   pNew->addrOpenEphm[1] = -1;
154   pNew->nSelectRow = 0;
155   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
156   pNew->pSrc = pSrc;
157   pNew->pWhere = pWhere;
158   pNew->pGroupBy = pGroupBy;
159   pNew->pHaving = pHaving;
160   pNew->pOrderBy = pOrderBy;
161   pNew->pPrior = 0;
162   pNew->pNext = 0;
163   pNew->pLimit = pLimit;
164   pNew->pWith = 0;
165   if( pParse->db->mallocFailed ) {
166     clearSelect(pParse->db, pNew, pNew!=&standin);
167     pNew = 0;
168   }else{
169     assert( pNew->pSrc!=0 || pParse->nErr>0 );
170   }
171   assert( pNew!=&standin );
172   return pNew;
173 }
174 
175 #if SELECTTRACE_ENABLED
176 /*
177 ** Set the name of a Select object
178 */
179 void sqlite3SelectSetName(Select *p, const char *zName){
180   if( p && zName ){
181     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
182   }
183 }
184 #endif
185 
186 
187 /*
188 ** Delete the given Select structure and all of its substructures.
189 */
190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
192 }
193 
194 /*
195 ** Return a pointer to the right-most SELECT statement in a compound.
196 */
197 static Select *findRightmost(Select *p){
198   while( p->pNext ) p = p->pNext;
199   return p;
200 }
201 
202 /*
203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
204 ** type of join.  Return an integer constant that expresses that type
205 ** in terms of the following bit values:
206 **
207 **     JT_INNER
208 **     JT_CROSS
209 **     JT_OUTER
210 **     JT_NATURAL
211 **     JT_LEFT
212 **     JT_RIGHT
213 **
214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
215 **
216 ** If an illegal or unsupported join type is seen, then still return
217 ** a join type, but put an error in the pParse structure.
218 */
219 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
220   int jointype = 0;
221   Token *apAll[3];
222   Token *p;
223                              /*   0123456789 123456789 123456789 123 */
224   static const char zKeyText[] = "naturaleftouterightfullinnercross";
225   static const struct {
226     u8 i;        /* Beginning of keyword text in zKeyText[] */
227     u8 nChar;    /* Length of the keyword in characters */
228     u8 code;     /* Join type mask */
229   } aKeyword[] = {
230     /* natural */ { 0,  7, JT_NATURAL                },
231     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
232     /* outer   */ { 10, 5, JT_OUTER                  },
233     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
234     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
235     /* inner   */ { 23, 5, JT_INNER                  },
236     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
237   };
238   int i, j;
239   apAll[0] = pA;
240   apAll[1] = pB;
241   apAll[2] = pC;
242   for(i=0; i<3 && apAll[i]; i++){
243     p = apAll[i];
244     for(j=0; j<ArraySize(aKeyword); j++){
245       if( p->n==aKeyword[j].nChar
246           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
247         jointype |= aKeyword[j].code;
248         break;
249       }
250     }
251     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
252     if( j>=ArraySize(aKeyword) ){
253       jointype |= JT_ERROR;
254       break;
255     }
256   }
257   if(
258      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
259      (jointype & JT_ERROR)!=0
260   ){
261     const char *zSp = " ";
262     assert( pB!=0 );
263     if( pC==0 ){ zSp++; }
264     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
265        "%T %T%s%T", pA, pB, zSp, pC);
266     jointype = JT_INNER;
267   }else if( (jointype & JT_OUTER)!=0
268          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
269     sqlite3ErrorMsg(pParse,
270       "RIGHT and FULL OUTER JOINs are not currently supported");
271     jointype = JT_INNER;
272   }
273   return jointype;
274 }
275 
276 /*
277 ** Return the index of a column in a table.  Return -1 if the column
278 ** is not contained in the table.
279 */
280 static int columnIndex(Table *pTab, const char *zCol){
281   int i;
282   for(i=0; i<pTab->nCol; i++){
283     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
284   }
285   return -1;
286 }
287 
288 /*
289 ** Search the first N tables in pSrc, from left to right, looking for a
290 ** table that has a column named zCol.
291 **
292 ** When found, set *piTab and *piCol to the table index and column index
293 ** of the matching column and return TRUE.
294 **
295 ** If not found, return FALSE.
296 */
297 static int tableAndColumnIndex(
298   SrcList *pSrc,       /* Array of tables to search */
299   int N,               /* Number of tables in pSrc->a[] to search */
300   const char *zCol,    /* Name of the column we are looking for */
301   int *piTab,          /* Write index of pSrc->a[] here */
302   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
303 ){
304   int i;               /* For looping over tables in pSrc */
305   int iCol;            /* Index of column matching zCol */
306 
307   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
308   for(i=0; i<N; i++){
309     iCol = columnIndex(pSrc->a[i].pTab, zCol);
310     if( iCol>=0 ){
311       if( piTab ){
312         *piTab = i;
313         *piCol = iCol;
314       }
315       return 1;
316     }
317   }
318   return 0;
319 }
320 
321 /*
322 ** This function is used to add terms implied by JOIN syntax to the
323 ** WHERE clause expression of a SELECT statement. The new term, which
324 ** is ANDed with the existing WHERE clause, is of the form:
325 **
326 **    (tab1.col1 = tab2.col2)
327 **
328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
330 ** column iColRight of tab2.
331 */
332 static void addWhereTerm(
333   Parse *pParse,                  /* Parsing context */
334   SrcList *pSrc,                  /* List of tables in FROM clause */
335   int iLeft,                      /* Index of first table to join in pSrc */
336   int iColLeft,                   /* Index of column in first table */
337   int iRight,                     /* Index of second table in pSrc */
338   int iColRight,                  /* Index of column in second table */
339   int isOuterJoin,                /* True if this is an OUTER join */
340   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
341 ){
342   sqlite3 *db = pParse->db;
343   Expr *pE1;
344   Expr *pE2;
345   Expr *pEq;
346 
347   assert( iLeft<iRight );
348   assert( pSrc->nSrc>iRight );
349   assert( pSrc->a[iLeft].pTab );
350   assert( pSrc->a[iRight].pTab );
351 
352   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
353   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
354 
355   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
356   if( pEq && isOuterJoin ){
357     ExprSetProperty(pEq, EP_FromJoin);
358     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
359     ExprSetVVAProperty(pEq, EP_NoReduce);
360     pEq->iRightJoinTable = (i16)pE2->iTable;
361   }
362   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
363 }
364 
365 /*
366 ** Set the EP_FromJoin property on all terms of the given expression.
367 ** And set the Expr.iRightJoinTable to iTable for every term in the
368 ** expression.
369 **
370 ** The EP_FromJoin property is used on terms of an expression to tell
371 ** the LEFT OUTER JOIN processing logic that this term is part of the
372 ** join restriction specified in the ON or USING clause and not a part
373 ** of the more general WHERE clause.  These terms are moved over to the
374 ** WHERE clause during join processing but we need to remember that they
375 ** originated in the ON or USING clause.
376 **
377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
378 ** expression depends on table iRightJoinTable even if that table is not
379 ** explicitly mentioned in the expression.  That information is needed
380 ** for cases like this:
381 **
382 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
383 **
384 ** The where clause needs to defer the handling of the t1.x=5
385 ** term until after the t2 loop of the join.  In that way, a
386 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
387 ** defer the handling of t1.x=5, it will be processed immediately
388 ** after the t1 loop and rows with t1.x!=5 will never appear in
389 ** the output, which is incorrect.
390 */
391 static void setJoinExpr(Expr *p, int iTable){
392   while( p ){
393     ExprSetProperty(p, EP_FromJoin);
394     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
395     ExprSetVVAProperty(p, EP_NoReduce);
396     p->iRightJoinTable = (i16)iTable;
397     if( p->op==TK_FUNCTION && p->x.pList ){
398       int i;
399       for(i=0; i<p->x.pList->nExpr; i++){
400         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
401       }
402     }
403     setJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
411 **
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
413 */
414 static void unsetJoinExpr(Expr *p, int iTable){
415   while( p ){
416     if( ExprHasProperty(p, EP_FromJoin)
417      && (iTable<0 || p->iRightJoinTable==iTable) ){
418       ExprClearProperty(p, EP_FromJoin);
419     }
420     if( p->op==TK_FUNCTION && p->x.pList ){
421       int i;
422       for(i=0; i<p->x.pList->nExpr; i++){
423         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
424       }
425     }
426     unsetJoinExpr(p->pLeft, iTable);
427     p = p->pRight;
428   }
429 }
430 
431 /*
432 ** This routine processes the join information for a SELECT statement.
433 ** ON and USING clauses are converted into extra terms of the WHERE clause.
434 ** NATURAL joins also create extra WHERE clause terms.
435 **
436 ** The terms of a FROM clause are contained in the Select.pSrc structure.
437 ** The left most table is the first entry in Select.pSrc.  The right-most
438 ** table is the last entry.  The join operator is held in the entry to
439 ** the left.  Thus entry 0 contains the join operator for the join between
440 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
441 ** also attached to the left entry.
442 **
443 ** This routine returns the number of errors encountered.
444 */
445 static int sqliteProcessJoin(Parse *pParse, Select *p){
446   SrcList *pSrc;                  /* All tables in the FROM clause */
447   int i, j;                       /* Loop counters */
448   struct SrcList_item *pLeft;     /* Left table being joined */
449   struct SrcList_item *pRight;    /* Right table being joined */
450 
451   pSrc = p->pSrc;
452   pLeft = &pSrc->a[0];
453   pRight = &pLeft[1];
454   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
455     Table *pRightTab = pRight->pTab;
456     int isOuter;
457 
458     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
459     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
460 
461     /* When the NATURAL keyword is present, add WHERE clause terms for
462     ** every column that the two tables have in common.
463     */
464     if( pRight->fg.jointype & JT_NATURAL ){
465       if( pRight->pOn || pRight->pUsing ){
466         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
467            "an ON or USING clause", 0);
468         return 1;
469       }
470       for(j=0; j<pRightTab->nCol; j++){
471         char *zName;   /* Name of column in the right table */
472         int iLeft;     /* Matching left table */
473         int iLeftCol;  /* Matching column in the left table */
474 
475         zName = pRightTab->aCol[j].zName;
476         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
477           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
478                        isOuter, &p->pWhere);
479         }
480       }
481     }
482 
483     /* Disallow both ON and USING clauses in the same join
484     */
485     if( pRight->pOn && pRight->pUsing ){
486       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
487         "clauses in the same join");
488       return 1;
489     }
490 
491     /* Add the ON clause to the end of the WHERE clause, connected by
492     ** an AND operator.
493     */
494     if( pRight->pOn ){
495       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
496       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
497       pRight->pOn = 0;
498     }
499 
500     /* Create extra terms on the WHERE clause for each column named
501     ** in the USING clause.  Example: If the two tables to be joined are
502     ** A and B and the USING clause names X, Y, and Z, then add this
503     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
504     ** Report an error if any column mentioned in the USING clause is
505     ** not contained in both tables to be joined.
506     */
507     if( pRight->pUsing ){
508       IdList *pList = pRight->pUsing;
509       for(j=0; j<pList->nId; j++){
510         char *zName;     /* Name of the term in the USING clause */
511         int iLeft;       /* Table on the left with matching column name */
512         int iLeftCol;    /* Column number of matching column on the left */
513         int iRightCol;   /* Column number of matching column on the right */
514 
515         zName = pList->a[j].zName;
516         iRightCol = columnIndex(pRightTab, zName);
517         if( iRightCol<0
518          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
519         ){
520           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
521             "not present in both tables", zName);
522           return 1;
523         }
524         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
525                      isOuter, &p->pWhere);
526       }
527     }
528   }
529   return 0;
530 }
531 
532 /* Forward reference */
533 static KeyInfo *keyInfoFromExprList(
534   Parse *pParse,       /* Parsing context */
535   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
536   int iStart,          /* Begin with this column of pList */
537   int nExtra           /* Add this many extra columns to the end */
538 );
539 
540 /*
541 ** An instance of this object holds information (beyond pParse and pSelect)
542 ** needed to load the next result row that is to be added to the sorter.
543 */
544 typedef struct RowLoadInfo RowLoadInfo;
545 struct RowLoadInfo {
546   int regResult;               /* Store results in array of registers here */
547   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   ExprList *pExtra;            /* Extra columns needed by sorter refs */
550   int regExtraResult;          /* Where to load the extra columns */
551 #endif
552 };
553 
554 /*
555 ** This routine does the work of loading query data into an array of
556 ** registers so that it can be added to the sorter.
557 */
558 static void innerLoopLoadRow(
559   Parse *pParse,             /* Statement under construction */
560   Select *pSelect,           /* The query being coded */
561   RowLoadInfo *pInfo         /* Info needed to complete the row load */
562 ){
563   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
564                           0, pInfo->ecelFlags);
565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
566   if( pInfo->pExtra ){
567     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
568     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
569   }
570 #endif
571 }
572 
573 /*
574 ** Code the OP_MakeRecord instruction that generates the entry to be
575 ** added into the sorter.
576 **
577 ** Return the register in which the result is stored.
578 */
579 static int makeSorterRecord(
580   Parse *pParse,
581   SortCtx *pSort,
582   Select *pSelect,
583   int regBase,
584   int nBase
585 ){
586   int nOBSat = pSort->nOBSat;
587   Vdbe *v = pParse->pVdbe;
588   int regOut = ++pParse->nMem;
589   if( pSort->pDeferredRowLoad ){
590     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
591   }
592   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
593   return regOut;
594 }
595 
596 /*
597 ** Generate code that will push the record in registers regData
598 ** through regData+nData-1 onto the sorter.
599 */
600 static void pushOntoSorter(
601   Parse *pParse,         /* Parser context */
602   SortCtx *pSort,        /* Information about the ORDER BY clause */
603   Select *pSelect,       /* The whole SELECT statement */
604   int regData,           /* First register holding data to be sorted */
605   int regOrigData,       /* First register holding data before packing */
606   int nData,             /* Number of elements in the regData data array */
607   int nPrefixReg         /* No. of reg prior to regData available for use */
608 ){
609   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
610   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
611   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
612   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
613   int regBase;                                     /* Regs for sorter record */
614   int regRecord = 0;                               /* Assembled sorter record */
615   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
616   int op;                            /* Opcode to add sorter record to sorter */
617   int iLimit;                        /* LIMIT counter */
618   int iSkip = 0;                     /* End of the sorter insert loop */
619 
620   assert( bSeq==0 || bSeq==1 );
621 
622   /* Three cases:
623   **   (1) The data to be sorted has already been packed into a Record
624   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
625   **       will be completely unrelated to regOrigData.
626   **   (2) All output columns are included in the sort record.  In that
627   **       case regData==regOrigData.
628   **   (3) Some output columns are omitted from the sort record due to
629   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
630   **       SQLITE_ECEL_OMITREF optimization, or due to the
631   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
632   **       regOrigData is 0 to prevent this routine from trying to copy
633   **       values that might not yet exist.
634   */
635   assert( nData==1 || regData==regOrigData || regOrigData==0 );
636 
637   if( nPrefixReg ){
638     assert( nPrefixReg==nExpr+bSeq );
639     regBase = regData - nPrefixReg;
640   }else{
641     regBase = pParse->nMem + 1;
642     pParse->nMem += nBase;
643   }
644   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
645   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
646   pSort->labelDone = sqlite3VdbeMakeLabel(v);
647   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
648                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
649   if( bSeq ){
650     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
651   }
652   if( nPrefixReg==0 && nData>0 ){
653     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
654   }
655   if( nOBSat>0 ){
656     int regPrevKey;   /* The first nOBSat columns of the previous row */
657     int addrFirst;    /* Address of the OP_IfNot opcode */
658     int addrJmp;      /* Address of the OP_Jump opcode */
659     VdbeOp *pOp;      /* Opcode that opens the sorter */
660     int nKey;         /* Number of sorting key columns, including OP_Sequence */
661     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
662 
663     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
664     regPrevKey = pParse->nMem+1;
665     pParse->nMem += pSort->nOBSat;
666     nKey = nExpr - pSort->nOBSat + bSeq;
667     if( bSeq ){
668       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
669     }else{
670       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
671     }
672     VdbeCoverage(v);
673     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
674     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
675     if( pParse->db->mallocFailed ) return;
676     pOp->p2 = nKey + nData;
677     pKI = pOp->p4.pKeyInfo;
678     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
679     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
680     testcase( pKI->nAllField > pKI->nKeyField+2 );
681     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
682                                            pKI->nAllField-pKI->nKeyField-1);
683     addrJmp = sqlite3VdbeCurrentAddr(v);
684     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
686     pSort->regReturn = ++pParse->nMem;
687     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689     if( iLimit ){
690       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691       VdbeCoverage(v);
692     }
693     sqlite3VdbeJumpHere(v, addrFirst);
694     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695     sqlite3VdbeJumpHere(v, addrJmp);
696   }
697   if( iLimit ){
698     /* At this point the values for the new sorter entry are stored
699     ** in an array of registers. They need to be composed into a record
700     ** and inserted into the sorter if either (a) there are currently
701     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702     ** the largest record currently in the sorter. If (b) is true and there
703     ** are already LIMIT+OFFSET items in the sorter, delete the largest
704     ** entry before inserting the new one. This way there are never more
705     ** than LIMIT+OFFSET items in the sorter.
706     **
707     ** If the new record does not need to be inserted into the sorter,
708     ** jump to the next iteration of the loop. Or, if the
709     ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
710     ** loop delivers items in sorted order, jump to the next iteration
711     ** of the outer loop.
712     */
713     int iCsr = pSort->iECursor;
714     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715     VdbeCoverage(v);
716     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719     VdbeCoverage(v);
720     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
721   }
722   if( regRecord==0 ){
723     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
724   }
725   if( pSort->sortFlags & SORTFLAG_UseSorter ){
726     op = OP_SorterInsert;
727   }else{
728     op = OP_IdxInsert;
729   }
730   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731                        regBase+nOBSat, nBase-nOBSat);
732   if( iSkip ){
733     assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
734     sqlite3VdbeChangeP2(v, iSkip,
735          sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
736   }
737 }
738 
739 /*
740 ** Add code to implement the OFFSET
741 */
742 static void codeOffset(
743   Vdbe *v,          /* Generate code into this VM */
744   int iOffset,      /* Register holding the offset counter */
745   int iContinue     /* Jump here to skip the current record */
746 ){
747   if( iOffset>0 ){
748     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
749     VdbeComment((v, "OFFSET"));
750   }
751 }
752 
753 /*
754 ** Add code that will check to make sure the N registers starting at iMem
755 ** form a distinct entry.  iTab is a sorting index that holds previously
756 ** seen combinations of the N values.  A new entry is made in iTab
757 ** if the current N values are new.
758 **
759 ** A jump to addrRepeat is made and the N+1 values are popped from the
760 ** stack if the top N elements are not distinct.
761 */
762 static void codeDistinct(
763   Parse *pParse,     /* Parsing and code generating context */
764   int iTab,          /* A sorting index used to test for distinctness */
765   int addrRepeat,    /* Jump to here if not distinct */
766   int N,             /* Number of elements */
767   int iMem           /* First element */
768 ){
769   Vdbe *v;
770   int r1;
771 
772   v = pParse->pVdbe;
773   r1 = sqlite3GetTempReg(pParse);
774   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
775   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
776   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
777   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
778   sqlite3ReleaseTempReg(pParse, r1);
779 }
780 
781 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
782 /*
783 ** This function is called as part of inner-loop generation for a SELECT
784 ** statement with an ORDER BY that is not optimized by an index. It
785 ** determines the expressions, if any, that the sorter-reference
786 ** optimization should be used for. The sorter-reference optimization
787 ** is used for SELECT queries like:
788 **
789 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
790 **
791 ** If the optimization is used for expression "bigblob", then instead of
792 ** storing values read from that column in the sorter records, the PK of
793 ** the row from table t1 is stored instead. Then, as records are extracted from
794 ** the sorter to return to the user, the required value of bigblob is
795 ** retrieved directly from table t1. If the values are very large, this
796 ** can be more efficient than storing them directly in the sorter records.
797 **
798 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
799 ** for which the sorter-reference optimization should be enabled.
800 ** Additionally, the pSort->aDefer[] array is populated with entries
801 ** for all cursors required to evaluate all selected expressions. Finally.
802 ** output variable (*ppExtra) is set to an expression list containing
803 ** expressions for all extra PK values that should be stored in the
804 ** sorter records.
805 */
806 static void selectExprDefer(
807   Parse *pParse,                  /* Leave any error here */
808   SortCtx *pSort,                 /* Sorter context */
809   ExprList *pEList,               /* Expressions destined for sorter */
810   ExprList **ppExtra              /* Expressions to append to sorter record */
811 ){
812   int i;
813   int nDefer = 0;
814   ExprList *pExtra = 0;
815   for(i=0; i<pEList->nExpr; i++){
816     struct ExprList_item *pItem = &pEList->a[i];
817     if( pItem->u.x.iOrderByCol==0 ){
818       Expr *pExpr = pItem->pExpr;
819       Table *pTab = pExpr->pTab;
820       if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
821        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
822       ){
823         int j;
824         for(j=0; j<nDefer; j++){
825           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
826         }
827         if( j==nDefer ){
828           if( nDefer==ArraySize(pSort->aDefer) ){
829             continue;
830           }else{
831             int nKey = 1;
832             int k;
833             Index *pPk = 0;
834             if( !HasRowid(pTab) ){
835               pPk = sqlite3PrimaryKeyIndex(pTab);
836               nKey = pPk->nKeyCol;
837             }
838             for(k=0; k<nKey; k++){
839               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
840               if( pNew ){
841                 pNew->iTable = pExpr->iTable;
842                 pNew->pTab = pExpr->pTab;
843                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
844                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
845               }
846             }
847             pSort->aDefer[nDefer].pTab = pExpr->pTab;
848             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
849             pSort->aDefer[nDefer].nKey = nKey;
850             nDefer++;
851           }
852         }
853         pItem->bSorterRef = 1;
854       }
855     }
856   }
857   pSort->nDefer = (u8)nDefer;
858   *ppExtra = pExtra;
859 }
860 #endif
861 
862 /*
863 ** This routine generates the code for the inside of the inner loop
864 ** of a SELECT.
865 **
866 ** If srcTab is negative, then the p->pEList expressions
867 ** are evaluated in order to get the data for this row.  If srcTab is
868 ** zero or more, then data is pulled from srcTab and p->pEList is used only
869 ** to get the number of columns and the collation sequence for each column.
870 */
871 static void selectInnerLoop(
872   Parse *pParse,          /* The parser context */
873   Select *p,              /* The complete select statement being coded */
874   int srcTab,             /* Pull data from this table if non-negative */
875   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
876   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
877   SelectDest *pDest,      /* How to dispose of the results */
878   int iContinue,          /* Jump here to continue with next row */
879   int iBreak              /* Jump here to break out of the inner loop */
880 ){
881   Vdbe *v = pParse->pVdbe;
882   int i;
883   int hasDistinct;            /* True if the DISTINCT keyword is present */
884   int eDest = pDest->eDest;   /* How to dispose of results */
885   int iParm = pDest->iSDParm; /* First argument to disposal method */
886   int nResultCol;             /* Number of result columns */
887   int nPrefixReg = 0;         /* Number of extra registers before regResult */
888   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
889 
890   /* Usually, regResult is the first cell in an array of memory cells
891   ** containing the current result row. In this case regOrig is set to the
892   ** same value. However, if the results are being sent to the sorter, the
893   ** values for any expressions that are also part of the sort-key are omitted
894   ** from this array. In this case regOrig is set to zero.  */
895   int regResult;              /* Start of memory holding current results */
896   int regOrig;                /* Start of memory holding full result (or 0) */
897 
898   assert( v );
899   assert( p->pEList!=0 );
900   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
901   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
902   if( pSort==0 && !hasDistinct ){
903     assert( iContinue!=0 );
904     codeOffset(v, p->iOffset, iContinue);
905   }
906 
907   /* Pull the requested columns.
908   */
909   nResultCol = p->pEList->nExpr;
910 
911   if( pDest->iSdst==0 ){
912     if( pSort ){
913       nPrefixReg = pSort->pOrderBy->nExpr;
914       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
915       pParse->nMem += nPrefixReg;
916     }
917     pDest->iSdst = pParse->nMem+1;
918     pParse->nMem += nResultCol;
919   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
920     /* This is an error condition that can result, for example, when a SELECT
921     ** on the right-hand side of an INSERT contains more result columns than
922     ** there are columns in the table on the left.  The error will be caught
923     ** and reported later.  But we need to make sure enough memory is allocated
924     ** to avoid other spurious errors in the meantime. */
925     pParse->nMem += nResultCol;
926   }
927   pDest->nSdst = nResultCol;
928   regOrig = regResult = pDest->iSdst;
929   if( srcTab>=0 ){
930     for(i=0; i<nResultCol; i++){
931       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
932       VdbeComment((v, "%s", p->pEList->a[i].zName));
933     }
934   }else if( eDest!=SRT_Exists ){
935 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
936     ExprList *pExtra = 0;
937 #endif
938     /* If the destination is an EXISTS(...) expression, the actual
939     ** values returned by the SELECT are not required.
940     */
941     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
942     ExprList *pEList;
943     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
944       ecelFlags = SQLITE_ECEL_DUP;
945     }else{
946       ecelFlags = 0;
947     }
948     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
949       /* For each expression in p->pEList that is a copy of an expression in
950       ** the ORDER BY clause (pSort->pOrderBy), set the associated
951       ** iOrderByCol value to one more than the index of the ORDER BY
952       ** expression within the sort-key that pushOntoSorter() will generate.
953       ** This allows the p->pEList field to be omitted from the sorted record,
954       ** saving space and CPU cycles.  */
955       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
956 
957       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
958         int j;
959         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
960           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
961         }
962       }
963 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
964       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
965       if( pExtra && pParse->db->mallocFailed==0 ){
966         /* If there are any extra PK columns to add to the sorter records,
967         ** allocate extra memory cells and adjust the OpenEphemeral
968         ** instruction to account for the larger records. This is only
969         ** required if there are one or more WITHOUT ROWID tables with
970         ** composite primary keys in the SortCtx.aDefer[] array.  */
971         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
972         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
973         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
974         pParse->nMem += pExtra->nExpr;
975       }
976 #endif
977 
978       /* Adjust nResultCol to account for columns that are omitted
979       ** from the sorter by the optimizations in this branch */
980       pEList = p->pEList;
981       for(i=0; i<pEList->nExpr; i++){
982         if( pEList->a[i].u.x.iOrderByCol>0
983 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
984          || pEList->a[i].bSorterRef
985 #endif
986         ){
987           nResultCol--;
988           regOrig = 0;
989         }
990       }
991 
992       testcase( regOrig );
993       testcase( eDest==SRT_Set );
994       testcase( eDest==SRT_Mem );
995       testcase( eDest==SRT_Coroutine );
996       testcase( eDest==SRT_Output );
997       assert( eDest==SRT_Set || eDest==SRT_Mem
998            || eDest==SRT_Coroutine || eDest==SRT_Output );
999     }
1000     sRowLoadInfo.regResult = regResult;
1001     sRowLoadInfo.ecelFlags = ecelFlags;
1002 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1003     sRowLoadInfo.pExtra = pExtra;
1004     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1005     if( pExtra ) nResultCol += pExtra->nExpr;
1006 #endif
1007     if( p->iLimit
1008      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1009      && nPrefixReg>0
1010     ){
1011       assert( pSort!=0 );
1012       assert( hasDistinct==0 );
1013       pSort->pDeferredRowLoad = &sRowLoadInfo;
1014       regOrig = 0;
1015     }else{
1016       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1017     }
1018   }
1019 
1020   /* If the DISTINCT keyword was present on the SELECT statement
1021   ** and this row has been seen before, then do not make this row
1022   ** part of the result.
1023   */
1024   if( hasDistinct ){
1025     switch( pDistinct->eTnctType ){
1026       case WHERE_DISTINCT_ORDERED: {
1027         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1028         int iJump;              /* Jump destination */
1029         int regPrev;            /* Previous row content */
1030 
1031         /* Allocate space for the previous row */
1032         regPrev = pParse->nMem+1;
1033         pParse->nMem += nResultCol;
1034 
1035         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1036         ** sets the MEM_Cleared bit on the first register of the
1037         ** previous value.  This will cause the OP_Ne below to always
1038         ** fail on the first iteration of the loop even if the first
1039         ** row is all NULLs.
1040         */
1041         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1042         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1043         pOp->opcode = OP_Null;
1044         pOp->p1 = 1;
1045         pOp->p2 = regPrev;
1046 
1047         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1048         for(i=0; i<nResultCol; i++){
1049           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1050           if( i<nResultCol-1 ){
1051             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1052             VdbeCoverage(v);
1053           }else{
1054             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1055             VdbeCoverage(v);
1056            }
1057           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1058           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1059         }
1060         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1061         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1062         break;
1063       }
1064 
1065       case WHERE_DISTINCT_UNIQUE: {
1066         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1067         break;
1068       }
1069 
1070       default: {
1071         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1072         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1073                      regResult);
1074         break;
1075       }
1076     }
1077     if( pSort==0 ){
1078       codeOffset(v, p->iOffset, iContinue);
1079     }
1080   }
1081 
1082   switch( eDest ){
1083     /* In this mode, write each query result to the key of the temporary
1084     ** table iParm.
1085     */
1086 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1087     case SRT_Union: {
1088       int r1;
1089       r1 = sqlite3GetTempReg(pParse);
1090       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1091       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1092       sqlite3ReleaseTempReg(pParse, r1);
1093       break;
1094     }
1095 
1096     /* Construct a record from the query result, but instead of
1097     ** saving that record, use it as a key to delete elements from
1098     ** the temporary table iParm.
1099     */
1100     case SRT_Except: {
1101       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1102       break;
1103     }
1104 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1105 
1106     /* Store the result as data using a unique key.
1107     */
1108     case SRT_Fifo:
1109     case SRT_DistFifo:
1110     case SRT_Table:
1111     case SRT_EphemTab: {
1112       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1113       testcase( eDest==SRT_Table );
1114       testcase( eDest==SRT_EphemTab );
1115       testcase( eDest==SRT_Fifo );
1116       testcase( eDest==SRT_DistFifo );
1117       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1118 #ifndef SQLITE_OMIT_CTE
1119       if( eDest==SRT_DistFifo ){
1120         /* If the destination is DistFifo, then cursor (iParm+1) is open
1121         ** on an ephemeral index. If the current row is already present
1122         ** in the index, do not write it to the output. If not, add the
1123         ** current row to the index and proceed with writing it to the
1124         ** output table as well.  */
1125         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1126         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1127         VdbeCoverage(v);
1128         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1129         assert( pSort==0 );
1130       }
1131 #endif
1132       if( pSort ){
1133         assert( regResult==regOrig );
1134         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1135       }else{
1136         int r2 = sqlite3GetTempReg(pParse);
1137         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1138         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1139         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1140         sqlite3ReleaseTempReg(pParse, r2);
1141       }
1142       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1143       break;
1144     }
1145 
1146 #ifndef SQLITE_OMIT_SUBQUERY
1147     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1148     ** then there should be a single item on the stack.  Write this
1149     ** item into the set table with bogus data.
1150     */
1151     case SRT_Set: {
1152       if( pSort ){
1153         /* At first glance you would think we could optimize out the
1154         ** ORDER BY in this case since the order of entries in the set
1155         ** does not matter.  But there might be a LIMIT clause, in which
1156         ** case the order does matter */
1157         pushOntoSorter(
1158             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1159       }else{
1160         int r1 = sqlite3GetTempReg(pParse);
1161         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1162         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1163             r1, pDest->zAffSdst, nResultCol);
1164         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1165         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1166         sqlite3ReleaseTempReg(pParse, r1);
1167       }
1168       break;
1169     }
1170 
1171     /* If any row exist in the result set, record that fact and abort.
1172     */
1173     case SRT_Exists: {
1174       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1175       /* The LIMIT clause will terminate the loop for us */
1176       break;
1177     }
1178 
1179     /* If this is a scalar select that is part of an expression, then
1180     ** store the results in the appropriate memory cell or array of
1181     ** memory cells and break out of the scan loop.
1182     */
1183     case SRT_Mem: {
1184       if( pSort ){
1185         assert( nResultCol<=pDest->nSdst );
1186         pushOntoSorter(
1187             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1188       }else{
1189         assert( nResultCol==pDest->nSdst );
1190         assert( regResult==iParm );
1191         /* The LIMIT clause will jump out of the loop for us */
1192       }
1193       break;
1194     }
1195 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1196 
1197     case SRT_Coroutine:       /* Send data to a co-routine */
1198     case SRT_Output: {        /* Return the results */
1199       testcase( eDest==SRT_Coroutine );
1200       testcase( eDest==SRT_Output );
1201       if( pSort ){
1202         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1203                        nPrefixReg);
1204       }else if( eDest==SRT_Coroutine ){
1205         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1206       }else{
1207         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1208         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1209       }
1210       break;
1211     }
1212 
1213 #ifndef SQLITE_OMIT_CTE
1214     /* Write the results into a priority queue that is order according to
1215     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1216     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1217     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1218     ** final OP_Sequence column.  The last column is the record as a blob.
1219     */
1220     case SRT_DistQueue:
1221     case SRT_Queue: {
1222       int nKey;
1223       int r1, r2, r3;
1224       int addrTest = 0;
1225       ExprList *pSO;
1226       pSO = pDest->pOrderBy;
1227       assert( pSO );
1228       nKey = pSO->nExpr;
1229       r1 = sqlite3GetTempReg(pParse);
1230       r2 = sqlite3GetTempRange(pParse, nKey+2);
1231       r3 = r2+nKey+1;
1232       if( eDest==SRT_DistQueue ){
1233         /* If the destination is DistQueue, then cursor (iParm+1) is open
1234         ** on a second ephemeral index that holds all values every previously
1235         ** added to the queue. */
1236         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1237                                         regResult, nResultCol);
1238         VdbeCoverage(v);
1239       }
1240       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1241       if( eDest==SRT_DistQueue ){
1242         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1243         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1244       }
1245       for(i=0; i<nKey; i++){
1246         sqlite3VdbeAddOp2(v, OP_SCopy,
1247                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1248                           r2+i);
1249       }
1250       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1251       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1252       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1253       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1254       sqlite3ReleaseTempReg(pParse, r1);
1255       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1256       break;
1257     }
1258 #endif /* SQLITE_OMIT_CTE */
1259 
1260 
1261 
1262 #if !defined(SQLITE_OMIT_TRIGGER)
1263     /* Discard the results.  This is used for SELECT statements inside
1264     ** the body of a TRIGGER.  The purpose of such selects is to call
1265     ** user-defined functions that have side effects.  We do not care
1266     ** about the actual results of the select.
1267     */
1268     default: {
1269       assert( eDest==SRT_Discard );
1270       break;
1271     }
1272 #endif
1273   }
1274 
1275   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1276   ** there is a sorter, in which case the sorter has already limited
1277   ** the output for us.
1278   */
1279   if( pSort==0 && p->iLimit ){
1280     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1281   }
1282 }
1283 
1284 /*
1285 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1286 ** X extra columns.
1287 */
1288 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1289   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1290   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1291   if( p ){
1292     p->aSortOrder = (u8*)&p->aColl[N+X];
1293     p->nKeyField = (u16)N;
1294     p->nAllField = (u16)(N+X);
1295     p->enc = ENC(db);
1296     p->db = db;
1297     p->nRef = 1;
1298     memset(&p[1], 0, nExtra);
1299   }else{
1300     sqlite3OomFault(db);
1301   }
1302   return p;
1303 }
1304 
1305 /*
1306 ** Deallocate a KeyInfo object
1307 */
1308 void sqlite3KeyInfoUnref(KeyInfo *p){
1309   if( p ){
1310     assert( p->nRef>0 );
1311     p->nRef--;
1312     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1313   }
1314 }
1315 
1316 /*
1317 ** Make a new pointer to a KeyInfo object
1318 */
1319 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1320   if( p ){
1321     assert( p->nRef>0 );
1322     p->nRef++;
1323   }
1324   return p;
1325 }
1326 
1327 #ifdef SQLITE_DEBUG
1328 /*
1329 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1330 ** can only be changed if this is just a single reference to the object.
1331 **
1332 ** This routine is used only inside of assert() statements.
1333 */
1334 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1335 #endif /* SQLITE_DEBUG */
1336 
1337 /*
1338 ** Given an expression list, generate a KeyInfo structure that records
1339 ** the collating sequence for each expression in that expression list.
1340 **
1341 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1342 ** KeyInfo structure is appropriate for initializing a virtual index to
1343 ** implement that clause.  If the ExprList is the result set of a SELECT
1344 ** then the KeyInfo structure is appropriate for initializing a virtual
1345 ** index to implement a DISTINCT test.
1346 **
1347 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1348 ** function is responsible for seeing that this structure is eventually
1349 ** freed.
1350 */
1351 static KeyInfo *keyInfoFromExprList(
1352   Parse *pParse,       /* Parsing context */
1353   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1354   int iStart,          /* Begin with this column of pList */
1355   int nExtra           /* Add this many extra columns to the end */
1356 ){
1357   int nExpr;
1358   KeyInfo *pInfo;
1359   struct ExprList_item *pItem;
1360   sqlite3 *db = pParse->db;
1361   int i;
1362 
1363   nExpr = pList->nExpr;
1364   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1365   if( pInfo ){
1366     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1367     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1368       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1369       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1370     }
1371   }
1372   return pInfo;
1373 }
1374 
1375 /*
1376 ** Name of the connection operator, used for error messages.
1377 */
1378 static const char *selectOpName(int id){
1379   char *z;
1380   switch( id ){
1381     case TK_ALL:       z = "UNION ALL";   break;
1382     case TK_INTERSECT: z = "INTERSECT";   break;
1383     case TK_EXCEPT:    z = "EXCEPT";      break;
1384     default:           z = "UNION";       break;
1385   }
1386   return z;
1387 }
1388 
1389 #ifndef SQLITE_OMIT_EXPLAIN
1390 /*
1391 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1392 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1393 ** where the caption is of the form:
1394 **
1395 **   "USE TEMP B-TREE FOR xxx"
1396 **
1397 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1398 ** is determined by the zUsage argument.
1399 */
1400 static void explainTempTable(Parse *pParse, const char *zUsage){
1401   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1402 }
1403 
1404 /*
1405 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1406 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1407 ** in sqlite3Select() to assign values to structure member variables that
1408 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1409 ** code with #ifndef directives.
1410 */
1411 # define explainSetInteger(a, b) a = b
1412 
1413 #else
1414 /* No-op versions of the explainXXX() functions and macros. */
1415 # define explainTempTable(y,z)
1416 # define explainSetInteger(y,z)
1417 #endif
1418 
1419 
1420 /*
1421 ** If the inner loop was generated using a non-null pOrderBy argument,
1422 ** then the results were placed in a sorter.  After the loop is terminated
1423 ** we need to run the sorter and output the results.  The following
1424 ** routine generates the code needed to do that.
1425 */
1426 static void generateSortTail(
1427   Parse *pParse,    /* Parsing context */
1428   Select *p,        /* The SELECT statement */
1429   SortCtx *pSort,   /* Information on the ORDER BY clause */
1430   int nColumn,      /* Number of columns of data */
1431   SelectDest *pDest /* Write the sorted results here */
1432 ){
1433   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1434   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1435   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1436   int addr;                       /* Top of output loop. Jump for Next. */
1437   int addrOnce = 0;
1438   int iTab;
1439   ExprList *pOrderBy = pSort->pOrderBy;
1440   int eDest = pDest->eDest;
1441   int iParm = pDest->iSDParm;
1442   int regRow;
1443   int regRowid;
1444   int iCol;
1445   int nKey;                       /* Number of key columns in sorter record */
1446   int iSortTab;                   /* Sorter cursor to read from */
1447   int i;
1448   int bSeq;                       /* True if sorter record includes seq. no. */
1449   int nRefKey = 0;
1450   struct ExprList_item *aOutEx = p->pEList->a;
1451 
1452   assert( addrBreak<0 );
1453   if( pSort->labelBkOut ){
1454     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1455     sqlite3VdbeGoto(v, addrBreak);
1456     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1457   }
1458 
1459 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1460   /* Open any cursors needed for sorter-reference expressions */
1461   for(i=0; i<pSort->nDefer; i++){
1462     Table *pTab = pSort->aDefer[i].pTab;
1463     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1464     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1465     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1466   }
1467 #endif
1468 
1469   iTab = pSort->iECursor;
1470   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1471     regRowid = 0;
1472     regRow = pDest->iSdst;
1473   }else{
1474     regRowid = sqlite3GetTempReg(pParse);
1475     regRow = sqlite3GetTempRange(pParse, nColumn);
1476   }
1477   nKey = pOrderBy->nExpr - pSort->nOBSat;
1478   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1479     int regSortOut = ++pParse->nMem;
1480     iSortTab = pParse->nTab++;
1481     if( pSort->labelBkOut ){
1482       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1483     }
1484     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1485         nKey+1+nColumn+nRefKey);
1486     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1487     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1488     VdbeCoverage(v);
1489     codeOffset(v, p->iOffset, addrContinue);
1490     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1491     bSeq = 0;
1492   }else{
1493     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1494     codeOffset(v, p->iOffset, addrContinue);
1495     iSortTab = iTab;
1496     bSeq = 1;
1497   }
1498   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1499 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1500     if( aOutEx[i].bSorterRef ) continue;
1501 #endif
1502     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1503   }
1504 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1505   if( pSort->nDefer ){
1506     int iKey = iCol+1;
1507     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1508 
1509     for(i=0; i<pSort->nDefer; i++){
1510       int iCsr = pSort->aDefer[i].iCsr;
1511       Table *pTab = pSort->aDefer[i].pTab;
1512       int nKey = pSort->aDefer[i].nKey;
1513 
1514       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1515       if( HasRowid(pTab) ){
1516         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1517         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1518             sqlite3VdbeCurrentAddr(v)+1, regKey);
1519       }else{
1520         int k;
1521         int iJmp;
1522         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1523         for(k=0; k<nKey; k++){
1524           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1525         }
1526         iJmp = sqlite3VdbeCurrentAddr(v);
1527         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1528         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1529         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1530       }
1531     }
1532     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1533   }
1534 #endif
1535   for(i=nColumn-1; i>=0; i--){
1536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1537     if( aOutEx[i].bSorterRef ){
1538       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1539     }else
1540 #endif
1541     {
1542       int iRead;
1543       if( aOutEx[i].u.x.iOrderByCol ){
1544         iRead = aOutEx[i].u.x.iOrderByCol-1;
1545       }else{
1546         iRead = iCol--;
1547       }
1548       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1549       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1550     }
1551   }
1552   switch( eDest ){
1553     case SRT_Table:
1554     case SRT_EphemTab: {
1555       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1556       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1557       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1558       break;
1559     }
1560 #ifndef SQLITE_OMIT_SUBQUERY
1561     case SRT_Set: {
1562       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1563       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1564                         pDest->zAffSdst, nColumn);
1565       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1566       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1567       break;
1568     }
1569     case SRT_Mem: {
1570       /* The LIMIT clause will terminate the loop for us */
1571       break;
1572     }
1573 #endif
1574     default: {
1575       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1576       testcase( eDest==SRT_Output );
1577       testcase( eDest==SRT_Coroutine );
1578       if( eDest==SRT_Output ){
1579         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1580         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1581       }else{
1582         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1583       }
1584       break;
1585     }
1586   }
1587   if( regRowid ){
1588     if( eDest==SRT_Set ){
1589       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1590     }else{
1591       sqlite3ReleaseTempReg(pParse, regRow);
1592     }
1593     sqlite3ReleaseTempReg(pParse, regRowid);
1594   }
1595   /* The bottom of the loop
1596   */
1597   sqlite3VdbeResolveLabel(v, addrContinue);
1598   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1599     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1600   }else{
1601     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1602   }
1603   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1604   sqlite3VdbeResolveLabel(v, addrBreak);
1605 }
1606 
1607 /*
1608 ** Return a pointer to a string containing the 'declaration type' of the
1609 ** expression pExpr. The string may be treated as static by the caller.
1610 **
1611 ** Also try to estimate the size of the returned value and return that
1612 ** result in *pEstWidth.
1613 **
1614 ** The declaration type is the exact datatype definition extracted from the
1615 ** original CREATE TABLE statement if the expression is a column. The
1616 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1617 ** is considered a column can be complex in the presence of subqueries. The
1618 ** result-set expression in all of the following SELECT statements is
1619 ** considered a column by this function.
1620 **
1621 **   SELECT col FROM tbl;
1622 **   SELECT (SELECT col FROM tbl;
1623 **   SELECT (SELECT col FROM tbl);
1624 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1625 **
1626 ** The declaration type for any expression other than a column is NULL.
1627 **
1628 ** This routine has either 3 or 6 parameters depending on whether or not
1629 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1630 */
1631 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1633 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1634 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1635 #endif
1636 static const char *columnTypeImpl(
1637   NameContext *pNC,
1638 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1639   Expr *pExpr
1640 #else
1641   Expr *pExpr,
1642   const char **pzOrigDb,
1643   const char **pzOrigTab,
1644   const char **pzOrigCol
1645 #endif
1646 ){
1647   char const *zType = 0;
1648   int j;
1649 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1650   char const *zOrigDb = 0;
1651   char const *zOrigTab = 0;
1652   char const *zOrigCol = 0;
1653 #endif
1654 
1655   assert( pExpr!=0 );
1656   assert( pNC->pSrcList!=0 );
1657   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1658                                        ** are processed */
1659   switch( pExpr->op ){
1660     case TK_COLUMN: {
1661       /* The expression is a column. Locate the table the column is being
1662       ** extracted from in NameContext.pSrcList. This table may be real
1663       ** database table or a subquery.
1664       */
1665       Table *pTab = 0;            /* Table structure column is extracted from */
1666       Select *pS = 0;             /* Select the column is extracted from */
1667       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1668       while( pNC && !pTab ){
1669         SrcList *pTabList = pNC->pSrcList;
1670         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1671         if( j<pTabList->nSrc ){
1672           pTab = pTabList->a[j].pTab;
1673           pS = pTabList->a[j].pSelect;
1674         }else{
1675           pNC = pNC->pNext;
1676         }
1677       }
1678 
1679       if( pTab==0 ){
1680         /* At one time, code such as "SELECT new.x" within a trigger would
1681         ** cause this condition to run.  Since then, we have restructured how
1682         ** trigger code is generated and so this condition is no longer
1683         ** possible. However, it can still be true for statements like
1684         ** the following:
1685         **
1686         **   CREATE TABLE t1(col INTEGER);
1687         **   SELECT (SELECT t1.col) FROM FROM t1;
1688         **
1689         ** when columnType() is called on the expression "t1.col" in the
1690         ** sub-select. In this case, set the column type to NULL, even
1691         ** though it should really be "INTEGER".
1692         **
1693         ** This is not a problem, as the column type of "t1.col" is never
1694         ** used. When columnType() is called on the expression
1695         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1696         ** branch below.  */
1697         break;
1698       }
1699 
1700       assert( pTab && pExpr->pTab==pTab );
1701       if( pS ){
1702         /* The "table" is actually a sub-select or a view in the FROM clause
1703         ** of the SELECT statement. Return the declaration type and origin
1704         ** data for the result-set column of the sub-select.
1705         */
1706         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1707           /* If iCol is less than zero, then the expression requests the
1708           ** rowid of the sub-select or view. This expression is legal (see
1709           ** test case misc2.2.2) - it always evaluates to NULL.
1710           */
1711           NameContext sNC;
1712           Expr *p = pS->pEList->a[iCol].pExpr;
1713           sNC.pSrcList = pS->pSrc;
1714           sNC.pNext = pNC;
1715           sNC.pParse = pNC->pParse;
1716           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1717         }
1718       }else{
1719         /* A real table or a CTE table */
1720         assert( !pS );
1721 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1722         if( iCol<0 ) iCol = pTab->iPKey;
1723         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1724         if( iCol<0 ){
1725           zType = "INTEGER";
1726           zOrigCol = "rowid";
1727         }else{
1728           zOrigCol = pTab->aCol[iCol].zName;
1729           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1730         }
1731         zOrigTab = pTab->zName;
1732         if( pNC->pParse && pTab->pSchema ){
1733           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1734           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1735         }
1736 #else
1737         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1738         if( iCol<0 ){
1739           zType = "INTEGER";
1740         }else{
1741           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1742         }
1743 #endif
1744       }
1745       break;
1746     }
1747 #ifndef SQLITE_OMIT_SUBQUERY
1748     case TK_SELECT: {
1749       /* The expression is a sub-select. Return the declaration type and
1750       ** origin info for the single column in the result set of the SELECT
1751       ** statement.
1752       */
1753       NameContext sNC;
1754       Select *pS = pExpr->x.pSelect;
1755       Expr *p = pS->pEList->a[0].pExpr;
1756       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1757       sNC.pSrcList = pS->pSrc;
1758       sNC.pNext = pNC;
1759       sNC.pParse = pNC->pParse;
1760       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1761       break;
1762     }
1763 #endif
1764   }
1765 
1766 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1767   if( pzOrigDb ){
1768     assert( pzOrigTab && pzOrigCol );
1769     *pzOrigDb = zOrigDb;
1770     *pzOrigTab = zOrigTab;
1771     *pzOrigCol = zOrigCol;
1772   }
1773 #endif
1774   return zType;
1775 }
1776 
1777 /*
1778 ** Generate code that will tell the VDBE the declaration types of columns
1779 ** in the result set.
1780 */
1781 static void generateColumnTypes(
1782   Parse *pParse,      /* Parser context */
1783   SrcList *pTabList,  /* List of tables */
1784   ExprList *pEList    /* Expressions defining the result set */
1785 ){
1786 #ifndef SQLITE_OMIT_DECLTYPE
1787   Vdbe *v = pParse->pVdbe;
1788   int i;
1789   NameContext sNC;
1790   sNC.pSrcList = pTabList;
1791   sNC.pParse = pParse;
1792   sNC.pNext = 0;
1793   for(i=0; i<pEList->nExpr; i++){
1794     Expr *p = pEList->a[i].pExpr;
1795     const char *zType;
1796 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1797     const char *zOrigDb = 0;
1798     const char *zOrigTab = 0;
1799     const char *zOrigCol = 0;
1800     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1801 
1802     /* The vdbe must make its own copy of the column-type and other
1803     ** column specific strings, in case the schema is reset before this
1804     ** virtual machine is deleted.
1805     */
1806     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1807     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1808     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1809 #else
1810     zType = columnType(&sNC, p, 0, 0, 0);
1811 #endif
1812     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1813   }
1814 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1815 }
1816 
1817 
1818 /*
1819 ** Compute the column names for a SELECT statement.
1820 **
1821 ** The only guarantee that SQLite makes about column names is that if the
1822 ** column has an AS clause assigning it a name, that will be the name used.
1823 ** That is the only documented guarantee.  However, countless applications
1824 ** developed over the years have made baseless assumptions about column names
1825 ** and will break if those assumptions changes.  Hence, use extreme caution
1826 ** when modifying this routine to avoid breaking legacy.
1827 **
1828 ** See Also: sqlite3ColumnsFromExprList()
1829 **
1830 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1831 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1832 ** applications should operate this way.  Nevertheless, we need to support the
1833 ** other modes for legacy:
1834 **
1835 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1836 **                              originally appears in the SELECT statement.  In
1837 **                              other words, the zSpan of the result expression.
1838 **
1839 **    short=ON, full=OFF:       (This is the default setting).  If the result
1840 **                              refers directly to a table column, then the
1841 **                              result column name is just the table column
1842 **                              name: COLUMN.  Otherwise use zSpan.
1843 **
1844 **    full=ON, short=ANY:       If the result refers directly to a table column,
1845 **                              then the result column name with the table name
1846 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1847 */
1848 static void generateColumnNames(
1849   Parse *pParse,      /* Parser context */
1850   Select *pSelect     /* Generate column names for this SELECT statement */
1851 ){
1852   Vdbe *v = pParse->pVdbe;
1853   int i;
1854   Table *pTab;
1855   SrcList *pTabList;
1856   ExprList *pEList;
1857   sqlite3 *db = pParse->db;
1858   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1859   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1860 
1861 #ifndef SQLITE_OMIT_EXPLAIN
1862   /* If this is an EXPLAIN, skip this step */
1863   if( pParse->explain ){
1864     return;
1865   }
1866 #endif
1867 
1868   if( pParse->colNamesSet ) return;
1869   /* Column names are determined by the left-most term of a compound select */
1870   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1871   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1872   pTabList = pSelect->pSrc;
1873   pEList = pSelect->pEList;
1874   assert( v!=0 );
1875   assert( pTabList!=0 );
1876   pParse->colNamesSet = 1;
1877   fullName = (db->flags & SQLITE_FullColNames)!=0;
1878   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1879   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1880   for(i=0; i<pEList->nExpr; i++){
1881     Expr *p = pEList->a[i].pExpr;
1882 
1883     assert( p!=0 );
1884     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1885     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1886     if( pEList->a[i].zName ){
1887       /* An AS clause always takes first priority */
1888       char *zName = pEList->a[i].zName;
1889       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1890     }else if( srcName && p->op==TK_COLUMN ){
1891       char *zCol;
1892       int iCol = p->iColumn;
1893       pTab = p->pTab;
1894       assert( pTab!=0 );
1895       if( iCol<0 ) iCol = pTab->iPKey;
1896       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1897       if( iCol<0 ){
1898         zCol = "rowid";
1899       }else{
1900         zCol = pTab->aCol[iCol].zName;
1901       }
1902       if( fullName ){
1903         char *zName = 0;
1904         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1905         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1906       }else{
1907         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1908       }
1909     }else{
1910       const char *z = pEList->a[i].zSpan;
1911       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1912       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1913     }
1914   }
1915   generateColumnTypes(pParse, pTabList, pEList);
1916 }
1917 
1918 /*
1919 ** Given an expression list (which is really the list of expressions
1920 ** that form the result set of a SELECT statement) compute appropriate
1921 ** column names for a table that would hold the expression list.
1922 **
1923 ** All column names will be unique.
1924 **
1925 ** Only the column names are computed.  Column.zType, Column.zColl,
1926 ** and other fields of Column are zeroed.
1927 **
1928 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1929 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1930 **
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee.  However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes.  Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1937 **
1938 ** See Also: generateColumnNames()
1939 */
1940 int sqlite3ColumnsFromExprList(
1941   Parse *pParse,          /* Parsing context */
1942   ExprList *pEList,       /* Expr list from which to derive column names */
1943   i16 *pnCol,             /* Write the number of columns here */
1944   Column **paCol          /* Write the new column list here */
1945 ){
1946   sqlite3 *db = pParse->db;   /* Database connection */
1947   int i, j;                   /* Loop counters */
1948   u32 cnt;                    /* Index added to make the name unique */
1949   Column *aCol, *pCol;        /* For looping over result columns */
1950   int nCol;                   /* Number of columns in the result set */
1951   char *zName;                /* Column name */
1952   int nName;                  /* Size of name in zName[] */
1953   Hash ht;                    /* Hash table of column names */
1954 
1955   sqlite3HashInit(&ht);
1956   if( pEList ){
1957     nCol = pEList->nExpr;
1958     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1959     testcase( aCol==0 );
1960     if( nCol>32767 ) nCol = 32767;
1961   }else{
1962     nCol = 0;
1963     aCol = 0;
1964   }
1965   assert( nCol==(i16)nCol );
1966   *pnCol = nCol;
1967   *paCol = aCol;
1968 
1969   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1970     /* Get an appropriate name for the column
1971     */
1972     if( (zName = pEList->a[i].zName)!=0 ){
1973       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1974     }else{
1975       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1976       while( pColExpr->op==TK_DOT ){
1977         pColExpr = pColExpr->pRight;
1978         assert( pColExpr!=0 );
1979       }
1980       assert( pColExpr->op!=TK_AGG_COLUMN );
1981       if( pColExpr->op==TK_COLUMN ){
1982         /* For columns use the column name name */
1983         int iCol = pColExpr->iColumn;
1984         Table *pTab = pColExpr->pTab;
1985         assert( pTab!=0 );
1986         if( iCol<0 ) iCol = pTab->iPKey;
1987         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1988       }else if( pColExpr->op==TK_ID ){
1989         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1990         zName = pColExpr->u.zToken;
1991       }else{
1992         /* Use the original text of the column expression as its name */
1993         zName = pEList->a[i].zSpan;
1994       }
1995     }
1996     if( zName ){
1997       zName = sqlite3DbStrDup(db, zName);
1998     }else{
1999       zName = sqlite3MPrintf(db,"column%d",i+1);
2000     }
2001 
2002     /* Make sure the column name is unique.  If the name is not unique,
2003     ** append an integer to the name so that it becomes unique.
2004     */
2005     cnt = 0;
2006     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2007       nName = sqlite3Strlen30(zName);
2008       if( nName>0 ){
2009         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2010         if( zName[j]==':' ) nName = j;
2011       }
2012       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2013       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2014     }
2015     pCol->zName = zName;
2016     sqlite3ColumnPropertiesFromName(0, pCol);
2017     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2018       sqlite3OomFault(db);
2019     }
2020   }
2021   sqlite3HashClear(&ht);
2022   if( db->mallocFailed ){
2023     for(j=0; j<i; j++){
2024       sqlite3DbFree(db, aCol[j].zName);
2025     }
2026     sqlite3DbFree(db, aCol);
2027     *paCol = 0;
2028     *pnCol = 0;
2029     return SQLITE_NOMEM_BKPT;
2030   }
2031   return SQLITE_OK;
2032 }
2033 
2034 /*
2035 ** Add type and collation information to a column list based on
2036 ** a SELECT statement.
2037 **
2038 ** The column list presumably came from selectColumnNamesFromExprList().
2039 ** The column list has only names, not types or collations.  This
2040 ** routine goes through and adds the types and collations.
2041 **
2042 ** This routine requires that all identifiers in the SELECT
2043 ** statement be resolved.
2044 */
2045 void sqlite3SelectAddColumnTypeAndCollation(
2046   Parse *pParse,        /* Parsing contexts */
2047   Table *pTab,          /* Add column type information to this table */
2048   Select *pSelect       /* SELECT used to determine types and collations */
2049 ){
2050   sqlite3 *db = pParse->db;
2051   NameContext sNC;
2052   Column *pCol;
2053   CollSeq *pColl;
2054   int i;
2055   Expr *p;
2056   struct ExprList_item *a;
2057 
2058   assert( pSelect!=0 );
2059   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2060   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2061   if( db->mallocFailed ) return;
2062   memset(&sNC, 0, sizeof(sNC));
2063   sNC.pSrcList = pSelect->pSrc;
2064   a = pSelect->pEList->a;
2065   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2066     const char *zType;
2067     int n, m;
2068     p = a[i].pExpr;
2069     zType = columnType(&sNC, p, 0, 0, 0);
2070     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2071     pCol->affinity = sqlite3ExprAffinity(p);
2072     if( zType ){
2073       m = sqlite3Strlen30(zType);
2074       n = sqlite3Strlen30(pCol->zName);
2075       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2076       if( pCol->zName ){
2077         memcpy(&pCol->zName[n+1], zType, m+1);
2078         pCol->colFlags |= COLFLAG_HASTYPE;
2079       }
2080     }
2081     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2082     pColl = sqlite3ExprCollSeq(pParse, p);
2083     if( pColl && pCol->zColl==0 ){
2084       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2085     }
2086   }
2087   pTab->szTabRow = 1; /* Any non-zero value works */
2088 }
2089 
2090 /*
2091 ** Given a SELECT statement, generate a Table structure that describes
2092 ** the result set of that SELECT.
2093 */
2094 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2095   Table *pTab;
2096   sqlite3 *db = pParse->db;
2097   int savedFlags;
2098 
2099   savedFlags = db->flags;
2100   db->flags &= ~SQLITE_FullColNames;
2101   db->flags |= SQLITE_ShortColNames;
2102   sqlite3SelectPrep(pParse, pSelect, 0);
2103   if( pParse->nErr ) return 0;
2104   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2105   db->flags = savedFlags;
2106   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2107   if( pTab==0 ){
2108     return 0;
2109   }
2110   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2111   ** is disabled */
2112   assert( db->lookaside.bDisable );
2113   pTab->nTabRef = 1;
2114   pTab->zName = 0;
2115   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2116   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2117   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2118   pTab->iPKey = -1;
2119   if( db->mallocFailed ){
2120     sqlite3DeleteTable(db, pTab);
2121     return 0;
2122   }
2123   return pTab;
2124 }
2125 
2126 /*
2127 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2128 ** If an error occurs, return NULL and leave a message in pParse.
2129 */
2130 Vdbe *sqlite3GetVdbe(Parse *pParse){
2131   if( pParse->pVdbe ){
2132     return pParse->pVdbe;
2133   }
2134   if( pParse->pToplevel==0
2135    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2136   ){
2137     pParse->okConstFactor = 1;
2138   }
2139   return sqlite3VdbeCreate(pParse);
2140 }
2141 
2142 
2143 /*
2144 ** Compute the iLimit and iOffset fields of the SELECT based on the
2145 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2146 ** that appear in the original SQL statement after the LIMIT and OFFSET
2147 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2148 ** are the integer memory register numbers for counters used to compute
2149 ** the limit and offset.  If there is no limit and/or offset, then
2150 ** iLimit and iOffset are negative.
2151 **
2152 ** This routine changes the values of iLimit and iOffset only if
2153 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2154 ** and iOffset should have been preset to appropriate default values (zero)
2155 ** prior to calling this routine.
2156 **
2157 ** The iOffset register (if it exists) is initialized to the value
2158 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2159 ** iOffset+1 is initialized to LIMIT+OFFSET.
2160 **
2161 ** Only if pLimit->pLeft!=0 do the limit registers get
2162 ** redefined.  The UNION ALL operator uses this property to force
2163 ** the reuse of the same limit and offset registers across multiple
2164 ** SELECT statements.
2165 */
2166 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2167   Vdbe *v = 0;
2168   int iLimit = 0;
2169   int iOffset;
2170   int n;
2171   Expr *pLimit = p->pLimit;
2172 
2173   if( p->iLimit ) return;
2174 
2175   /*
2176   ** "LIMIT -1" always shows all rows.  There is some
2177   ** controversy about what the correct behavior should be.
2178   ** The current implementation interprets "LIMIT 0" to mean
2179   ** no rows.
2180   */
2181   sqlite3ExprCacheClear(pParse);
2182   if( pLimit ){
2183     assert( pLimit->op==TK_LIMIT );
2184     assert( pLimit->pLeft!=0 );
2185     p->iLimit = iLimit = ++pParse->nMem;
2186     v = sqlite3GetVdbe(pParse);
2187     assert( v!=0 );
2188     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2189       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2190       VdbeComment((v, "LIMIT counter"));
2191       if( n==0 ){
2192         sqlite3VdbeGoto(v, iBreak);
2193       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2194         p->nSelectRow = sqlite3LogEst((u64)n);
2195         p->selFlags |= SF_FixedLimit;
2196       }
2197     }else{
2198       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2199       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2200       VdbeComment((v, "LIMIT counter"));
2201       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2202     }
2203     if( pLimit->pRight ){
2204       p->iOffset = iOffset = ++pParse->nMem;
2205       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2206       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2207       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2208       VdbeComment((v, "OFFSET counter"));
2209       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2210       VdbeComment((v, "LIMIT+OFFSET"));
2211     }
2212   }
2213 }
2214 
2215 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2216 /*
2217 ** Return the appropriate collating sequence for the iCol-th column of
2218 ** the result set for the compound-select statement "p".  Return NULL if
2219 ** the column has no default collating sequence.
2220 **
2221 ** The collating sequence for the compound select is taken from the
2222 ** left-most term of the select that has a collating sequence.
2223 */
2224 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2225   CollSeq *pRet;
2226   if( p->pPrior ){
2227     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2228   }else{
2229     pRet = 0;
2230   }
2231   assert( iCol>=0 );
2232   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2233   ** have been thrown during name resolution and we would not have gotten
2234   ** this far */
2235   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2236     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2237   }
2238   return pRet;
2239 }
2240 
2241 /*
2242 ** The select statement passed as the second parameter is a compound SELECT
2243 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2244 ** structure suitable for implementing the ORDER BY.
2245 **
2246 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2247 ** function is responsible for ensuring that this structure is eventually
2248 ** freed.
2249 */
2250 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2251   ExprList *pOrderBy = p->pOrderBy;
2252   int nOrderBy = p->pOrderBy->nExpr;
2253   sqlite3 *db = pParse->db;
2254   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2255   if( pRet ){
2256     int i;
2257     for(i=0; i<nOrderBy; i++){
2258       struct ExprList_item *pItem = &pOrderBy->a[i];
2259       Expr *pTerm = pItem->pExpr;
2260       CollSeq *pColl;
2261 
2262       if( pTerm->flags & EP_Collate ){
2263         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2264       }else{
2265         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2266         if( pColl==0 ) pColl = db->pDfltColl;
2267         pOrderBy->a[i].pExpr =
2268           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2269       }
2270       assert( sqlite3KeyInfoIsWriteable(pRet) );
2271       pRet->aColl[i] = pColl;
2272       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2273     }
2274   }
2275 
2276   return pRet;
2277 }
2278 
2279 #ifndef SQLITE_OMIT_CTE
2280 /*
2281 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2282 ** query of the form:
2283 **
2284 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2285 **                         \___________/             \_______________/
2286 **                           p->pPrior                      p
2287 **
2288 **
2289 ** There is exactly one reference to the recursive-table in the FROM clause
2290 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2291 **
2292 ** The setup-query runs once to generate an initial set of rows that go
2293 ** into a Queue table.  Rows are extracted from the Queue table one by
2294 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2295 ** extracted row (now in the iCurrent table) becomes the content of the
2296 ** recursive-table for a recursive-query run.  The output of the recursive-query
2297 ** is added back into the Queue table.  Then another row is extracted from Queue
2298 ** and the iteration continues until the Queue table is empty.
2299 **
2300 ** If the compound query operator is UNION then no duplicate rows are ever
2301 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2302 ** that have ever been inserted into Queue and causes duplicates to be
2303 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2304 **
2305 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2306 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2307 ** an ORDER BY, the Queue table is just a FIFO.
2308 **
2309 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2310 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2311 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2312 ** with a positive value, then the first OFFSET outputs are discarded rather
2313 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2314 ** rows have been skipped.
2315 */
2316 static void generateWithRecursiveQuery(
2317   Parse *pParse,        /* Parsing context */
2318   Select *p,            /* The recursive SELECT to be coded */
2319   SelectDest *pDest     /* What to do with query results */
2320 ){
2321   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2322   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2323   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2324   Select *pSetup = p->pPrior;   /* The setup query */
2325   int addrTop;                  /* Top of the loop */
2326   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2327   int iCurrent = 0;             /* The Current table */
2328   int regCurrent;               /* Register holding Current table */
2329   int iQueue;                   /* The Queue table */
2330   int iDistinct = 0;            /* To ensure unique results if UNION */
2331   int eDest = SRT_Fifo;         /* How to write to Queue */
2332   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2333   int i;                        /* Loop counter */
2334   int rc;                       /* Result code */
2335   ExprList *pOrderBy;           /* The ORDER BY clause */
2336   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2337   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2338 
2339   /* Obtain authorization to do a recursive query */
2340   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2341 
2342   /* Process the LIMIT and OFFSET clauses, if they exist */
2343   addrBreak = sqlite3VdbeMakeLabel(v);
2344   p->nSelectRow = 320;  /* 4 billion rows */
2345   computeLimitRegisters(pParse, p, addrBreak);
2346   pLimit = p->pLimit;
2347   regLimit = p->iLimit;
2348   regOffset = p->iOffset;
2349   p->pLimit = 0;
2350   p->iLimit = p->iOffset = 0;
2351   pOrderBy = p->pOrderBy;
2352 
2353   /* Locate the cursor number of the Current table */
2354   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2355     if( pSrc->a[i].fg.isRecursive ){
2356       iCurrent = pSrc->a[i].iCursor;
2357       break;
2358     }
2359   }
2360 
2361   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2362   ** the Distinct table must be exactly one greater than Queue in order
2363   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2364   iQueue = pParse->nTab++;
2365   if( p->op==TK_UNION ){
2366     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2367     iDistinct = pParse->nTab++;
2368   }else{
2369     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2370   }
2371   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2372 
2373   /* Allocate cursors for Current, Queue, and Distinct. */
2374   regCurrent = ++pParse->nMem;
2375   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2376   if( pOrderBy ){
2377     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2378     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2379                       (char*)pKeyInfo, P4_KEYINFO);
2380     destQueue.pOrderBy = pOrderBy;
2381   }else{
2382     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2383   }
2384   VdbeComment((v, "Queue table"));
2385   if( iDistinct ){
2386     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2387     p->selFlags |= SF_UsesEphemeral;
2388   }
2389 
2390   /* Detach the ORDER BY clause from the compound SELECT */
2391   p->pOrderBy = 0;
2392 
2393   /* Store the results of the setup-query in Queue. */
2394   pSetup->pNext = 0;
2395   ExplainQueryPlan((pParse, 1, "SETUP"));
2396   rc = sqlite3Select(pParse, pSetup, &destQueue);
2397   pSetup->pNext = p;
2398   if( rc ) goto end_of_recursive_query;
2399 
2400   /* Find the next row in the Queue and output that row */
2401   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2402 
2403   /* Transfer the next row in Queue over to Current */
2404   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2405   if( pOrderBy ){
2406     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2407   }else{
2408     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2409   }
2410   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2411 
2412   /* Output the single row in Current */
2413   addrCont = sqlite3VdbeMakeLabel(v);
2414   codeOffset(v, regOffset, addrCont);
2415   selectInnerLoop(pParse, p, iCurrent,
2416       0, 0, pDest, addrCont, addrBreak);
2417   if( regLimit ){
2418     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2419     VdbeCoverage(v);
2420   }
2421   sqlite3VdbeResolveLabel(v, addrCont);
2422 
2423   /* Execute the recursive SELECT taking the single row in Current as
2424   ** the value for the recursive-table. Store the results in the Queue.
2425   */
2426   if( p->selFlags & SF_Aggregate ){
2427     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2428   }else{
2429     p->pPrior = 0;
2430     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2431     sqlite3Select(pParse, p, &destQueue);
2432     assert( p->pPrior==0 );
2433     p->pPrior = pSetup;
2434   }
2435 
2436   /* Keep running the loop until the Queue is empty */
2437   sqlite3VdbeGoto(v, addrTop);
2438   sqlite3VdbeResolveLabel(v, addrBreak);
2439 
2440 end_of_recursive_query:
2441   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2442   p->pOrderBy = pOrderBy;
2443   p->pLimit = pLimit;
2444   return;
2445 }
2446 #endif /* SQLITE_OMIT_CTE */
2447 
2448 /* Forward references */
2449 static int multiSelectOrderBy(
2450   Parse *pParse,        /* Parsing context */
2451   Select *p,            /* The right-most of SELECTs to be coded */
2452   SelectDest *pDest     /* What to do with query results */
2453 );
2454 
2455 /*
2456 ** Handle the special case of a compound-select that originates from a
2457 ** VALUES clause.  By handling this as a special case, we avoid deep
2458 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2459 ** on a VALUES clause.
2460 **
2461 ** Because the Select object originates from a VALUES clause:
2462 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2463 **   (2) All terms are UNION ALL
2464 **   (3) There is no ORDER BY clause
2465 **
2466 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2467 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2468 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2469 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2470 */
2471 static int multiSelectValues(
2472   Parse *pParse,        /* Parsing context */
2473   Select *p,            /* The right-most of SELECTs to be coded */
2474   SelectDest *pDest     /* What to do with query results */
2475 ){
2476   int nRow = 1;
2477   int rc = 0;
2478   int bShowAll = p->pLimit==0;
2479   assert( p->selFlags & SF_MultiValue );
2480   do{
2481     assert( p->selFlags & SF_Values );
2482     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2483     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2484     if( p->pPrior==0 ) break;
2485     assert( p->pPrior->pNext==p );
2486     p = p->pPrior;
2487     nRow += bShowAll;
2488   }while(1);
2489   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2490                     nRow==1 ? "" : "S"));
2491   while( p ){
2492     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2493     if( !bShowAll ) break;
2494     p->nSelectRow = nRow;
2495     p = p->pNext;
2496   }
2497   return rc;
2498 }
2499 
2500 /*
2501 ** This routine is called to process a compound query form from
2502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2503 ** INTERSECT
2504 **
2505 ** "p" points to the right-most of the two queries.  the query on the
2506 ** left is p->pPrior.  The left query could also be a compound query
2507 ** in which case this routine will be called recursively.
2508 **
2509 ** The results of the total query are to be written into a destination
2510 ** of type eDest with parameter iParm.
2511 **
2512 ** Example 1:  Consider a three-way compound SQL statement.
2513 **
2514 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2515 **
2516 ** This statement is parsed up as follows:
2517 **
2518 **     SELECT c FROM t3
2519 **      |
2520 **      `----->  SELECT b FROM t2
2521 **                |
2522 **                `------>  SELECT a FROM t1
2523 **
2524 ** The arrows in the diagram above represent the Select.pPrior pointer.
2525 ** So if this routine is called with p equal to the t3 query, then
2526 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2527 **
2528 ** Notice that because of the way SQLite parses compound SELECTs, the
2529 ** individual selects always group from left to right.
2530 */
2531 static int multiSelect(
2532   Parse *pParse,        /* Parsing context */
2533   Select *p,            /* The right-most of SELECTs to be coded */
2534   SelectDest *pDest     /* What to do with query results */
2535 ){
2536   int rc = SQLITE_OK;   /* Success code from a subroutine */
2537   Select *pPrior;       /* Another SELECT immediately to our left */
2538   Vdbe *v;              /* Generate code to this VDBE */
2539   SelectDest dest;      /* Alternative data destination */
2540   Select *pDelete = 0;  /* Chain of simple selects to delete */
2541   sqlite3 *db;          /* Database connection */
2542 
2543   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2544   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2545   */
2546   assert( p && p->pPrior );  /* Calling function guarantees this much */
2547   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2548   db = pParse->db;
2549   pPrior = p->pPrior;
2550   dest = *pDest;
2551   if( pPrior->pOrderBy || pPrior->pLimit ){
2552     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2553       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2554     rc = 1;
2555     goto multi_select_end;
2556   }
2557 
2558   v = sqlite3GetVdbe(pParse);
2559   assert( v!=0 );  /* The VDBE already created by calling function */
2560 
2561   /* Create the destination temporary table if necessary
2562   */
2563   if( dest.eDest==SRT_EphemTab ){
2564     assert( p->pEList );
2565     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2566     dest.eDest = SRT_Table;
2567   }
2568 
2569   /* Special handling for a compound-select that originates as a VALUES clause.
2570   */
2571   if( p->selFlags & SF_MultiValue ){
2572     rc = multiSelectValues(pParse, p, &dest);
2573     goto multi_select_end;
2574   }
2575 
2576   /* Make sure all SELECTs in the statement have the same number of elements
2577   ** in their result sets.
2578   */
2579   assert( p->pEList && pPrior->pEList );
2580   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2581 
2582 #ifndef SQLITE_OMIT_CTE
2583   if( p->selFlags & SF_Recursive ){
2584     generateWithRecursiveQuery(pParse, p, &dest);
2585   }else
2586 #endif
2587 
2588   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2589   */
2590   if( p->pOrderBy ){
2591     return multiSelectOrderBy(pParse, p, pDest);
2592   }else{
2593 
2594 #ifndef SQLITE_OMIT_EXPLAIN
2595     if( pPrior->pPrior==0 ){
2596       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2597       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2598     }
2599 #endif
2600 
2601     /* Generate code for the left and right SELECT statements.
2602     */
2603     switch( p->op ){
2604       case TK_ALL: {
2605         int addr = 0;
2606         int nLimit;
2607         assert( !pPrior->pLimit );
2608         pPrior->iLimit = p->iLimit;
2609         pPrior->iOffset = p->iOffset;
2610         pPrior->pLimit = p->pLimit;
2611         rc = sqlite3Select(pParse, pPrior, &dest);
2612         p->pLimit = 0;
2613         if( rc ){
2614           goto multi_select_end;
2615         }
2616         p->pPrior = 0;
2617         p->iLimit = pPrior->iLimit;
2618         p->iOffset = pPrior->iOffset;
2619         if( p->iLimit ){
2620           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2621           VdbeComment((v, "Jump ahead if LIMIT reached"));
2622           if( p->iOffset ){
2623             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2624                               p->iLimit, p->iOffset+1, p->iOffset);
2625           }
2626         }
2627         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2628         rc = sqlite3Select(pParse, p, &dest);
2629         testcase( rc!=SQLITE_OK );
2630         pDelete = p->pPrior;
2631         p->pPrior = pPrior;
2632         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2633         if( pPrior->pLimit
2634          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2635          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2636         ){
2637           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2638         }
2639         if( addr ){
2640           sqlite3VdbeJumpHere(v, addr);
2641         }
2642         break;
2643       }
2644       case TK_EXCEPT:
2645       case TK_UNION: {
2646         int unionTab;    /* Cursor number of the temp table holding result */
2647         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2648         int priorOp;     /* The SRT_ operation to apply to prior selects */
2649         Expr *pLimit;    /* Saved values of p->nLimit  */
2650         int addr;
2651         SelectDest uniondest;
2652 
2653         testcase( p->op==TK_EXCEPT );
2654         testcase( p->op==TK_UNION );
2655         priorOp = SRT_Union;
2656         if( dest.eDest==priorOp ){
2657           /* We can reuse a temporary table generated by a SELECT to our
2658           ** right.
2659           */
2660           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2661           unionTab = dest.iSDParm;
2662         }else{
2663           /* We will need to create our own temporary table to hold the
2664           ** intermediate results.
2665           */
2666           unionTab = pParse->nTab++;
2667           assert( p->pOrderBy==0 );
2668           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2669           assert( p->addrOpenEphm[0] == -1 );
2670           p->addrOpenEphm[0] = addr;
2671           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2672           assert( p->pEList );
2673         }
2674 
2675         /* Code the SELECT statements to our left
2676         */
2677         assert( !pPrior->pOrderBy );
2678         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2679         rc = sqlite3Select(pParse, pPrior, &uniondest);
2680         if( rc ){
2681           goto multi_select_end;
2682         }
2683 
2684         /* Code the current SELECT statement
2685         */
2686         if( p->op==TK_EXCEPT ){
2687           op = SRT_Except;
2688         }else{
2689           assert( p->op==TK_UNION );
2690           op = SRT_Union;
2691         }
2692         p->pPrior = 0;
2693         pLimit = p->pLimit;
2694         p->pLimit = 0;
2695         uniondest.eDest = op;
2696         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2697                           selectOpName(p->op)));
2698         rc = sqlite3Select(pParse, p, &uniondest);
2699         testcase( rc!=SQLITE_OK );
2700         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2701         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2702         sqlite3ExprListDelete(db, p->pOrderBy);
2703         pDelete = p->pPrior;
2704         p->pPrior = pPrior;
2705         p->pOrderBy = 0;
2706         if( p->op==TK_UNION ){
2707           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2708         }
2709         sqlite3ExprDelete(db, p->pLimit);
2710         p->pLimit = pLimit;
2711         p->iLimit = 0;
2712         p->iOffset = 0;
2713 
2714         /* Convert the data in the temporary table into whatever form
2715         ** it is that we currently need.
2716         */
2717         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2718         if( dest.eDest!=priorOp ){
2719           int iCont, iBreak, iStart;
2720           assert( p->pEList );
2721           iBreak = sqlite3VdbeMakeLabel(v);
2722           iCont = sqlite3VdbeMakeLabel(v);
2723           computeLimitRegisters(pParse, p, iBreak);
2724           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2725           iStart = sqlite3VdbeCurrentAddr(v);
2726           selectInnerLoop(pParse, p, unionTab,
2727                           0, 0, &dest, iCont, iBreak);
2728           sqlite3VdbeResolveLabel(v, iCont);
2729           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2730           sqlite3VdbeResolveLabel(v, iBreak);
2731           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2732         }
2733         break;
2734       }
2735       default: assert( p->op==TK_INTERSECT ); {
2736         int tab1, tab2;
2737         int iCont, iBreak, iStart;
2738         Expr *pLimit;
2739         int addr;
2740         SelectDest intersectdest;
2741         int r1;
2742 
2743         /* INTERSECT is different from the others since it requires
2744         ** two temporary tables.  Hence it has its own case.  Begin
2745         ** by allocating the tables we will need.
2746         */
2747         tab1 = pParse->nTab++;
2748         tab2 = pParse->nTab++;
2749         assert( p->pOrderBy==0 );
2750 
2751         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2752         assert( p->addrOpenEphm[0] == -1 );
2753         p->addrOpenEphm[0] = addr;
2754         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2755         assert( p->pEList );
2756 
2757         /* Code the SELECTs to our left into temporary table "tab1".
2758         */
2759         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2760         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2761         if( rc ){
2762           goto multi_select_end;
2763         }
2764 
2765         /* Code the current SELECT into temporary table "tab2"
2766         */
2767         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2768         assert( p->addrOpenEphm[1] == -1 );
2769         p->addrOpenEphm[1] = addr;
2770         p->pPrior = 0;
2771         pLimit = p->pLimit;
2772         p->pLimit = 0;
2773         intersectdest.iSDParm = tab2;
2774         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2775                           selectOpName(p->op)));
2776         rc = sqlite3Select(pParse, p, &intersectdest);
2777         testcase( rc!=SQLITE_OK );
2778         pDelete = p->pPrior;
2779         p->pPrior = pPrior;
2780         if( p->nSelectRow>pPrior->nSelectRow ){
2781           p->nSelectRow = pPrior->nSelectRow;
2782         }
2783         sqlite3ExprDelete(db, p->pLimit);
2784         p->pLimit = pLimit;
2785 
2786         /* Generate code to take the intersection of the two temporary
2787         ** tables.
2788         */
2789         assert( p->pEList );
2790         iBreak = sqlite3VdbeMakeLabel(v);
2791         iCont = sqlite3VdbeMakeLabel(v);
2792         computeLimitRegisters(pParse, p, iBreak);
2793         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2794         r1 = sqlite3GetTempReg(pParse);
2795         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2796         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2797         VdbeCoverage(v);
2798         sqlite3ReleaseTempReg(pParse, r1);
2799         selectInnerLoop(pParse, p, tab1,
2800                         0, 0, &dest, iCont, iBreak);
2801         sqlite3VdbeResolveLabel(v, iCont);
2802         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2803         sqlite3VdbeResolveLabel(v, iBreak);
2804         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2805         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2806         break;
2807       }
2808     }
2809 
2810   #ifndef SQLITE_OMIT_EXPLAIN
2811     if( p->pNext==0 ){
2812       ExplainQueryPlanPop(pParse);
2813     }
2814   #endif
2815   }
2816 
2817   /* Compute collating sequences used by
2818   ** temporary tables needed to implement the compound select.
2819   ** Attach the KeyInfo structure to all temporary tables.
2820   **
2821   ** This section is run by the right-most SELECT statement only.
2822   ** SELECT statements to the left always skip this part.  The right-most
2823   ** SELECT might also skip this part if it has no ORDER BY clause and
2824   ** no temp tables are required.
2825   */
2826   if( p->selFlags & SF_UsesEphemeral ){
2827     int i;                        /* Loop counter */
2828     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2829     Select *pLoop;                /* For looping through SELECT statements */
2830     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2831     int nCol;                     /* Number of columns in result set */
2832 
2833     assert( p->pNext==0 );
2834     nCol = p->pEList->nExpr;
2835     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2836     if( !pKeyInfo ){
2837       rc = SQLITE_NOMEM_BKPT;
2838       goto multi_select_end;
2839     }
2840     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2841       *apColl = multiSelectCollSeq(pParse, p, i);
2842       if( 0==*apColl ){
2843         *apColl = db->pDfltColl;
2844       }
2845     }
2846 
2847     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2848       for(i=0; i<2; i++){
2849         int addr = pLoop->addrOpenEphm[i];
2850         if( addr<0 ){
2851           /* If [0] is unused then [1] is also unused.  So we can
2852           ** always safely abort as soon as the first unused slot is found */
2853           assert( pLoop->addrOpenEphm[1]<0 );
2854           break;
2855         }
2856         sqlite3VdbeChangeP2(v, addr, nCol);
2857         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2858                             P4_KEYINFO);
2859         pLoop->addrOpenEphm[i] = -1;
2860       }
2861     }
2862     sqlite3KeyInfoUnref(pKeyInfo);
2863   }
2864 
2865 multi_select_end:
2866   pDest->iSdst = dest.iSdst;
2867   pDest->nSdst = dest.nSdst;
2868   sqlite3SelectDelete(db, pDelete);
2869   return rc;
2870 }
2871 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2872 
2873 /*
2874 ** Error message for when two or more terms of a compound select have different
2875 ** size result sets.
2876 */
2877 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2878   if( p->selFlags & SF_Values ){
2879     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2880   }else{
2881     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2882       " do not have the same number of result columns", selectOpName(p->op));
2883   }
2884 }
2885 
2886 /*
2887 ** Code an output subroutine for a coroutine implementation of a
2888 ** SELECT statment.
2889 **
2890 ** The data to be output is contained in pIn->iSdst.  There are
2891 ** pIn->nSdst columns to be output.  pDest is where the output should
2892 ** be sent.
2893 **
2894 ** regReturn is the number of the register holding the subroutine
2895 ** return address.
2896 **
2897 ** If regPrev>0 then it is the first register in a vector that
2898 ** records the previous output.  mem[regPrev] is a flag that is false
2899 ** if there has been no previous output.  If regPrev>0 then code is
2900 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2901 ** keys.
2902 **
2903 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2904 ** iBreak.
2905 */
2906 static int generateOutputSubroutine(
2907   Parse *pParse,          /* Parsing context */
2908   Select *p,              /* The SELECT statement */
2909   SelectDest *pIn,        /* Coroutine supplying data */
2910   SelectDest *pDest,      /* Where to send the data */
2911   int regReturn,          /* The return address register */
2912   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2913   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2914   int iBreak              /* Jump here if we hit the LIMIT */
2915 ){
2916   Vdbe *v = pParse->pVdbe;
2917   int iContinue;
2918   int addr;
2919 
2920   addr = sqlite3VdbeCurrentAddr(v);
2921   iContinue = sqlite3VdbeMakeLabel(v);
2922 
2923   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2924   */
2925   if( regPrev ){
2926     int addr1, addr2;
2927     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2928     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2929                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2930     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2931     sqlite3VdbeJumpHere(v, addr1);
2932     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2933     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2934   }
2935   if( pParse->db->mallocFailed ) return 0;
2936 
2937   /* Suppress the first OFFSET entries if there is an OFFSET clause
2938   */
2939   codeOffset(v, p->iOffset, iContinue);
2940 
2941   assert( pDest->eDest!=SRT_Exists );
2942   assert( pDest->eDest!=SRT_Table );
2943   switch( pDest->eDest ){
2944     /* Store the result as data using a unique key.
2945     */
2946     case SRT_EphemTab: {
2947       int r1 = sqlite3GetTempReg(pParse);
2948       int r2 = sqlite3GetTempReg(pParse);
2949       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2950       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2951       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2952       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2953       sqlite3ReleaseTempReg(pParse, r2);
2954       sqlite3ReleaseTempReg(pParse, r1);
2955       break;
2956     }
2957 
2958 #ifndef SQLITE_OMIT_SUBQUERY
2959     /* If we are creating a set for an "expr IN (SELECT ...)".
2960     */
2961     case SRT_Set: {
2962       int r1;
2963       testcase( pIn->nSdst>1 );
2964       r1 = sqlite3GetTempReg(pParse);
2965       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2966           r1, pDest->zAffSdst, pIn->nSdst);
2967       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2968       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2969                            pIn->iSdst, pIn->nSdst);
2970       sqlite3ReleaseTempReg(pParse, r1);
2971       break;
2972     }
2973 
2974     /* If this is a scalar select that is part of an expression, then
2975     ** store the results in the appropriate memory cell and break out
2976     ** of the scan loop.
2977     */
2978     case SRT_Mem: {
2979       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2980       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2981       /* The LIMIT clause will jump out of the loop for us */
2982       break;
2983     }
2984 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2985 
2986     /* The results are stored in a sequence of registers
2987     ** starting at pDest->iSdst.  Then the co-routine yields.
2988     */
2989     case SRT_Coroutine: {
2990       if( pDest->iSdst==0 ){
2991         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2992         pDest->nSdst = pIn->nSdst;
2993       }
2994       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2995       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2996       break;
2997     }
2998 
2999     /* If none of the above, then the result destination must be
3000     ** SRT_Output.  This routine is never called with any other
3001     ** destination other than the ones handled above or SRT_Output.
3002     **
3003     ** For SRT_Output, results are stored in a sequence of registers.
3004     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3005     ** return the next row of result.
3006     */
3007     default: {
3008       assert( pDest->eDest==SRT_Output );
3009       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3010       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
3011       break;
3012     }
3013   }
3014 
3015   /* Jump to the end of the loop if the LIMIT is reached.
3016   */
3017   if( p->iLimit ){
3018     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3019   }
3020 
3021   /* Generate the subroutine return
3022   */
3023   sqlite3VdbeResolveLabel(v, iContinue);
3024   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3025 
3026   return addr;
3027 }
3028 
3029 /*
3030 ** Alternative compound select code generator for cases when there
3031 ** is an ORDER BY clause.
3032 **
3033 ** We assume a query of the following form:
3034 **
3035 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3036 **
3037 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3038 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3039 ** co-routines.  Then run the co-routines in parallel and merge the results
3040 ** into the output.  In addition to the two coroutines (called selectA and
3041 ** selectB) there are 7 subroutines:
3042 **
3043 **    outA:    Move the output of the selectA coroutine into the output
3044 **             of the compound query.
3045 **
3046 **    outB:    Move the output of the selectB coroutine into the output
3047 **             of the compound query.  (Only generated for UNION and
3048 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3049 **             appears only in B.)
3050 **
3051 **    AltB:    Called when there is data from both coroutines and A<B.
3052 **
3053 **    AeqB:    Called when there is data from both coroutines and A==B.
3054 **
3055 **    AgtB:    Called when there is data from both coroutines and A>B.
3056 **
3057 **    EofA:    Called when data is exhausted from selectA.
3058 **
3059 **    EofB:    Called when data is exhausted from selectB.
3060 **
3061 ** The implementation of the latter five subroutines depend on which
3062 ** <operator> is used:
3063 **
3064 **
3065 **             UNION ALL         UNION            EXCEPT          INTERSECT
3066 **          -------------  -----------------  --------------  -----------------
3067 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3068 **
3069 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3070 **
3071 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3072 **
3073 **   EofA:   outB, nextB      outB, nextB          halt             halt
3074 **
3075 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3076 **
3077 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3078 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3079 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3080 ** following nextX causes a jump to the end of the select processing.
3081 **
3082 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3083 ** within the output subroutine.  The regPrev register set holds the previously
3084 ** output value.  A comparison is made against this value and the output
3085 ** is skipped if the next results would be the same as the previous.
3086 **
3087 ** The implementation plan is to implement the two coroutines and seven
3088 ** subroutines first, then put the control logic at the bottom.  Like this:
3089 **
3090 **          goto Init
3091 **     coA: coroutine for left query (A)
3092 **     coB: coroutine for right query (B)
3093 **    outA: output one row of A
3094 **    outB: output one row of B (UNION and UNION ALL only)
3095 **    EofA: ...
3096 **    EofB: ...
3097 **    AltB: ...
3098 **    AeqB: ...
3099 **    AgtB: ...
3100 **    Init: initialize coroutine registers
3101 **          yield coA
3102 **          if eof(A) goto EofA
3103 **          yield coB
3104 **          if eof(B) goto EofB
3105 **    Cmpr: Compare A, B
3106 **          Jump AltB, AeqB, AgtB
3107 **     End: ...
3108 **
3109 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3110 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3111 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3112 ** and AgtB jump to either L2 or to one of EofA or EofB.
3113 */
3114 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3115 static int multiSelectOrderBy(
3116   Parse *pParse,        /* Parsing context */
3117   Select *p,            /* The right-most of SELECTs to be coded */
3118   SelectDest *pDest     /* What to do with query results */
3119 ){
3120   int i, j;             /* Loop counters */
3121   Select *pPrior;       /* Another SELECT immediately to our left */
3122   Vdbe *v;              /* Generate code to this VDBE */
3123   SelectDest destA;     /* Destination for coroutine A */
3124   SelectDest destB;     /* Destination for coroutine B */
3125   int regAddrA;         /* Address register for select-A coroutine */
3126   int regAddrB;         /* Address register for select-B coroutine */
3127   int addrSelectA;      /* Address of the select-A coroutine */
3128   int addrSelectB;      /* Address of the select-B coroutine */
3129   int regOutA;          /* Address register for the output-A subroutine */
3130   int regOutB;          /* Address register for the output-B subroutine */
3131   int addrOutA;         /* Address of the output-A subroutine */
3132   int addrOutB = 0;     /* Address of the output-B subroutine */
3133   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3134   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3135   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3136   int addrAltB;         /* Address of the A<B subroutine */
3137   int addrAeqB;         /* Address of the A==B subroutine */
3138   int addrAgtB;         /* Address of the A>B subroutine */
3139   int regLimitA;        /* Limit register for select-A */
3140   int regLimitB;        /* Limit register for select-A */
3141   int regPrev;          /* A range of registers to hold previous output */
3142   int savedLimit;       /* Saved value of p->iLimit */
3143   int savedOffset;      /* Saved value of p->iOffset */
3144   int labelCmpr;        /* Label for the start of the merge algorithm */
3145   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3146   int addr1;            /* Jump instructions that get retargetted */
3147   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3148   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3149   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3150   sqlite3 *db;          /* Database connection */
3151   ExprList *pOrderBy;   /* The ORDER BY clause */
3152   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3153   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3154 
3155   assert( p->pOrderBy!=0 );
3156   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3157   db = pParse->db;
3158   v = pParse->pVdbe;
3159   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3160   labelEnd = sqlite3VdbeMakeLabel(v);
3161   labelCmpr = sqlite3VdbeMakeLabel(v);
3162 
3163 
3164   /* Patch up the ORDER BY clause
3165   */
3166   op = p->op;
3167   pPrior = p->pPrior;
3168   assert( pPrior->pOrderBy==0 );
3169   pOrderBy = p->pOrderBy;
3170   assert( pOrderBy );
3171   nOrderBy = pOrderBy->nExpr;
3172 
3173   /* For operators other than UNION ALL we have to make sure that
3174   ** the ORDER BY clause covers every term of the result set.  Add
3175   ** terms to the ORDER BY clause as necessary.
3176   */
3177   if( op!=TK_ALL ){
3178     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3179       struct ExprList_item *pItem;
3180       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3181         assert( pItem->u.x.iOrderByCol>0 );
3182         if( pItem->u.x.iOrderByCol==i ) break;
3183       }
3184       if( j==nOrderBy ){
3185         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3186         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3187         pNew->flags |= EP_IntValue;
3188         pNew->u.iValue = i;
3189         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3190         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3191       }
3192     }
3193   }
3194 
3195   /* Compute the comparison permutation and keyinfo that is used with
3196   ** the permutation used to determine if the next
3197   ** row of results comes from selectA or selectB.  Also add explicit
3198   ** collations to the ORDER BY clause terms so that when the subqueries
3199   ** to the right and the left are evaluated, they use the correct
3200   ** collation.
3201   */
3202   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3203   if( aPermute ){
3204     struct ExprList_item *pItem;
3205     aPermute[0] = nOrderBy;
3206     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3207       assert( pItem->u.x.iOrderByCol>0 );
3208       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3209       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3210     }
3211     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3212   }else{
3213     pKeyMerge = 0;
3214   }
3215 
3216   /* Reattach the ORDER BY clause to the query.
3217   */
3218   p->pOrderBy = pOrderBy;
3219   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3220 
3221   /* Allocate a range of temporary registers and the KeyInfo needed
3222   ** for the logic that removes duplicate result rows when the
3223   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3224   */
3225   if( op==TK_ALL ){
3226     regPrev = 0;
3227   }else{
3228     int nExpr = p->pEList->nExpr;
3229     assert( nOrderBy>=nExpr || db->mallocFailed );
3230     regPrev = pParse->nMem+1;
3231     pParse->nMem += nExpr+1;
3232     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3233     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3234     if( pKeyDup ){
3235       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3236       for(i=0; i<nExpr; i++){
3237         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3238         pKeyDup->aSortOrder[i] = 0;
3239       }
3240     }
3241   }
3242 
3243   /* Separate the left and the right query from one another
3244   */
3245   p->pPrior = 0;
3246   pPrior->pNext = 0;
3247   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3248   if( pPrior->pPrior==0 ){
3249     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3250   }
3251 
3252   /* Compute the limit registers */
3253   computeLimitRegisters(pParse, p, labelEnd);
3254   if( p->iLimit && op==TK_ALL ){
3255     regLimitA = ++pParse->nMem;
3256     regLimitB = ++pParse->nMem;
3257     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3258                                   regLimitA);
3259     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3260   }else{
3261     regLimitA = regLimitB = 0;
3262   }
3263   sqlite3ExprDelete(db, p->pLimit);
3264   p->pLimit = 0;
3265 
3266   regAddrA = ++pParse->nMem;
3267   regAddrB = ++pParse->nMem;
3268   regOutA = ++pParse->nMem;
3269   regOutB = ++pParse->nMem;
3270   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3271   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3272 
3273   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3274 
3275   /* Generate a coroutine to evaluate the SELECT statement to the
3276   ** left of the compound operator - the "A" select.
3277   */
3278   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3279   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3280   VdbeComment((v, "left SELECT"));
3281   pPrior->iLimit = regLimitA;
3282   ExplainQueryPlan((pParse, 1, "LEFT"));
3283   sqlite3Select(pParse, pPrior, &destA);
3284   sqlite3VdbeEndCoroutine(v, regAddrA);
3285   sqlite3VdbeJumpHere(v, addr1);
3286 
3287   /* Generate a coroutine to evaluate the SELECT statement on
3288   ** the right - the "B" select
3289   */
3290   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3291   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3292   VdbeComment((v, "right SELECT"));
3293   savedLimit = p->iLimit;
3294   savedOffset = p->iOffset;
3295   p->iLimit = regLimitB;
3296   p->iOffset = 0;
3297   ExplainQueryPlan((pParse, 1, "RIGHT"));
3298   sqlite3Select(pParse, p, &destB);
3299   p->iLimit = savedLimit;
3300   p->iOffset = savedOffset;
3301   sqlite3VdbeEndCoroutine(v, regAddrB);
3302 
3303   /* Generate a subroutine that outputs the current row of the A
3304   ** select as the next output row of the compound select.
3305   */
3306   VdbeNoopComment((v, "Output routine for A"));
3307   addrOutA = generateOutputSubroutine(pParse,
3308                  p, &destA, pDest, regOutA,
3309                  regPrev, pKeyDup, labelEnd);
3310 
3311   /* Generate a subroutine that outputs the current row of the B
3312   ** select as the next output row of the compound select.
3313   */
3314   if( op==TK_ALL || op==TK_UNION ){
3315     VdbeNoopComment((v, "Output routine for B"));
3316     addrOutB = generateOutputSubroutine(pParse,
3317                  p, &destB, pDest, regOutB,
3318                  regPrev, pKeyDup, labelEnd);
3319   }
3320   sqlite3KeyInfoUnref(pKeyDup);
3321 
3322   /* Generate a subroutine to run when the results from select A
3323   ** are exhausted and only data in select B remains.
3324   */
3325   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3326     addrEofA_noB = addrEofA = labelEnd;
3327   }else{
3328     VdbeNoopComment((v, "eof-A subroutine"));
3329     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3330     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3331                                      VdbeCoverage(v);
3332     sqlite3VdbeGoto(v, addrEofA);
3333     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3334   }
3335 
3336   /* Generate a subroutine to run when the results from select B
3337   ** are exhausted and only data in select A remains.
3338   */
3339   if( op==TK_INTERSECT ){
3340     addrEofB = addrEofA;
3341     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3342   }else{
3343     VdbeNoopComment((v, "eof-B subroutine"));
3344     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3345     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3346     sqlite3VdbeGoto(v, addrEofB);
3347   }
3348 
3349   /* Generate code to handle the case of A<B
3350   */
3351   VdbeNoopComment((v, "A-lt-B subroutine"));
3352   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3353   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3354   sqlite3VdbeGoto(v, labelCmpr);
3355 
3356   /* Generate code to handle the case of A==B
3357   */
3358   if( op==TK_ALL ){
3359     addrAeqB = addrAltB;
3360   }else if( op==TK_INTERSECT ){
3361     addrAeqB = addrAltB;
3362     addrAltB++;
3363   }else{
3364     VdbeNoopComment((v, "A-eq-B subroutine"));
3365     addrAeqB =
3366     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3367     sqlite3VdbeGoto(v, labelCmpr);
3368   }
3369 
3370   /* Generate code to handle the case of A>B
3371   */
3372   VdbeNoopComment((v, "A-gt-B subroutine"));
3373   addrAgtB = sqlite3VdbeCurrentAddr(v);
3374   if( op==TK_ALL || op==TK_UNION ){
3375     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3376   }
3377   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3378   sqlite3VdbeGoto(v, labelCmpr);
3379 
3380   /* This code runs once to initialize everything.
3381   */
3382   sqlite3VdbeJumpHere(v, addr1);
3383   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3384   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3385 
3386   /* Implement the main merge loop
3387   */
3388   sqlite3VdbeResolveLabel(v, labelCmpr);
3389   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3390   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3391                          (char*)pKeyMerge, P4_KEYINFO);
3392   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3393   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3394 
3395   /* Jump to the this point in order to terminate the query.
3396   */
3397   sqlite3VdbeResolveLabel(v, labelEnd);
3398 
3399   /* Reassembly the compound query so that it will be freed correctly
3400   ** by the calling function */
3401   if( p->pPrior ){
3402     sqlite3SelectDelete(db, p->pPrior);
3403   }
3404   p->pPrior = pPrior;
3405   pPrior->pNext = p;
3406 
3407   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3408   **** subqueries ****/
3409   ExplainQueryPlanPop(pParse);
3410   return pParse->nErr!=0;
3411 }
3412 #endif
3413 
3414 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3415 
3416 /* An instance of the SubstContext object describes an substitution edit
3417 ** to be performed on a parse tree.
3418 **
3419 ** All references to columns in table iTable are to be replaced by corresponding
3420 ** expressions in pEList.
3421 */
3422 typedef struct SubstContext {
3423   Parse *pParse;            /* The parsing context */
3424   int iTable;               /* Replace references to this table */
3425   int iNewTable;            /* New table number */
3426   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3427   ExprList *pEList;         /* Replacement expressions */
3428 } SubstContext;
3429 
3430 /* Forward Declarations */
3431 static void substExprList(SubstContext*, ExprList*);
3432 static void substSelect(SubstContext*, Select*, int);
3433 
3434 /*
3435 ** Scan through the expression pExpr.  Replace every reference to
3436 ** a column in table number iTable with a copy of the iColumn-th
3437 ** entry in pEList.  (But leave references to the ROWID column
3438 ** unchanged.)
3439 **
3440 ** This routine is part of the flattening procedure.  A subquery
3441 ** whose result set is defined by pEList appears as entry in the
3442 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3443 ** FORM clause entry is iTable.  This routine makes the necessary
3444 ** changes to pExpr so that it refers directly to the source table
3445 ** of the subquery rather the result set of the subquery.
3446 */
3447 static Expr *substExpr(
3448   SubstContext *pSubst,  /* Description of the substitution */
3449   Expr *pExpr            /* Expr in which substitution occurs */
3450 ){
3451   if( pExpr==0 ) return 0;
3452   if( ExprHasProperty(pExpr, EP_FromJoin)
3453    && pExpr->iRightJoinTable==pSubst->iTable
3454   ){
3455     pExpr->iRightJoinTable = pSubst->iNewTable;
3456   }
3457   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3458     if( pExpr->iColumn<0 ){
3459       pExpr->op = TK_NULL;
3460     }else{
3461       Expr *pNew;
3462       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3463       Expr ifNullRow;
3464       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3465       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3466       if( sqlite3ExprIsVector(pCopy) ){
3467         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3468       }else{
3469         sqlite3 *db = pSubst->pParse->db;
3470         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3471           memset(&ifNullRow, 0, sizeof(ifNullRow));
3472           ifNullRow.op = TK_IF_NULL_ROW;
3473           ifNullRow.pLeft = pCopy;
3474           ifNullRow.iTable = pSubst->iNewTable;
3475           pCopy = &ifNullRow;
3476         }
3477         pNew = sqlite3ExprDup(db, pCopy, 0);
3478         if( pNew && pSubst->isLeftJoin ){
3479           ExprSetProperty(pNew, EP_CanBeNull);
3480         }
3481         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3482           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3483           ExprSetProperty(pNew, EP_FromJoin);
3484         }
3485         sqlite3ExprDelete(db, pExpr);
3486         pExpr = pNew;
3487       }
3488     }
3489   }else{
3490     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3491       pExpr->iTable = pSubst->iNewTable;
3492     }
3493     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3494     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3495     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3496       substSelect(pSubst, pExpr->x.pSelect, 1);
3497     }else{
3498       substExprList(pSubst, pExpr->x.pList);
3499     }
3500   }
3501   return pExpr;
3502 }
3503 static void substExprList(
3504   SubstContext *pSubst, /* Description of the substitution */
3505   ExprList *pList       /* List to scan and in which to make substitutes */
3506 ){
3507   int i;
3508   if( pList==0 ) return;
3509   for(i=0; i<pList->nExpr; i++){
3510     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3511   }
3512 }
3513 static void substSelect(
3514   SubstContext *pSubst, /* Description of the substitution */
3515   Select *p,            /* SELECT statement in which to make substitutions */
3516   int doPrior           /* Do substitutes on p->pPrior too */
3517 ){
3518   SrcList *pSrc;
3519   struct SrcList_item *pItem;
3520   int i;
3521   if( !p ) return;
3522   do{
3523     substExprList(pSubst, p->pEList);
3524     substExprList(pSubst, p->pGroupBy);
3525     substExprList(pSubst, p->pOrderBy);
3526     p->pHaving = substExpr(pSubst, p->pHaving);
3527     p->pWhere = substExpr(pSubst, p->pWhere);
3528     pSrc = p->pSrc;
3529     assert( pSrc!=0 );
3530     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3531       substSelect(pSubst, pItem->pSelect, 1);
3532       if( pItem->fg.isTabFunc ){
3533         substExprList(pSubst, pItem->u1.pFuncArg);
3534       }
3535     }
3536   }while( doPrior && (p = p->pPrior)!=0 );
3537 }
3538 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3539 
3540 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3541 /*
3542 ** This routine attempts to flatten subqueries as a performance optimization.
3543 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3544 **
3545 ** To understand the concept of flattening, consider the following
3546 ** query:
3547 **
3548 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3549 **
3550 ** The default way of implementing this query is to execute the
3551 ** subquery first and store the results in a temporary table, then
3552 ** run the outer query on that temporary table.  This requires two
3553 ** passes over the data.  Furthermore, because the temporary table
3554 ** has no indices, the WHERE clause on the outer query cannot be
3555 ** optimized.
3556 **
3557 ** This routine attempts to rewrite queries such as the above into
3558 ** a single flat select, like this:
3559 **
3560 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3561 **
3562 ** The code generated for this simplification gives the same result
3563 ** but only has to scan the data once.  And because indices might
3564 ** exist on the table t1, a complete scan of the data might be
3565 ** avoided.
3566 **
3567 ** Flattening is subject to the following constraints:
3568 **
3569 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3570 **        The subquery and the outer query cannot both be aggregates.
3571 **
3572 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3573 **        (2) If the subquery is an aggregate then
3574 **        (2a) the outer query must not be a join and
3575 **        (2b) the outer query must not use subqueries
3576 **             other than the one FROM-clause subquery that is a candidate
3577 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3578 **             from 2015-02-09.)
3579 **
3580 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3581 **        (3a) the subquery may not be a join and
3582 **        (3b) the FROM clause of the subquery may not contain a virtual
3583 **             table and
3584 **        (3c) the outer query may not be an aggregate.
3585 **
3586 **   (4)  The subquery can not be DISTINCT.
3587 **
3588 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3589 **        sub-queries that were excluded from this optimization. Restriction
3590 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3591 **
3592 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3593 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3594 **
3595 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3596 **        A FROM clause, consider adding a FROM clause with the special
3597 **        table sqlite_once that consists of a single row containing a
3598 **        single NULL.
3599 **
3600 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3601 **
3602 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3603 **
3604 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3605 **        accidently carried the comment forward until 2014-09-15.  Original
3606 **        constraint: "If the subquery is aggregate then the outer query
3607 **        may not use LIMIT."
3608 **
3609 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3610 **
3611 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3612 **        a separate restriction deriving from ticket #350.
3613 **
3614 **  (13)  The subquery and outer query may not both use LIMIT.
3615 **
3616 **  (14)  The subquery may not use OFFSET.
3617 **
3618 **  (15)  If the outer query is part of a compound select, then the
3619 **        subquery may not use LIMIT.
3620 **        (See ticket #2339 and ticket [02a8e81d44]).
3621 **
3622 **  (16)  If the outer query is aggregate, then the subquery may not
3623 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3624 **        until we introduced the group_concat() function.
3625 **
3626 **  (17)  If the subquery is a compound select, then
3627 **        (17a) all compound operators must be a UNION ALL, and
3628 **        (17b) no terms within the subquery compound may be aggregate
3629 **              or DISTINCT, and
3630 **        (17c) every term within the subquery compound must have a FROM clause
3631 **        (17d) the outer query may not be
3632 **              (17d1) aggregate, or
3633 **              (17d2) DISTINCT, or
3634 **              (17d3) a join.
3635 **
3636 **        The parent and sub-query may contain WHERE clauses. Subject to
3637 **        rules (11), (13) and (14), they may also contain ORDER BY,
3638 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3639 **        operator other than UNION ALL because all the other compound
3640 **        operators have an implied DISTINCT which is disallowed by
3641 **        restriction (4).
3642 **
3643 **        Also, each component of the sub-query must return the same number
3644 **        of result columns. This is actually a requirement for any compound
3645 **        SELECT statement, but all the code here does is make sure that no
3646 **        such (illegal) sub-query is flattened. The caller will detect the
3647 **        syntax error and return a detailed message.
3648 **
3649 **  (18)  If the sub-query is a compound select, then all terms of the
3650 **        ORDER BY clause of the parent must be simple references to
3651 **        columns of the sub-query.
3652 **
3653 **  (19)  If the subquery uses LIMIT then the outer query may not
3654 **        have a WHERE clause.
3655 **
3656 **  (20)  If the sub-query is a compound select, then it must not use
3657 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3658 **        somewhat by saying that the terms of the ORDER BY clause must
3659 **        appear as unmodified result columns in the outer query.  But we
3660 **        have other optimizations in mind to deal with that case.
3661 **
3662 **  (21)  If the subquery uses LIMIT then the outer query may not be
3663 **        DISTINCT.  (See ticket [752e1646fc]).
3664 **
3665 **  (22)  The subquery may not be a recursive CTE.
3666 **
3667 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3668 **        a recursive CTE, then the sub-query may not be a compound query.
3669 **        This restriction is because transforming the
3670 **        parent to a compound query confuses the code that handles
3671 **        recursive queries in multiSelect().
3672 **
3673 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3674 **        The subquery may not be an aggregate that uses the built-in min() or
3675 **        or max() functions.  (Without this restriction, a query like:
3676 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3677 **        return the value X for which Y was maximal.)
3678 **
3679 **
3680 ** In this routine, the "p" parameter is a pointer to the outer query.
3681 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3682 ** uses aggregates.
3683 **
3684 ** If flattening is not attempted, this routine is a no-op and returns 0.
3685 ** If flattening is attempted this routine returns 1.
3686 **
3687 ** All of the expression analysis must occur on both the outer query and
3688 ** the subquery before this routine runs.
3689 */
3690 static int flattenSubquery(
3691   Parse *pParse,       /* Parsing context */
3692   Select *p,           /* The parent or outer SELECT statement */
3693   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3694   int isAgg            /* True if outer SELECT uses aggregate functions */
3695 ){
3696   const char *zSavedAuthContext = pParse->zAuthContext;
3697   Select *pParent;    /* Current UNION ALL term of the other query */
3698   Select *pSub;       /* The inner query or "subquery" */
3699   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3700   SrcList *pSrc;      /* The FROM clause of the outer query */
3701   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3702   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3703   int iNewParent = -1;/* Replacement table for iParent */
3704   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3705   int i;              /* Loop counter */
3706   Expr *pWhere;                    /* The WHERE clause */
3707   struct SrcList_item *pSubitem;   /* The subquery */
3708   sqlite3 *db = pParse->db;
3709 
3710   /* Check to see if flattening is permitted.  Return 0 if not.
3711   */
3712   assert( p!=0 );
3713   assert( p->pPrior==0 );
3714   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3715   pSrc = p->pSrc;
3716   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3717   pSubitem = &pSrc->a[iFrom];
3718   iParent = pSubitem->iCursor;
3719   pSub = pSubitem->pSelect;
3720   assert( pSub!=0 );
3721 
3722   pSubSrc = pSub->pSrc;
3723   assert( pSubSrc );
3724   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3725   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3726   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3727   ** became arbitrary expressions, we were forced to add restrictions (13)
3728   ** and (14). */
3729   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3730   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3731   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3732     return 0;                                            /* Restriction (15) */
3733   }
3734   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3735   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3736   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3737      return 0;         /* Restrictions (8)(9) */
3738   }
3739   if( p->pOrderBy && pSub->pOrderBy ){
3740      return 0;                                           /* Restriction (11) */
3741   }
3742   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3743   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3744   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3745      return 0;         /* Restriction (21) */
3746   }
3747   if( pSub->selFlags & (SF_Recursive) ){
3748     return 0; /* Restrictions (22) */
3749   }
3750 
3751   /*
3752   ** If the subquery is the right operand of a LEFT JOIN, then the
3753   ** subquery may not be a join itself (3a). Example of why this is not
3754   ** allowed:
3755   **
3756   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3757   **
3758   ** If we flatten the above, we would get
3759   **
3760   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3761   **
3762   ** which is not at all the same thing.
3763   **
3764   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3765   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3766   ** aggregates are processed - there is no mechanism to determine if
3767   ** the LEFT JOIN table should be all-NULL.
3768   **
3769   ** See also tickets #306, #350, and #3300.
3770   */
3771   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3772     isLeftJoin = 1;
3773     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3774       /*  (3a)             (3c)     (3b) */
3775       return 0;
3776     }
3777   }
3778 #ifdef SQLITE_EXTRA_IFNULLROW
3779   else if( iFrom>0 && !isAgg ){
3780     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3781     ** every reference to any result column from subquery in a join, even
3782     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3783     ** opcode. */
3784     isLeftJoin = -1;
3785   }
3786 #endif
3787 
3788   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3789   ** use only the UNION ALL operator. And none of the simple select queries
3790   ** that make up the compound SELECT are allowed to be aggregate or distinct
3791   ** queries.
3792   */
3793   if( pSub->pPrior ){
3794     if( pSub->pOrderBy ){
3795       return 0;  /* Restriction (20) */
3796     }
3797     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3798       return 0; /* (17d1), (17d2), or (17d3) */
3799     }
3800     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3801       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3802       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3803       assert( pSub->pSrc!=0 );
3804       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3805       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3806        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3807        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3808       ){
3809         return 0;
3810       }
3811       testcase( pSub1->pSrc->nSrc>1 );
3812     }
3813 
3814     /* Restriction (18). */
3815     if( p->pOrderBy ){
3816       int ii;
3817       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3818         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3819       }
3820     }
3821   }
3822 
3823   /* Ex-restriction (23):
3824   ** The only way that the recursive part of a CTE can contain a compound
3825   ** subquery is for the subquery to be one term of a join.  But if the
3826   ** subquery is a join, then the flattening has already been stopped by
3827   ** restriction (17d3)
3828   */
3829   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3830 
3831   /***** If we reach this point, flattening is permitted. *****/
3832   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3833                    pSub->zSelName, pSub, iFrom));
3834 
3835   /* Authorize the subquery */
3836   pParse->zAuthContext = pSubitem->zName;
3837   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3838   testcase( i==SQLITE_DENY );
3839   pParse->zAuthContext = zSavedAuthContext;
3840 
3841   /* If the sub-query is a compound SELECT statement, then (by restrictions
3842   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3843   ** be of the form:
3844   **
3845   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3846   **
3847   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3848   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3849   ** OFFSET clauses and joins them to the left-hand-side of the original
3850   ** using UNION ALL operators. In this case N is the number of simple
3851   ** select statements in the compound sub-query.
3852   **
3853   ** Example:
3854   **
3855   **     SELECT a+1 FROM (
3856   **        SELECT x FROM tab
3857   **        UNION ALL
3858   **        SELECT y FROM tab
3859   **        UNION ALL
3860   **        SELECT abs(z*2) FROM tab2
3861   **     ) WHERE a!=5 ORDER BY 1
3862   **
3863   ** Transformed into:
3864   **
3865   **     SELECT x+1 FROM tab WHERE x+1!=5
3866   **     UNION ALL
3867   **     SELECT y+1 FROM tab WHERE y+1!=5
3868   **     UNION ALL
3869   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3870   **     ORDER BY 1
3871   **
3872   ** We call this the "compound-subquery flattening".
3873   */
3874   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3875     Select *pNew;
3876     ExprList *pOrderBy = p->pOrderBy;
3877     Expr *pLimit = p->pLimit;
3878     Select *pPrior = p->pPrior;
3879     p->pOrderBy = 0;
3880     p->pSrc = 0;
3881     p->pPrior = 0;
3882     p->pLimit = 0;
3883     pNew = sqlite3SelectDup(db, p, 0);
3884     sqlite3SelectSetName(pNew, pSub->zSelName);
3885     p->pLimit = pLimit;
3886     p->pOrderBy = pOrderBy;
3887     p->pSrc = pSrc;
3888     p->op = TK_ALL;
3889     if( pNew==0 ){
3890       p->pPrior = pPrior;
3891     }else{
3892       pNew->pPrior = pPrior;
3893       if( pPrior ) pPrior->pNext = pNew;
3894       pNew->pNext = p;
3895       p->pPrior = pNew;
3896       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3897                               " creates %s.%p as peer\n",pNew->zSelName, pNew));
3898     }
3899     if( db->mallocFailed ) return 1;
3900   }
3901 
3902   /* Begin flattening the iFrom-th entry of the FROM clause
3903   ** in the outer query.
3904   */
3905   pSub = pSub1 = pSubitem->pSelect;
3906 
3907   /* Delete the transient table structure associated with the
3908   ** subquery
3909   */
3910   sqlite3DbFree(db, pSubitem->zDatabase);
3911   sqlite3DbFree(db, pSubitem->zName);
3912   sqlite3DbFree(db, pSubitem->zAlias);
3913   pSubitem->zDatabase = 0;
3914   pSubitem->zName = 0;
3915   pSubitem->zAlias = 0;
3916   pSubitem->pSelect = 0;
3917 
3918   /* Defer deleting the Table object associated with the
3919   ** subquery until code generation is
3920   ** complete, since there may still exist Expr.pTab entries that
3921   ** refer to the subquery even after flattening.  Ticket #3346.
3922   **
3923   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3924   */
3925   if( ALWAYS(pSubitem->pTab!=0) ){
3926     Table *pTabToDel = pSubitem->pTab;
3927     if( pTabToDel->nTabRef==1 ){
3928       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3929       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3930       pToplevel->pZombieTab = pTabToDel;
3931     }else{
3932       pTabToDel->nTabRef--;
3933     }
3934     pSubitem->pTab = 0;
3935   }
3936 
3937   /* The following loop runs once for each term in a compound-subquery
3938   ** flattening (as described above).  If we are doing a different kind
3939   ** of flattening - a flattening other than a compound-subquery flattening -
3940   ** then this loop only runs once.
3941   **
3942   ** This loop moves all of the FROM elements of the subquery into the
3943   ** the FROM clause of the outer query.  Before doing this, remember
3944   ** the cursor number for the original outer query FROM element in
3945   ** iParent.  The iParent cursor will never be used.  Subsequent code
3946   ** will scan expressions looking for iParent references and replace
3947   ** those references with expressions that resolve to the subquery FROM
3948   ** elements we are now copying in.
3949   */
3950   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3951     int nSubSrc;
3952     u8 jointype = 0;
3953     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3954     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3955     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3956 
3957     if( pSrc ){
3958       assert( pParent==p );  /* First time through the loop */
3959       jointype = pSubitem->fg.jointype;
3960     }else{
3961       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3962       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3963       if( pSrc==0 ){
3964         assert( db->mallocFailed );
3965         break;
3966       }
3967     }
3968 
3969     /* The subquery uses a single slot of the FROM clause of the outer
3970     ** query.  If the subquery has more than one element in its FROM clause,
3971     ** then expand the outer query to make space for it to hold all elements
3972     ** of the subquery.
3973     **
3974     ** Example:
3975     **
3976     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3977     **
3978     ** The outer query has 3 slots in its FROM clause.  One slot of the
3979     ** outer query (the middle slot) is used by the subquery.  The next
3980     ** block of code will expand the outer query FROM clause to 4 slots.
3981     ** The middle slot is expanded to two slots in order to make space
3982     ** for the two elements in the FROM clause of the subquery.
3983     */
3984     if( nSubSrc>1 ){
3985       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3986       if( db->mallocFailed ){
3987         break;
3988       }
3989     }
3990 
3991     /* Transfer the FROM clause terms from the subquery into the
3992     ** outer query.
3993     */
3994     for(i=0; i<nSubSrc; i++){
3995       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3996       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3997       pSrc->a[i+iFrom] = pSubSrc->a[i];
3998       iNewParent = pSubSrc->a[i].iCursor;
3999       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4000     }
4001     pSrc->a[iFrom].fg.jointype = jointype;
4002 
4003     /* Now begin substituting subquery result set expressions for
4004     ** references to the iParent in the outer query.
4005     **
4006     ** Example:
4007     **
4008     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4009     **   \                     \_____________ subquery __________/          /
4010     **    \_____________________ outer query ______________________________/
4011     **
4012     ** We look at every expression in the outer query and every place we see
4013     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4014     */
4015     if( pSub->pOrderBy ){
4016       /* At this point, any non-zero iOrderByCol values indicate that the
4017       ** ORDER BY column expression is identical to the iOrderByCol'th
4018       ** expression returned by SELECT statement pSub. Since these values
4019       ** do not necessarily correspond to columns in SELECT statement pParent,
4020       ** zero them before transfering the ORDER BY clause.
4021       **
4022       ** Not doing this may cause an error if a subsequent call to this
4023       ** function attempts to flatten a compound sub-query into pParent
4024       ** (the only way this can happen is if the compound sub-query is
4025       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4026       ExprList *pOrderBy = pSub->pOrderBy;
4027       for(i=0; i<pOrderBy->nExpr; i++){
4028         pOrderBy->a[i].u.x.iOrderByCol = 0;
4029       }
4030       assert( pParent->pOrderBy==0 );
4031       pParent->pOrderBy = pOrderBy;
4032       pSub->pOrderBy = 0;
4033     }
4034     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4035     if( isLeftJoin>0 ){
4036       setJoinExpr(pWhere, iNewParent);
4037     }
4038     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4039     if( db->mallocFailed==0 ){
4040       SubstContext x;
4041       x.pParse = pParse;
4042       x.iTable = iParent;
4043       x.iNewTable = iNewParent;
4044       x.isLeftJoin = isLeftJoin;
4045       x.pEList = pSub->pEList;
4046       substSelect(&x, pParent, 0);
4047     }
4048 
4049     /* The flattened query is distinct if either the inner or the
4050     ** outer query is distinct.
4051     */
4052     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4053 
4054     /*
4055     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4056     **
4057     ** One is tempted to try to add a and b to combine the limits.  But this
4058     ** does not work if either limit is negative.
4059     */
4060     if( pSub->pLimit ){
4061       pParent->pLimit = pSub->pLimit;
4062       pSub->pLimit = 0;
4063     }
4064   }
4065 
4066   /* Finially, delete what is left of the subquery and return
4067   ** success.
4068   */
4069   sqlite3SelectDelete(db, pSub1);
4070 
4071 #if SELECTTRACE_ENABLED
4072   if( sqlite3SelectTrace & 0x100 ){
4073     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4074     sqlite3TreeViewSelect(0, p, 0);
4075   }
4076 #endif
4077 
4078   return 1;
4079 }
4080 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4081 
4082 
4083 
4084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4085 /*
4086 ** Make copies of relevant WHERE clause terms of the outer query into
4087 ** the WHERE clause of subquery.  Example:
4088 **
4089 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4090 **
4091 ** Transformed into:
4092 **
4093 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4094 **     WHERE x=5 AND y=10;
4095 **
4096 ** The hope is that the terms added to the inner query will make it more
4097 ** efficient.
4098 **
4099 ** Do not attempt this optimization if:
4100 **
4101 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4102 **           disallow this optimization for aggregate subqueries, but now
4103 **           it is allowed by putting the extra terms on the HAVING clause.
4104 **           The added HAVING clause is pointless if the subquery lacks
4105 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4106 **           so there does not appear to be any reason to add extra logic
4107 **           to suppress it. **)
4108 **
4109 **   (2) The inner query is the recursive part of a common table expression.
4110 **
4111 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4112 **       close would change the meaning of the LIMIT).
4113 **
4114 **   (4) The inner query is the right operand of a LEFT JOIN and the
4115 **       expression to be pushed down does not come from the ON clause
4116 **       on that LEFT JOIN.
4117 **
4118 **   (5) The WHERE clause expression originates in the ON or USING clause
4119 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4120 **       left join.  An example:
4121 **
4122 **           SELECT *
4123 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4124 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4125 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4126 **
4127 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4128 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4129 **       then the (1,1,NULL) row would be suppressed.
4130 **
4131 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4132 ** terms are duplicated into the subquery.
4133 */
4134 static int pushDownWhereTerms(
4135   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4136   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4137   Expr *pWhere,         /* The WHERE clause of the outer query */
4138   int iCursor,          /* Cursor number of the subquery */
4139   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4140 ){
4141   Expr *pNew;
4142   int nChng = 0;
4143   if( pWhere==0 ) return 0;
4144   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4145 
4146 #ifdef SQLITE_DEBUG
4147   /* Only the first term of a compound can have a WITH clause.  But make
4148   ** sure no other terms are marked SF_Recursive in case something changes
4149   ** in the future.
4150   */
4151   {
4152     Select *pX;
4153     for(pX=pSubq; pX; pX=pX->pPrior){
4154       assert( (pX->selFlags & (SF_Recursive))==0 );
4155     }
4156   }
4157 #endif
4158 
4159   if( pSubq->pLimit!=0 ){
4160     return 0; /* restriction (3) */
4161   }
4162   while( pWhere->op==TK_AND ){
4163     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4164                                 iCursor, isLeftJoin);
4165     pWhere = pWhere->pLeft;
4166   }
4167   if( isLeftJoin
4168    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4169          || pWhere->iRightJoinTable!=iCursor)
4170   ){
4171     return 0; /* restriction (4) */
4172   }
4173   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4174     return 0; /* restriction (5) */
4175   }
4176   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4177     nChng++;
4178     while( pSubq ){
4179       SubstContext x;
4180       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4181       unsetJoinExpr(pNew, -1);
4182       x.pParse = pParse;
4183       x.iTable = iCursor;
4184       x.iNewTable = iCursor;
4185       x.isLeftJoin = 0;
4186       x.pEList = pSubq->pEList;
4187       pNew = substExpr(&x, pNew);
4188       if( pSubq->selFlags & SF_Aggregate ){
4189         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4190       }else{
4191         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4192       }
4193       pSubq = pSubq->pPrior;
4194     }
4195   }
4196   return nChng;
4197 }
4198 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4199 
4200 /*
4201 ** The pFunc is the only aggregate function in the query.  Check to see
4202 ** if the query is a candidate for the min/max optimization.
4203 **
4204 ** If the query is a candidate for the min/max optimization, then set
4205 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4206 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4207 ** whether pFunc is a min() or max() function.
4208 **
4209 ** If the query is not a candidate for the min/max optimization, return
4210 ** WHERE_ORDERBY_NORMAL (which must be zero).
4211 **
4212 ** This routine must be called after aggregate functions have been
4213 ** located but before their arguments have been subjected to aggregate
4214 ** analysis.
4215 */
4216 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4217   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4218   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4219   const char *zFunc;                    /* Name of aggregate function pFunc */
4220   ExprList *pOrderBy;
4221   u8 sortOrder;
4222 
4223   assert( *ppMinMax==0 );
4224   assert( pFunc->op==TK_AGG_FUNCTION );
4225   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4226   zFunc = pFunc->u.zToken;
4227   if( sqlite3StrICmp(zFunc, "min")==0 ){
4228     eRet = WHERE_ORDERBY_MIN;
4229     sortOrder = SQLITE_SO_ASC;
4230   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4231     eRet = WHERE_ORDERBY_MAX;
4232     sortOrder = SQLITE_SO_DESC;
4233   }else{
4234     return eRet;
4235   }
4236   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4237   assert( pOrderBy!=0 || db->mallocFailed );
4238   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4239   return eRet;
4240 }
4241 
4242 /*
4243 ** The select statement passed as the first argument is an aggregate query.
4244 ** The second argument is the associated aggregate-info object. This
4245 ** function tests if the SELECT is of the form:
4246 **
4247 **   SELECT count(*) FROM <tbl>
4248 **
4249 ** where table is a database table, not a sub-select or view. If the query
4250 ** does match this pattern, then a pointer to the Table object representing
4251 ** <tbl> is returned. Otherwise, 0 is returned.
4252 */
4253 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4254   Table *pTab;
4255   Expr *pExpr;
4256 
4257   assert( !p->pGroupBy );
4258 
4259   if( p->pWhere || p->pEList->nExpr!=1
4260    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4261   ){
4262     return 0;
4263   }
4264   pTab = p->pSrc->a[0].pTab;
4265   pExpr = p->pEList->a[0].pExpr;
4266   assert( pTab && !pTab->pSelect && pExpr );
4267 
4268   if( IsVirtual(pTab) ) return 0;
4269   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4270   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4271   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4272   if( pExpr->flags&EP_Distinct ) return 0;
4273 
4274   return pTab;
4275 }
4276 
4277 /*
4278 ** If the source-list item passed as an argument was augmented with an
4279 ** INDEXED BY clause, then try to locate the specified index. If there
4280 ** was such a clause and the named index cannot be found, return
4281 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4282 ** pFrom->pIndex and return SQLITE_OK.
4283 */
4284 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4285   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4286     Table *pTab = pFrom->pTab;
4287     char *zIndexedBy = pFrom->u1.zIndexedBy;
4288     Index *pIdx;
4289     for(pIdx=pTab->pIndex;
4290         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4291         pIdx=pIdx->pNext
4292     );
4293     if( !pIdx ){
4294       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4295       pParse->checkSchema = 1;
4296       return SQLITE_ERROR;
4297     }
4298     pFrom->pIBIndex = pIdx;
4299   }
4300   return SQLITE_OK;
4301 }
4302 /*
4303 ** Detect compound SELECT statements that use an ORDER BY clause with
4304 ** an alternative collating sequence.
4305 **
4306 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4307 **
4308 ** These are rewritten as a subquery:
4309 **
4310 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4311 **     ORDER BY ... COLLATE ...
4312 **
4313 ** This transformation is necessary because the multiSelectOrderBy() routine
4314 ** above that generates the code for a compound SELECT with an ORDER BY clause
4315 ** uses a merge algorithm that requires the same collating sequence on the
4316 ** result columns as on the ORDER BY clause.  See ticket
4317 ** http://www.sqlite.org/src/info/6709574d2a
4318 **
4319 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4320 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4321 ** there are COLLATE terms in the ORDER BY.
4322 */
4323 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4324   int i;
4325   Select *pNew;
4326   Select *pX;
4327   sqlite3 *db;
4328   struct ExprList_item *a;
4329   SrcList *pNewSrc;
4330   Parse *pParse;
4331   Token dummy;
4332 
4333   if( p->pPrior==0 ) return WRC_Continue;
4334   if( p->pOrderBy==0 ) return WRC_Continue;
4335   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4336   if( pX==0 ) return WRC_Continue;
4337   a = p->pOrderBy->a;
4338   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4339     if( a[i].pExpr->flags & EP_Collate ) break;
4340   }
4341   if( i<0 ) return WRC_Continue;
4342 
4343   /* If we reach this point, that means the transformation is required. */
4344 
4345   pParse = pWalker->pParse;
4346   db = pParse->db;
4347   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4348   if( pNew==0 ) return WRC_Abort;
4349   memset(&dummy, 0, sizeof(dummy));
4350   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4351   if( pNewSrc==0 ) return WRC_Abort;
4352   *pNew = *p;
4353   p->pSrc = pNewSrc;
4354   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4355   p->op = TK_SELECT;
4356   p->pWhere = 0;
4357   pNew->pGroupBy = 0;
4358   pNew->pHaving = 0;
4359   pNew->pOrderBy = 0;
4360   p->pPrior = 0;
4361   p->pNext = 0;
4362   p->pWith = 0;
4363   p->selFlags &= ~SF_Compound;
4364   assert( (p->selFlags & SF_Converted)==0 );
4365   p->selFlags |= SF_Converted;
4366   assert( pNew->pPrior!=0 );
4367   pNew->pPrior->pNext = pNew;
4368   pNew->pLimit = 0;
4369   return WRC_Continue;
4370 }
4371 
4372 /*
4373 ** Check to see if the FROM clause term pFrom has table-valued function
4374 ** arguments.  If it does, leave an error message in pParse and return
4375 ** non-zero, since pFrom is not allowed to be a table-valued function.
4376 */
4377 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4378   if( pFrom->fg.isTabFunc ){
4379     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4380     return 1;
4381   }
4382   return 0;
4383 }
4384 
4385 #ifndef SQLITE_OMIT_CTE
4386 /*
4387 ** Argument pWith (which may be NULL) points to a linked list of nested
4388 ** WITH contexts, from inner to outermost. If the table identified by
4389 ** FROM clause element pItem is really a common-table-expression (CTE)
4390 ** then return a pointer to the CTE definition for that table. Otherwise
4391 ** return NULL.
4392 **
4393 ** If a non-NULL value is returned, set *ppContext to point to the With
4394 ** object that the returned CTE belongs to.
4395 */
4396 static struct Cte *searchWith(
4397   With *pWith,                    /* Current innermost WITH clause */
4398   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4399   With **ppContext                /* OUT: WITH clause return value belongs to */
4400 ){
4401   const char *zName;
4402   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4403     With *p;
4404     for(p=pWith; p; p=p->pOuter){
4405       int i;
4406       for(i=0; i<p->nCte; i++){
4407         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4408           *ppContext = p;
4409           return &p->a[i];
4410         }
4411       }
4412     }
4413   }
4414   return 0;
4415 }
4416 
4417 /* The code generator maintains a stack of active WITH clauses
4418 ** with the inner-most WITH clause being at the top of the stack.
4419 **
4420 ** This routine pushes the WITH clause passed as the second argument
4421 ** onto the top of the stack. If argument bFree is true, then this
4422 ** WITH clause will never be popped from the stack. In this case it
4423 ** should be freed along with the Parse object. In other cases, when
4424 ** bFree==0, the With object will be freed along with the SELECT
4425 ** statement with which it is associated.
4426 */
4427 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4428   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4429   if( pWith ){
4430     assert( pParse->pWith!=pWith );
4431     pWith->pOuter = pParse->pWith;
4432     pParse->pWith = pWith;
4433     if( bFree ) pParse->pWithToFree = pWith;
4434   }
4435 }
4436 
4437 /*
4438 ** This function checks if argument pFrom refers to a CTE declared by
4439 ** a WITH clause on the stack currently maintained by the parser. And,
4440 ** if currently processing a CTE expression, if it is a recursive
4441 ** reference to the current CTE.
4442 **
4443 ** If pFrom falls into either of the two categories above, pFrom->pTab
4444 ** and other fields are populated accordingly. The caller should check
4445 ** (pFrom->pTab!=0) to determine whether or not a successful match
4446 ** was found.
4447 **
4448 ** Whether or not a match is found, SQLITE_OK is returned if no error
4449 ** occurs. If an error does occur, an error message is stored in the
4450 ** parser and some error code other than SQLITE_OK returned.
4451 */
4452 static int withExpand(
4453   Walker *pWalker,
4454   struct SrcList_item *pFrom
4455 ){
4456   Parse *pParse = pWalker->pParse;
4457   sqlite3 *db = pParse->db;
4458   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4459   With *pWith;                    /* WITH clause that pCte belongs to */
4460 
4461   assert( pFrom->pTab==0 );
4462 
4463   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4464   if( pCte ){
4465     Table *pTab;
4466     ExprList *pEList;
4467     Select *pSel;
4468     Select *pLeft;                /* Left-most SELECT statement */
4469     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4470     With *pSavedWith;             /* Initial value of pParse->pWith */
4471 
4472     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4473     ** recursive reference to CTE pCte. Leave an error in pParse and return
4474     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4475     ** In this case, proceed.  */
4476     if( pCte->zCteErr ){
4477       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4478       return SQLITE_ERROR;
4479     }
4480     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4481 
4482     assert( pFrom->pTab==0 );
4483     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4484     if( pTab==0 ) return WRC_Abort;
4485     pTab->nTabRef = 1;
4486     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4487     pTab->iPKey = -1;
4488     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4489     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4490     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4491     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4492     assert( pFrom->pSelect );
4493 
4494     /* Check if this is a recursive CTE. */
4495     pSel = pFrom->pSelect;
4496     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4497     if( bMayRecursive ){
4498       int i;
4499       SrcList *pSrc = pFrom->pSelect->pSrc;
4500       for(i=0; i<pSrc->nSrc; i++){
4501         struct SrcList_item *pItem = &pSrc->a[i];
4502         if( pItem->zDatabase==0
4503          && pItem->zName!=0
4504          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4505           ){
4506           pItem->pTab = pTab;
4507           pItem->fg.isRecursive = 1;
4508           pTab->nTabRef++;
4509           pSel->selFlags |= SF_Recursive;
4510         }
4511       }
4512     }
4513 
4514     /* Only one recursive reference is permitted. */
4515     if( pTab->nTabRef>2 ){
4516       sqlite3ErrorMsg(
4517           pParse, "multiple references to recursive table: %s", pCte->zName
4518       );
4519       return SQLITE_ERROR;
4520     }
4521     assert( pTab->nTabRef==1 ||
4522             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4523 
4524     pCte->zCteErr = "circular reference: %s";
4525     pSavedWith = pParse->pWith;
4526     pParse->pWith = pWith;
4527     if( bMayRecursive ){
4528       Select *pPrior = pSel->pPrior;
4529       assert( pPrior->pWith==0 );
4530       pPrior->pWith = pSel->pWith;
4531       sqlite3WalkSelect(pWalker, pPrior);
4532       pPrior->pWith = 0;
4533     }else{
4534       sqlite3WalkSelect(pWalker, pSel);
4535     }
4536     pParse->pWith = pWith;
4537 
4538     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4539     pEList = pLeft->pEList;
4540     if( pCte->pCols ){
4541       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4542         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4543             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4544         );
4545         pParse->pWith = pSavedWith;
4546         return SQLITE_ERROR;
4547       }
4548       pEList = pCte->pCols;
4549     }
4550 
4551     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4552     if( bMayRecursive ){
4553       if( pSel->selFlags & SF_Recursive ){
4554         pCte->zCteErr = "multiple recursive references: %s";
4555       }else{
4556         pCte->zCteErr = "recursive reference in a subquery: %s";
4557       }
4558       sqlite3WalkSelect(pWalker, pSel);
4559     }
4560     pCte->zCteErr = 0;
4561     pParse->pWith = pSavedWith;
4562   }
4563 
4564   return SQLITE_OK;
4565 }
4566 #endif
4567 
4568 #ifndef SQLITE_OMIT_CTE
4569 /*
4570 ** If the SELECT passed as the second argument has an associated WITH
4571 ** clause, pop it from the stack stored as part of the Parse object.
4572 **
4573 ** This function is used as the xSelectCallback2() callback by
4574 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4575 ** names and other FROM clause elements.
4576 */
4577 static void selectPopWith(Walker *pWalker, Select *p){
4578   Parse *pParse = pWalker->pParse;
4579   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4580     With *pWith = findRightmost(p)->pWith;
4581     if( pWith!=0 ){
4582       assert( pParse->pWith==pWith );
4583       pParse->pWith = pWith->pOuter;
4584     }
4585   }
4586 }
4587 #else
4588 #define selectPopWith 0
4589 #endif
4590 
4591 /*
4592 ** This routine is a Walker callback for "expanding" a SELECT statement.
4593 ** "Expanding" means to do the following:
4594 **
4595 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4596 **         element of the FROM clause.
4597 **
4598 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4599 **         defines FROM clause.  When views appear in the FROM clause,
4600 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4601 **         that implements the view.  A copy is made of the view's SELECT
4602 **         statement so that we can freely modify or delete that statement
4603 **         without worrying about messing up the persistent representation
4604 **         of the view.
4605 **
4606 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4607 **         on joins and the ON and USING clause of joins.
4608 **
4609 **    (4)  Scan the list of columns in the result set (pEList) looking
4610 **         for instances of the "*" operator or the TABLE.* operator.
4611 **         If found, expand each "*" to be every column in every table
4612 **         and TABLE.* to be every column in TABLE.
4613 **
4614 */
4615 static int selectExpander(Walker *pWalker, Select *p){
4616   Parse *pParse = pWalker->pParse;
4617   int i, j, k;
4618   SrcList *pTabList;
4619   ExprList *pEList;
4620   struct SrcList_item *pFrom;
4621   sqlite3 *db = pParse->db;
4622   Expr *pE, *pRight, *pExpr;
4623   u16 selFlags = p->selFlags;
4624   u32 elistFlags = 0;
4625 
4626   p->selFlags |= SF_Expanded;
4627   if( db->mallocFailed  ){
4628     return WRC_Abort;
4629   }
4630   assert( p->pSrc!=0 );
4631   if( (selFlags & SF_Expanded)!=0 ){
4632     return WRC_Prune;
4633   }
4634   pTabList = p->pSrc;
4635   pEList = p->pEList;
4636   sqlite3WithPush(pParse, p->pWith, 0);
4637 
4638   /* Make sure cursor numbers have been assigned to all entries in
4639   ** the FROM clause of the SELECT statement.
4640   */
4641   sqlite3SrcListAssignCursors(pParse, pTabList);
4642 
4643   /* Look up every table named in the FROM clause of the select.  If
4644   ** an entry of the FROM clause is a subquery instead of a table or view,
4645   ** then create a transient table structure to describe the subquery.
4646   */
4647   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4648     Table *pTab;
4649     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4650     if( pFrom->fg.isRecursive ) continue;
4651     assert( pFrom->pTab==0 );
4652 #ifndef SQLITE_OMIT_CTE
4653     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4654     if( pFrom->pTab ) {} else
4655 #endif
4656     if( pFrom->zName==0 ){
4657 #ifndef SQLITE_OMIT_SUBQUERY
4658       Select *pSel = pFrom->pSelect;
4659       /* A sub-query in the FROM clause of a SELECT */
4660       assert( pSel!=0 );
4661       assert( pFrom->pTab==0 );
4662       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4663       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4664       if( pTab==0 ) return WRC_Abort;
4665       pTab->nTabRef = 1;
4666       if( pFrom->zAlias ){
4667         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4668       }else{
4669         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4670       }
4671       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4672       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4673       pTab->iPKey = -1;
4674       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4675       pTab->tabFlags |= TF_Ephemeral;
4676 #endif
4677     }else{
4678       /* An ordinary table or view name in the FROM clause */
4679       assert( pFrom->pTab==0 );
4680       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4681       if( pTab==0 ) return WRC_Abort;
4682       if( pTab->nTabRef>=0xffff ){
4683         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4684            pTab->zName);
4685         pFrom->pTab = 0;
4686         return WRC_Abort;
4687       }
4688       pTab->nTabRef++;
4689       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4690         return WRC_Abort;
4691       }
4692 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4693       if( IsVirtual(pTab) || pTab->pSelect ){
4694         i16 nCol;
4695         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4696         assert( pFrom->pSelect==0 );
4697         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4698         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4699         nCol = pTab->nCol;
4700         pTab->nCol = -1;
4701         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4702         pTab->nCol = nCol;
4703       }
4704 #endif
4705     }
4706 
4707     /* Locate the index named by the INDEXED BY clause, if any. */
4708     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4709       return WRC_Abort;
4710     }
4711   }
4712 
4713   /* Process NATURAL keywords, and ON and USING clauses of joins.
4714   */
4715   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4716     return WRC_Abort;
4717   }
4718 
4719   /* For every "*" that occurs in the column list, insert the names of
4720   ** all columns in all tables.  And for every TABLE.* insert the names
4721   ** of all columns in TABLE.  The parser inserted a special expression
4722   ** with the TK_ASTERISK operator for each "*" that it found in the column
4723   ** list.  The following code just has to locate the TK_ASTERISK
4724   ** expressions and expand each one to the list of all columns in
4725   ** all tables.
4726   **
4727   ** The first loop just checks to see if there are any "*" operators
4728   ** that need expanding.
4729   */
4730   for(k=0; k<pEList->nExpr; k++){
4731     pE = pEList->a[k].pExpr;
4732     if( pE->op==TK_ASTERISK ) break;
4733     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4734     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4735     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4736     elistFlags |= pE->flags;
4737   }
4738   if( k<pEList->nExpr ){
4739     /*
4740     ** If we get here it means the result set contains one or more "*"
4741     ** operators that need to be expanded.  Loop through each expression
4742     ** in the result set and expand them one by one.
4743     */
4744     struct ExprList_item *a = pEList->a;
4745     ExprList *pNew = 0;
4746     int flags = pParse->db->flags;
4747     int longNames = (flags & SQLITE_FullColNames)!=0
4748                       && (flags & SQLITE_ShortColNames)==0;
4749 
4750     for(k=0; k<pEList->nExpr; k++){
4751       pE = a[k].pExpr;
4752       elistFlags |= pE->flags;
4753       pRight = pE->pRight;
4754       assert( pE->op!=TK_DOT || pRight!=0 );
4755       if( pE->op!=TK_ASTERISK
4756        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4757       ){
4758         /* This particular expression does not need to be expanded.
4759         */
4760         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4761         if( pNew ){
4762           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4763           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4764           a[k].zName = 0;
4765           a[k].zSpan = 0;
4766         }
4767         a[k].pExpr = 0;
4768       }else{
4769         /* This expression is a "*" or a "TABLE.*" and needs to be
4770         ** expanded. */
4771         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4772         char *zTName = 0;       /* text of name of TABLE */
4773         if( pE->op==TK_DOT ){
4774           assert( pE->pLeft!=0 );
4775           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4776           zTName = pE->pLeft->u.zToken;
4777         }
4778         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4779           Table *pTab = pFrom->pTab;
4780           Select *pSub = pFrom->pSelect;
4781           char *zTabName = pFrom->zAlias;
4782           const char *zSchemaName = 0;
4783           int iDb;
4784           if( zTabName==0 ){
4785             zTabName = pTab->zName;
4786           }
4787           if( db->mallocFailed ) break;
4788           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4789             pSub = 0;
4790             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4791               continue;
4792             }
4793             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4794             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4795           }
4796           for(j=0; j<pTab->nCol; j++){
4797             char *zName = pTab->aCol[j].zName;
4798             char *zColname;  /* The computed column name */
4799             char *zToFree;   /* Malloced string that needs to be freed */
4800             Token sColname;  /* Computed column name as a token */
4801 
4802             assert( zName );
4803             if( zTName && pSub
4804              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4805             ){
4806               continue;
4807             }
4808 
4809             /* If a column is marked as 'hidden', omit it from the expanded
4810             ** result-set list unless the SELECT has the SF_IncludeHidden
4811             ** bit set.
4812             */
4813             if( (p->selFlags & SF_IncludeHidden)==0
4814              && IsHiddenColumn(&pTab->aCol[j])
4815             ){
4816               continue;
4817             }
4818             tableSeen = 1;
4819 
4820             if( i>0 && zTName==0 ){
4821               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4822                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4823               ){
4824                 /* In a NATURAL join, omit the join columns from the
4825                 ** table to the right of the join */
4826                 continue;
4827               }
4828               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4829                 /* In a join with a USING clause, omit columns in the
4830                 ** using clause from the table on the right. */
4831                 continue;
4832               }
4833             }
4834             pRight = sqlite3Expr(db, TK_ID, zName);
4835             zColname = zName;
4836             zToFree = 0;
4837             if( longNames || pTabList->nSrc>1 ){
4838               Expr *pLeft;
4839               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4840               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4841               if( zSchemaName ){
4842                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4843                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4844               }
4845               if( longNames ){
4846                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4847                 zToFree = zColname;
4848               }
4849             }else{
4850               pExpr = pRight;
4851             }
4852             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4853             sqlite3TokenInit(&sColname, zColname);
4854             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4855             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4856               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4857               if( pSub ){
4858                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4859                 testcase( pX->zSpan==0 );
4860               }else{
4861                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4862                                            zSchemaName, zTabName, zColname);
4863                 testcase( pX->zSpan==0 );
4864               }
4865               pX->bSpanIsTab = 1;
4866             }
4867             sqlite3DbFree(db, zToFree);
4868           }
4869         }
4870         if( !tableSeen ){
4871           if( zTName ){
4872             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4873           }else{
4874             sqlite3ErrorMsg(pParse, "no tables specified");
4875           }
4876         }
4877       }
4878     }
4879     sqlite3ExprListDelete(db, pEList);
4880     p->pEList = pNew;
4881   }
4882   if( p->pEList ){
4883     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4884       sqlite3ErrorMsg(pParse, "too many columns in result set");
4885       return WRC_Abort;
4886     }
4887     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4888       p->selFlags |= SF_ComplexResult;
4889     }
4890   }
4891   return WRC_Continue;
4892 }
4893 
4894 /*
4895 ** No-op routine for the parse-tree walker.
4896 **
4897 ** When this routine is the Walker.xExprCallback then expression trees
4898 ** are walked without any actions being taken at each node.  Presumably,
4899 ** when this routine is used for Walker.xExprCallback then
4900 ** Walker.xSelectCallback is set to do something useful for every
4901 ** subquery in the parser tree.
4902 */
4903 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4904   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4905   return WRC_Continue;
4906 }
4907 
4908 /*
4909 ** No-op routine for the parse-tree walker for SELECT statements.
4910 ** subquery in the parser tree.
4911 */
4912 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4913   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4914   return WRC_Continue;
4915 }
4916 
4917 #if SQLITE_DEBUG
4918 /*
4919 ** Always assert.  This xSelectCallback2 implementation proves that the
4920 ** xSelectCallback2 is never invoked.
4921 */
4922 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4923   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4924   assert( 0 );
4925 }
4926 #endif
4927 /*
4928 ** This routine "expands" a SELECT statement and all of its subqueries.
4929 ** For additional information on what it means to "expand" a SELECT
4930 ** statement, see the comment on the selectExpand worker callback above.
4931 **
4932 ** Expanding a SELECT statement is the first step in processing a
4933 ** SELECT statement.  The SELECT statement must be expanded before
4934 ** name resolution is performed.
4935 **
4936 ** If anything goes wrong, an error message is written into pParse.
4937 ** The calling function can detect the problem by looking at pParse->nErr
4938 ** and/or pParse->db->mallocFailed.
4939 */
4940 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4941   Walker w;
4942   w.xExprCallback = sqlite3ExprWalkNoop;
4943   w.pParse = pParse;
4944   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4945     w.xSelectCallback = convertCompoundSelectToSubquery;
4946     w.xSelectCallback2 = 0;
4947     sqlite3WalkSelect(&w, pSelect);
4948   }
4949   w.xSelectCallback = selectExpander;
4950   w.xSelectCallback2 = selectPopWith;
4951   sqlite3WalkSelect(&w, pSelect);
4952 }
4953 
4954 
4955 #ifndef SQLITE_OMIT_SUBQUERY
4956 /*
4957 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4958 ** interface.
4959 **
4960 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4961 ** information to the Table structure that represents the result set
4962 ** of that subquery.
4963 **
4964 ** The Table structure that represents the result set was constructed
4965 ** by selectExpander() but the type and collation information was omitted
4966 ** at that point because identifiers had not yet been resolved.  This
4967 ** routine is called after identifier resolution.
4968 */
4969 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4970   Parse *pParse;
4971   int i;
4972   SrcList *pTabList;
4973   struct SrcList_item *pFrom;
4974 
4975   assert( p->selFlags & SF_Resolved );
4976   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4977   p->selFlags |= SF_HasTypeInfo;
4978   pParse = pWalker->pParse;
4979   pTabList = p->pSrc;
4980   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4981     Table *pTab = pFrom->pTab;
4982     assert( pTab!=0 );
4983     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4984       /* A sub-query in the FROM clause of a SELECT */
4985       Select *pSel = pFrom->pSelect;
4986       if( pSel ){
4987         while( pSel->pPrior ) pSel = pSel->pPrior;
4988         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4989       }
4990     }
4991   }
4992 }
4993 #endif
4994 
4995 
4996 /*
4997 ** This routine adds datatype and collating sequence information to
4998 ** the Table structures of all FROM-clause subqueries in a
4999 ** SELECT statement.
5000 **
5001 ** Use this routine after name resolution.
5002 */
5003 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5004 #ifndef SQLITE_OMIT_SUBQUERY
5005   Walker w;
5006   w.xSelectCallback = sqlite3SelectWalkNoop;
5007   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5008   w.xExprCallback = sqlite3ExprWalkNoop;
5009   w.pParse = pParse;
5010   sqlite3WalkSelect(&w, pSelect);
5011 #endif
5012 }
5013 
5014 
5015 /*
5016 ** This routine sets up a SELECT statement for processing.  The
5017 ** following is accomplished:
5018 **
5019 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5020 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5021 **     *  ON and USING clauses are shifted into WHERE statements
5022 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5023 **     *  Identifiers in expression are matched to tables.
5024 **
5025 ** This routine acts recursively on all subqueries within the SELECT.
5026 */
5027 void sqlite3SelectPrep(
5028   Parse *pParse,         /* The parser context */
5029   Select *p,             /* The SELECT statement being coded. */
5030   NameContext *pOuterNC  /* Name context for container */
5031 ){
5032   assert( p!=0 || pParse->db->mallocFailed );
5033   if( pParse->db->mallocFailed ) return;
5034   if( p->selFlags & SF_HasTypeInfo ) return;
5035   sqlite3SelectExpand(pParse, p);
5036   if( pParse->nErr || pParse->db->mallocFailed ) return;
5037   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5038   if( pParse->nErr || pParse->db->mallocFailed ) return;
5039   sqlite3SelectAddTypeInfo(pParse, p);
5040 }
5041 
5042 /*
5043 ** Reset the aggregate accumulator.
5044 **
5045 ** The aggregate accumulator is a set of memory cells that hold
5046 ** intermediate results while calculating an aggregate.  This
5047 ** routine generates code that stores NULLs in all of those memory
5048 ** cells.
5049 */
5050 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5051   Vdbe *v = pParse->pVdbe;
5052   int i;
5053   struct AggInfo_func *pFunc;
5054   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5055   if( nReg==0 ) return;
5056 #ifdef SQLITE_DEBUG
5057   /* Verify that all AggInfo registers are within the range specified by
5058   ** AggInfo.mnReg..AggInfo.mxReg */
5059   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5060   for(i=0; i<pAggInfo->nColumn; i++){
5061     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5062          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5063   }
5064   for(i=0; i<pAggInfo->nFunc; i++){
5065     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5066          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5067   }
5068 #endif
5069   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5070   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5071     if( pFunc->iDistinct>=0 ){
5072       Expr *pE = pFunc->pExpr;
5073       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5074       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5075         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5076            "argument");
5077         pFunc->iDistinct = -1;
5078       }else{
5079         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
5080         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5081                           (char*)pKeyInfo, P4_KEYINFO);
5082       }
5083     }
5084   }
5085 }
5086 
5087 /*
5088 ** Invoke the OP_AggFinalize opcode for every aggregate function
5089 ** in the AggInfo structure.
5090 */
5091 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5092   Vdbe *v = pParse->pVdbe;
5093   int i;
5094   struct AggInfo_func *pF;
5095   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5096     ExprList *pList = pF->pExpr->x.pList;
5097     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5098     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5099     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5100   }
5101 }
5102 
5103 /*
5104 ** Update the accumulator memory cells for an aggregate based on
5105 ** the current cursor position.
5106 */
5107 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
5108   Vdbe *v = pParse->pVdbe;
5109   int i;
5110   int regHit = 0;
5111   int addrHitTest = 0;
5112   struct AggInfo_func *pF;
5113   struct AggInfo_col *pC;
5114 
5115   pAggInfo->directMode = 1;
5116   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5117     int nArg;
5118     int addrNext = 0;
5119     int regAgg;
5120     ExprList *pList = pF->pExpr->x.pList;
5121     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5122     if( pList ){
5123       nArg = pList->nExpr;
5124       regAgg = sqlite3GetTempRange(pParse, nArg);
5125       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5126     }else{
5127       nArg = 0;
5128       regAgg = 0;
5129     }
5130     if( pF->iDistinct>=0 ){
5131       addrNext = sqlite3VdbeMakeLabel(v);
5132       testcase( nArg==0 );  /* Error condition */
5133       testcase( nArg>1 );   /* Also an error */
5134       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5135     }
5136     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5137       CollSeq *pColl = 0;
5138       struct ExprList_item *pItem;
5139       int j;
5140       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5141       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5142         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5143       }
5144       if( !pColl ){
5145         pColl = pParse->db->pDfltColl;
5146       }
5147       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5148       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5149     }
5150     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
5151     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5152     sqlite3VdbeChangeP5(v, (u8)nArg);
5153     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5154     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5155     if( addrNext ){
5156       sqlite3VdbeResolveLabel(v, addrNext);
5157       sqlite3ExprCacheClear(pParse);
5158     }
5159   }
5160 
5161   /* Before populating the accumulator registers, clear the column cache.
5162   ** Otherwise, if any of the required column values are already present
5163   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5164   ** to pC->iMem. But by the time the value is used, the original register
5165   ** may have been used, invalidating the underlying buffer holding the
5166   ** text or blob value. See ticket [883034dcb5].
5167   **
5168   ** Another solution would be to change the OP_SCopy used to copy cached
5169   ** values to an OP_Copy.
5170   */
5171   if( regHit ){
5172     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5173   }
5174   sqlite3ExprCacheClear(pParse);
5175   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5176     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5177   }
5178   pAggInfo->directMode = 0;
5179   sqlite3ExprCacheClear(pParse);
5180   if( addrHitTest ){
5181     sqlite3VdbeJumpHere(v, addrHitTest);
5182   }
5183 }
5184 
5185 /*
5186 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5187 ** count(*) query ("SELECT count(*) FROM pTab").
5188 */
5189 #ifndef SQLITE_OMIT_EXPLAIN
5190 static void explainSimpleCount(
5191   Parse *pParse,                  /* Parse context */
5192   Table *pTab,                    /* Table being queried */
5193   Index *pIdx                     /* Index used to optimize scan, or NULL */
5194 ){
5195   if( pParse->explain==2 ){
5196     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5197     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5198         pTab->zName,
5199         bCover ? " USING COVERING INDEX " : "",
5200         bCover ? pIdx->zName : ""
5201     );
5202   }
5203 }
5204 #else
5205 # define explainSimpleCount(a,b,c)
5206 #endif
5207 
5208 /*
5209 ** sqlite3WalkExpr() callback used by havingToWhere().
5210 **
5211 ** If the node passed to the callback is a TK_AND node, return
5212 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5213 **
5214 ** Otherwise, return WRC_Prune. In this case, also check if the
5215 ** sub-expression matches the criteria for being moved to the WHERE
5216 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5217 ** within the HAVING expression with a constant "1".
5218 */
5219 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5220   if( pExpr->op!=TK_AND ){
5221     Select *pS = pWalker->u.pSelect;
5222     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5223       sqlite3 *db = pWalker->pParse->db;
5224       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5225       if( pNew ){
5226         Expr *pWhere = pS->pWhere;
5227         SWAP(Expr, *pNew, *pExpr);
5228         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5229         pS->pWhere = pNew;
5230         pWalker->eCode = 1;
5231       }
5232     }
5233     return WRC_Prune;
5234   }
5235   return WRC_Continue;
5236 }
5237 
5238 /*
5239 ** Transfer eligible terms from the HAVING clause of a query, which is
5240 ** processed after grouping, to the WHERE clause, which is processed before
5241 ** grouping. For example, the query:
5242 **
5243 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5244 **
5245 ** can be rewritten as:
5246 **
5247 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5248 **
5249 ** A term of the HAVING expression is eligible for transfer if it consists
5250 ** entirely of constants and expressions that are also GROUP BY terms that
5251 ** use the "BINARY" collation sequence.
5252 */
5253 static void havingToWhere(Parse *pParse, Select *p){
5254   Walker sWalker;
5255   memset(&sWalker, 0, sizeof(sWalker));
5256   sWalker.pParse = pParse;
5257   sWalker.xExprCallback = havingToWhereExprCb;
5258   sWalker.u.pSelect = p;
5259   sqlite3WalkExpr(&sWalker, p->pHaving);
5260 #if SELECTTRACE_ENABLED
5261   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5262     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5263     sqlite3TreeViewSelect(0, p, 0);
5264   }
5265 #endif
5266 }
5267 
5268 /*
5269 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5270 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5271 ** then return 0.
5272 */
5273 static struct SrcList_item *isSelfJoinView(
5274   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5275   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5276 ){
5277   struct SrcList_item *pItem;
5278   for(pItem = pTabList->a; pItem<pThis; pItem++){
5279     if( pItem->pSelect==0 ) continue;
5280     if( pItem->fg.viaCoroutine ) continue;
5281     if( pItem->zName==0 ) continue;
5282     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5283     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5284     if( sqlite3ExprCompare(0,
5285           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5286     ){
5287       /* The view was modified by some other optimization such as
5288       ** pushDownWhereTerms() */
5289       continue;
5290     }
5291     return pItem;
5292   }
5293   return 0;
5294 }
5295 
5296 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5297 /*
5298 ** Attempt to transform a query of the form
5299 **
5300 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5301 **
5302 ** Into this:
5303 **
5304 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5305 **
5306 ** The transformation only works if all of the following are true:
5307 **
5308 **   *  The subquery is a UNION ALL of two or more terms
5309 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5310 **   *  The outer query is a simple count(*)
5311 **
5312 ** Return TRUE if the optimization is undertaken.
5313 */
5314 static int countOfViewOptimization(Parse *pParse, Select *p){
5315   Select *pSub, *pPrior;
5316   Expr *pExpr;
5317   Expr *pCount;
5318   sqlite3 *db;
5319   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5320   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5321   pExpr = p->pEList->a[0].pExpr;
5322   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5323   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5324   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5325   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5326   pSub = p->pSrc->a[0].pSelect;
5327   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5328   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5329   do{
5330     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5331     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5332     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5333     pSub = pSub->pPrior;                              /* Repeat over compound */
5334   }while( pSub );
5335 
5336   /* If we reach this point then it is OK to perform the transformation */
5337 
5338   db = pParse->db;
5339   pCount = pExpr;
5340   pExpr = 0;
5341   pSub = p->pSrc->a[0].pSelect;
5342   p->pSrc->a[0].pSelect = 0;
5343   sqlite3SrcListDelete(db, p->pSrc);
5344   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5345   while( pSub ){
5346     Expr *pTerm;
5347     pPrior = pSub->pPrior;
5348     pSub->pPrior = 0;
5349     pSub->pNext = 0;
5350     pSub->selFlags |= SF_Aggregate;
5351     pSub->selFlags &= ~SF_Compound;
5352     pSub->nSelectRow = 0;
5353     sqlite3ExprListDelete(db, pSub->pEList);
5354     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5355     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5356     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5357     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5358     if( pExpr==0 ){
5359       pExpr = pTerm;
5360     }else{
5361       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5362     }
5363     pSub = pPrior;
5364   }
5365   p->pEList->a[0].pExpr = pExpr;
5366   p->selFlags &= ~SF_Aggregate;
5367 
5368 #if SELECTTRACE_ENABLED
5369   if( sqlite3SelectTrace & 0x400 ){
5370     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5371     sqlite3TreeViewSelect(0, p, 0);
5372   }
5373 #endif
5374   return 1;
5375 }
5376 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5377 
5378 /*
5379 ** Generate code for the SELECT statement given in the p argument.
5380 **
5381 ** The results are returned according to the SelectDest structure.
5382 ** See comments in sqliteInt.h for further information.
5383 **
5384 ** This routine returns the number of errors.  If any errors are
5385 ** encountered, then an appropriate error message is left in
5386 ** pParse->zErrMsg.
5387 **
5388 ** This routine does NOT free the Select structure passed in.  The
5389 ** calling function needs to do that.
5390 */
5391 int sqlite3Select(
5392   Parse *pParse,         /* The parser context */
5393   Select *p,             /* The SELECT statement being coded. */
5394   SelectDest *pDest      /* What to do with the query results */
5395 ){
5396   int i, j;              /* Loop counters */
5397   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5398   Vdbe *v;               /* The virtual machine under construction */
5399   int isAgg;             /* True for select lists like "count(*)" */
5400   ExprList *pEList = 0;  /* List of columns to extract. */
5401   SrcList *pTabList;     /* List of tables to select from */
5402   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5403   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5404   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5405   int rc = 1;            /* Value to return from this function */
5406   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5407   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5408   AggInfo sAggInfo;      /* Information used by aggregate queries */
5409   int iEnd;              /* Address of the end of the query */
5410   sqlite3 *db;           /* The database connection */
5411   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5412   u8 minMaxFlag;                 /* Flag for min/max queries */
5413 
5414   db = pParse->db;
5415   v = sqlite3GetVdbe(pParse);
5416   if( p==0 || db->mallocFailed || pParse->nErr ){
5417     return 1;
5418   }
5419   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5420   memset(&sAggInfo, 0, sizeof(sAggInfo));
5421 #if SELECTTRACE_ENABLED
5422   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5423   if( sqlite3SelectTrace & 0x100 ){
5424     sqlite3TreeViewSelect(0, p, 0);
5425   }
5426 #endif
5427 
5428   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5429   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5430   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5431   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5432   if( IgnorableOrderby(pDest) ){
5433     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5434            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5435            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5436            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5437     /* If ORDER BY makes no difference in the output then neither does
5438     ** DISTINCT so it can be removed too. */
5439     sqlite3ExprListDelete(db, p->pOrderBy);
5440     p->pOrderBy = 0;
5441     p->selFlags &= ~SF_Distinct;
5442   }
5443   sqlite3SelectPrep(pParse, p, 0);
5444   memset(&sSort, 0, sizeof(sSort));
5445   sSort.pOrderBy = p->pOrderBy;
5446   pTabList = p->pSrc;
5447   if( pParse->nErr || db->mallocFailed ){
5448     goto select_end;
5449   }
5450   assert( p->pEList!=0 );
5451   isAgg = (p->selFlags & SF_Aggregate)!=0;
5452 #if SELECTTRACE_ENABLED
5453   if( sqlite3SelectTrace & 0x104 ){
5454     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5455     sqlite3TreeViewSelect(0, p, 0);
5456   }
5457 #endif
5458 
5459   if( pDest->eDest==SRT_Output ){
5460     generateColumnNames(pParse, p);
5461   }
5462 
5463   /* Try to various optimizations (flattening subqueries, and strength
5464   ** reduction of join operators) in the FROM clause up into the main query
5465   */
5466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5467   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5468     struct SrcList_item *pItem = &pTabList->a[i];
5469     Select *pSub = pItem->pSelect;
5470     Table *pTab = pItem->pTab;
5471 
5472     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5473     ** of the LEFT JOIN used in the WHERE clause.
5474     */
5475     if( (pItem->fg.jointype & JT_LEFT)!=0
5476      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5477      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5478     ){
5479       SELECTTRACE(0x100,pParse,p,
5480                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5481       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5482       unsetJoinExpr(p->pWhere, pItem->iCursor);
5483     }
5484 
5485     /* No futher action if this term of the FROM clause is no a subquery */
5486     if( pSub==0 ) continue;
5487 
5488     /* Catch mismatch in the declared columns of a view and the number of
5489     ** columns in the SELECT on the RHS */
5490     if( pTab->nCol!=pSub->pEList->nExpr ){
5491       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5492                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5493       goto select_end;
5494     }
5495 
5496     /* Do not try to flatten an aggregate subquery.
5497     **
5498     ** Flattening an aggregate subquery is only possible if the outer query
5499     ** is not a join.  But if the outer query is not a join, then the subquery
5500     ** will be implemented as a co-routine and there is no advantage to
5501     ** flattening in that case.
5502     */
5503     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5504     assert( pSub->pGroupBy==0 );
5505 
5506     /* If the outer query contains a "complex" result set (that is,
5507     ** if the result set of the outer query uses functions or subqueries)
5508     ** and if the subquery contains an ORDER BY clause and if
5509     ** it will be implemented as a co-routine, then do not flatten.  This
5510     ** restriction allows SQL constructs like this:
5511     **
5512     **  SELECT expensive_function(x)
5513     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5514     **
5515     ** The expensive_function() is only computed on the 10 rows that
5516     ** are output, rather than every row of the table.
5517     **
5518     ** The requirement that the outer query have a complex result set
5519     ** means that flattening does occur on simpler SQL constraints without
5520     ** the expensive_function() like:
5521     **
5522     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5523     */
5524     if( pSub->pOrderBy!=0
5525      && i==0
5526      && (p->selFlags & SF_ComplexResult)!=0
5527      && (pTabList->nSrc==1
5528          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5529     ){
5530       continue;
5531     }
5532 
5533     if( flattenSubquery(pParse, p, i, isAgg) ){
5534       /* This subquery can be absorbed into its parent. */
5535       i = -1;
5536     }
5537     pTabList = p->pSrc;
5538     if( db->mallocFailed ) goto select_end;
5539     if( !IgnorableOrderby(pDest) ){
5540       sSort.pOrderBy = p->pOrderBy;
5541     }
5542   }
5543 #endif
5544 
5545 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5546   /* Handle compound SELECT statements using the separate multiSelect()
5547   ** procedure.
5548   */
5549   if( p->pPrior ){
5550     rc = multiSelect(pParse, p, pDest);
5551 #if SELECTTRACE_ENABLED
5552     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5553     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5554       sqlite3TreeViewSelect(0, p, 0);
5555     }
5556 #endif
5557     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5558     return rc;
5559   }
5560 #endif
5561 
5562   /* For each term in the FROM clause, do two things:
5563   ** (1) Authorized unreferenced tables
5564   ** (2) Generate code for all sub-queries
5565   */
5566   for(i=0; i<pTabList->nSrc; i++){
5567     struct SrcList_item *pItem = &pTabList->a[i];
5568     SelectDest dest;
5569     Select *pSub;
5570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5571     const char *zSavedAuthContext;
5572 #endif
5573 
5574     /* Issue SQLITE_READ authorizations with a fake column name for any
5575     ** tables that are referenced but from which no values are extracted.
5576     ** Examples of where these kinds of null SQLITE_READ authorizations
5577     ** would occur:
5578     **
5579     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5580     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5581     **
5582     ** The fake column name is an empty string.  It is possible for a table to
5583     ** have a column named by the empty string, in which case there is no way to
5584     ** distinguish between an unreferenced table and an actual reference to the
5585     ** "" column. The original design was for the fake column name to be a NULL,
5586     ** which would be unambiguous.  But legacy authorization callbacks might
5587     ** assume the column name is non-NULL and segfault.  The use of an empty
5588     ** string for the fake column name seems safer.
5589     */
5590     if( pItem->colUsed==0 ){
5591       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5592     }
5593 
5594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5595     /* Generate code for all sub-queries in the FROM clause
5596     */
5597     pSub = pItem->pSelect;
5598     if( pSub==0 ) continue;
5599 
5600     /* Sometimes the code for a subquery will be generated more than
5601     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5602     ** for example.  In that case, do not regenerate the code to manifest
5603     ** a view or the co-routine to implement a view.  The first instance
5604     ** is sufficient, though the subroutine to manifest the view does need
5605     ** to be invoked again. */
5606     if( pItem->addrFillSub ){
5607       if( pItem->fg.viaCoroutine==0 ){
5608         /* The subroutine that manifests the view might be a one-time routine,
5609         ** or it might need to be rerun on each iteration because it
5610         ** encodes a correlated subquery. */
5611         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5612         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5613       }
5614       continue;
5615     }
5616 
5617     /* Increment Parse.nHeight by the height of the largest expression
5618     ** tree referred to by this, the parent select. The child select
5619     ** may contain expression trees of at most
5620     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5621     ** more conservative than necessary, but much easier than enforcing
5622     ** an exact limit.
5623     */
5624     pParse->nHeight += sqlite3SelectExprHeight(p);
5625 
5626     /* Make copies of constant WHERE-clause terms in the outer query down
5627     ** inside the subquery.  This can help the subquery to run more efficiently.
5628     */
5629     if( OptimizationEnabled(db, SQLITE_PushDown)
5630      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5631                            (pItem->fg.jointype & JT_OUTER)!=0)
5632     ){
5633 #if SELECTTRACE_ENABLED
5634       if( sqlite3SelectTrace & 0x100 ){
5635         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5636         sqlite3TreeViewSelect(0, p, 0);
5637       }
5638 #endif
5639     }else{
5640       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5641     }
5642 
5643     zSavedAuthContext = pParse->zAuthContext;
5644     pParse->zAuthContext = pItem->zName;
5645 
5646     /* Generate code to implement the subquery
5647     **
5648     ** The subquery is implemented as a co-routine if the subquery is
5649     ** guaranteed to be the outer loop (so that it does not need to be
5650     ** computed more than once)
5651     **
5652     ** TODO: Are there other reasons beside (1) to use a co-routine
5653     ** implementation?
5654     */
5655     if( i==0
5656      && (pTabList->nSrc==1
5657             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5658     ){
5659       /* Implement a co-routine that will return a single row of the result
5660       ** set on each invocation.
5661       */
5662       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5663 
5664       pItem->regReturn = ++pParse->nMem;
5665       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5666       VdbeComment((v, "%s", pItem->pTab->zName));
5667       pItem->addrFillSub = addrTop;
5668       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5669       ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
5670       sqlite3Select(pParse, pSub, &dest);
5671       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5672       pItem->fg.viaCoroutine = 1;
5673       pItem->regResult = dest.iSdst;
5674       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5675       sqlite3VdbeJumpHere(v, addrTop-1);
5676       sqlite3ClearTempRegCache(pParse);
5677     }else{
5678       /* Generate a subroutine that will fill an ephemeral table with
5679       ** the content of this subquery.  pItem->addrFillSub will point
5680       ** to the address of the generated subroutine.  pItem->regReturn
5681       ** is a register allocated to hold the subroutine return address
5682       */
5683       int topAddr;
5684       int onceAddr = 0;
5685       int retAddr;
5686       struct SrcList_item *pPrior;
5687 
5688       assert( pItem->addrFillSub==0 );
5689       pItem->regReturn = ++pParse->nMem;
5690       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5691       pItem->addrFillSub = topAddr+1;
5692       if( pItem->fg.isCorrelated==0 ){
5693         /* If the subquery is not correlated and if we are not inside of
5694         ** a trigger, then we only need to compute the value of the subquery
5695         ** once. */
5696         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5697         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5698       }else{
5699         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5700       }
5701       pPrior = isSelfJoinView(pTabList, pItem);
5702       if( pPrior ){
5703         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5704         assert( pPrior->pSelect!=0 );
5705         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5706       }else{
5707         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5708         ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
5709         sqlite3Select(pParse, pSub, &dest);
5710       }
5711       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5712       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5713       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5714       VdbeComment((v, "end %s", pItem->pTab->zName));
5715       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5716       sqlite3ClearTempRegCache(pParse);
5717     }
5718     if( db->mallocFailed ) goto select_end;
5719     pParse->nHeight -= sqlite3SelectExprHeight(p);
5720     pParse->zAuthContext = zSavedAuthContext;
5721 #endif
5722   }
5723 
5724   /* Various elements of the SELECT copied into local variables for
5725   ** convenience */
5726   pEList = p->pEList;
5727   pWhere = p->pWhere;
5728   pGroupBy = p->pGroupBy;
5729   pHaving = p->pHaving;
5730   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5731 
5732 #if SELECTTRACE_ENABLED
5733   if( sqlite3SelectTrace & 0x400 ){
5734     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5735     sqlite3TreeViewSelect(0, p, 0);
5736   }
5737 #endif
5738 
5739 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5740   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5741    && countOfViewOptimization(pParse, p)
5742   ){
5743     if( db->mallocFailed ) goto select_end;
5744     pEList = p->pEList;
5745     pTabList = p->pSrc;
5746   }
5747 #endif
5748 
5749   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5750   ** if the select-list is the same as the ORDER BY list, then this query
5751   ** can be rewritten as a GROUP BY. In other words, this:
5752   **
5753   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5754   **
5755   ** is transformed to:
5756   **
5757   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5758   **
5759   ** The second form is preferred as a single index (or temp-table) may be
5760   ** used for both the ORDER BY and DISTINCT processing. As originally
5761   ** written the query must use a temp-table for at least one of the ORDER
5762   ** BY and DISTINCT, and an index or separate temp-table for the other.
5763   */
5764   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5765    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5766   ){
5767     p->selFlags &= ~SF_Distinct;
5768     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5769     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5770     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5771     ** original setting of the SF_Distinct flag, not the current setting */
5772     assert( sDistinct.isTnct );
5773 
5774 #if SELECTTRACE_ENABLED
5775     if( sqlite3SelectTrace & 0x400 ){
5776       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5777       sqlite3TreeViewSelect(0, p, 0);
5778     }
5779 #endif
5780   }
5781 
5782   /* If there is an ORDER BY clause, then create an ephemeral index to
5783   ** do the sorting.  But this sorting ephemeral index might end up
5784   ** being unused if the data can be extracted in pre-sorted order.
5785   ** If that is the case, then the OP_OpenEphemeral instruction will be
5786   ** changed to an OP_Noop once we figure out that the sorting index is
5787   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5788   ** that change.
5789   */
5790   if( sSort.pOrderBy ){
5791     KeyInfo *pKeyInfo;
5792     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5793     sSort.iECursor = pParse->nTab++;
5794     sSort.addrSortIndex =
5795       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5796           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5797           (char*)pKeyInfo, P4_KEYINFO
5798       );
5799   }else{
5800     sSort.addrSortIndex = -1;
5801   }
5802 
5803   /* If the output is destined for a temporary table, open that table.
5804   */
5805   if( pDest->eDest==SRT_EphemTab ){
5806     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5807   }
5808 
5809   /* Set the limiter.
5810   */
5811   iEnd = sqlite3VdbeMakeLabel(v);
5812   if( (p->selFlags & SF_FixedLimit)==0 ){
5813     p->nSelectRow = 320;  /* 4 billion rows */
5814   }
5815   computeLimitRegisters(pParse, p, iEnd);
5816   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5817     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5818     sSort.sortFlags |= SORTFLAG_UseSorter;
5819   }
5820 
5821   /* Open an ephemeral index to use for the distinct set.
5822   */
5823   if( p->selFlags & SF_Distinct ){
5824     sDistinct.tabTnct = pParse->nTab++;
5825     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5826                              sDistinct.tabTnct, 0, 0,
5827                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5828                              P4_KEYINFO);
5829     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5830     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5831   }else{
5832     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5833   }
5834 
5835   if( !isAgg && pGroupBy==0 ){
5836     /* No aggregate functions and no GROUP BY clause */
5837     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5838     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5839     wctrlFlags |= p->selFlags & SF_FixedLimit;
5840 
5841     /* Begin the database scan. */
5842     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5843     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5844                                p->pEList, wctrlFlags, p->nSelectRow);
5845     if( pWInfo==0 ) goto select_end;
5846     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5847       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5848     }
5849     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5850       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5851     }
5852     if( sSort.pOrderBy ){
5853       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5854       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5855       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5856         sSort.pOrderBy = 0;
5857       }
5858     }
5859 
5860     /* If sorting index that was created by a prior OP_OpenEphemeral
5861     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5862     ** into an OP_Noop.
5863     */
5864     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5865       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5866     }
5867 
5868     /* Use the standard inner loop. */
5869     assert( p->pEList==pEList );
5870     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5871                     sqlite3WhereContinueLabel(pWInfo),
5872                     sqlite3WhereBreakLabel(pWInfo));
5873 
5874     /* End the database scan loop.
5875     */
5876     sqlite3WhereEnd(pWInfo);
5877   }else{
5878     /* This case when there exist aggregate functions or a GROUP BY clause
5879     ** or both */
5880     NameContext sNC;    /* Name context for processing aggregate information */
5881     int iAMem;          /* First Mem address for storing current GROUP BY */
5882     int iBMem;          /* First Mem address for previous GROUP BY */
5883     int iUseFlag;       /* Mem address holding flag indicating that at least
5884                         ** one row of the input to the aggregator has been
5885                         ** processed */
5886     int iAbortFlag;     /* Mem address which causes query abort if positive */
5887     int groupBySort;    /* Rows come from source in GROUP BY order */
5888     int addrEnd;        /* End of processing for this SELECT */
5889     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5890     int sortOut = 0;    /* Output register from the sorter */
5891     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5892 
5893     /* Remove any and all aliases between the result set and the
5894     ** GROUP BY clause.
5895     */
5896     if( pGroupBy ){
5897       int k;                        /* Loop counter */
5898       struct ExprList_item *pItem;  /* For looping over expression in a list */
5899 
5900       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5901         pItem->u.x.iAlias = 0;
5902       }
5903       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5904         pItem->u.x.iAlias = 0;
5905       }
5906       assert( 66==sqlite3LogEst(100) );
5907       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5908     }else{
5909       assert( 0==sqlite3LogEst(1) );
5910       p->nSelectRow = 0;
5911     }
5912 
5913     /* If there is both a GROUP BY and an ORDER BY clause and they are
5914     ** identical, then it may be possible to disable the ORDER BY clause
5915     ** on the grounds that the GROUP BY will cause elements to come out
5916     ** in the correct order. It also may not - the GROUP BY might use a
5917     ** database index that causes rows to be grouped together as required
5918     ** but not actually sorted. Either way, record the fact that the
5919     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5920     ** variable.  */
5921     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5922       orderByGrp = 1;
5923     }
5924 
5925     /* Create a label to jump to when we want to abort the query */
5926     addrEnd = sqlite3VdbeMakeLabel(v);
5927 
5928     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5929     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5930     ** SELECT statement.
5931     */
5932     memset(&sNC, 0, sizeof(sNC));
5933     sNC.pParse = pParse;
5934     sNC.pSrcList = pTabList;
5935     sNC.uNC.pAggInfo = &sAggInfo;
5936     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
5937     sAggInfo.mnReg = pParse->nMem+1;
5938     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5939     sAggInfo.pGroupBy = pGroupBy;
5940     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5941     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5942     if( pHaving ){
5943       if( pGroupBy ){
5944         assert( pWhere==p->pWhere );
5945         assert( pHaving==p->pHaving );
5946         assert( pGroupBy==p->pGroupBy );
5947         havingToWhere(pParse, p);
5948         pWhere = p->pWhere;
5949       }
5950       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5951     }
5952     sAggInfo.nAccumulator = sAggInfo.nColumn;
5953     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5954       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5955     }else{
5956       minMaxFlag = WHERE_ORDERBY_NORMAL;
5957     }
5958     for(i=0; i<sAggInfo.nFunc; i++){
5959       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5960       sNC.ncFlags |= NC_InAggFunc;
5961       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5962       sNC.ncFlags &= ~NC_InAggFunc;
5963     }
5964     sAggInfo.mxReg = pParse->nMem;
5965     if( db->mallocFailed ) goto select_end;
5966 #if SELECTTRACE_ENABLED
5967     if( sqlite3SelectTrace & 0x400 ){
5968       int ii;
5969       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5970       sqlite3TreeViewSelect(0, p, 0);
5971       for(ii=0; ii<sAggInfo.nColumn; ii++){
5972         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5973             ii, sAggInfo.aCol[ii].iMem);
5974         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5975       }
5976       for(ii=0; ii<sAggInfo.nFunc; ii++){
5977         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5978             ii, sAggInfo.aFunc[ii].iMem);
5979         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5980       }
5981     }
5982 #endif
5983 
5984 
5985     /* Processing for aggregates with GROUP BY is very different and
5986     ** much more complex than aggregates without a GROUP BY.
5987     */
5988     if( pGroupBy ){
5989       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5990       int addr1;          /* A-vs-B comparision jump */
5991       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5992       int regOutputRow;   /* Return address register for output subroutine */
5993       int addrSetAbort;   /* Set the abort flag and return */
5994       int addrTopOfLoop;  /* Top of the input loop */
5995       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5996       int addrReset;      /* Subroutine for resetting the accumulator */
5997       int regReset;       /* Return address register for reset subroutine */
5998 
5999       /* If there is a GROUP BY clause we might need a sorting index to
6000       ** implement it.  Allocate that sorting index now.  If it turns out
6001       ** that we do not need it after all, the OP_SorterOpen instruction
6002       ** will be converted into a Noop.
6003       */
6004       sAggInfo.sortingIdx = pParse->nTab++;
6005       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
6006       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6007           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6008           0, (char*)pKeyInfo, P4_KEYINFO);
6009 
6010       /* Initialize memory locations used by GROUP BY aggregate processing
6011       */
6012       iUseFlag = ++pParse->nMem;
6013       iAbortFlag = ++pParse->nMem;
6014       regOutputRow = ++pParse->nMem;
6015       addrOutputRow = sqlite3VdbeMakeLabel(v);
6016       regReset = ++pParse->nMem;
6017       addrReset = sqlite3VdbeMakeLabel(v);
6018       iAMem = pParse->nMem + 1;
6019       pParse->nMem += pGroupBy->nExpr;
6020       iBMem = pParse->nMem + 1;
6021       pParse->nMem += pGroupBy->nExpr;
6022       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6023       VdbeComment((v, "clear abort flag"));
6024       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6025       VdbeComment((v, "indicate accumulator empty"));
6026       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6027 
6028       /* Begin a loop that will extract all source rows in GROUP BY order.
6029       ** This might involve two separate loops with an OP_Sort in between, or
6030       ** it might be a single loop that uses an index to extract information
6031       ** in the right order to begin with.
6032       */
6033       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6034       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6035       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6036           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6037       );
6038       if( pWInfo==0 ) goto select_end;
6039       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6040         /* The optimizer is able to deliver rows in group by order so
6041         ** we do not have to sort.  The OP_OpenEphemeral table will be
6042         ** cancelled later because we still need to use the pKeyInfo
6043         */
6044         groupBySort = 0;
6045       }else{
6046         /* Rows are coming out in undetermined order.  We have to push
6047         ** each row into a sorting index, terminate the first loop,
6048         ** then loop over the sorting index in order to get the output
6049         ** in sorted order
6050         */
6051         int regBase;
6052         int regRecord;
6053         int nCol;
6054         int nGroupBy;
6055 
6056         explainTempTable(pParse,
6057             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6058                     "DISTINCT" : "GROUP BY");
6059 
6060         groupBySort = 1;
6061         nGroupBy = pGroupBy->nExpr;
6062         nCol = nGroupBy;
6063         j = nGroupBy;
6064         for(i=0; i<sAggInfo.nColumn; i++){
6065           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6066             nCol++;
6067             j++;
6068           }
6069         }
6070         regBase = sqlite3GetTempRange(pParse, nCol);
6071         sqlite3ExprCacheClear(pParse);
6072         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6073         j = nGroupBy;
6074         for(i=0; i<sAggInfo.nColumn; i++){
6075           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6076           if( pCol->iSorterColumn>=j ){
6077             int r1 = j + regBase;
6078             sqlite3ExprCodeGetColumnToReg(pParse,
6079                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6080             j++;
6081           }
6082         }
6083         regRecord = sqlite3GetTempReg(pParse);
6084         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6085         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6086         sqlite3ReleaseTempReg(pParse, regRecord);
6087         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6088         sqlite3WhereEnd(pWInfo);
6089         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6090         sortOut = sqlite3GetTempReg(pParse);
6091         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6092         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6093         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6094         sAggInfo.useSortingIdx = 1;
6095         sqlite3ExprCacheClear(pParse);
6096 
6097       }
6098 
6099       /* If the index or temporary table used by the GROUP BY sort
6100       ** will naturally deliver rows in the order required by the ORDER BY
6101       ** clause, cancel the ephemeral table open coded earlier.
6102       **
6103       ** This is an optimization - the correct answer should result regardless.
6104       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6105       ** disable this optimization for testing purposes.  */
6106       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6107        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6108       ){
6109         sSort.pOrderBy = 0;
6110         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6111       }
6112 
6113       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6114       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6115       ** Then compare the current GROUP BY terms against the GROUP BY terms
6116       ** from the previous row currently stored in a0, a1, a2...
6117       */
6118       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6119       sqlite3ExprCacheClear(pParse);
6120       if( groupBySort ){
6121         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6122                           sortOut, sortPTab);
6123       }
6124       for(j=0; j<pGroupBy->nExpr; j++){
6125         if( groupBySort ){
6126           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6127         }else{
6128           sAggInfo.directMode = 1;
6129           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6130         }
6131       }
6132       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6133                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6134       addr1 = sqlite3VdbeCurrentAddr(v);
6135       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6136 
6137       /* Generate code that runs whenever the GROUP BY changes.
6138       ** Changes in the GROUP BY are detected by the previous code
6139       ** block.  If there were no changes, this block is skipped.
6140       **
6141       ** This code copies current group by terms in b0,b1,b2,...
6142       ** over to a0,a1,a2.  It then calls the output subroutine
6143       ** and resets the aggregate accumulator registers in preparation
6144       ** for the next GROUP BY batch.
6145       */
6146       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6147       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6148       VdbeComment((v, "output one row"));
6149       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6150       VdbeComment((v, "check abort flag"));
6151       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6152       VdbeComment((v, "reset accumulator"));
6153 
6154       /* Update the aggregate accumulators based on the content of
6155       ** the current row
6156       */
6157       sqlite3VdbeJumpHere(v, addr1);
6158       updateAccumulator(pParse, &sAggInfo);
6159       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6160       VdbeComment((v, "indicate data in accumulator"));
6161 
6162       /* End of the loop
6163       */
6164       if( groupBySort ){
6165         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6166         VdbeCoverage(v);
6167       }else{
6168         sqlite3WhereEnd(pWInfo);
6169         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6170       }
6171 
6172       /* Output the final row of result
6173       */
6174       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6175       VdbeComment((v, "output final row"));
6176 
6177       /* Jump over the subroutines
6178       */
6179       sqlite3VdbeGoto(v, addrEnd);
6180 
6181       /* Generate a subroutine that outputs a single row of the result
6182       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6183       ** is less than or equal to zero, the subroutine is a no-op.  If
6184       ** the processing calls for the query to abort, this subroutine
6185       ** increments the iAbortFlag memory location before returning in
6186       ** order to signal the caller to abort.
6187       */
6188       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6189       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6190       VdbeComment((v, "set abort flag"));
6191       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6192       sqlite3VdbeResolveLabel(v, addrOutputRow);
6193       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6194       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6195       VdbeCoverage(v);
6196       VdbeComment((v, "Groupby result generator entry point"));
6197       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6198       finalizeAggFunctions(pParse, &sAggInfo);
6199       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6200       selectInnerLoop(pParse, p, -1, &sSort,
6201                       &sDistinct, pDest,
6202                       addrOutputRow+1, addrSetAbort);
6203       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6204       VdbeComment((v, "end groupby result generator"));
6205 
6206       /* Generate a subroutine that will reset the group-by accumulator
6207       */
6208       sqlite3VdbeResolveLabel(v, addrReset);
6209       resetAccumulator(pParse, &sAggInfo);
6210       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6211 
6212     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6213     else {
6214 #ifndef SQLITE_OMIT_BTREECOUNT
6215       Table *pTab;
6216       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6217         /* If isSimpleCount() returns a pointer to a Table structure, then
6218         ** the SQL statement is of the form:
6219         **
6220         **   SELECT count(*) FROM <tbl>
6221         **
6222         ** where the Table structure returned represents table <tbl>.
6223         **
6224         ** This statement is so common that it is optimized specially. The
6225         ** OP_Count instruction is executed either on the intkey table that
6226         ** contains the data for table <tbl> or on one of its indexes. It
6227         ** is better to execute the op on an index, as indexes are almost
6228         ** always spread across less pages than their corresponding tables.
6229         */
6230         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6231         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6232         Index *pIdx;                         /* Iterator variable */
6233         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6234         Index *pBest = 0;                    /* Best index found so far */
6235         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6236 
6237         sqlite3CodeVerifySchema(pParse, iDb);
6238         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6239 
6240         /* Search for the index that has the lowest scan cost.
6241         **
6242         ** (2011-04-15) Do not do a full scan of an unordered index.
6243         **
6244         ** (2013-10-03) Do not count the entries in a partial index.
6245         **
6246         ** In practice the KeyInfo structure will not be used. It is only
6247         ** passed to keep OP_OpenRead happy.
6248         */
6249         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6250         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6251           if( pIdx->bUnordered==0
6252            && pIdx->szIdxRow<pTab->szTabRow
6253            && pIdx->pPartIdxWhere==0
6254            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6255           ){
6256             pBest = pIdx;
6257           }
6258         }
6259         if( pBest ){
6260           iRoot = pBest->tnum;
6261           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6262         }
6263 
6264         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6265         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6266         if( pKeyInfo ){
6267           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6268         }
6269         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6270         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6271         explainSimpleCount(pParse, pTab, pBest);
6272       }else
6273 #endif /* SQLITE_OMIT_BTREECOUNT */
6274       {
6275         /* This case runs if the aggregate has no GROUP BY clause.  The
6276         ** processing is much simpler since there is only a single row
6277         ** of output.
6278         */
6279         assert( p->pGroupBy==0 );
6280         resetAccumulator(pParse, &sAggInfo);
6281 
6282         /* If this query is a candidate for the min/max optimization, then
6283         ** minMaxFlag will have been previously set to either
6284         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6285         ** be an appropriate ORDER BY expression for the optimization.
6286         */
6287         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6288         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6289 
6290         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6291         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6292                                    0, minMaxFlag, 0);
6293         if( pWInfo==0 ){
6294           goto select_end;
6295         }
6296         updateAccumulator(pParse, &sAggInfo);
6297         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6298           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6299           VdbeComment((v, "%s() by index",
6300                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6301         }
6302         sqlite3WhereEnd(pWInfo);
6303         finalizeAggFunctions(pParse, &sAggInfo);
6304       }
6305 
6306       sSort.pOrderBy = 0;
6307       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6308       selectInnerLoop(pParse, p, -1, 0, 0,
6309                       pDest, addrEnd, addrEnd);
6310     }
6311     sqlite3VdbeResolveLabel(v, addrEnd);
6312 
6313   } /* endif aggregate query */
6314 
6315   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6316     explainTempTable(pParse, "DISTINCT");
6317   }
6318 
6319   /* If there is an ORDER BY clause, then we need to sort the results
6320   ** and send them to the callback one by one.
6321   */
6322   if( sSort.pOrderBy ){
6323     explainTempTable(pParse,
6324                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6325     assert( p->pEList==pEList );
6326     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6327   }
6328 
6329   /* Jump here to skip this query
6330   */
6331   sqlite3VdbeResolveLabel(v, iEnd);
6332 
6333   /* The SELECT has been coded. If there is an error in the Parse structure,
6334   ** set the return code to 1. Otherwise 0. */
6335   rc = (pParse->nErr>0);
6336 
6337   /* Control jumps to here if an error is encountered above, or upon
6338   ** successful coding of the SELECT.
6339   */
6340 select_end:
6341   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6342   sqlite3DbFree(db, sAggInfo.aCol);
6343   sqlite3DbFree(db, sAggInfo.aFunc);
6344 #if SELECTTRACE_ENABLED
6345   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6346   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6347     sqlite3TreeViewSelect(0, p, 0);
6348   }
6349 #endif
6350   ExplainQueryPlanPop(pParse);
6351   return rc;
6352 }
6353