1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.472 2008/09/01 15:52:11 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->pLimit = pLimit; 86 pNew->pOffset = pOffset; 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 } 95 return pNew; 96 } 97 98 /* 99 ** Delete the given Select structure and all of its substructures. 100 */ 101 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 102 if( p ){ 103 clearSelect(db, p); 104 sqlite3DbFree(db, p); 105 } 106 } 107 108 /* 109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 110 ** type of join. Return an integer constant that expresses that type 111 ** in terms of the following bit values: 112 ** 113 ** JT_INNER 114 ** JT_CROSS 115 ** JT_OUTER 116 ** JT_NATURAL 117 ** JT_LEFT 118 ** JT_RIGHT 119 ** 120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 121 ** 122 ** If an illegal or unsupported join type is seen, then still return 123 ** a join type, but put an error in the pParse structure. 124 */ 125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 126 int jointype = 0; 127 Token *apAll[3]; 128 Token *p; 129 static const struct { 130 const char zKeyword[8]; 131 u8 nChar; 132 u8 code; 133 } keywords[] = { 134 { "natural", 7, JT_NATURAL }, 135 { "left", 4, JT_LEFT|JT_OUTER }, 136 { "right", 5, JT_RIGHT|JT_OUTER }, 137 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 138 { "outer", 5, JT_OUTER }, 139 { "inner", 5, JT_INNER }, 140 { "cross", 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 149 if( p->n==keywords[j].nChar 150 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 151 jointype |= keywords[j].code; 152 break; 153 } 154 } 155 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 156 jointype |= JT_ERROR; 157 break; 158 } 159 } 160 if( 161 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 162 (jointype & JT_ERROR)!=0 163 ){ 164 const char *zSp = " "; 165 assert( pB!=0 ); 166 if( pC==0 ){ zSp++; } 167 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 168 "%T %T%s%T", pA, pB, zSp, pC); 169 jointype = JT_INNER; 170 }else if( jointype & JT_RIGHT ){ 171 sqlite3ErrorMsg(pParse, 172 "RIGHT and FULL OUTER JOINs are not currently supported"); 173 jointype = JT_INNER; 174 } 175 return jointype; 176 } 177 178 /* 179 ** Return the index of a column in a table. Return -1 if the column 180 ** is not contained in the table. 181 */ 182 static int columnIndex(Table *pTab, const char *zCol){ 183 int i; 184 for(i=0; i<pTab->nCol; i++){ 185 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 186 } 187 return -1; 188 } 189 190 /* 191 ** Set the value of a token to a '\000'-terminated string. 192 */ 193 static void setToken(Token *p, const char *z){ 194 p->z = (u8*)z; 195 p->n = z ? strlen(z) : 0; 196 p->dyn = 0; 197 } 198 199 /* 200 ** Set the token to the double-quoted and escaped version of the string pointed 201 ** to by z. For example; 202 ** 203 ** {a"bc} -> {"a""bc"} 204 */ 205 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 206 207 /* Check if the string contains any " characters. If it does, then 208 ** this function will malloc space to create a quoted version of 209 ** the string in. Otherwise, save a call to sqlite3MPrintf() by 210 ** just copying the pointer to the string. 211 */ 212 const char *z2 = z; 213 while( *z2 ){ 214 if( *z2=='"' ) break; 215 z2++; 216 } 217 218 if( *z2 ){ 219 /* String contains " characters - copy and quote the string. */ 220 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 221 if( p->z ){ 222 p->n = strlen((char *)p->z); 223 p->dyn = 1; 224 } 225 }else{ 226 /* String contains no " characters - copy the pointer. */ 227 p->z = (u8*)z; 228 p->n = (z2 - z); 229 p->dyn = 0; 230 } 231 } 232 233 /* 234 ** Create an expression node for an identifier with the name of zName 235 */ 236 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 237 Token dummy; 238 setToken(&dummy, zName); 239 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 240 } 241 242 /* 243 ** Add a term to the WHERE expression in *ppExpr that requires the 244 ** zCol column to be equal in the two tables pTab1 and pTab2. 245 */ 246 static void addWhereTerm( 247 Parse *pParse, /* Parsing context */ 248 const char *zCol, /* Name of the column */ 249 const Table *pTab1, /* First table */ 250 const char *zAlias1, /* Alias for first table. May be NULL */ 251 const Table *pTab2, /* Second table */ 252 const char *zAlias2, /* Alias for second table. May be NULL */ 253 int iRightJoinTable, /* VDBE cursor for the right table */ 254 Expr **ppExpr, /* Add the equality term to this expression */ 255 int isOuterJoin /* True if dealing with an OUTER join */ 256 ){ 257 Expr *pE1a, *pE1b, *pE1c; 258 Expr *pE2a, *pE2b, *pE2c; 259 Expr *pE; 260 261 pE1a = sqlite3CreateIdExpr(pParse, zCol); 262 pE2a = sqlite3CreateIdExpr(pParse, zCol); 263 if( zAlias1==0 ){ 264 zAlias1 = pTab1->zName; 265 } 266 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 267 if( zAlias2==0 ){ 268 zAlias2 = pTab2->zName; 269 } 270 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 271 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 272 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 273 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 274 if( pE && isOuterJoin ){ 275 ExprSetProperty(pE, EP_FromJoin); 276 pE->iRightJoinTable = iRightJoinTable; 277 } 278 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 279 } 280 281 /* 282 ** Set the EP_FromJoin property on all terms of the given expression. 283 ** And set the Expr.iRightJoinTable to iTable for every term in the 284 ** expression. 285 ** 286 ** The EP_FromJoin property is used on terms of an expression to tell 287 ** the LEFT OUTER JOIN processing logic that this term is part of the 288 ** join restriction specified in the ON or USING clause and not a part 289 ** of the more general WHERE clause. These terms are moved over to the 290 ** WHERE clause during join processing but we need to remember that they 291 ** originated in the ON or USING clause. 292 ** 293 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 294 ** expression depends on table iRightJoinTable even if that table is not 295 ** explicitly mentioned in the expression. That information is needed 296 ** for cases like this: 297 ** 298 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 299 ** 300 ** The where clause needs to defer the handling of the t1.x=5 301 ** term until after the t2 loop of the join. In that way, a 302 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 303 ** defer the handling of t1.x=5, it will be processed immediately 304 ** after the t1 loop and rows with t1.x!=5 will never appear in 305 ** the output, which is incorrect. 306 */ 307 static void setJoinExpr(Expr *p, int iTable){ 308 while( p ){ 309 ExprSetProperty(p, EP_FromJoin); 310 p->iRightJoinTable = iTable; 311 setJoinExpr(p->pLeft, iTable); 312 p = p->pRight; 313 } 314 } 315 316 /* 317 ** This routine processes the join information for a SELECT statement. 318 ** ON and USING clauses are converted into extra terms of the WHERE clause. 319 ** NATURAL joins also create extra WHERE clause terms. 320 ** 321 ** The terms of a FROM clause are contained in the Select.pSrc structure. 322 ** The left most table is the first entry in Select.pSrc. The right-most 323 ** table is the last entry. The join operator is held in the entry to 324 ** the left. Thus entry 0 contains the join operator for the join between 325 ** entries 0 and 1. Any ON or USING clauses associated with the join are 326 ** also attached to the left entry. 327 ** 328 ** This routine returns the number of errors encountered. 329 */ 330 static int sqliteProcessJoin(Parse *pParse, Select *p){ 331 SrcList *pSrc; /* All tables in the FROM clause */ 332 int i, j; /* Loop counters */ 333 struct SrcList_item *pLeft; /* Left table being joined */ 334 struct SrcList_item *pRight; /* Right table being joined */ 335 336 pSrc = p->pSrc; 337 pLeft = &pSrc->a[0]; 338 pRight = &pLeft[1]; 339 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 340 Table *pLeftTab = pLeft->pTab; 341 Table *pRightTab = pRight->pTab; 342 int isOuter; 343 344 if( pLeftTab==0 || pRightTab==0 ) continue; 345 isOuter = (pRight->jointype & JT_OUTER)!=0; 346 347 /* When the NATURAL keyword is present, add WHERE clause terms for 348 ** every column that the two tables have in common. 349 */ 350 if( pRight->jointype & JT_NATURAL ){ 351 if( pRight->pOn || pRight->pUsing ){ 352 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 353 "an ON or USING clause", 0); 354 return 1; 355 } 356 for(j=0; j<pLeftTab->nCol; j++){ 357 char *zName = pLeftTab->aCol[j].zName; 358 if( columnIndex(pRightTab, zName)>=0 ){ 359 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 360 pRightTab, pRight->zAlias, 361 pRight->iCursor, &p->pWhere, isOuter); 362 363 } 364 } 365 } 366 367 /* Disallow both ON and USING clauses in the same join 368 */ 369 if( pRight->pOn && pRight->pUsing ){ 370 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 371 "clauses in the same join"); 372 return 1; 373 } 374 375 /* Add the ON clause to the end of the WHERE clause, connected by 376 ** an AND operator. 377 */ 378 if( pRight->pOn ){ 379 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 380 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 381 pRight->pOn = 0; 382 } 383 384 /* Create extra terms on the WHERE clause for each column named 385 ** in the USING clause. Example: If the two tables to be joined are 386 ** A and B and the USING clause names X, Y, and Z, then add this 387 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 388 ** Report an error if any column mentioned in the USING clause is 389 ** not contained in both tables to be joined. 390 */ 391 if( pRight->pUsing ){ 392 IdList *pList = pRight->pUsing; 393 for(j=0; j<pList->nId; j++){ 394 char *zName = pList->a[j].zName; 395 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 397 "not present in both tables", zName); 398 return 1; 399 } 400 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 401 pRightTab, pRight->zAlias, 402 pRight->iCursor, &p->pWhere, isOuter); 403 } 404 } 405 } 406 return 0; 407 } 408 409 /* 410 ** Insert code into "v" that will push the record on the top of the 411 ** stack into the sorter. 412 */ 413 static void pushOntoSorter( 414 Parse *pParse, /* Parser context */ 415 ExprList *pOrderBy, /* The ORDER BY clause */ 416 Select *pSelect, /* The whole SELECT statement */ 417 int regData /* Register holding data to be sorted */ 418 ){ 419 Vdbe *v = pParse->pVdbe; 420 int nExpr = pOrderBy->nExpr; 421 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 422 int regRecord = sqlite3GetTempReg(pParse); 423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 428 sqlite3ReleaseTempReg(pParse, regRecord); 429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 430 if( pSelect->iLimit ){ 431 int addr1, addr2; 432 int iLimit; 433 if( pSelect->iOffset ){ 434 iLimit = pSelect->iOffset+1; 435 }else{ 436 iLimit = pSelect->iLimit; 437 } 438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 441 sqlite3VdbeJumpHere(v, addr1); 442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 444 sqlite3VdbeJumpHere(v, addr2); 445 pSelect->iLimit = 0; 446 } 447 } 448 449 /* 450 ** Add code to implement the OFFSET 451 */ 452 static void codeOffset( 453 Vdbe *v, /* Generate code into this VM */ 454 Select *p, /* The SELECT statement being coded */ 455 int iContinue /* Jump here to skip the current record */ 456 ){ 457 if( p->iOffset && iContinue!=0 ){ 458 int addr; 459 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 460 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 461 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 462 VdbeComment((v, "skip OFFSET records")); 463 sqlite3VdbeJumpHere(v, addr); 464 } 465 } 466 467 /* 468 ** Add code that will check to make sure the N registers starting at iMem 469 ** form a distinct entry. iTab is a sorting index that holds previously 470 ** seen combinations of the N values. A new entry is made in iTab 471 ** if the current N values are new. 472 ** 473 ** A jump to addrRepeat is made and the N+1 values are popped from the 474 ** stack if the top N elements are not distinct. 475 */ 476 static void codeDistinct( 477 Parse *pParse, /* Parsing and code generating context */ 478 int iTab, /* A sorting index used to test for distinctness */ 479 int addrRepeat, /* Jump to here if not distinct */ 480 int N, /* Number of elements */ 481 int iMem /* First element */ 482 ){ 483 Vdbe *v; 484 int r1; 485 486 v = pParse->pVdbe; 487 r1 = sqlite3GetTempReg(pParse); 488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 489 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 490 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 491 sqlite3ReleaseTempReg(pParse, r1); 492 } 493 494 /* 495 ** Generate an error message when a SELECT is used within a subexpression 496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 497 ** column. We do this in a subroutine because the error occurs in multiple 498 ** places. 499 */ 500 static int checkForMultiColumnSelectError( 501 Parse *pParse, /* Parse context. */ 502 SelectDest *pDest, /* Destination of SELECT results */ 503 int nExpr /* Number of result columns returned by SELECT */ 504 ){ 505 int eDest = pDest->eDest; 506 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 507 sqlite3ErrorMsg(pParse, "only a single result allowed for " 508 "a SELECT that is part of an expression"); 509 return 1; 510 }else{ 511 return 0; 512 } 513 } 514 515 /* 516 ** This routine generates the code for the inside of the inner loop 517 ** of a SELECT. 518 ** 519 ** If srcTab and nColumn are both zero, then the pEList expressions 520 ** are evaluated in order to get the data for this row. If nColumn>0 521 ** then data is pulled from srcTab and pEList is used only to get the 522 ** datatypes for each column. 523 */ 524 static void selectInnerLoop( 525 Parse *pParse, /* The parser context */ 526 Select *p, /* The complete select statement being coded */ 527 ExprList *pEList, /* List of values being extracted */ 528 int srcTab, /* Pull data from this table */ 529 int nColumn, /* Number of columns in the source table */ 530 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 531 int distinct, /* If >=0, make sure results are distinct */ 532 SelectDest *pDest, /* How to dispose of the results */ 533 int iContinue, /* Jump here to continue with next row */ 534 int iBreak /* Jump here to break out of the inner loop */ 535 ){ 536 Vdbe *v = pParse->pVdbe; 537 int i; 538 int hasDistinct; /* True if the DISTINCT keyword is present */ 539 int regResult; /* Start of memory holding result set */ 540 int eDest = pDest->eDest; /* How to dispose of results */ 541 int iParm = pDest->iParm; /* First argument to disposal method */ 542 int nResultCol; /* Number of result columns */ 543 544 if( v==0 ) return; 545 assert( pEList!=0 ); 546 hasDistinct = distinct>=0; 547 if( pOrderBy==0 && !hasDistinct ){ 548 codeOffset(v, p, iContinue); 549 } 550 551 /* Pull the requested columns. 552 */ 553 if( nColumn>0 ){ 554 nResultCol = nColumn; 555 }else{ 556 nResultCol = pEList->nExpr; 557 } 558 if( pDest->iMem==0 ){ 559 pDest->iMem = pParse->nMem+1; 560 pDest->nMem = nResultCol; 561 pParse->nMem += nResultCol; 562 }else if( pDest->nMem!=nResultCol ){ 563 /* This happens when two SELECTs of a compound SELECT have differing 564 ** numbers of result columns. The error message will be generated by 565 ** a higher-level routine. */ 566 return; 567 } 568 regResult = pDest->iMem; 569 if( nColumn>0 ){ 570 for(i=0; i<nColumn; i++){ 571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 572 } 573 }else if( eDest!=SRT_Exists ){ 574 /* If the destination is an EXISTS(...) expression, the actual 575 ** values returned by the SELECT are not required. 576 */ 577 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 578 } 579 nColumn = nResultCol; 580 581 /* If the DISTINCT keyword was present on the SELECT statement 582 ** and this row has been seen before, then do not make this row 583 ** part of the result. 584 */ 585 if( hasDistinct ){ 586 assert( pEList!=0 ); 587 assert( pEList->nExpr==nColumn ); 588 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 589 if( pOrderBy==0 ){ 590 codeOffset(v, p, iContinue); 591 } 592 } 593 594 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 595 return; 596 } 597 598 switch( eDest ){ 599 /* In this mode, write each query result to the key of the temporary 600 ** table iParm. 601 */ 602 #ifndef SQLITE_OMIT_COMPOUND_SELECT 603 case SRT_Union: { 604 int r1; 605 r1 = sqlite3GetTempReg(pParse); 606 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 607 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 608 sqlite3ReleaseTempReg(pParse, r1); 609 break; 610 } 611 612 /* Construct a record from the query result, but instead of 613 ** saving that record, use it as a key to delete elements from 614 ** the temporary table iParm. 615 */ 616 case SRT_Except: { 617 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 618 break; 619 } 620 #endif 621 622 /* Store the result as data using a unique key. 623 */ 624 case SRT_Table: 625 case SRT_EphemTab: { 626 int r1 = sqlite3GetTempReg(pParse); 627 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 628 if( pOrderBy ){ 629 pushOntoSorter(pParse, pOrderBy, p, r1); 630 }else{ 631 int r2 = sqlite3GetTempReg(pParse); 632 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 633 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 634 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 635 sqlite3ReleaseTempReg(pParse, r2); 636 } 637 sqlite3ReleaseTempReg(pParse, r1); 638 break; 639 } 640 641 #ifndef SQLITE_OMIT_SUBQUERY 642 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 643 ** then there should be a single item on the stack. Write this 644 ** item into the set table with bogus data. 645 */ 646 case SRT_Set: { 647 assert( nColumn==1 ); 648 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 649 if( pOrderBy ){ 650 /* At first glance you would think we could optimize out the 651 ** ORDER BY in this case since the order of entries in the set 652 ** does not matter. But there might be a LIMIT clause, in which 653 ** case the order does matter */ 654 pushOntoSorter(pParse, pOrderBy, p, regResult); 655 }else{ 656 int r1 = sqlite3GetTempReg(pParse); 657 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 658 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 659 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 660 sqlite3ReleaseTempReg(pParse, r1); 661 } 662 break; 663 } 664 665 /* If any row exist in the result set, record that fact and abort. 666 */ 667 case SRT_Exists: { 668 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 669 /* The LIMIT clause will terminate the loop for us */ 670 break; 671 } 672 673 /* If this is a scalar select that is part of an expression, then 674 ** store the results in the appropriate memory cell and break out 675 ** of the scan loop. 676 */ 677 case SRT_Mem: { 678 assert( nColumn==1 ); 679 if( pOrderBy ){ 680 pushOntoSorter(pParse, pOrderBy, p, regResult); 681 }else{ 682 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 683 /* The LIMIT clause will jump out of the loop for us */ 684 } 685 break; 686 } 687 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 688 689 /* Send the data to the callback function or to a subroutine. In the 690 ** case of a subroutine, the subroutine itself is responsible for 691 ** popping the data from the stack. 692 */ 693 case SRT_Coroutine: 694 case SRT_Output: { 695 if( pOrderBy ){ 696 int r1 = sqlite3GetTempReg(pParse); 697 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 698 pushOntoSorter(pParse, pOrderBy, p, r1); 699 sqlite3ReleaseTempReg(pParse, r1); 700 }else if( eDest==SRT_Coroutine ){ 701 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 702 }else{ 703 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 704 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 705 } 706 break; 707 } 708 709 #if !defined(SQLITE_OMIT_TRIGGER) 710 /* Discard the results. This is used for SELECT statements inside 711 ** the body of a TRIGGER. The purpose of such selects is to call 712 ** user-defined functions that have side effects. We do not care 713 ** about the actual results of the select. 714 */ 715 default: { 716 assert( eDest==SRT_Discard ); 717 break; 718 } 719 #endif 720 } 721 722 /* Jump to the end of the loop if the LIMIT is reached. 723 */ 724 if( p->iLimit ){ 725 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 726 ** pushOntoSorter() would have cleared p->iLimit */ 727 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 728 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 729 } 730 } 731 732 /* 733 ** Given an expression list, generate a KeyInfo structure that records 734 ** the collating sequence for each expression in that expression list. 735 ** 736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 737 ** KeyInfo structure is appropriate for initializing a virtual index to 738 ** implement that clause. If the ExprList is the result set of a SELECT 739 ** then the KeyInfo structure is appropriate for initializing a virtual 740 ** index to implement a DISTINCT test. 741 ** 742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 743 ** function is responsible for seeing that this structure is eventually 744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 746 */ 747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 748 sqlite3 *db = pParse->db; 749 int nExpr; 750 KeyInfo *pInfo; 751 struct ExprList_item *pItem; 752 int i; 753 754 nExpr = pList->nExpr; 755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 756 if( pInfo ){ 757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 758 pInfo->nField = nExpr; 759 pInfo->enc = ENC(db); 760 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 761 CollSeq *pColl; 762 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 763 if( !pColl ){ 764 pColl = db->pDfltColl; 765 } 766 pInfo->aColl[i] = pColl; 767 pInfo->aSortOrder[i] = pItem->sortOrder; 768 } 769 } 770 return pInfo; 771 } 772 773 774 /* 775 ** If the inner loop was generated using a non-null pOrderBy argument, 776 ** then the results were placed in a sorter. After the loop is terminated 777 ** we need to run the sorter and output the results. The following 778 ** routine generates the code needed to do that. 779 */ 780 static void generateSortTail( 781 Parse *pParse, /* Parsing context */ 782 Select *p, /* The SELECT statement */ 783 Vdbe *v, /* Generate code into this VDBE */ 784 int nColumn, /* Number of columns of data */ 785 SelectDest *pDest /* Write the sorted results here */ 786 ){ 787 int brk = sqlite3VdbeMakeLabel(v); 788 int cont = sqlite3VdbeMakeLabel(v); 789 int addr; 790 int iTab; 791 int pseudoTab = 0; 792 ExprList *pOrderBy = p->pOrderBy; 793 794 int eDest = pDest->eDest; 795 int iParm = pDest->iParm; 796 797 int regRow; 798 int regRowid; 799 800 iTab = pOrderBy->iECursor; 801 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 802 pseudoTab = pParse->nTab++; 803 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); 804 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output); 805 } 806 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); 807 codeOffset(v, p, cont); 808 regRow = sqlite3GetTempReg(pParse); 809 regRowid = sqlite3GetTempReg(pParse); 810 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 811 switch( eDest ){ 812 case SRT_Table: 813 case SRT_EphemTab: { 814 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 815 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 816 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 817 break; 818 } 819 #ifndef SQLITE_OMIT_SUBQUERY 820 case SRT_Set: { 821 assert( nColumn==1 ); 822 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 823 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 824 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 825 break; 826 } 827 case SRT_Mem: { 828 assert( nColumn==1 ); 829 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 830 /* The LIMIT clause will terminate the loop for us */ 831 break; 832 } 833 #endif 834 case SRT_Output: 835 case SRT_Coroutine: { 836 int i; 837 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 838 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 839 for(i=0; i<nColumn; i++){ 840 assert( regRow!=pDest->iMem+i ); 841 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 842 } 843 if( eDest==SRT_Output ){ 844 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 845 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 846 }else{ 847 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 848 } 849 break; 850 } 851 default: { 852 /* Do nothing */ 853 break; 854 } 855 } 856 sqlite3ReleaseTempReg(pParse, regRow); 857 sqlite3ReleaseTempReg(pParse, regRowid); 858 859 /* LIMIT has been implemented by the pushOntoSorter() routine. 860 */ 861 assert( p->iLimit==0 ); 862 863 /* The bottom of the loop 864 */ 865 sqlite3VdbeResolveLabel(v, cont); 866 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 867 sqlite3VdbeResolveLabel(v, brk); 868 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 869 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 870 } 871 872 } 873 874 /* 875 ** Return a pointer to a string containing the 'declaration type' of the 876 ** expression pExpr. The string may be treated as static by the caller. 877 ** 878 ** The declaration type is the exact datatype definition extracted from the 879 ** original CREATE TABLE statement if the expression is a column. The 880 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 881 ** is considered a column can be complex in the presence of subqueries. The 882 ** result-set expression in all of the following SELECT statements is 883 ** considered a column by this function. 884 ** 885 ** SELECT col FROM tbl; 886 ** SELECT (SELECT col FROM tbl; 887 ** SELECT (SELECT col FROM tbl); 888 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 889 ** 890 ** The declaration type for any expression other than a column is NULL. 891 */ 892 static const char *columnType( 893 NameContext *pNC, 894 Expr *pExpr, 895 const char **pzOriginDb, 896 const char **pzOriginTab, 897 const char **pzOriginCol 898 ){ 899 char const *zType = 0; 900 char const *zOriginDb = 0; 901 char const *zOriginTab = 0; 902 char const *zOriginCol = 0; 903 int j; 904 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 905 906 switch( pExpr->op ){ 907 case TK_AGG_COLUMN: 908 case TK_COLUMN: { 909 /* The expression is a column. Locate the table the column is being 910 ** extracted from in NameContext.pSrcList. This table may be real 911 ** database table or a subquery. 912 */ 913 Table *pTab = 0; /* Table structure column is extracted from */ 914 Select *pS = 0; /* Select the column is extracted from */ 915 int iCol = pExpr->iColumn; /* Index of column in pTab */ 916 while( pNC && !pTab ){ 917 SrcList *pTabList = pNC->pSrcList; 918 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 919 if( j<pTabList->nSrc ){ 920 pTab = pTabList->a[j].pTab; 921 pS = pTabList->a[j].pSelect; 922 }else{ 923 pNC = pNC->pNext; 924 } 925 } 926 927 if( pTab==0 ){ 928 /* FIX ME: 929 ** This can occurs if you have something like "SELECT new.x;" inside 930 ** a trigger. In other words, if you reference the special "new" 931 ** table in the result set of a select. We do not have a good way 932 ** to find the actual table type, so call it "TEXT". This is really 933 ** something of a bug, but I do not know how to fix it. 934 ** 935 ** This code does not produce the correct answer - it just prevents 936 ** a segfault. See ticket #1229. 937 */ 938 zType = "TEXT"; 939 break; 940 } 941 942 assert( pTab ); 943 if( pS ){ 944 /* The "table" is actually a sub-select or a view in the FROM clause 945 ** of the SELECT statement. Return the declaration type and origin 946 ** data for the result-set column of the sub-select. 947 */ 948 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 949 /* If iCol is less than zero, then the expression requests the 950 ** rowid of the sub-select or view. This expression is legal (see 951 ** test case misc2.2.2) - it always evaluates to NULL. 952 */ 953 NameContext sNC; 954 Expr *p = pS->pEList->a[iCol].pExpr; 955 sNC.pSrcList = pS->pSrc; 956 sNC.pNext = 0; 957 sNC.pParse = pNC->pParse; 958 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 959 } 960 }else if( pTab->pSchema ){ 961 /* A real table */ 962 assert( !pS ); 963 if( iCol<0 ) iCol = pTab->iPKey; 964 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 965 if( iCol<0 ){ 966 zType = "INTEGER"; 967 zOriginCol = "rowid"; 968 }else{ 969 zType = pTab->aCol[iCol].zType; 970 zOriginCol = pTab->aCol[iCol].zName; 971 } 972 zOriginTab = pTab->zName; 973 if( pNC->pParse ){ 974 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 975 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 976 } 977 } 978 break; 979 } 980 #ifndef SQLITE_OMIT_SUBQUERY 981 case TK_SELECT: { 982 /* The expression is a sub-select. Return the declaration type and 983 ** origin info for the single column in the result set of the SELECT 984 ** statement. 985 */ 986 NameContext sNC; 987 Select *pS = pExpr->pSelect; 988 Expr *p = pS->pEList->a[0].pExpr; 989 sNC.pSrcList = pS->pSrc; 990 sNC.pNext = pNC; 991 sNC.pParse = pNC->pParse; 992 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 993 break; 994 } 995 #endif 996 } 997 998 if( pzOriginDb ){ 999 assert( pzOriginTab && pzOriginCol ); 1000 *pzOriginDb = zOriginDb; 1001 *pzOriginTab = zOriginTab; 1002 *pzOriginCol = zOriginCol; 1003 } 1004 return zType; 1005 } 1006 1007 /* 1008 ** Generate code that will tell the VDBE the declaration types of columns 1009 ** in the result set. 1010 */ 1011 static void generateColumnTypes( 1012 Parse *pParse, /* Parser context */ 1013 SrcList *pTabList, /* List of tables */ 1014 ExprList *pEList /* Expressions defining the result set */ 1015 ){ 1016 #ifndef SQLITE_OMIT_DECLTYPE 1017 Vdbe *v = pParse->pVdbe; 1018 int i; 1019 NameContext sNC; 1020 sNC.pSrcList = pTabList; 1021 sNC.pParse = pParse; 1022 for(i=0; i<pEList->nExpr; i++){ 1023 Expr *p = pEList->a[i].pExpr; 1024 const char *zType; 1025 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1026 const char *zOrigDb = 0; 1027 const char *zOrigTab = 0; 1028 const char *zOrigCol = 0; 1029 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1030 1031 /* The vdbe must make its own copy of the column-type and other 1032 ** column specific strings, in case the schema is reset before this 1033 ** virtual machine is deleted. 1034 */ 1035 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); 1036 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); 1037 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); 1038 #else 1039 zType = columnType(&sNC, p, 0, 0, 0); 1040 #endif 1041 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); 1042 } 1043 #endif /* SQLITE_OMIT_DECLTYPE */ 1044 } 1045 1046 /* 1047 ** Generate code that will tell the VDBE the names of columns 1048 ** in the result set. This information is used to provide the 1049 ** azCol[] values in the callback. 1050 */ 1051 static void generateColumnNames( 1052 Parse *pParse, /* Parser context */ 1053 SrcList *pTabList, /* List of tables */ 1054 ExprList *pEList /* Expressions defining the result set */ 1055 ){ 1056 Vdbe *v = pParse->pVdbe; 1057 int i, j; 1058 sqlite3 *db = pParse->db; 1059 int fullNames, shortNames; 1060 1061 #ifndef SQLITE_OMIT_EXPLAIN 1062 /* If this is an EXPLAIN, skip this step */ 1063 if( pParse->explain ){ 1064 return; 1065 } 1066 #endif 1067 1068 assert( v!=0 ); 1069 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 1070 pParse->colNamesSet = 1; 1071 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1072 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1073 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1074 for(i=0; i<pEList->nExpr; i++){ 1075 Expr *p; 1076 p = pEList->a[i].pExpr; 1077 if( p==0 ) continue; 1078 if( pEList->a[i].zName ){ 1079 char *zName = pEList->a[i].zName; 1080 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1081 }else if( p->op==TK_COLUMN && pTabList ){ 1082 Table *pTab; 1083 char *zCol; 1084 int iCol = p->iColumn; 1085 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1086 assert( j<pTabList->nSrc ); 1087 pTab = pTabList->a[j].pTab; 1088 if( iCol<0 ) iCol = pTab->iPKey; 1089 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1090 if( iCol<0 ){ 1091 zCol = "rowid"; 1092 }else{ 1093 zCol = pTab->aCol[iCol].zName; 1094 } 1095 if( !shortNames && !fullNames ){ 1096 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1097 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1098 char *zName = 0; 1099 char *zTab; 1100 1101 zTab = pTabList->a[j].zAlias; 1102 if( fullNames || zTab==0 ) zTab = pTab->zName; 1103 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); 1104 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); 1105 }else{ 1106 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1107 } 1108 }else{ 1109 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1110 } 1111 } 1112 generateColumnTypes(pParse, pTabList, pEList); 1113 } 1114 1115 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1116 /* 1117 ** Name of the connection operator, used for error messages. 1118 */ 1119 static const char *selectOpName(int id){ 1120 char *z; 1121 switch( id ){ 1122 case TK_ALL: z = "UNION ALL"; break; 1123 case TK_INTERSECT: z = "INTERSECT"; break; 1124 case TK_EXCEPT: z = "EXCEPT"; break; 1125 default: z = "UNION"; break; 1126 } 1127 return z; 1128 } 1129 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1130 1131 /* 1132 ** Given a an expression list (which is really the list of expressions 1133 ** that form the result set of a SELECT statement) compute appropriate 1134 ** column names for a table that would hold the expression list. 1135 ** 1136 ** All column names will be unique. 1137 ** 1138 ** Only the column names are computed. Column.zType, Column.zColl, 1139 ** and other fields of Column are zeroed. 1140 ** 1141 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1142 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1143 */ 1144 static int selectColumnsFromExprList( 1145 Parse *pParse, /* Parsing context */ 1146 ExprList *pEList, /* Expr list from which to derive column names */ 1147 int *pnCol, /* Write the number of columns here */ 1148 Column **paCol /* Write the new column list here */ 1149 ){ 1150 sqlite3 *db = pParse->db; 1151 int i, j, cnt; 1152 Column *aCol, *pCol; 1153 int nCol; 1154 Expr *p; 1155 char *zName; 1156 int nName; 1157 1158 *pnCol = nCol = pEList->nExpr; 1159 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1160 if( aCol==0 ) return SQLITE_NOMEM; 1161 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1162 /* Get an appropriate name for the column 1163 */ 1164 p = pEList->a[i].pExpr; 1165 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1166 if( (zName = pEList->a[i].zName)!=0 ){ 1167 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1168 zName = sqlite3DbStrDup(db, zName); 1169 }else{ 1170 Expr *pCol = p; 1171 Table *pTab; 1172 while( pCol->op==TK_DOT ) pCol = pCol->pRight; 1173 if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){ 1174 /* For columns use the column name name */ 1175 int iCol = pCol->iColumn; 1176 if( iCol<0 ) iCol = pTab->iPKey; 1177 zName = sqlite3MPrintf(db, "%s", 1178 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1179 }else{ 1180 /* Use the original text of the column expression as its name */ 1181 zName = sqlite3MPrintf(db, "%T", &pCol->span); 1182 } 1183 } 1184 if( db->mallocFailed ){ 1185 sqlite3DbFree(db, zName); 1186 break; 1187 } 1188 sqlite3Dequote(zName); 1189 1190 /* Make sure the column name is unique. If the name is not unique, 1191 ** append a integer to the name so that it becomes unique. 1192 */ 1193 nName = strlen(zName); 1194 for(j=cnt=0; j<i; j++){ 1195 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1196 char *zNewName; 1197 zName[nName] = 0; 1198 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1199 sqlite3DbFree(db, zName); 1200 zName = zNewName; 1201 j = -1; 1202 if( zName==0 ) break; 1203 } 1204 } 1205 pCol->zName = zName; 1206 } 1207 if( db->mallocFailed ){ 1208 int j; 1209 for(j=0; j<i; j++){ 1210 sqlite3DbFree(db, aCol[j].zName); 1211 } 1212 sqlite3DbFree(db, aCol); 1213 *paCol = 0; 1214 *pnCol = 0; 1215 return SQLITE_NOMEM; 1216 } 1217 return SQLITE_OK; 1218 } 1219 1220 /* 1221 ** Add type and collation information to a column list based on 1222 ** a SELECT statement. 1223 ** 1224 ** The column list presumably came from selectColumnNamesFromExprList(). 1225 ** The column list has only names, not types or collations. This 1226 ** routine goes through and adds the types and collations. 1227 ** 1228 ** This routine requires that all indentifiers in the SELECT 1229 ** statement be resolved. 1230 */ 1231 static void selectAddColumnTypeAndCollation( 1232 Parse *pParse, /* Parsing contexts */ 1233 int nCol, /* Number of columns */ 1234 Column *aCol, /* List of columns */ 1235 Select *pSelect /* SELECT used to determine types and collations */ 1236 ){ 1237 sqlite3 *db = pParse->db; 1238 NameContext sNC; 1239 Column *pCol; 1240 CollSeq *pColl; 1241 int i; 1242 Expr *p; 1243 struct ExprList_item *a; 1244 1245 assert( pSelect!=0 ); 1246 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1247 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1248 if( db->mallocFailed ) return; 1249 memset(&sNC, 0, sizeof(sNC)); 1250 sNC.pSrcList = pSelect->pSrc; 1251 a = pSelect->pEList->a; 1252 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1253 p = a[i].pExpr; 1254 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1255 pCol->affinity = sqlite3ExprAffinity(p); 1256 pColl = sqlite3ExprCollSeq(pParse, p); 1257 if( pColl ){ 1258 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1259 } 1260 } 1261 } 1262 1263 /* 1264 ** Given a SELECT statement, generate a Table structure that describes 1265 ** the result set of that SELECT. 1266 */ 1267 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1268 Table *pTab; 1269 sqlite3 *db = pParse->db; 1270 int savedFlags; 1271 1272 savedFlags = db->flags; 1273 db->flags &= ~SQLITE_FullColNames; 1274 db->flags |= SQLITE_ShortColNames; 1275 sqlite3SelectPrep(pParse, pSelect, 0); 1276 if( pParse->nErr ) return 0; 1277 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1278 db->flags = savedFlags; 1279 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1280 if( pTab==0 ){ 1281 return 0; 1282 } 1283 pTab->db = db; 1284 pTab->nRef = 1; 1285 pTab->zName = 0; 1286 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1287 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1288 pTab->iPKey = -1; 1289 if( db->mallocFailed ){ 1290 sqlite3DeleteTable(pTab); 1291 return 0; 1292 } 1293 return pTab; 1294 } 1295 1296 /* 1297 ** Get a VDBE for the given parser context. Create a new one if necessary. 1298 ** If an error occurs, return NULL and leave a message in pParse. 1299 */ 1300 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1301 Vdbe *v = pParse->pVdbe; 1302 if( v==0 ){ 1303 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1304 #ifndef SQLITE_OMIT_TRACE 1305 if( v ){ 1306 sqlite3VdbeAddOp0(v, OP_Trace); 1307 } 1308 #endif 1309 } 1310 return v; 1311 } 1312 1313 1314 /* 1315 ** Compute the iLimit and iOffset fields of the SELECT based on the 1316 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1317 ** that appear in the original SQL statement after the LIMIT and OFFSET 1318 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1319 ** are the integer memory register numbers for counters used to compute 1320 ** the limit and offset. If there is no limit and/or offset, then 1321 ** iLimit and iOffset are negative. 1322 ** 1323 ** This routine changes the values of iLimit and iOffset only if 1324 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1325 ** iOffset should have been preset to appropriate default values 1326 ** (usually but not always -1) prior to calling this routine. 1327 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1328 ** redefined. The UNION ALL operator uses this property to force 1329 ** the reuse of the same limit and offset registers across multiple 1330 ** SELECT statements. 1331 */ 1332 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1333 Vdbe *v = 0; 1334 int iLimit = 0; 1335 int iOffset; 1336 int addr1; 1337 if( p->iLimit ) return; 1338 1339 /* 1340 ** "LIMIT -1" always shows all rows. There is some 1341 ** contraversy about what the correct behavior should be. 1342 ** The current implementation interprets "LIMIT 0" to mean 1343 ** no rows. 1344 */ 1345 if( p->pLimit ){ 1346 p->iLimit = iLimit = ++pParse->nMem; 1347 v = sqlite3GetVdbe(pParse); 1348 if( v==0 ) return; 1349 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1350 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1351 VdbeComment((v, "LIMIT counter")); 1352 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1353 } 1354 if( p->pOffset ){ 1355 p->iOffset = iOffset = ++pParse->nMem; 1356 if( p->pLimit ){ 1357 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1358 } 1359 v = sqlite3GetVdbe(pParse); 1360 if( v==0 ) return; 1361 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1362 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1363 VdbeComment((v, "OFFSET counter")); 1364 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1365 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1366 sqlite3VdbeJumpHere(v, addr1); 1367 if( p->pLimit ){ 1368 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1369 VdbeComment((v, "LIMIT+OFFSET")); 1370 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1371 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1372 sqlite3VdbeJumpHere(v, addr1); 1373 } 1374 } 1375 } 1376 1377 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1378 /* 1379 ** Return the appropriate collating sequence for the iCol-th column of 1380 ** the result set for the compound-select statement "p". Return NULL if 1381 ** the column has no default collating sequence. 1382 ** 1383 ** The collating sequence for the compound select is taken from the 1384 ** left-most term of the select that has a collating sequence. 1385 */ 1386 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1387 CollSeq *pRet; 1388 if( p->pPrior ){ 1389 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1390 }else{ 1391 pRet = 0; 1392 } 1393 if( pRet==0 ){ 1394 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1395 } 1396 return pRet; 1397 } 1398 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1399 1400 /* Forward reference */ 1401 static int multiSelectOrderBy( 1402 Parse *pParse, /* Parsing context */ 1403 Select *p, /* The right-most of SELECTs to be coded */ 1404 SelectDest *pDest /* What to do with query results */ 1405 ); 1406 1407 1408 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1409 /* 1410 ** This routine is called to process a compound query form from 1411 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1412 ** INTERSECT 1413 ** 1414 ** "p" points to the right-most of the two queries. the query on the 1415 ** left is p->pPrior. The left query could also be a compound query 1416 ** in which case this routine will be called recursively. 1417 ** 1418 ** The results of the total query are to be written into a destination 1419 ** of type eDest with parameter iParm. 1420 ** 1421 ** Example 1: Consider a three-way compound SQL statement. 1422 ** 1423 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1424 ** 1425 ** This statement is parsed up as follows: 1426 ** 1427 ** SELECT c FROM t3 1428 ** | 1429 ** `-----> SELECT b FROM t2 1430 ** | 1431 ** `------> SELECT a FROM t1 1432 ** 1433 ** The arrows in the diagram above represent the Select.pPrior pointer. 1434 ** So if this routine is called with p equal to the t3 query, then 1435 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1436 ** 1437 ** Notice that because of the way SQLite parses compound SELECTs, the 1438 ** individual selects always group from left to right. 1439 */ 1440 static int multiSelect( 1441 Parse *pParse, /* Parsing context */ 1442 Select *p, /* The right-most of SELECTs to be coded */ 1443 SelectDest *pDest /* What to do with query results */ 1444 ){ 1445 int rc = SQLITE_OK; /* Success code from a subroutine */ 1446 Select *pPrior; /* Another SELECT immediately to our left */ 1447 Vdbe *v; /* Generate code to this VDBE */ 1448 SelectDest dest; /* Alternative data destination */ 1449 Select *pDelete = 0; /* Chain of simple selects to delete */ 1450 sqlite3 *db; /* Database connection */ 1451 1452 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1453 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1454 */ 1455 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1456 db = pParse->db; 1457 pPrior = p->pPrior; 1458 assert( pPrior->pRightmost!=pPrior ); 1459 assert( pPrior->pRightmost==p->pRightmost ); 1460 dest = *pDest; 1461 if( pPrior->pOrderBy ){ 1462 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1463 selectOpName(p->op)); 1464 rc = 1; 1465 goto multi_select_end; 1466 } 1467 if( pPrior->pLimit ){ 1468 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1469 selectOpName(p->op)); 1470 rc = 1; 1471 goto multi_select_end; 1472 } 1473 1474 v = sqlite3GetVdbe(pParse); 1475 assert( v!=0 ); /* The VDBE already created by calling function */ 1476 1477 /* Create the destination temporary table if necessary 1478 */ 1479 if( dest.eDest==SRT_EphemTab ){ 1480 assert( p->pEList ); 1481 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1482 dest.eDest = SRT_Table; 1483 } 1484 1485 /* Make sure all SELECTs in the statement have the same number of elements 1486 ** in their result sets. 1487 */ 1488 assert( p->pEList && pPrior->pEList ); 1489 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1490 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1491 " do not have the same number of result columns", selectOpName(p->op)); 1492 rc = 1; 1493 goto multi_select_end; 1494 } 1495 1496 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1497 */ 1498 if( p->pOrderBy ){ 1499 return multiSelectOrderBy(pParse, p, pDest); 1500 } 1501 1502 /* Generate code for the left and right SELECT statements. 1503 */ 1504 switch( p->op ){ 1505 case TK_ALL: { 1506 int addr = 0; 1507 assert( !pPrior->pLimit ); 1508 pPrior->pLimit = p->pLimit; 1509 pPrior->pOffset = p->pOffset; 1510 rc = sqlite3Select(pParse, pPrior, &dest); 1511 p->pLimit = 0; 1512 p->pOffset = 0; 1513 if( rc ){ 1514 goto multi_select_end; 1515 } 1516 p->pPrior = 0; 1517 p->iLimit = pPrior->iLimit; 1518 p->iOffset = pPrior->iOffset; 1519 if( p->iLimit ){ 1520 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1521 VdbeComment((v, "Jump ahead if LIMIT reached")); 1522 } 1523 rc = sqlite3Select(pParse, p, &dest); 1524 pDelete = p->pPrior; 1525 p->pPrior = pPrior; 1526 if( rc ){ 1527 goto multi_select_end; 1528 } 1529 if( addr ){ 1530 sqlite3VdbeJumpHere(v, addr); 1531 } 1532 break; 1533 } 1534 case TK_EXCEPT: 1535 case TK_UNION: { 1536 int unionTab; /* Cursor number of the temporary table holding result */ 1537 int op = 0; /* One of the SRT_ operations to apply to self */ 1538 int priorOp; /* The SRT_ operation to apply to prior selects */ 1539 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1540 int addr; 1541 SelectDest uniondest; 1542 1543 priorOp = SRT_Union; 1544 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ 1545 /* We can reuse a temporary table generated by a SELECT to our 1546 ** right. 1547 */ 1548 unionTab = dest.iParm; 1549 }else{ 1550 /* We will need to create our own temporary table to hold the 1551 ** intermediate results. 1552 */ 1553 unionTab = pParse->nTab++; 1554 assert( p->pOrderBy==0 ); 1555 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1556 assert( p->addrOpenEphm[0] == -1 ); 1557 p->addrOpenEphm[0] = addr; 1558 p->pRightmost->selFlags |= SF_UsesEphemeral; 1559 assert( p->pEList ); 1560 } 1561 1562 /* Code the SELECT statements to our left 1563 */ 1564 assert( !pPrior->pOrderBy ); 1565 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1566 rc = sqlite3Select(pParse, pPrior, &uniondest); 1567 if( rc ){ 1568 goto multi_select_end; 1569 } 1570 1571 /* Code the current SELECT statement 1572 */ 1573 if( p->op==TK_EXCEPT ){ 1574 op = SRT_Except; 1575 }else{ 1576 assert( p->op==TK_UNION ); 1577 op = SRT_Union; 1578 } 1579 p->pPrior = 0; 1580 pLimit = p->pLimit; 1581 p->pLimit = 0; 1582 pOffset = p->pOffset; 1583 p->pOffset = 0; 1584 uniondest.eDest = op; 1585 rc = sqlite3Select(pParse, p, &uniondest); 1586 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1587 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1588 sqlite3ExprListDelete(db, p->pOrderBy); 1589 pDelete = p->pPrior; 1590 p->pPrior = pPrior; 1591 p->pOrderBy = 0; 1592 sqlite3ExprDelete(db, p->pLimit); 1593 p->pLimit = pLimit; 1594 p->pOffset = pOffset; 1595 p->iLimit = 0; 1596 p->iOffset = 0; 1597 if( rc ){ 1598 goto multi_select_end; 1599 } 1600 1601 1602 /* Convert the data in the temporary table into whatever form 1603 ** it is that we currently need. 1604 */ 1605 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 1606 int iCont, iBreak, iStart; 1607 assert( p->pEList ); 1608 if( dest.eDest==SRT_Output ){ 1609 Select *pFirst = p; 1610 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1611 generateColumnNames(pParse, 0, pFirst->pEList); 1612 } 1613 iBreak = sqlite3VdbeMakeLabel(v); 1614 iCont = sqlite3VdbeMakeLabel(v); 1615 computeLimitRegisters(pParse, p, iBreak); 1616 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1617 iStart = sqlite3VdbeCurrentAddr(v); 1618 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1619 0, -1, &dest, iCont, iBreak); 1620 sqlite3VdbeResolveLabel(v, iCont); 1621 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1622 sqlite3VdbeResolveLabel(v, iBreak); 1623 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1624 } 1625 break; 1626 } 1627 case TK_INTERSECT: { 1628 int tab1, tab2; 1629 int iCont, iBreak, iStart; 1630 Expr *pLimit, *pOffset; 1631 int addr; 1632 SelectDest intersectdest; 1633 int r1; 1634 1635 /* INTERSECT is different from the others since it requires 1636 ** two temporary tables. Hence it has its own case. Begin 1637 ** by allocating the tables we will need. 1638 */ 1639 tab1 = pParse->nTab++; 1640 tab2 = pParse->nTab++; 1641 assert( p->pOrderBy==0 ); 1642 1643 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1644 assert( p->addrOpenEphm[0] == -1 ); 1645 p->addrOpenEphm[0] = addr; 1646 p->pRightmost->selFlags |= SF_UsesEphemeral; 1647 assert( p->pEList ); 1648 1649 /* Code the SELECTs to our left into temporary table "tab1". 1650 */ 1651 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1652 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1653 if( rc ){ 1654 goto multi_select_end; 1655 } 1656 1657 /* Code the current SELECT into temporary table "tab2" 1658 */ 1659 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1660 assert( p->addrOpenEphm[1] == -1 ); 1661 p->addrOpenEphm[1] = addr; 1662 p->pPrior = 0; 1663 pLimit = p->pLimit; 1664 p->pLimit = 0; 1665 pOffset = p->pOffset; 1666 p->pOffset = 0; 1667 intersectdest.iParm = tab2; 1668 rc = sqlite3Select(pParse, p, &intersectdest); 1669 pDelete = p->pPrior; 1670 p->pPrior = pPrior; 1671 sqlite3ExprDelete(db, p->pLimit); 1672 p->pLimit = pLimit; 1673 p->pOffset = pOffset; 1674 if( rc ){ 1675 goto multi_select_end; 1676 } 1677 1678 /* Generate code to take the intersection of the two temporary 1679 ** tables. 1680 */ 1681 assert( p->pEList ); 1682 if( dest.eDest==SRT_Output ){ 1683 Select *pFirst = p; 1684 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1685 generateColumnNames(pParse, 0, pFirst->pEList); 1686 } 1687 iBreak = sqlite3VdbeMakeLabel(v); 1688 iCont = sqlite3VdbeMakeLabel(v); 1689 computeLimitRegisters(pParse, p, iBreak); 1690 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1691 r1 = sqlite3GetTempReg(pParse); 1692 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1693 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1694 sqlite3ReleaseTempReg(pParse, r1); 1695 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1696 0, -1, &dest, iCont, iBreak); 1697 sqlite3VdbeResolveLabel(v, iCont); 1698 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1699 sqlite3VdbeResolveLabel(v, iBreak); 1700 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1701 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1702 break; 1703 } 1704 } 1705 1706 /* Compute collating sequences used by 1707 ** temporary tables needed to implement the compound select. 1708 ** Attach the KeyInfo structure to all temporary tables. 1709 ** 1710 ** This section is run by the right-most SELECT statement only. 1711 ** SELECT statements to the left always skip this part. The right-most 1712 ** SELECT might also skip this part if it has no ORDER BY clause and 1713 ** no temp tables are required. 1714 */ 1715 if( p->selFlags & SF_UsesEphemeral ){ 1716 int i; /* Loop counter */ 1717 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1718 Select *pLoop; /* For looping through SELECT statements */ 1719 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1720 int nCol; /* Number of columns in result set */ 1721 1722 assert( p->pRightmost==p ); 1723 nCol = p->pEList->nExpr; 1724 pKeyInfo = sqlite3DbMallocZero(db, 1725 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1726 if( !pKeyInfo ){ 1727 rc = SQLITE_NOMEM; 1728 goto multi_select_end; 1729 } 1730 1731 pKeyInfo->enc = ENC(db); 1732 pKeyInfo->nField = nCol; 1733 1734 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1735 *apColl = multiSelectCollSeq(pParse, p, i); 1736 if( 0==*apColl ){ 1737 *apColl = db->pDfltColl; 1738 } 1739 } 1740 1741 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1742 for(i=0; i<2; i++){ 1743 int addr = pLoop->addrOpenEphm[i]; 1744 if( addr<0 ){ 1745 /* If [0] is unused then [1] is also unused. So we can 1746 ** always safely abort as soon as the first unused slot is found */ 1747 assert( pLoop->addrOpenEphm[1]<0 ); 1748 break; 1749 } 1750 sqlite3VdbeChangeP2(v, addr, nCol); 1751 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1752 pLoop->addrOpenEphm[i] = -1; 1753 } 1754 } 1755 sqlite3DbFree(db, pKeyInfo); 1756 } 1757 1758 multi_select_end: 1759 pDest->iMem = dest.iMem; 1760 pDest->nMem = dest.nMem; 1761 sqlite3SelectDelete(db, pDelete); 1762 return rc; 1763 } 1764 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1765 1766 /* 1767 ** Code an output subroutine for a coroutine implementation of a 1768 ** SELECT statment. 1769 ** 1770 ** The data to be output is contained in pIn->iMem. There are 1771 ** pIn->nMem columns to be output. pDest is where the output should 1772 ** be sent. 1773 ** 1774 ** regReturn is the number of the register holding the subroutine 1775 ** return address. 1776 ** 1777 ** If regPrev>0 then it is a the first register in a vector that 1778 ** records the previous output. mem[regPrev] is a flag that is false 1779 ** if there has been no previous output. If regPrev>0 then code is 1780 ** generated to suppress duplicates. pKeyInfo is used for comparing 1781 ** keys. 1782 ** 1783 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1784 ** iBreak. 1785 */ 1786 static int generateOutputSubroutine( 1787 Parse *pParse, /* Parsing context */ 1788 Select *p, /* The SELECT statement */ 1789 SelectDest *pIn, /* Coroutine supplying data */ 1790 SelectDest *pDest, /* Where to send the data */ 1791 int regReturn, /* The return address register */ 1792 int regPrev, /* Previous result register. No uniqueness if 0 */ 1793 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1794 int p4type, /* The p4 type for pKeyInfo */ 1795 int iBreak /* Jump here if we hit the LIMIT */ 1796 ){ 1797 Vdbe *v = pParse->pVdbe; 1798 int iContinue; 1799 int addr; 1800 1801 addr = sqlite3VdbeCurrentAddr(v); 1802 iContinue = sqlite3VdbeMakeLabel(v); 1803 1804 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1805 */ 1806 if( regPrev ){ 1807 int j1, j2; 1808 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1809 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1810 (char*)pKeyInfo, p4type); 1811 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1812 sqlite3VdbeJumpHere(v, j1); 1813 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1814 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1815 } 1816 if( pParse->db->mallocFailed ) return 0; 1817 1818 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1819 */ 1820 codeOffset(v, p, iContinue); 1821 1822 switch( pDest->eDest ){ 1823 /* Store the result as data using a unique key. 1824 */ 1825 case SRT_Table: 1826 case SRT_EphemTab: { 1827 int r1 = sqlite3GetTempReg(pParse); 1828 int r2 = sqlite3GetTempReg(pParse); 1829 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1830 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1831 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1832 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1833 sqlite3ReleaseTempReg(pParse, r2); 1834 sqlite3ReleaseTempReg(pParse, r1); 1835 break; 1836 } 1837 1838 #ifndef SQLITE_OMIT_SUBQUERY 1839 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1840 ** then there should be a single item on the stack. Write this 1841 ** item into the set table with bogus data. 1842 */ 1843 case SRT_Set: { 1844 int r1; 1845 assert( pIn->nMem==1 ); 1846 p->affinity = 1847 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1848 r1 = sqlite3GetTempReg(pParse); 1849 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1850 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1851 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1852 sqlite3ReleaseTempReg(pParse, r1); 1853 break; 1854 } 1855 1856 #if 0 /* Never occurs on an ORDER BY query */ 1857 /* If any row exist in the result set, record that fact and abort. 1858 */ 1859 case SRT_Exists: { 1860 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1861 /* The LIMIT clause will terminate the loop for us */ 1862 break; 1863 } 1864 #endif 1865 1866 /* If this is a scalar select that is part of an expression, then 1867 ** store the results in the appropriate memory cell and break out 1868 ** of the scan loop. 1869 */ 1870 case SRT_Mem: { 1871 assert( pIn->nMem==1 ); 1872 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1873 /* The LIMIT clause will jump out of the loop for us */ 1874 break; 1875 } 1876 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1877 1878 /* The results are stored in a sequence of registers 1879 ** starting at pDest->iMem. Then the co-routine yields. 1880 */ 1881 case SRT_Coroutine: { 1882 if( pDest->iMem==0 ){ 1883 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1884 pDest->nMem = pIn->nMem; 1885 } 1886 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1887 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1888 break; 1889 } 1890 1891 /* Results are stored in a sequence of registers. Then the 1892 ** OP_ResultRow opcode is used to cause sqlite3_step() to return 1893 ** the next row of result. 1894 */ 1895 case SRT_Output: { 1896 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1897 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1898 break; 1899 } 1900 1901 #if !defined(SQLITE_OMIT_TRIGGER) 1902 /* Discard the results. This is used for SELECT statements inside 1903 ** the body of a TRIGGER. The purpose of such selects is to call 1904 ** user-defined functions that have side effects. We do not care 1905 ** about the actual results of the select. 1906 */ 1907 default: { 1908 break; 1909 } 1910 #endif 1911 } 1912 1913 /* Jump to the end of the loop if the LIMIT is reached. 1914 */ 1915 if( p->iLimit ){ 1916 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1917 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1918 } 1919 1920 /* Generate the subroutine return 1921 */ 1922 sqlite3VdbeResolveLabel(v, iContinue); 1923 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1924 1925 return addr; 1926 } 1927 1928 /* 1929 ** Alternative compound select code generator for cases when there 1930 ** is an ORDER BY clause. 1931 ** 1932 ** We assume a query of the following form: 1933 ** 1934 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1935 ** 1936 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1937 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1938 ** co-routines. Then run the co-routines in parallel and merge the results 1939 ** into the output. In addition to the two coroutines (called selectA and 1940 ** selectB) there are 7 subroutines: 1941 ** 1942 ** outA: Move the output of the selectA coroutine into the output 1943 ** of the compound query. 1944 ** 1945 ** outB: Move the output of the selectB coroutine into the output 1946 ** of the compound query. (Only generated for UNION and 1947 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1948 ** appears only in B.) 1949 ** 1950 ** AltB: Called when there is data from both coroutines and A<B. 1951 ** 1952 ** AeqB: Called when there is data from both coroutines and A==B. 1953 ** 1954 ** AgtB: Called when there is data from both coroutines and A>B. 1955 ** 1956 ** EofA: Called when data is exhausted from selectA. 1957 ** 1958 ** EofB: Called when data is exhausted from selectB. 1959 ** 1960 ** The implementation of the latter five subroutines depend on which 1961 ** <operator> is used: 1962 ** 1963 ** 1964 ** UNION ALL UNION EXCEPT INTERSECT 1965 ** ------------- ----------------- -------------- ----------------- 1966 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1967 ** 1968 ** AeqB: outA, nextA nextA nextA outA, nextA 1969 ** 1970 ** AgtB: outB, nextB outB, nextB nextB nextB 1971 ** 1972 ** EofA: outB, nextB outB, nextB halt halt 1973 ** 1974 ** EofB: outA, nextA outA, nextA outA, nextA halt 1975 ** 1976 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1977 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1978 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1979 ** following nextX causes a jump to the end of the select processing. 1980 ** 1981 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1982 ** within the output subroutine. The regPrev register set holds the previously 1983 ** output value. A comparison is made against this value and the output 1984 ** is skipped if the next results would be the same as the previous. 1985 ** 1986 ** The implementation plan is to implement the two coroutines and seven 1987 ** subroutines first, then put the control logic at the bottom. Like this: 1988 ** 1989 ** goto Init 1990 ** coA: coroutine for left query (A) 1991 ** coB: coroutine for right query (B) 1992 ** outA: output one row of A 1993 ** outB: output one row of B (UNION and UNION ALL only) 1994 ** EofA: ... 1995 ** EofB: ... 1996 ** AltB: ... 1997 ** AeqB: ... 1998 ** AgtB: ... 1999 ** Init: initialize coroutine registers 2000 ** yield coA 2001 ** if eof(A) goto EofA 2002 ** yield coB 2003 ** if eof(B) goto EofB 2004 ** Cmpr: Compare A, B 2005 ** Jump AltB, AeqB, AgtB 2006 ** End: ... 2007 ** 2008 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2009 ** actually called using Gosub and they do not Return. EofA and EofB loop 2010 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2011 ** and AgtB jump to either L2 or to one of EofA or EofB. 2012 */ 2013 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2014 static int multiSelectOrderBy( 2015 Parse *pParse, /* Parsing context */ 2016 Select *p, /* The right-most of SELECTs to be coded */ 2017 SelectDest *pDest /* What to do with query results */ 2018 ){ 2019 int i, j; /* Loop counters */ 2020 Select *pPrior; /* Another SELECT immediately to our left */ 2021 Vdbe *v; /* Generate code to this VDBE */ 2022 SelectDest destA; /* Destination for coroutine A */ 2023 SelectDest destB; /* Destination for coroutine B */ 2024 int regAddrA; /* Address register for select-A coroutine */ 2025 int regEofA; /* Flag to indicate when select-A is complete */ 2026 int regAddrB; /* Address register for select-B coroutine */ 2027 int regEofB; /* Flag to indicate when select-B is complete */ 2028 int addrSelectA; /* Address of the select-A coroutine */ 2029 int addrSelectB; /* Address of the select-B coroutine */ 2030 int regOutA; /* Address register for the output-A subroutine */ 2031 int regOutB; /* Address register for the output-B subroutine */ 2032 int addrOutA; /* Address of the output-A subroutine */ 2033 int addrOutB; /* Address of the output-B subroutine */ 2034 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2035 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2036 int addrAltB; /* Address of the A<B subroutine */ 2037 int addrAeqB; /* Address of the A==B subroutine */ 2038 int addrAgtB; /* Address of the A>B subroutine */ 2039 int regLimitA; /* Limit register for select-A */ 2040 int regLimitB; /* Limit register for select-A */ 2041 int regPrev; /* A range of registers to hold previous output */ 2042 int savedLimit; /* Saved value of p->iLimit */ 2043 int savedOffset; /* Saved value of p->iOffset */ 2044 int labelCmpr; /* Label for the start of the merge algorithm */ 2045 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2046 int j1; /* Jump instructions that get retargetted */ 2047 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2048 KeyInfo *pKeyDup; /* Comparison information for duplicate removal */ 2049 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2050 sqlite3 *db; /* Database connection */ 2051 ExprList *pOrderBy; /* The ORDER BY clause */ 2052 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2053 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2054 2055 assert( p->pOrderBy!=0 ); 2056 db = pParse->db; 2057 v = pParse->pVdbe; 2058 if( v==0 ) return SQLITE_NOMEM; 2059 labelEnd = sqlite3VdbeMakeLabel(v); 2060 labelCmpr = sqlite3VdbeMakeLabel(v); 2061 2062 2063 /* Patch up the ORDER BY clause 2064 */ 2065 op = p->op; 2066 pPrior = p->pPrior; 2067 assert( pPrior->pOrderBy==0 ); 2068 pOrderBy = p->pOrderBy; 2069 assert( pOrderBy ); 2070 nOrderBy = pOrderBy->nExpr; 2071 2072 /* For operators other than UNION ALL we have to make sure that 2073 ** the ORDER BY clause covers every term of the result set. Add 2074 ** terms to the ORDER BY clause as necessary. 2075 */ 2076 if( op!=TK_ALL ){ 2077 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2078 struct ExprList_item *pItem; 2079 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2080 assert( pItem->iCol>0 ); 2081 if( pItem->iCol==i ) break; 2082 } 2083 if( j==nOrderBy ){ 2084 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2085 if( pNew==0 ) return SQLITE_NOMEM; 2086 pNew->flags |= EP_IntValue; 2087 pNew->iTable = i; 2088 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2089 pOrderBy->a[nOrderBy++].iCol = i; 2090 } 2091 } 2092 } 2093 2094 /* Compute the comparison permutation and keyinfo that is used with 2095 ** the permutation in order to comparisons to determine if the next 2096 ** row of results comes from selectA or selectB. Also add explicit 2097 ** collations to the ORDER BY clause terms so that when the subqueries 2098 ** to the right and the left are evaluated, they use the correct 2099 ** collation. 2100 */ 2101 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2102 if( aPermute ){ 2103 struct ExprList_item *pItem; 2104 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2105 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2106 aPermute[i] = pItem->iCol - 1; 2107 } 2108 pKeyMerge = 2109 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2110 if( pKeyMerge ){ 2111 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2112 pKeyMerge->nField = nOrderBy; 2113 pKeyMerge->enc = ENC(db); 2114 for(i=0; i<nOrderBy; i++){ 2115 CollSeq *pColl; 2116 Expr *pTerm = pOrderBy->a[i].pExpr; 2117 if( pTerm->flags & EP_ExpCollate ){ 2118 pColl = pTerm->pColl; 2119 }else{ 2120 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2121 pTerm->flags |= EP_ExpCollate; 2122 pTerm->pColl = pColl; 2123 } 2124 pKeyMerge->aColl[i] = pColl; 2125 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2126 } 2127 } 2128 }else{ 2129 pKeyMerge = 0; 2130 } 2131 2132 /* Reattach the ORDER BY clause to the query. 2133 */ 2134 p->pOrderBy = pOrderBy; 2135 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); 2136 2137 /* Allocate a range of temporary registers and the KeyInfo needed 2138 ** for the logic that removes duplicate result rows when the 2139 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2140 */ 2141 if( op==TK_ALL ){ 2142 regPrev = 0; 2143 }else{ 2144 int nExpr = p->pEList->nExpr; 2145 assert( nOrderBy>=nExpr ); 2146 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2147 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2148 pKeyDup = sqlite3DbMallocZero(db, 2149 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2150 if( pKeyDup ){ 2151 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2152 pKeyDup->nField = nExpr; 2153 pKeyDup->enc = ENC(db); 2154 for(i=0; i<nExpr; i++){ 2155 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2156 pKeyDup->aSortOrder[i] = 0; 2157 } 2158 } 2159 } 2160 2161 /* Separate the left and the right query from one another 2162 */ 2163 p->pPrior = 0; 2164 pPrior->pRightmost = 0; 2165 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2166 if( pPrior->pPrior==0 ){ 2167 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2168 } 2169 2170 /* Compute the limit registers */ 2171 computeLimitRegisters(pParse, p, labelEnd); 2172 if( p->iLimit && op==TK_ALL ){ 2173 regLimitA = ++pParse->nMem; 2174 regLimitB = ++pParse->nMem; 2175 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2176 regLimitA); 2177 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2178 }else{ 2179 regLimitA = regLimitB = 0; 2180 } 2181 sqlite3ExprDelete(db, p->pLimit); 2182 p->pLimit = 0; 2183 sqlite3ExprDelete(db, p->pOffset); 2184 p->pOffset = 0; 2185 2186 regAddrA = ++pParse->nMem; 2187 regEofA = ++pParse->nMem; 2188 regAddrB = ++pParse->nMem; 2189 regEofB = ++pParse->nMem; 2190 regOutA = ++pParse->nMem; 2191 regOutB = ++pParse->nMem; 2192 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2193 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2194 2195 /* Jump past the various subroutines and coroutines to the main 2196 ** merge loop 2197 */ 2198 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2199 addrSelectA = sqlite3VdbeCurrentAddr(v); 2200 2201 2202 /* Generate a coroutine to evaluate the SELECT statement to the 2203 ** left of the compound operator - the "A" select. 2204 */ 2205 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2206 pPrior->iLimit = regLimitA; 2207 sqlite3Select(pParse, pPrior, &destA); 2208 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2209 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2210 VdbeNoopComment((v, "End coroutine for left SELECT")); 2211 2212 /* Generate a coroutine to evaluate the SELECT statement on 2213 ** the right - the "B" select 2214 */ 2215 addrSelectB = sqlite3VdbeCurrentAddr(v); 2216 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2217 savedLimit = p->iLimit; 2218 savedOffset = p->iOffset; 2219 p->iLimit = regLimitB; 2220 p->iOffset = 0; 2221 sqlite3Select(pParse, p, &destB); 2222 p->iLimit = savedLimit; 2223 p->iOffset = savedOffset; 2224 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2225 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2226 VdbeNoopComment((v, "End coroutine for right SELECT")); 2227 2228 /* Generate a subroutine that outputs the current row of the A 2229 ** select as the next output row of the compound select. 2230 */ 2231 VdbeNoopComment((v, "Output routine for A")); 2232 addrOutA = generateOutputSubroutine(pParse, 2233 p, &destA, pDest, regOutA, 2234 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2235 2236 /* Generate a subroutine that outputs the current row of the B 2237 ** select as the next output row of the compound select. 2238 */ 2239 if( op==TK_ALL || op==TK_UNION ){ 2240 VdbeNoopComment((v, "Output routine for B")); 2241 addrOutB = generateOutputSubroutine(pParse, 2242 p, &destB, pDest, regOutB, 2243 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2244 } 2245 2246 /* Generate a subroutine to run when the results from select A 2247 ** are exhausted and only data in select B remains. 2248 */ 2249 VdbeNoopComment((v, "eof-A subroutine")); 2250 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2251 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2252 }else{ 2253 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2254 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2255 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2256 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2257 } 2258 2259 /* Generate a subroutine to run when the results from select B 2260 ** are exhausted and only data in select A remains. 2261 */ 2262 if( op==TK_INTERSECT ){ 2263 addrEofB = addrEofA; 2264 }else{ 2265 VdbeNoopComment((v, "eof-B subroutine")); 2266 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2267 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2268 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2269 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2270 } 2271 2272 /* Generate code to handle the case of A<B 2273 */ 2274 VdbeNoopComment((v, "A-lt-B subroutine")); 2275 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2276 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2277 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2278 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2279 2280 /* Generate code to handle the case of A==B 2281 */ 2282 if( op==TK_ALL ){ 2283 addrAeqB = addrAltB; 2284 }else if( op==TK_INTERSECT ){ 2285 addrAeqB = addrAltB; 2286 addrAltB++; 2287 }else{ 2288 VdbeNoopComment((v, "A-eq-B subroutine")); 2289 addrAeqB = 2290 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2291 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2292 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2293 } 2294 2295 /* Generate code to handle the case of A>B 2296 */ 2297 VdbeNoopComment((v, "A-gt-B subroutine")); 2298 addrAgtB = sqlite3VdbeCurrentAddr(v); 2299 if( op==TK_ALL || op==TK_UNION ){ 2300 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2301 } 2302 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2303 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2304 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2305 2306 /* This code runs once to initialize everything. 2307 */ 2308 sqlite3VdbeJumpHere(v, j1); 2309 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2310 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2311 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2312 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2313 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2314 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2315 2316 /* Implement the main merge loop 2317 */ 2318 sqlite3VdbeResolveLabel(v, labelCmpr); 2319 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2320 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2321 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2322 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2323 2324 /* Release temporary registers 2325 */ 2326 if( regPrev ){ 2327 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2328 } 2329 2330 /* Jump to the this point in order to terminate the query. 2331 */ 2332 sqlite3VdbeResolveLabel(v, labelEnd); 2333 2334 /* Set the number of output columns 2335 */ 2336 if( pDest->eDest==SRT_Output ){ 2337 Select *pFirst = pPrior; 2338 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2339 generateColumnNames(pParse, 0, pFirst->pEList); 2340 } 2341 2342 /* Reassembly the compound query so that it will be freed correctly 2343 ** by the calling function */ 2344 if( p->pPrior ){ 2345 sqlite3SelectDelete(db, p->pPrior); 2346 } 2347 p->pPrior = pPrior; 2348 2349 /*** TBD: Insert subroutine calls to close cursors on incomplete 2350 **** subqueries ****/ 2351 return SQLITE_OK; 2352 } 2353 #endif 2354 2355 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2356 /* Forward Declarations */ 2357 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2358 static void substSelect(sqlite3*, Select *, int, ExprList *); 2359 2360 /* 2361 ** Scan through the expression pExpr. Replace every reference to 2362 ** a column in table number iTable with a copy of the iColumn-th 2363 ** entry in pEList. (But leave references to the ROWID column 2364 ** unchanged.) 2365 ** 2366 ** This routine is part of the flattening procedure. A subquery 2367 ** whose result set is defined by pEList appears as entry in the 2368 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2369 ** FORM clause entry is iTable. This routine make the necessary 2370 ** changes to pExpr so that it refers directly to the source table 2371 ** of the subquery rather the result set of the subquery. 2372 */ 2373 static void substExpr( 2374 sqlite3 *db, /* Report malloc errors to this connection */ 2375 Expr *pExpr, /* Expr in which substitution occurs */ 2376 int iTable, /* Table to be substituted */ 2377 ExprList *pEList /* Substitute expressions */ 2378 ){ 2379 if( pExpr==0 ) return; 2380 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2381 if( pExpr->iColumn<0 ){ 2382 pExpr->op = TK_NULL; 2383 }else{ 2384 Expr *pNew; 2385 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2386 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2387 pNew = pEList->a[pExpr->iColumn].pExpr; 2388 assert( pNew!=0 ); 2389 pExpr->op = pNew->op; 2390 assert( pExpr->pLeft==0 ); 2391 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2392 assert( pExpr->pRight==0 ); 2393 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2394 assert( pExpr->pList==0 ); 2395 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2396 pExpr->iTable = pNew->iTable; 2397 pExpr->pTab = pNew->pTab; 2398 pExpr->iColumn = pNew->iColumn; 2399 pExpr->iAgg = pNew->iAgg; 2400 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2401 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2402 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2403 pExpr->flags = pNew->flags; 2404 } 2405 }else{ 2406 substExpr(db, pExpr->pLeft, iTable, pEList); 2407 substExpr(db, pExpr->pRight, iTable, pEList); 2408 substSelect(db, pExpr->pSelect, iTable, pEList); 2409 substExprList(db, pExpr->pList, iTable, pEList); 2410 } 2411 } 2412 static void substExprList( 2413 sqlite3 *db, /* Report malloc errors here */ 2414 ExprList *pList, /* List to scan and in which to make substitutes */ 2415 int iTable, /* Table to be substituted */ 2416 ExprList *pEList /* Substitute values */ 2417 ){ 2418 int i; 2419 if( pList==0 ) return; 2420 for(i=0; i<pList->nExpr; i++){ 2421 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2422 } 2423 } 2424 static void substSelect( 2425 sqlite3 *db, /* Report malloc errors here */ 2426 Select *p, /* SELECT statement in which to make substitutions */ 2427 int iTable, /* Table to be replaced */ 2428 ExprList *pEList /* Substitute values */ 2429 ){ 2430 SrcList *pSrc; 2431 struct SrcList_item *pItem; 2432 int i; 2433 if( !p ) return; 2434 substExprList(db, p->pEList, iTable, pEList); 2435 substExprList(db, p->pGroupBy, iTable, pEList); 2436 substExprList(db, p->pOrderBy, iTable, pEList); 2437 substExpr(db, p->pHaving, iTable, pEList); 2438 substExpr(db, p->pWhere, iTable, pEList); 2439 substSelect(db, p->pPrior, iTable, pEList); 2440 pSrc = p->pSrc; 2441 if( pSrc ){ 2442 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2443 substSelect(db, pItem->pSelect, iTable, pEList); 2444 } 2445 } 2446 } 2447 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2448 2449 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2450 /* 2451 ** This routine attempts to flatten subqueries in order to speed 2452 ** execution. It returns 1 if it makes changes and 0 if no flattening 2453 ** occurs. 2454 ** 2455 ** To understand the concept of flattening, consider the following 2456 ** query: 2457 ** 2458 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2459 ** 2460 ** The default way of implementing this query is to execute the 2461 ** subquery first and store the results in a temporary table, then 2462 ** run the outer query on that temporary table. This requires two 2463 ** passes over the data. Furthermore, because the temporary table 2464 ** has no indices, the WHERE clause on the outer query cannot be 2465 ** optimized. 2466 ** 2467 ** This routine attempts to rewrite queries such as the above into 2468 ** a single flat select, like this: 2469 ** 2470 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2471 ** 2472 ** The code generated for this simpification gives the same result 2473 ** but only has to scan the data once. And because indices might 2474 ** exist on the table t1, a complete scan of the data might be 2475 ** avoided. 2476 ** 2477 ** Flattening is only attempted if all of the following are true: 2478 ** 2479 ** (1) The subquery and the outer query do not both use aggregates. 2480 ** 2481 ** (2) The subquery is not an aggregate or the outer query is not a join. 2482 ** 2483 ** (3) The subquery is not the right operand of a left outer join 2484 ** (Originally ticket #306. Strenghtened by ticket #3300) 2485 ** 2486 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2487 ** 2488 ** (5) The subquery is not DISTINCT or the outer query does not use 2489 ** aggregates. 2490 ** 2491 ** (6) The subquery does not use aggregates or the outer query is not 2492 ** DISTINCT. 2493 ** 2494 ** (7) The subquery has a FROM clause. 2495 ** 2496 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2497 ** 2498 ** (9) The subquery does not use LIMIT or the outer query does not use 2499 ** aggregates. 2500 ** 2501 ** (10) The subquery does not use aggregates or the outer query does not 2502 ** use LIMIT. 2503 ** 2504 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2505 ** 2506 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2507 ** a separate restriction deriving from ticket #350. 2508 ** 2509 ** (13) The subquery and outer query do not both use LIMIT 2510 ** 2511 ** (14) The subquery does not use OFFSET 2512 ** 2513 ** (15) The outer query is not part of a compound select or the 2514 ** subquery does not have both an ORDER BY and a LIMIT clause. 2515 ** (See ticket #2339) 2516 ** 2517 ** (16) The outer query is not an aggregate or the subquery does 2518 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2519 ** until we introduced the group_concat() function. 2520 ** 2521 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2522 ** compound clause made up entirely of non-aggregate queries, and 2523 ** the parent query: 2524 ** 2525 ** * is not itself part of a compound select, 2526 ** * is not an aggregate or DISTINCT query, and 2527 ** * has no other tables or sub-selects in the FROM clause. 2528 ** 2529 ** The parent and sub-query may contain WHERE clauses. Subject to 2530 ** rules (11), (13) and (14), they may also contain ORDER BY, 2531 ** LIMIT and OFFSET clauses. 2532 ** 2533 ** (18) If the sub-query is a compound select, then all terms of the 2534 ** ORDER by clause of the parent must be simple references to 2535 ** columns of the sub-query. 2536 ** 2537 ** (19) The subquery does not use LIMIT or the outer query does not 2538 ** have a WHERE clause. 2539 ** 2540 ** In this routine, the "p" parameter is a pointer to the outer query. 2541 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2542 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2543 ** 2544 ** If flattening is not attempted, this routine is a no-op and returns 0. 2545 ** If flattening is attempted this routine returns 1. 2546 ** 2547 ** All of the expression analysis must occur on both the outer query and 2548 ** the subquery before this routine runs. 2549 */ 2550 static int flattenSubquery( 2551 Parse *pParse, /* Parsing context */ 2552 Select *p, /* The parent or outer SELECT statement */ 2553 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2554 int isAgg, /* True if outer SELECT uses aggregate functions */ 2555 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2556 ){ 2557 const char *zSavedAuthContext = pParse->zAuthContext; 2558 Select *pParent; 2559 Select *pSub; /* The inner query or "subquery" */ 2560 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2561 SrcList *pSrc; /* The FROM clause of the outer query */ 2562 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2563 ExprList *pList; /* The result set of the outer query */ 2564 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2565 int i; /* Loop counter */ 2566 Expr *pWhere; /* The WHERE clause */ 2567 struct SrcList_item *pSubitem; /* The subquery */ 2568 sqlite3 *db = pParse->db; 2569 2570 /* Check to see if flattening is permitted. Return 0 if not. 2571 */ 2572 if( p==0 ) return 0; 2573 pSrc = p->pSrc; 2574 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2575 pSubitem = &pSrc->a[iFrom]; 2576 iParent = pSubitem->iCursor; 2577 pSub = pSubitem->pSelect; 2578 assert( pSub!=0 ); 2579 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2580 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2581 pSubSrc = pSub->pSrc; 2582 assert( pSubSrc ); 2583 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2584 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2585 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2586 ** became arbitrary expressions, we were forced to add restrictions (13) 2587 ** and (14). */ 2588 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2589 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2590 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2591 return 0; /* Restriction (15) */ 2592 } 2593 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2594 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2595 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2596 return 0; 2597 } 2598 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2599 return 0; /* Restriction (6) */ 2600 } 2601 if( p->pOrderBy && pSub->pOrderBy ){ 2602 return 0; /* Restriction (11) */ 2603 } 2604 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2605 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2606 2607 /* OBSOLETE COMMENT 1: 2608 ** Restriction 3: If the subquery is a join, make sure the subquery is 2609 ** not used as the right operand of an outer join. Examples of why this 2610 ** is not allowed: 2611 ** 2612 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2613 ** 2614 ** If we flatten the above, we would get 2615 ** 2616 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2617 ** 2618 ** which is not at all the same thing. 2619 ** 2620 ** OBSOLETE COMMENT 2: 2621 ** Restriction 12: If the subquery is the right operand of a left outer 2622 ** join, make sure the subquery has no WHERE clause. 2623 ** An examples of why this is not allowed: 2624 ** 2625 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2626 ** 2627 ** If we flatten the above, we would get 2628 ** 2629 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2630 ** 2631 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2632 ** effectively converts the OUTER JOIN into an INNER JOIN. 2633 ** 2634 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2635 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2636 ** is fraught with danger. Best to avoid the whole thing. If the 2637 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2638 */ 2639 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2640 return 0; 2641 } 2642 2643 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2644 ** use only the UNION ALL operator. And none of the simple select queries 2645 ** that make up the compound SELECT are allowed to be aggregate or distinct 2646 ** queries. 2647 */ 2648 if( pSub->pPrior ){ 2649 if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2650 return 0; 2651 } 2652 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2653 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2654 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2655 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 2656 ){ 2657 return 0; 2658 } 2659 } 2660 2661 /* Restriction 18. */ 2662 if( p->pOrderBy ){ 2663 int ii; 2664 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2665 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2666 } 2667 } 2668 } 2669 2670 /***** If we reach this point, flattening is permitted. *****/ 2671 2672 /* Authorize the subquery */ 2673 pParse->zAuthContext = pSubitem->zName; 2674 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2675 pParse->zAuthContext = zSavedAuthContext; 2676 2677 /* If the sub-query is a compound SELECT statement, then (by restrictions 2678 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2679 ** be of the form: 2680 ** 2681 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2682 ** 2683 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2684 ** creates N copies of the parent query without any ORDER BY, LIMIT or 2685 ** OFFSET clauses and joins them to the left-hand-side of the original 2686 ** using UNION ALL operators. In this case N is the number of simple 2687 ** select statements in the compound sub-query. 2688 */ 2689 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2690 Select *pNew; 2691 ExprList *pOrderBy = p->pOrderBy; 2692 Expr *pLimit = p->pLimit; 2693 Expr *pOffset = p->pOffset; 2694 Select *pPrior = p->pPrior; 2695 p->pOrderBy = 0; 2696 p->pSrc = 0; 2697 p->pPrior = 0; 2698 p->pLimit = 0; 2699 pNew = sqlite3SelectDup(db, p); 2700 pNew->pPrior = pPrior; 2701 p->pPrior = pNew; 2702 p->pOrderBy = pOrderBy; 2703 p->op = TK_ALL; 2704 p->pSrc = pSrc; 2705 p->pLimit = pLimit; 2706 p->pOffset = pOffset; 2707 p->pRightmost = 0; 2708 pNew->pRightmost = 0; 2709 } 2710 2711 /* Begin flattening the iFrom-th entry of the FROM clause 2712 ** in the outer query. 2713 */ 2714 pSub = pSub1 = pSubitem->pSelect; 2715 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2716 int nSubSrc = pSubSrc->nSrc; 2717 int jointype = 0; 2718 pSubSrc = pSub->pSrc; 2719 pSrc = pParent->pSrc; 2720 2721 /* Move all of the FROM elements of the subquery into the 2722 ** the FROM clause of the outer query. Before doing this, remember 2723 ** the cursor number for the original outer query FROM element in 2724 ** iParent. The iParent cursor will never be used. Subsequent code 2725 ** will scan expressions looking for iParent references and replace 2726 ** those references with expressions that resolve to the subquery FROM 2727 ** elements we are now copying in. 2728 */ 2729 if( pSrc ){ 2730 Table *pTabToDel; 2731 pSubitem = &pSrc->a[iFrom]; 2732 nSubSrc = pSubSrc->nSrc; 2733 jointype = pSubitem->jointype; 2734 sqlite3DbFree(db, pSubitem->zDatabase); 2735 sqlite3DbFree(db, pSubitem->zName); 2736 sqlite3DbFree(db, pSubitem->zAlias); 2737 pSubitem->zDatabase = 0; 2738 pSubitem->zName = 0; 2739 pSubitem->zAlias = 0; 2740 2741 /* If the FROM element is a subquery, defer deleting the Table 2742 ** object associated with that subquery until code generation is 2743 ** complete, since there may still exist Expr.pTab entires that 2744 ** refer to the subquery even after flattening. Ticket #3346. 2745 */ 2746 if( (pTabToDel = pSubitem->pTab)!=0 ){ 2747 if( pTabToDel->nRef==1 ){ 2748 pTabToDel->pNextZombie = pParse->pZombieTab; 2749 pParse->pZombieTab = pTabToDel; 2750 }else{ 2751 pTabToDel->nRef--; 2752 } 2753 } 2754 pSubitem->pTab = 0; 2755 } 2756 if( nSubSrc!=1 || !pSrc ){ 2757 int extra = nSubSrc - 1; 2758 for(i=(pSrc?1:0); i<nSubSrc; i++){ 2759 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); 2760 if( pSrc==0 ){ 2761 pParent->pSrc = 0; 2762 return 1; 2763 } 2764 } 2765 pParent->pSrc = pSrc; 2766 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2767 pSrc->a[i] = pSrc->a[i-extra]; 2768 } 2769 } 2770 for(i=0; i<nSubSrc; i++){ 2771 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2772 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2773 } 2774 pSrc->a[iFrom].jointype = jointype; 2775 2776 /* Now begin substituting subquery result set expressions for 2777 ** references to the iParent in the outer query. 2778 ** 2779 ** Example: 2780 ** 2781 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2782 ** \ \_____________ subquery __________/ / 2783 ** \_____________________ outer query ______________________________/ 2784 ** 2785 ** We look at every expression in the outer query and every place we see 2786 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2787 */ 2788 pList = pParent->pEList; 2789 for(i=0; i<pList->nExpr; i++){ 2790 Expr *pExpr; 2791 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2792 pList->a[i].zName = 2793 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2794 } 2795 } 2796 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2797 if( isAgg ){ 2798 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2799 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2800 } 2801 if( pSub->pOrderBy ){ 2802 assert( pParent->pOrderBy==0 ); 2803 pParent->pOrderBy = pSub->pOrderBy; 2804 pSub->pOrderBy = 0; 2805 }else if( pParent->pOrderBy ){ 2806 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2807 } 2808 if( pSub->pWhere ){ 2809 pWhere = sqlite3ExprDup(db, pSub->pWhere); 2810 }else{ 2811 pWhere = 0; 2812 } 2813 if( subqueryIsAgg ){ 2814 assert( pParent->pHaving==0 ); 2815 pParent->pHaving = pParent->pWhere; 2816 pParent->pWhere = pWhere; 2817 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2818 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2819 sqlite3ExprDup(db, pSub->pHaving)); 2820 assert( pParent->pGroupBy==0 ); 2821 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 2822 }else{ 2823 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2824 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2825 } 2826 2827 /* The flattened query is distinct if either the inner or the 2828 ** outer query is distinct. 2829 */ 2830 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2831 2832 /* 2833 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2834 ** 2835 ** One is tempted to try to add a and b to combine the limits. But this 2836 ** does not work if either limit is negative. 2837 */ 2838 if( pSub->pLimit ){ 2839 pParent->pLimit = pSub->pLimit; 2840 pSub->pLimit = 0; 2841 } 2842 } 2843 2844 /* Finially, delete what is left of the subquery and return 2845 ** success. 2846 */ 2847 sqlite3SelectDelete(db, pSub1); 2848 2849 return 1; 2850 } 2851 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2852 2853 /* 2854 ** Analyze the SELECT statement passed as an argument to see if it 2855 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2856 ** it is, or 0 otherwise. At present, a query is considered to be 2857 ** a min()/max() query if: 2858 ** 2859 ** 1. There is a single object in the FROM clause. 2860 ** 2861 ** 2. There is a single expression in the result set, and it is 2862 ** either min(x) or max(x), where x is a column reference. 2863 */ 2864 static int minMaxQuery(Parse *pParse, Select *p){ 2865 Expr *pExpr; 2866 ExprList *pEList = p->pEList; 2867 2868 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2869 pExpr = pEList->a[0].pExpr; 2870 pEList = pExpr->pList; 2871 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 2872 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2873 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 2874 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2875 return WHERE_ORDERBY_MIN; 2876 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2877 return WHERE_ORDERBY_MAX; 2878 } 2879 return WHERE_ORDERBY_NORMAL; 2880 } 2881 2882 /* 2883 ** This routine is a Walker callback for "expanding" a SELECT statement. 2884 ** "Expanding" means to do the following: 2885 ** 2886 ** (1) Make sure VDBE cursor numbers have been assigned to every 2887 ** element of the FROM clause. 2888 ** 2889 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 2890 ** defines FROM clause. When views appear in the FROM clause, 2891 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 2892 ** that implements the view. A copy is made of the view's SELECT 2893 ** statement so that we can freely modify or delete that statement 2894 ** without worrying about messing up the presistent representation 2895 ** of the view. 2896 ** 2897 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 2898 ** on joins and the ON and USING clause of joins. 2899 ** 2900 ** (4) Scan the list of columns in the result set (pEList) looking 2901 ** for instances of the "*" operator or the TABLE.* operator. 2902 ** If found, expand each "*" to be every column in every table 2903 ** and TABLE.* to be every column in TABLE. 2904 ** 2905 */ 2906 static int selectExpander(Walker *pWalker, Select *p){ 2907 Parse *pParse = pWalker->pParse; 2908 int i, j, k; 2909 SrcList *pTabList; 2910 ExprList *pEList; 2911 struct SrcList_item *pFrom; 2912 sqlite3 *db = pParse->db; 2913 2914 if( db->mallocFailed ){ 2915 return WRC_Abort; 2916 } 2917 if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){ 2918 return WRC_Prune; 2919 } 2920 p->selFlags |= SF_Expanded; 2921 pTabList = p->pSrc; 2922 pEList = p->pEList; 2923 2924 /* Make sure cursor numbers have been assigned to all entries in 2925 ** the FROM clause of the SELECT statement. 2926 */ 2927 sqlite3SrcListAssignCursors(pParse, pTabList); 2928 2929 /* Look up every table named in the FROM clause of the select. If 2930 ** an entry of the FROM clause is a subquery instead of a table or view, 2931 ** then create a transient table structure to describe the subquery. 2932 */ 2933 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 2934 Table *pTab; 2935 if( pFrom->pTab!=0 ){ 2936 /* This statement has already been prepared. There is no need 2937 ** to go further. */ 2938 assert( i==0 ); 2939 return WRC_Prune; 2940 } 2941 if( pFrom->zName==0 ){ 2942 #ifndef SQLITE_OMIT_SUBQUERY 2943 Select *pSel = pFrom->pSelect; 2944 /* A sub-query in the FROM clause of a SELECT */ 2945 assert( pSel!=0 ); 2946 assert( pFrom->pTab==0 ); 2947 sqlite3WalkSelect(pWalker, pSel); 2948 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 2949 if( pTab==0 ) return WRC_Abort; 2950 pTab->db = db; 2951 pTab->nRef = 1; 2952 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 2953 while( pSel->pPrior ){ pSel = pSel->pPrior; } 2954 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 2955 pTab->iPKey = -1; 2956 pTab->tabFlags |= TF_Ephemeral; 2957 #endif 2958 }else{ 2959 /* An ordinary table or view name in the FROM clause */ 2960 assert( pFrom->pTab==0 ); 2961 pFrom->pTab = pTab = 2962 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 2963 if( pTab==0 ) return WRC_Abort; 2964 pTab->nRef++; 2965 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 2966 if( pTab->pSelect || IsVirtual(pTab) ){ 2967 /* We reach here if the named table is a really a view */ 2968 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 2969 2970 /* If pFrom->pSelect!=0 it means we are dealing with a 2971 ** view within a view. The SELECT structure has already been 2972 ** copied by the outer view so we can skip the copy step here 2973 ** in the inner view. 2974 */ 2975 if( pFrom->pSelect==0 ){ 2976 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 2977 sqlite3WalkSelect(pWalker, pFrom->pSelect); 2978 } 2979 } 2980 #endif 2981 } 2982 } 2983 2984 /* Process NATURAL keywords, and ON and USING clauses of joins. 2985 */ 2986 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 2987 return WRC_Abort; 2988 } 2989 2990 /* For every "*" that occurs in the column list, insert the names of 2991 ** all columns in all tables. And for every TABLE.* insert the names 2992 ** of all columns in TABLE. The parser inserted a special expression 2993 ** with the TK_ALL operator for each "*" that it found in the column list. 2994 ** The following code just has to locate the TK_ALL expressions and expand 2995 ** each one to the list of all columns in all tables. 2996 ** 2997 ** The first loop just checks to see if there are any "*" operators 2998 ** that need expanding. 2999 */ 3000 for(k=0; k<pEList->nExpr; k++){ 3001 Expr *pE = pEList->a[k].pExpr; 3002 if( pE->op==TK_ALL ) break; 3003 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 3004 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 3005 } 3006 if( k<pEList->nExpr ){ 3007 /* 3008 ** If we get here it means the result set contains one or more "*" 3009 ** operators that need to be expanded. Loop through each expression 3010 ** in the result set and expand them one by one. 3011 */ 3012 struct ExprList_item *a = pEList->a; 3013 ExprList *pNew = 0; 3014 int flags = pParse->db->flags; 3015 int longNames = (flags & SQLITE_FullColNames)!=0 3016 && (flags & SQLITE_ShortColNames)==0; 3017 3018 for(k=0; k<pEList->nExpr; k++){ 3019 Expr *pE = a[k].pExpr; 3020 if( pE->op!=TK_ALL && 3021 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 3022 /* This particular expression does not need to be expanded. 3023 */ 3024 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 3025 if( pNew ){ 3026 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3027 } 3028 a[k].pExpr = 0; 3029 a[k].zName = 0; 3030 }else{ 3031 /* This expression is a "*" or a "TABLE.*" and needs to be 3032 ** expanded. */ 3033 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3034 char *zTName; /* text of name of TABLE */ 3035 if( pE->op==TK_DOT && pE->pLeft ){ 3036 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 3037 }else{ 3038 zTName = 0; 3039 } 3040 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3041 Table *pTab = pFrom->pTab; 3042 char *zTabName = pFrom->zAlias; 3043 if( zTabName==0 || zTabName[0]==0 ){ 3044 zTabName = pTab->zName; 3045 } 3046 if( db->mallocFailed ) break; 3047 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3048 continue; 3049 } 3050 tableSeen = 1; 3051 for(j=0; j<pTab->nCol; j++){ 3052 Expr *pExpr, *pRight; 3053 char *zName = pTab->aCol[j].zName; 3054 3055 /* If a column is marked as 'hidden' (currently only possible 3056 ** for virtual tables), do not include it in the expanded 3057 ** result-set list. 3058 */ 3059 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3060 assert(IsVirtual(pTab)); 3061 continue; 3062 } 3063 3064 if( i>0 ){ 3065 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3066 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3067 columnIndex(pLeft->pTab, zName)>=0 ){ 3068 /* In a NATURAL join, omit the join columns from the 3069 ** table on the right */ 3070 continue; 3071 } 3072 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3073 /* In a join with a USING clause, omit columns in the 3074 ** using clause from the table on the right. */ 3075 continue; 3076 } 3077 } 3078 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3079 if( pRight==0 ) break; 3080 setQuotedToken(pParse, &pRight->token, zName); 3081 if( longNames || pTabList->nSrc>1 ){ 3082 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3083 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3084 if( pExpr==0 ) break; 3085 setQuotedToken(pParse, &pLeft->token, zTabName); 3086 setToken(&pExpr->span, 3087 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 3088 pExpr->span.dyn = 1; 3089 pExpr->token.z = 0; 3090 pExpr->token.n = 0; 3091 pExpr->token.dyn = 0; 3092 }else{ 3093 pExpr = pRight; 3094 pExpr->span = pExpr->token; 3095 pExpr->span.dyn = 0; 3096 } 3097 if( longNames ){ 3098 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 3099 }else{ 3100 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 3101 } 3102 } 3103 } 3104 if( !tableSeen ){ 3105 if( zTName ){ 3106 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3107 }else{ 3108 sqlite3ErrorMsg(pParse, "no tables specified"); 3109 } 3110 } 3111 sqlite3DbFree(db, zTName); 3112 } 3113 } 3114 sqlite3ExprListDelete(db, pEList); 3115 p->pEList = pNew; 3116 } 3117 #if SQLITE_MAX_COLUMN 3118 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3119 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3120 } 3121 #endif 3122 return WRC_Continue; 3123 } 3124 3125 /* 3126 ** No-op routine for the parse-tree walker. 3127 ** 3128 ** When this routine is the Walker.xExprCallback then expression trees 3129 ** are walked without any actions being taken at each node. Presumably, 3130 ** when this routine is used for Walker.xExprCallback then 3131 ** Walker.xSelectCallback is set to do something useful for every 3132 ** subquery in the parser tree. 3133 */ 3134 static int exprWalkNoop(Walker *pWalker, Expr *pExpr){ 3135 return WRC_Continue; 3136 } 3137 3138 /* 3139 ** This routine "expands" a SELECT statement and all of its subqueries. 3140 ** For additional information on what it means to "expand" a SELECT 3141 ** statement, see the comment on the selectExpand worker callback above. 3142 ** 3143 ** Expanding a SELECT statement is the first step in processing a 3144 ** SELECT statement. The SELECT statement must be expanded before 3145 ** name resolution is performed. 3146 ** 3147 ** If anything goes wrong, an error message is written into pParse. 3148 ** The calling function can detect the problem by looking at pParse->nErr 3149 ** and/or pParse->db->mallocFailed. 3150 */ 3151 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3152 Walker w; 3153 w.xSelectCallback = selectExpander; 3154 w.xExprCallback = exprWalkNoop; 3155 w.pParse = pParse; 3156 sqlite3WalkSelect(&w, pSelect); 3157 } 3158 3159 3160 #ifndef SQLITE_OMIT_SUBQUERY 3161 /* 3162 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3163 ** interface. 3164 ** 3165 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3166 ** information to the Table structure that represents the result set 3167 ** of that subquery. 3168 ** 3169 ** The Table structure that represents the result set was constructed 3170 ** by selectExpander() but the type and collation information was omitted 3171 ** at that point because identifiers had not yet been resolved. This 3172 ** routine is called after identifier resolution. 3173 */ 3174 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3175 Parse *pParse; 3176 int i; 3177 SrcList *pTabList; 3178 struct SrcList_item *pFrom; 3179 3180 assert( p->selFlags & SF_Resolved ); 3181 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3182 p->selFlags |= SF_HasTypeInfo; 3183 pParse = pWalker->pParse; 3184 pTabList = p->pSrc; 3185 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3186 Table *pTab = pFrom->pTab; 3187 if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3188 /* A sub-query in the FROM clause of a SELECT */ 3189 Select *pSel = pFrom->pSelect; 3190 assert( pSel ); 3191 while( pSel->pPrior ) pSel = pSel->pPrior; 3192 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3193 } 3194 } 3195 } 3196 return WRC_Continue; 3197 } 3198 #endif 3199 3200 3201 /* 3202 ** This routine adds datatype and collating sequence information to 3203 ** the Table structures of all FROM-clause subqueries in a 3204 ** SELECT statement. 3205 ** 3206 ** Use this routine after name resolution. 3207 */ 3208 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3209 #ifndef SQLITE_OMIT_SUBQUERY 3210 Walker w; 3211 w.xSelectCallback = selectAddSubqueryTypeInfo; 3212 w.xExprCallback = exprWalkNoop; 3213 w.pParse = pParse; 3214 sqlite3WalkSelect(&w, pSelect); 3215 #endif 3216 } 3217 3218 3219 /* 3220 ** This routine sets of a SELECT statement for processing. The 3221 ** following is accomplished: 3222 ** 3223 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3224 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3225 ** * ON and USING clauses are shifted into WHERE statements 3226 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3227 ** * Identifiers in expression are matched to tables. 3228 ** 3229 ** This routine acts recursively on all subqueries within the SELECT. 3230 */ 3231 void sqlite3SelectPrep( 3232 Parse *pParse, /* The parser context */ 3233 Select *p, /* The SELECT statement being coded. */ 3234 NameContext *pOuterNC /* Name context for container */ 3235 ){ 3236 sqlite3 *db; 3237 if( p==0 ) return; 3238 db = pParse->db; 3239 if( p->selFlags & SF_HasTypeInfo ) return; 3240 if( pParse->nErr || db->mallocFailed ) return; 3241 sqlite3SelectExpand(pParse, p); 3242 if( pParse->nErr || db->mallocFailed ) return; 3243 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3244 if( pParse->nErr || db->mallocFailed ) return; 3245 sqlite3SelectAddTypeInfo(pParse, p); 3246 } 3247 3248 /* 3249 ** Reset the aggregate accumulator. 3250 ** 3251 ** The aggregate accumulator is a set of memory cells that hold 3252 ** intermediate results while calculating an aggregate. This 3253 ** routine simply stores NULLs in all of those memory cells. 3254 */ 3255 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3256 Vdbe *v = pParse->pVdbe; 3257 int i; 3258 struct AggInfo_func *pFunc; 3259 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3260 return; 3261 } 3262 for(i=0; i<pAggInfo->nColumn; i++){ 3263 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3264 } 3265 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3266 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3267 if( pFunc->iDistinct>=0 ){ 3268 Expr *pE = pFunc->pExpr; 3269 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 3270 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 3271 "by an expression"); 3272 pFunc->iDistinct = -1; 3273 }else{ 3274 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 3275 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3276 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3277 } 3278 } 3279 } 3280 } 3281 3282 /* 3283 ** Invoke the OP_AggFinalize opcode for every aggregate function 3284 ** in the AggInfo structure. 3285 */ 3286 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3287 Vdbe *v = pParse->pVdbe; 3288 int i; 3289 struct AggInfo_func *pF; 3290 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3291 ExprList *pList = pF->pExpr->pList; 3292 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3293 (void*)pF->pFunc, P4_FUNCDEF); 3294 } 3295 } 3296 3297 /* 3298 ** Update the accumulator memory cells for an aggregate based on 3299 ** the current cursor position. 3300 */ 3301 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3302 Vdbe *v = pParse->pVdbe; 3303 int i; 3304 struct AggInfo_func *pF; 3305 struct AggInfo_col *pC; 3306 3307 pAggInfo->directMode = 1; 3308 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3309 int nArg; 3310 int addrNext = 0; 3311 int regAgg; 3312 ExprList *pList = pF->pExpr->pList; 3313 if( pList ){ 3314 nArg = pList->nExpr; 3315 regAgg = sqlite3GetTempRange(pParse, nArg); 3316 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3317 }else{ 3318 nArg = 0; 3319 regAgg = 0; 3320 } 3321 if( pF->iDistinct>=0 ){ 3322 addrNext = sqlite3VdbeMakeLabel(v); 3323 assert( nArg==1 ); 3324 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3325 } 3326 if( pF->pFunc->needCollSeq ){ 3327 CollSeq *pColl = 0; 3328 struct ExprList_item *pItem; 3329 int j; 3330 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 3331 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3332 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3333 } 3334 if( !pColl ){ 3335 pColl = pParse->db->pDfltColl; 3336 } 3337 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3338 } 3339 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3340 (void*)pF->pFunc, P4_FUNCDEF); 3341 sqlite3VdbeChangeP5(v, nArg); 3342 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3343 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3344 if( addrNext ){ 3345 sqlite3VdbeResolveLabel(v, addrNext); 3346 } 3347 } 3348 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3349 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3350 } 3351 pAggInfo->directMode = 0; 3352 } 3353 3354 /* 3355 ** Generate code for the SELECT statement given in the p argument. 3356 ** 3357 ** The results are distributed in various ways depending on the 3358 ** contents of the SelectDest structure pointed to by argument pDest 3359 ** as follows: 3360 ** 3361 ** pDest->eDest Result 3362 ** ------------ ------------------------------------------- 3363 ** SRT_Output Generate a row of output (using the OP_ResultRow 3364 ** opcode) for each row in the result set. 3365 ** 3366 ** SRT_Mem Only valid if the result is a single column. 3367 ** Store the first column of the first result row 3368 ** in register pDest->iParm then abandon the rest 3369 ** of the query. This destination implies "LIMIT 1". 3370 ** 3371 ** SRT_Set The result must be a single column. Store each 3372 ** row of result as the key in table pDest->iParm. 3373 ** Apply the affinity pDest->affinity before storing 3374 ** results. Used to implement "IN (SELECT ...)". 3375 ** 3376 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3377 ** 3378 ** SRT_Except Remove results from the temporary table pDest->iParm. 3379 ** 3380 ** SRT_Table Store results in temporary table pDest->iParm. 3381 ** This is like SRT_EphemTab except that the table 3382 ** is assumed to already be open. 3383 ** 3384 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3385 ** the result there. The cursor is left open after 3386 ** returning. This is like SRT_Table except that 3387 ** this destination uses OP_OpenEphemeral to create 3388 ** the table first. 3389 ** 3390 ** SRT_Coroutine Generate a co-routine that returns a new row of 3391 ** results each time it is invoked. The entry point 3392 ** of the co-routine is stored in register pDest->iParm. 3393 ** 3394 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3395 ** set is not empty. 3396 ** 3397 ** SRT_Discard Throw the results away. This is used by SELECT 3398 ** statements within triggers whose only purpose is 3399 ** the side-effects of functions. 3400 ** 3401 ** This routine returns the number of errors. If any errors are 3402 ** encountered, then an appropriate error message is left in 3403 ** pParse->zErrMsg. 3404 ** 3405 ** This routine does NOT free the Select structure passed in. The 3406 ** calling function needs to do that. 3407 */ 3408 int sqlite3Select( 3409 Parse *pParse, /* The parser context */ 3410 Select *p, /* The SELECT statement being coded. */ 3411 SelectDest *pDest /* What to do with the query results */ 3412 ){ 3413 int i, j; /* Loop counters */ 3414 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3415 Vdbe *v; /* The virtual machine under construction */ 3416 int isAgg; /* True for select lists like "count(*)" */ 3417 ExprList *pEList; /* List of columns to extract. */ 3418 SrcList *pTabList; /* List of tables to select from */ 3419 Expr *pWhere; /* The WHERE clause. May be NULL */ 3420 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3421 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3422 Expr *pHaving; /* The HAVING clause. May be NULL */ 3423 int isDistinct; /* True if the DISTINCT keyword is present */ 3424 int distinct; /* Table to use for the distinct set */ 3425 int rc = 1; /* Value to return from this function */ 3426 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3427 AggInfo sAggInfo; /* Information used by aggregate queries */ 3428 int iEnd; /* Address of the end of the query */ 3429 sqlite3 *db; /* The database connection */ 3430 3431 db = pParse->db; 3432 if( p==0 || db->mallocFailed || pParse->nErr ){ 3433 return 1; 3434 } 3435 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3436 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3437 3438 pOrderBy = p->pOrderBy; 3439 if( IgnorableOrderby(pDest) ){ 3440 p->pOrderBy = 0; 3441 3442 /* In these cases the DISTINCT operator makes no difference to the 3443 ** results, so remove it if it were specified. 3444 */ 3445 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3446 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3447 p->selFlags &= ~SF_Distinct; 3448 } 3449 sqlite3SelectPrep(pParse, p, 0); 3450 if( pParse->nErr ){ 3451 goto select_end; 3452 } 3453 p->pOrderBy = pOrderBy; 3454 3455 3456 /* Make local copies of the parameters for this query. 3457 */ 3458 pTabList = p->pSrc; 3459 isAgg = (p->selFlags & SF_Aggregate)!=0; 3460 pEList = p->pEList; 3461 if( pEList==0 ) goto select_end; 3462 3463 /* 3464 ** Do not even attempt to generate any code if we have already seen 3465 ** errors before this routine starts. 3466 */ 3467 if( pParse->nErr>0 ) goto select_end; 3468 3469 /* ORDER BY is ignored for some destinations. 3470 */ 3471 if( IgnorableOrderby(pDest) ){ 3472 pOrderBy = 0; 3473 } 3474 3475 /* Begin generating code. 3476 */ 3477 v = sqlite3GetVdbe(pParse); 3478 if( v==0 ) goto select_end; 3479 3480 /* Generate code for all sub-queries in the FROM clause 3481 */ 3482 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3483 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3484 struct SrcList_item *pItem = &pTabList->a[i]; 3485 SelectDest dest; 3486 Select *pSub = pItem->pSelect; 3487 int isAggSub; 3488 3489 if( pSub==0 || pItem->isPopulated ) continue; 3490 3491 /* Increment Parse.nHeight by the height of the largest expression 3492 ** tree refered to by this, the parent select. The child select 3493 ** may contain expression trees of at most 3494 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3495 ** more conservative than necessary, but much easier than enforcing 3496 ** an exact limit. 3497 */ 3498 pParse->nHeight += sqlite3SelectExprHeight(p); 3499 3500 /* Check to see if the subquery can be absorbed into the parent. */ 3501 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3502 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3503 if( isAggSub ){ 3504 isAgg = 1; 3505 p->selFlags |= SF_Aggregate; 3506 } 3507 i = -1; 3508 }else{ 3509 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3510 assert( pItem->isPopulated==0 ); 3511 sqlite3Select(pParse, pSub, &dest); 3512 pItem->isPopulated = 1; 3513 } 3514 if( pParse->nErr || db->mallocFailed ){ 3515 goto select_end; 3516 } 3517 pParse->nHeight -= sqlite3SelectExprHeight(p); 3518 pTabList = p->pSrc; 3519 if( !IgnorableOrderby(pDest) ){ 3520 pOrderBy = p->pOrderBy; 3521 } 3522 } 3523 pEList = p->pEList; 3524 #endif 3525 pWhere = p->pWhere; 3526 pGroupBy = p->pGroupBy; 3527 pHaving = p->pHaving; 3528 isDistinct = (p->selFlags & SF_Distinct)!=0; 3529 3530 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3531 /* If there is are a sequence of queries, do the earlier ones first. 3532 */ 3533 if( p->pPrior ){ 3534 if( p->pRightmost==0 ){ 3535 Select *pLoop, *pRight = 0; 3536 int cnt = 0; 3537 int mxSelect; 3538 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3539 pLoop->pRightmost = p; 3540 pLoop->pNext = pRight; 3541 pRight = pLoop; 3542 } 3543 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3544 if( mxSelect && cnt>mxSelect ){ 3545 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3546 return 1; 3547 } 3548 } 3549 return multiSelect(pParse, p, pDest); 3550 } 3551 #endif 3552 3553 /* If writing to memory or generating a set 3554 ** only a single column may be output. 3555 */ 3556 #ifndef SQLITE_OMIT_SUBQUERY 3557 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3558 goto select_end; 3559 } 3560 #endif 3561 3562 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3563 ** GROUP BY might use an index, DISTINCT never does. 3564 */ 3565 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){ 3566 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3567 pGroupBy = p->pGroupBy; 3568 p->selFlags &= ~SF_Distinct; 3569 isDistinct = 0; 3570 } 3571 3572 /* If there is an ORDER BY clause, then this sorting 3573 ** index might end up being unused if the data can be 3574 ** extracted in pre-sorted order. If that is the case, then the 3575 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3576 ** we figure out that the sorting index is not needed. The addrSortIndex 3577 ** variable is used to facilitate that change. 3578 */ 3579 if( pOrderBy ){ 3580 KeyInfo *pKeyInfo; 3581 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3582 pOrderBy->iECursor = pParse->nTab++; 3583 p->addrOpenEphm[2] = addrSortIndex = 3584 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3585 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3586 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3587 }else{ 3588 addrSortIndex = -1; 3589 } 3590 3591 /* If the output is destined for a temporary table, open that table. 3592 */ 3593 if( pDest->eDest==SRT_EphemTab ){ 3594 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3595 } 3596 3597 /* Set the limiter. 3598 */ 3599 iEnd = sqlite3VdbeMakeLabel(v); 3600 computeLimitRegisters(pParse, p, iEnd); 3601 3602 /* Open a virtual index to use for the distinct set. 3603 */ 3604 if( isDistinct ){ 3605 KeyInfo *pKeyInfo; 3606 assert( isAgg || pGroupBy ); 3607 distinct = pParse->nTab++; 3608 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3609 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3610 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3611 }else{ 3612 distinct = -1; 3613 } 3614 3615 /* Aggregate and non-aggregate queries are handled differently */ 3616 if( !isAgg && pGroupBy==0 ){ 3617 /* This case is for non-aggregate queries 3618 ** Begin the database scan 3619 */ 3620 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3621 if( pWInfo==0 ) goto select_end; 3622 3623 /* If sorting index that was created by a prior OP_OpenEphemeral 3624 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3625 ** into an OP_Noop. 3626 */ 3627 if( addrSortIndex>=0 && pOrderBy==0 ){ 3628 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3629 p->addrOpenEphm[2] = -1; 3630 } 3631 3632 /* Use the standard inner loop 3633 */ 3634 assert(!isDistinct); 3635 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3636 pWInfo->iContinue, pWInfo->iBreak); 3637 3638 /* End the database scan loop. 3639 */ 3640 sqlite3WhereEnd(pWInfo); 3641 }else{ 3642 /* This is the processing for aggregate queries */ 3643 NameContext sNC; /* Name context for processing aggregate information */ 3644 int iAMem; /* First Mem address for storing current GROUP BY */ 3645 int iBMem; /* First Mem address for previous GROUP BY */ 3646 int iUseFlag; /* Mem address holding flag indicating that at least 3647 ** one row of the input to the aggregator has been 3648 ** processed */ 3649 int iAbortFlag; /* Mem address which causes query abort if positive */ 3650 int groupBySort; /* Rows come from source in GROUP BY order */ 3651 3652 3653 /* The following variables hold addresses or labels for parts of the 3654 ** virtual machine program we are putting together */ 3655 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3656 int regOutputRow; /* Return address register for output subroutine */ 3657 int addrSetAbort; /* Set the abort flag and return */ 3658 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3659 int addrTopOfLoop; /* Top of the input loop */ 3660 int addrEnd; /* End of all processing */ 3661 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3662 int addrReset; /* Subroutine for resetting the accumulator */ 3663 int regReset; /* Return address register for reset subroutine */ 3664 3665 addrEnd = sqlite3VdbeMakeLabel(v); 3666 3667 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3668 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3669 ** SELECT statement. 3670 */ 3671 memset(&sNC, 0, sizeof(sNC)); 3672 sNC.pParse = pParse; 3673 sNC.pSrcList = pTabList; 3674 sNC.pAggInfo = &sAggInfo; 3675 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3676 sAggInfo.pGroupBy = pGroupBy; 3677 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3678 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3679 if( pHaving ){ 3680 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3681 } 3682 sAggInfo.nAccumulator = sAggInfo.nColumn; 3683 for(i=0; i<sAggInfo.nFunc; i++){ 3684 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); 3685 } 3686 if( db->mallocFailed ) goto select_end; 3687 3688 /* Processing for aggregates with GROUP BY is very different and 3689 ** much more complex than aggregates without a GROUP BY. 3690 */ 3691 if( pGroupBy ){ 3692 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3693 int j1; 3694 3695 /* Create labels that we will be needing 3696 */ 3697 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3698 3699 /* If there is a GROUP BY clause we might need a sorting index to 3700 ** implement it. Allocate that sorting index now. If it turns out 3701 ** that we do not need it after all, the OpenEphemeral instruction 3702 ** will be converted into a Noop. 3703 */ 3704 sAggInfo.sortingIdx = pParse->nTab++; 3705 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3706 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3707 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3708 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3709 3710 /* Initialize memory locations used by GROUP BY aggregate processing 3711 */ 3712 iUseFlag = ++pParse->nMem; 3713 iAbortFlag = ++pParse->nMem; 3714 iAMem = pParse->nMem + 1; 3715 pParse->nMem += pGroupBy->nExpr; 3716 iBMem = pParse->nMem + 1; 3717 pParse->nMem += pGroupBy->nExpr; 3718 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3719 VdbeComment((v, "clear abort flag")); 3720 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3721 VdbeComment((v, "indicate accumulator empty")); 3722 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); 3723 3724 /* Generate a subroutine that outputs a single row of the result 3725 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3726 ** is less than or equal to zero, the subroutine is a no-op. If 3727 ** the processing calls for the query to abort, this subroutine 3728 ** increments the iAbortFlag memory location before returning in 3729 ** order to signal the caller to abort. 3730 */ 3731 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3732 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3733 VdbeComment((v, "set abort flag")); 3734 regOutputRow = ++pParse->nMem; 3735 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3736 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3737 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3738 VdbeComment((v, "Groupby result generator entry point")); 3739 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3740 finalizeAggFunctions(pParse, &sAggInfo); 3741 if( pHaving ){ 3742 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3743 } 3744 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3745 distinct, pDest, 3746 addrOutputRow+1, addrSetAbort); 3747 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3748 VdbeComment((v, "end groupby result generator")); 3749 3750 /* Generate a subroutine that will reset the group-by accumulator 3751 */ 3752 addrReset = sqlite3VdbeCurrentAddr(v); 3753 regReset = ++pParse->nMem; 3754 resetAccumulator(pParse, &sAggInfo); 3755 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3756 3757 /* Begin a loop that will extract all source rows in GROUP BY order. 3758 ** This might involve two separate loops with an OP_Sort in between, or 3759 ** it might be a single loop that uses an index to extract information 3760 ** in the right order to begin with. 3761 */ 3762 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3763 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3764 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3765 if( pWInfo==0 ) goto select_end; 3766 if( pGroupBy==0 ){ 3767 /* The optimizer is able to deliver rows in group by order so 3768 ** we do not have to sort. The OP_OpenEphemeral table will be 3769 ** cancelled later because we still need to use the pKeyInfo 3770 */ 3771 pGroupBy = p->pGroupBy; 3772 groupBySort = 0; 3773 }else{ 3774 /* Rows are coming out in undetermined order. We have to push 3775 ** each row into a sorting index, terminate the first loop, 3776 ** then loop over the sorting index in order to get the output 3777 ** in sorted order 3778 */ 3779 int regBase; 3780 int regRecord; 3781 int nCol; 3782 int nGroupBy; 3783 3784 groupBySort = 1; 3785 nGroupBy = pGroupBy->nExpr; 3786 nCol = nGroupBy + 1; 3787 j = nGroupBy+1; 3788 for(i=0; i<sAggInfo.nColumn; i++){ 3789 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3790 nCol++; 3791 j++; 3792 } 3793 } 3794 regBase = sqlite3GetTempRange(pParse, nCol); 3795 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3796 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3797 j = nGroupBy+1; 3798 for(i=0; i<sAggInfo.nColumn; i++){ 3799 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3800 if( pCol->iSorterColumn>=j ){ 3801 int r1 = j + regBase; 3802 int r2; 3803 3804 r2 = sqlite3ExprCodeGetColumn(pParse, 3805 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3806 if( r1!=r2 ){ 3807 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3808 } 3809 j++; 3810 } 3811 } 3812 regRecord = sqlite3GetTempReg(pParse); 3813 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3814 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3815 sqlite3ReleaseTempReg(pParse, regRecord); 3816 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3817 sqlite3WhereEnd(pWInfo); 3818 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3819 VdbeComment((v, "GROUP BY sort")); 3820 sAggInfo.useSortingIdx = 1; 3821 } 3822 3823 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3824 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3825 ** Then compare the current GROUP BY terms against the GROUP BY terms 3826 ** from the previous row currently stored in a0, a1, a2... 3827 */ 3828 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3829 for(j=0; j<pGroupBy->nExpr; j++){ 3830 if( groupBySort ){ 3831 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3832 }else{ 3833 sAggInfo.directMode = 1; 3834 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3835 } 3836 } 3837 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3838 (char*)pKeyInfo, P4_KEYINFO); 3839 j1 = sqlite3VdbeCurrentAddr(v); 3840 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3841 3842 /* Generate code that runs whenever the GROUP BY changes. 3843 ** Changes in the GROUP BY are detected by the previous code 3844 ** block. If there were no changes, this block is skipped. 3845 ** 3846 ** This code copies current group by terms in b0,b1,b2,... 3847 ** over to a0,a1,a2. It then calls the output subroutine 3848 ** and resets the aggregate accumulator registers in preparation 3849 ** for the next GROUP BY batch. 3850 */ 3851 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3852 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3853 VdbeComment((v, "output one row")); 3854 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3855 VdbeComment((v, "check abort flag")); 3856 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3857 VdbeComment((v, "reset accumulator")); 3858 3859 /* Update the aggregate accumulators based on the content of 3860 ** the current row 3861 */ 3862 sqlite3VdbeJumpHere(v, j1); 3863 updateAccumulator(pParse, &sAggInfo); 3864 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3865 VdbeComment((v, "indicate data in accumulator")); 3866 3867 /* End of the loop 3868 */ 3869 if( groupBySort ){ 3870 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3871 }else{ 3872 sqlite3WhereEnd(pWInfo); 3873 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3874 } 3875 3876 /* Output the final row of result 3877 */ 3878 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3879 VdbeComment((v, "output final row")); 3880 3881 } /* endif pGroupBy */ 3882 else { 3883 ExprList *pMinMax = 0; 3884 ExprList *pDel = 0; 3885 u8 flag; 3886 3887 /* Check if the query is of one of the following forms: 3888 ** 3889 ** SELECT min(x) FROM ... 3890 ** SELECT max(x) FROM ... 3891 ** 3892 ** If it is, then ask the code in where.c to attempt to sort results 3893 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 3894 ** If where.c is able to produce results sorted in this order, then 3895 ** add vdbe code to break out of the processing loop after the 3896 ** first iteration (since the first iteration of the loop is 3897 ** guaranteed to operate on the row with the minimum or maximum 3898 ** value of x, the only row required). 3899 ** 3900 ** A special flag must be passed to sqlite3WhereBegin() to slightly 3901 ** modify behaviour as follows: 3902 ** 3903 ** + If the query is a "SELECT min(x)", then the loop coded by 3904 ** where.c should not iterate over any values with a NULL value 3905 ** for x. 3906 ** 3907 ** + The optimizer code in where.c (the thing that decides which 3908 ** index or indices to use) should place a different priority on 3909 ** satisfying the 'ORDER BY' clause than it does in other cases. 3910 ** Refer to code and comments in where.c for details. 3911 */ 3912 flag = minMaxQuery(pParse, p); 3913 if( flag ){ 3914 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); 3915 if( pMinMax && !db->mallocFailed ){ 3916 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN; 3917 pMinMax->a[0].pExpr->op = TK_COLUMN; 3918 } 3919 } 3920 3921 /* This case runs if the aggregate has no GROUP BY clause. The 3922 ** processing is much simpler since there is only a single row 3923 ** of output. 3924 */ 3925 resetAccumulator(pParse, &sAggInfo); 3926 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 3927 if( pWInfo==0 ){ 3928 sqlite3ExprListDelete(db, pDel); 3929 goto select_end; 3930 } 3931 updateAccumulator(pParse, &sAggInfo); 3932 if( !pMinMax && flag ){ 3933 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 3934 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); 3935 } 3936 sqlite3WhereEnd(pWInfo); 3937 finalizeAggFunctions(pParse, &sAggInfo); 3938 pOrderBy = 0; 3939 if( pHaving ){ 3940 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 3941 } 3942 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3943 pDest, addrEnd, addrEnd); 3944 3945 sqlite3ExprListDelete(db, pDel); 3946 } 3947 sqlite3VdbeResolveLabel(v, addrEnd); 3948 3949 } /* endif aggregate query */ 3950 3951 /* If there is an ORDER BY clause, then we need to sort the results 3952 ** and send them to the callback one by one. 3953 */ 3954 if( pOrderBy ){ 3955 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 3956 } 3957 3958 /* Jump here to skip this query 3959 */ 3960 sqlite3VdbeResolveLabel(v, iEnd); 3961 3962 /* The SELECT was successfully coded. Set the return code to 0 3963 ** to indicate no errors. 3964 */ 3965 rc = 0; 3966 3967 /* Control jumps to here if an error is encountered above, or upon 3968 ** successful coding of the SELECT. 3969 */ 3970 select_end: 3971 3972 /* Identify column names if results of the SELECT are to be output. 3973 */ 3974 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 3975 generateColumnNames(pParse, pTabList, pEList); 3976 } 3977 3978 sqlite3DbFree(db, sAggInfo.aCol); 3979 sqlite3DbFree(db, sAggInfo.aFunc); 3980 return rc; 3981 } 3982 3983 #if defined(SQLITE_DEBUG) 3984 /* 3985 ******************************************************************************* 3986 ** The following code is used for testing and debugging only. The code 3987 ** that follows does not appear in normal builds. 3988 ** 3989 ** These routines are used to print out the content of all or part of a 3990 ** parse structures such as Select or Expr. Such printouts are useful 3991 ** for helping to understand what is happening inside the code generator 3992 ** during the execution of complex SELECT statements. 3993 ** 3994 ** These routine are not called anywhere from within the normal 3995 ** code base. Then are intended to be called from within the debugger 3996 ** or from temporary "printf" statements inserted for debugging. 3997 */ 3998 void sqlite3PrintExpr(Expr *p){ 3999 if( p->token.z && p->token.n>0 ){ 4000 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4001 }else{ 4002 sqlite3DebugPrintf("(%d", p->op); 4003 } 4004 if( p->pLeft ){ 4005 sqlite3DebugPrintf(" "); 4006 sqlite3PrintExpr(p->pLeft); 4007 } 4008 if( p->pRight ){ 4009 sqlite3DebugPrintf(" "); 4010 sqlite3PrintExpr(p->pRight); 4011 } 4012 sqlite3DebugPrintf(")"); 4013 } 4014 void sqlite3PrintExprList(ExprList *pList){ 4015 int i; 4016 for(i=0; i<pList->nExpr; i++){ 4017 sqlite3PrintExpr(pList->a[i].pExpr); 4018 if( i<pList->nExpr-1 ){ 4019 sqlite3DebugPrintf(", "); 4020 } 4021 } 4022 } 4023 void sqlite3PrintSelect(Select *p, int indent){ 4024 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4025 sqlite3PrintExprList(p->pEList); 4026 sqlite3DebugPrintf("\n"); 4027 if( p->pSrc ){ 4028 char *zPrefix; 4029 int i; 4030 zPrefix = "FROM"; 4031 for(i=0; i<p->pSrc->nSrc; i++){ 4032 struct SrcList_item *pItem = &p->pSrc->a[i]; 4033 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4034 zPrefix = ""; 4035 if( pItem->pSelect ){ 4036 sqlite3DebugPrintf("(\n"); 4037 sqlite3PrintSelect(pItem->pSelect, indent+10); 4038 sqlite3DebugPrintf("%*s)", indent+8, ""); 4039 }else if( pItem->zName ){ 4040 sqlite3DebugPrintf("%s", pItem->zName); 4041 } 4042 if( pItem->pTab ){ 4043 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4044 } 4045 if( pItem->zAlias ){ 4046 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4047 } 4048 if( i<p->pSrc->nSrc-1 ){ 4049 sqlite3DebugPrintf(","); 4050 } 4051 sqlite3DebugPrintf("\n"); 4052 } 4053 } 4054 if( p->pWhere ){ 4055 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4056 sqlite3PrintExpr(p->pWhere); 4057 sqlite3DebugPrintf("\n"); 4058 } 4059 if( p->pGroupBy ){ 4060 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4061 sqlite3PrintExprList(p->pGroupBy); 4062 sqlite3DebugPrintf("\n"); 4063 } 4064 if( p->pHaving ){ 4065 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4066 sqlite3PrintExpr(p->pHaving); 4067 sqlite3DebugPrintf("\n"); 4068 } 4069 if( p->pOrderBy ){ 4070 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4071 sqlite3PrintExprList(p->pOrderBy); 4072 sqlite3DebugPrintf("\n"); 4073 } 4074 } 4075 /* End of the structure debug printing code 4076 *****************************************************************************/ 4077 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4078