1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 100 if( bFree ) sqlite3DbFreeNN(db, p); 101 p = pPrior; 102 bFree = 1; 103 } 104 } 105 106 /* 107 ** Initialize a SelectDest structure. 108 */ 109 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 110 pDest->eDest = (u8)eDest; 111 pDest->iSDParm = iParm; 112 pDest->zAffSdst = 0; 113 pDest->iSdst = 0; 114 pDest->nSdst = 0; 115 } 116 117 118 /* 119 ** Allocate a new Select structure and return a pointer to that 120 ** structure. 121 */ 122 Select *sqlite3SelectNew( 123 Parse *pParse, /* Parsing context */ 124 ExprList *pEList, /* which columns to include in the result */ 125 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 126 Expr *pWhere, /* the WHERE clause */ 127 ExprList *pGroupBy, /* the GROUP BY clause */ 128 Expr *pHaving, /* the HAVING clause */ 129 ExprList *pOrderBy, /* the ORDER BY clause */ 130 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 131 Expr *pLimit /* LIMIT value. NULL means not used */ 132 ){ 133 Select *pNew; 134 Select standin; 135 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 136 if( pNew==0 ){ 137 assert( pParse->db->mallocFailed ); 138 pNew = &standin; 139 } 140 if( pEList==0 ){ 141 pEList = sqlite3ExprListAppend(pParse, 0, 142 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 143 } 144 pNew->pEList = pEList; 145 pNew->op = TK_SELECT; 146 pNew->selFlags = selFlags; 147 pNew->iLimit = 0; 148 pNew->iOffset = 0; 149 #if SELECTTRACE_ENABLED 150 pNew->zSelName[0] = 0; 151 #endif 152 pNew->addrOpenEphm[0] = -1; 153 pNew->addrOpenEphm[1] = -1; 154 pNew->nSelectRow = 0; 155 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 156 pNew->pSrc = pSrc; 157 pNew->pWhere = pWhere; 158 pNew->pGroupBy = pGroupBy; 159 pNew->pHaving = pHaving; 160 pNew->pOrderBy = pOrderBy; 161 pNew->pPrior = 0; 162 pNew->pNext = 0; 163 pNew->pLimit = pLimit; 164 pNew->pWith = 0; 165 if( pParse->db->mallocFailed ) { 166 clearSelect(pParse->db, pNew, pNew!=&standin); 167 pNew = 0; 168 }else{ 169 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 170 } 171 assert( pNew!=&standin ); 172 return pNew; 173 } 174 175 #if SELECTTRACE_ENABLED 176 /* 177 ** Set the name of a Select object 178 */ 179 void sqlite3SelectSetName(Select *p, const char *zName){ 180 if( p && zName ){ 181 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 182 } 183 } 184 #endif 185 186 187 /* 188 ** Delete the given Select structure and all of its substructures. 189 */ 190 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 192 } 193 194 /* 195 ** Return a pointer to the right-most SELECT statement in a compound. 196 */ 197 static Select *findRightmost(Select *p){ 198 while( p->pNext ) p = p->pNext; 199 return p; 200 } 201 202 /* 203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 204 ** type of join. Return an integer constant that expresses that type 205 ** in terms of the following bit values: 206 ** 207 ** JT_INNER 208 ** JT_CROSS 209 ** JT_OUTER 210 ** JT_NATURAL 211 ** JT_LEFT 212 ** JT_RIGHT 213 ** 214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 215 ** 216 ** If an illegal or unsupported join type is seen, then still return 217 ** a join type, but put an error in the pParse structure. 218 */ 219 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 220 int jointype = 0; 221 Token *apAll[3]; 222 Token *p; 223 /* 0123456789 123456789 123456789 123 */ 224 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 225 static const struct { 226 u8 i; /* Beginning of keyword text in zKeyText[] */ 227 u8 nChar; /* Length of the keyword in characters */ 228 u8 code; /* Join type mask */ 229 } aKeyword[] = { 230 /* natural */ { 0, 7, JT_NATURAL }, 231 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 232 /* outer */ { 10, 5, JT_OUTER }, 233 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 234 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 235 /* inner */ { 23, 5, JT_INNER }, 236 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 237 }; 238 int i, j; 239 apAll[0] = pA; 240 apAll[1] = pB; 241 apAll[2] = pC; 242 for(i=0; i<3 && apAll[i]; i++){ 243 p = apAll[i]; 244 for(j=0; j<ArraySize(aKeyword); j++){ 245 if( p->n==aKeyword[j].nChar 246 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 247 jointype |= aKeyword[j].code; 248 break; 249 } 250 } 251 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 252 if( j>=ArraySize(aKeyword) ){ 253 jointype |= JT_ERROR; 254 break; 255 } 256 } 257 if( 258 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 259 (jointype & JT_ERROR)!=0 260 ){ 261 const char *zSp = " "; 262 assert( pB!=0 ); 263 if( pC==0 ){ zSp++; } 264 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 265 "%T %T%s%T", pA, pB, zSp, pC); 266 jointype = JT_INNER; 267 }else if( (jointype & JT_OUTER)!=0 268 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 269 sqlite3ErrorMsg(pParse, 270 "RIGHT and FULL OUTER JOINs are not currently supported"); 271 jointype = JT_INNER; 272 } 273 return jointype; 274 } 275 276 /* 277 ** Return the index of a column in a table. Return -1 if the column 278 ** is not contained in the table. 279 */ 280 static int columnIndex(Table *pTab, const char *zCol){ 281 int i; 282 for(i=0; i<pTab->nCol; i++){ 283 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 284 } 285 return -1; 286 } 287 288 /* 289 ** Search the first N tables in pSrc, from left to right, looking for a 290 ** table that has a column named zCol. 291 ** 292 ** When found, set *piTab and *piCol to the table index and column index 293 ** of the matching column and return TRUE. 294 ** 295 ** If not found, return FALSE. 296 */ 297 static int tableAndColumnIndex( 298 SrcList *pSrc, /* Array of tables to search */ 299 int N, /* Number of tables in pSrc->a[] to search */ 300 const char *zCol, /* Name of the column we are looking for */ 301 int *piTab, /* Write index of pSrc->a[] here */ 302 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 303 ){ 304 int i; /* For looping over tables in pSrc */ 305 int iCol; /* Index of column matching zCol */ 306 307 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 308 for(i=0; i<N; i++){ 309 iCol = columnIndex(pSrc->a[i].pTab, zCol); 310 if( iCol>=0 ){ 311 if( piTab ){ 312 *piTab = i; 313 *piCol = iCol; 314 } 315 return 1; 316 } 317 } 318 return 0; 319 } 320 321 /* 322 ** This function is used to add terms implied by JOIN syntax to the 323 ** WHERE clause expression of a SELECT statement. The new term, which 324 ** is ANDed with the existing WHERE clause, is of the form: 325 ** 326 ** (tab1.col1 = tab2.col2) 327 ** 328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 330 ** column iColRight of tab2. 331 */ 332 static void addWhereTerm( 333 Parse *pParse, /* Parsing context */ 334 SrcList *pSrc, /* List of tables in FROM clause */ 335 int iLeft, /* Index of first table to join in pSrc */ 336 int iColLeft, /* Index of column in first table */ 337 int iRight, /* Index of second table in pSrc */ 338 int iColRight, /* Index of column in second table */ 339 int isOuterJoin, /* True if this is an OUTER join */ 340 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 341 ){ 342 sqlite3 *db = pParse->db; 343 Expr *pE1; 344 Expr *pE2; 345 Expr *pEq; 346 347 assert( iLeft<iRight ); 348 assert( pSrc->nSrc>iRight ); 349 assert( pSrc->a[iLeft].pTab ); 350 assert( pSrc->a[iRight].pTab ); 351 352 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 353 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 354 355 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 356 if( pEq && isOuterJoin ){ 357 ExprSetProperty(pEq, EP_FromJoin); 358 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 359 ExprSetVVAProperty(pEq, EP_NoReduce); 360 pEq->iRightJoinTable = (i16)pE2->iTable; 361 } 362 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 363 } 364 365 /* 366 ** Set the EP_FromJoin property on all terms of the given expression. 367 ** And set the Expr.iRightJoinTable to iTable for every term in the 368 ** expression. 369 ** 370 ** The EP_FromJoin property is used on terms of an expression to tell 371 ** the LEFT OUTER JOIN processing logic that this term is part of the 372 ** join restriction specified in the ON or USING clause and not a part 373 ** of the more general WHERE clause. These terms are moved over to the 374 ** WHERE clause during join processing but we need to remember that they 375 ** originated in the ON or USING clause. 376 ** 377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 378 ** expression depends on table iRightJoinTable even if that table is not 379 ** explicitly mentioned in the expression. That information is needed 380 ** for cases like this: 381 ** 382 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 383 ** 384 ** The where clause needs to defer the handling of the t1.x=5 385 ** term until after the t2 loop of the join. In that way, a 386 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 387 ** defer the handling of t1.x=5, it will be processed immediately 388 ** after the t1 loop and rows with t1.x!=5 will never appear in 389 ** the output, which is incorrect. 390 */ 391 static void setJoinExpr(Expr *p, int iTable){ 392 while( p ){ 393 ExprSetProperty(p, EP_FromJoin); 394 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 395 ExprSetVVAProperty(p, EP_NoReduce); 396 p->iRightJoinTable = (i16)iTable; 397 if( p->op==TK_FUNCTION && p->x.pList ){ 398 int i; 399 for(i=0; i<p->x.pList->nExpr; i++){ 400 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 401 } 402 } 403 setJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_FUNCTION && p->x.pList ){ 421 int i; 422 for(i=0; i<p->x.pList->nExpr; i++){ 423 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 424 } 425 } 426 unsetJoinExpr(p->pLeft, iTable); 427 p = p->pRight; 428 } 429 } 430 431 /* 432 ** This routine processes the join information for a SELECT statement. 433 ** ON and USING clauses are converted into extra terms of the WHERE clause. 434 ** NATURAL joins also create extra WHERE clause terms. 435 ** 436 ** The terms of a FROM clause are contained in the Select.pSrc structure. 437 ** The left most table is the first entry in Select.pSrc. The right-most 438 ** table is the last entry. The join operator is held in the entry to 439 ** the left. Thus entry 0 contains the join operator for the join between 440 ** entries 0 and 1. Any ON or USING clauses associated with the join are 441 ** also attached to the left entry. 442 ** 443 ** This routine returns the number of errors encountered. 444 */ 445 static int sqliteProcessJoin(Parse *pParse, Select *p){ 446 SrcList *pSrc; /* All tables in the FROM clause */ 447 int i, j; /* Loop counters */ 448 struct SrcList_item *pLeft; /* Left table being joined */ 449 struct SrcList_item *pRight; /* Right table being joined */ 450 451 pSrc = p->pSrc; 452 pLeft = &pSrc->a[0]; 453 pRight = &pLeft[1]; 454 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 455 Table *pRightTab = pRight->pTab; 456 int isOuter; 457 458 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 459 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 460 461 /* When the NATURAL keyword is present, add WHERE clause terms for 462 ** every column that the two tables have in common. 463 */ 464 if( pRight->fg.jointype & JT_NATURAL ){ 465 if( pRight->pOn || pRight->pUsing ){ 466 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 467 "an ON or USING clause", 0); 468 return 1; 469 } 470 for(j=0; j<pRightTab->nCol; j++){ 471 char *zName; /* Name of column in the right table */ 472 int iLeft; /* Matching left table */ 473 int iLeftCol; /* Matching column in the left table */ 474 475 zName = pRightTab->aCol[j].zName; 476 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 477 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 478 isOuter, &p->pWhere); 479 } 480 } 481 } 482 483 /* Disallow both ON and USING clauses in the same join 484 */ 485 if( pRight->pOn && pRight->pUsing ){ 486 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 487 "clauses in the same join"); 488 return 1; 489 } 490 491 /* Add the ON clause to the end of the WHERE clause, connected by 492 ** an AND operator. 493 */ 494 if( pRight->pOn ){ 495 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 496 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 497 pRight->pOn = 0; 498 } 499 500 /* Create extra terms on the WHERE clause for each column named 501 ** in the USING clause. Example: If the two tables to be joined are 502 ** A and B and the USING clause names X, Y, and Z, then add this 503 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 504 ** Report an error if any column mentioned in the USING clause is 505 ** not contained in both tables to be joined. 506 */ 507 if( pRight->pUsing ){ 508 IdList *pList = pRight->pUsing; 509 for(j=0; j<pList->nId; j++){ 510 char *zName; /* Name of the term in the USING clause */ 511 int iLeft; /* Table on the left with matching column name */ 512 int iLeftCol; /* Column number of matching column on the left */ 513 int iRightCol; /* Column number of matching column on the right */ 514 515 zName = pList->a[j].zName; 516 iRightCol = columnIndex(pRightTab, zName); 517 if( iRightCol<0 518 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 519 ){ 520 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 521 "not present in both tables", zName); 522 return 1; 523 } 524 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 525 isOuter, &p->pWhere); 526 } 527 } 528 } 529 return 0; 530 } 531 532 /* Forward reference */ 533 static KeyInfo *keyInfoFromExprList( 534 Parse *pParse, /* Parsing context */ 535 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 536 int iStart, /* Begin with this column of pList */ 537 int nExtra /* Add this many extra columns to the end */ 538 ); 539 540 /* 541 ** An instance of this object holds information (beyond pParse and pSelect) 542 ** needed to load the next result row that is to be added to the sorter. 543 */ 544 typedef struct RowLoadInfo RowLoadInfo; 545 struct RowLoadInfo { 546 int regResult; /* Store results in array of registers here */ 547 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 549 ExprList *pExtra; /* Extra columns needed by sorter refs */ 550 int regExtraResult; /* Where to load the extra columns */ 551 #endif 552 }; 553 554 /* 555 ** This routine does the work of loading query data into an array of 556 ** registers so that it can be added to the sorter. 557 */ 558 static void innerLoopLoadRow( 559 Parse *pParse, /* Statement under construction */ 560 Select *pSelect, /* The query being coded */ 561 RowLoadInfo *pInfo /* Info needed to complete the row load */ 562 ){ 563 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 564 0, pInfo->ecelFlags); 565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 566 if( pInfo->pExtra ){ 567 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 568 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 569 } 570 #endif 571 } 572 573 /* 574 ** Code the OP_MakeRecord instruction that generates the entry to be 575 ** added into the sorter. 576 ** 577 ** Return the register in which the result is stored. 578 */ 579 static int makeSorterRecord( 580 Parse *pParse, 581 SortCtx *pSort, 582 Select *pSelect, 583 int regBase, 584 int nBase 585 ){ 586 int nOBSat = pSort->nOBSat; 587 Vdbe *v = pParse->pVdbe; 588 int regOut = ++pParse->nMem; 589 if( pSort->pDeferredRowLoad ){ 590 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 591 } 592 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 593 return regOut; 594 } 595 596 /* 597 ** Generate code that will push the record in registers regData 598 ** through regData+nData-1 onto the sorter. 599 */ 600 static void pushOntoSorter( 601 Parse *pParse, /* Parser context */ 602 SortCtx *pSort, /* Information about the ORDER BY clause */ 603 Select *pSelect, /* The whole SELECT statement */ 604 int regData, /* First register holding data to be sorted */ 605 int regOrigData, /* First register holding data before packing */ 606 int nData, /* Number of elements in the regData data array */ 607 int nPrefixReg /* No. of reg prior to regData available for use */ 608 ){ 609 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 610 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 611 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 612 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 613 int regBase; /* Regs for sorter record */ 614 int regRecord = 0; /* Assembled sorter record */ 615 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 616 int op; /* Opcode to add sorter record to sorter */ 617 int iLimit; /* LIMIT counter */ 618 int iSkip = 0; /* End of the sorter insert loop */ 619 620 assert( bSeq==0 || bSeq==1 ); 621 622 /* Three cases: 623 ** (1) The data to be sorted has already been packed into a Record 624 ** by a prior OP_MakeRecord. In this case nData==1 and regData 625 ** will be completely unrelated to regOrigData. 626 ** (2) All output columns are included in the sort record. In that 627 ** case regData==regOrigData. 628 ** (3) Some output columns are omitted from the sort record due to 629 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 630 ** SQLITE_ECEL_OMITREF optimization, or due to the 631 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 632 ** regOrigData is 0 to prevent this routine from trying to copy 633 ** values that might not yet exist. 634 */ 635 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 636 637 if( nPrefixReg ){ 638 assert( nPrefixReg==nExpr+bSeq ); 639 regBase = regData - nPrefixReg; 640 }else{ 641 regBase = pParse->nMem + 1; 642 pParse->nMem += nBase; 643 } 644 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 645 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 646 pSort->labelDone = sqlite3VdbeMakeLabel(v); 647 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 648 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 649 if( bSeq ){ 650 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 651 } 652 if( nPrefixReg==0 && nData>0 ){ 653 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 654 } 655 if( nOBSat>0 ){ 656 int regPrevKey; /* The first nOBSat columns of the previous row */ 657 int addrFirst; /* Address of the OP_IfNot opcode */ 658 int addrJmp; /* Address of the OP_Jump opcode */ 659 VdbeOp *pOp; /* Opcode that opens the sorter */ 660 int nKey; /* Number of sorting key columns, including OP_Sequence */ 661 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 662 663 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 664 regPrevKey = pParse->nMem+1; 665 pParse->nMem += pSort->nOBSat; 666 nKey = nExpr - pSort->nOBSat + bSeq; 667 if( bSeq ){ 668 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 669 }else{ 670 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 671 } 672 VdbeCoverage(v); 673 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 674 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 675 if( pParse->db->mallocFailed ) return; 676 pOp->p2 = nKey + nData; 677 pKI = pOp->p4.pKeyInfo; 678 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 679 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 680 testcase( pKI->nAllField > pKI->nKeyField+2 ); 681 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 682 pKI->nAllField-pKI->nKeyField-1); 683 addrJmp = sqlite3VdbeCurrentAddr(v); 684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 685 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 686 pSort->regReturn = ++pParse->nMem; 687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 689 if( iLimit ){ 690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 691 VdbeCoverage(v); 692 } 693 sqlite3VdbeJumpHere(v, addrFirst); 694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 695 sqlite3VdbeJumpHere(v, addrJmp); 696 } 697 if( iLimit ){ 698 /* At this point the values for the new sorter entry are stored 699 ** in an array of registers. They need to be composed into a record 700 ** and inserted into the sorter if either (a) there are currently 701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 702 ** the largest record currently in the sorter. If (b) is true and there 703 ** are already LIMIT+OFFSET items in the sorter, delete the largest 704 ** entry before inserting the new one. This way there are never more 705 ** than LIMIT+OFFSET items in the sorter. 706 ** 707 ** If the new record does not need to be inserted into the sorter, 708 ** jump to the next iteration of the loop. Or, if the 709 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner 710 ** loop delivers items in sorted order, jump to the next iteration 711 ** of the outer loop. 712 */ 713 int iCsr = pSort->iECursor; 714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 715 VdbeCoverage(v); 716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 719 VdbeCoverage(v); 720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 721 } 722 if( regRecord==0 ){ 723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 724 } 725 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 726 op = OP_SorterInsert; 727 }else{ 728 op = OP_IdxInsert; 729 } 730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 731 regBase+nOBSat, nBase-nOBSat); 732 if( iSkip ){ 733 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); 734 sqlite3VdbeChangeP2(v, iSkip, 735 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); 736 } 737 } 738 739 /* 740 ** Add code to implement the OFFSET 741 */ 742 static void codeOffset( 743 Vdbe *v, /* Generate code into this VM */ 744 int iOffset, /* Register holding the offset counter */ 745 int iContinue /* Jump here to skip the current record */ 746 ){ 747 if( iOffset>0 ){ 748 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 749 VdbeComment((v, "OFFSET")); 750 } 751 } 752 753 /* 754 ** Add code that will check to make sure the N registers starting at iMem 755 ** form a distinct entry. iTab is a sorting index that holds previously 756 ** seen combinations of the N values. A new entry is made in iTab 757 ** if the current N values are new. 758 ** 759 ** A jump to addrRepeat is made and the N+1 values are popped from the 760 ** stack if the top N elements are not distinct. 761 */ 762 static void codeDistinct( 763 Parse *pParse, /* Parsing and code generating context */ 764 int iTab, /* A sorting index used to test for distinctness */ 765 int addrRepeat, /* Jump to here if not distinct */ 766 int N, /* Number of elements */ 767 int iMem /* First element */ 768 ){ 769 Vdbe *v; 770 int r1; 771 772 v = pParse->pVdbe; 773 r1 = sqlite3GetTempReg(pParse); 774 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 775 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 776 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 777 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 778 sqlite3ReleaseTempReg(pParse, r1); 779 } 780 781 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 782 /* 783 ** This function is called as part of inner-loop generation for a SELECT 784 ** statement with an ORDER BY that is not optimized by an index. It 785 ** determines the expressions, if any, that the sorter-reference 786 ** optimization should be used for. The sorter-reference optimization 787 ** is used for SELECT queries like: 788 ** 789 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 790 ** 791 ** If the optimization is used for expression "bigblob", then instead of 792 ** storing values read from that column in the sorter records, the PK of 793 ** the row from table t1 is stored instead. Then, as records are extracted from 794 ** the sorter to return to the user, the required value of bigblob is 795 ** retrieved directly from table t1. If the values are very large, this 796 ** can be more efficient than storing them directly in the sorter records. 797 ** 798 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 799 ** for which the sorter-reference optimization should be enabled. 800 ** Additionally, the pSort->aDefer[] array is populated with entries 801 ** for all cursors required to evaluate all selected expressions. Finally. 802 ** output variable (*ppExtra) is set to an expression list containing 803 ** expressions for all extra PK values that should be stored in the 804 ** sorter records. 805 */ 806 static void selectExprDefer( 807 Parse *pParse, /* Leave any error here */ 808 SortCtx *pSort, /* Sorter context */ 809 ExprList *pEList, /* Expressions destined for sorter */ 810 ExprList **ppExtra /* Expressions to append to sorter record */ 811 ){ 812 int i; 813 int nDefer = 0; 814 ExprList *pExtra = 0; 815 for(i=0; i<pEList->nExpr; i++){ 816 struct ExprList_item *pItem = &pEList->a[i]; 817 if( pItem->u.x.iOrderByCol==0 ){ 818 Expr *pExpr = pItem->pExpr; 819 Table *pTab = pExpr->pTab; 820 if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab) 821 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 822 ){ 823 int j; 824 for(j=0; j<nDefer; j++){ 825 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 826 } 827 if( j==nDefer ){ 828 if( nDefer==ArraySize(pSort->aDefer) ){ 829 continue; 830 }else{ 831 int nKey = 1; 832 int k; 833 Index *pPk = 0; 834 if( !HasRowid(pTab) ){ 835 pPk = sqlite3PrimaryKeyIndex(pTab); 836 nKey = pPk->nKeyCol; 837 } 838 for(k=0; k<nKey; k++){ 839 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 840 if( pNew ){ 841 pNew->iTable = pExpr->iTable; 842 pNew->pTab = pExpr->pTab; 843 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 844 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 845 } 846 } 847 pSort->aDefer[nDefer].pTab = pExpr->pTab; 848 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 849 pSort->aDefer[nDefer].nKey = nKey; 850 nDefer++; 851 } 852 } 853 pItem->bSorterRef = 1; 854 } 855 } 856 } 857 pSort->nDefer = (u8)nDefer; 858 *ppExtra = pExtra; 859 } 860 #endif 861 862 /* 863 ** This routine generates the code for the inside of the inner loop 864 ** of a SELECT. 865 ** 866 ** If srcTab is negative, then the p->pEList expressions 867 ** are evaluated in order to get the data for this row. If srcTab is 868 ** zero or more, then data is pulled from srcTab and p->pEList is used only 869 ** to get the number of columns and the collation sequence for each column. 870 */ 871 static void selectInnerLoop( 872 Parse *pParse, /* The parser context */ 873 Select *p, /* The complete select statement being coded */ 874 int srcTab, /* Pull data from this table if non-negative */ 875 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 876 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 877 SelectDest *pDest, /* How to dispose of the results */ 878 int iContinue, /* Jump here to continue with next row */ 879 int iBreak /* Jump here to break out of the inner loop */ 880 ){ 881 Vdbe *v = pParse->pVdbe; 882 int i; 883 int hasDistinct; /* True if the DISTINCT keyword is present */ 884 int eDest = pDest->eDest; /* How to dispose of results */ 885 int iParm = pDest->iSDParm; /* First argument to disposal method */ 886 int nResultCol; /* Number of result columns */ 887 int nPrefixReg = 0; /* Number of extra registers before regResult */ 888 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 889 890 /* Usually, regResult is the first cell in an array of memory cells 891 ** containing the current result row. In this case regOrig is set to the 892 ** same value. However, if the results are being sent to the sorter, the 893 ** values for any expressions that are also part of the sort-key are omitted 894 ** from this array. In this case regOrig is set to zero. */ 895 int regResult; /* Start of memory holding current results */ 896 int regOrig; /* Start of memory holding full result (or 0) */ 897 898 assert( v ); 899 assert( p->pEList!=0 ); 900 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 901 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 902 if( pSort==0 && !hasDistinct ){ 903 assert( iContinue!=0 ); 904 codeOffset(v, p->iOffset, iContinue); 905 } 906 907 /* Pull the requested columns. 908 */ 909 nResultCol = p->pEList->nExpr; 910 911 if( pDest->iSdst==0 ){ 912 if( pSort ){ 913 nPrefixReg = pSort->pOrderBy->nExpr; 914 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 915 pParse->nMem += nPrefixReg; 916 } 917 pDest->iSdst = pParse->nMem+1; 918 pParse->nMem += nResultCol; 919 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 920 /* This is an error condition that can result, for example, when a SELECT 921 ** on the right-hand side of an INSERT contains more result columns than 922 ** there are columns in the table on the left. The error will be caught 923 ** and reported later. But we need to make sure enough memory is allocated 924 ** to avoid other spurious errors in the meantime. */ 925 pParse->nMem += nResultCol; 926 } 927 pDest->nSdst = nResultCol; 928 regOrig = regResult = pDest->iSdst; 929 if( srcTab>=0 ){ 930 for(i=0; i<nResultCol; i++){ 931 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 932 VdbeComment((v, "%s", p->pEList->a[i].zName)); 933 } 934 }else if( eDest!=SRT_Exists ){ 935 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 936 ExprList *pExtra = 0; 937 #endif 938 /* If the destination is an EXISTS(...) expression, the actual 939 ** values returned by the SELECT are not required. 940 */ 941 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 942 ExprList *pEList; 943 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 944 ecelFlags = SQLITE_ECEL_DUP; 945 }else{ 946 ecelFlags = 0; 947 } 948 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 949 /* For each expression in p->pEList that is a copy of an expression in 950 ** the ORDER BY clause (pSort->pOrderBy), set the associated 951 ** iOrderByCol value to one more than the index of the ORDER BY 952 ** expression within the sort-key that pushOntoSorter() will generate. 953 ** This allows the p->pEList field to be omitted from the sorted record, 954 ** saving space and CPU cycles. */ 955 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 956 957 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 958 int j; 959 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 960 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 961 } 962 } 963 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 964 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 965 if( pExtra && pParse->db->mallocFailed==0 ){ 966 /* If there are any extra PK columns to add to the sorter records, 967 ** allocate extra memory cells and adjust the OpenEphemeral 968 ** instruction to account for the larger records. This is only 969 ** required if there are one or more WITHOUT ROWID tables with 970 ** composite primary keys in the SortCtx.aDefer[] array. */ 971 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 972 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 973 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 974 pParse->nMem += pExtra->nExpr; 975 } 976 #endif 977 978 /* Adjust nResultCol to account for columns that are omitted 979 ** from the sorter by the optimizations in this branch */ 980 pEList = p->pEList; 981 for(i=0; i<pEList->nExpr; i++){ 982 if( pEList->a[i].u.x.iOrderByCol>0 983 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 984 || pEList->a[i].bSorterRef 985 #endif 986 ){ 987 nResultCol--; 988 regOrig = 0; 989 } 990 } 991 992 testcase( regOrig ); 993 testcase( eDest==SRT_Set ); 994 testcase( eDest==SRT_Mem ); 995 testcase( eDest==SRT_Coroutine ); 996 testcase( eDest==SRT_Output ); 997 assert( eDest==SRT_Set || eDest==SRT_Mem 998 || eDest==SRT_Coroutine || eDest==SRT_Output ); 999 } 1000 sRowLoadInfo.regResult = regResult; 1001 sRowLoadInfo.ecelFlags = ecelFlags; 1002 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1003 sRowLoadInfo.pExtra = pExtra; 1004 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1005 if( pExtra ) nResultCol += pExtra->nExpr; 1006 #endif 1007 if( p->iLimit 1008 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1009 && nPrefixReg>0 1010 ){ 1011 assert( pSort!=0 ); 1012 assert( hasDistinct==0 ); 1013 pSort->pDeferredRowLoad = &sRowLoadInfo; 1014 regOrig = 0; 1015 }else{ 1016 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1017 } 1018 } 1019 1020 /* If the DISTINCT keyword was present on the SELECT statement 1021 ** and this row has been seen before, then do not make this row 1022 ** part of the result. 1023 */ 1024 if( hasDistinct ){ 1025 switch( pDistinct->eTnctType ){ 1026 case WHERE_DISTINCT_ORDERED: { 1027 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1028 int iJump; /* Jump destination */ 1029 int regPrev; /* Previous row content */ 1030 1031 /* Allocate space for the previous row */ 1032 regPrev = pParse->nMem+1; 1033 pParse->nMem += nResultCol; 1034 1035 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1036 ** sets the MEM_Cleared bit on the first register of the 1037 ** previous value. This will cause the OP_Ne below to always 1038 ** fail on the first iteration of the loop even if the first 1039 ** row is all NULLs. 1040 */ 1041 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1042 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1043 pOp->opcode = OP_Null; 1044 pOp->p1 = 1; 1045 pOp->p2 = regPrev; 1046 1047 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1048 for(i=0; i<nResultCol; i++){ 1049 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1050 if( i<nResultCol-1 ){ 1051 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1052 VdbeCoverage(v); 1053 }else{ 1054 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1055 VdbeCoverage(v); 1056 } 1057 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1058 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1059 } 1060 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1061 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1062 break; 1063 } 1064 1065 case WHERE_DISTINCT_UNIQUE: { 1066 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1067 break; 1068 } 1069 1070 default: { 1071 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1072 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1073 regResult); 1074 break; 1075 } 1076 } 1077 if( pSort==0 ){ 1078 codeOffset(v, p->iOffset, iContinue); 1079 } 1080 } 1081 1082 switch( eDest ){ 1083 /* In this mode, write each query result to the key of the temporary 1084 ** table iParm. 1085 */ 1086 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1087 case SRT_Union: { 1088 int r1; 1089 r1 = sqlite3GetTempReg(pParse); 1090 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1091 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1092 sqlite3ReleaseTempReg(pParse, r1); 1093 break; 1094 } 1095 1096 /* Construct a record from the query result, but instead of 1097 ** saving that record, use it as a key to delete elements from 1098 ** the temporary table iParm. 1099 */ 1100 case SRT_Except: { 1101 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1102 break; 1103 } 1104 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1105 1106 /* Store the result as data using a unique key. 1107 */ 1108 case SRT_Fifo: 1109 case SRT_DistFifo: 1110 case SRT_Table: 1111 case SRT_EphemTab: { 1112 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1113 testcase( eDest==SRT_Table ); 1114 testcase( eDest==SRT_EphemTab ); 1115 testcase( eDest==SRT_Fifo ); 1116 testcase( eDest==SRT_DistFifo ); 1117 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1118 #ifndef SQLITE_OMIT_CTE 1119 if( eDest==SRT_DistFifo ){ 1120 /* If the destination is DistFifo, then cursor (iParm+1) is open 1121 ** on an ephemeral index. If the current row is already present 1122 ** in the index, do not write it to the output. If not, add the 1123 ** current row to the index and proceed with writing it to the 1124 ** output table as well. */ 1125 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1126 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1127 VdbeCoverage(v); 1128 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1129 assert( pSort==0 ); 1130 } 1131 #endif 1132 if( pSort ){ 1133 assert( regResult==regOrig ); 1134 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1135 }else{ 1136 int r2 = sqlite3GetTempReg(pParse); 1137 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1138 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1139 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1140 sqlite3ReleaseTempReg(pParse, r2); 1141 } 1142 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1143 break; 1144 } 1145 1146 #ifndef SQLITE_OMIT_SUBQUERY 1147 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1148 ** then there should be a single item on the stack. Write this 1149 ** item into the set table with bogus data. 1150 */ 1151 case SRT_Set: { 1152 if( pSort ){ 1153 /* At first glance you would think we could optimize out the 1154 ** ORDER BY in this case since the order of entries in the set 1155 ** does not matter. But there might be a LIMIT clause, in which 1156 ** case the order does matter */ 1157 pushOntoSorter( 1158 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1159 }else{ 1160 int r1 = sqlite3GetTempReg(pParse); 1161 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1162 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1163 r1, pDest->zAffSdst, nResultCol); 1164 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1165 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1166 sqlite3ReleaseTempReg(pParse, r1); 1167 } 1168 break; 1169 } 1170 1171 /* If any row exist in the result set, record that fact and abort. 1172 */ 1173 case SRT_Exists: { 1174 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1175 /* The LIMIT clause will terminate the loop for us */ 1176 break; 1177 } 1178 1179 /* If this is a scalar select that is part of an expression, then 1180 ** store the results in the appropriate memory cell or array of 1181 ** memory cells and break out of the scan loop. 1182 */ 1183 case SRT_Mem: { 1184 if( pSort ){ 1185 assert( nResultCol<=pDest->nSdst ); 1186 pushOntoSorter( 1187 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1188 }else{ 1189 assert( nResultCol==pDest->nSdst ); 1190 assert( regResult==iParm ); 1191 /* The LIMIT clause will jump out of the loop for us */ 1192 } 1193 break; 1194 } 1195 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1196 1197 case SRT_Coroutine: /* Send data to a co-routine */ 1198 case SRT_Output: { /* Return the results */ 1199 testcase( eDest==SRT_Coroutine ); 1200 testcase( eDest==SRT_Output ); 1201 if( pSort ){ 1202 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1203 nPrefixReg); 1204 }else if( eDest==SRT_Coroutine ){ 1205 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1206 }else{ 1207 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1208 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1209 } 1210 break; 1211 } 1212 1213 #ifndef SQLITE_OMIT_CTE 1214 /* Write the results into a priority queue that is order according to 1215 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1216 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1217 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1218 ** final OP_Sequence column. The last column is the record as a blob. 1219 */ 1220 case SRT_DistQueue: 1221 case SRT_Queue: { 1222 int nKey; 1223 int r1, r2, r3; 1224 int addrTest = 0; 1225 ExprList *pSO; 1226 pSO = pDest->pOrderBy; 1227 assert( pSO ); 1228 nKey = pSO->nExpr; 1229 r1 = sqlite3GetTempReg(pParse); 1230 r2 = sqlite3GetTempRange(pParse, nKey+2); 1231 r3 = r2+nKey+1; 1232 if( eDest==SRT_DistQueue ){ 1233 /* If the destination is DistQueue, then cursor (iParm+1) is open 1234 ** on a second ephemeral index that holds all values every previously 1235 ** added to the queue. */ 1236 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1237 regResult, nResultCol); 1238 VdbeCoverage(v); 1239 } 1240 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1241 if( eDest==SRT_DistQueue ){ 1242 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1243 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1244 } 1245 for(i=0; i<nKey; i++){ 1246 sqlite3VdbeAddOp2(v, OP_SCopy, 1247 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1248 r2+i); 1249 } 1250 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1251 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1252 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1253 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1254 sqlite3ReleaseTempReg(pParse, r1); 1255 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1256 break; 1257 } 1258 #endif /* SQLITE_OMIT_CTE */ 1259 1260 1261 1262 #if !defined(SQLITE_OMIT_TRIGGER) 1263 /* Discard the results. This is used for SELECT statements inside 1264 ** the body of a TRIGGER. The purpose of such selects is to call 1265 ** user-defined functions that have side effects. We do not care 1266 ** about the actual results of the select. 1267 */ 1268 default: { 1269 assert( eDest==SRT_Discard ); 1270 break; 1271 } 1272 #endif 1273 } 1274 1275 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1276 ** there is a sorter, in which case the sorter has already limited 1277 ** the output for us. 1278 */ 1279 if( pSort==0 && p->iLimit ){ 1280 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1281 } 1282 } 1283 1284 /* 1285 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1286 ** X extra columns. 1287 */ 1288 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1289 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1290 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1291 if( p ){ 1292 p->aSortOrder = (u8*)&p->aColl[N+X]; 1293 p->nKeyField = (u16)N; 1294 p->nAllField = (u16)(N+X); 1295 p->enc = ENC(db); 1296 p->db = db; 1297 p->nRef = 1; 1298 memset(&p[1], 0, nExtra); 1299 }else{ 1300 sqlite3OomFault(db); 1301 } 1302 return p; 1303 } 1304 1305 /* 1306 ** Deallocate a KeyInfo object 1307 */ 1308 void sqlite3KeyInfoUnref(KeyInfo *p){ 1309 if( p ){ 1310 assert( p->nRef>0 ); 1311 p->nRef--; 1312 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1313 } 1314 } 1315 1316 /* 1317 ** Make a new pointer to a KeyInfo object 1318 */ 1319 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1320 if( p ){ 1321 assert( p->nRef>0 ); 1322 p->nRef++; 1323 } 1324 return p; 1325 } 1326 1327 #ifdef SQLITE_DEBUG 1328 /* 1329 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1330 ** can only be changed if this is just a single reference to the object. 1331 ** 1332 ** This routine is used only inside of assert() statements. 1333 */ 1334 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1335 #endif /* SQLITE_DEBUG */ 1336 1337 /* 1338 ** Given an expression list, generate a KeyInfo structure that records 1339 ** the collating sequence for each expression in that expression list. 1340 ** 1341 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1342 ** KeyInfo structure is appropriate for initializing a virtual index to 1343 ** implement that clause. If the ExprList is the result set of a SELECT 1344 ** then the KeyInfo structure is appropriate for initializing a virtual 1345 ** index to implement a DISTINCT test. 1346 ** 1347 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1348 ** function is responsible for seeing that this structure is eventually 1349 ** freed. 1350 */ 1351 static KeyInfo *keyInfoFromExprList( 1352 Parse *pParse, /* Parsing context */ 1353 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1354 int iStart, /* Begin with this column of pList */ 1355 int nExtra /* Add this many extra columns to the end */ 1356 ){ 1357 int nExpr; 1358 KeyInfo *pInfo; 1359 struct ExprList_item *pItem; 1360 sqlite3 *db = pParse->db; 1361 int i; 1362 1363 nExpr = pList->nExpr; 1364 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1365 if( pInfo ){ 1366 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1367 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1368 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1369 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1370 } 1371 } 1372 return pInfo; 1373 } 1374 1375 /* 1376 ** Name of the connection operator, used for error messages. 1377 */ 1378 static const char *selectOpName(int id){ 1379 char *z; 1380 switch( id ){ 1381 case TK_ALL: z = "UNION ALL"; break; 1382 case TK_INTERSECT: z = "INTERSECT"; break; 1383 case TK_EXCEPT: z = "EXCEPT"; break; 1384 default: z = "UNION"; break; 1385 } 1386 return z; 1387 } 1388 1389 #ifndef SQLITE_OMIT_EXPLAIN 1390 /* 1391 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1392 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1393 ** where the caption is of the form: 1394 ** 1395 ** "USE TEMP B-TREE FOR xxx" 1396 ** 1397 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1398 ** is determined by the zUsage argument. 1399 */ 1400 static void explainTempTable(Parse *pParse, const char *zUsage){ 1401 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1402 } 1403 1404 /* 1405 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1406 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1407 ** in sqlite3Select() to assign values to structure member variables that 1408 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1409 ** code with #ifndef directives. 1410 */ 1411 # define explainSetInteger(a, b) a = b 1412 1413 #else 1414 /* No-op versions of the explainXXX() functions and macros. */ 1415 # define explainTempTable(y,z) 1416 # define explainSetInteger(y,z) 1417 #endif 1418 1419 1420 /* 1421 ** If the inner loop was generated using a non-null pOrderBy argument, 1422 ** then the results were placed in a sorter. After the loop is terminated 1423 ** we need to run the sorter and output the results. The following 1424 ** routine generates the code needed to do that. 1425 */ 1426 static void generateSortTail( 1427 Parse *pParse, /* Parsing context */ 1428 Select *p, /* The SELECT statement */ 1429 SortCtx *pSort, /* Information on the ORDER BY clause */ 1430 int nColumn, /* Number of columns of data */ 1431 SelectDest *pDest /* Write the sorted results here */ 1432 ){ 1433 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1434 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1435 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1436 int addr; /* Top of output loop. Jump for Next. */ 1437 int addrOnce = 0; 1438 int iTab; 1439 ExprList *pOrderBy = pSort->pOrderBy; 1440 int eDest = pDest->eDest; 1441 int iParm = pDest->iSDParm; 1442 int regRow; 1443 int regRowid; 1444 int iCol; 1445 int nKey; /* Number of key columns in sorter record */ 1446 int iSortTab; /* Sorter cursor to read from */ 1447 int i; 1448 int bSeq; /* True if sorter record includes seq. no. */ 1449 int nRefKey = 0; 1450 struct ExprList_item *aOutEx = p->pEList->a; 1451 1452 assert( addrBreak<0 ); 1453 if( pSort->labelBkOut ){ 1454 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1455 sqlite3VdbeGoto(v, addrBreak); 1456 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1457 } 1458 1459 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1460 /* Open any cursors needed for sorter-reference expressions */ 1461 for(i=0; i<pSort->nDefer; i++){ 1462 Table *pTab = pSort->aDefer[i].pTab; 1463 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1464 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1465 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1466 } 1467 #endif 1468 1469 iTab = pSort->iECursor; 1470 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1471 regRowid = 0; 1472 regRow = pDest->iSdst; 1473 }else{ 1474 regRowid = sqlite3GetTempReg(pParse); 1475 regRow = sqlite3GetTempRange(pParse, nColumn); 1476 } 1477 nKey = pOrderBy->nExpr - pSort->nOBSat; 1478 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1479 int regSortOut = ++pParse->nMem; 1480 iSortTab = pParse->nTab++; 1481 if( pSort->labelBkOut ){ 1482 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1483 } 1484 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1485 nKey+1+nColumn+nRefKey); 1486 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1487 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1488 VdbeCoverage(v); 1489 codeOffset(v, p->iOffset, addrContinue); 1490 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1491 bSeq = 0; 1492 }else{ 1493 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1494 codeOffset(v, p->iOffset, addrContinue); 1495 iSortTab = iTab; 1496 bSeq = 1; 1497 } 1498 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1499 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1500 if( aOutEx[i].bSorterRef ) continue; 1501 #endif 1502 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1503 } 1504 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1505 if( pSort->nDefer ){ 1506 int iKey = iCol+1; 1507 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1508 1509 for(i=0; i<pSort->nDefer; i++){ 1510 int iCsr = pSort->aDefer[i].iCsr; 1511 Table *pTab = pSort->aDefer[i].pTab; 1512 int nKey = pSort->aDefer[i].nKey; 1513 1514 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1515 if( HasRowid(pTab) ){ 1516 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1517 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1518 sqlite3VdbeCurrentAddr(v)+1, regKey); 1519 }else{ 1520 int k; 1521 int iJmp; 1522 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1523 for(k=0; k<nKey; k++){ 1524 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1525 } 1526 iJmp = sqlite3VdbeCurrentAddr(v); 1527 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1528 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1529 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1530 } 1531 } 1532 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1533 } 1534 #endif 1535 for(i=nColumn-1; i>=0; i--){ 1536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1537 if( aOutEx[i].bSorterRef ){ 1538 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1539 }else 1540 #endif 1541 { 1542 int iRead; 1543 if( aOutEx[i].u.x.iOrderByCol ){ 1544 iRead = aOutEx[i].u.x.iOrderByCol-1; 1545 }else{ 1546 iRead = iCol--; 1547 } 1548 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1549 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1550 } 1551 } 1552 switch( eDest ){ 1553 case SRT_Table: 1554 case SRT_EphemTab: { 1555 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1556 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1557 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1558 break; 1559 } 1560 #ifndef SQLITE_OMIT_SUBQUERY 1561 case SRT_Set: { 1562 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1563 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1564 pDest->zAffSdst, nColumn); 1565 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1566 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1567 break; 1568 } 1569 case SRT_Mem: { 1570 /* The LIMIT clause will terminate the loop for us */ 1571 break; 1572 } 1573 #endif 1574 default: { 1575 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1576 testcase( eDest==SRT_Output ); 1577 testcase( eDest==SRT_Coroutine ); 1578 if( eDest==SRT_Output ){ 1579 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1580 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1581 }else{ 1582 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1583 } 1584 break; 1585 } 1586 } 1587 if( regRowid ){ 1588 if( eDest==SRT_Set ){ 1589 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1590 }else{ 1591 sqlite3ReleaseTempReg(pParse, regRow); 1592 } 1593 sqlite3ReleaseTempReg(pParse, regRowid); 1594 } 1595 /* The bottom of the loop 1596 */ 1597 sqlite3VdbeResolveLabel(v, addrContinue); 1598 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1599 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1600 }else{ 1601 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1602 } 1603 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1604 sqlite3VdbeResolveLabel(v, addrBreak); 1605 } 1606 1607 /* 1608 ** Return a pointer to a string containing the 'declaration type' of the 1609 ** expression pExpr. The string may be treated as static by the caller. 1610 ** 1611 ** Also try to estimate the size of the returned value and return that 1612 ** result in *pEstWidth. 1613 ** 1614 ** The declaration type is the exact datatype definition extracted from the 1615 ** original CREATE TABLE statement if the expression is a column. The 1616 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1617 ** is considered a column can be complex in the presence of subqueries. The 1618 ** result-set expression in all of the following SELECT statements is 1619 ** considered a column by this function. 1620 ** 1621 ** SELECT col FROM tbl; 1622 ** SELECT (SELECT col FROM tbl; 1623 ** SELECT (SELECT col FROM tbl); 1624 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1625 ** 1626 ** The declaration type for any expression other than a column is NULL. 1627 ** 1628 ** This routine has either 3 or 6 parameters depending on whether or not 1629 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1630 */ 1631 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1633 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1634 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1635 #endif 1636 static const char *columnTypeImpl( 1637 NameContext *pNC, 1638 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1639 Expr *pExpr 1640 #else 1641 Expr *pExpr, 1642 const char **pzOrigDb, 1643 const char **pzOrigTab, 1644 const char **pzOrigCol 1645 #endif 1646 ){ 1647 char const *zType = 0; 1648 int j; 1649 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1650 char const *zOrigDb = 0; 1651 char const *zOrigTab = 0; 1652 char const *zOrigCol = 0; 1653 #endif 1654 1655 assert( pExpr!=0 ); 1656 assert( pNC->pSrcList!=0 ); 1657 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1658 ** are processed */ 1659 switch( pExpr->op ){ 1660 case TK_COLUMN: { 1661 /* The expression is a column. Locate the table the column is being 1662 ** extracted from in NameContext.pSrcList. This table may be real 1663 ** database table or a subquery. 1664 */ 1665 Table *pTab = 0; /* Table structure column is extracted from */ 1666 Select *pS = 0; /* Select the column is extracted from */ 1667 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1668 while( pNC && !pTab ){ 1669 SrcList *pTabList = pNC->pSrcList; 1670 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1671 if( j<pTabList->nSrc ){ 1672 pTab = pTabList->a[j].pTab; 1673 pS = pTabList->a[j].pSelect; 1674 }else{ 1675 pNC = pNC->pNext; 1676 } 1677 } 1678 1679 if( pTab==0 ){ 1680 /* At one time, code such as "SELECT new.x" within a trigger would 1681 ** cause this condition to run. Since then, we have restructured how 1682 ** trigger code is generated and so this condition is no longer 1683 ** possible. However, it can still be true for statements like 1684 ** the following: 1685 ** 1686 ** CREATE TABLE t1(col INTEGER); 1687 ** SELECT (SELECT t1.col) FROM FROM t1; 1688 ** 1689 ** when columnType() is called on the expression "t1.col" in the 1690 ** sub-select. In this case, set the column type to NULL, even 1691 ** though it should really be "INTEGER". 1692 ** 1693 ** This is not a problem, as the column type of "t1.col" is never 1694 ** used. When columnType() is called on the expression 1695 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1696 ** branch below. */ 1697 break; 1698 } 1699 1700 assert( pTab && pExpr->pTab==pTab ); 1701 if( pS ){ 1702 /* The "table" is actually a sub-select or a view in the FROM clause 1703 ** of the SELECT statement. Return the declaration type and origin 1704 ** data for the result-set column of the sub-select. 1705 */ 1706 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1707 /* If iCol is less than zero, then the expression requests the 1708 ** rowid of the sub-select or view. This expression is legal (see 1709 ** test case misc2.2.2) - it always evaluates to NULL. 1710 */ 1711 NameContext sNC; 1712 Expr *p = pS->pEList->a[iCol].pExpr; 1713 sNC.pSrcList = pS->pSrc; 1714 sNC.pNext = pNC; 1715 sNC.pParse = pNC->pParse; 1716 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1717 } 1718 }else{ 1719 /* A real table or a CTE table */ 1720 assert( !pS ); 1721 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1722 if( iCol<0 ) iCol = pTab->iPKey; 1723 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1724 if( iCol<0 ){ 1725 zType = "INTEGER"; 1726 zOrigCol = "rowid"; 1727 }else{ 1728 zOrigCol = pTab->aCol[iCol].zName; 1729 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1730 } 1731 zOrigTab = pTab->zName; 1732 if( pNC->pParse && pTab->pSchema ){ 1733 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1734 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1735 } 1736 #else 1737 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1738 if( iCol<0 ){ 1739 zType = "INTEGER"; 1740 }else{ 1741 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1742 } 1743 #endif 1744 } 1745 break; 1746 } 1747 #ifndef SQLITE_OMIT_SUBQUERY 1748 case TK_SELECT: { 1749 /* The expression is a sub-select. Return the declaration type and 1750 ** origin info for the single column in the result set of the SELECT 1751 ** statement. 1752 */ 1753 NameContext sNC; 1754 Select *pS = pExpr->x.pSelect; 1755 Expr *p = pS->pEList->a[0].pExpr; 1756 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1757 sNC.pSrcList = pS->pSrc; 1758 sNC.pNext = pNC; 1759 sNC.pParse = pNC->pParse; 1760 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1761 break; 1762 } 1763 #endif 1764 } 1765 1766 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1767 if( pzOrigDb ){ 1768 assert( pzOrigTab && pzOrigCol ); 1769 *pzOrigDb = zOrigDb; 1770 *pzOrigTab = zOrigTab; 1771 *pzOrigCol = zOrigCol; 1772 } 1773 #endif 1774 return zType; 1775 } 1776 1777 /* 1778 ** Generate code that will tell the VDBE the declaration types of columns 1779 ** in the result set. 1780 */ 1781 static void generateColumnTypes( 1782 Parse *pParse, /* Parser context */ 1783 SrcList *pTabList, /* List of tables */ 1784 ExprList *pEList /* Expressions defining the result set */ 1785 ){ 1786 #ifndef SQLITE_OMIT_DECLTYPE 1787 Vdbe *v = pParse->pVdbe; 1788 int i; 1789 NameContext sNC; 1790 sNC.pSrcList = pTabList; 1791 sNC.pParse = pParse; 1792 sNC.pNext = 0; 1793 for(i=0; i<pEList->nExpr; i++){ 1794 Expr *p = pEList->a[i].pExpr; 1795 const char *zType; 1796 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1797 const char *zOrigDb = 0; 1798 const char *zOrigTab = 0; 1799 const char *zOrigCol = 0; 1800 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1801 1802 /* The vdbe must make its own copy of the column-type and other 1803 ** column specific strings, in case the schema is reset before this 1804 ** virtual machine is deleted. 1805 */ 1806 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1807 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1808 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1809 #else 1810 zType = columnType(&sNC, p, 0, 0, 0); 1811 #endif 1812 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1813 } 1814 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1815 } 1816 1817 1818 /* 1819 ** Compute the column names for a SELECT statement. 1820 ** 1821 ** The only guarantee that SQLite makes about column names is that if the 1822 ** column has an AS clause assigning it a name, that will be the name used. 1823 ** That is the only documented guarantee. However, countless applications 1824 ** developed over the years have made baseless assumptions about column names 1825 ** and will break if those assumptions changes. Hence, use extreme caution 1826 ** when modifying this routine to avoid breaking legacy. 1827 ** 1828 ** See Also: sqlite3ColumnsFromExprList() 1829 ** 1830 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1831 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1832 ** applications should operate this way. Nevertheless, we need to support the 1833 ** other modes for legacy: 1834 ** 1835 ** short=OFF, full=OFF: Column name is the text of the expression has it 1836 ** originally appears in the SELECT statement. In 1837 ** other words, the zSpan of the result expression. 1838 ** 1839 ** short=ON, full=OFF: (This is the default setting). If the result 1840 ** refers directly to a table column, then the 1841 ** result column name is just the table column 1842 ** name: COLUMN. Otherwise use zSpan. 1843 ** 1844 ** full=ON, short=ANY: If the result refers directly to a table column, 1845 ** then the result column name with the table name 1846 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1847 */ 1848 static void generateColumnNames( 1849 Parse *pParse, /* Parser context */ 1850 Select *pSelect /* Generate column names for this SELECT statement */ 1851 ){ 1852 Vdbe *v = pParse->pVdbe; 1853 int i; 1854 Table *pTab; 1855 SrcList *pTabList; 1856 ExprList *pEList; 1857 sqlite3 *db = pParse->db; 1858 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1859 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1860 1861 #ifndef SQLITE_OMIT_EXPLAIN 1862 /* If this is an EXPLAIN, skip this step */ 1863 if( pParse->explain ){ 1864 return; 1865 } 1866 #endif 1867 1868 if( pParse->colNamesSet ) return; 1869 /* Column names are determined by the left-most term of a compound select */ 1870 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1871 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1872 pTabList = pSelect->pSrc; 1873 pEList = pSelect->pEList; 1874 assert( v!=0 ); 1875 assert( pTabList!=0 ); 1876 pParse->colNamesSet = 1; 1877 fullName = (db->flags & SQLITE_FullColNames)!=0; 1878 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1879 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1880 for(i=0; i<pEList->nExpr; i++){ 1881 Expr *p = pEList->a[i].pExpr; 1882 1883 assert( p!=0 ); 1884 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1885 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1886 if( pEList->a[i].zName ){ 1887 /* An AS clause always takes first priority */ 1888 char *zName = pEList->a[i].zName; 1889 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1890 }else if( srcName && p->op==TK_COLUMN ){ 1891 char *zCol; 1892 int iCol = p->iColumn; 1893 pTab = p->pTab; 1894 assert( pTab!=0 ); 1895 if( iCol<0 ) iCol = pTab->iPKey; 1896 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1897 if( iCol<0 ){ 1898 zCol = "rowid"; 1899 }else{ 1900 zCol = pTab->aCol[iCol].zName; 1901 } 1902 if( fullName ){ 1903 char *zName = 0; 1904 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1905 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1906 }else{ 1907 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1908 } 1909 }else{ 1910 const char *z = pEList->a[i].zSpan; 1911 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1912 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1913 } 1914 } 1915 generateColumnTypes(pParse, pTabList, pEList); 1916 } 1917 1918 /* 1919 ** Given an expression list (which is really the list of expressions 1920 ** that form the result set of a SELECT statement) compute appropriate 1921 ** column names for a table that would hold the expression list. 1922 ** 1923 ** All column names will be unique. 1924 ** 1925 ** Only the column names are computed. Column.zType, Column.zColl, 1926 ** and other fields of Column are zeroed. 1927 ** 1928 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1929 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1930 ** 1931 ** The only guarantee that SQLite makes about column names is that if the 1932 ** column has an AS clause assigning it a name, that will be the name used. 1933 ** That is the only documented guarantee. However, countless applications 1934 ** developed over the years have made baseless assumptions about column names 1935 ** and will break if those assumptions changes. Hence, use extreme caution 1936 ** when modifying this routine to avoid breaking legacy. 1937 ** 1938 ** See Also: generateColumnNames() 1939 */ 1940 int sqlite3ColumnsFromExprList( 1941 Parse *pParse, /* Parsing context */ 1942 ExprList *pEList, /* Expr list from which to derive column names */ 1943 i16 *pnCol, /* Write the number of columns here */ 1944 Column **paCol /* Write the new column list here */ 1945 ){ 1946 sqlite3 *db = pParse->db; /* Database connection */ 1947 int i, j; /* Loop counters */ 1948 u32 cnt; /* Index added to make the name unique */ 1949 Column *aCol, *pCol; /* For looping over result columns */ 1950 int nCol; /* Number of columns in the result set */ 1951 char *zName; /* Column name */ 1952 int nName; /* Size of name in zName[] */ 1953 Hash ht; /* Hash table of column names */ 1954 1955 sqlite3HashInit(&ht); 1956 if( pEList ){ 1957 nCol = pEList->nExpr; 1958 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1959 testcase( aCol==0 ); 1960 if( nCol>32767 ) nCol = 32767; 1961 }else{ 1962 nCol = 0; 1963 aCol = 0; 1964 } 1965 assert( nCol==(i16)nCol ); 1966 *pnCol = nCol; 1967 *paCol = aCol; 1968 1969 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1970 /* Get an appropriate name for the column 1971 */ 1972 if( (zName = pEList->a[i].zName)!=0 ){ 1973 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1974 }else{ 1975 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1976 while( pColExpr->op==TK_DOT ){ 1977 pColExpr = pColExpr->pRight; 1978 assert( pColExpr!=0 ); 1979 } 1980 assert( pColExpr->op!=TK_AGG_COLUMN ); 1981 if( pColExpr->op==TK_COLUMN ){ 1982 /* For columns use the column name name */ 1983 int iCol = pColExpr->iColumn; 1984 Table *pTab = pColExpr->pTab; 1985 assert( pTab!=0 ); 1986 if( iCol<0 ) iCol = pTab->iPKey; 1987 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1988 }else if( pColExpr->op==TK_ID ){ 1989 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1990 zName = pColExpr->u.zToken; 1991 }else{ 1992 /* Use the original text of the column expression as its name */ 1993 zName = pEList->a[i].zSpan; 1994 } 1995 } 1996 if( zName ){ 1997 zName = sqlite3DbStrDup(db, zName); 1998 }else{ 1999 zName = sqlite3MPrintf(db,"column%d",i+1); 2000 } 2001 2002 /* Make sure the column name is unique. If the name is not unique, 2003 ** append an integer to the name so that it becomes unique. 2004 */ 2005 cnt = 0; 2006 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2007 nName = sqlite3Strlen30(zName); 2008 if( nName>0 ){ 2009 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2010 if( zName[j]==':' ) nName = j; 2011 } 2012 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2013 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2014 } 2015 pCol->zName = zName; 2016 sqlite3ColumnPropertiesFromName(0, pCol); 2017 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2018 sqlite3OomFault(db); 2019 } 2020 } 2021 sqlite3HashClear(&ht); 2022 if( db->mallocFailed ){ 2023 for(j=0; j<i; j++){ 2024 sqlite3DbFree(db, aCol[j].zName); 2025 } 2026 sqlite3DbFree(db, aCol); 2027 *paCol = 0; 2028 *pnCol = 0; 2029 return SQLITE_NOMEM_BKPT; 2030 } 2031 return SQLITE_OK; 2032 } 2033 2034 /* 2035 ** Add type and collation information to a column list based on 2036 ** a SELECT statement. 2037 ** 2038 ** The column list presumably came from selectColumnNamesFromExprList(). 2039 ** The column list has only names, not types or collations. This 2040 ** routine goes through and adds the types and collations. 2041 ** 2042 ** This routine requires that all identifiers in the SELECT 2043 ** statement be resolved. 2044 */ 2045 void sqlite3SelectAddColumnTypeAndCollation( 2046 Parse *pParse, /* Parsing contexts */ 2047 Table *pTab, /* Add column type information to this table */ 2048 Select *pSelect /* SELECT used to determine types and collations */ 2049 ){ 2050 sqlite3 *db = pParse->db; 2051 NameContext sNC; 2052 Column *pCol; 2053 CollSeq *pColl; 2054 int i; 2055 Expr *p; 2056 struct ExprList_item *a; 2057 2058 assert( pSelect!=0 ); 2059 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2060 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2061 if( db->mallocFailed ) return; 2062 memset(&sNC, 0, sizeof(sNC)); 2063 sNC.pSrcList = pSelect->pSrc; 2064 a = pSelect->pEList->a; 2065 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2066 const char *zType; 2067 int n, m; 2068 p = a[i].pExpr; 2069 zType = columnType(&sNC, p, 0, 0, 0); 2070 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2071 pCol->affinity = sqlite3ExprAffinity(p); 2072 if( zType ){ 2073 m = sqlite3Strlen30(zType); 2074 n = sqlite3Strlen30(pCol->zName); 2075 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2076 if( pCol->zName ){ 2077 memcpy(&pCol->zName[n+1], zType, m+1); 2078 pCol->colFlags |= COLFLAG_HASTYPE; 2079 } 2080 } 2081 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2082 pColl = sqlite3ExprCollSeq(pParse, p); 2083 if( pColl && pCol->zColl==0 ){ 2084 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2085 } 2086 } 2087 pTab->szTabRow = 1; /* Any non-zero value works */ 2088 } 2089 2090 /* 2091 ** Given a SELECT statement, generate a Table structure that describes 2092 ** the result set of that SELECT. 2093 */ 2094 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2095 Table *pTab; 2096 sqlite3 *db = pParse->db; 2097 int savedFlags; 2098 2099 savedFlags = db->flags; 2100 db->flags &= ~SQLITE_FullColNames; 2101 db->flags |= SQLITE_ShortColNames; 2102 sqlite3SelectPrep(pParse, pSelect, 0); 2103 if( pParse->nErr ) return 0; 2104 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2105 db->flags = savedFlags; 2106 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2107 if( pTab==0 ){ 2108 return 0; 2109 } 2110 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2111 ** is disabled */ 2112 assert( db->lookaside.bDisable ); 2113 pTab->nTabRef = 1; 2114 pTab->zName = 0; 2115 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2116 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2117 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2118 pTab->iPKey = -1; 2119 if( db->mallocFailed ){ 2120 sqlite3DeleteTable(db, pTab); 2121 return 0; 2122 } 2123 return pTab; 2124 } 2125 2126 /* 2127 ** Get a VDBE for the given parser context. Create a new one if necessary. 2128 ** If an error occurs, return NULL and leave a message in pParse. 2129 */ 2130 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2131 if( pParse->pVdbe ){ 2132 return pParse->pVdbe; 2133 } 2134 if( pParse->pToplevel==0 2135 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2136 ){ 2137 pParse->okConstFactor = 1; 2138 } 2139 return sqlite3VdbeCreate(pParse); 2140 } 2141 2142 2143 /* 2144 ** Compute the iLimit and iOffset fields of the SELECT based on the 2145 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2146 ** that appear in the original SQL statement after the LIMIT and OFFSET 2147 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2148 ** are the integer memory register numbers for counters used to compute 2149 ** the limit and offset. If there is no limit and/or offset, then 2150 ** iLimit and iOffset are negative. 2151 ** 2152 ** This routine changes the values of iLimit and iOffset only if 2153 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2154 ** and iOffset should have been preset to appropriate default values (zero) 2155 ** prior to calling this routine. 2156 ** 2157 ** The iOffset register (if it exists) is initialized to the value 2158 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2159 ** iOffset+1 is initialized to LIMIT+OFFSET. 2160 ** 2161 ** Only if pLimit->pLeft!=0 do the limit registers get 2162 ** redefined. The UNION ALL operator uses this property to force 2163 ** the reuse of the same limit and offset registers across multiple 2164 ** SELECT statements. 2165 */ 2166 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2167 Vdbe *v = 0; 2168 int iLimit = 0; 2169 int iOffset; 2170 int n; 2171 Expr *pLimit = p->pLimit; 2172 2173 if( p->iLimit ) return; 2174 2175 /* 2176 ** "LIMIT -1" always shows all rows. There is some 2177 ** controversy about what the correct behavior should be. 2178 ** The current implementation interprets "LIMIT 0" to mean 2179 ** no rows. 2180 */ 2181 sqlite3ExprCacheClear(pParse); 2182 if( pLimit ){ 2183 assert( pLimit->op==TK_LIMIT ); 2184 assert( pLimit->pLeft!=0 ); 2185 p->iLimit = iLimit = ++pParse->nMem; 2186 v = sqlite3GetVdbe(pParse); 2187 assert( v!=0 ); 2188 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2189 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2190 VdbeComment((v, "LIMIT counter")); 2191 if( n==0 ){ 2192 sqlite3VdbeGoto(v, iBreak); 2193 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2194 p->nSelectRow = sqlite3LogEst((u64)n); 2195 p->selFlags |= SF_FixedLimit; 2196 } 2197 }else{ 2198 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2199 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2200 VdbeComment((v, "LIMIT counter")); 2201 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2202 } 2203 if( pLimit->pRight ){ 2204 p->iOffset = iOffset = ++pParse->nMem; 2205 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2206 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2207 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2208 VdbeComment((v, "OFFSET counter")); 2209 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2210 VdbeComment((v, "LIMIT+OFFSET")); 2211 } 2212 } 2213 } 2214 2215 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2216 /* 2217 ** Return the appropriate collating sequence for the iCol-th column of 2218 ** the result set for the compound-select statement "p". Return NULL if 2219 ** the column has no default collating sequence. 2220 ** 2221 ** The collating sequence for the compound select is taken from the 2222 ** left-most term of the select that has a collating sequence. 2223 */ 2224 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2225 CollSeq *pRet; 2226 if( p->pPrior ){ 2227 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2228 }else{ 2229 pRet = 0; 2230 } 2231 assert( iCol>=0 ); 2232 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2233 ** have been thrown during name resolution and we would not have gotten 2234 ** this far */ 2235 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2236 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2237 } 2238 return pRet; 2239 } 2240 2241 /* 2242 ** The select statement passed as the second parameter is a compound SELECT 2243 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2244 ** structure suitable for implementing the ORDER BY. 2245 ** 2246 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2247 ** function is responsible for ensuring that this structure is eventually 2248 ** freed. 2249 */ 2250 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2251 ExprList *pOrderBy = p->pOrderBy; 2252 int nOrderBy = p->pOrderBy->nExpr; 2253 sqlite3 *db = pParse->db; 2254 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2255 if( pRet ){ 2256 int i; 2257 for(i=0; i<nOrderBy; i++){ 2258 struct ExprList_item *pItem = &pOrderBy->a[i]; 2259 Expr *pTerm = pItem->pExpr; 2260 CollSeq *pColl; 2261 2262 if( pTerm->flags & EP_Collate ){ 2263 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2264 }else{ 2265 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2266 if( pColl==0 ) pColl = db->pDfltColl; 2267 pOrderBy->a[i].pExpr = 2268 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2269 } 2270 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2271 pRet->aColl[i] = pColl; 2272 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2273 } 2274 } 2275 2276 return pRet; 2277 } 2278 2279 #ifndef SQLITE_OMIT_CTE 2280 /* 2281 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2282 ** query of the form: 2283 ** 2284 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2285 ** \___________/ \_______________/ 2286 ** p->pPrior p 2287 ** 2288 ** 2289 ** There is exactly one reference to the recursive-table in the FROM clause 2290 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2291 ** 2292 ** The setup-query runs once to generate an initial set of rows that go 2293 ** into a Queue table. Rows are extracted from the Queue table one by 2294 ** one. Each row extracted from Queue is output to pDest. Then the single 2295 ** extracted row (now in the iCurrent table) becomes the content of the 2296 ** recursive-table for a recursive-query run. The output of the recursive-query 2297 ** is added back into the Queue table. Then another row is extracted from Queue 2298 ** and the iteration continues until the Queue table is empty. 2299 ** 2300 ** If the compound query operator is UNION then no duplicate rows are ever 2301 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2302 ** that have ever been inserted into Queue and causes duplicates to be 2303 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2304 ** 2305 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2306 ** ORDER BY order and the first entry is extracted for each cycle. Without 2307 ** an ORDER BY, the Queue table is just a FIFO. 2308 ** 2309 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2310 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2311 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2312 ** with a positive value, then the first OFFSET outputs are discarded rather 2313 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2314 ** rows have been skipped. 2315 */ 2316 static void generateWithRecursiveQuery( 2317 Parse *pParse, /* Parsing context */ 2318 Select *p, /* The recursive SELECT to be coded */ 2319 SelectDest *pDest /* What to do with query results */ 2320 ){ 2321 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2322 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2323 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2324 Select *pSetup = p->pPrior; /* The setup query */ 2325 int addrTop; /* Top of the loop */ 2326 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2327 int iCurrent = 0; /* The Current table */ 2328 int regCurrent; /* Register holding Current table */ 2329 int iQueue; /* The Queue table */ 2330 int iDistinct = 0; /* To ensure unique results if UNION */ 2331 int eDest = SRT_Fifo; /* How to write to Queue */ 2332 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2333 int i; /* Loop counter */ 2334 int rc; /* Result code */ 2335 ExprList *pOrderBy; /* The ORDER BY clause */ 2336 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2337 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2338 2339 /* Obtain authorization to do a recursive query */ 2340 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2341 2342 /* Process the LIMIT and OFFSET clauses, if they exist */ 2343 addrBreak = sqlite3VdbeMakeLabel(v); 2344 p->nSelectRow = 320; /* 4 billion rows */ 2345 computeLimitRegisters(pParse, p, addrBreak); 2346 pLimit = p->pLimit; 2347 regLimit = p->iLimit; 2348 regOffset = p->iOffset; 2349 p->pLimit = 0; 2350 p->iLimit = p->iOffset = 0; 2351 pOrderBy = p->pOrderBy; 2352 2353 /* Locate the cursor number of the Current table */ 2354 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2355 if( pSrc->a[i].fg.isRecursive ){ 2356 iCurrent = pSrc->a[i].iCursor; 2357 break; 2358 } 2359 } 2360 2361 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2362 ** the Distinct table must be exactly one greater than Queue in order 2363 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2364 iQueue = pParse->nTab++; 2365 if( p->op==TK_UNION ){ 2366 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2367 iDistinct = pParse->nTab++; 2368 }else{ 2369 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2370 } 2371 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2372 2373 /* Allocate cursors for Current, Queue, and Distinct. */ 2374 regCurrent = ++pParse->nMem; 2375 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2376 if( pOrderBy ){ 2377 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2378 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2379 (char*)pKeyInfo, P4_KEYINFO); 2380 destQueue.pOrderBy = pOrderBy; 2381 }else{ 2382 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2383 } 2384 VdbeComment((v, "Queue table")); 2385 if( iDistinct ){ 2386 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2387 p->selFlags |= SF_UsesEphemeral; 2388 } 2389 2390 /* Detach the ORDER BY clause from the compound SELECT */ 2391 p->pOrderBy = 0; 2392 2393 /* Store the results of the setup-query in Queue. */ 2394 pSetup->pNext = 0; 2395 ExplainQueryPlan((pParse, 1, "SETUP")); 2396 rc = sqlite3Select(pParse, pSetup, &destQueue); 2397 pSetup->pNext = p; 2398 if( rc ) goto end_of_recursive_query; 2399 2400 /* Find the next row in the Queue and output that row */ 2401 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2402 2403 /* Transfer the next row in Queue over to Current */ 2404 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2405 if( pOrderBy ){ 2406 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2407 }else{ 2408 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2409 } 2410 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2411 2412 /* Output the single row in Current */ 2413 addrCont = sqlite3VdbeMakeLabel(v); 2414 codeOffset(v, regOffset, addrCont); 2415 selectInnerLoop(pParse, p, iCurrent, 2416 0, 0, pDest, addrCont, addrBreak); 2417 if( regLimit ){ 2418 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2419 VdbeCoverage(v); 2420 } 2421 sqlite3VdbeResolveLabel(v, addrCont); 2422 2423 /* Execute the recursive SELECT taking the single row in Current as 2424 ** the value for the recursive-table. Store the results in the Queue. 2425 */ 2426 if( p->selFlags & SF_Aggregate ){ 2427 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2428 }else{ 2429 p->pPrior = 0; 2430 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2431 sqlite3Select(pParse, p, &destQueue); 2432 assert( p->pPrior==0 ); 2433 p->pPrior = pSetup; 2434 } 2435 2436 /* Keep running the loop until the Queue is empty */ 2437 sqlite3VdbeGoto(v, addrTop); 2438 sqlite3VdbeResolveLabel(v, addrBreak); 2439 2440 end_of_recursive_query: 2441 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2442 p->pOrderBy = pOrderBy; 2443 p->pLimit = pLimit; 2444 return; 2445 } 2446 #endif /* SQLITE_OMIT_CTE */ 2447 2448 /* Forward references */ 2449 static int multiSelectOrderBy( 2450 Parse *pParse, /* Parsing context */ 2451 Select *p, /* The right-most of SELECTs to be coded */ 2452 SelectDest *pDest /* What to do with query results */ 2453 ); 2454 2455 /* 2456 ** Handle the special case of a compound-select that originates from a 2457 ** VALUES clause. By handling this as a special case, we avoid deep 2458 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2459 ** on a VALUES clause. 2460 ** 2461 ** Because the Select object originates from a VALUES clause: 2462 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2463 ** (2) All terms are UNION ALL 2464 ** (3) There is no ORDER BY clause 2465 ** 2466 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2467 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2468 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2469 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2470 */ 2471 static int multiSelectValues( 2472 Parse *pParse, /* Parsing context */ 2473 Select *p, /* The right-most of SELECTs to be coded */ 2474 SelectDest *pDest /* What to do with query results */ 2475 ){ 2476 int nRow = 1; 2477 int rc = 0; 2478 int bShowAll = p->pLimit==0; 2479 assert( p->selFlags & SF_MultiValue ); 2480 do{ 2481 assert( p->selFlags & SF_Values ); 2482 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2483 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2484 if( p->pPrior==0 ) break; 2485 assert( p->pPrior->pNext==p ); 2486 p = p->pPrior; 2487 nRow += bShowAll; 2488 }while(1); 2489 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2490 nRow==1 ? "" : "S")); 2491 while( p ){ 2492 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2493 if( !bShowAll ) break; 2494 p->nSelectRow = nRow; 2495 p = p->pNext; 2496 } 2497 return rc; 2498 } 2499 2500 /* 2501 ** This routine is called to process a compound query form from 2502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2503 ** INTERSECT 2504 ** 2505 ** "p" points to the right-most of the two queries. the query on the 2506 ** left is p->pPrior. The left query could also be a compound query 2507 ** in which case this routine will be called recursively. 2508 ** 2509 ** The results of the total query are to be written into a destination 2510 ** of type eDest with parameter iParm. 2511 ** 2512 ** Example 1: Consider a three-way compound SQL statement. 2513 ** 2514 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2515 ** 2516 ** This statement is parsed up as follows: 2517 ** 2518 ** SELECT c FROM t3 2519 ** | 2520 ** `-----> SELECT b FROM t2 2521 ** | 2522 ** `------> SELECT a FROM t1 2523 ** 2524 ** The arrows in the diagram above represent the Select.pPrior pointer. 2525 ** So if this routine is called with p equal to the t3 query, then 2526 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2527 ** 2528 ** Notice that because of the way SQLite parses compound SELECTs, the 2529 ** individual selects always group from left to right. 2530 */ 2531 static int multiSelect( 2532 Parse *pParse, /* Parsing context */ 2533 Select *p, /* The right-most of SELECTs to be coded */ 2534 SelectDest *pDest /* What to do with query results */ 2535 ){ 2536 int rc = SQLITE_OK; /* Success code from a subroutine */ 2537 Select *pPrior; /* Another SELECT immediately to our left */ 2538 Vdbe *v; /* Generate code to this VDBE */ 2539 SelectDest dest; /* Alternative data destination */ 2540 Select *pDelete = 0; /* Chain of simple selects to delete */ 2541 sqlite3 *db; /* Database connection */ 2542 2543 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2544 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2545 */ 2546 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2547 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2548 db = pParse->db; 2549 pPrior = p->pPrior; 2550 dest = *pDest; 2551 if( pPrior->pOrderBy || pPrior->pLimit ){ 2552 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2553 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2554 rc = 1; 2555 goto multi_select_end; 2556 } 2557 2558 v = sqlite3GetVdbe(pParse); 2559 assert( v!=0 ); /* The VDBE already created by calling function */ 2560 2561 /* Create the destination temporary table if necessary 2562 */ 2563 if( dest.eDest==SRT_EphemTab ){ 2564 assert( p->pEList ); 2565 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2566 dest.eDest = SRT_Table; 2567 } 2568 2569 /* Special handling for a compound-select that originates as a VALUES clause. 2570 */ 2571 if( p->selFlags & SF_MultiValue ){ 2572 rc = multiSelectValues(pParse, p, &dest); 2573 goto multi_select_end; 2574 } 2575 2576 /* Make sure all SELECTs in the statement have the same number of elements 2577 ** in their result sets. 2578 */ 2579 assert( p->pEList && pPrior->pEList ); 2580 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2581 2582 #ifndef SQLITE_OMIT_CTE 2583 if( p->selFlags & SF_Recursive ){ 2584 generateWithRecursiveQuery(pParse, p, &dest); 2585 }else 2586 #endif 2587 2588 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2589 */ 2590 if( p->pOrderBy ){ 2591 return multiSelectOrderBy(pParse, p, pDest); 2592 }else{ 2593 2594 #ifndef SQLITE_OMIT_EXPLAIN 2595 if( pPrior->pPrior==0 ){ 2596 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2597 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2598 } 2599 #endif 2600 2601 /* Generate code for the left and right SELECT statements. 2602 */ 2603 switch( p->op ){ 2604 case TK_ALL: { 2605 int addr = 0; 2606 int nLimit; 2607 assert( !pPrior->pLimit ); 2608 pPrior->iLimit = p->iLimit; 2609 pPrior->iOffset = p->iOffset; 2610 pPrior->pLimit = p->pLimit; 2611 rc = sqlite3Select(pParse, pPrior, &dest); 2612 p->pLimit = 0; 2613 if( rc ){ 2614 goto multi_select_end; 2615 } 2616 p->pPrior = 0; 2617 p->iLimit = pPrior->iLimit; 2618 p->iOffset = pPrior->iOffset; 2619 if( p->iLimit ){ 2620 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2621 VdbeComment((v, "Jump ahead if LIMIT reached")); 2622 if( p->iOffset ){ 2623 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2624 p->iLimit, p->iOffset+1, p->iOffset); 2625 } 2626 } 2627 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2628 rc = sqlite3Select(pParse, p, &dest); 2629 testcase( rc!=SQLITE_OK ); 2630 pDelete = p->pPrior; 2631 p->pPrior = pPrior; 2632 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2633 if( pPrior->pLimit 2634 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2635 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2636 ){ 2637 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2638 } 2639 if( addr ){ 2640 sqlite3VdbeJumpHere(v, addr); 2641 } 2642 break; 2643 } 2644 case TK_EXCEPT: 2645 case TK_UNION: { 2646 int unionTab; /* Cursor number of the temp table holding result */ 2647 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2648 int priorOp; /* The SRT_ operation to apply to prior selects */ 2649 Expr *pLimit; /* Saved values of p->nLimit */ 2650 int addr; 2651 SelectDest uniondest; 2652 2653 testcase( p->op==TK_EXCEPT ); 2654 testcase( p->op==TK_UNION ); 2655 priorOp = SRT_Union; 2656 if( dest.eDest==priorOp ){ 2657 /* We can reuse a temporary table generated by a SELECT to our 2658 ** right. 2659 */ 2660 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2661 unionTab = dest.iSDParm; 2662 }else{ 2663 /* We will need to create our own temporary table to hold the 2664 ** intermediate results. 2665 */ 2666 unionTab = pParse->nTab++; 2667 assert( p->pOrderBy==0 ); 2668 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2669 assert( p->addrOpenEphm[0] == -1 ); 2670 p->addrOpenEphm[0] = addr; 2671 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2672 assert( p->pEList ); 2673 } 2674 2675 /* Code the SELECT statements to our left 2676 */ 2677 assert( !pPrior->pOrderBy ); 2678 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2679 rc = sqlite3Select(pParse, pPrior, &uniondest); 2680 if( rc ){ 2681 goto multi_select_end; 2682 } 2683 2684 /* Code the current SELECT statement 2685 */ 2686 if( p->op==TK_EXCEPT ){ 2687 op = SRT_Except; 2688 }else{ 2689 assert( p->op==TK_UNION ); 2690 op = SRT_Union; 2691 } 2692 p->pPrior = 0; 2693 pLimit = p->pLimit; 2694 p->pLimit = 0; 2695 uniondest.eDest = op; 2696 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2697 selectOpName(p->op))); 2698 rc = sqlite3Select(pParse, p, &uniondest); 2699 testcase( rc!=SQLITE_OK ); 2700 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2701 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2702 sqlite3ExprListDelete(db, p->pOrderBy); 2703 pDelete = p->pPrior; 2704 p->pPrior = pPrior; 2705 p->pOrderBy = 0; 2706 if( p->op==TK_UNION ){ 2707 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2708 } 2709 sqlite3ExprDelete(db, p->pLimit); 2710 p->pLimit = pLimit; 2711 p->iLimit = 0; 2712 p->iOffset = 0; 2713 2714 /* Convert the data in the temporary table into whatever form 2715 ** it is that we currently need. 2716 */ 2717 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2718 if( dest.eDest!=priorOp ){ 2719 int iCont, iBreak, iStart; 2720 assert( p->pEList ); 2721 iBreak = sqlite3VdbeMakeLabel(v); 2722 iCont = sqlite3VdbeMakeLabel(v); 2723 computeLimitRegisters(pParse, p, iBreak); 2724 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2725 iStart = sqlite3VdbeCurrentAddr(v); 2726 selectInnerLoop(pParse, p, unionTab, 2727 0, 0, &dest, iCont, iBreak); 2728 sqlite3VdbeResolveLabel(v, iCont); 2729 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2730 sqlite3VdbeResolveLabel(v, iBreak); 2731 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2732 } 2733 break; 2734 } 2735 default: assert( p->op==TK_INTERSECT ); { 2736 int tab1, tab2; 2737 int iCont, iBreak, iStart; 2738 Expr *pLimit; 2739 int addr; 2740 SelectDest intersectdest; 2741 int r1; 2742 2743 /* INTERSECT is different from the others since it requires 2744 ** two temporary tables. Hence it has its own case. Begin 2745 ** by allocating the tables we will need. 2746 */ 2747 tab1 = pParse->nTab++; 2748 tab2 = pParse->nTab++; 2749 assert( p->pOrderBy==0 ); 2750 2751 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2752 assert( p->addrOpenEphm[0] == -1 ); 2753 p->addrOpenEphm[0] = addr; 2754 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2755 assert( p->pEList ); 2756 2757 /* Code the SELECTs to our left into temporary table "tab1". 2758 */ 2759 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2760 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2761 if( rc ){ 2762 goto multi_select_end; 2763 } 2764 2765 /* Code the current SELECT into temporary table "tab2" 2766 */ 2767 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2768 assert( p->addrOpenEphm[1] == -1 ); 2769 p->addrOpenEphm[1] = addr; 2770 p->pPrior = 0; 2771 pLimit = p->pLimit; 2772 p->pLimit = 0; 2773 intersectdest.iSDParm = tab2; 2774 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2775 selectOpName(p->op))); 2776 rc = sqlite3Select(pParse, p, &intersectdest); 2777 testcase( rc!=SQLITE_OK ); 2778 pDelete = p->pPrior; 2779 p->pPrior = pPrior; 2780 if( p->nSelectRow>pPrior->nSelectRow ){ 2781 p->nSelectRow = pPrior->nSelectRow; 2782 } 2783 sqlite3ExprDelete(db, p->pLimit); 2784 p->pLimit = pLimit; 2785 2786 /* Generate code to take the intersection of the two temporary 2787 ** tables. 2788 */ 2789 assert( p->pEList ); 2790 iBreak = sqlite3VdbeMakeLabel(v); 2791 iCont = sqlite3VdbeMakeLabel(v); 2792 computeLimitRegisters(pParse, p, iBreak); 2793 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2794 r1 = sqlite3GetTempReg(pParse); 2795 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2796 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2797 VdbeCoverage(v); 2798 sqlite3ReleaseTempReg(pParse, r1); 2799 selectInnerLoop(pParse, p, tab1, 2800 0, 0, &dest, iCont, iBreak); 2801 sqlite3VdbeResolveLabel(v, iCont); 2802 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2803 sqlite3VdbeResolveLabel(v, iBreak); 2804 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2805 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2806 break; 2807 } 2808 } 2809 2810 #ifndef SQLITE_OMIT_EXPLAIN 2811 if( p->pNext==0 ){ 2812 ExplainQueryPlanPop(pParse); 2813 } 2814 #endif 2815 } 2816 2817 /* Compute collating sequences used by 2818 ** temporary tables needed to implement the compound select. 2819 ** Attach the KeyInfo structure to all temporary tables. 2820 ** 2821 ** This section is run by the right-most SELECT statement only. 2822 ** SELECT statements to the left always skip this part. The right-most 2823 ** SELECT might also skip this part if it has no ORDER BY clause and 2824 ** no temp tables are required. 2825 */ 2826 if( p->selFlags & SF_UsesEphemeral ){ 2827 int i; /* Loop counter */ 2828 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2829 Select *pLoop; /* For looping through SELECT statements */ 2830 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2831 int nCol; /* Number of columns in result set */ 2832 2833 assert( p->pNext==0 ); 2834 nCol = p->pEList->nExpr; 2835 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2836 if( !pKeyInfo ){ 2837 rc = SQLITE_NOMEM_BKPT; 2838 goto multi_select_end; 2839 } 2840 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2841 *apColl = multiSelectCollSeq(pParse, p, i); 2842 if( 0==*apColl ){ 2843 *apColl = db->pDfltColl; 2844 } 2845 } 2846 2847 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2848 for(i=0; i<2; i++){ 2849 int addr = pLoop->addrOpenEphm[i]; 2850 if( addr<0 ){ 2851 /* If [0] is unused then [1] is also unused. So we can 2852 ** always safely abort as soon as the first unused slot is found */ 2853 assert( pLoop->addrOpenEphm[1]<0 ); 2854 break; 2855 } 2856 sqlite3VdbeChangeP2(v, addr, nCol); 2857 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2858 P4_KEYINFO); 2859 pLoop->addrOpenEphm[i] = -1; 2860 } 2861 } 2862 sqlite3KeyInfoUnref(pKeyInfo); 2863 } 2864 2865 multi_select_end: 2866 pDest->iSdst = dest.iSdst; 2867 pDest->nSdst = dest.nSdst; 2868 sqlite3SelectDelete(db, pDelete); 2869 return rc; 2870 } 2871 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2872 2873 /* 2874 ** Error message for when two or more terms of a compound select have different 2875 ** size result sets. 2876 */ 2877 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2878 if( p->selFlags & SF_Values ){ 2879 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2880 }else{ 2881 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2882 " do not have the same number of result columns", selectOpName(p->op)); 2883 } 2884 } 2885 2886 /* 2887 ** Code an output subroutine for a coroutine implementation of a 2888 ** SELECT statment. 2889 ** 2890 ** The data to be output is contained in pIn->iSdst. There are 2891 ** pIn->nSdst columns to be output. pDest is where the output should 2892 ** be sent. 2893 ** 2894 ** regReturn is the number of the register holding the subroutine 2895 ** return address. 2896 ** 2897 ** If regPrev>0 then it is the first register in a vector that 2898 ** records the previous output. mem[regPrev] is a flag that is false 2899 ** if there has been no previous output. If regPrev>0 then code is 2900 ** generated to suppress duplicates. pKeyInfo is used for comparing 2901 ** keys. 2902 ** 2903 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2904 ** iBreak. 2905 */ 2906 static int generateOutputSubroutine( 2907 Parse *pParse, /* Parsing context */ 2908 Select *p, /* The SELECT statement */ 2909 SelectDest *pIn, /* Coroutine supplying data */ 2910 SelectDest *pDest, /* Where to send the data */ 2911 int regReturn, /* The return address register */ 2912 int regPrev, /* Previous result register. No uniqueness if 0 */ 2913 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2914 int iBreak /* Jump here if we hit the LIMIT */ 2915 ){ 2916 Vdbe *v = pParse->pVdbe; 2917 int iContinue; 2918 int addr; 2919 2920 addr = sqlite3VdbeCurrentAddr(v); 2921 iContinue = sqlite3VdbeMakeLabel(v); 2922 2923 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2924 */ 2925 if( regPrev ){ 2926 int addr1, addr2; 2927 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2928 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2929 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2930 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2931 sqlite3VdbeJumpHere(v, addr1); 2932 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2933 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2934 } 2935 if( pParse->db->mallocFailed ) return 0; 2936 2937 /* Suppress the first OFFSET entries if there is an OFFSET clause 2938 */ 2939 codeOffset(v, p->iOffset, iContinue); 2940 2941 assert( pDest->eDest!=SRT_Exists ); 2942 assert( pDest->eDest!=SRT_Table ); 2943 switch( pDest->eDest ){ 2944 /* Store the result as data using a unique key. 2945 */ 2946 case SRT_EphemTab: { 2947 int r1 = sqlite3GetTempReg(pParse); 2948 int r2 = sqlite3GetTempReg(pParse); 2949 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2950 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2951 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2952 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2953 sqlite3ReleaseTempReg(pParse, r2); 2954 sqlite3ReleaseTempReg(pParse, r1); 2955 break; 2956 } 2957 2958 #ifndef SQLITE_OMIT_SUBQUERY 2959 /* If we are creating a set for an "expr IN (SELECT ...)". 2960 */ 2961 case SRT_Set: { 2962 int r1; 2963 testcase( pIn->nSdst>1 ); 2964 r1 = sqlite3GetTempReg(pParse); 2965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2966 r1, pDest->zAffSdst, pIn->nSdst); 2967 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2968 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2969 pIn->iSdst, pIn->nSdst); 2970 sqlite3ReleaseTempReg(pParse, r1); 2971 break; 2972 } 2973 2974 /* If this is a scalar select that is part of an expression, then 2975 ** store the results in the appropriate memory cell and break out 2976 ** of the scan loop. 2977 */ 2978 case SRT_Mem: { 2979 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2980 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2981 /* The LIMIT clause will jump out of the loop for us */ 2982 break; 2983 } 2984 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2985 2986 /* The results are stored in a sequence of registers 2987 ** starting at pDest->iSdst. Then the co-routine yields. 2988 */ 2989 case SRT_Coroutine: { 2990 if( pDest->iSdst==0 ){ 2991 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2992 pDest->nSdst = pIn->nSdst; 2993 } 2994 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2995 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2996 break; 2997 } 2998 2999 /* If none of the above, then the result destination must be 3000 ** SRT_Output. This routine is never called with any other 3001 ** destination other than the ones handled above or SRT_Output. 3002 ** 3003 ** For SRT_Output, results are stored in a sequence of registers. 3004 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3005 ** return the next row of result. 3006 */ 3007 default: { 3008 assert( pDest->eDest==SRT_Output ); 3009 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3010 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 3011 break; 3012 } 3013 } 3014 3015 /* Jump to the end of the loop if the LIMIT is reached. 3016 */ 3017 if( p->iLimit ){ 3018 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3019 } 3020 3021 /* Generate the subroutine return 3022 */ 3023 sqlite3VdbeResolveLabel(v, iContinue); 3024 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3025 3026 return addr; 3027 } 3028 3029 /* 3030 ** Alternative compound select code generator for cases when there 3031 ** is an ORDER BY clause. 3032 ** 3033 ** We assume a query of the following form: 3034 ** 3035 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3036 ** 3037 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3038 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3039 ** co-routines. Then run the co-routines in parallel and merge the results 3040 ** into the output. In addition to the two coroutines (called selectA and 3041 ** selectB) there are 7 subroutines: 3042 ** 3043 ** outA: Move the output of the selectA coroutine into the output 3044 ** of the compound query. 3045 ** 3046 ** outB: Move the output of the selectB coroutine into the output 3047 ** of the compound query. (Only generated for UNION and 3048 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3049 ** appears only in B.) 3050 ** 3051 ** AltB: Called when there is data from both coroutines and A<B. 3052 ** 3053 ** AeqB: Called when there is data from both coroutines and A==B. 3054 ** 3055 ** AgtB: Called when there is data from both coroutines and A>B. 3056 ** 3057 ** EofA: Called when data is exhausted from selectA. 3058 ** 3059 ** EofB: Called when data is exhausted from selectB. 3060 ** 3061 ** The implementation of the latter five subroutines depend on which 3062 ** <operator> is used: 3063 ** 3064 ** 3065 ** UNION ALL UNION EXCEPT INTERSECT 3066 ** ------------- ----------------- -------------- ----------------- 3067 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3068 ** 3069 ** AeqB: outA, nextA nextA nextA outA, nextA 3070 ** 3071 ** AgtB: outB, nextB outB, nextB nextB nextB 3072 ** 3073 ** EofA: outB, nextB outB, nextB halt halt 3074 ** 3075 ** EofB: outA, nextA outA, nextA outA, nextA halt 3076 ** 3077 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3078 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3079 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3080 ** following nextX causes a jump to the end of the select processing. 3081 ** 3082 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3083 ** within the output subroutine. The regPrev register set holds the previously 3084 ** output value. A comparison is made against this value and the output 3085 ** is skipped if the next results would be the same as the previous. 3086 ** 3087 ** The implementation plan is to implement the two coroutines and seven 3088 ** subroutines first, then put the control logic at the bottom. Like this: 3089 ** 3090 ** goto Init 3091 ** coA: coroutine for left query (A) 3092 ** coB: coroutine for right query (B) 3093 ** outA: output one row of A 3094 ** outB: output one row of B (UNION and UNION ALL only) 3095 ** EofA: ... 3096 ** EofB: ... 3097 ** AltB: ... 3098 ** AeqB: ... 3099 ** AgtB: ... 3100 ** Init: initialize coroutine registers 3101 ** yield coA 3102 ** if eof(A) goto EofA 3103 ** yield coB 3104 ** if eof(B) goto EofB 3105 ** Cmpr: Compare A, B 3106 ** Jump AltB, AeqB, AgtB 3107 ** End: ... 3108 ** 3109 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3110 ** actually called using Gosub and they do not Return. EofA and EofB loop 3111 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3112 ** and AgtB jump to either L2 or to one of EofA or EofB. 3113 */ 3114 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3115 static int multiSelectOrderBy( 3116 Parse *pParse, /* Parsing context */ 3117 Select *p, /* The right-most of SELECTs to be coded */ 3118 SelectDest *pDest /* What to do with query results */ 3119 ){ 3120 int i, j; /* Loop counters */ 3121 Select *pPrior; /* Another SELECT immediately to our left */ 3122 Vdbe *v; /* Generate code to this VDBE */ 3123 SelectDest destA; /* Destination for coroutine A */ 3124 SelectDest destB; /* Destination for coroutine B */ 3125 int regAddrA; /* Address register for select-A coroutine */ 3126 int regAddrB; /* Address register for select-B coroutine */ 3127 int addrSelectA; /* Address of the select-A coroutine */ 3128 int addrSelectB; /* Address of the select-B coroutine */ 3129 int regOutA; /* Address register for the output-A subroutine */ 3130 int regOutB; /* Address register for the output-B subroutine */ 3131 int addrOutA; /* Address of the output-A subroutine */ 3132 int addrOutB = 0; /* Address of the output-B subroutine */ 3133 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3134 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3135 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3136 int addrAltB; /* Address of the A<B subroutine */ 3137 int addrAeqB; /* Address of the A==B subroutine */ 3138 int addrAgtB; /* Address of the A>B subroutine */ 3139 int regLimitA; /* Limit register for select-A */ 3140 int regLimitB; /* Limit register for select-A */ 3141 int regPrev; /* A range of registers to hold previous output */ 3142 int savedLimit; /* Saved value of p->iLimit */ 3143 int savedOffset; /* Saved value of p->iOffset */ 3144 int labelCmpr; /* Label for the start of the merge algorithm */ 3145 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3146 int addr1; /* Jump instructions that get retargetted */ 3147 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3148 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3149 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3150 sqlite3 *db; /* Database connection */ 3151 ExprList *pOrderBy; /* The ORDER BY clause */ 3152 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3153 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3154 3155 assert( p->pOrderBy!=0 ); 3156 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3157 db = pParse->db; 3158 v = pParse->pVdbe; 3159 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3160 labelEnd = sqlite3VdbeMakeLabel(v); 3161 labelCmpr = sqlite3VdbeMakeLabel(v); 3162 3163 3164 /* Patch up the ORDER BY clause 3165 */ 3166 op = p->op; 3167 pPrior = p->pPrior; 3168 assert( pPrior->pOrderBy==0 ); 3169 pOrderBy = p->pOrderBy; 3170 assert( pOrderBy ); 3171 nOrderBy = pOrderBy->nExpr; 3172 3173 /* For operators other than UNION ALL we have to make sure that 3174 ** the ORDER BY clause covers every term of the result set. Add 3175 ** terms to the ORDER BY clause as necessary. 3176 */ 3177 if( op!=TK_ALL ){ 3178 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3179 struct ExprList_item *pItem; 3180 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3181 assert( pItem->u.x.iOrderByCol>0 ); 3182 if( pItem->u.x.iOrderByCol==i ) break; 3183 } 3184 if( j==nOrderBy ){ 3185 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3186 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3187 pNew->flags |= EP_IntValue; 3188 pNew->u.iValue = i; 3189 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3190 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3191 } 3192 } 3193 } 3194 3195 /* Compute the comparison permutation and keyinfo that is used with 3196 ** the permutation used to determine if the next 3197 ** row of results comes from selectA or selectB. Also add explicit 3198 ** collations to the ORDER BY clause terms so that when the subqueries 3199 ** to the right and the left are evaluated, they use the correct 3200 ** collation. 3201 */ 3202 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3203 if( aPermute ){ 3204 struct ExprList_item *pItem; 3205 aPermute[0] = nOrderBy; 3206 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3207 assert( pItem->u.x.iOrderByCol>0 ); 3208 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3209 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3210 } 3211 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3212 }else{ 3213 pKeyMerge = 0; 3214 } 3215 3216 /* Reattach the ORDER BY clause to the query. 3217 */ 3218 p->pOrderBy = pOrderBy; 3219 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3220 3221 /* Allocate a range of temporary registers and the KeyInfo needed 3222 ** for the logic that removes duplicate result rows when the 3223 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3224 */ 3225 if( op==TK_ALL ){ 3226 regPrev = 0; 3227 }else{ 3228 int nExpr = p->pEList->nExpr; 3229 assert( nOrderBy>=nExpr || db->mallocFailed ); 3230 regPrev = pParse->nMem+1; 3231 pParse->nMem += nExpr+1; 3232 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3233 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3234 if( pKeyDup ){ 3235 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3236 for(i=0; i<nExpr; i++){ 3237 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3238 pKeyDup->aSortOrder[i] = 0; 3239 } 3240 } 3241 } 3242 3243 /* Separate the left and the right query from one another 3244 */ 3245 p->pPrior = 0; 3246 pPrior->pNext = 0; 3247 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3248 if( pPrior->pPrior==0 ){ 3249 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3250 } 3251 3252 /* Compute the limit registers */ 3253 computeLimitRegisters(pParse, p, labelEnd); 3254 if( p->iLimit && op==TK_ALL ){ 3255 regLimitA = ++pParse->nMem; 3256 regLimitB = ++pParse->nMem; 3257 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3258 regLimitA); 3259 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3260 }else{ 3261 regLimitA = regLimitB = 0; 3262 } 3263 sqlite3ExprDelete(db, p->pLimit); 3264 p->pLimit = 0; 3265 3266 regAddrA = ++pParse->nMem; 3267 regAddrB = ++pParse->nMem; 3268 regOutA = ++pParse->nMem; 3269 regOutB = ++pParse->nMem; 3270 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3271 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3272 3273 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3274 3275 /* Generate a coroutine to evaluate the SELECT statement to the 3276 ** left of the compound operator - the "A" select. 3277 */ 3278 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3279 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3280 VdbeComment((v, "left SELECT")); 3281 pPrior->iLimit = regLimitA; 3282 ExplainQueryPlan((pParse, 1, "LEFT")); 3283 sqlite3Select(pParse, pPrior, &destA); 3284 sqlite3VdbeEndCoroutine(v, regAddrA); 3285 sqlite3VdbeJumpHere(v, addr1); 3286 3287 /* Generate a coroutine to evaluate the SELECT statement on 3288 ** the right - the "B" select 3289 */ 3290 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3291 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3292 VdbeComment((v, "right SELECT")); 3293 savedLimit = p->iLimit; 3294 savedOffset = p->iOffset; 3295 p->iLimit = regLimitB; 3296 p->iOffset = 0; 3297 ExplainQueryPlan((pParse, 1, "RIGHT")); 3298 sqlite3Select(pParse, p, &destB); 3299 p->iLimit = savedLimit; 3300 p->iOffset = savedOffset; 3301 sqlite3VdbeEndCoroutine(v, regAddrB); 3302 3303 /* Generate a subroutine that outputs the current row of the A 3304 ** select as the next output row of the compound select. 3305 */ 3306 VdbeNoopComment((v, "Output routine for A")); 3307 addrOutA = generateOutputSubroutine(pParse, 3308 p, &destA, pDest, regOutA, 3309 regPrev, pKeyDup, labelEnd); 3310 3311 /* Generate a subroutine that outputs the current row of the B 3312 ** select as the next output row of the compound select. 3313 */ 3314 if( op==TK_ALL || op==TK_UNION ){ 3315 VdbeNoopComment((v, "Output routine for B")); 3316 addrOutB = generateOutputSubroutine(pParse, 3317 p, &destB, pDest, regOutB, 3318 regPrev, pKeyDup, labelEnd); 3319 } 3320 sqlite3KeyInfoUnref(pKeyDup); 3321 3322 /* Generate a subroutine to run when the results from select A 3323 ** are exhausted and only data in select B remains. 3324 */ 3325 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3326 addrEofA_noB = addrEofA = labelEnd; 3327 }else{ 3328 VdbeNoopComment((v, "eof-A subroutine")); 3329 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3330 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3331 VdbeCoverage(v); 3332 sqlite3VdbeGoto(v, addrEofA); 3333 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3334 } 3335 3336 /* Generate a subroutine to run when the results from select B 3337 ** are exhausted and only data in select A remains. 3338 */ 3339 if( op==TK_INTERSECT ){ 3340 addrEofB = addrEofA; 3341 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3342 }else{ 3343 VdbeNoopComment((v, "eof-B subroutine")); 3344 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3345 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3346 sqlite3VdbeGoto(v, addrEofB); 3347 } 3348 3349 /* Generate code to handle the case of A<B 3350 */ 3351 VdbeNoopComment((v, "A-lt-B subroutine")); 3352 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3353 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3354 sqlite3VdbeGoto(v, labelCmpr); 3355 3356 /* Generate code to handle the case of A==B 3357 */ 3358 if( op==TK_ALL ){ 3359 addrAeqB = addrAltB; 3360 }else if( op==TK_INTERSECT ){ 3361 addrAeqB = addrAltB; 3362 addrAltB++; 3363 }else{ 3364 VdbeNoopComment((v, "A-eq-B subroutine")); 3365 addrAeqB = 3366 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3367 sqlite3VdbeGoto(v, labelCmpr); 3368 } 3369 3370 /* Generate code to handle the case of A>B 3371 */ 3372 VdbeNoopComment((v, "A-gt-B subroutine")); 3373 addrAgtB = sqlite3VdbeCurrentAddr(v); 3374 if( op==TK_ALL || op==TK_UNION ){ 3375 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3376 } 3377 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3378 sqlite3VdbeGoto(v, labelCmpr); 3379 3380 /* This code runs once to initialize everything. 3381 */ 3382 sqlite3VdbeJumpHere(v, addr1); 3383 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3384 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3385 3386 /* Implement the main merge loop 3387 */ 3388 sqlite3VdbeResolveLabel(v, labelCmpr); 3389 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3390 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3391 (char*)pKeyMerge, P4_KEYINFO); 3392 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3393 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3394 3395 /* Jump to the this point in order to terminate the query. 3396 */ 3397 sqlite3VdbeResolveLabel(v, labelEnd); 3398 3399 /* Reassembly the compound query so that it will be freed correctly 3400 ** by the calling function */ 3401 if( p->pPrior ){ 3402 sqlite3SelectDelete(db, p->pPrior); 3403 } 3404 p->pPrior = pPrior; 3405 pPrior->pNext = p; 3406 3407 /*** TBD: Insert subroutine calls to close cursors on incomplete 3408 **** subqueries ****/ 3409 ExplainQueryPlanPop(pParse); 3410 return pParse->nErr!=0; 3411 } 3412 #endif 3413 3414 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3415 3416 /* An instance of the SubstContext object describes an substitution edit 3417 ** to be performed on a parse tree. 3418 ** 3419 ** All references to columns in table iTable are to be replaced by corresponding 3420 ** expressions in pEList. 3421 */ 3422 typedef struct SubstContext { 3423 Parse *pParse; /* The parsing context */ 3424 int iTable; /* Replace references to this table */ 3425 int iNewTable; /* New table number */ 3426 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3427 ExprList *pEList; /* Replacement expressions */ 3428 } SubstContext; 3429 3430 /* Forward Declarations */ 3431 static void substExprList(SubstContext*, ExprList*); 3432 static void substSelect(SubstContext*, Select*, int); 3433 3434 /* 3435 ** Scan through the expression pExpr. Replace every reference to 3436 ** a column in table number iTable with a copy of the iColumn-th 3437 ** entry in pEList. (But leave references to the ROWID column 3438 ** unchanged.) 3439 ** 3440 ** This routine is part of the flattening procedure. A subquery 3441 ** whose result set is defined by pEList appears as entry in the 3442 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3443 ** FORM clause entry is iTable. This routine makes the necessary 3444 ** changes to pExpr so that it refers directly to the source table 3445 ** of the subquery rather the result set of the subquery. 3446 */ 3447 static Expr *substExpr( 3448 SubstContext *pSubst, /* Description of the substitution */ 3449 Expr *pExpr /* Expr in which substitution occurs */ 3450 ){ 3451 if( pExpr==0 ) return 0; 3452 if( ExprHasProperty(pExpr, EP_FromJoin) 3453 && pExpr->iRightJoinTable==pSubst->iTable 3454 ){ 3455 pExpr->iRightJoinTable = pSubst->iNewTable; 3456 } 3457 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3458 if( pExpr->iColumn<0 ){ 3459 pExpr->op = TK_NULL; 3460 }else{ 3461 Expr *pNew; 3462 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3463 Expr ifNullRow; 3464 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3465 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3466 if( sqlite3ExprIsVector(pCopy) ){ 3467 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3468 }else{ 3469 sqlite3 *db = pSubst->pParse->db; 3470 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3471 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3472 ifNullRow.op = TK_IF_NULL_ROW; 3473 ifNullRow.pLeft = pCopy; 3474 ifNullRow.iTable = pSubst->iNewTable; 3475 pCopy = &ifNullRow; 3476 } 3477 pNew = sqlite3ExprDup(db, pCopy, 0); 3478 if( pNew && pSubst->isLeftJoin ){ 3479 ExprSetProperty(pNew, EP_CanBeNull); 3480 } 3481 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3482 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3483 ExprSetProperty(pNew, EP_FromJoin); 3484 } 3485 sqlite3ExprDelete(db, pExpr); 3486 pExpr = pNew; 3487 } 3488 } 3489 }else{ 3490 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3491 pExpr->iTable = pSubst->iNewTable; 3492 } 3493 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3494 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3495 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3496 substSelect(pSubst, pExpr->x.pSelect, 1); 3497 }else{ 3498 substExprList(pSubst, pExpr->x.pList); 3499 } 3500 } 3501 return pExpr; 3502 } 3503 static void substExprList( 3504 SubstContext *pSubst, /* Description of the substitution */ 3505 ExprList *pList /* List to scan and in which to make substitutes */ 3506 ){ 3507 int i; 3508 if( pList==0 ) return; 3509 for(i=0; i<pList->nExpr; i++){ 3510 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3511 } 3512 } 3513 static void substSelect( 3514 SubstContext *pSubst, /* Description of the substitution */ 3515 Select *p, /* SELECT statement in which to make substitutions */ 3516 int doPrior /* Do substitutes on p->pPrior too */ 3517 ){ 3518 SrcList *pSrc; 3519 struct SrcList_item *pItem; 3520 int i; 3521 if( !p ) return; 3522 do{ 3523 substExprList(pSubst, p->pEList); 3524 substExprList(pSubst, p->pGroupBy); 3525 substExprList(pSubst, p->pOrderBy); 3526 p->pHaving = substExpr(pSubst, p->pHaving); 3527 p->pWhere = substExpr(pSubst, p->pWhere); 3528 pSrc = p->pSrc; 3529 assert( pSrc!=0 ); 3530 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3531 substSelect(pSubst, pItem->pSelect, 1); 3532 if( pItem->fg.isTabFunc ){ 3533 substExprList(pSubst, pItem->u1.pFuncArg); 3534 } 3535 } 3536 }while( doPrior && (p = p->pPrior)!=0 ); 3537 } 3538 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3539 3540 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3541 /* 3542 ** This routine attempts to flatten subqueries as a performance optimization. 3543 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3544 ** 3545 ** To understand the concept of flattening, consider the following 3546 ** query: 3547 ** 3548 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3549 ** 3550 ** The default way of implementing this query is to execute the 3551 ** subquery first and store the results in a temporary table, then 3552 ** run the outer query on that temporary table. This requires two 3553 ** passes over the data. Furthermore, because the temporary table 3554 ** has no indices, the WHERE clause on the outer query cannot be 3555 ** optimized. 3556 ** 3557 ** This routine attempts to rewrite queries such as the above into 3558 ** a single flat select, like this: 3559 ** 3560 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3561 ** 3562 ** The code generated for this simplification gives the same result 3563 ** but only has to scan the data once. And because indices might 3564 ** exist on the table t1, a complete scan of the data might be 3565 ** avoided. 3566 ** 3567 ** Flattening is subject to the following constraints: 3568 ** 3569 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3570 ** The subquery and the outer query cannot both be aggregates. 3571 ** 3572 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3573 ** (2) If the subquery is an aggregate then 3574 ** (2a) the outer query must not be a join and 3575 ** (2b) the outer query must not use subqueries 3576 ** other than the one FROM-clause subquery that is a candidate 3577 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3578 ** from 2015-02-09.) 3579 ** 3580 ** (3) If the subquery is the right operand of a LEFT JOIN then 3581 ** (3a) the subquery may not be a join and 3582 ** (3b) the FROM clause of the subquery may not contain a virtual 3583 ** table and 3584 ** (3c) the outer query may not be an aggregate. 3585 ** 3586 ** (4) The subquery can not be DISTINCT. 3587 ** 3588 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3589 ** sub-queries that were excluded from this optimization. Restriction 3590 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3591 ** 3592 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3593 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3594 ** 3595 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3596 ** A FROM clause, consider adding a FROM clause with the special 3597 ** table sqlite_once that consists of a single row containing a 3598 ** single NULL. 3599 ** 3600 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3601 ** 3602 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3603 ** 3604 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3605 ** accidently carried the comment forward until 2014-09-15. Original 3606 ** constraint: "If the subquery is aggregate then the outer query 3607 ** may not use LIMIT." 3608 ** 3609 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3610 ** 3611 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3612 ** a separate restriction deriving from ticket #350. 3613 ** 3614 ** (13) The subquery and outer query may not both use LIMIT. 3615 ** 3616 ** (14) The subquery may not use OFFSET. 3617 ** 3618 ** (15) If the outer query is part of a compound select, then the 3619 ** subquery may not use LIMIT. 3620 ** (See ticket #2339 and ticket [02a8e81d44]). 3621 ** 3622 ** (16) If the outer query is aggregate, then the subquery may not 3623 ** use ORDER BY. (Ticket #2942) This used to not matter 3624 ** until we introduced the group_concat() function. 3625 ** 3626 ** (17) If the subquery is a compound select, then 3627 ** (17a) all compound operators must be a UNION ALL, and 3628 ** (17b) no terms within the subquery compound may be aggregate 3629 ** or DISTINCT, and 3630 ** (17c) every term within the subquery compound must have a FROM clause 3631 ** (17d) the outer query may not be 3632 ** (17d1) aggregate, or 3633 ** (17d2) DISTINCT, or 3634 ** (17d3) a join. 3635 ** 3636 ** The parent and sub-query may contain WHERE clauses. Subject to 3637 ** rules (11), (13) and (14), they may also contain ORDER BY, 3638 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3639 ** operator other than UNION ALL because all the other compound 3640 ** operators have an implied DISTINCT which is disallowed by 3641 ** restriction (4). 3642 ** 3643 ** Also, each component of the sub-query must return the same number 3644 ** of result columns. This is actually a requirement for any compound 3645 ** SELECT statement, but all the code here does is make sure that no 3646 ** such (illegal) sub-query is flattened. The caller will detect the 3647 ** syntax error and return a detailed message. 3648 ** 3649 ** (18) If the sub-query is a compound select, then all terms of the 3650 ** ORDER BY clause of the parent must be simple references to 3651 ** columns of the sub-query. 3652 ** 3653 ** (19) If the subquery uses LIMIT then the outer query may not 3654 ** have a WHERE clause. 3655 ** 3656 ** (20) If the sub-query is a compound select, then it must not use 3657 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3658 ** somewhat by saying that the terms of the ORDER BY clause must 3659 ** appear as unmodified result columns in the outer query. But we 3660 ** have other optimizations in mind to deal with that case. 3661 ** 3662 ** (21) If the subquery uses LIMIT then the outer query may not be 3663 ** DISTINCT. (See ticket [752e1646fc]). 3664 ** 3665 ** (22) The subquery may not be a recursive CTE. 3666 ** 3667 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3668 ** a recursive CTE, then the sub-query may not be a compound query. 3669 ** This restriction is because transforming the 3670 ** parent to a compound query confuses the code that handles 3671 ** recursive queries in multiSelect(). 3672 ** 3673 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3674 ** The subquery may not be an aggregate that uses the built-in min() or 3675 ** or max() functions. (Without this restriction, a query like: 3676 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3677 ** return the value X for which Y was maximal.) 3678 ** 3679 ** 3680 ** In this routine, the "p" parameter is a pointer to the outer query. 3681 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3682 ** uses aggregates. 3683 ** 3684 ** If flattening is not attempted, this routine is a no-op and returns 0. 3685 ** If flattening is attempted this routine returns 1. 3686 ** 3687 ** All of the expression analysis must occur on both the outer query and 3688 ** the subquery before this routine runs. 3689 */ 3690 static int flattenSubquery( 3691 Parse *pParse, /* Parsing context */ 3692 Select *p, /* The parent or outer SELECT statement */ 3693 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3694 int isAgg /* True if outer SELECT uses aggregate functions */ 3695 ){ 3696 const char *zSavedAuthContext = pParse->zAuthContext; 3697 Select *pParent; /* Current UNION ALL term of the other query */ 3698 Select *pSub; /* The inner query or "subquery" */ 3699 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3700 SrcList *pSrc; /* The FROM clause of the outer query */ 3701 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3702 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3703 int iNewParent = -1;/* Replacement table for iParent */ 3704 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3705 int i; /* Loop counter */ 3706 Expr *pWhere; /* The WHERE clause */ 3707 struct SrcList_item *pSubitem; /* The subquery */ 3708 sqlite3 *db = pParse->db; 3709 3710 /* Check to see if flattening is permitted. Return 0 if not. 3711 */ 3712 assert( p!=0 ); 3713 assert( p->pPrior==0 ); 3714 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3715 pSrc = p->pSrc; 3716 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3717 pSubitem = &pSrc->a[iFrom]; 3718 iParent = pSubitem->iCursor; 3719 pSub = pSubitem->pSelect; 3720 assert( pSub!=0 ); 3721 3722 pSubSrc = pSub->pSrc; 3723 assert( pSubSrc ); 3724 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3725 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3726 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3727 ** became arbitrary expressions, we were forced to add restrictions (13) 3728 ** and (14). */ 3729 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3730 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3731 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3732 return 0; /* Restriction (15) */ 3733 } 3734 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3735 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3736 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3737 return 0; /* Restrictions (8)(9) */ 3738 } 3739 if( p->pOrderBy && pSub->pOrderBy ){ 3740 return 0; /* Restriction (11) */ 3741 } 3742 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3743 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3744 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3745 return 0; /* Restriction (21) */ 3746 } 3747 if( pSub->selFlags & (SF_Recursive) ){ 3748 return 0; /* Restrictions (22) */ 3749 } 3750 3751 /* 3752 ** If the subquery is the right operand of a LEFT JOIN, then the 3753 ** subquery may not be a join itself (3a). Example of why this is not 3754 ** allowed: 3755 ** 3756 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3757 ** 3758 ** If we flatten the above, we would get 3759 ** 3760 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3761 ** 3762 ** which is not at all the same thing. 3763 ** 3764 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3765 ** query cannot be an aggregate. (3c) This is an artifact of the way 3766 ** aggregates are processed - there is no mechanism to determine if 3767 ** the LEFT JOIN table should be all-NULL. 3768 ** 3769 ** See also tickets #306, #350, and #3300. 3770 */ 3771 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3772 isLeftJoin = 1; 3773 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3774 /* (3a) (3c) (3b) */ 3775 return 0; 3776 } 3777 } 3778 #ifdef SQLITE_EXTRA_IFNULLROW 3779 else if( iFrom>0 && !isAgg ){ 3780 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3781 ** every reference to any result column from subquery in a join, even 3782 ** though they are not necessary. This will stress-test the OP_IfNullRow 3783 ** opcode. */ 3784 isLeftJoin = -1; 3785 } 3786 #endif 3787 3788 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3789 ** use only the UNION ALL operator. And none of the simple select queries 3790 ** that make up the compound SELECT are allowed to be aggregate or distinct 3791 ** queries. 3792 */ 3793 if( pSub->pPrior ){ 3794 if( pSub->pOrderBy ){ 3795 return 0; /* Restriction (20) */ 3796 } 3797 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3798 return 0; /* (17d1), (17d2), or (17d3) */ 3799 } 3800 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3801 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3802 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3803 assert( pSub->pSrc!=0 ); 3804 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3805 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3806 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3807 || pSub1->pSrc->nSrc<1 /* (17c) */ 3808 ){ 3809 return 0; 3810 } 3811 testcase( pSub1->pSrc->nSrc>1 ); 3812 } 3813 3814 /* Restriction (18). */ 3815 if( p->pOrderBy ){ 3816 int ii; 3817 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3818 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3819 } 3820 } 3821 } 3822 3823 /* Ex-restriction (23): 3824 ** The only way that the recursive part of a CTE can contain a compound 3825 ** subquery is for the subquery to be one term of a join. But if the 3826 ** subquery is a join, then the flattening has already been stopped by 3827 ** restriction (17d3) 3828 */ 3829 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3830 3831 /***** If we reach this point, flattening is permitted. *****/ 3832 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3833 pSub->zSelName, pSub, iFrom)); 3834 3835 /* Authorize the subquery */ 3836 pParse->zAuthContext = pSubitem->zName; 3837 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3838 testcase( i==SQLITE_DENY ); 3839 pParse->zAuthContext = zSavedAuthContext; 3840 3841 /* If the sub-query is a compound SELECT statement, then (by restrictions 3842 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3843 ** be of the form: 3844 ** 3845 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3846 ** 3847 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3848 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3849 ** OFFSET clauses and joins them to the left-hand-side of the original 3850 ** using UNION ALL operators. In this case N is the number of simple 3851 ** select statements in the compound sub-query. 3852 ** 3853 ** Example: 3854 ** 3855 ** SELECT a+1 FROM ( 3856 ** SELECT x FROM tab 3857 ** UNION ALL 3858 ** SELECT y FROM tab 3859 ** UNION ALL 3860 ** SELECT abs(z*2) FROM tab2 3861 ** ) WHERE a!=5 ORDER BY 1 3862 ** 3863 ** Transformed into: 3864 ** 3865 ** SELECT x+1 FROM tab WHERE x+1!=5 3866 ** UNION ALL 3867 ** SELECT y+1 FROM tab WHERE y+1!=5 3868 ** UNION ALL 3869 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3870 ** ORDER BY 1 3871 ** 3872 ** We call this the "compound-subquery flattening". 3873 */ 3874 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3875 Select *pNew; 3876 ExprList *pOrderBy = p->pOrderBy; 3877 Expr *pLimit = p->pLimit; 3878 Select *pPrior = p->pPrior; 3879 p->pOrderBy = 0; 3880 p->pSrc = 0; 3881 p->pPrior = 0; 3882 p->pLimit = 0; 3883 pNew = sqlite3SelectDup(db, p, 0); 3884 sqlite3SelectSetName(pNew, pSub->zSelName); 3885 p->pLimit = pLimit; 3886 p->pOrderBy = pOrderBy; 3887 p->pSrc = pSrc; 3888 p->op = TK_ALL; 3889 if( pNew==0 ){ 3890 p->pPrior = pPrior; 3891 }else{ 3892 pNew->pPrior = pPrior; 3893 if( pPrior ) pPrior->pNext = pNew; 3894 pNew->pNext = p; 3895 p->pPrior = pNew; 3896 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3897 " creates %s.%p as peer\n",pNew->zSelName, pNew)); 3898 } 3899 if( db->mallocFailed ) return 1; 3900 } 3901 3902 /* Begin flattening the iFrom-th entry of the FROM clause 3903 ** in the outer query. 3904 */ 3905 pSub = pSub1 = pSubitem->pSelect; 3906 3907 /* Delete the transient table structure associated with the 3908 ** subquery 3909 */ 3910 sqlite3DbFree(db, pSubitem->zDatabase); 3911 sqlite3DbFree(db, pSubitem->zName); 3912 sqlite3DbFree(db, pSubitem->zAlias); 3913 pSubitem->zDatabase = 0; 3914 pSubitem->zName = 0; 3915 pSubitem->zAlias = 0; 3916 pSubitem->pSelect = 0; 3917 3918 /* Defer deleting the Table object associated with the 3919 ** subquery until code generation is 3920 ** complete, since there may still exist Expr.pTab entries that 3921 ** refer to the subquery even after flattening. Ticket #3346. 3922 ** 3923 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3924 */ 3925 if( ALWAYS(pSubitem->pTab!=0) ){ 3926 Table *pTabToDel = pSubitem->pTab; 3927 if( pTabToDel->nTabRef==1 ){ 3928 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3929 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3930 pToplevel->pZombieTab = pTabToDel; 3931 }else{ 3932 pTabToDel->nTabRef--; 3933 } 3934 pSubitem->pTab = 0; 3935 } 3936 3937 /* The following loop runs once for each term in a compound-subquery 3938 ** flattening (as described above). If we are doing a different kind 3939 ** of flattening - a flattening other than a compound-subquery flattening - 3940 ** then this loop only runs once. 3941 ** 3942 ** This loop moves all of the FROM elements of the subquery into the 3943 ** the FROM clause of the outer query. Before doing this, remember 3944 ** the cursor number for the original outer query FROM element in 3945 ** iParent. The iParent cursor will never be used. Subsequent code 3946 ** will scan expressions looking for iParent references and replace 3947 ** those references with expressions that resolve to the subquery FROM 3948 ** elements we are now copying in. 3949 */ 3950 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3951 int nSubSrc; 3952 u8 jointype = 0; 3953 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3954 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3955 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3956 3957 if( pSrc ){ 3958 assert( pParent==p ); /* First time through the loop */ 3959 jointype = pSubitem->fg.jointype; 3960 }else{ 3961 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3962 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3963 if( pSrc==0 ){ 3964 assert( db->mallocFailed ); 3965 break; 3966 } 3967 } 3968 3969 /* The subquery uses a single slot of the FROM clause of the outer 3970 ** query. If the subquery has more than one element in its FROM clause, 3971 ** then expand the outer query to make space for it to hold all elements 3972 ** of the subquery. 3973 ** 3974 ** Example: 3975 ** 3976 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3977 ** 3978 ** The outer query has 3 slots in its FROM clause. One slot of the 3979 ** outer query (the middle slot) is used by the subquery. The next 3980 ** block of code will expand the outer query FROM clause to 4 slots. 3981 ** The middle slot is expanded to two slots in order to make space 3982 ** for the two elements in the FROM clause of the subquery. 3983 */ 3984 if( nSubSrc>1 ){ 3985 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3986 if( db->mallocFailed ){ 3987 break; 3988 } 3989 } 3990 3991 /* Transfer the FROM clause terms from the subquery into the 3992 ** outer query. 3993 */ 3994 for(i=0; i<nSubSrc; i++){ 3995 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3996 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3997 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3998 iNewParent = pSubSrc->a[i].iCursor; 3999 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4000 } 4001 pSrc->a[iFrom].fg.jointype = jointype; 4002 4003 /* Now begin substituting subquery result set expressions for 4004 ** references to the iParent in the outer query. 4005 ** 4006 ** Example: 4007 ** 4008 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4009 ** \ \_____________ subquery __________/ / 4010 ** \_____________________ outer query ______________________________/ 4011 ** 4012 ** We look at every expression in the outer query and every place we see 4013 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4014 */ 4015 if( pSub->pOrderBy ){ 4016 /* At this point, any non-zero iOrderByCol values indicate that the 4017 ** ORDER BY column expression is identical to the iOrderByCol'th 4018 ** expression returned by SELECT statement pSub. Since these values 4019 ** do not necessarily correspond to columns in SELECT statement pParent, 4020 ** zero them before transfering the ORDER BY clause. 4021 ** 4022 ** Not doing this may cause an error if a subsequent call to this 4023 ** function attempts to flatten a compound sub-query into pParent 4024 ** (the only way this can happen is if the compound sub-query is 4025 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4026 ExprList *pOrderBy = pSub->pOrderBy; 4027 for(i=0; i<pOrderBy->nExpr; i++){ 4028 pOrderBy->a[i].u.x.iOrderByCol = 0; 4029 } 4030 assert( pParent->pOrderBy==0 ); 4031 pParent->pOrderBy = pOrderBy; 4032 pSub->pOrderBy = 0; 4033 } 4034 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4035 if( isLeftJoin>0 ){ 4036 setJoinExpr(pWhere, iNewParent); 4037 } 4038 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4039 if( db->mallocFailed==0 ){ 4040 SubstContext x; 4041 x.pParse = pParse; 4042 x.iTable = iParent; 4043 x.iNewTable = iNewParent; 4044 x.isLeftJoin = isLeftJoin; 4045 x.pEList = pSub->pEList; 4046 substSelect(&x, pParent, 0); 4047 } 4048 4049 /* The flattened query is distinct if either the inner or the 4050 ** outer query is distinct. 4051 */ 4052 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4053 4054 /* 4055 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4056 ** 4057 ** One is tempted to try to add a and b to combine the limits. But this 4058 ** does not work if either limit is negative. 4059 */ 4060 if( pSub->pLimit ){ 4061 pParent->pLimit = pSub->pLimit; 4062 pSub->pLimit = 0; 4063 } 4064 } 4065 4066 /* Finially, delete what is left of the subquery and return 4067 ** success. 4068 */ 4069 sqlite3SelectDelete(db, pSub1); 4070 4071 #if SELECTTRACE_ENABLED 4072 if( sqlite3SelectTrace & 0x100 ){ 4073 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4074 sqlite3TreeViewSelect(0, p, 0); 4075 } 4076 #endif 4077 4078 return 1; 4079 } 4080 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4081 4082 4083 4084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4085 /* 4086 ** Make copies of relevant WHERE clause terms of the outer query into 4087 ** the WHERE clause of subquery. Example: 4088 ** 4089 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4090 ** 4091 ** Transformed into: 4092 ** 4093 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4094 ** WHERE x=5 AND y=10; 4095 ** 4096 ** The hope is that the terms added to the inner query will make it more 4097 ** efficient. 4098 ** 4099 ** Do not attempt this optimization if: 4100 ** 4101 ** (1) (** This restriction was removed on 2017-09-29. We used to 4102 ** disallow this optimization for aggregate subqueries, but now 4103 ** it is allowed by putting the extra terms on the HAVING clause. 4104 ** The added HAVING clause is pointless if the subquery lacks 4105 ** a GROUP BY clause. But such a HAVING clause is also harmless 4106 ** so there does not appear to be any reason to add extra logic 4107 ** to suppress it. **) 4108 ** 4109 ** (2) The inner query is the recursive part of a common table expression. 4110 ** 4111 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4112 ** close would change the meaning of the LIMIT). 4113 ** 4114 ** (4) The inner query is the right operand of a LEFT JOIN and the 4115 ** expression to be pushed down does not come from the ON clause 4116 ** on that LEFT JOIN. 4117 ** 4118 ** (5) The WHERE clause expression originates in the ON or USING clause 4119 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4120 ** left join. An example: 4121 ** 4122 ** SELECT * 4123 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4124 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4125 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4126 ** 4127 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4128 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4129 ** then the (1,1,NULL) row would be suppressed. 4130 ** 4131 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4132 ** terms are duplicated into the subquery. 4133 */ 4134 static int pushDownWhereTerms( 4135 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4136 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4137 Expr *pWhere, /* The WHERE clause of the outer query */ 4138 int iCursor, /* Cursor number of the subquery */ 4139 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4140 ){ 4141 Expr *pNew; 4142 int nChng = 0; 4143 if( pWhere==0 ) return 0; 4144 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4145 4146 #ifdef SQLITE_DEBUG 4147 /* Only the first term of a compound can have a WITH clause. But make 4148 ** sure no other terms are marked SF_Recursive in case something changes 4149 ** in the future. 4150 */ 4151 { 4152 Select *pX; 4153 for(pX=pSubq; pX; pX=pX->pPrior){ 4154 assert( (pX->selFlags & (SF_Recursive))==0 ); 4155 } 4156 } 4157 #endif 4158 4159 if( pSubq->pLimit!=0 ){ 4160 return 0; /* restriction (3) */ 4161 } 4162 while( pWhere->op==TK_AND ){ 4163 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4164 iCursor, isLeftJoin); 4165 pWhere = pWhere->pLeft; 4166 } 4167 if( isLeftJoin 4168 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4169 || pWhere->iRightJoinTable!=iCursor) 4170 ){ 4171 return 0; /* restriction (4) */ 4172 } 4173 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4174 return 0; /* restriction (5) */ 4175 } 4176 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4177 nChng++; 4178 while( pSubq ){ 4179 SubstContext x; 4180 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4181 unsetJoinExpr(pNew, -1); 4182 x.pParse = pParse; 4183 x.iTable = iCursor; 4184 x.iNewTable = iCursor; 4185 x.isLeftJoin = 0; 4186 x.pEList = pSubq->pEList; 4187 pNew = substExpr(&x, pNew); 4188 if( pSubq->selFlags & SF_Aggregate ){ 4189 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4190 }else{ 4191 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4192 } 4193 pSubq = pSubq->pPrior; 4194 } 4195 } 4196 return nChng; 4197 } 4198 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4199 4200 /* 4201 ** The pFunc is the only aggregate function in the query. Check to see 4202 ** if the query is a candidate for the min/max optimization. 4203 ** 4204 ** If the query is a candidate for the min/max optimization, then set 4205 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4206 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4207 ** whether pFunc is a min() or max() function. 4208 ** 4209 ** If the query is not a candidate for the min/max optimization, return 4210 ** WHERE_ORDERBY_NORMAL (which must be zero). 4211 ** 4212 ** This routine must be called after aggregate functions have been 4213 ** located but before their arguments have been subjected to aggregate 4214 ** analysis. 4215 */ 4216 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4217 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4218 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4219 const char *zFunc; /* Name of aggregate function pFunc */ 4220 ExprList *pOrderBy; 4221 u8 sortOrder; 4222 4223 assert( *ppMinMax==0 ); 4224 assert( pFunc->op==TK_AGG_FUNCTION ); 4225 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4226 zFunc = pFunc->u.zToken; 4227 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4228 eRet = WHERE_ORDERBY_MIN; 4229 sortOrder = SQLITE_SO_ASC; 4230 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4231 eRet = WHERE_ORDERBY_MAX; 4232 sortOrder = SQLITE_SO_DESC; 4233 }else{ 4234 return eRet; 4235 } 4236 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4237 assert( pOrderBy!=0 || db->mallocFailed ); 4238 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4239 return eRet; 4240 } 4241 4242 /* 4243 ** The select statement passed as the first argument is an aggregate query. 4244 ** The second argument is the associated aggregate-info object. This 4245 ** function tests if the SELECT is of the form: 4246 ** 4247 ** SELECT count(*) FROM <tbl> 4248 ** 4249 ** where table is a database table, not a sub-select or view. If the query 4250 ** does match this pattern, then a pointer to the Table object representing 4251 ** <tbl> is returned. Otherwise, 0 is returned. 4252 */ 4253 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4254 Table *pTab; 4255 Expr *pExpr; 4256 4257 assert( !p->pGroupBy ); 4258 4259 if( p->pWhere || p->pEList->nExpr!=1 4260 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4261 ){ 4262 return 0; 4263 } 4264 pTab = p->pSrc->a[0].pTab; 4265 pExpr = p->pEList->a[0].pExpr; 4266 assert( pTab && !pTab->pSelect && pExpr ); 4267 4268 if( IsVirtual(pTab) ) return 0; 4269 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4270 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4271 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4272 if( pExpr->flags&EP_Distinct ) return 0; 4273 4274 return pTab; 4275 } 4276 4277 /* 4278 ** If the source-list item passed as an argument was augmented with an 4279 ** INDEXED BY clause, then try to locate the specified index. If there 4280 ** was such a clause and the named index cannot be found, return 4281 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4282 ** pFrom->pIndex and return SQLITE_OK. 4283 */ 4284 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4285 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4286 Table *pTab = pFrom->pTab; 4287 char *zIndexedBy = pFrom->u1.zIndexedBy; 4288 Index *pIdx; 4289 for(pIdx=pTab->pIndex; 4290 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4291 pIdx=pIdx->pNext 4292 ); 4293 if( !pIdx ){ 4294 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4295 pParse->checkSchema = 1; 4296 return SQLITE_ERROR; 4297 } 4298 pFrom->pIBIndex = pIdx; 4299 } 4300 return SQLITE_OK; 4301 } 4302 /* 4303 ** Detect compound SELECT statements that use an ORDER BY clause with 4304 ** an alternative collating sequence. 4305 ** 4306 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4307 ** 4308 ** These are rewritten as a subquery: 4309 ** 4310 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4311 ** ORDER BY ... COLLATE ... 4312 ** 4313 ** This transformation is necessary because the multiSelectOrderBy() routine 4314 ** above that generates the code for a compound SELECT with an ORDER BY clause 4315 ** uses a merge algorithm that requires the same collating sequence on the 4316 ** result columns as on the ORDER BY clause. See ticket 4317 ** http://www.sqlite.org/src/info/6709574d2a 4318 ** 4319 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4320 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4321 ** there are COLLATE terms in the ORDER BY. 4322 */ 4323 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4324 int i; 4325 Select *pNew; 4326 Select *pX; 4327 sqlite3 *db; 4328 struct ExprList_item *a; 4329 SrcList *pNewSrc; 4330 Parse *pParse; 4331 Token dummy; 4332 4333 if( p->pPrior==0 ) return WRC_Continue; 4334 if( p->pOrderBy==0 ) return WRC_Continue; 4335 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4336 if( pX==0 ) return WRC_Continue; 4337 a = p->pOrderBy->a; 4338 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4339 if( a[i].pExpr->flags & EP_Collate ) break; 4340 } 4341 if( i<0 ) return WRC_Continue; 4342 4343 /* If we reach this point, that means the transformation is required. */ 4344 4345 pParse = pWalker->pParse; 4346 db = pParse->db; 4347 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4348 if( pNew==0 ) return WRC_Abort; 4349 memset(&dummy, 0, sizeof(dummy)); 4350 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4351 if( pNewSrc==0 ) return WRC_Abort; 4352 *pNew = *p; 4353 p->pSrc = pNewSrc; 4354 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4355 p->op = TK_SELECT; 4356 p->pWhere = 0; 4357 pNew->pGroupBy = 0; 4358 pNew->pHaving = 0; 4359 pNew->pOrderBy = 0; 4360 p->pPrior = 0; 4361 p->pNext = 0; 4362 p->pWith = 0; 4363 p->selFlags &= ~SF_Compound; 4364 assert( (p->selFlags & SF_Converted)==0 ); 4365 p->selFlags |= SF_Converted; 4366 assert( pNew->pPrior!=0 ); 4367 pNew->pPrior->pNext = pNew; 4368 pNew->pLimit = 0; 4369 return WRC_Continue; 4370 } 4371 4372 /* 4373 ** Check to see if the FROM clause term pFrom has table-valued function 4374 ** arguments. If it does, leave an error message in pParse and return 4375 ** non-zero, since pFrom is not allowed to be a table-valued function. 4376 */ 4377 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4378 if( pFrom->fg.isTabFunc ){ 4379 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4380 return 1; 4381 } 4382 return 0; 4383 } 4384 4385 #ifndef SQLITE_OMIT_CTE 4386 /* 4387 ** Argument pWith (which may be NULL) points to a linked list of nested 4388 ** WITH contexts, from inner to outermost. If the table identified by 4389 ** FROM clause element pItem is really a common-table-expression (CTE) 4390 ** then return a pointer to the CTE definition for that table. Otherwise 4391 ** return NULL. 4392 ** 4393 ** If a non-NULL value is returned, set *ppContext to point to the With 4394 ** object that the returned CTE belongs to. 4395 */ 4396 static struct Cte *searchWith( 4397 With *pWith, /* Current innermost WITH clause */ 4398 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4399 With **ppContext /* OUT: WITH clause return value belongs to */ 4400 ){ 4401 const char *zName; 4402 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4403 With *p; 4404 for(p=pWith; p; p=p->pOuter){ 4405 int i; 4406 for(i=0; i<p->nCte; i++){ 4407 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4408 *ppContext = p; 4409 return &p->a[i]; 4410 } 4411 } 4412 } 4413 } 4414 return 0; 4415 } 4416 4417 /* The code generator maintains a stack of active WITH clauses 4418 ** with the inner-most WITH clause being at the top of the stack. 4419 ** 4420 ** This routine pushes the WITH clause passed as the second argument 4421 ** onto the top of the stack. If argument bFree is true, then this 4422 ** WITH clause will never be popped from the stack. In this case it 4423 ** should be freed along with the Parse object. In other cases, when 4424 ** bFree==0, the With object will be freed along with the SELECT 4425 ** statement with which it is associated. 4426 */ 4427 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4428 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4429 if( pWith ){ 4430 assert( pParse->pWith!=pWith ); 4431 pWith->pOuter = pParse->pWith; 4432 pParse->pWith = pWith; 4433 if( bFree ) pParse->pWithToFree = pWith; 4434 } 4435 } 4436 4437 /* 4438 ** This function checks if argument pFrom refers to a CTE declared by 4439 ** a WITH clause on the stack currently maintained by the parser. And, 4440 ** if currently processing a CTE expression, if it is a recursive 4441 ** reference to the current CTE. 4442 ** 4443 ** If pFrom falls into either of the two categories above, pFrom->pTab 4444 ** and other fields are populated accordingly. The caller should check 4445 ** (pFrom->pTab!=0) to determine whether or not a successful match 4446 ** was found. 4447 ** 4448 ** Whether or not a match is found, SQLITE_OK is returned if no error 4449 ** occurs. If an error does occur, an error message is stored in the 4450 ** parser and some error code other than SQLITE_OK returned. 4451 */ 4452 static int withExpand( 4453 Walker *pWalker, 4454 struct SrcList_item *pFrom 4455 ){ 4456 Parse *pParse = pWalker->pParse; 4457 sqlite3 *db = pParse->db; 4458 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4459 With *pWith; /* WITH clause that pCte belongs to */ 4460 4461 assert( pFrom->pTab==0 ); 4462 4463 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4464 if( pCte ){ 4465 Table *pTab; 4466 ExprList *pEList; 4467 Select *pSel; 4468 Select *pLeft; /* Left-most SELECT statement */ 4469 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4470 With *pSavedWith; /* Initial value of pParse->pWith */ 4471 4472 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4473 ** recursive reference to CTE pCte. Leave an error in pParse and return 4474 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4475 ** In this case, proceed. */ 4476 if( pCte->zCteErr ){ 4477 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4478 return SQLITE_ERROR; 4479 } 4480 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4481 4482 assert( pFrom->pTab==0 ); 4483 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4484 if( pTab==0 ) return WRC_Abort; 4485 pTab->nTabRef = 1; 4486 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4487 pTab->iPKey = -1; 4488 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4489 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4490 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4491 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4492 assert( pFrom->pSelect ); 4493 4494 /* Check if this is a recursive CTE. */ 4495 pSel = pFrom->pSelect; 4496 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4497 if( bMayRecursive ){ 4498 int i; 4499 SrcList *pSrc = pFrom->pSelect->pSrc; 4500 for(i=0; i<pSrc->nSrc; i++){ 4501 struct SrcList_item *pItem = &pSrc->a[i]; 4502 if( pItem->zDatabase==0 4503 && pItem->zName!=0 4504 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4505 ){ 4506 pItem->pTab = pTab; 4507 pItem->fg.isRecursive = 1; 4508 pTab->nTabRef++; 4509 pSel->selFlags |= SF_Recursive; 4510 } 4511 } 4512 } 4513 4514 /* Only one recursive reference is permitted. */ 4515 if( pTab->nTabRef>2 ){ 4516 sqlite3ErrorMsg( 4517 pParse, "multiple references to recursive table: %s", pCte->zName 4518 ); 4519 return SQLITE_ERROR; 4520 } 4521 assert( pTab->nTabRef==1 || 4522 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4523 4524 pCte->zCteErr = "circular reference: %s"; 4525 pSavedWith = pParse->pWith; 4526 pParse->pWith = pWith; 4527 if( bMayRecursive ){ 4528 Select *pPrior = pSel->pPrior; 4529 assert( pPrior->pWith==0 ); 4530 pPrior->pWith = pSel->pWith; 4531 sqlite3WalkSelect(pWalker, pPrior); 4532 pPrior->pWith = 0; 4533 }else{ 4534 sqlite3WalkSelect(pWalker, pSel); 4535 } 4536 pParse->pWith = pWith; 4537 4538 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4539 pEList = pLeft->pEList; 4540 if( pCte->pCols ){ 4541 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4542 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4543 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4544 ); 4545 pParse->pWith = pSavedWith; 4546 return SQLITE_ERROR; 4547 } 4548 pEList = pCte->pCols; 4549 } 4550 4551 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4552 if( bMayRecursive ){ 4553 if( pSel->selFlags & SF_Recursive ){ 4554 pCte->zCteErr = "multiple recursive references: %s"; 4555 }else{ 4556 pCte->zCteErr = "recursive reference in a subquery: %s"; 4557 } 4558 sqlite3WalkSelect(pWalker, pSel); 4559 } 4560 pCte->zCteErr = 0; 4561 pParse->pWith = pSavedWith; 4562 } 4563 4564 return SQLITE_OK; 4565 } 4566 #endif 4567 4568 #ifndef SQLITE_OMIT_CTE 4569 /* 4570 ** If the SELECT passed as the second argument has an associated WITH 4571 ** clause, pop it from the stack stored as part of the Parse object. 4572 ** 4573 ** This function is used as the xSelectCallback2() callback by 4574 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4575 ** names and other FROM clause elements. 4576 */ 4577 static void selectPopWith(Walker *pWalker, Select *p){ 4578 Parse *pParse = pWalker->pParse; 4579 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4580 With *pWith = findRightmost(p)->pWith; 4581 if( pWith!=0 ){ 4582 assert( pParse->pWith==pWith ); 4583 pParse->pWith = pWith->pOuter; 4584 } 4585 } 4586 } 4587 #else 4588 #define selectPopWith 0 4589 #endif 4590 4591 /* 4592 ** This routine is a Walker callback for "expanding" a SELECT statement. 4593 ** "Expanding" means to do the following: 4594 ** 4595 ** (1) Make sure VDBE cursor numbers have been assigned to every 4596 ** element of the FROM clause. 4597 ** 4598 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4599 ** defines FROM clause. When views appear in the FROM clause, 4600 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4601 ** that implements the view. A copy is made of the view's SELECT 4602 ** statement so that we can freely modify or delete that statement 4603 ** without worrying about messing up the persistent representation 4604 ** of the view. 4605 ** 4606 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4607 ** on joins and the ON and USING clause of joins. 4608 ** 4609 ** (4) Scan the list of columns in the result set (pEList) looking 4610 ** for instances of the "*" operator or the TABLE.* operator. 4611 ** If found, expand each "*" to be every column in every table 4612 ** and TABLE.* to be every column in TABLE. 4613 ** 4614 */ 4615 static int selectExpander(Walker *pWalker, Select *p){ 4616 Parse *pParse = pWalker->pParse; 4617 int i, j, k; 4618 SrcList *pTabList; 4619 ExprList *pEList; 4620 struct SrcList_item *pFrom; 4621 sqlite3 *db = pParse->db; 4622 Expr *pE, *pRight, *pExpr; 4623 u16 selFlags = p->selFlags; 4624 u32 elistFlags = 0; 4625 4626 p->selFlags |= SF_Expanded; 4627 if( db->mallocFailed ){ 4628 return WRC_Abort; 4629 } 4630 assert( p->pSrc!=0 ); 4631 if( (selFlags & SF_Expanded)!=0 ){ 4632 return WRC_Prune; 4633 } 4634 pTabList = p->pSrc; 4635 pEList = p->pEList; 4636 sqlite3WithPush(pParse, p->pWith, 0); 4637 4638 /* Make sure cursor numbers have been assigned to all entries in 4639 ** the FROM clause of the SELECT statement. 4640 */ 4641 sqlite3SrcListAssignCursors(pParse, pTabList); 4642 4643 /* Look up every table named in the FROM clause of the select. If 4644 ** an entry of the FROM clause is a subquery instead of a table or view, 4645 ** then create a transient table structure to describe the subquery. 4646 */ 4647 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4648 Table *pTab; 4649 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4650 if( pFrom->fg.isRecursive ) continue; 4651 assert( pFrom->pTab==0 ); 4652 #ifndef SQLITE_OMIT_CTE 4653 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4654 if( pFrom->pTab ) {} else 4655 #endif 4656 if( pFrom->zName==0 ){ 4657 #ifndef SQLITE_OMIT_SUBQUERY 4658 Select *pSel = pFrom->pSelect; 4659 /* A sub-query in the FROM clause of a SELECT */ 4660 assert( pSel!=0 ); 4661 assert( pFrom->pTab==0 ); 4662 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4663 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4664 if( pTab==0 ) return WRC_Abort; 4665 pTab->nTabRef = 1; 4666 if( pFrom->zAlias ){ 4667 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4668 }else{ 4669 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4670 } 4671 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4672 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4673 pTab->iPKey = -1; 4674 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4675 pTab->tabFlags |= TF_Ephemeral; 4676 #endif 4677 }else{ 4678 /* An ordinary table or view name in the FROM clause */ 4679 assert( pFrom->pTab==0 ); 4680 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4681 if( pTab==0 ) return WRC_Abort; 4682 if( pTab->nTabRef>=0xffff ){ 4683 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4684 pTab->zName); 4685 pFrom->pTab = 0; 4686 return WRC_Abort; 4687 } 4688 pTab->nTabRef++; 4689 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4690 return WRC_Abort; 4691 } 4692 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4693 if( IsVirtual(pTab) || pTab->pSelect ){ 4694 i16 nCol; 4695 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4696 assert( pFrom->pSelect==0 ); 4697 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4698 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4699 nCol = pTab->nCol; 4700 pTab->nCol = -1; 4701 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4702 pTab->nCol = nCol; 4703 } 4704 #endif 4705 } 4706 4707 /* Locate the index named by the INDEXED BY clause, if any. */ 4708 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4709 return WRC_Abort; 4710 } 4711 } 4712 4713 /* Process NATURAL keywords, and ON and USING clauses of joins. 4714 */ 4715 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4716 return WRC_Abort; 4717 } 4718 4719 /* For every "*" that occurs in the column list, insert the names of 4720 ** all columns in all tables. And for every TABLE.* insert the names 4721 ** of all columns in TABLE. The parser inserted a special expression 4722 ** with the TK_ASTERISK operator for each "*" that it found in the column 4723 ** list. The following code just has to locate the TK_ASTERISK 4724 ** expressions and expand each one to the list of all columns in 4725 ** all tables. 4726 ** 4727 ** The first loop just checks to see if there are any "*" operators 4728 ** that need expanding. 4729 */ 4730 for(k=0; k<pEList->nExpr; k++){ 4731 pE = pEList->a[k].pExpr; 4732 if( pE->op==TK_ASTERISK ) break; 4733 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4734 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4735 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4736 elistFlags |= pE->flags; 4737 } 4738 if( k<pEList->nExpr ){ 4739 /* 4740 ** If we get here it means the result set contains one or more "*" 4741 ** operators that need to be expanded. Loop through each expression 4742 ** in the result set and expand them one by one. 4743 */ 4744 struct ExprList_item *a = pEList->a; 4745 ExprList *pNew = 0; 4746 int flags = pParse->db->flags; 4747 int longNames = (flags & SQLITE_FullColNames)!=0 4748 && (flags & SQLITE_ShortColNames)==0; 4749 4750 for(k=0; k<pEList->nExpr; k++){ 4751 pE = a[k].pExpr; 4752 elistFlags |= pE->flags; 4753 pRight = pE->pRight; 4754 assert( pE->op!=TK_DOT || pRight!=0 ); 4755 if( pE->op!=TK_ASTERISK 4756 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4757 ){ 4758 /* This particular expression does not need to be expanded. 4759 */ 4760 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4761 if( pNew ){ 4762 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4763 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4764 a[k].zName = 0; 4765 a[k].zSpan = 0; 4766 } 4767 a[k].pExpr = 0; 4768 }else{ 4769 /* This expression is a "*" or a "TABLE.*" and needs to be 4770 ** expanded. */ 4771 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4772 char *zTName = 0; /* text of name of TABLE */ 4773 if( pE->op==TK_DOT ){ 4774 assert( pE->pLeft!=0 ); 4775 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4776 zTName = pE->pLeft->u.zToken; 4777 } 4778 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4779 Table *pTab = pFrom->pTab; 4780 Select *pSub = pFrom->pSelect; 4781 char *zTabName = pFrom->zAlias; 4782 const char *zSchemaName = 0; 4783 int iDb; 4784 if( zTabName==0 ){ 4785 zTabName = pTab->zName; 4786 } 4787 if( db->mallocFailed ) break; 4788 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4789 pSub = 0; 4790 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4791 continue; 4792 } 4793 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4794 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4795 } 4796 for(j=0; j<pTab->nCol; j++){ 4797 char *zName = pTab->aCol[j].zName; 4798 char *zColname; /* The computed column name */ 4799 char *zToFree; /* Malloced string that needs to be freed */ 4800 Token sColname; /* Computed column name as a token */ 4801 4802 assert( zName ); 4803 if( zTName && pSub 4804 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4805 ){ 4806 continue; 4807 } 4808 4809 /* If a column is marked as 'hidden', omit it from the expanded 4810 ** result-set list unless the SELECT has the SF_IncludeHidden 4811 ** bit set. 4812 */ 4813 if( (p->selFlags & SF_IncludeHidden)==0 4814 && IsHiddenColumn(&pTab->aCol[j]) 4815 ){ 4816 continue; 4817 } 4818 tableSeen = 1; 4819 4820 if( i>0 && zTName==0 ){ 4821 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4822 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4823 ){ 4824 /* In a NATURAL join, omit the join columns from the 4825 ** table to the right of the join */ 4826 continue; 4827 } 4828 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4829 /* In a join with a USING clause, omit columns in the 4830 ** using clause from the table on the right. */ 4831 continue; 4832 } 4833 } 4834 pRight = sqlite3Expr(db, TK_ID, zName); 4835 zColname = zName; 4836 zToFree = 0; 4837 if( longNames || pTabList->nSrc>1 ){ 4838 Expr *pLeft; 4839 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4840 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4841 if( zSchemaName ){ 4842 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4843 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4844 } 4845 if( longNames ){ 4846 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4847 zToFree = zColname; 4848 } 4849 }else{ 4850 pExpr = pRight; 4851 } 4852 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4853 sqlite3TokenInit(&sColname, zColname); 4854 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4855 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4856 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4857 if( pSub ){ 4858 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4859 testcase( pX->zSpan==0 ); 4860 }else{ 4861 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4862 zSchemaName, zTabName, zColname); 4863 testcase( pX->zSpan==0 ); 4864 } 4865 pX->bSpanIsTab = 1; 4866 } 4867 sqlite3DbFree(db, zToFree); 4868 } 4869 } 4870 if( !tableSeen ){ 4871 if( zTName ){ 4872 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4873 }else{ 4874 sqlite3ErrorMsg(pParse, "no tables specified"); 4875 } 4876 } 4877 } 4878 } 4879 sqlite3ExprListDelete(db, pEList); 4880 p->pEList = pNew; 4881 } 4882 if( p->pEList ){ 4883 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4884 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4885 return WRC_Abort; 4886 } 4887 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4888 p->selFlags |= SF_ComplexResult; 4889 } 4890 } 4891 return WRC_Continue; 4892 } 4893 4894 /* 4895 ** No-op routine for the parse-tree walker. 4896 ** 4897 ** When this routine is the Walker.xExprCallback then expression trees 4898 ** are walked without any actions being taken at each node. Presumably, 4899 ** when this routine is used for Walker.xExprCallback then 4900 ** Walker.xSelectCallback is set to do something useful for every 4901 ** subquery in the parser tree. 4902 */ 4903 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4904 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4905 return WRC_Continue; 4906 } 4907 4908 /* 4909 ** No-op routine for the parse-tree walker for SELECT statements. 4910 ** subquery in the parser tree. 4911 */ 4912 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4913 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4914 return WRC_Continue; 4915 } 4916 4917 #if SQLITE_DEBUG 4918 /* 4919 ** Always assert. This xSelectCallback2 implementation proves that the 4920 ** xSelectCallback2 is never invoked. 4921 */ 4922 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4923 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4924 assert( 0 ); 4925 } 4926 #endif 4927 /* 4928 ** This routine "expands" a SELECT statement and all of its subqueries. 4929 ** For additional information on what it means to "expand" a SELECT 4930 ** statement, see the comment on the selectExpand worker callback above. 4931 ** 4932 ** Expanding a SELECT statement is the first step in processing a 4933 ** SELECT statement. The SELECT statement must be expanded before 4934 ** name resolution is performed. 4935 ** 4936 ** If anything goes wrong, an error message is written into pParse. 4937 ** The calling function can detect the problem by looking at pParse->nErr 4938 ** and/or pParse->db->mallocFailed. 4939 */ 4940 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4941 Walker w; 4942 w.xExprCallback = sqlite3ExprWalkNoop; 4943 w.pParse = pParse; 4944 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4945 w.xSelectCallback = convertCompoundSelectToSubquery; 4946 w.xSelectCallback2 = 0; 4947 sqlite3WalkSelect(&w, pSelect); 4948 } 4949 w.xSelectCallback = selectExpander; 4950 w.xSelectCallback2 = selectPopWith; 4951 sqlite3WalkSelect(&w, pSelect); 4952 } 4953 4954 4955 #ifndef SQLITE_OMIT_SUBQUERY 4956 /* 4957 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4958 ** interface. 4959 ** 4960 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4961 ** information to the Table structure that represents the result set 4962 ** of that subquery. 4963 ** 4964 ** The Table structure that represents the result set was constructed 4965 ** by selectExpander() but the type and collation information was omitted 4966 ** at that point because identifiers had not yet been resolved. This 4967 ** routine is called after identifier resolution. 4968 */ 4969 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4970 Parse *pParse; 4971 int i; 4972 SrcList *pTabList; 4973 struct SrcList_item *pFrom; 4974 4975 assert( p->selFlags & SF_Resolved ); 4976 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4977 p->selFlags |= SF_HasTypeInfo; 4978 pParse = pWalker->pParse; 4979 pTabList = p->pSrc; 4980 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4981 Table *pTab = pFrom->pTab; 4982 assert( pTab!=0 ); 4983 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4984 /* A sub-query in the FROM clause of a SELECT */ 4985 Select *pSel = pFrom->pSelect; 4986 if( pSel ){ 4987 while( pSel->pPrior ) pSel = pSel->pPrior; 4988 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4989 } 4990 } 4991 } 4992 } 4993 #endif 4994 4995 4996 /* 4997 ** This routine adds datatype and collating sequence information to 4998 ** the Table structures of all FROM-clause subqueries in a 4999 ** SELECT statement. 5000 ** 5001 ** Use this routine after name resolution. 5002 */ 5003 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5004 #ifndef SQLITE_OMIT_SUBQUERY 5005 Walker w; 5006 w.xSelectCallback = sqlite3SelectWalkNoop; 5007 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5008 w.xExprCallback = sqlite3ExprWalkNoop; 5009 w.pParse = pParse; 5010 sqlite3WalkSelect(&w, pSelect); 5011 #endif 5012 } 5013 5014 5015 /* 5016 ** This routine sets up a SELECT statement for processing. The 5017 ** following is accomplished: 5018 ** 5019 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5020 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5021 ** * ON and USING clauses are shifted into WHERE statements 5022 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5023 ** * Identifiers in expression are matched to tables. 5024 ** 5025 ** This routine acts recursively on all subqueries within the SELECT. 5026 */ 5027 void sqlite3SelectPrep( 5028 Parse *pParse, /* The parser context */ 5029 Select *p, /* The SELECT statement being coded. */ 5030 NameContext *pOuterNC /* Name context for container */ 5031 ){ 5032 assert( p!=0 || pParse->db->mallocFailed ); 5033 if( pParse->db->mallocFailed ) return; 5034 if( p->selFlags & SF_HasTypeInfo ) return; 5035 sqlite3SelectExpand(pParse, p); 5036 if( pParse->nErr || pParse->db->mallocFailed ) return; 5037 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5038 if( pParse->nErr || pParse->db->mallocFailed ) return; 5039 sqlite3SelectAddTypeInfo(pParse, p); 5040 } 5041 5042 /* 5043 ** Reset the aggregate accumulator. 5044 ** 5045 ** The aggregate accumulator is a set of memory cells that hold 5046 ** intermediate results while calculating an aggregate. This 5047 ** routine generates code that stores NULLs in all of those memory 5048 ** cells. 5049 */ 5050 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5051 Vdbe *v = pParse->pVdbe; 5052 int i; 5053 struct AggInfo_func *pFunc; 5054 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5055 if( nReg==0 ) return; 5056 #ifdef SQLITE_DEBUG 5057 /* Verify that all AggInfo registers are within the range specified by 5058 ** AggInfo.mnReg..AggInfo.mxReg */ 5059 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5060 for(i=0; i<pAggInfo->nColumn; i++){ 5061 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5062 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5063 } 5064 for(i=0; i<pAggInfo->nFunc; i++){ 5065 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5066 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5067 } 5068 #endif 5069 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5070 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5071 if( pFunc->iDistinct>=0 ){ 5072 Expr *pE = pFunc->pExpr; 5073 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5074 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5075 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5076 "argument"); 5077 pFunc->iDistinct = -1; 5078 }else{ 5079 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 5080 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5081 (char*)pKeyInfo, P4_KEYINFO); 5082 } 5083 } 5084 } 5085 } 5086 5087 /* 5088 ** Invoke the OP_AggFinalize opcode for every aggregate function 5089 ** in the AggInfo structure. 5090 */ 5091 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5092 Vdbe *v = pParse->pVdbe; 5093 int i; 5094 struct AggInfo_func *pF; 5095 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5096 ExprList *pList = pF->pExpr->x.pList; 5097 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5098 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5099 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5100 } 5101 } 5102 5103 /* 5104 ** Update the accumulator memory cells for an aggregate based on 5105 ** the current cursor position. 5106 */ 5107 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5108 Vdbe *v = pParse->pVdbe; 5109 int i; 5110 int regHit = 0; 5111 int addrHitTest = 0; 5112 struct AggInfo_func *pF; 5113 struct AggInfo_col *pC; 5114 5115 pAggInfo->directMode = 1; 5116 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5117 int nArg; 5118 int addrNext = 0; 5119 int regAgg; 5120 ExprList *pList = pF->pExpr->x.pList; 5121 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5122 if( pList ){ 5123 nArg = pList->nExpr; 5124 regAgg = sqlite3GetTempRange(pParse, nArg); 5125 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5126 }else{ 5127 nArg = 0; 5128 regAgg = 0; 5129 } 5130 if( pF->iDistinct>=0 ){ 5131 addrNext = sqlite3VdbeMakeLabel(v); 5132 testcase( nArg==0 ); /* Error condition */ 5133 testcase( nArg>1 ); /* Also an error */ 5134 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5135 } 5136 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5137 CollSeq *pColl = 0; 5138 struct ExprList_item *pItem; 5139 int j; 5140 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5141 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5142 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5143 } 5144 if( !pColl ){ 5145 pColl = pParse->db->pDfltColl; 5146 } 5147 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5148 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5149 } 5150 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 5151 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5152 sqlite3VdbeChangeP5(v, (u8)nArg); 5153 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 5154 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5155 if( addrNext ){ 5156 sqlite3VdbeResolveLabel(v, addrNext); 5157 sqlite3ExprCacheClear(pParse); 5158 } 5159 } 5160 5161 /* Before populating the accumulator registers, clear the column cache. 5162 ** Otherwise, if any of the required column values are already present 5163 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 5164 ** to pC->iMem. But by the time the value is used, the original register 5165 ** may have been used, invalidating the underlying buffer holding the 5166 ** text or blob value. See ticket [883034dcb5]. 5167 ** 5168 ** Another solution would be to change the OP_SCopy used to copy cached 5169 ** values to an OP_Copy. 5170 */ 5171 if( regHit ){ 5172 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5173 } 5174 sqlite3ExprCacheClear(pParse); 5175 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5176 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5177 } 5178 pAggInfo->directMode = 0; 5179 sqlite3ExprCacheClear(pParse); 5180 if( addrHitTest ){ 5181 sqlite3VdbeJumpHere(v, addrHitTest); 5182 } 5183 } 5184 5185 /* 5186 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5187 ** count(*) query ("SELECT count(*) FROM pTab"). 5188 */ 5189 #ifndef SQLITE_OMIT_EXPLAIN 5190 static void explainSimpleCount( 5191 Parse *pParse, /* Parse context */ 5192 Table *pTab, /* Table being queried */ 5193 Index *pIdx /* Index used to optimize scan, or NULL */ 5194 ){ 5195 if( pParse->explain==2 ){ 5196 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5197 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5198 pTab->zName, 5199 bCover ? " USING COVERING INDEX " : "", 5200 bCover ? pIdx->zName : "" 5201 ); 5202 } 5203 } 5204 #else 5205 # define explainSimpleCount(a,b,c) 5206 #endif 5207 5208 /* 5209 ** sqlite3WalkExpr() callback used by havingToWhere(). 5210 ** 5211 ** If the node passed to the callback is a TK_AND node, return 5212 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5213 ** 5214 ** Otherwise, return WRC_Prune. In this case, also check if the 5215 ** sub-expression matches the criteria for being moved to the WHERE 5216 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5217 ** within the HAVING expression with a constant "1". 5218 */ 5219 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5220 if( pExpr->op!=TK_AND ){ 5221 Select *pS = pWalker->u.pSelect; 5222 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5223 sqlite3 *db = pWalker->pParse->db; 5224 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5225 if( pNew ){ 5226 Expr *pWhere = pS->pWhere; 5227 SWAP(Expr, *pNew, *pExpr); 5228 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5229 pS->pWhere = pNew; 5230 pWalker->eCode = 1; 5231 } 5232 } 5233 return WRC_Prune; 5234 } 5235 return WRC_Continue; 5236 } 5237 5238 /* 5239 ** Transfer eligible terms from the HAVING clause of a query, which is 5240 ** processed after grouping, to the WHERE clause, which is processed before 5241 ** grouping. For example, the query: 5242 ** 5243 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5244 ** 5245 ** can be rewritten as: 5246 ** 5247 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5248 ** 5249 ** A term of the HAVING expression is eligible for transfer if it consists 5250 ** entirely of constants and expressions that are also GROUP BY terms that 5251 ** use the "BINARY" collation sequence. 5252 */ 5253 static void havingToWhere(Parse *pParse, Select *p){ 5254 Walker sWalker; 5255 memset(&sWalker, 0, sizeof(sWalker)); 5256 sWalker.pParse = pParse; 5257 sWalker.xExprCallback = havingToWhereExprCb; 5258 sWalker.u.pSelect = p; 5259 sqlite3WalkExpr(&sWalker, p->pHaving); 5260 #if SELECTTRACE_ENABLED 5261 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5262 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5263 sqlite3TreeViewSelect(0, p, 0); 5264 } 5265 #endif 5266 } 5267 5268 /* 5269 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5270 ** If it is, then return the SrcList_item for the prior view. If it is not, 5271 ** then return 0. 5272 */ 5273 static struct SrcList_item *isSelfJoinView( 5274 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5275 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5276 ){ 5277 struct SrcList_item *pItem; 5278 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5279 if( pItem->pSelect==0 ) continue; 5280 if( pItem->fg.viaCoroutine ) continue; 5281 if( pItem->zName==0 ) continue; 5282 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5283 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5284 if( sqlite3ExprCompare(0, 5285 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5286 ){ 5287 /* The view was modified by some other optimization such as 5288 ** pushDownWhereTerms() */ 5289 continue; 5290 } 5291 return pItem; 5292 } 5293 return 0; 5294 } 5295 5296 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5297 /* 5298 ** Attempt to transform a query of the form 5299 ** 5300 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5301 ** 5302 ** Into this: 5303 ** 5304 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5305 ** 5306 ** The transformation only works if all of the following are true: 5307 ** 5308 ** * The subquery is a UNION ALL of two or more terms 5309 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5310 ** * The outer query is a simple count(*) 5311 ** 5312 ** Return TRUE if the optimization is undertaken. 5313 */ 5314 static int countOfViewOptimization(Parse *pParse, Select *p){ 5315 Select *pSub, *pPrior; 5316 Expr *pExpr; 5317 Expr *pCount; 5318 sqlite3 *db; 5319 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5320 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5321 pExpr = p->pEList->a[0].pExpr; 5322 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5323 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5324 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5325 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5326 pSub = p->pSrc->a[0].pSelect; 5327 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5328 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5329 do{ 5330 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5331 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5332 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5333 pSub = pSub->pPrior; /* Repeat over compound */ 5334 }while( pSub ); 5335 5336 /* If we reach this point then it is OK to perform the transformation */ 5337 5338 db = pParse->db; 5339 pCount = pExpr; 5340 pExpr = 0; 5341 pSub = p->pSrc->a[0].pSelect; 5342 p->pSrc->a[0].pSelect = 0; 5343 sqlite3SrcListDelete(db, p->pSrc); 5344 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5345 while( pSub ){ 5346 Expr *pTerm; 5347 pPrior = pSub->pPrior; 5348 pSub->pPrior = 0; 5349 pSub->pNext = 0; 5350 pSub->selFlags |= SF_Aggregate; 5351 pSub->selFlags &= ~SF_Compound; 5352 pSub->nSelectRow = 0; 5353 sqlite3ExprListDelete(db, pSub->pEList); 5354 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5355 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5356 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5357 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5358 if( pExpr==0 ){ 5359 pExpr = pTerm; 5360 }else{ 5361 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5362 } 5363 pSub = pPrior; 5364 } 5365 p->pEList->a[0].pExpr = pExpr; 5366 p->selFlags &= ~SF_Aggregate; 5367 5368 #if SELECTTRACE_ENABLED 5369 if( sqlite3SelectTrace & 0x400 ){ 5370 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5371 sqlite3TreeViewSelect(0, p, 0); 5372 } 5373 #endif 5374 return 1; 5375 } 5376 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5377 5378 /* 5379 ** Generate code for the SELECT statement given in the p argument. 5380 ** 5381 ** The results are returned according to the SelectDest structure. 5382 ** See comments in sqliteInt.h for further information. 5383 ** 5384 ** This routine returns the number of errors. If any errors are 5385 ** encountered, then an appropriate error message is left in 5386 ** pParse->zErrMsg. 5387 ** 5388 ** This routine does NOT free the Select structure passed in. The 5389 ** calling function needs to do that. 5390 */ 5391 int sqlite3Select( 5392 Parse *pParse, /* The parser context */ 5393 Select *p, /* The SELECT statement being coded. */ 5394 SelectDest *pDest /* What to do with the query results */ 5395 ){ 5396 int i, j; /* Loop counters */ 5397 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5398 Vdbe *v; /* The virtual machine under construction */ 5399 int isAgg; /* True for select lists like "count(*)" */ 5400 ExprList *pEList = 0; /* List of columns to extract. */ 5401 SrcList *pTabList; /* List of tables to select from */ 5402 Expr *pWhere; /* The WHERE clause. May be NULL */ 5403 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5404 Expr *pHaving; /* The HAVING clause. May be NULL */ 5405 int rc = 1; /* Value to return from this function */ 5406 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5407 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5408 AggInfo sAggInfo; /* Information used by aggregate queries */ 5409 int iEnd; /* Address of the end of the query */ 5410 sqlite3 *db; /* The database connection */ 5411 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5412 u8 minMaxFlag; /* Flag for min/max queries */ 5413 5414 db = pParse->db; 5415 v = sqlite3GetVdbe(pParse); 5416 if( p==0 || db->mallocFailed || pParse->nErr ){ 5417 return 1; 5418 } 5419 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5420 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5421 #if SELECTTRACE_ENABLED 5422 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5423 if( sqlite3SelectTrace & 0x100 ){ 5424 sqlite3TreeViewSelect(0, p, 0); 5425 } 5426 #endif 5427 5428 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5429 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5430 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5431 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5432 if( IgnorableOrderby(pDest) ){ 5433 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5434 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5435 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5436 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5437 /* If ORDER BY makes no difference in the output then neither does 5438 ** DISTINCT so it can be removed too. */ 5439 sqlite3ExprListDelete(db, p->pOrderBy); 5440 p->pOrderBy = 0; 5441 p->selFlags &= ~SF_Distinct; 5442 } 5443 sqlite3SelectPrep(pParse, p, 0); 5444 memset(&sSort, 0, sizeof(sSort)); 5445 sSort.pOrderBy = p->pOrderBy; 5446 pTabList = p->pSrc; 5447 if( pParse->nErr || db->mallocFailed ){ 5448 goto select_end; 5449 } 5450 assert( p->pEList!=0 ); 5451 isAgg = (p->selFlags & SF_Aggregate)!=0; 5452 #if SELECTTRACE_ENABLED 5453 if( sqlite3SelectTrace & 0x104 ){ 5454 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5455 sqlite3TreeViewSelect(0, p, 0); 5456 } 5457 #endif 5458 5459 if( pDest->eDest==SRT_Output ){ 5460 generateColumnNames(pParse, p); 5461 } 5462 5463 /* Try to various optimizations (flattening subqueries, and strength 5464 ** reduction of join operators) in the FROM clause up into the main query 5465 */ 5466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5467 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5468 struct SrcList_item *pItem = &pTabList->a[i]; 5469 Select *pSub = pItem->pSelect; 5470 Table *pTab = pItem->pTab; 5471 5472 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5473 ** of the LEFT JOIN used in the WHERE clause. 5474 */ 5475 if( (pItem->fg.jointype & JT_LEFT)!=0 5476 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5477 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5478 ){ 5479 SELECTTRACE(0x100,pParse,p, 5480 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5481 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5482 unsetJoinExpr(p->pWhere, pItem->iCursor); 5483 } 5484 5485 /* No futher action if this term of the FROM clause is no a subquery */ 5486 if( pSub==0 ) continue; 5487 5488 /* Catch mismatch in the declared columns of a view and the number of 5489 ** columns in the SELECT on the RHS */ 5490 if( pTab->nCol!=pSub->pEList->nExpr ){ 5491 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5492 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5493 goto select_end; 5494 } 5495 5496 /* Do not try to flatten an aggregate subquery. 5497 ** 5498 ** Flattening an aggregate subquery is only possible if the outer query 5499 ** is not a join. But if the outer query is not a join, then the subquery 5500 ** will be implemented as a co-routine and there is no advantage to 5501 ** flattening in that case. 5502 */ 5503 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5504 assert( pSub->pGroupBy==0 ); 5505 5506 /* If the outer query contains a "complex" result set (that is, 5507 ** if the result set of the outer query uses functions or subqueries) 5508 ** and if the subquery contains an ORDER BY clause and if 5509 ** it will be implemented as a co-routine, then do not flatten. This 5510 ** restriction allows SQL constructs like this: 5511 ** 5512 ** SELECT expensive_function(x) 5513 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5514 ** 5515 ** The expensive_function() is only computed on the 10 rows that 5516 ** are output, rather than every row of the table. 5517 ** 5518 ** The requirement that the outer query have a complex result set 5519 ** means that flattening does occur on simpler SQL constraints without 5520 ** the expensive_function() like: 5521 ** 5522 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5523 */ 5524 if( pSub->pOrderBy!=0 5525 && i==0 5526 && (p->selFlags & SF_ComplexResult)!=0 5527 && (pTabList->nSrc==1 5528 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5529 ){ 5530 continue; 5531 } 5532 5533 if( flattenSubquery(pParse, p, i, isAgg) ){ 5534 /* This subquery can be absorbed into its parent. */ 5535 i = -1; 5536 } 5537 pTabList = p->pSrc; 5538 if( db->mallocFailed ) goto select_end; 5539 if( !IgnorableOrderby(pDest) ){ 5540 sSort.pOrderBy = p->pOrderBy; 5541 } 5542 } 5543 #endif 5544 5545 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5546 /* Handle compound SELECT statements using the separate multiSelect() 5547 ** procedure. 5548 */ 5549 if( p->pPrior ){ 5550 rc = multiSelect(pParse, p, pDest); 5551 #if SELECTTRACE_ENABLED 5552 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5553 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5554 sqlite3TreeViewSelect(0, p, 0); 5555 } 5556 #endif 5557 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5558 return rc; 5559 } 5560 #endif 5561 5562 /* For each term in the FROM clause, do two things: 5563 ** (1) Authorized unreferenced tables 5564 ** (2) Generate code for all sub-queries 5565 */ 5566 for(i=0; i<pTabList->nSrc; i++){ 5567 struct SrcList_item *pItem = &pTabList->a[i]; 5568 SelectDest dest; 5569 Select *pSub; 5570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5571 const char *zSavedAuthContext; 5572 #endif 5573 5574 /* Issue SQLITE_READ authorizations with a fake column name for any 5575 ** tables that are referenced but from which no values are extracted. 5576 ** Examples of where these kinds of null SQLITE_READ authorizations 5577 ** would occur: 5578 ** 5579 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5580 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5581 ** 5582 ** The fake column name is an empty string. It is possible for a table to 5583 ** have a column named by the empty string, in which case there is no way to 5584 ** distinguish between an unreferenced table and an actual reference to the 5585 ** "" column. The original design was for the fake column name to be a NULL, 5586 ** which would be unambiguous. But legacy authorization callbacks might 5587 ** assume the column name is non-NULL and segfault. The use of an empty 5588 ** string for the fake column name seems safer. 5589 */ 5590 if( pItem->colUsed==0 ){ 5591 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5592 } 5593 5594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5595 /* Generate code for all sub-queries in the FROM clause 5596 */ 5597 pSub = pItem->pSelect; 5598 if( pSub==0 ) continue; 5599 5600 /* Sometimes the code for a subquery will be generated more than 5601 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5602 ** for example. In that case, do not regenerate the code to manifest 5603 ** a view or the co-routine to implement a view. The first instance 5604 ** is sufficient, though the subroutine to manifest the view does need 5605 ** to be invoked again. */ 5606 if( pItem->addrFillSub ){ 5607 if( pItem->fg.viaCoroutine==0 ){ 5608 /* The subroutine that manifests the view might be a one-time routine, 5609 ** or it might need to be rerun on each iteration because it 5610 ** encodes a correlated subquery. */ 5611 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5612 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5613 } 5614 continue; 5615 } 5616 5617 /* Increment Parse.nHeight by the height of the largest expression 5618 ** tree referred to by this, the parent select. The child select 5619 ** may contain expression trees of at most 5620 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5621 ** more conservative than necessary, but much easier than enforcing 5622 ** an exact limit. 5623 */ 5624 pParse->nHeight += sqlite3SelectExprHeight(p); 5625 5626 /* Make copies of constant WHERE-clause terms in the outer query down 5627 ** inside the subquery. This can help the subquery to run more efficiently. 5628 */ 5629 if( OptimizationEnabled(db, SQLITE_PushDown) 5630 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5631 (pItem->fg.jointype & JT_OUTER)!=0) 5632 ){ 5633 #if SELECTTRACE_ENABLED 5634 if( sqlite3SelectTrace & 0x100 ){ 5635 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5636 sqlite3TreeViewSelect(0, p, 0); 5637 } 5638 #endif 5639 }else{ 5640 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5641 } 5642 5643 zSavedAuthContext = pParse->zAuthContext; 5644 pParse->zAuthContext = pItem->zName; 5645 5646 /* Generate code to implement the subquery 5647 ** 5648 ** The subquery is implemented as a co-routine if the subquery is 5649 ** guaranteed to be the outer loop (so that it does not need to be 5650 ** computed more than once) 5651 ** 5652 ** TODO: Are there other reasons beside (1) to use a co-routine 5653 ** implementation? 5654 */ 5655 if( i==0 5656 && (pTabList->nSrc==1 5657 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5658 ){ 5659 /* Implement a co-routine that will return a single row of the result 5660 ** set on each invocation. 5661 */ 5662 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5663 5664 pItem->regReturn = ++pParse->nMem; 5665 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5666 VdbeComment((v, "%s", pItem->pTab->zName)); 5667 pItem->addrFillSub = addrTop; 5668 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5669 ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub)); 5670 sqlite3Select(pParse, pSub, &dest); 5671 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5672 pItem->fg.viaCoroutine = 1; 5673 pItem->regResult = dest.iSdst; 5674 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5675 sqlite3VdbeJumpHere(v, addrTop-1); 5676 sqlite3ClearTempRegCache(pParse); 5677 }else{ 5678 /* Generate a subroutine that will fill an ephemeral table with 5679 ** the content of this subquery. pItem->addrFillSub will point 5680 ** to the address of the generated subroutine. pItem->regReturn 5681 ** is a register allocated to hold the subroutine return address 5682 */ 5683 int topAddr; 5684 int onceAddr = 0; 5685 int retAddr; 5686 struct SrcList_item *pPrior; 5687 5688 assert( pItem->addrFillSub==0 ); 5689 pItem->regReturn = ++pParse->nMem; 5690 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5691 pItem->addrFillSub = topAddr+1; 5692 if( pItem->fg.isCorrelated==0 ){ 5693 /* If the subquery is not correlated and if we are not inside of 5694 ** a trigger, then we only need to compute the value of the subquery 5695 ** once. */ 5696 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5697 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5698 }else{ 5699 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5700 } 5701 pPrior = isSelfJoinView(pTabList, pItem); 5702 if( pPrior ){ 5703 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5704 assert( pPrior->pSelect!=0 ); 5705 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5706 }else{ 5707 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5708 ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub)); 5709 sqlite3Select(pParse, pSub, &dest); 5710 } 5711 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5712 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5713 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5714 VdbeComment((v, "end %s", pItem->pTab->zName)); 5715 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5716 sqlite3ClearTempRegCache(pParse); 5717 } 5718 if( db->mallocFailed ) goto select_end; 5719 pParse->nHeight -= sqlite3SelectExprHeight(p); 5720 pParse->zAuthContext = zSavedAuthContext; 5721 #endif 5722 } 5723 5724 /* Various elements of the SELECT copied into local variables for 5725 ** convenience */ 5726 pEList = p->pEList; 5727 pWhere = p->pWhere; 5728 pGroupBy = p->pGroupBy; 5729 pHaving = p->pHaving; 5730 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5731 5732 #if SELECTTRACE_ENABLED 5733 if( sqlite3SelectTrace & 0x400 ){ 5734 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5735 sqlite3TreeViewSelect(0, p, 0); 5736 } 5737 #endif 5738 5739 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5740 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5741 && countOfViewOptimization(pParse, p) 5742 ){ 5743 if( db->mallocFailed ) goto select_end; 5744 pEList = p->pEList; 5745 pTabList = p->pSrc; 5746 } 5747 #endif 5748 5749 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5750 ** if the select-list is the same as the ORDER BY list, then this query 5751 ** can be rewritten as a GROUP BY. In other words, this: 5752 ** 5753 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5754 ** 5755 ** is transformed to: 5756 ** 5757 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5758 ** 5759 ** The second form is preferred as a single index (or temp-table) may be 5760 ** used for both the ORDER BY and DISTINCT processing. As originally 5761 ** written the query must use a temp-table for at least one of the ORDER 5762 ** BY and DISTINCT, and an index or separate temp-table for the other. 5763 */ 5764 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5765 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5766 ){ 5767 p->selFlags &= ~SF_Distinct; 5768 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5769 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5770 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5771 ** original setting of the SF_Distinct flag, not the current setting */ 5772 assert( sDistinct.isTnct ); 5773 5774 #if SELECTTRACE_ENABLED 5775 if( sqlite3SelectTrace & 0x400 ){ 5776 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5777 sqlite3TreeViewSelect(0, p, 0); 5778 } 5779 #endif 5780 } 5781 5782 /* If there is an ORDER BY clause, then create an ephemeral index to 5783 ** do the sorting. But this sorting ephemeral index might end up 5784 ** being unused if the data can be extracted in pre-sorted order. 5785 ** If that is the case, then the OP_OpenEphemeral instruction will be 5786 ** changed to an OP_Noop once we figure out that the sorting index is 5787 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5788 ** that change. 5789 */ 5790 if( sSort.pOrderBy ){ 5791 KeyInfo *pKeyInfo; 5792 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5793 sSort.iECursor = pParse->nTab++; 5794 sSort.addrSortIndex = 5795 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5796 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5797 (char*)pKeyInfo, P4_KEYINFO 5798 ); 5799 }else{ 5800 sSort.addrSortIndex = -1; 5801 } 5802 5803 /* If the output is destined for a temporary table, open that table. 5804 */ 5805 if( pDest->eDest==SRT_EphemTab ){ 5806 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5807 } 5808 5809 /* Set the limiter. 5810 */ 5811 iEnd = sqlite3VdbeMakeLabel(v); 5812 if( (p->selFlags & SF_FixedLimit)==0 ){ 5813 p->nSelectRow = 320; /* 4 billion rows */ 5814 } 5815 computeLimitRegisters(pParse, p, iEnd); 5816 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5817 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5818 sSort.sortFlags |= SORTFLAG_UseSorter; 5819 } 5820 5821 /* Open an ephemeral index to use for the distinct set. 5822 */ 5823 if( p->selFlags & SF_Distinct ){ 5824 sDistinct.tabTnct = pParse->nTab++; 5825 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5826 sDistinct.tabTnct, 0, 0, 5827 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5828 P4_KEYINFO); 5829 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5830 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5831 }else{ 5832 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5833 } 5834 5835 if( !isAgg && pGroupBy==0 ){ 5836 /* No aggregate functions and no GROUP BY clause */ 5837 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5838 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5839 wctrlFlags |= p->selFlags & SF_FixedLimit; 5840 5841 /* Begin the database scan. */ 5842 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5843 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5844 p->pEList, wctrlFlags, p->nSelectRow); 5845 if( pWInfo==0 ) goto select_end; 5846 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5847 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5848 } 5849 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5850 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5851 } 5852 if( sSort.pOrderBy ){ 5853 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5854 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5855 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5856 sSort.pOrderBy = 0; 5857 } 5858 } 5859 5860 /* If sorting index that was created by a prior OP_OpenEphemeral 5861 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5862 ** into an OP_Noop. 5863 */ 5864 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5865 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5866 } 5867 5868 /* Use the standard inner loop. */ 5869 assert( p->pEList==pEList ); 5870 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5871 sqlite3WhereContinueLabel(pWInfo), 5872 sqlite3WhereBreakLabel(pWInfo)); 5873 5874 /* End the database scan loop. 5875 */ 5876 sqlite3WhereEnd(pWInfo); 5877 }else{ 5878 /* This case when there exist aggregate functions or a GROUP BY clause 5879 ** or both */ 5880 NameContext sNC; /* Name context for processing aggregate information */ 5881 int iAMem; /* First Mem address for storing current GROUP BY */ 5882 int iBMem; /* First Mem address for previous GROUP BY */ 5883 int iUseFlag; /* Mem address holding flag indicating that at least 5884 ** one row of the input to the aggregator has been 5885 ** processed */ 5886 int iAbortFlag; /* Mem address which causes query abort if positive */ 5887 int groupBySort; /* Rows come from source in GROUP BY order */ 5888 int addrEnd; /* End of processing for this SELECT */ 5889 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5890 int sortOut = 0; /* Output register from the sorter */ 5891 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5892 5893 /* Remove any and all aliases between the result set and the 5894 ** GROUP BY clause. 5895 */ 5896 if( pGroupBy ){ 5897 int k; /* Loop counter */ 5898 struct ExprList_item *pItem; /* For looping over expression in a list */ 5899 5900 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5901 pItem->u.x.iAlias = 0; 5902 } 5903 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5904 pItem->u.x.iAlias = 0; 5905 } 5906 assert( 66==sqlite3LogEst(100) ); 5907 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5908 }else{ 5909 assert( 0==sqlite3LogEst(1) ); 5910 p->nSelectRow = 0; 5911 } 5912 5913 /* If there is both a GROUP BY and an ORDER BY clause and they are 5914 ** identical, then it may be possible to disable the ORDER BY clause 5915 ** on the grounds that the GROUP BY will cause elements to come out 5916 ** in the correct order. It also may not - the GROUP BY might use a 5917 ** database index that causes rows to be grouped together as required 5918 ** but not actually sorted. Either way, record the fact that the 5919 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5920 ** variable. */ 5921 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5922 orderByGrp = 1; 5923 } 5924 5925 /* Create a label to jump to when we want to abort the query */ 5926 addrEnd = sqlite3VdbeMakeLabel(v); 5927 5928 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5929 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5930 ** SELECT statement. 5931 */ 5932 memset(&sNC, 0, sizeof(sNC)); 5933 sNC.pParse = pParse; 5934 sNC.pSrcList = pTabList; 5935 sNC.uNC.pAggInfo = &sAggInfo; 5936 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 5937 sAggInfo.mnReg = pParse->nMem+1; 5938 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5939 sAggInfo.pGroupBy = pGroupBy; 5940 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5941 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5942 if( pHaving ){ 5943 if( pGroupBy ){ 5944 assert( pWhere==p->pWhere ); 5945 assert( pHaving==p->pHaving ); 5946 assert( pGroupBy==p->pGroupBy ); 5947 havingToWhere(pParse, p); 5948 pWhere = p->pWhere; 5949 } 5950 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5951 } 5952 sAggInfo.nAccumulator = sAggInfo.nColumn; 5953 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5954 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5955 }else{ 5956 minMaxFlag = WHERE_ORDERBY_NORMAL; 5957 } 5958 for(i=0; i<sAggInfo.nFunc; i++){ 5959 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5960 sNC.ncFlags |= NC_InAggFunc; 5961 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5962 sNC.ncFlags &= ~NC_InAggFunc; 5963 } 5964 sAggInfo.mxReg = pParse->nMem; 5965 if( db->mallocFailed ) goto select_end; 5966 #if SELECTTRACE_ENABLED 5967 if( sqlite3SelectTrace & 0x400 ){ 5968 int ii; 5969 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5970 sqlite3TreeViewSelect(0, p, 0); 5971 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5972 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5973 ii, sAggInfo.aCol[ii].iMem); 5974 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5975 } 5976 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5977 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5978 ii, sAggInfo.aFunc[ii].iMem); 5979 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5980 } 5981 } 5982 #endif 5983 5984 5985 /* Processing for aggregates with GROUP BY is very different and 5986 ** much more complex than aggregates without a GROUP BY. 5987 */ 5988 if( pGroupBy ){ 5989 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5990 int addr1; /* A-vs-B comparision jump */ 5991 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5992 int regOutputRow; /* Return address register for output subroutine */ 5993 int addrSetAbort; /* Set the abort flag and return */ 5994 int addrTopOfLoop; /* Top of the input loop */ 5995 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5996 int addrReset; /* Subroutine for resetting the accumulator */ 5997 int regReset; /* Return address register for reset subroutine */ 5998 5999 /* If there is a GROUP BY clause we might need a sorting index to 6000 ** implement it. Allocate that sorting index now. If it turns out 6001 ** that we do not need it after all, the OP_SorterOpen instruction 6002 ** will be converted into a Noop. 6003 */ 6004 sAggInfo.sortingIdx = pParse->nTab++; 6005 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 6006 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6007 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6008 0, (char*)pKeyInfo, P4_KEYINFO); 6009 6010 /* Initialize memory locations used by GROUP BY aggregate processing 6011 */ 6012 iUseFlag = ++pParse->nMem; 6013 iAbortFlag = ++pParse->nMem; 6014 regOutputRow = ++pParse->nMem; 6015 addrOutputRow = sqlite3VdbeMakeLabel(v); 6016 regReset = ++pParse->nMem; 6017 addrReset = sqlite3VdbeMakeLabel(v); 6018 iAMem = pParse->nMem + 1; 6019 pParse->nMem += pGroupBy->nExpr; 6020 iBMem = pParse->nMem + 1; 6021 pParse->nMem += pGroupBy->nExpr; 6022 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6023 VdbeComment((v, "clear abort flag")); 6024 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6025 VdbeComment((v, "indicate accumulator empty")); 6026 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6027 6028 /* Begin a loop that will extract all source rows in GROUP BY order. 6029 ** This might involve two separate loops with an OP_Sort in between, or 6030 ** it might be a single loop that uses an index to extract information 6031 ** in the right order to begin with. 6032 */ 6033 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6034 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6035 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6036 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6037 ); 6038 if( pWInfo==0 ) goto select_end; 6039 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6040 /* The optimizer is able to deliver rows in group by order so 6041 ** we do not have to sort. The OP_OpenEphemeral table will be 6042 ** cancelled later because we still need to use the pKeyInfo 6043 */ 6044 groupBySort = 0; 6045 }else{ 6046 /* Rows are coming out in undetermined order. We have to push 6047 ** each row into a sorting index, terminate the first loop, 6048 ** then loop over the sorting index in order to get the output 6049 ** in sorted order 6050 */ 6051 int regBase; 6052 int regRecord; 6053 int nCol; 6054 int nGroupBy; 6055 6056 explainTempTable(pParse, 6057 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6058 "DISTINCT" : "GROUP BY"); 6059 6060 groupBySort = 1; 6061 nGroupBy = pGroupBy->nExpr; 6062 nCol = nGroupBy; 6063 j = nGroupBy; 6064 for(i=0; i<sAggInfo.nColumn; i++){ 6065 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6066 nCol++; 6067 j++; 6068 } 6069 } 6070 regBase = sqlite3GetTempRange(pParse, nCol); 6071 sqlite3ExprCacheClear(pParse); 6072 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6073 j = nGroupBy; 6074 for(i=0; i<sAggInfo.nColumn; i++){ 6075 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6076 if( pCol->iSorterColumn>=j ){ 6077 int r1 = j + regBase; 6078 sqlite3ExprCodeGetColumnToReg(pParse, 6079 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 6080 j++; 6081 } 6082 } 6083 regRecord = sqlite3GetTempReg(pParse); 6084 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6085 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6086 sqlite3ReleaseTempReg(pParse, regRecord); 6087 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6088 sqlite3WhereEnd(pWInfo); 6089 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6090 sortOut = sqlite3GetTempReg(pParse); 6091 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6092 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6093 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6094 sAggInfo.useSortingIdx = 1; 6095 sqlite3ExprCacheClear(pParse); 6096 6097 } 6098 6099 /* If the index or temporary table used by the GROUP BY sort 6100 ** will naturally deliver rows in the order required by the ORDER BY 6101 ** clause, cancel the ephemeral table open coded earlier. 6102 ** 6103 ** This is an optimization - the correct answer should result regardless. 6104 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6105 ** disable this optimization for testing purposes. */ 6106 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6107 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6108 ){ 6109 sSort.pOrderBy = 0; 6110 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6111 } 6112 6113 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6114 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6115 ** Then compare the current GROUP BY terms against the GROUP BY terms 6116 ** from the previous row currently stored in a0, a1, a2... 6117 */ 6118 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6119 sqlite3ExprCacheClear(pParse); 6120 if( groupBySort ){ 6121 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6122 sortOut, sortPTab); 6123 } 6124 for(j=0; j<pGroupBy->nExpr; j++){ 6125 if( groupBySort ){ 6126 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6127 }else{ 6128 sAggInfo.directMode = 1; 6129 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6130 } 6131 } 6132 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6133 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6134 addr1 = sqlite3VdbeCurrentAddr(v); 6135 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6136 6137 /* Generate code that runs whenever the GROUP BY changes. 6138 ** Changes in the GROUP BY are detected by the previous code 6139 ** block. If there were no changes, this block is skipped. 6140 ** 6141 ** This code copies current group by terms in b0,b1,b2,... 6142 ** over to a0,a1,a2. It then calls the output subroutine 6143 ** and resets the aggregate accumulator registers in preparation 6144 ** for the next GROUP BY batch. 6145 */ 6146 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6147 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6148 VdbeComment((v, "output one row")); 6149 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6150 VdbeComment((v, "check abort flag")); 6151 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6152 VdbeComment((v, "reset accumulator")); 6153 6154 /* Update the aggregate accumulators based on the content of 6155 ** the current row 6156 */ 6157 sqlite3VdbeJumpHere(v, addr1); 6158 updateAccumulator(pParse, &sAggInfo); 6159 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6160 VdbeComment((v, "indicate data in accumulator")); 6161 6162 /* End of the loop 6163 */ 6164 if( groupBySort ){ 6165 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6166 VdbeCoverage(v); 6167 }else{ 6168 sqlite3WhereEnd(pWInfo); 6169 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6170 } 6171 6172 /* Output the final row of result 6173 */ 6174 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6175 VdbeComment((v, "output final row")); 6176 6177 /* Jump over the subroutines 6178 */ 6179 sqlite3VdbeGoto(v, addrEnd); 6180 6181 /* Generate a subroutine that outputs a single row of the result 6182 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6183 ** is less than or equal to zero, the subroutine is a no-op. If 6184 ** the processing calls for the query to abort, this subroutine 6185 ** increments the iAbortFlag memory location before returning in 6186 ** order to signal the caller to abort. 6187 */ 6188 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6189 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6190 VdbeComment((v, "set abort flag")); 6191 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6192 sqlite3VdbeResolveLabel(v, addrOutputRow); 6193 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6194 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6195 VdbeCoverage(v); 6196 VdbeComment((v, "Groupby result generator entry point")); 6197 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6198 finalizeAggFunctions(pParse, &sAggInfo); 6199 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6200 selectInnerLoop(pParse, p, -1, &sSort, 6201 &sDistinct, pDest, 6202 addrOutputRow+1, addrSetAbort); 6203 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6204 VdbeComment((v, "end groupby result generator")); 6205 6206 /* Generate a subroutine that will reset the group-by accumulator 6207 */ 6208 sqlite3VdbeResolveLabel(v, addrReset); 6209 resetAccumulator(pParse, &sAggInfo); 6210 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6211 6212 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6213 else { 6214 #ifndef SQLITE_OMIT_BTREECOUNT 6215 Table *pTab; 6216 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6217 /* If isSimpleCount() returns a pointer to a Table structure, then 6218 ** the SQL statement is of the form: 6219 ** 6220 ** SELECT count(*) FROM <tbl> 6221 ** 6222 ** where the Table structure returned represents table <tbl>. 6223 ** 6224 ** This statement is so common that it is optimized specially. The 6225 ** OP_Count instruction is executed either on the intkey table that 6226 ** contains the data for table <tbl> or on one of its indexes. It 6227 ** is better to execute the op on an index, as indexes are almost 6228 ** always spread across less pages than their corresponding tables. 6229 */ 6230 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6231 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6232 Index *pIdx; /* Iterator variable */ 6233 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6234 Index *pBest = 0; /* Best index found so far */ 6235 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6236 6237 sqlite3CodeVerifySchema(pParse, iDb); 6238 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6239 6240 /* Search for the index that has the lowest scan cost. 6241 ** 6242 ** (2011-04-15) Do not do a full scan of an unordered index. 6243 ** 6244 ** (2013-10-03) Do not count the entries in a partial index. 6245 ** 6246 ** In practice the KeyInfo structure will not be used. It is only 6247 ** passed to keep OP_OpenRead happy. 6248 */ 6249 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6250 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6251 if( pIdx->bUnordered==0 6252 && pIdx->szIdxRow<pTab->szTabRow 6253 && pIdx->pPartIdxWhere==0 6254 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6255 ){ 6256 pBest = pIdx; 6257 } 6258 } 6259 if( pBest ){ 6260 iRoot = pBest->tnum; 6261 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6262 } 6263 6264 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6265 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6266 if( pKeyInfo ){ 6267 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6268 } 6269 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6270 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6271 explainSimpleCount(pParse, pTab, pBest); 6272 }else 6273 #endif /* SQLITE_OMIT_BTREECOUNT */ 6274 { 6275 /* This case runs if the aggregate has no GROUP BY clause. The 6276 ** processing is much simpler since there is only a single row 6277 ** of output. 6278 */ 6279 assert( p->pGroupBy==0 ); 6280 resetAccumulator(pParse, &sAggInfo); 6281 6282 /* If this query is a candidate for the min/max optimization, then 6283 ** minMaxFlag will have been previously set to either 6284 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6285 ** be an appropriate ORDER BY expression for the optimization. 6286 */ 6287 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6288 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6289 6290 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6291 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6292 0, minMaxFlag, 0); 6293 if( pWInfo==0 ){ 6294 goto select_end; 6295 } 6296 updateAccumulator(pParse, &sAggInfo); 6297 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6298 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6299 VdbeComment((v, "%s() by index", 6300 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6301 } 6302 sqlite3WhereEnd(pWInfo); 6303 finalizeAggFunctions(pParse, &sAggInfo); 6304 } 6305 6306 sSort.pOrderBy = 0; 6307 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6308 selectInnerLoop(pParse, p, -1, 0, 0, 6309 pDest, addrEnd, addrEnd); 6310 } 6311 sqlite3VdbeResolveLabel(v, addrEnd); 6312 6313 } /* endif aggregate query */ 6314 6315 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6316 explainTempTable(pParse, "DISTINCT"); 6317 } 6318 6319 /* If there is an ORDER BY clause, then we need to sort the results 6320 ** and send them to the callback one by one. 6321 */ 6322 if( sSort.pOrderBy ){ 6323 explainTempTable(pParse, 6324 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6325 assert( p->pEList==pEList ); 6326 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6327 } 6328 6329 /* Jump here to skip this query 6330 */ 6331 sqlite3VdbeResolveLabel(v, iEnd); 6332 6333 /* The SELECT has been coded. If there is an error in the Parse structure, 6334 ** set the return code to 1. Otherwise 0. */ 6335 rc = (pParse->nErr>0); 6336 6337 /* Control jumps to here if an error is encountered above, or upon 6338 ** successful coding of the SELECT. 6339 */ 6340 select_end: 6341 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6342 sqlite3DbFree(db, sAggInfo.aCol); 6343 sqlite3DbFree(db, sAggInfo.aFunc); 6344 #if SELECTTRACE_ENABLED 6345 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6346 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6347 sqlite3TreeViewSelect(0, p, 0); 6348 } 6349 #endif 6350 ExplainQueryPlanPop(pParse); 6351 return rc; 6352 } 6353