xref: /sqlite-3.40.0/src/select.c (revision 19f7bd3b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90       sqlite3WindowListDelete(db, p->pWinDefn);
91     }
92 #endif
93     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94     if( bFree ) sqlite3DbFreeNN(db, p);
95     p = pPrior;
96     bFree = 1;
97   }
98 }
99 
100 /*
101 ** Initialize a SelectDest structure.
102 */
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104   pDest->eDest = (u8)eDest;
105   pDest->iSDParm = iParm;
106   pDest->iSDParm2 = 0;
107   pDest->zAffSdst = 0;
108   pDest->iSdst = 0;
109   pDest->nSdst = 0;
110 }
111 
112 
113 /*
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
116 */
117 Select *sqlite3SelectNew(
118   Parse *pParse,        /* Parsing context */
119   ExprList *pEList,     /* which columns to include in the result */
120   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
121   Expr *pWhere,         /* the WHERE clause */
122   ExprList *pGroupBy,   /* the GROUP BY clause */
123   Expr *pHaving,        /* the HAVING clause */
124   ExprList *pOrderBy,   /* the ORDER BY clause */
125   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
126   Expr *pLimit          /* LIMIT value.  NULL means not used */
127 ){
128   Select *pNew, *pAllocated;
129   Select standin;
130   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131   if( pNew==0 ){
132     assert( pParse->db->mallocFailed );
133     pNew = &standin;
134   }
135   if( pEList==0 ){
136     pEList = sqlite3ExprListAppend(pParse, 0,
137                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
138   }
139   pNew->pEList = pEList;
140   pNew->op = TK_SELECT;
141   pNew->selFlags = selFlags;
142   pNew->iLimit = 0;
143   pNew->iOffset = 0;
144   pNew->selId = ++pParse->nSelect;
145   pNew->addrOpenEphm[0] = -1;
146   pNew->addrOpenEphm[1] = -1;
147   pNew->nSelectRow = 0;
148   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149   pNew->pSrc = pSrc;
150   pNew->pWhere = pWhere;
151   pNew->pGroupBy = pGroupBy;
152   pNew->pHaving = pHaving;
153   pNew->pOrderBy = pOrderBy;
154   pNew->pPrior = 0;
155   pNew->pNext = 0;
156   pNew->pLimit = pLimit;
157   pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159   pNew->pWin = 0;
160   pNew->pWinDefn = 0;
161 #endif
162   if( pParse->db->mallocFailed ) {
163     clearSelect(pParse->db, pNew, pNew!=&standin);
164     pAllocated = 0;
165   }else{
166     assert( pNew->pSrc!=0 || pParse->nErr>0 );
167   }
168   return pAllocated;
169 }
170 
171 
172 /*
173 ** Delete the given Select structure and all of its substructures.
174 */
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
177 }
178 
179 /*
180 ** Return a pointer to the right-most SELECT statement in a compound.
181 */
182 static Select *findRightmost(Select *p){
183   while( p->pNext ) p = p->pNext;
184   return p;
185 }
186 
187 /*
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join.  Return an integer constant that expresses that type
190 ** in terms of the following bit values:
191 **
192 **     JT_INNER
193 **     JT_CROSS
194 **     JT_OUTER
195 **     JT_NATURAL
196 **     JT_LEFT
197 **     JT_RIGHT
198 **
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
200 **
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
203 */
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205   int jointype = 0;
206   Token *apAll[3];
207   Token *p;
208                              /*   0123456789 123456789 123456789 123 */
209   static const char zKeyText[] = "naturaleftouterightfullinnercross";
210   static const struct {
211     u8 i;        /* Beginning of keyword text in zKeyText[] */
212     u8 nChar;    /* Length of the keyword in characters */
213     u8 code;     /* Join type mask */
214   } aKeyword[] = {
215     /* natural */ { 0,  7, JT_NATURAL                },
216     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
217     /* outer   */ { 10, 5, JT_OUTER                  },
218     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
219     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220     /* inner   */ { 23, 5, JT_INNER                  },
221     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
222   };
223   int i, j;
224   apAll[0] = pA;
225   apAll[1] = pB;
226   apAll[2] = pC;
227   for(i=0; i<3 && apAll[i]; i++){
228     p = apAll[i];
229     for(j=0; j<ArraySize(aKeyword); j++){
230       if( p->n==aKeyword[j].nChar
231           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232         jointype |= aKeyword[j].code;
233         break;
234       }
235     }
236     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237     if( j>=ArraySize(aKeyword) ){
238       jointype |= JT_ERROR;
239       break;
240     }
241   }
242   if(
243      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244      (jointype & JT_ERROR)!=0
245   ){
246     const char *zSp = " ";
247     assert( pB!=0 );
248     if( pC==0 ){ zSp++; }
249     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250        "%T %T%s%T", pA, pB, zSp, pC);
251     jointype = JT_INNER;
252   }else if( (jointype & JT_OUTER)!=0
253          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254     sqlite3ErrorMsg(pParse,
255       "RIGHT and FULL OUTER JOINs are not currently supported");
256     jointype = JT_INNER;
257   }
258   return jointype;
259 }
260 
261 /*
262 ** Return the index of a column in a table.  Return -1 if the column
263 ** is not contained in the table.
264 */
265 static int columnIndex(Table *pTab, const char *zCol){
266   int i;
267   u8 h = sqlite3StrIHash(zCol);
268   Column *pCol;
269   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
271   }
272   return -1;
273 }
274 
275 /*
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
278 **
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
281 **
282 ** If not found, return FALSE.
283 */
284 static int tableAndColumnIndex(
285   SrcList *pSrc,       /* Array of tables to search */
286   int N,               /* Number of tables in pSrc->a[] to search */
287   const char *zCol,    /* Name of the column we are looking for */
288   int *piTab,          /* Write index of pSrc->a[] here */
289   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290   int bIgnoreHidden    /* True to ignore hidden columns */
291 ){
292   int i;               /* For looping over tables in pSrc */
293   int iCol;            /* Index of column matching zCol */
294 
295   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
296   for(i=0; i<N; i++){
297     iCol = columnIndex(pSrc->a[i].pTab, zCol);
298     if( iCol>=0
299      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
300     ){
301       if( piTab ){
302         *piTab = i;
303         *piCol = iCol;
304       }
305       return 1;
306     }
307   }
308   return 0;
309 }
310 
311 /*
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
315 **
316 **    (tab1.col1 = tab2.col2)
317 **
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
321 */
322 static void addWhereTerm(
323   Parse *pParse,                  /* Parsing context */
324   SrcList *pSrc,                  /* List of tables in FROM clause */
325   int iLeft,                      /* Index of first table to join in pSrc */
326   int iColLeft,                   /* Index of column in first table */
327   int iRight,                     /* Index of second table in pSrc */
328   int iColRight,                  /* Index of column in second table */
329   int isOuterJoin,                /* True if this is an OUTER join */
330   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
331 ){
332   sqlite3 *db = pParse->db;
333   Expr *pE1;
334   Expr *pE2;
335   Expr *pEq;
336 
337   assert( iLeft<iRight );
338   assert( pSrc->nSrc>iRight );
339   assert( pSrc->a[iLeft].pTab );
340   assert( pSrc->a[iRight].pTab );
341 
342   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
344 
345   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346   if( pEq && isOuterJoin ){
347     ExprSetProperty(pEq, EP_FromJoin);
348     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349     ExprSetVVAProperty(pEq, EP_NoReduce);
350     pEq->iRightJoinTable = (i16)pE2->iTable;
351   }
352   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
353 }
354 
355 /*
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
359 **
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause.  These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
366 **
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression.  That information is needed
370 ** for cases like this:
371 **
372 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
373 **
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join.  In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
380 */
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382   while( p ){
383     ExprSetProperty(p, EP_FromJoin);
384     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385     ExprSetVVAProperty(p, EP_NoReduce);
386     p->iRightJoinTable = (i16)iTable;
387     if( p->op==TK_FUNCTION && p->x.pList ){
388       int i;
389       for(i=0; i<p->x.pList->nExpr; i++){
390         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
391       }
392     }
393     sqlite3SetJoinExpr(p->pLeft, iTable);
394     p = p->pRight;
395   }
396 }
397 
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
401 **
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
403 */
404 static void unsetJoinExpr(Expr *p, int iTable){
405   while( p ){
406     if( ExprHasProperty(p, EP_FromJoin)
407      && (iTable<0 || p->iRightJoinTable==iTable) ){
408       ExprClearProperty(p, EP_FromJoin);
409     }
410     if( p->op==TK_FUNCTION && p->x.pList ){
411       int i;
412       for(i=0; i<p->x.pList->nExpr; i++){
413         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
414       }
415     }
416     unsetJoinExpr(p->pLeft, iTable);
417     p = p->pRight;
418   }
419 }
420 
421 /*
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
425 **
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc.  The right-most
428 ** table is the last entry.  The join operator is held in the entry to
429 ** the left.  Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
432 **
433 ** This routine returns the number of errors encountered.
434 */
435 static int sqliteProcessJoin(Parse *pParse, Select *p){
436   SrcList *pSrc;                  /* All tables in the FROM clause */
437   int i, j;                       /* Loop counters */
438   struct SrcList_item *pLeft;     /* Left table being joined */
439   struct SrcList_item *pRight;    /* Right table being joined */
440 
441   pSrc = p->pSrc;
442   pLeft = &pSrc->a[0];
443   pRight = &pLeft[1];
444   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
445     Table *pRightTab = pRight->pTab;
446     int isOuter;
447 
448     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
449     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
450 
451     /* When the NATURAL keyword is present, add WHERE clause terms for
452     ** every column that the two tables have in common.
453     */
454     if( pRight->fg.jointype & JT_NATURAL ){
455       if( pRight->pOn || pRight->pUsing ){
456         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
457            "an ON or USING clause", 0);
458         return 1;
459       }
460       for(j=0; j<pRightTab->nCol; j++){
461         char *zName;   /* Name of column in the right table */
462         int iLeft;     /* Matching left table */
463         int iLeftCol;  /* Matching column in the left table */
464 
465         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
466         zName = pRightTab->aCol[j].zName;
467         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
468           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
469                 isOuter, &p->pWhere);
470         }
471       }
472     }
473 
474     /* Disallow both ON and USING clauses in the same join
475     */
476     if( pRight->pOn && pRight->pUsing ){
477       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
478         "clauses in the same join");
479       return 1;
480     }
481 
482     /* Add the ON clause to the end of the WHERE clause, connected by
483     ** an AND operator.
484     */
485     if( pRight->pOn ){
486       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
487       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
488       pRight->pOn = 0;
489     }
490 
491     /* Create extra terms on the WHERE clause for each column named
492     ** in the USING clause.  Example: If the two tables to be joined are
493     ** A and B and the USING clause names X, Y, and Z, then add this
494     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495     ** Report an error if any column mentioned in the USING clause is
496     ** not contained in both tables to be joined.
497     */
498     if( pRight->pUsing ){
499       IdList *pList = pRight->pUsing;
500       for(j=0; j<pList->nId; j++){
501         char *zName;     /* Name of the term in the USING clause */
502         int iLeft;       /* Table on the left with matching column name */
503         int iLeftCol;    /* Column number of matching column on the left */
504         int iRightCol;   /* Column number of matching column on the right */
505 
506         zName = pList->a[j].zName;
507         iRightCol = columnIndex(pRightTab, zName);
508         if( iRightCol<0
509          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
510         ){
511           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
512             "not present in both tables", zName);
513           return 1;
514         }
515         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
516                      isOuter, &p->pWhere);
517       }
518     }
519   }
520   return 0;
521 }
522 
523 /*
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
526 */
527 typedef struct RowLoadInfo RowLoadInfo;
528 struct RowLoadInfo {
529   int regResult;               /* Store results in array of registers here */
530   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532   ExprList *pExtra;            /* Extra columns needed by sorter refs */
533   int regExtraResult;          /* Where to load the extra columns */
534 #endif
535 };
536 
537 /*
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
540 */
541 static void innerLoopLoadRow(
542   Parse *pParse,             /* Statement under construction */
543   Select *pSelect,           /* The query being coded */
544   RowLoadInfo *pInfo         /* Info needed to complete the row load */
545 ){
546   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
547                           0, pInfo->ecelFlags);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   if( pInfo->pExtra ){
550     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
551     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
552   }
553 #endif
554 }
555 
556 /*
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
559 **
560 ** Return the register in which the result is stored.
561 */
562 static int makeSorterRecord(
563   Parse *pParse,
564   SortCtx *pSort,
565   Select *pSelect,
566   int regBase,
567   int nBase
568 ){
569   int nOBSat = pSort->nOBSat;
570   Vdbe *v = pParse->pVdbe;
571   int regOut = ++pParse->nMem;
572   if( pSort->pDeferredRowLoad ){
573     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
574   }
575   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
576   return regOut;
577 }
578 
579 /*
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
582 */
583 static void pushOntoSorter(
584   Parse *pParse,         /* Parser context */
585   SortCtx *pSort,        /* Information about the ORDER BY clause */
586   Select *pSelect,       /* The whole SELECT statement */
587   int regData,           /* First register holding data to be sorted */
588   int regOrigData,       /* First register holding data before packing */
589   int nData,             /* Number of elements in the regData data array */
590   int nPrefixReg         /* No. of reg prior to regData available for use */
591 ){
592   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
593   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
594   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
595   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
596   int regBase;                                     /* Regs for sorter record */
597   int regRecord = 0;                               /* Assembled sorter record */
598   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
599   int op;                            /* Opcode to add sorter record to sorter */
600   int iLimit;                        /* LIMIT counter */
601   int iSkip = 0;                     /* End of the sorter insert loop */
602 
603   assert( bSeq==0 || bSeq==1 );
604 
605   /* Three cases:
606   **   (1) The data to be sorted has already been packed into a Record
607   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
608   **       will be completely unrelated to regOrigData.
609   **   (2) All output columns are included in the sort record.  In that
610   **       case regData==regOrigData.
611   **   (3) Some output columns are omitted from the sort record due to
612   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613   **       SQLITE_ECEL_OMITREF optimization, or due to the
614   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
615   **       regOrigData is 0 to prevent this routine from trying to copy
616   **       values that might not yet exist.
617   */
618   assert( nData==1 || regData==regOrigData || regOrigData==0 );
619 
620   if( nPrefixReg ){
621     assert( nPrefixReg==nExpr+bSeq );
622     regBase = regData - nPrefixReg;
623   }else{
624     regBase = pParse->nMem + 1;
625     pParse->nMem += nBase;
626   }
627   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
628   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
629   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
630   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
631                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
632   if( bSeq ){
633     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
634   }
635   if( nPrefixReg==0 && nData>0 ){
636     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
637   }
638   if( nOBSat>0 ){
639     int regPrevKey;   /* The first nOBSat columns of the previous row */
640     int addrFirst;    /* Address of the OP_IfNot opcode */
641     int addrJmp;      /* Address of the OP_Jump opcode */
642     VdbeOp *pOp;      /* Opcode that opens the sorter */
643     int nKey;         /* Number of sorting key columns, including OP_Sequence */
644     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
645 
646     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
647     regPrevKey = pParse->nMem+1;
648     pParse->nMem += pSort->nOBSat;
649     nKey = nExpr - pSort->nOBSat + bSeq;
650     if( bSeq ){
651       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
652     }else{
653       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
654     }
655     VdbeCoverage(v);
656     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
657     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
658     if( pParse->db->mallocFailed ) return;
659     pOp->p2 = nKey + nData;
660     pKI = pOp->p4.pKeyInfo;
661     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
662     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
663     testcase( pKI->nAllField > pKI->nKeyField+2 );
664     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
665                                            pKI->nAllField-pKI->nKeyField-1);
666     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667     addrJmp = sqlite3VdbeCurrentAddr(v);
668     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
669     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
670     pSort->regReturn = ++pParse->nMem;
671     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
672     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
673     if( iLimit ){
674       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
675       VdbeCoverage(v);
676     }
677     sqlite3VdbeJumpHere(v, addrFirst);
678     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
679     sqlite3VdbeJumpHere(v, addrJmp);
680   }
681   if( iLimit ){
682     /* At this point the values for the new sorter entry are stored
683     ** in an array of registers. They need to be composed into a record
684     ** and inserted into the sorter if either (a) there are currently
685     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686     ** the largest record currently in the sorter. If (b) is true and there
687     ** are already LIMIT+OFFSET items in the sorter, delete the largest
688     ** entry before inserting the new one. This way there are never more
689     ** than LIMIT+OFFSET items in the sorter.
690     **
691     ** If the new record does not need to be inserted into the sorter,
692     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693     ** value is not zero, then it is a label of where to jump.  Otherwise,
694     ** just bypass the row insert logic.  See the header comment on the
695     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
696     */
697     int iCsr = pSort->iECursor;
698     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
699     VdbeCoverage(v);
700     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
701     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
702                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
705   }
706   if( regRecord==0 ){
707     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
708   }
709   if( pSort->sortFlags & SORTFLAG_UseSorter ){
710     op = OP_SorterInsert;
711   }else{
712     op = OP_IdxInsert;
713   }
714   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
715                        regBase+nOBSat, nBase-nOBSat);
716   if( iSkip ){
717     sqlite3VdbeChangeP2(v, iSkip,
718          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
719   }
720 }
721 
722 /*
723 ** Add code to implement the OFFSET
724 */
725 static void codeOffset(
726   Vdbe *v,          /* Generate code into this VM */
727   int iOffset,      /* Register holding the offset counter */
728   int iContinue     /* Jump here to skip the current record */
729 ){
730   if( iOffset>0 ){
731     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
732     VdbeComment((v, "OFFSET"));
733   }
734 }
735 
736 /*
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry.  iTab is a sorting index that holds previously
739 ** seen combinations of the N values.  A new entry is made in iTab
740 ** if the current N values are new.
741 **
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
744 */
745 static void codeDistinct(
746   Parse *pParse,     /* Parsing and code generating context */
747   int iTab,          /* A sorting index used to test for distinctness */
748   int addrRepeat,    /* Jump to here if not distinct */
749   int N,             /* Number of elements */
750   int iMem           /* First element */
751 ){
752   Vdbe *v;
753   int r1;
754 
755   v = pParse->pVdbe;
756   r1 = sqlite3GetTempReg(pParse);
757   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
758   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
759   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
760   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761   sqlite3ReleaseTempReg(pParse, r1);
762 }
763 
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
765 /*
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
771 **
772 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
773 **
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
780 **
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
787 ** sorter records.
788 */
789 static void selectExprDefer(
790   Parse *pParse,                  /* Leave any error here */
791   SortCtx *pSort,                 /* Sorter context */
792   ExprList *pEList,               /* Expressions destined for sorter */
793   ExprList **ppExtra              /* Expressions to append to sorter record */
794 ){
795   int i;
796   int nDefer = 0;
797   ExprList *pExtra = 0;
798   for(i=0; i<pEList->nExpr; i++){
799     struct ExprList_item *pItem = &pEList->a[i];
800     if( pItem->u.x.iOrderByCol==0 ){
801       Expr *pExpr = pItem->pExpr;
802       Table *pTab = pExpr->y.pTab;
803       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
804        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
805       ){
806         int j;
807         for(j=0; j<nDefer; j++){
808           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
809         }
810         if( j==nDefer ){
811           if( nDefer==ArraySize(pSort->aDefer) ){
812             continue;
813           }else{
814             int nKey = 1;
815             int k;
816             Index *pPk = 0;
817             if( !HasRowid(pTab) ){
818               pPk = sqlite3PrimaryKeyIndex(pTab);
819               nKey = pPk->nKeyCol;
820             }
821             for(k=0; k<nKey; k++){
822               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
823               if( pNew ){
824                 pNew->iTable = pExpr->iTable;
825                 pNew->y.pTab = pExpr->y.pTab;
826                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
827                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
828               }
829             }
830             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
831             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
832             pSort->aDefer[nDefer].nKey = nKey;
833             nDefer++;
834           }
835         }
836         pItem->bSorterRef = 1;
837       }
838     }
839   }
840   pSort->nDefer = (u8)nDefer;
841   *ppExtra = pExtra;
842 }
843 #endif
844 
845 /*
846 ** This routine generates the code for the inside of the inner loop
847 ** of a SELECT.
848 **
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row.  If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
853 */
854 static void selectInnerLoop(
855   Parse *pParse,          /* The parser context */
856   Select *p,              /* The complete select statement being coded */
857   int srcTab,             /* Pull data from this table if non-negative */
858   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
859   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
860   SelectDest *pDest,      /* How to dispose of the results */
861   int iContinue,          /* Jump here to continue with next row */
862   int iBreak              /* Jump here to break out of the inner loop */
863 ){
864   Vdbe *v = pParse->pVdbe;
865   int i;
866   int hasDistinct;            /* True if the DISTINCT keyword is present */
867   int eDest = pDest->eDest;   /* How to dispose of results */
868   int iParm = pDest->iSDParm; /* First argument to disposal method */
869   int nResultCol;             /* Number of result columns */
870   int nPrefixReg = 0;         /* Number of extra registers before regResult */
871   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
872 
873   /* Usually, regResult is the first cell in an array of memory cells
874   ** containing the current result row. In this case regOrig is set to the
875   ** same value. However, if the results are being sent to the sorter, the
876   ** values for any expressions that are also part of the sort-key are omitted
877   ** from this array. In this case regOrig is set to zero.  */
878   int regResult;              /* Start of memory holding current results */
879   int regOrig;                /* Start of memory holding full result (or 0) */
880 
881   assert( v );
882   assert( p->pEList!=0 );
883   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
884   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
885   if( pSort==0 && !hasDistinct ){
886     assert( iContinue!=0 );
887     codeOffset(v, p->iOffset, iContinue);
888   }
889 
890   /* Pull the requested columns.
891   */
892   nResultCol = p->pEList->nExpr;
893 
894   if( pDest->iSdst==0 ){
895     if( pSort ){
896       nPrefixReg = pSort->pOrderBy->nExpr;
897       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
898       pParse->nMem += nPrefixReg;
899     }
900     pDest->iSdst = pParse->nMem+1;
901     pParse->nMem += nResultCol;
902   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
903     /* This is an error condition that can result, for example, when a SELECT
904     ** on the right-hand side of an INSERT contains more result columns than
905     ** there are columns in the table on the left.  The error will be caught
906     ** and reported later.  But we need to make sure enough memory is allocated
907     ** to avoid other spurious errors in the meantime. */
908     pParse->nMem += nResultCol;
909   }
910   pDest->nSdst = nResultCol;
911   regOrig = regResult = pDest->iSdst;
912   if( srcTab>=0 ){
913     for(i=0; i<nResultCol; i++){
914       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
915       VdbeComment((v, "%s", p->pEList->a[i].zEName));
916     }
917   }else if( eDest!=SRT_Exists ){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919     ExprList *pExtra = 0;
920 #endif
921     /* If the destination is an EXISTS(...) expression, the actual
922     ** values returned by the SELECT are not required.
923     */
924     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
925     ExprList *pEList;
926     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
927       ecelFlags = SQLITE_ECEL_DUP;
928     }else{
929       ecelFlags = 0;
930     }
931     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
932       /* For each expression in p->pEList that is a copy of an expression in
933       ** the ORDER BY clause (pSort->pOrderBy), set the associated
934       ** iOrderByCol value to one more than the index of the ORDER BY
935       ** expression within the sort-key that pushOntoSorter() will generate.
936       ** This allows the p->pEList field to be omitted from the sorted record,
937       ** saving space and CPU cycles.  */
938       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
939 
940       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
941         int j;
942         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
943           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
944         }
945       }
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
948       if( pExtra && pParse->db->mallocFailed==0 ){
949         /* If there are any extra PK columns to add to the sorter records,
950         ** allocate extra memory cells and adjust the OpenEphemeral
951         ** instruction to account for the larger records. This is only
952         ** required if there are one or more WITHOUT ROWID tables with
953         ** composite primary keys in the SortCtx.aDefer[] array.  */
954         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
955         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
956         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
957         pParse->nMem += pExtra->nExpr;
958       }
959 #endif
960 
961       /* Adjust nResultCol to account for columns that are omitted
962       ** from the sorter by the optimizations in this branch */
963       pEList = p->pEList;
964       for(i=0; i<pEList->nExpr; i++){
965         if( pEList->a[i].u.x.iOrderByCol>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967          || pEList->a[i].bSorterRef
968 #endif
969         ){
970           nResultCol--;
971           regOrig = 0;
972         }
973       }
974 
975       testcase( regOrig );
976       testcase( eDest==SRT_Set );
977       testcase( eDest==SRT_Mem );
978       testcase( eDest==SRT_Coroutine );
979       testcase( eDest==SRT_Output );
980       assert( eDest==SRT_Set || eDest==SRT_Mem
981            || eDest==SRT_Coroutine || eDest==SRT_Output
982            || eDest==SRT_Upfrom );
983     }
984     sRowLoadInfo.regResult = regResult;
985     sRowLoadInfo.ecelFlags = ecelFlags;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987     sRowLoadInfo.pExtra = pExtra;
988     sRowLoadInfo.regExtraResult = regResult + nResultCol;
989     if( pExtra ) nResultCol += pExtra->nExpr;
990 #endif
991     if( p->iLimit
992      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
993      && nPrefixReg>0
994     ){
995       assert( pSort!=0 );
996       assert( hasDistinct==0 );
997       pSort->pDeferredRowLoad = &sRowLoadInfo;
998       regOrig = 0;
999     }else{
1000       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1001     }
1002   }
1003 
1004   /* If the DISTINCT keyword was present on the SELECT statement
1005   ** and this row has been seen before, then do not make this row
1006   ** part of the result.
1007   */
1008   if( hasDistinct ){
1009     switch( pDistinct->eTnctType ){
1010       case WHERE_DISTINCT_ORDERED: {
1011         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1012         int iJump;              /* Jump destination */
1013         int regPrev;            /* Previous row content */
1014 
1015         /* Allocate space for the previous row */
1016         regPrev = pParse->nMem+1;
1017         pParse->nMem += nResultCol;
1018 
1019         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020         ** sets the MEM_Cleared bit on the first register of the
1021         ** previous value.  This will cause the OP_Ne below to always
1022         ** fail on the first iteration of the loop even if the first
1023         ** row is all NULLs.
1024         */
1025         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1026         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1027         pOp->opcode = OP_Null;
1028         pOp->p1 = 1;
1029         pOp->p2 = regPrev;
1030         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1031 
1032         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1033         for(i=0; i<nResultCol; i++){
1034           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1035           if( i<nResultCol-1 ){
1036             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1037             VdbeCoverage(v);
1038           }else{
1039             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1040             VdbeCoverage(v);
1041            }
1042           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1043           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1044         }
1045         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1046         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1047         break;
1048       }
1049 
1050       case WHERE_DISTINCT_UNIQUE: {
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         break;
1053       }
1054 
1055       default: {
1056         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1057         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1058                      regResult);
1059         break;
1060       }
1061     }
1062     if( pSort==0 ){
1063       codeOffset(v, p->iOffset, iContinue);
1064     }
1065   }
1066 
1067   switch( eDest ){
1068     /* In this mode, write each query result to the key of the temporary
1069     ** table iParm.
1070     */
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072     case SRT_Union: {
1073       int r1;
1074       r1 = sqlite3GetTempReg(pParse);
1075       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1076       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1077       sqlite3ReleaseTempReg(pParse, r1);
1078       break;
1079     }
1080 
1081     /* Construct a record from the query result, but instead of
1082     ** saving that record, use it as a key to delete elements from
1083     ** the temporary table iParm.
1084     */
1085     case SRT_Except: {
1086       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1087       break;
1088     }
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1090 
1091     /* Store the result as data using a unique key.
1092     */
1093     case SRT_Fifo:
1094     case SRT_DistFifo:
1095     case SRT_Table:
1096     case SRT_EphemTab: {
1097       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1098       testcase( eDest==SRT_Table );
1099       testcase( eDest==SRT_EphemTab );
1100       testcase( eDest==SRT_Fifo );
1101       testcase( eDest==SRT_DistFifo );
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1103 #ifndef SQLITE_OMIT_CTE
1104       if( eDest==SRT_DistFifo ){
1105         /* If the destination is DistFifo, then cursor (iParm+1) is open
1106         ** on an ephemeral index. If the current row is already present
1107         ** in the index, do not write it to the output. If not, add the
1108         ** current row to the index and proceed with writing it to the
1109         ** output table as well.  */
1110         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1111         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1112         VdbeCoverage(v);
1113         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1114         assert( pSort==0 );
1115       }
1116 #endif
1117       if( pSort ){
1118         assert( regResult==regOrig );
1119         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1120       }else{
1121         int r2 = sqlite3GetTempReg(pParse);
1122         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1123         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1124         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1125         sqlite3ReleaseTempReg(pParse, r2);
1126       }
1127       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1128       break;
1129     }
1130 
1131     case SRT_Upfrom: {
1132       if( pSort ){
1133         pushOntoSorter(
1134             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1135       }else{
1136         int i2 = pDest->iSDParm2;
1137         int r1 = sqlite3GetTempReg(pParse);
1138 
1139         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140         ** might still be trying to return one row, because that is what
1141         ** aggregates do.  Don't record that empty row in the output table. */
1142         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1143 
1144         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1145                           regResult+(i2<0), nResultCol-(i2<0), r1);
1146         if( i2<0 ){
1147           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1148         }else{
1149           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1150         }
1151       }
1152       break;
1153     }
1154 
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157     ** then there should be a single item on the stack.  Write this
1158     ** item into the set table with bogus data.
1159     */
1160     case SRT_Set: {
1161       if( pSort ){
1162         /* At first glance you would think we could optimize out the
1163         ** ORDER BY in this case since the order of entries in the set
1164         ** does not matter.  But there might be a LIMIT clause, in which
1165         ** case the order does matter */
1166         pushOntoSorter(
1167             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1168       }else{
1169         int r1 = sqlite3GetTempReg(pParse);
1170         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1171         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1172             r1, pDest->zAffSdst, nResultCol);
1173         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174         sqlite3ReleaseTempReg(pParse, r1);
1175       }
1176       break;
1177     }
1178 
1179 
1180     /* If any row exist in the result set, record that fact and abort.
1181     */
1182     case SRT_Exists: {
1183       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1184       /* The LIMIT clause will terminate the loop for us */
1185       break;
1186     }
1187 
1188     /* If this is a scalar select that is part of an expression, then
1189     ** store the results in the appropriate memory cell or array of
1190     ** memory cells and break out of the scan loop.
1191     */
1192     case SRT_Mem: {
1193       if( pSort ){
1194         assert( nResultCol<=pDest->nSdst );
1195         pushOntoSorter(
1196             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1197       }else{
1198         assert( nResultCol==pDest->nSdst );
1199         assert( regResult==iParm );
1200         /* The LIMIT clause will jump out of the loop for us */
1201       }
1202       break;
1203     }
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1205 
1206     case SRT_Coroutine:       /* Send data to a co-routine */
1207     case SRT_Output: {        /* Return the results */
1208       testcase( eDest==SRT_Coroutine );
1209       testcase( eDest==SRT_Output );
1210       if( pSort ){
1211         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1212                        nPrefixReg);
1213       }else if( eDest==SRT_Coroutine ){
1214         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1215       }else{
1216         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1217       }
1218       break;
1219     }
1220 
1221 #ifndef SQLITE_OMIT_CTE
1222     /* Write the results into a priority queue that is order according to
1223     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1224     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1225     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226     ** final OP_Sequence column.  The last column is the record as a blob.
1227     */
1228     case SRT_DistQueue:
1229     case SRT_Queue: {
1230       int nKey;
1231       int r1, r2, r3;
1232       int addrTest = 0;
1233       ExprList *pSO;
1234       pSO = pDest->pOrderBy;
1235       assert( pSO );
1236       nKey = pSO->nExpr;
1237       r1 = sqlite3GetTempReg(pParse);
1238       r2 = sqlite3GetTempRange(pParse, nKey+2);
1239       r3 = r2+nKey+1;
1240       if( eDest==SRT_DistQueue ){
1241         /* If the destination is DistQueue, then cursor (iParm+1) is open
1242         ** on a second ephemeral index that holds all values every previously
1243         ** added to the queue. */
1244         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1245                                         regResult, nResultCol);
1246         VdbeCoverage(v);
1247       }
1248       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1249       if( eDest==SRT_DistQueue ){
1250         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1251         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1252       }
1253       for(i=0; i<nKey; i++){
1254         sqlite3VdbeAddOp2(v, OP_SCopy,
1255                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1256                           r2+i);
1257       }
1258       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1259       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1260       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1261       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1262       sqlite3ReleaseTempReg(pParse, r1);
1263       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1264       break;
1265     }
1266 #endif /* SQLITE_OMIT_CTE */
1267 
1268 
1269 
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271     /* Discard the results.  This is used for SELECT statements inside
1272     ** the body of a TRIGGER.  The purpose of such selects is to call
1273     ** user-defined functions that have side effects.  We do not care
1274     ** about the actual results of the select.
1275     */
1276     default: {
1277       assert( eDest==SRT_Discard );
1278       break;
1279     }
1280 #endif
1281   }
1282 
1283   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1284   ** there is a sorter, in which case the sorter has already limited
1285   ** the output for us.
1286   */
1287   if( pSort==0 && p->iLimit ){
1288     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1289   }
1290 }
1291 
1292 /*
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1294 ** X extra columns.
1295 */
1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1297   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1298   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1299   if( p ){
1300     p->aSortFlags = (u8*)&p->aColl[N+X];
1301     p->nKeyField = (u16)N;
1302     p->nAllField = (u16)(N+X);
1303     p->enc = ENC(db);
1304     p->db = db;
1305     p->nRef = 1;
1306     memset(&p[1], 0, nExtra);
1307   }else{
1308     sqlite3OomFault(db);
1309   }
1310   return p;
1311 }
1312 
1313 /*
1314 ** Deallocate a KeyInfo object
1315 */
1316 void sqlite3KeyInfoUnref(KeyInfo *p){
1317   if( p ){
1318     assert( p->nRef>0 );
1319     p->nRef--;
1320     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1321   }
1322 }
1323 
1324 /*
1325 ** Make a new pointer to a KeyInfo object
1326 */
1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1328   if( p ){
1329     assert( p->nRef>0 );
1330     p->nRef++;
1331   }
1332   return p;
1333 }
1334 
1335 #ifdef SQLITE_DEBUG
1336 /*
1337 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1339 **
1340 ** This routine is used only inside of assert() statements.
1341 */
1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1343 #endif /* SQLITE_DEBUG */
1344 
1345 /*
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1348 **
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause.  If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1354 **
1355 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1356 ** function is responsible for seeing that this structure is eventually
1357 ** freed.
1358 */
1359 KeyInfo *sqlite3KeyInfoFromExprList(
1360   Parse *pParse,       /* Parsing context */
1361   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1362   int iStart,          /* Begin with this column of pList */
1363   int nExtra           /* Add this many extra columns to the end */
1364 ){
1365   int nExpr;
1366   KeyInfo *pInfo;
1367   struct ExprList_item *pItem;
1368   sqlite3 *db = pParse->db;
1369   int i;
1370 
1371   nExpr = pList->nExpr;
1372   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1373   if( pInfo ){
1374     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1375     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1376       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1377       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1378     }
1379   }
1380   return pInfo;
1381 }
1382 
1383 /*
1384 ** Name of the connection operator, used for error messages.
1385 */
1386 static const char *selectOpName(int id){
1387   char *z;
1388   switch( id ){
1389     case TK_ALL:       z = "UNION ALL";   break;
1390     case TK_INTERSECT: z = "INTERSECT";   break;
1391     case TK_EXCEPT:    z = "EXCEPT";      break;
1392     default:           z = "UNION";       break;
1393   }
1394   return z;
1395 }
1396 
1397 #ifndef SQLITE_OMIT_EXPLAIN
1398 /*
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1402 **
1403 **   "USE TEMP B-TREE FOR xxx"
1404 **
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1407 */
1408 static void explainTempTable(Parse *pParse, const char *zUsage){
1409   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1410 }
1411 
1412 /*
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1418 */
1419 # define explainSetInteger(a, b) a = b
1420 
1421 #else
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1425 #endif
1426 
1427 
1428 /*
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter.  After the loop is terminated
1431 ** we need to run the sorter and output the results.  The following
1432 ** routine generates the code needed to do that.
1433 */
1434 static void generateSortTail(
1435   Parse *pParse,    /* Parsing context */
1436   Select *p,        /* The SELECT statement */
1437   SortCtx *pSort,   /* Information on the ORDER BY clause */
1438   int nColumn,      /* Number of columns of data */
1439   SelectDest *pDest /* Write the sorted results here */
1440 ){
1441   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1442   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1443   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1444   int addr;                       /* Top of output loop. Jump for Next. */
1445   int addrOnce = 0;
1446   int iTab;
1447   ExprList *pOrderBy = pSort->pOrderBy;
1448   int eDest = pDest->eDest;
1449   int iParm = pDest->iSDParm;
1450   int regRow;
1451   int regRowid;
1452   int iCol;
1453   int nKey;                       /* Number of key columns in sorter record */
1454   int iSortTab;                   /* Sorter cursor to read from */
1455   int i;
1456   int bSeq;                       /* True if sorter record includes seq. no. */
1457   int nRefKey = 0;
1458   struct ExprList_item *aOutEx = p->pEList->a;
1459 
1460   assert( addrBreak<0 );
1461   if( pSort->labelBkOut ){
1462     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1463     sqlite3VdbeGoto(v, addrBreak);
1464     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1465   }
1466 
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468   /* Open any cursors needed for sorter-reference expressions */
1469   for(i=0; i<pSort->nDefer; i++){
1470     Table *pTab = pSort->aDefer[i].pTab;
1471     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1472     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1473     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1474   }
1475 #endif
1476 
1477   iTab = pSort->iECursor;
1478   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1479     regRowid = 0;
1480     regRow = pDest->iSdst;
1481   }else{
1482     regRowid = sqlite3GetTempReg(pParse);
1483     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1484       regRow = sqlite3GetTempReg(pParse);
1485       nColumn = 0;
1486     }else{
1487       regRow = sqlite3GetTempRange(pParse, nColumn);
1488     }
1489   }
1490   nKey = pOrderBy->nExpr - pSort->nOBSat;
1491   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1492     int regSortOut = ++pParse->nMem;
1493     iSortTab = pParse->nTab++;
1494     if( pSort->labelBkOut ){
1495       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1496     }
1497     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1498         nKey+1+nColumn+nRefKey);
1499     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1500     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1501     VdbeCoverage(v);
1502     codeOffset(v, p->iOffset, addrContinue);
1503     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1504     bSeq = 0;
1505   }else{
1506     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1507     codeOffset(v, p->iOffset, addrContinue);
1508     iSortTab = iTab;
1509     bSeq = 1;
1510   }
1511   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513     if( aOutEx[i].bSorterRef ) continue;
1514 #endif
1515     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1516   }
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518   if( pSort->nDefer ){
1519     int iKey = iCol+1;
1520     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1521 
1522     for(i=0; i<pSort->nDefer; i++){
1523       int iCsr = pSort->aDefer[i].iCsr;
1524       Table *pTab = pSort->aDefer[i].pTab;
1525       int nKey = pSort->aDefer[i].nKey;
1526 
1527       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528       if( HasRowid(pTab) ){
1529         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1530         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1531             sqlite3VdbeCurrentAddr(v)+1, regKey);
1532       }else{
1533         int k;
1534         int iJmp;
1535         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1536         for(k=0; k<nKey; k++){
1537           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1538         }
1539         iJmp = sqlite3VdbeCurrentAddr(v);
1540         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1541         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1542         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1543       }
1544     }
1545     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1546   }
1547 #endif
1548   for(i=nColumn-1; i>=0; i--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550     if( aOutEx[i].bSorterRef ){
1551       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1552     }else
1553 #endif
1554     {
1555       int iRead;
1556       if( aOutEx[i].u.x.iOrderByCol ){
1557         iRead = aOutEx[i].u.x.iOrderByCol-1;
1558       }else{
1559         iRead = iCol--;
1560       }
1561       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1562       VdbeComment((v, "%s", aOutEx[i].zEName));
1563     }
1564   }
1565   switch( eDest ){
1566     case SRT_Table:
1567     case SRT_EphemTab: {
1568       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1569       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1570       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1571       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1572       break;
1573     }
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575     case SRT_Set: {
1576       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1577       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1578                         pDest->zAffSdst, nColumn);
1579       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1580       break;
1581     }
1582     case SRT_Mem: {
1583       /* The LIMIT clause will terminate the loop for us */
1584       break;
1585     }
1586 #endif
1587     case SRT_Upfrom: {
1588       int i2 = pDest->iSDParm2;
1589       int r1 = sqlite3GetTempReg(pParse);
1590       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1591       if( i2<0 ){
1592         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1593       }else{
1594         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1595       }
1596       break;
1597     }
1598     default: {
1599       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1600       testcase( eDest==SRT_Output );
1601       testcase( eDest==SRT_Coroutine );
1602       if( eDest==SRT_Output ){
1603         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1604       }else{
1605         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1606       }
1607       break;
1608     }
1609   }
1610   if( regRowid ){
1611     if( eDest==SRT_Set ){
1612       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1613     }else{
1614       sqlite3ReleaseTempReg(pParse, regRow);
1615     }
1616     sqlite3ReleaseTempReg(pParse, regRowid);
1617   }
1618   /* The bottom of the loop
1619   */
1620   sqlite3VdbeResolveLabel(v, addrContinue);
1621   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1622     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1623   }else{
1624     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1625   }
1626   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1627   sqlite3VdbeResolveLabel(v, addrBreak);
1628 }
1629 
1630 /*
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1633 **
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1636 **
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1643 **
1644 **   SELECT col FROM tbl;
1645 **   SELECT (SELECT col FROM tbl;
1646 **   SELECT (SELECT col FROM tbl);
1647 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1648 **
1649 ** The declaration type for any expression other than a column is NULL.
1650 **
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1653 */
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1658 #endif
1659 static const char *columnTypeImpl(
1660   NameContext *pNC,
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1662   Expr *pExpr
1663 #else
1664   Expr *pExpr,
1665   const char **pzOrigDb,
1666   const char **pzOrigTab,
1667   const char **pzOrigCol
1668 #endif
1669 ){
1670   char const *zType = 0;
1671   int j;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673   char const *zOrigDb = 0;
1674   char const *zOrigTab = 0;
1675   char const *zOrigCol = 0;
1676 #endif
1677 
1678   assert( pExpr!=0 );
1679   assert( pNC->pSrcList!=0 );
1680   switch( pExpr->op ){
1681     case TK_COLUMN: {
1682       /* The expression is a column. Locate the table the column is being
1683       ** extracted from in NameContext.pSrcList. This table may be real
1684       ** database table or a subquery.
1685       */
1686       Table *pTab = 0;            /* Table structure column is extracted from */
1687       Select *pS = 0;             /* Select the column is extracted from */
1688       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1689       while( pNC && !pTab ){
1690         SrcList *pTabList = pNC->pSrcList;
1691         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1692         if( j<pTabList->nSrc ){
1693           pTab = pTabList->a[j].pTab;
1694           pS = pTabList->a[j].pSelect;
1695         }else{
1696           pNC = pNC->pNext;
1697         }
1698       }
1699 
1700       if( pTab==0 ){
1701         /* At one time, code such as "SELECT new.x" within a trigger would
1702         ** cause this condition to run.  Since then, we have restructured how
1703         ** trigger code is generated and so this condition is no longer
1704         ** possible. However, it can still be true for statements like
1705         ** the following:
1706         **
1707         **   CREATE TABLE t1(col INTEGER);
1708         **   SELECT (SELECT t1.col) FROM FROM t1;
1709         **
1710         ** when columnType() is called on the expression "t1.col" in the
1711         ** sub-select. In this case, set the column type to NULL, even
1712         ** though it should really be "INTEGER".
1713         **
1714         ** This is not a problem, as the column type of "t1.col" is never
1715         ** used. When columnType() is called on the expression
1716         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1717         ** branch below.  */
1718         break;
1719       }
1720 
1721       assert( pTab && pExpr->y.pTab==pTab );
1722       if( pS ){
1723         /* The "table" is actually a sub-select or a view in the FROM clause
1724         ** of the SELECT statement. Return the declaration type and origin
1725         ** data for the result-set column of the sub-select.
1726         */
1727         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1728           /* If iCol is less than zero, then the expression requests the
1729           ** rowid of the sub-select or view. This expression is legal (see
1730           ** test case misc2.2.2) - it always evaluates to NULL.
1731           */
1732           NameContext sNC;
1733           Expr *p = pS->pEList->a[iCol].pExpr;
1734           sNC.pSrcList = pS->pSrc;
1735           sNC.pNext = pNC;
1736           sNC.pParse = pNC->pParse;
1737           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1738         }
1739       }else{
1740         /* A real table or a CTE table */
1741         assert( !pS );
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743         if( iCol<0 ) iCol = pTab->iPKey;
1744         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745         if( iCol<0 ){
1746           zType = "INTEGER";
1747           zOrigCol = "rowid";
1748         }else{
1749           zOrigCol = pTab->aCol[iCol].zName;
1750           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1751         }
1752         zOrigTab = pTab->zName;
1753         if( pNC->pParse && pTab->pSchema ){
1754           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1755           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1756         }
1757 #else
1758         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1759         if( iCol<0 ){
1760           zType = "INTEGER";
1761         }else{
1762           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1763         }
1764 #endif
1765       }
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case TK_SELECT: {
1770       /* The expression is a sub-select. Return the declaration type and
1771       ** origin info for the single column in the result set of the SELECT
1772       ** statement.
1773       */
1774       NameContext sNC;
1775       Select *pS = pExpr->x.pSelect;
1776       Expr *p = pS->pEList->a[0].pExpr;
1777       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1778       sNC.pSrcList = pS->pSrc;
1779       sNC.pNext = pNC;
1780       sNC.pParse = pNC->pParse;
1781       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1782       break;
1783     }
1784 #endif
1785   }
1786 
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1788   if( pzOrigDb ){
1789     assert( pzOrigTab && pzOrigCol );
1790     *pzOrigDb = zOrigDb;
1791     *pzOrigTab = zOrigTab;
1792     *pzOrigCol = zOrigCol;
1793   }
1794 #endif
1795   return zType;
1796 }
1797 
1798 /*
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1801 */
1802 static void generateColumnTypes(
1803   Parse *pParse,      /* Parser context */
1804   SrcList *pTabList,  /* List of tables */
1805   ExprList *pEList    /* Expressions defining the result set */
1806 ){
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808   Vdbe *v = pParse->pVdbe;
1809   int i;
1810   NameContext sNC;
1811   sNC.pSrcList = pTabList;
1812   sNC.pParse = pParse;
1813   sNC.pNext = 0;
1814   for(i=0; i<pEList->nExpr; i++){
1815     Expr *p = pEList->a[i].pExpr;
1816     const char *zType;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818     const char *zOrigDb = 0;
1819     const char *zOrigTab = 0;
1820     const char *zOrigCol = 0;
1821     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1822 
1823     /* The vdbe must make its own copy of the column-type and other
1824     ** column specific strings, in case the schema is reset before this
1825     ** virtual machine is deleted.
1826     */
1827     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1828     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1829     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1830 #else
1831     zType = columnType(&sNC, p, 0, 0, 0);
1832 #endif
1833     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1834   }
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1836 }
1837 
1838 
1839 /*
1840 ** Compute the column names for a SELECT statement.
1841 **
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee.  However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes.  Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1848 **
1849 ** See Also: sqlite3ColumnsFromExprList()
1850 **
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1853 ** applications should operate this way.  Nevertheless, we need to support the
1854 ** other modes for legacy:
1855 **
1856 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1857 **                              originally appears in the SELECT statement.  In
1858 **                              other words, the zSpan of the result expression.
1859 **
1860 **    short=ON, full=OFF:       (This is the default setting).  If the result
1861 **                              refers directly to a table column, then the
1862 **                              result column name is just the table column
1863 **                              name: COLUMN.  Otherwise use zSpan.
1864 **
1865 **    full=ON, short=ANY:       If the result refers directly to a table column,
1866 **                              then the result column name with the table name
1867 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1868 */
1869 static void generateColumnNames(
1870   Parse *pParse,      /* Parser context */
1871   Select *pSelect     /* Generate column names for this SELECT statement */
1872 ){
1873   Vdbe *v = pParse->pVdbe;
1874   int i;
1875   Table *pTab;
1876   SrcList *pTabList;
1877   ExprList *pEList;
1878   sqlite3 *db = pParse->db;
1879   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1881 
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883   /* If this is an EXPLAIN, skip this step */
1884   if( pParse->explain ){
1885     return;
1886   }
1887 #endif
1888 
1889   if( pParse->colNamesSet ) return;
1890   /* Column names are determined by the left-most term of a compound select */
1891   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1892   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1893   pTabList = pSelect->pSrc;
1894   pEList = pSelect->pEList;
1895   assert( v!=0 );
1896   assert( pTabList!=0 );
1897   pParse->colNamesSet = 1;
1898   fullName = (db->flags & SQLITE_FullColNames)!=0;
1899   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1900   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1901   for(i=0; i<pEList->nExpr; i++){
1902     Expr *p = pEList->a[i].pExpr;
1903 
1904     assert( p!=0 );
1905     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1906     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1907     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1908       /* An AS clause always takes first priority */
1909       char *zName = pEList->a[i].zEName;
1910       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1911     }else if( srcName && p->op==TK_COLUMN ){
1912       char *zCol;
1913       int iCol = p->iColumn;
1914       pTab = p->y.pTab;
1915       assert( pTab!=0 );
1916       if( iCol<0 ) iCol = pTab->iPKey;
1917       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1918       if( iCol<0 ){
1919         zCol = "rowid";
1920       }else{
1921         zCol = pTab->aCol[iCol].zName;
1922       }
1923       if( fullName ){
1924         char *zName = 0;
1925         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1926         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1927       }else{
1928         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1929       }
1930     }else{
1931       const char *z = pEList->a[i].zEName;
1932       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1933       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1934     }
1935   }
1936   generateColumnTypes(pParse, pTabList, pEList);
1937 }
1938 
1939 /*
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1943 **
1944 ** All column names will be unique.
1945 **
1946 ** Only the column names are computed.  Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1948 **
1949 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1951 **
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee.  However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes.  Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1958 **
1959 ** See Also: generateColumnNames()
1960 */
1961 int sqlite3ColumnsFromExprList(
1962   Parse *pParse,          /* Parsing context */
1963   ExprList *pEList,       /* Expr list from which to derive column names */
1964   i16 *pnCol,             /* Write the number of columns here */
1965   Column **paCol          /* Write the new column list here */
1966 ){
1967   sqlite3 *db = pParse->db;   /* Database connection */
1968   int i, j;                   /* Loop counters */
1969   u32 cnt;                    /* Index added to make the name unique */
1970   Column *aCol, *pCol;        /* For looping over result columns */
1971   int nCol;                   /* Number of columns in the result set */
1972   char *zName;                /* Column name */
1973   int nName;                  /* Size of name in zName[] */
1974   Hash ht;                    /* Hash table of column names */
1975 
1976   sqlite3HashInit(&ht);
1977   if( pEList ){
1978     nCol = pEList->nExpr;
1979     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1980     testcase( aCol==0 );
1981     if( nCol>32767 ) nCol = 32767;
1982   }else{
1983     nCol = 0;
1984     aCol = 0;
1985   }
1986   assert( nCol==(i16)nCol );
1987   *pnCol = nCol;
1988   *paCol = aCol;
1989 
1990   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1991     /* Get an appropriate name for the column
1992     */
1993     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1994       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1995     }else{
1996       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1997       while( pColExpr->op==TK_DOT ){
1998         pColExpr = pColExpr->pRight;
1999         assert( pColExpr!=0 );
2000       }
2001       if( pColExpr->op==TK_COLUMN ){
2002         /* For columns use the column name name */
2003         int iCol = pColExpr->iColumn;
2004         Table *pTab = pColExpr->y.pTab;
2005         assert( pTab!=0 );
2006         if( iCol<0 ) iCol = pTab->iPKey;
2007         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2008       }else if( pColExpr->op==TK_ID ){
2009         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2010         zName = pColExpr->u.zToken;
2011       }else{
2012         /* Use the original text of the column expression as its name */
2013         zName = pEList->a[i].zEName;
2014       }
2015     }
2016     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2017       zName = sqlite3DbStrDup(db, zName);
2018     }else{
2019       zName = sqlite3MPrintf(db,"column%d",i+1);
2020     }
2021 
2022     /* Make sure the column name is unique.  If the name is not unique,
2023     ** append an integer to the name so that it becomes unique.
2024     */
2025     cnt = 0;
2026     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2027       nName = sqlite3Strlen30(zName);
2028       if( nName>0 ){
2029         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2030         if( zName[j]==':' ) nName = j;
2031       }
2032       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2033       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2034     }
2035     pCol->zName = zName;
2036     pCol->hName = sqlite3StrIHash(zName);
2037     sqlite3ColumnPropertiesFromName(0, pCol);
2038     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2039       sqlite3OomFault(db);
2040     }
2041   }
2042   sqlite3HashClear(&ht);
2043   if( db->mallocFailed ){
2044     for(j=0; j<i; j++){
2045       sqlite3DbFree(db, aCol[j].zName);
2046     }
2047     sqlite3DbFree(db, aCol);
2048     *paCol = 0;
2049     *pnCol = 0;
2050     return SQLITE_NOMEM_BKPT;
2051   }
2052   return SQLITE_OK;
2053 }
2054 
2055 /*
2056 ** Add type and collation information to a column list based on
2057 ** a SELECT statement.
2058 **
2059 ** The column list presumably came from selectColumnNamesFromExprList().
2060 ** The column list has only names, not types or collations.  This
2061 ** routine goes through and adds the types and collations.
2062 **
2063 ** This routine requires that all identifiers in the SELECT
2064 ** statement be resolved.
2065 */
2066 void sqlite3SelectAddColumnTypeAndCollation(
2067   Parse *pParse,        /* Parsing contexts */
2068   Table *pTab,          /* Add column type information to this table */
2069   Select *pSelect,      /* SELECT used to determine types and collations */
2070   char aff              /* Default affinity for columns */
2071 ){
2072   sqlite3 *db = pParse->db;
2073   NameContext sNC;
2074   Column *pCol;
2075   CollSeq *pColl;
2076   int i;
2077   Expr *p;
2078   struct ExprList_item *a;
2079 
2080   assert( pSelect!=0 );
2081   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2082   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2083   if( db->mallocFailed ) return;
2084   memset(&sNC, 0, sizeof(sNC));
2085   sNC.pSrcList = pSelect->pSrc;
2086   a = pSelect->pEList->a;
2087   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2088     const char *zType;
2089     int n, m;
2090     p = a[i].pExpr;
2091     zType = columnType(&sNC, p, 0, 0, 0);
2092     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2093     pCol->affinity = sqlite3ExprAffinity(p);
2094     if( zType ){
2095       m = sqlite3Strlen30(zType);
2096       n = sqlite3Strlen30(pCol->zName);
2097       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2098       if( pCol->zName ){
2099         memcpy(&pCol->zName[n+1], zType, m+1);
2100         pCol->colFlags |= COLFLAG_HASTYPE;
2101       }
2102     }
2103     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2104     pColl = sqlite3ExprCollSeq(pParse, p);
2105     if( pColl && pCol->zColl==0 ){
2106       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2107     }
2108   }
2109   pTab->szTabRow = 1; /* Any non-zero value works */
2110 }
2111 
2112 /*
2113 ** Given a SELECT statement, generate a Table structure that describes
2114 ** the result set of that SELECT.
2115 */
2116 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2117   Table *pTab;
2118   sqlite3 *db = pParse->db;
2119   u64 savedFlags;
2120 
2121   savedFlags = db->flags;
2122   db->flags &= ~(u64)SQLITE_FullColNames;
2123   db->flags |= SQLITE_ShortColNames;
2124   sqlite3SelectPrep(pParse, pSelect, 0);
2125   db->flags = savedFlags;
2126   if( pParse->nErr ) return 0;
2127   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2128   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2129   if( pTab==0 ){
2130     return 0;
2131   }
2132   pTab->nTabRef = 1;
2133   pTab->zName = 0;
2134   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2135   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2136   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2137   pTab->iPKey = -1;
2138   if( db->mallocFailed ){
2139     sqlite3DeleteTable(db, pTab);
2140     return 0;
2141   }
2142   return pTab;
2143 }
2144 
2145 /*
2146 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2147 ** If an error occurs, return NULL and leave a message in pParse.
2148 */
2149 Vdbe *sqlite3GetVdbe(Parse *pParse){
2150   if( pParse->pVdbe ){
2151     return pParse->pVdbe;
2152   }
2153   if( pParse->pToplevel==0
2154    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2155   ){
2156     pParse->okConstFactor = 1;
2157   }
2158   return sqlite3VdbeCreate(pParse);
2159 }
2160 
2161 
2162 /*
2163 ** Compute the iLimit and iOffset fields of the SELECT based on the
2164 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2165 ** that appear in the original SQL statement after the LIMIT and OFFSET
2166 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2167 ** are the integer memory register numbers for counters used to compute
2168 ** the limit and offset.  If there is no limit and/or offset, then
2169 ** iLimit and iOffset are negative.
2170 **
2171 ** This routine changes the values of iLimit and iOffset only if
2172 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2173 ** and iOffset should have been preset to appropriate default values (zero)
2174 ** prior to calling this routine.
2175 **
2176 ** The iOffset register (if it exists) is initialized to the value
2177 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2178 ** iOffset+1 is initialized to LIMIT+OFFSET.
2179 **
2180 ** Only if pLimit->pLeft!=0 do the limit registers get
2181 ** redefined.  The UNION ALL operator uses this property to force
2182 ** the reuse of the same limit and offset registers across multiple
2183 ** SELECT statements.
2184 */
2185 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2186   Vdbe *v = 0;
2187   int iLimit = 0;
2188   int iOffset;
2189   int n;
2190   Expr *pLimit = p->pLimit;
2191 
2192   if( p->iLimit ) return;
2193 
2194   /*
2195   ** "LIMIT -1" always shows all rows.  There is some
2196   ** controversy about what the correct behavior should be.
2197   ** The current implementation interprets "LIMIT 0" to mean
2198   ** no rows.
2199   */
2200   if( pLimit ){
2201     assert( pLimit->op==TK_LIMIT );
2202     assert( pLimit->pLeft!=0 );
2203     p->iLimit = iLimit = ++pParse->nMem;
2204     v = sqlite3GetVdbe(pParse);
2205     assert( v!=0 );
2206     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2207       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2208       VdbeComment((v, "LIMIT counter"));
2209       if( n==0 ){
2210         sqlite3VdbeGoto(v, iBreak);
2211       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2212         p->nSelectRow = sqlite3LogEst((u64)n);
2213         p->selFlags |= SF_FixedLimit;
2214       }
2215     }else{
2216       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2217       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2218       VdbeComment((v, "LIMIT counter"));
2219       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2220     }
2221     if( pLimit->pRight ){
2222       p->iOffset = iOffset = ++pParse->nMem;
2223       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2224       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2225       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2226       VdbeComment((v, "OFFSET counter"));
2227       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2228       VdbeComment((v, "LIMIT+OFFSET"));
2229     }
2230   }
2231 }
2232 
2233 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2234 /*
2235 ** Return the appropriate collating sequence for the iCol-th column of
2236 ** the result set for the compound-select statement "p".  Return NULL if
2237 ** the column has no default collating sequence.
2238 **
2239 ** The collating sequence for the compound select is taken from the
2240 ** left-most term of the select that has a collating sequence.
2241 */
2242 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2243   CollSeq *pRet;
2244   if( p->pPrior ){
2245     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2246   }else{
2247     pRet = 0;
2248   }
2249   assert( iCol>=0 );
2250   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2251   ** have been thrown during name resolution and we would not have gotten
2252   ** this far */
2253   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2254     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2255   }
2256   return pRet;
2257 }
2258 
2259 /*
2260 ** The select statement passed as the second parameter is a compound SELECT
2261 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2262 ** structure suitable for implementing the ORDER BY.
2263 **
2264 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2265 ** function is responsible for ensuring that this structure is eventually
2266 ** freed.
2267 */
2268 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2269   ExprList *pOrderBy = p->pOrderBy;
2270   int nOrderBy = p->pOrderBy->nExpr;
2271   sqlite3 *db = pParse->db;
2272   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2273   if( pRet ){
2274     int i;
2275     for(i=0; i<nOrderBy; i++){
2276       struct ExprList_item *pItem = &pOrderBy->a[i];
2277       Expr *pTerm = pItem->pExpr;
2278       CollSeq *pColl;
2279 
2280       if( pTerm->flags & EP_Collate ){
2281         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2282       }else{
2283         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2284         if( pColl==0 ) pColl = db->pDfltColl;
2285         pOrderBy->a[i].pExpr =
2286           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2287       }
2288       assert( sqlite3KeyInfoIsWriteable(pRet) );
2289       pRet->aColl[i] = pColl;
2290       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2291     }
2292   }
2293 
2294   return pRet;
2295 }
2296 
2297 #ifndef SQLITE_OMIT_CTE
2298 /*
2299 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2300 ** query of the form:
2301 **
2302 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2303 **                         \___________/             \_______________/
2304 **                           p->pPrior                      p
2305 **
2306 **
2307 ** There is exactly one reference to the recursive-table in the FROM clause
2308 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2309 **
2310 ** The setup-query runs once to generate an initial set of rows that go
2311 ** into a Queue table.  Rows are extracted from the Queue table one by
2312 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2313 ** extracted row (now in the iCurrent table) becomes the content of the
2314 ** recursive-table for a recursive-query run.  The output of the recursive-query
2315 ** is added back into the Queue table.  Then another row is extracted from Queue
2316 ** and the iteration continues until the Queue table is empty.
2317 **
2318 ** If the compound query operator is UNION then no duplicate rows are ever
2319 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2320 ** that have ever been inserted into Queue and causes duplicates to be
2321 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2322 **
2323 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2324 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2325 ** an ORDER BY, the Queue table is just a FIFO.
2326 **
2327 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2328 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2329 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2330 ** with a positive value, then the first OFFSET outputs are discarded rather
2331 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2332 ** rows have been skipped.
2333 */
2334 static void generateWithRecursiveQuery(
2335   Parse *pParse,        /* Parsing context */
2336   Select *p,            /* The recursive SELECT to be coded */
2337   SelectDest *pDest     /* What to do with query results */
2338 ){
2339   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2340   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2341   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2342   Select *pSetup = p->pPrior;   /* The setup query */
2343   Select *pFirstRec;            /* Left-most recursive term */
2344   int addrTop;                  /* Top of the loop */
2345   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2346   int iCurrent = 0;             /* The Current table */
2347   int regCurrent;               /* Register holding Current table */
2348   int iQueue;                   /* The Queue table */
2349   int iDistinct = 0;            /* To ensure unique results if UNION */
2350   int eDest = SRT_Fifo;         /* How to write to Queue */
2351   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2352   int i;                        /* Loop counter */
2353   int rc;                       /* Result code */
2354   ExprList *pOrderBy;           /* The ORDER BY clause */
2355   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2356   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2357 
2358 #ifndef SQLITE_OMIT_WINDOWFUNC
2359   if( p->pWin ){
2360     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2361     return;
2362   }
2363 #endif
2364 
2365   /* Obtain authorization to do a recursive query */
2366   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2367 
2368   /* Process the LIMIT and OFFSET clauses, if they exist */
2369   addrBreak = sqlite3VdbeMakeLabel(pParse);
2370   p->nSelectRow = 320;  /* 4 billion rows */
2371   computeLimitRegisters(pParse, p, addrBreak);
2372   pLimit = p->pLimit;
2373   regLimit = p->iLimit;
2374   regOffset = p->iOffset;
2375   p->pLimit = 0;
2376   p->iLimit = p->iOffset = 0;
2377   pOrderBy = p->pOrderBy;
2378 
2379   /* Locate the cursor number of the Current table */
2380   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2381     if( pSrc->a[i].fg.isRecursive ){
2382       iCurrent = pSrc->a[i].iCursor;
2383       break;
2384     }
2385   }
2386 
2387   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2388   ** the Distinct table must be exactly one greater than Queue in order
2389   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2390   iQueue = pParse->nTab++;
2391   if( p->op==TK_UNION ){
2392     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2393     iDistinct = pParse->nTab++;
2394   }else{
2395     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2396   }
2397   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2398 
2399   /* Allocate cursors for Current, Queue, and Distinct. */
2400   regCurrent = ++pParse->nMem;
2401   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2402   if( pOrderBy ){
2403     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2404     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2405                       (char*)pKeyInfo, P4_KEYINFO);
2406     destQueue.pOrderBy = pOrderBy;
2407   }else{
2408     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2409   }
2410   VdbeComment((v, "Queue table"));
2411   if( iDistinct ){
2412     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2413     p->selFlags |= SF_UsesEphemeral;
2414   }
2415 
2416   /* Detach the ORDER BY clause from the compound SELECT */
2417   p->pOrderBy = 0;
2418 
2419   /* Figure out how many elements of the compound SELECT are part of the
2420   ** recursive query.  Make sure no recursive elements use aggregate
2421   ** functions.  Mark the recursive elements as UNION ALL even if they
2422   ** are really UNION because the distinctness will be enforced by the
2423   ** iDistinct table.  pFirstRec is left pointing to the left-most
2424   ** recursive term of the CTE.
2425   */
2426   pFirstRec = p;
2427   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2428     if( pFirstRec->selFlags & SF_Aggregate ){
2429       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2430       goto end_of_recursive_query;
2431     }
2432     pFirstRec->op = TK_ALL;
2433     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2434   }
2435 
2436   /* Store the results of the setup-query in Queue. */
2437   pSetup = pFirstRec->pPrior;
2438   pSetup->pNext = 0;
2439   ExplainQueryPlan((pParse, 1, "SETUP"));
2440   rc = sqlite3Select(pParse, pSetup, &destQueue);
2441   pSetup->pNext = p;
2442   if( rc ) goto end_of_recursive_query;
2443 
2444   /* Find the next row in the Queue and output that row */
2445   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2446 
2447   /* Transfer the next row in Queue over to Current */
2448   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2449   if( pOrderBy ){
2450     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2451   }else{
2452     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2453   }
2454   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2455 
2456   /* Output the single row in Current */
2457   addrCont = sqlite3VdbeMakeLabel(pParse);
2458   codeOffset(v, regOffset, addrCont);
2459   selectInnerLoop(pParse, p, iCurrent,
2460       0, 0, pDest, addrCont, addrBreak);
2461   if( regLimit ){
2462     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2463     VdbeCoverage(v);
2464   }
2465   sqlite3VdbeResolveLabel(v, addrCont);
2466 
2467   /* Execute the recursive SELECT taking the single row in Current as
2468   ** the value for the recursive-table. Store the results in the Queue.
2469   */
2470   pFirstRec->pPrior = 0;
2471   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2472   sqlite3Select(pParse, p, &destQueue);
2473   assert( pFirstRec->pPrior==0 );
2474   pFirstRec->pPrior = pSetup;
2475 
2476   /* Keep running the loop until the Queue is empty */
2477   sqlite3VdbeGoto(v, addrTop);
2478   sqlite3VdbeResolveLabel(v, addrBreak);
2479 
2480 end_of_recursive_query:
2481   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2482   p->pOrderBy = pOrderBy;
2483   p->pLimit = pLimit;
2484   return;
2485 }
2486 #endif /* SQLITE_OMIT_CTE */
2487 
2488 /* Forward references */
2489 static int multiSelectOrderBy(
2490   Parse *pParse,        /* Parsing context */
2491   Select *p,            /* The right-most of SELECTs to be coded */
2492   SelectDest *pDest     /* What to do with query results */
2493 );
2494 
2495 /*
2496 ** Handle the special case of a compound-select that originates from a
2497 ** VALUES clause.  By handling this as a special case, we avoid deep
2498 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2499 ** on a VALUES clause.
2500 **
2501 ** Because the Select object originates from a VALUES clause:
2502 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2503 **   (2) All terms are UNION ALL
2504 **   (3) There is no ORDER BY clause
2505 **
2506 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2507 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2508 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2509 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2510 */
2511 static int multiSelectValues(
2512   Parse *pParse,        /* Parsing context */
2513   Select *p,            /* The right-most of SELECTs to be coded */
2514   SelectDest *pDest     /* What to do with query results */
2515 ){
2516   int nRow = 1;
2517   int rc = 0;
2518   int bShowAll = p->pLimit==0;
2519   assert( p->selFlags & SF_MultiValue );
2520   do{
2521     assert( p->selFlags & SF_Values );
2522     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2523     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2524 #ifndef SQLITE_OMIT_WINDOWFUNC
2525     if( p->pWin ) return -1;
2526 #endif
2527     if( p->pPrior==0 ) break;
2528     assert( p->pPrior->pNext==p );
2529     p = p->pPrior;
2530     nRow += bShowAll;
2531   }while(1);
2532   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2533                     nRow==1 ? "" : "S"));
2534   while( p ){
2535     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2536     if( !bShowAll ) break;
2537     p->nSelectRow = nRow;
2538     p = p->pNext;
2539   }
2540   return rc;
2541 }
2542 
2543 /*
2544 ** Return true if the SELECT statement which is known to be the recursive
2545 ** part of a recursive CTE still has its anchor terms attached.  If the
2546 ** anchor terms have already been removed, then return false.
2547 */
2548 static int hasAnchor(Select *p){
2549   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2550   return p!=0;
2551 }
2552 
2553 /*
2554 ** This routine is called to process a compound query form from
2555 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2556 ** INTERSECT
2557 **
2558 ** "p" points to the right-most of the two queries.  the query on the
2559 ** left is p->pPrior.  The left query could also be a compound query
2560 ** in which case this routine will be called recursively.
2561 **
2562 ** The results of the total query are to be written into a destination
2563 ** of type eDest with parameter iParm.
2564 **
2565 ** Example 1:  Consider a three-way compound SQL statement.
2566 **
2567 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2568 **
2569 ** This statement is parsed up as follows:
2570 **
2571 **     SELECT c FROM t3
2572 **      |
2573 **      `----->  SELECT b FROM t2
2574 **                |
2575 **                `------>  SELECT a FROM t1
2576 **
2577 ** The arrows in the diagram above represent the Select.pPrior pointer.
2578 ** So if this routine is called with p equal to the t3 query, then
2579 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2580 **
2581 ** Notice that because of the way SQLite parses compound SELECTs, the
2582 ** individual selects always group from left to right.
2583 */
2584 static int multiSelect(
2585   Parse *pParse,        /* Parsing context */
2586   Select *p,            /* The right-most of SELECTs to be coded */
2587   SelectDest *pDest     /* What to do with query results */
2588 ){
2589   int rc = SQLITE_OK;   /* Success code from a subroutine */
2590   Select *pPrior;       /* Another SELECT immediately to our left */
2591   Vdbe *v;              /* Generate code to this VDBE */
2592   SelectDest dest;      /* Alternative data destination */
2593   Select *pDelete = 0;  /* Chain of simple selects to delete */
2594   sqlite3 *db;          /* Database connection */
2595 
2596   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2597   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2598   */
2599   assert( p && p->pPrior );  /* Calling function guarantees this much */
2600   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2601   assert( p->selFlags & SF_Compound );
2602   db = pParse->db;
2603   pPrior = p->pPrior;
2604   dest = *pDest;
2605   if( pPrior->pOrderBy || pPrior->pLimit ){
2606     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2607       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2608     rc = 1;
2609     goto multi_select_end;
2610   }
2611 
2612   v = sqlite3GetVdbe(pParse);
2613   assert( v!=0 );  /* The VDBE already created by calling function */
2614 
2615   /* Create the destination temporary table if necessary
2616   */
2617   if( dest.eDest==SRT_EphemTab ){
2618     assert( p->pEList );
2619     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2620     dest.eDest = SRT_Table;
2621   }
2622 
2623   /* Special handling for a compound-select that originates as a VALUES clause.
2624   */
2625   if( p->selFlags & SF_MultiValue ){
2626     rc = multiSelectValues(pParse, p, &dest);
2627     if( rc>=0 ) goto multi_select_end;
2628     rc = SQLITE_OK;
2629   }
2630 
2631   /* Make sure all SELECTs in the statement have the same number of elements
2632   ** in their result sets.
2633   */
2634   assert( p->pEList && pPrior->pEList );
2635   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2636 
2637 #ifndef SQLITE_OMIT_CTE
2638   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2639     generateWithRecursiveQuery(pParse, p, &dest);
2640   }else
2641 #endif
2642 
2643   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2644   */
2645   if( p->pOrderBy ){
2646     return multiSelectOrderBy(pParse, p, pDest);
2647   }else{
2648 
2649 #ifndef SQLITE_OMIT_EXPLAIN
2650     if( pPrior->pPrior==0 ){
2651       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2652       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2653     }
2654 #endif
2655 
2656     /* Generate code for the left and right SELECT statements.
2657     */
2658     switch( p->op ){
2659       case TK_ALL: {
2660         int addr = 0;
2661         int nLimit;
2662         assert( !pPrior->pLimit );
2663         pPrior->iLimit = p->iLimit;
2664         pPrior->iOffset = p->iOffset;
2665         pPrior->pLimit = p->pLimit;
2666         rc = sqlite3Select(pParse, pPrior, &dest);
2667         p->pLimit = 0;
2668         if( rc ){
2669           goto multi_select_end;
2670         }
2671         p->pPrior = 0;
2672         p->iLimit = pPrior->iLimit;
2673         p->iOffset = pPrior->iOffset;
2674         if( p->iLimit ){
2675           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2676           VdbeComment((v, "Jump ahead if LIMIT reached"));
2677           if( p->iOffset ){
2678             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2679                               p->iLimit, p->iOffset+1, p->iOffset);
2680           }
2681         }
2682         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2683         rc = sqlite3Select(pParse, p, &dest);
2684         testcase( rc!=SQLITE_OK );
2685         pDelete = p->pPrior;
2686         p->pPrior = pPrior;
2687         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2688         if( pPrior->pLimit
2689          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2690          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2691         ){
2692           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2693         }
2694         if( addr ){
2695           sqlite3VdbeJumpHere(v, addr);
2696         }
2697         break;
2698       }
2699       case TK_EXCEPT:
2700       case TK_UNION: {
2701         int unionTab;    /* Cursor number of the temp table holding result */
2702         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2703         int priorOp;     /* The SRT_ operation to apply to prior selects */
2704         Expr *pLimit;    /* Saved values of p->nLimit  */
2705         int addr;
2706         SelectDest uniondest;
2707 
2708         testcase( p->op==TK_EXCEPT );
2709         testcase( p->op==TK_UNION );
2710         priorOp = SRT_Union;
2711         if( dest.eDest==priorOp ){
2712           /* We can reuse a temporary table generated by a SELECT to our
2713           ** right.
2714           */
2715           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2716           unionTab = dest.iSDParm;
2717         }else{
2718           /* We will need to create our own temporary table to hold the
2719           ** intermediate results.
2720           */
2721           unionTab = pParse->nTab++;
2722           assert( p->pOrderBy==0 );
2723           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2724           assert( p->addrOpenEphm[0] == -1 );
2725           p->addrOpenEphm[0] = addr;
2726           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2727           assert( p->pEList );
2728         }
2729 
2730 
2731         /* Code the SELECT statements to our left
2732         */
2733         assert( !pPrior->pOrderBy );
2734         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2735         rc = sqlite3Select(pParse, pPrior, &uniondest);
2736         if( rc ){
2737           goto multi_select_end;
2738         }
2739 
2740         /* Code the current SELECT statement
2741         */
2742         if( p->op==TK_EXCEPT ){
2743           op = SRT_Except;
2744         }else{
2745           assert( p->op==TK_UNION );
2746           op = SRT_Union;
2747         }
2748         p->pPrior = 0;
2749         pLimit = p->pLimit;
2750         p->pLimit = 0;
2751         uniondest.eDest = op;
2752         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2753                           selectOpName(p->op)));
2754         rc = sqlite3Select(pParse, p, &uniondest);
2755         testcase( rc!=SQLITE_OK );
2756         assert( p->pOrderBy==0 );
2757         pDelete = p->pPrior;
2758         p->pPrior = pPrior;
2759         p->pOrderBy = 0;
2760         if( p->op==TK_UNION ){
2761           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2762         }
2763         sqlite3ExprDelete(db, p->pLimit);
2764         p->pLimit = pLimit;
2765         p->iLimit = 0;
2766         p->iOffset = 0;
2767 
2768         /* Convert the data in the temporary table into whatever form
2769         ** it is that we currently need.
2770         */
2771         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2772         assert( p->pEList || db->mallocFailed );
2773         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2774           int iCont, iBreak, iStart;
2775           iBreak = sqlite3VdbeMakeLabel(pParse);
2776           iCont = sqlite3VdbeMakeLabel(pParse);
2777           computeLimitRegisters(pParse, p, iBreak);
2778           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2779           iStart = sqlite3VdbeCurrentAddr(v);
2780           selectInnerLoop(pParse, p, unionTab,
2781                           0, 0, &dest, iCont, iBreak);
2782           sqlite3VdbeResolveLabel(v, iCont);
2783           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2784           sqlite3VdbeResolveLabel(v, iBreak);
2785           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2786         }
2787         break;
2788       }
2789       default: assert( p->op==TK_INTERSECT ); {
2790         int tab1, tab2;
2791         int iCont, iBreak, iStart;
2792         Expr *pLimit;
2793         int addr;
2794         SelectDest intersectdest;
2795         int r1;
2796 
2797         /* INTERSECT is different from the others since it requires
2798         ** two temporary tables.  Hence it has its own case.  Begin
2799         ** by allocating the tables we will need.
2800         */
2801         tab1 = pParse->nTab++;
2802         tab2 = pParse->nTab++;
2803         assert( p->pOrderBy==0 );
2804 
2805         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2806         assert( p->addrOpenEphm[0] == -1 );
2807         p->addrOpenEphm[0] = addr;
2808         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2809         assert( p->pEList );
2810 
2811         /* Code the SELECTs to our left into temporary table "tab1".
2812         */
2813         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2814         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2815         if( rc ){
2816           goto multi_select_end;
2817         }
2818 
2819         /* Code the current SELECT into temporary table "tab2"
2820         */
2821         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2822         assert( p->addrOpenEphm[1] == -1 );
2823         p->addrOpenEphm[1] = addr;
2824         p->pPrior = 0;
2825         pLimit = p->pLimit;
2826         p->pLimit = 0;
2827         intersectdest.iSDParm = tab2;
2828         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2829                           selectOpName(p->op)));
2830         rc = sqlite3Select(pParse, p, &intersectdest);
2831         testcase( rc!=SQLITE_OK );
2832         pDelete = p->pPrior;
2833         p->pPrior = pPrior;
2834         if( p->nSelectRow>pPrior->nSelectRow ){
2835           p->nSelectRow = pPrior->nSelectRow;
2836         }
2837         sqlite3ExprDelete(db, p->pLimit);
2838         p->pLimit = pLimit;
2839 
2840         /* Generate code to take the intersection of the two temporary
2841         ** tables.
2842         */
2843         if( rc ) break;
2844         assert( p->pEList );
2845         iBreak = sqlite3VdbeMakeLabel(pParse);
2846         iCont = sqlite3VdbeMakeLabel(pParse);
2847         computeLimitRegisters(pParse, p, iBreak);
2848         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2849         r1 = sqlite3GetTempReg(pParse);
2850         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2851         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2852         VdbeCoverage(v);
2853         sqlite3ReleaseTempReg(pParse, r1);
2854         selectInnerLoop(pParse, p, tab1,
2855                         0, 0, &dest, iCont, iBreak);
2856         sqlite3VdbeResolveLabel(v, iCont);
2857         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2858         sqlite3VdbeResolveLabel(v, iBreak);
2859         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2860         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2861         break;
2862       }
2863     }
2864 
2865   #ifndef SQLITE_OMIT_EXPLAIN
2866     if( p->pNext==0 ){
2867       ExplainQueryPlanPop(pParse);
2868     }
2869   #endif
2870   }
2871   if( pParse->nErr ) goto multi_select_end;
2872 
2873   /* Compute collating sequences used by
2874   ** temporary tables needed to implement the compound select.
2875   ** Attach the KeyInfo structure to all temporary tables.
2876   **
2877   ** This section is run by the right-most SELECT statement only.
2878   ** SELECT statements to the left always skip this part.  The right-most
2879   ** SELECT might also skip this part if it has no ORDER BY clause and
2880   ** no temp tables are required.
2881   */
2882   if( p->selFlags & SF_UsesEphemeral ){
2883     int i;                        /* Loop counter */
2884     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2885     Select *pLoop;                /* For looping through SELECT statements */
2886     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2887     int nCol;                     /* Number of columns in result set */
2888 
2889     assert( p->pNext==0 );
2890     nCol = p->pEList->nExpr;
2891     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2892     if( !pKeyInfo ){
2893       rc = SQLITE_NOMEM_BKPT;
2894       goto multi_select_end;
2895     }
2896     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2897       *apColl = multiSelectCollSeq(pParse, p, i);
2898       if( 0==*apColl ){
2899         *apColl = db->pDfltColl;
2900       }
2901     }
2902 
2903     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2904       for(i=0; i<2; i++){
2905         int addr = pLoop->addrOpenEphm[i];
2906         if( addr<0 ){
2907           /* If [0] is unused then [1] is also unused.  So we can
2908           ** always safely abort as soon as the first unused slot is found */
2909           assert( pLoop->addrOpenEphm[1]<0 );
2910           break;
2911         }
2912         sqlite3VdbeChangeP2(v, addr, nCol);
2913         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2914                             P4_KEYINFO);
2915         pLoop->addrOpenEphm[i] = -1;
2916       }
2917     }
2918     sqlite3KeyInfoUnref(pKeyInfo);
2919   }
2920 
2921 multi_select_end:
2922   pDest->iSdst = dest.iSdst;
2923   pDest->nSdst = dest.nSdst;
2924   sqlite3SelectDelete(db, pDelete);
2925   return rc;
2926 }
2927 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2928 
2929 /*
2930 ** Error message for when two or more terms of a compound select have different
2931 ** size result sets.
2932 */
2933 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2934   if( p->selFlags & SF_Values ){
2935     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2936   }else{
2937     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2938       " do not have the same number of result columns", selectOpName(p->op));
2939   }
2940 }
2941 
2942 /*
2943 ** Code an output subroutine for a coroutine implementation of a
2944 ** SELECT statment.
2945 **
2946 ** The data to be output is contained in pIn->iSdst.  There are
2947 ** pIn->nSdst columns to be output.  pDest is where the output should
2948 ** be sent.
2949 **
2950 ** regReturn is the number of the register holding the subroutine
2951 ** return address.
2952 **
2953 ** If regPrev>0 then it is the first register in a vector that
2954 ** records the previous output.  mem[regPrev] is a flag that is false
2955 ** if there has been no previous output.  If regPrev>0 then code is
2956 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2957 ** keys.
2958 **
2959 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2960 ** iBreak.
2961 */
2962 static int generateOutputSubroutine(
2963   Parse *pParse,          /* Parsing context */
2964   Select *p,              /* The SELECT statement */
2965   SelectDest *pIn,        /* Coroutine supplying data */
2966   SelectDest *pDest,      /* Where to send the data */
2967   int regReturn,          /* The return address register */
2968   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2969   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2970   int iBreak              /* Jump here if we hit the LIMIT */
2971 ){
2972   Vdbe *v = pParse->pVdbe;
2973   int iContinue;
2974   int addr;
2975 
2976   addr = sqlite3VdbeCurrentAddr(v);
2977   iContinue = sqlite3VdbeMakeLabel(pParse);
2978 
2979   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2980   */
2981   if( regPrev ){
2982     int addr1, addr2;
2983     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2984     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2985                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2986     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2987     sqlite3VdbeJumpHere(v, addr1);
2988     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2989     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2990   }
2991   if( pParse->db->mallocFailed ) return 0;
2992 
2993   /* Suppress the first OFFSET entries if there is an OFFSET clause
2994   */
2995   codeOffset(v, p->iOffset, iContinue);
2996 
2997   assert( pDest->eDest!=SRT_Exists );
2998   assert( pDest->eDest!=SRT_Table );
2999   switch( pDest->eDest ){
3000     /* Store the result as data using a unique key.
3001     */
3002     case SRT_EphemTab: {
3003       int r1 = sqlite3GetTempReg(pParse);
3004       int r2 = sqlite3GetTempReg(pParse);
3005       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3006       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3007       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3008       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3009       sqlite3ReleaseTempReg(pParse, r2);
3010       sqlite3ReleaseTempReg(pParse, r1);
3011       break;
3012     }
3013 
3014 #ifndef SQLITE_OMIT_SUBQUERY
3015     /* If we are creating a set for an "expr IN (SELECT ...)".
3016     */
3017     case SRT_Set: {
3018       int r1;
3019       testcase( pIn->nSdst>1 );
3020       r1 = sqlite3GetTempReg(pParse);
3021       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3022           r1, pDest->zAffSdst, pIn->nSdst);
3023       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3024                            pIn->iSdst, pIn->nSdst);
3025       sqlite3ReleaseTempReg(pParse, r1);
3026       break;
3027     }
3028 
3029     /* If this is a scalar select that is part of an expression, then
3030     ** store the results in the appropriate memory cell and break out
3031     ** of the scan loop.  Note that the select might return multiple columns
3032     ** if it is the RHS of a row-value IN operator.
3033     */
3034     case SRT_Mem: {
3035       if( pParse->nErr==0 ){
3036         testcase( pIn->nSdst>1 );
3037         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3038       }
3039       /* The LIMIT clause will jump out of the loop for us */
3040       break;
3041     }
3042 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3043 
3044     /* The results are stored in a sequence of registers
3045     ** starting at pDest->iSdst.  Then the co-routine yields.
3046     */
3047     case SRT_Coroutine: {
3048       if( pDest->iSdst==0 ){
3049         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3050         pDest->nSdst = pIn->nSdst;
3051       }
3052       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3053       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3054       break;
3055     }
3056 
3057     /* If none of the above, then the result destination must be
3058     ** SRT_Output.  This routine is never called with any other
3059     ** destination other than the ones handled above or SRT_Output.
3060     **
3061     ** For SRT_Output, results are stored in a sequence of registers.
3062     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3063     ** return the next row of result.
3064     */
3065     default: {
3066       assert( pDest->eDest==SRT_Output );
3067       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3068       break;
3069     }
3070   }
3071 
3072   /* Jump to the end of the loop if the LIMIT is reached.
3073   */
3074   if( p->iLimit ){
3075     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3076   }
3077 
3078   /* Generate the subroutine return
3079   */
3080   sqlite3VdbeResolveLabel(v, iContinue);
3081   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3082 
3083   return addr;
3084 }
3085 
3086 /*
3087 ** Alternative compound select code generator for cases when there
3088 ** is an ORDER BY clause.
3089 **
3090 ** We assume a query of the following form:
3091 **
3092 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3093 **
3094 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3095 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3096 ** co-routines.  Then run the co-routines in parallel and merge the results
3097 ** into the output.  In addition to the two coroutines (called selectA and
3098 ** selectB) there are 7 subroutines:
3099 **
3100 **    outA:    Move the output of the selectA coroutine into the output
3101 **             of the compound query.
3102 **
3103 **    outB:    Move the output of the selectB coroutine into the output
3104 **             of the compound query.  (Only generated for UNION and
3105 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3106 **             appears only in B.)
3107 **
3108 **    AltB:    Called when there is data from both coroutines and A<B.
3109 **
3110 **    AeqB:    Called when there is data from both coroutines and A==B.
3111 **
3112 **    AgtB:    Called when there is data from both coroutines and A>B.
3113 **
3114 **    EofA:    Called when data is exhausted from selectA.
3115 **
3116 **    EofB:    Called when data is exhausted from selectB.
3117 **
3118 ** The implementation of the latter five subroutines depend on which
3119 ** <operator> is used:
3120 **
3121 **
3122 **             UNION ALL         UNION            EXCEPT          INTERSECT
3123 **          -------------  -----------------  --------------  -----------------
3124 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3125 **
3126 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3127 **
3128 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3129 **
3130 **   EofA:   outB, nextB      outB, nextB          halt             halt
3131 **
3132 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3133 **
3134 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3135 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3136 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3137 ** following nextX causes a jump to the end of the select processing.
3138 **
3139 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3140 ** within the output subroutine.  The regPrev register set holds the previously
3141 ** output value.  A comparison is made against this value and the output
3142 ** is skipped if the next results would be the same as the previous.
3143 **
3144 ** The implementation plan is to implement the two coroutines and seven
3145 ** subroutines first, then put the control logic at the bottom.  Like this:
3146 **
3147 **          goto Init
3148 **     coA: coroutine for left query (A)
3149 **     coB: coroutine for right query (B)
3150 **    outA: output one row of A
3151 **    outB: output one row of B (UNION and UNION ALL only)
3152 **    EofA: ...
3153 **    EofB: ...
3154 **    AltB: ...
3155 **    AeqB: ...
3156 **    AgtB: ...
3157 **    Init: initialize coroutine registers
3158 **          yield coA
3159 **          if eof(A) goto EofA
3160 **          yield coB
3161 **          if eof(B) goto EofB
3162 **    Cmpr: Compare A, B
3163 **          Jump AltB, AeqB, AgtB
3164 **     End: ...
3165 **
3166 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3167 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3168 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3169 ** and AgtB jump to either L2 or to one of EofA or EofB.
3170 */
3171 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3172 static int multiSelectOrderBy(
3173   Parse *pParse,        /* Parsing context */
3174   Select *p,            /* The right-most of SELECTs to be coded */
3175   SelectDest *pDest     /* What to do with query results */
3176 ){
3177   int i, j;             /* Loop counters */
3178   Select *pPrior;       /* Another SELECT immediately to our left */
3179   Vdbe *v;              /* Generate code to this VDBE */
3180   SelectDest destA;     /* Destination for coroutine A */
3181   SelectDest destB;     /* Destination for coroutine B */
3182   int regAddrA;         /* Address register for select-A coroutine */
3183   int regAddrB;         /* Address register for select-B coroutine */
3184   int addrSelectA;      /* Address of the select-A coroutine */
3185   int addrSelectB;      /* Address of the select-B coroutine */
3186   int regOutA;          /* Address register for the output-A subroutine */
3187   int regOutB;          /* Address register for the output-B subroutine */
3188   int addrOutA;         /* Address of the output-A subroutine */
3189   int addrOutB = 0;     /* Address of the output-B subroutine */
3190   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3191   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3192   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3193   int addrAltB;         /* Address of the A<B subroutine */
3194   int addrAeqB;         /* Address of the A==B subroutine */
3195   int addrAgtB;         /* Address of the A>B subroutine */
3196   int regLimitA;        /* Limit register for select-A */
3197   int regLimitB;        /* Limit register for select-A */
3198   int regPrev;          /* A range of registers to hold previous output */
3199   int savedLimit;       /* Saved value of p->iLimit */
3200   int savedOffset;      /* Saved value of p->iOffset */
3201   int labelCmpr;        /* Label for the start of the merge algorithm */
3202   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3203   int addr1;            /* Jump instructions that get retargetted */
3204   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3205   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3206   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3207   sqlite3 *db;          /* Database connection */
3208   ExprList *pOrderBy;   /* The ORDER BY clause */
3209   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3210   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3211 
3212   assert( p->pOrderBy!=0 );
3213   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3214   db = pParse->db;
3215   v = pParse->pVdbe;
3216   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3217   labelEnd = sqlite3VdbeMakeLabel(pParse);
3218   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3219 
3220 
3221   /* Patch up the ORDER BY clause
3222   */
3223   op = p->op;
3224   pPrior = p->pPrior;
3225   assert( pPrior->pOrderBy==0 );
3226   pOrderBy = p->pOrderBy;
3227   assert( pOrderBy );
3228   nOrderBy = pOrderBy->nExpr;
3229 
3230   /* For operators other than UNION ALL we have to make sure that
3231   ** the ORDER BY clause covers every term of the result set.  Add
3232   ** terms to the ORDER BY clause as necessary.
3233   */
3234   if( op!=TK_ALL ){
3235     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3236       struct ExprList_item *pItem;
3237       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3238         assert( pItem->u.x.iOrderByCol>0 );
3239         if( pItem->u.x.iOrderByCol==i ) break;
3240       }
3241       if( j==nOrderBy ){
3242         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3243         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3244         pNew->flags |= EP_IntValue;
3245         pNew->u.iValue = i;
3246         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3247         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3248       }
3249     }
3250   }
3251 
3252   /* Compute the comparison permutation and keyinfo that is used with
3253   ** the permutation used to determine if the next
3254   ** row of results comes from selectA or selectB.  Also add explicit
3255   ** collations to the ORDER BY clause terms so that when the subqueries
3256   ** to the right and the left are evaluated, they use the correct
3257   ** collation.
3258   */
3259   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3260   if( aPermute ){
3261     struct ExprList_item *pItem;
3262     aPermute[0] = nOrderBy;
3263     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3264       assert( pItem->u.x.iOrderByCol>0 );
3265       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3266       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3267     }
3268     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3269   }else{
3270     pKeyMerge = 0;
3271   }
3272 
3273   /* Reattach the ORDER BY clause to the query.
3274   */
3275   p->pOrderBy = pOrderBy;
3276   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3277 
3278   /* Allocate a range of temporary registers and the KeyInfo needed
3279   ** for the logic that removes duplicate result rows when the
3280   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3281   */
3282   if( op==TK_ALL ){
3283     regPrev = 0;
3284   }else{
3285     int nExpr = p->pEList->nExpr;
3286     assert( nOrderBy>=nExpr || db->mallocFailed );
3287     regPrev = pParse->nMem+1;
3288     pParse->nMem += nExpr+1;
3289     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3290     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3291     if( pKeyDup ){
3292       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3293       for(i=0; i<nExpr; i++){
3294         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3295         pKeyDup->aSortFlags[i] = 0;
3296       }
3297     }
3298   }
3299 
3300   /* Separate the left and the right query from one another
3301   */
3302   p->pPrior = 0;
3303   pPrior->pNext = 0;
3304   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3305   if( pPrior->pPrior==0 ){
3306     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3307   }
3308 
3309   /* Compute the limit registers */
3310   computeLimitRegisters(pParse, p, labelEnd);
3311   if( p->iLimit && op==TK_ALL ){
3312     regLimitA = ++pParse->nMem;
3313     regLimitB = ++pParse->nMem;
3314     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3315                                   regLimitA);
3316     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3317   }else{
3318     regLimitA = regLimitB = 0;
3319   }
3320   sqlite3ExprDelete(db, p->pLimit);
3321   p->pLimit = 0;
3322 
3323   regAddrA = ++pParse->nMem;
3324   regAddrB = ++pParse->nMem;
3325   regOutA = ++pParse->nMem;
3326   regOutB = ++pParse->nMem;
3327   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3328   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3329 
3330   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3331 
3332   /* Generate a coroutine to evaluate the SELECT statement to the
3333   ** left of the compound operator - the "A" select.
3334   */
3335   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3336   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3337   VdbeComment((v, "left SELECT"));
3338   pPrior->iLimit = regLimitA;
3339   ExplainQueryPlan((pParse, 1, "LEFT"));
3340   sqlite3Select(pParse, pPrior, &destA);
3341   sqlite3VdbeEndCoroutine(v, regAddrA);
3342   sqlite3VdbeJumpHere(v, addr1);
3343 
3344   /* Generate a coroutine to evaluate the SELECT statement on
3345   ** the right - the "B" select
3346   */
3347   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3348   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3349   VdbeComment((v, "right SELECT"));
3350   savedLimit = p->iLimit;
3351   savedOffset = p->iOffset;
3352   p->iLimit = regLimitB;
3353   p->iOffset = 0;
3354   ExplainQueryPlan((pParse, 1, "RIGHT"));
3355   sqlite3Select(pParse, p, &destB);
3356   p->iLimit = savedLimit;
3357   p->iOffset = savedOffset;
3358   sqlite3VdbeEndCoroutine(v, regAddrB);
3359 
3360   /* Generate a subroutine that outputs the current row of the A
3361   ** select as the next output row of the compound select.
3362   */
3363   VdbeNoopComment((v, "Output routine for A"));
3364   addrOutA = generateOutputSubroutine(pParse,
3365                  p, &destA, pDest, regOutA,
3366                  regPrev, pKeyDup, labelEnd);
3367 
3368   /* Generate a subroutine that outputs the current row of the B
3369   ** select as the next output row of the compound select.
3370   */
3371   if( op==TK_ALL || op==TK_UNION ){
3372     VdbeNoopComment((v, "Output routine for B"));
3373     addrOutB = generateOutputSubroutine(pParse,
3374                  p, &destB, pDest, regOutB,
3375                  regPrev, pKeyDup, labelEnd);
3376   }
3377   sqlite3KeyInfoUnref(pKeyDup);
3378 
3379   /* Generate a subroutine to run when the results from select A
3380   ** are exhausted and only data in select B remains.
3381   */
3382   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3383     addrEofA_noB = addrEofA = labelEnd;
3384   }else{
3385     VdbeNoopComment((v, "eof-A subroutine"));
3386     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3387     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3388                                      VdbeCoverage(v);
3389     sqlite3VdbeGoto(v, addrEofA);
3390     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3391   }
3392 
3393   /* Generate a subroutine to run when the results from select B
3394   ** are exhausted and only data in select A remains.
3395   */
3396   if( op==TK_INTERSECT ){
3397     addrEofB = addrEofA;
3398     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3399   }else{
3400     VdbeNoopComment((v, "eof-B subroutine"));
3401     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3402     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3403     sqlite3VdbeGoto(v, addrEofB);
3404   }
3405 
3406   /* Generate code to handle the case of A<B
3407   */
3408   VdbeNoopComment((v, "A-lt-B subroutine"));
3409   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3410   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3411   sqlite3VdbeGoto(v, labelCmpr);
3412 
3413   /* Generate code to handle the case of A==B
3414   */
3415   if( op==TK_ALL ){
3416     addrAeqB = addrAltB;
3417   }else if( op==TK_INTERSECT ){
3418     addrAeqB = addrAltB;
3419     addrAltB++;
3420   }else{
3421     VdbeNoopComment((v, "A-eq-B subroutine"));
3422     addrAeqB =
3423     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3424     sqlite3VdbeGoto(v, labelCmpr);
3425   }
3426 
3427   /* Generate code to handle the case of A>B
3428   */
3429   VdbeNoopComment((v, "A-gt-B subroutine"));
3430   addrAgtB = sqlite3VdbeCurrentAddr(v);
3431   if( op==TK_ALL || op==TK_UNION ){
3432     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3433   }
3434   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3435   sqlite3VdbeGoto(v, labelCmpr);
3436 
3437   /* This code runs once to initialize everything.
3438   */
3439   sqlite3VdbeJumpHere(v, addr1);
3440   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3441   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3442 
3443   /* Implement the main merge loop
3444   */
3445   sqlite3VdbeResolveLabel(v, labelCmpr);
3446   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3447   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3448                          (char*)pKeyMerge, P4_KEYINFO);
3449   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3450   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3451 
3452   /* Jump to the this point in order to terminate the query.
3453   */
3454   sqlite3VdbeResolveLabel(v, labelEnd);
3455 
3456   /* Reassembly the compound query so that it will be freed correctly
3457   ** by the calling function */
3458   if( p->pPrior ){
3459     sqlite3SelectDelete(db, p->pPrior);
3460   }
3461   p->pPrior = pPrior;
3462   pPrior->pNext = p;
3463 
3464   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3465   **** subqueries ****/
3466   ExplainQueryPlanPop(pParse);
3467   return pParse->nErr!=0;
3468 }
3469 #endif
3470 
3471 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3472 
3473 /* An instance of the SubstContext object describes an substitution edit
3474 ** to be performed on a parse tree.
3475 **
3476 ** All references to columns in table iTable are to be replaced by corresponding
3477 ** expressions in pEList.
3478 */
3479 typedef struct SubstContext {
3480   Parse *pParse;            /* The parsing context */
3481   int iTable;               /* Replace references to this table */
3482   int iNewTable;            /* New table number */
3483   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3484   ExprList *pEList;         /* Replacement expressions */
3485 } SubstContext;
3486 
3487 /* Forward Declarations */
3488 static void substExprList(SubstContext*, ExprList*);
3489 static void substSelect(SubstContext*, Select*, int);
3490 
3491 /*
3492 ** Scan through the expression pExpr.  Replace every reference to
3493 ** a column in table number iTable with a copy of the iColumn-th
3494 ** entry in pEList.  (But leave references to the ROWID column
3495 ** unchanged.)
3496 **
3497 ** This routine is part of the flattening procedure.  A subquery
3498 ** whose result set is defined by pEList appears as entry in the
3499 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3500 ** FORM clause entry is iTable.  This routine makes the necessary
3501 ** changes to pExpr so that it refers directly to the source table
3502 ** of the subquery rather the result set of the subquery.
3503 */
3504 static Expr *substExpr(
3505   SubstContext *pSubst,  /* Description of the substitution */
3506   Expr *pExpr            /* Expr in which substitution occurs */
3507 ){
3508   if( pExpr==0 ) return 0;
3509   if( ExprHasProperty(pExpr, EP_FromJoin)
3510    && pExpr->iRightJoinTable==pSubst->iTable
3511   ){
3512     pExpr->iRightJoinTable = pSubst->iNewTable;
3513   }
3514   if( pExpr->op==TK_COLUMN
3515    && pExpr->iTable==pSubst->iTable
3516    && !ExprHasProperty(pExpr, EP_FixedCol)
3517   ){
3518     if( pExpr->iColumn<0 ){
3519       pExpr->op = TK_NULL;
3520     }else{
3521       Expr *pNew;
3522       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3523       Expr ifNullRow;
3524       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3525       assert( pExpr->pRight==0 );
3526       if( sqlite3ExprIsVector(pCopy) ){
3527         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3528       }else{
3529         sqlite3 *db = pSubst->pParse->db;
3530         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3531           memset(&ifNullRow, 0, sizeof(ifNullRow));
3532           ifNullRow.op = TK_IF_NULL_ROW;
3533           ifNullRow.pLeft = pCopy;
3534           ifNullRow.iTable = pSubst->iNewTable;
3535           ifNullRow.flags = EP_IfNullRow;
3536           pCopy = &ifNullRow;
3537         }
3538         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3539         pNew = sqlite3ExprDup(db, pCopy, 0);
3540         if( pNew && pSubst->isLeftJoin ){
3541           ExprSetProperty(pNew, EP_CanBeNull);
3542         }
3543         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3544           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3545         }
3546         sqlite3ExprDelete(db, pExpr);
3547         pExpr = pNew;
3548 
3549         /* Ensure that the expression now has an implicit collation sequence,
3550         ** just as it did when it was a column of a view or sub-query. */
3551         if( pExpr ){
3552           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3553             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3554             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3555                 (pColl ? pColl->zName : "BINARY")
3556             );
3557           }
3558           ExprClearProperty(pExpr, EP_Collate);
3559         }
3560       }
3561     }
3562   }else{
3563     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3564       pExpr->iTable = pSubst->iNewTable;
3565     }
3566     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3567     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3568     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3569       substSelect(pSubst, pExpr->x.pSelect, 1);
3570     }else{
3571       substExprList(pSubst, pExpr->x.pList);
3572     }
3573 #ifndef SQLITE_OMIT_WINDOWFUNC
3574     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3575       Window *pWin = pExpr->y.pWin;
3576       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3577       substExprList(pSubst, pWin->pPartition);
3578       substExprList(pSubst, pWin->pOrderBy);
3579     }
3580 #endif
3581   }
3582   return pExpr;
3583 }
3584 static void substExprList(
3585   SubstContext *pSubst, /* Description of the substitution */
3586   ExprList *pList       /* List to scan and in which to make substitutes */
3587 ){
3588   int i;
3589   if( pList==0 ) return;
3590   for(i=0; i<pList->nExpr; i++){
3591     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3592   }
3593 }
3594 static void substSelect(
3595   SubstContext *pSubst, /* Description of the substitution */
3596   Select *p,            /* SELECT statement in which to make substitutions */
3597   int doPrior           /* Do substitutes on p->pPrior too */
3598 ){
3599   SrcList *pSrc;
3600   struct SrcList_item *pItem;
3601   int i;
3602   if( !p ) return;
3603   do{
3604     substExprList(pSubst, p->pEList);
3605     substExprList(pSubst, p->pGroupBy);
3606     substExprList(pSubst, p->pOrderBy);
3607     p->pHaving = substExpr(pSubst, p->pHaving);
3608     p->pWhere = substExpr(pSubst, p->pWhere);
3609     pSrc = p->pSrc;
3610     assert( pSrc!=0 );
3611     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3612       substSelect(pSubst, pItem->pSelect, 1);
3613       if( pItem->fg.isTabFunc ){
3614         substExprList(pSubst, pItem->u1.pFuncArg);
3615       }
3616     }
3617   }while( doPrior && (p = p->pPrior)!=0 );
3618 }
3619 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3620 
3621 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3622 /*
3623 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3624 ** clause of that SELECT.
3625 **
3626 ** This routine scans the entire SELECT statement and recomputes the
3627 ** pSrcItem->colUsed mask.
3628 */
3629 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3630   struct SrcList_item *pItem;
3631   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3632   pItem = pWalker->u.pSrcItem;
3633   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3634   if( pExpr->iColumn<0 ) return WRC_Continue;
3635   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3636   return WRC_Continue;
3637 }
3638 static void recomputeColumnsUsed(
3639   Select *pSelect,                 /* The complete SELECT statement */
3640   struct SrcList_item *pSrcItem    /* Which FROM clause item to recompute */
3641 ){
3642   Walker w;
3643   if( NEVER(pSrcItem->pTab==0) ) return;
3644   memset(&w, 0, sizeof(w));
3645   w.xExprCallback = recomputeColumnsUsedExpr;
3646   w.xSelectCallback = sqlite3SelectWalkNoop;
3647   w.u.pSrcItem = pSrcItem;
3648   pSrcItem->colUsed = 0;
3649   sqlite3WalkSelect(&w, pSelect);
3650 }
3651 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3652 
3653 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3654 /*
3655 ** This routine attempts to flatten subqueries as a performance optimization.
3656 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3657 **
3658 ** To understand the concept of flattening, consider the following
3659 ** query:
3660 **
3661 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3662 **
3663 ** The default way of implementing this query is to execute the
3664 ** subquery first and store the results in a temporary table, then
3665 ** run the outer query on that temporary table.  This requires two
3666 ** passes over the data.  Furthermore, because the temporary table
3667 ** has no indices, the WHERE clause on the outer query cannot be
3668 ** optimized.
3669 **
3670 ** This routine attempts to rewrite queries such as the above into
3671 ** a single flat select, like this:
3672 **
3673 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3674 **
3675 ** The code generated for this simplification gives the same result
3676 ** but only has to scan the data once.  And because indices might
3677 ** exist on the table t1, a complete scan of the data might be
3678 ** avoided.
3679 **
3680 ** Flattening is subject to the following constraints:
3681 **
3682 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3683 **        The subquery and the outer query cannot both be aggregates.
3684 **
3685 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3686 **        (2) If the subquery is an aggregate then
3687 **        (2a) the outer query must not be a join and
3688 **        (2b) the outer query must not use subqueries
3689 **             other than the one FROM-clause subquery that is a candidate
3690 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3691 **             from 2015-02-09.)
3692 **
3693 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3694 **        (3a) the subquery may not be a join and
3695 **        (3b) the FROM clause of the subquery may not contain a virtual
3696 **             table and
3697 **        (3c) the outer query may not be an aggregate.
3698 **        (3d) the outer query may not be DISTINCT.
3699 **
3700 **   (4)  The subquery can not be DISTINCT.
3701 **
3702 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3703 **        sub-queries that were excluded from this optimization. Restriction
3704 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3705 **
3706 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3707 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3708 **
3709 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3710 **        A FROM clause, consider adding a FROM clause with the special
3711 **        table sqlite_once that consists of a single row containing a
3712 **        single NULL.
3713 **
3714 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3715 **
3716 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3717 **
3718 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3719 **        accidently carried the comment forward until 2014-09-15.  Original
3720 **        constraint: "If the subquery is aggregate then the outer query
3721 **        may not use LIMIT."
3722 **
3723 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3724 **
3725 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3726 **        a separate restriction deriving from ticket #350.
3727 **
3728 **  (13)  The subquery and outer query may not both use LIMIT.
3729 **
3730 **  (14)  The subquery may not use OFFSET.
3731 **
3732 **  (15)  If the outer query is part of a compound select, then the
3733 **        subquery may not use LIMIT.
3734 **        (See ticket #2339 and ticket [02a8e81d44]).
3735 **
3736 **  (16)  If the outer query is aggregate, then the subquery may not
3737 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3738 **        until we introduced the group_concat() function.
3739 **
3740 **  (17)  If the subquery is a compound select, then
3741 **        (17a) all compound operators must be a UNION ALL, and
3742 **        (17b) no terms within the subquery compound may be aggregate
3743 **              or DISTINCT, and
3744 **        (17c) every term within the subquery compound must have a FROM clause
3745 **        (17d) the outer query may not be
3746 **              (17d1) aggregate, or
3747 **              (17d2) DISTINCT, or
3748 **              (17d3) a join.
3749 **        (17e) the subquery may not contain window functions
3750 **
3751 **        The parent and sub-query may contain WHERE clauses. Subject to
3752 **        rules (11), (13) and (14), they may also contain ORDER BY,
3753 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3754 **        operator other than UNION ALL because all the other compound
3755 **        operators have an implied DISTINCT which is disallowed by
3756 **        restriction (4).
3757 **
3758 **        Also, each component of the sub-query must return the same number
3759 **        of result columns. This is actually a requirement for any compound
3760 **        SELECT statement, but all the code here does is make sure that no
3761 **        such (illegal) sub-query is flattened. The caller will detect the
3762 **        syntax error and return a detailed message.
3763 **
3764 **  (18)  If the sub-query is a compound select, then all terms of the
3765 **        ORDER BY clause of the parent must be simple references to
3766 **        columns of the sub-query.
3767 **
3768 **  (19)  If the subquery uses LIMIT then the outer query may not
3769 **        have a WHERE clause.
3770 **
3771 **  (20)  If the sub-query is a compound select, then it must not use
3772 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3773 **        somewhat by saying that the terms of the ORDER BY clause must
3774 **        appear as unmodified result columns in the outer query.  But we
3775 **        have other optimizations in mind to deal with that case.
3776 **
3777 **  (21)  If the subquery uses LIMIT then the outer query may not be
3778 **        DISTINCT.  (See ticket [752e1646fc]).
3779 **
3780 **  (22)  The subquery may not be a recursive CTE.
3781 **
3782 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3783 **        a recursive CTE, then the sub-query may not be a compound query.
3784 **        This restriction is because transforming the
3785 **        parent to a compound query confuses the code that handles
3786 **        recursive queries in multiSelect().
3787 **
3788 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3789 **        The subquery may not be an aggregate that uses the built-in min() or
3790 **        or max() functions.  (Without this restriction, a query like:
3791 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3792 **        return the value X for which Y was maximal.)
3793 **
3794 **  (25)  If either the subquery or the parent query contains a window
3795 **        function in the select list or ORDER BY clause, flattening
3796 **        is not attempted.
3797 **
3798 **
3799 ** In this routine, the "p" parameter is a pointer to the outer query.
3800 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3801 ** uses aggregates.
3802 **
3803 ** If flattening is not attempted, this routine is a no-op and returns 0.
3804 ** If flattening is attempted this routine returns 1.
3805 **
3806 ** All of the expression analysis must occur on both the outer query and
3807 ** the subquery before this routine runs.
3808 */
3809 static int flattenSubquery(
3810   Parse *pParse,       /* Parsing context */
3811   Select *p,           /* The parent or outer SELECT statement */
3812   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3813   int isAgg            /* True if outer SELECT uses aggregate functions */
3814 ){
3815   const char *zSavedAuthContext = pParse->zAuthContext;
3816   Select *pParent;    /* Current UNION ALL term of the other query */
3817   Select *pSub;       /* The inner query or "subquery" */
3818   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3819   SrcList *pSrc;      /* The FROM clause of the outer query */
3820   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3821   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3822   int iNewParent = -1;/* Replacement table for iParent */
3823   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3824   int i;              /* Loop counter */
3825   Expr *pWhere;                    /* The WHERE clause */
3826   struct SrcList_item *pSubitem;   /* The subquery */
3827   sqlite3 *db = pParse->db;
3828   Walker w;                        /* Walker to persist agginfo data */
3829 
3830   /* Check to see if flattening is permitted.  Return 0 if not.
3831   */
3832   assert( p!=0 );
3833   assert( p->pPrior==0 );
3834   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3835   pSrc = p->pSrc;
3836   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3837   pSubitem = &pSrc->a[iFrom];
3838   iParent = pSubitem->iCursor;
3839   pSub = pSubitem->pSelect;
3840   assert( pSub!=0 );
3841 
3842 #ifndef SQLITE_OMIT_WINDOWFUNC
3843   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3844 #endif
3845 
3846   pSubSrc = pSub->pSrc;
3847   assert( pSubSrc );
3848   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3849   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3850   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3851   ** became arbitrary expressions, we were forced to add restrictions (13)
3852   ** and (14). */
3853   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3854   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3855   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3856     return 0;                                            /* Restriction (15) */
3857   }
3858   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3859   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3860   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3861      return 0;         /* Restrictions (8)(9) */
3862   }
3863   if( p->pOrderBy && pSub->pOrderBy ){
3864      return 0;                                           /* Restriction (11) */
3865   }
3866   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3867   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3868   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3869      return 0;         /* Restriction (21) */
3870   }
3871   if( pSub->selFlags & (SF_Recursive) ){
3872     return 0; /* Restrictions (22) */
3873   }
3874 
3875   /*
3876   ** If the subquery is the right operand of a LEFT JOIN, then the
3877   ** subquery may not be a join itself (3a). Example of why this is not
3878   ** allowed:
3879   **
3880   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3881   **
3882   ** If we flatten the above, we would get
3883   **
3884   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3885   **
3886   ** which is not at all the same thing.
3887   **
3888   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3889   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3890   ** aggregates are processed - there is no mechanism to determine if
3891   ** the LEFT JOIN table should be all-NULL.
3892   **
3893   ** See also tickets #306, #350, and #3300.
3894   */
3895   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3896     isLeftJoin = 1;
3897     if( pSubSrc->nSrc>1                   /* (3a) */
3898      || isAgg                             /* (3b) */
3899      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3900      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3901     ){
3902       return 0;
3903     }
3904   }
3905 #ifdef SQLITE_EXTRA_IFNULLROW
3906   else if( iFrom>0 && !isAgg ){
3907     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3908     ** every reference to any result column from subquery in a join, even
3909     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3910     ** opcode. */
3911     isLeftJoin = -1;
3912   }
3913 #endif
3914 
3915   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3916   ** use only the UNION ALL operator. And none of the simple select queries
3917   ** that make up the compound SELECT are allowed to be aggregate or distinct
3918   ** queries.
3919   */
3920   if( pSub->pPrior ){
3921     if( pSub->pOrderBy ){
3922       return 0;  /* Restriction (20) */
3923     }
3924     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3925       return 0; /* (17d1), (17d2), or (17d3) */
3926     }
3927     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3928       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3929       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3930       assert( pSub->pSrc!=0 );
3931       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3932       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3933        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3934        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3935 #ifndef SQLITE_OMIT_WINDOWFUNC
3936        || pSub1->pWin                                          /* (17e) */
3937 #endif
3938       ){
3939         return 0;
3940       }
3941       testcase( pSub1->pSrc->nSrc>1 );
3942     }
3943 
3944     /* Restriction (18). */
3945     if( p->pOrderBy ){
3946       int ii;
3947       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3948         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3949       }
3950     }
3951   }
3952 
3953   /* Ex-restriction (23):
3954   ** The only way that the recursive part of a CTE can contain a compound
3955   ** subquery is for the subquery to be one term of a join.  But if the
3956   ** subquery is a join, then the flattening has already been stopped by
3957   ** restriction (17d3)
3958   */
3959   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3960 
3961   /***** If we reach this point, flattening is permitted. *****/
3962   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3963                    pSub->selId, pSub, iFrom));
3964 
3965   /* Authorize the subquery */
3966   pParse->zAuthContext = pSubitem->zName;
3967   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3968   testcase( i==SQLITE_DENY );
3969   pParse->zAuthContext = zSavedAuthContext;
3970 
3971   /* If the sub-query is a compound SELECT statement, then (by restrictions
3972   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3973   ** be of the form:
3974   **
3975   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3976   **
3977   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3978   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3979   ** OFFSET clauses and joins them to the left-hand-side of the original
3980   ** using UNION ALL operators. In this case N is the number of simple
3981   ** select statements in the compound sub-query.
3982   **
3983   ** Example:
3984   **
3985   **     SELECT a+1 FROM (
3986   **        SELECT x FROM tab
3987   **        UNION ALL
3988   **        SELECT y FROM tab
3989   **        UNION ALL
3990   **        SELECT abs(z*2) FROM tab2
3991   **     ) WHERE a!=5 ORDER BY 1
3992   **
3993   ** Transformed into:
3994   **
3995   **     SELECT x+1 FROM tab WHERE x+1!=5
3996   **     UNION ALL
3997   **     SELECT y+1 FROM tab WHERE y+1!=5
3998   **     UNION ALL
3999   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4000   **     ORDER BY 1
4001   **
4002   ** We call this the "compound-subquery flattening".
4003   */
4004   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4005     Select *pNew;
4006     ExprList *pOrderBy = p->pOrderBy;
4007     Expr *pLimit = p->pLimit;
4008     Select *pPrior = p->pPrior;
4009     p->pOrderBy = 0;
4010     p->pSrc = 0;
4011     p->pPrior = 0;
4012     p->pLimit = 0;
4013     pNew = sqlite3SelectDup(db, p, 0);
4014     p->pLimit = pLimit;
4015     p->pOrderBy = pOrderBy;
4016     p->pSrc = pSrc;
4017     p->op = TK_ALL;
4018     if( pNew==0 ){
4019       p->pPrior = pPrior;
4020     }else{
4021       pNew->pPrior = pPrior;
4022       if( pPrior ) pPrior->pNext = pNew;
4023       pNew->pNext = p;
4024       p->pPrior = pNew;
4025       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4026                               " creates %u as peer\n",pNew->selId));
4027     }
4028     if( db->mallocFailed ) return 1;
4029   }
4030 
4031   /* Begin flattening the iFrom-th entry of the FROM clause
4032   ** in the outer query.
4033   */
4034   pSub = pSub1 = pSubitem->pSelect;
4035 
4036   /* Delete the transient table structure associated with the
4037   ** subquery
4038   */
4039   sqlite3DbFree(db, pSubitem->zDatabase);
4040   sqlite3DbFree(db, pSubitem->zName);
4041   sqlite3DbFree(db, pSubitem->zAlias);
4042   pSubitem->zDatabase = 0;
4043   pSubitem->zName = 0;
4044   pSubitem->zAlias = 0;
4045   pSubitem->pSelect = 0;
4046 
4047   /* Defer deleting the Table object associated with the
4048   ** subquery until code generation is
4049   ** complete, since there may still exist Expr.pTab entries that
4050   ** refer to the subquery even after flattening.  Ticket #3346.
4051   **
4052   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4053   */
4054   if( ALWAYS(pSubitem->pTab!=0) ){
4055     Table *pTabToDel = pSubitem->pTab;
4056     if( pTabToDel->nTabRef==1 ){
4057       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4058       pTabToDel->pNextZombie = pToplevel->pZombieTab;
4059       pToplevel->pZombieTab = pTabToDel;
4060     }else{
4061       pTabToDel->nTabRef--;
4062     }
4063     pSubitem->pTab = 0;
4064   }
4065 
4066   /* The following loop runs once for each term in a compound-subquery
4067   ** flattening (as described above).  If we are doing a different kind
4068   ** of flattening - a flattening other than a compound-subquery flattening -
4069   ** then this loop only runs once.
4070   **
4071   ** This loop moves all of the FROM elements of the subquery into the
4072   ** the FROM clause of the outer query.  Before doing this, remember
4073   ** the cursor number for the original outer query FROM element in
4074   ** iParent.  The iParent cursor will never be used.  Subsequent code
4075   ** will scan expressions looking for iParent references and replace
4076   ** those references with expressions that resolve to the subquery FROM
4077   ** elements we are now copying in.
4078   */
4079   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4080     int nSubSrc;
4081     u8 jointype = 0;
4082     assert( pSub!=0 );
4083     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4084     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4085     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4086 
4087     if( pSrc ){
4088       assert( pParent==p );  /* First time through the loop */
4089       jointype = pSubitem->fg.jointype;
4090     }else{
4091       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4092       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4093       if( pSrc==0 ) break;
4094       pParent->pSrc = pSrc;
4095     }
4096 
4097     /* The subquery uses a single slot of the FROM clause of the outer
4098     ** query.  If the subquery has more than one element in its FROM clause,
4099     ** then expand the outer query to make space for it to hold all elements
4100     ** of the subquery.
4101     **
4102     ** Example:
4103     **
4104     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4105     **
4106     ** The outer query has 3 slots in its FROM clause.  One slot of the
4107     ** outer query (the middle slot) is used by the subquery.  The next
4108     ** block of code will expand the outer query FROM clause to 4 slots.
4109     ** The middle slot is expanded to two slots in order to make space
4110     ** for the two elements in the FROM clause of the subquery.
4111     */
4112     if( nSubSrc>1 ){
4113       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4114       if( pSrc==0 ) break;
4115       pParent->pSrc = pSrc;
4116     }
4117 
4118     /* Transfer the FROM clause terms from the subquery into the
4119     ** outer query.
4120     */
4121     for(i=0; i<nSubSrc; i++){
4122       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4123       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4124       pSrc->a[i+iFrom] = pSubSrc->a[i];
4125       iNewParent = pSubSrc->a[i].iCursor;
4126       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4127     }
4128     pSrc->a[iFrom].fg.jointype = jointype;
4129 
4130     /* Now begin substituting subquery result set expressions for
4131     ** references to the iParent in the outer query.
4132     **
4133     ** Example:
4134     **
4135     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4136     **   \                     \_____________ subquery __________/          /
4137     **    \_____________________ outer query ______________________________/
4138     **
4139     ** We look at every expression in the outer query and every place we see
4140     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4141     */
4142     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4143       /* At this point, any non-zero iOrderByCol values indicate that the
4144       ** ORDER BY column expression is identical to the iOrderByCol'th
4145       ** expression returned by SELECT statement pSub. Since these values
4146       ** do not necessarily correspond to columns in SELECT statement pParent,
4147       ** zero them before transfering the ORDER BY clause.
4148       **
4149       ** Not doing this may cause an error if a subsequent call to this
4150       ** function attempts to flatten a compound sub-query into pParent
4151       ** (the only way this can happen is if the compound sub-query is
4152       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4153       ExprList *pOrderBy = pSub->pOrderBy;
4154       for(i=0; i<pOrderBy->nExpr; i++){
4155         pOrderBy->a[i].u.x.iOrderByCol = 0;
4156       }
4157       assert( pParent->pOrderBy==0 );
4158       pParent->pOrderBy = pOrderBy;
4159       pSub->pOrderBy = 0;
4160     }
4161     pWhere = pSub->pWhere;
4162     pSub->pWhere = 0;
4163     if( isLeftJoin>0 ){
4164       sqlite3SetJoinExpr(pWhere, iNewParent);
4165     }
4166     if( pWhere ){
4167       if( pParent->pWhere ){
4168         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4169       }else{
4170         pParent->pWhere = pWhere;
4171       }
4172     }
4173     if( db->mallocFailed==0 ){
4174       SubstContext x;
4175       x.pParse = pParse;
4176       x.iTable = iParent;
4177       x.iNewTable = iNewParent;
4178       x.isLeftJoin = isLeftJoin;
4179       x.pEList = pSub->pEList;
4180       substSelect(&x, pParent, 0);
4181     }
4182 
4183     /* The flattened query is a compound if either the inner or the
4184     ** outer query is a compound. */
4185     pParent->selFlags |= pSub->selFlags & SF_Compound;
4186     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4187 
4188     /*
4189     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4190     **
4191     ** One is tempted to try to add a and b to combine the limits.  But this
4192     ** does not work if either limit is negative.
4193     */
4194     if( pSub->pLimit ){
4195       pParent->pLimit = pSub->pLimit;
4196       pSub->pLimit = 0;
4197     }
4198 
4199     /* Recompute the SrcList_item.colUsed masks for the flattened
4200     ** tables. */
4201     for(i=0; i<nSubSrc; i++){
4202       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4203     }
4204   }
4205 
4206   /* Finially, delete what is left of the subquery and return
4207   ** success.
4208   */
4209   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4210   sqlite3WalkSelect(&w,pSub1);
4211   sqlite3SelectDelete(db, pSub1);
4212 
4213 #if SELECTTRACE_ENABLED
4214   if( sqlite3_unsupported_selecttrace & 0x100 ){
4215     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4216     sqlite3TreeViewSelect(0, p, 0);
4217   }
4218 #endif
4219 
4220   return 1;
4221 }
4222 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4223 
4224 /*
4225 ** A structure to keep track of all of the column values that are fixed to
4226 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4227 */
4228 typedef struct WhereConst WhereConst;
4229 struct WhereConst {
4230   Parse *pParse;   /* Parsing context */
4231   int nConst;      /* Number for COLUMN=CONSTANT terms */
4232   int nChng;       /* Number of times a constant is propagated */
4233   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4234 };
4235 
4236 /*
4237 ** Add a new entry to the pConst object.  Except, do not add duplicate
4238 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4239 **
4240 ** The caller guarantees the pColumn is a column and pValue is a constant.
4241 ** This routine has to do some additional checks before completing the
4242 ** insert.
4243 */
4244 static void constInsert(
4245   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4246   Expr *pColumn,       /* The COLUMN part of the constraint */
4247   Expr *pValue,        /* The VALUE part of the constraint */
4248   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4249 ){
4250   int i;
4251   assert( pColumn->op==TK_COLUMN );
4252   assert( sqlite3ExprIsConstant(pValue) );
4253 
4254   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4255   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4256   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4257     return;
4258   }
4259 
4260   /* 2018-10-25 ticket [cf5ed20f]
4261   ** Make sure the same pColumn is not inserted more than once */
4262   for(i=0; i<pConst->nConst; i++){
4263     const Expr *pE2 = pConst->apExpr[i*2];
4264     assert( pE2->op==TK_COLUMN );
4265     if( pE2->iTable==pColumn->iTable
4266      && pE2->iColumn==pColumn->iColumn
4267     ){
4268       return;  /* Already present.  Return without doing anything. */
4269     }
4270   }
4271 
4272   pConst->nConst++;
4273   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4274                          pConst->nConst*2*sizeof(Expr*));
4275   if( pConst->apExpr==0 ){
4276     pConst->nConst = 0;
4277   }else{
4278     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4279     pConst->apExpr[pConst->nConst*2-1] = pValue;
4280   }
4281 }
4282 
4283 /*
4284 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4285 ** is a constant expression and where the term must be true because it
4286 ** is part of the AND-connected terms of the expression.  For each term
4287 ** found, add it to the pConst structure.
4288 */
4289 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4290   Expr *pRight, *pLeft;
4291   if( pExpr==0 ) return;
4292   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4293   if( pExpr->op==TK_AND ){
4294     findConstInWhere(pConst, pExpr->pRight);
4295     findConstInWhere(pConst, pExpr->pLeft);
4296     return;
4297   }
4298   if( pExpr->op!=TK_EQ ) return;
4299   pRight = pExpr->pRight;
4300   pLeft = pExpr->pLeft;
4301   assert( pRight!=0 );
4302   assert( pLeft!=0 );
4303   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4304     constInsert(pConst,pRight,pLeft,pExpr);
4305   }
4306   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4307     constInsert(pConst,pLeft,pRight,pExpr);
4308   }
4309 }
4310 
4311 /*
4312 ** This is a Walker expression callback.  pExpr is a candidate expression
4313 ** to be replaced by a value.  If pExpr is equivalent to one of the
4314 ** columns named in pWalker->u.pConst, then overwrite it with its
4315 ** corresponding value.
4316 */
4317 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4318   int i;
4319   WhereConst *pConst;
4320   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4321   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4322     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4323     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4324     return WRC_Continue;
4325   }
4326   pConst = pWalker->u.pConst;
4327   for(i=0; i<pConst->nConst; i++){
4328     Expr *pColumn = pConst->apExpr[i*2];
4329     if( pColumn==pExpr ) continue;
4330     if( pColumn->iTable!=pExpr->iTable ) continue;
4331     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4332     /* A match is found.  Add the EP_FixedCol property */
4333     pConst->nChng++;
4334     ExprClearProperty(pExpr, EP_Leaf);
4335     ExprSetProperty(pExpr, EP_FixedCol);
4336     assert( pExpr->pLeft==0 );
4337     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4338     break;
4339   }
4340   return WRC_Prune;
4341 }
4342 
4343 /*
4344 ** The WHERE-clause constant propagation optimization.
4345 **
4346 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4347 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4348 ** part of a ON clause from a LEFT JOIN, then throughout the query
4349 ** replace all other occurrences of COLUMN with CONSTANT.
4350 **
4351 ** For example, the query:
4352 **
4353 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4354 **
4355 ** Is transformed into
4356 **
4357 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4358 **
4359 ** Return true if any transformations where made and false if not.
4360 **
4361 ** Implementation note:  Constant propagation is tricky due to affinity
4362 ** and collating sequence interactions.  Consider this example:
4363 **
4364 **    CREATE TABLE t1(a INT,b TEXT);
4365 **    INSERT INTO t1 VALUES(123,'0123');
4366 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4367 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4368 **
4369 ** The two SELECT statements above should return different answers.  b=a
4370 ** is alway true because the comparison uses numeric affinity, but b=123
4371 ** is false because it uses text affinity and '0123' is not the same as '123'.
4372 ** To work around this, the expression tree is not actually changed from
4373 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4374 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4375 ** routines know to generate the constant "123" instead of looking up the
4376 ** column value.  Also, to avoid collation problems, this optimization is
4377 ** only attempted if the "a=123" term uses the default BINARY collation.
4378 */
4379 static int propagateConstants(
4380   Parse *pParse,   /* The parsing context */
4381   Select *p        /* The query in which to propagate constants */
4382 ){
4383   WhereConst x;
4384   Walker w;
4385   int nChng = 0;
4386   x.pParse = pParse;
4387   do{
4388     x.nConst = 0;
4389     x.nChng = 0;
4390     x.apExpr = 0;
4391     findConstInWhere(&x, p->pWhere);
4392     if( x.nConst ){
4393       memset(&w, 0, sizeof(w));
4394       w.pParse = pParse;
4395       w.xExprCallback = propagateConstantExprRewrite;
4396       w.xSelectCallback = sqlite3SelectWalkNoop;
4397       w.xSelectCallback2 = 0;
4398       w.walkerDepth = 0;
4399       w.u.pConst = &x;
4400       sqlite3WalkExpr(&w, p->pWhere);
4401       sqlite3DbFree(x.pParse->db, x.apExpr);
4402       nChng += x.nChng;
4403     }
4404   }while( x.nChng );
4405   return nChng;
4406 }
4407 
4408 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4409 /*
4410 ** Make copies of relevant WHERE clause terms of the outer query into
4411 ** the WHERE clause of subquery.  Example:
4412 **
4413 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4414 **
4415 ** Transformed into:
4416 **
4417 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4418 **     WHERE x=5 AND y=10;
4419 **
4420 ** The hope is that the terms added to the inner query will make it more
4421 ** efficient.
4422 **
4423 ** Do not attempt this optimization if:
4424 **
4425 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4426 **           disallow this optimization for aggregate subqueries, but now
4427 **           it is allowed by putting the extra terms on the HAVING clause.
4428 **           The added HAVING clause is pointless if the subquery lacks
4429 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4430 **           so there does not appear to be any reason to add extra logic
4431 **           to suppress it. **)
4432 **
4433 **   (2) The inner query is the recursive part of a common table expression.
4434 **
4435 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4436 **       clause would change the meaning of the LIMIT).
4437 **
4438 **   (4) The inner query is the right operand of a LEFT JOIN and the
4439 **       expression to be pushed down does not come from the ON clause
4440 **       on that LEFT JOIN.
4441 **
4442 **   (5) The WHERE clause expression originates in the ON or USING clause
4443 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4444 **       left join.  An example:
4445 **
4446 **           SELECT *
4447 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4448 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4449 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4450 **
4451 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4452 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4453 **       then the (1,1,NULL) row would be suppressed.
4454 **
4455 **   (6) The inner query features one or more window-functions (since
4456 **       changes to the WHERE clause of the inner query could change the
4457 **       window over which window functions are calculated).
4458 **
4459 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4460 ** terms are duplicated into the subquery.
4461 */
4462 static int pushDownWhereTerms(
4463   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4464   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4465   Expr *pWhere,         /* The WHERE clause of the outer query */
4466   int iCursor,          /* Cursor number of the subquery */
4467   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4468 ){
4469   Expr *pNew;
4470   int nChng = 0;
4471   Select *pSel;
4472   if( pWhere==0 ) return 0;
4473   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4474 
4475 #ifndef SQLITE_OMIT_WINDOWFUNC
4476   for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4477     if( pSel->pWin ) return 0;    /* restriction (6) */
4478   }
4479 #endif
4480 
4481 #ifdef SQLITE_DEBUG
4482   /* Only the first term of a compound can have a WITH clause.  But make
4483   ** sure no other terms are marked SF_Recursive in case something changes
4484   ** in the future.
4485   */
4486   {
4487     Select *pX;
4488     for(pX=pSubq; pX; pX=pX->pPrior){
4489       assert( (pX->selFlags & (SF_Recursive))==0 );
4490     }
4491   }
4492 #endif
4493 
4494   if( pSubq->pLimit!=0 ){
4495     return 0; /* restriction (3) */
4496   }
4497   while( pWhere->op==TK_AND ){
4498     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4499                                 iCursor, isLeftJoin);
4500     pWhere = pWhere->pLeft;
4501   }
4502   if( isLeftJoin
4503    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4504          || pWhere->iRightJoinTable!=iCursor)
4505   ){
4506     return 0; /* restriction (4) */
4507   }
4508   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4509     return 0; /* restriction (5) */
4510   }
4511   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4512     nChng++;
4513     while( pSubq ){
4514       SubstContext x;
4515       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4516       unsetJoinExpr(pNew, -1);
4517       x.pParse = pParse;
4518       x.iTable = iCursor;
4519       x.iNewTable = iCursor;
4520       x.isLeftJoin = 0;
4521       x.pEList = pSubq->pEList;
4522       pNew = substExpr(&x, pNew);
4523       if( pSubq->selFlags & SF_Aggregate ){
4524         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4525       }else{
4526         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4527       }
4528       pSubq = pSubq->pPrior;
4529     }
4530   }
4531   return nChng;
4532 }
4533 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4534 
4535 /*
4536 ** The pFunc is the only aggregate function in the query.  Check to see
4537 ** if the query is a candidate for the min/max optimization.
4538 **
4539 ** If the query is a candidate for the min/max optimization, then set
4540 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4541 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4542 ** whether pFunc is a min() or max() function.
4543 **
4544 ** If the query is not a candidate for the min/max optimization, return
4545 ** WHERE_ORDERBY_NORMAL (which must be zero).
4546 **
4547 ** This routine must be called after aggregate functions have been
4548 ** located but before their arguments have been subjected to aggregate
4549 ** analysis.
4550 */
4551 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4552   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4553   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4554   const char *zFunc;                    /* Name of aggregate function pFunc */
4555   ExprList *pOrderBy;
4556   u8 sortFlags = 0;
4557 
4558   assert( *ppMinMax==0 );
4559   assert( pFunc->op==TK_AGG_FUNCTION );
4560   assert( !IsWindowFunc(pFunc) );
4561   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4562     return eRet;
4563   }
4564   zFunc = pFunc->u.zToken;
4565   if( sqlite3StrICmp(zFunc, "min")==0 ){
4566     eRet = WHERE_ORDERBY_MIN;
4567     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4568       sortFlags = KEYINFO_ORDER_BIGNULL;
4569     }
4570   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4571     eRet = WHERE_ORDERBY_MAX;
4572     sortFlags = KEYINFO_ORDER_DESC;
4573   }else{
4574     return eRet;
4575   }
4576   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4577   assert( pOrderBy!=0 || db->mallocFailed );
4578   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4579   return eRet;
4580 }
4581 
4582 /*
4583 ** The select statement passed as the first argument is an aggregate query.
4584 ** The second argument is the associated aggregate-info object. This
4585 ** function tests if the SELECT is of the form:
4586 **
4587 **   SELECT count(*) FROM <tbl>
4588 **
4589 ** where table is a database table, not a sub-select or view. If the query
4590 ** does match this pattern, then a pointer to the Table object representing
4591 ** <tbl> is returned. Otherwise, 0 is returned.
4592 */
4593 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4594   Table *pTab;
4595   Expr *pExpr;
4596 
4597   assert( !p->pGroupBy );
4598 
4599   if( p->pWhere || p->pEList->nExpr!=1
4600    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4601   ){
4602     return 0;
4603   }
4604   pTab = p->pSrc->a[0].pTab;
4605   pExpr = p->pEList->a[0].pExpr;
4606   assert( pTab && !pTab->pSelect && pExpr );
4607 
4608   if( IsVirtual(pTab) ) return 0;
4609   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4610   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4611   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4612   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4613 
4614   return pTab;
4615 }
4616 
4617 /*
4618 ** If the source-list item passed as an argument was augmented with an
4619 ** INDEXED BY clause, then try to locate the specified index. If there
4620 ** was such a clause and the named index cannot be found, return
4621 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4622 ** pFrom->pIndex and return SQLITE_OK.
4623 */
4624 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4625   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4626     Table *pTab = pFrom->pTab;
4627     char *zIndexedBy = pFrom->u1.zIndexedBy;
4628     Index *pIdx;
4629     for(pIdx=pTab->pIndex;
4630         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4631         pIdx=pIdx->pNext
4632     );
4633     if( !pIdx ){
4634       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4635       pParse->checkSchema = 1;
4636       return SQLITE_ERROR;
4637     }
4638     pFrom->pIBIndex = pIdx;
4639   }
4640   return SQLITE_OK;
4641 }
4642 /*
4643 ** Detect compound SELECT statements that use an ORDER BY clause with
4644 ** an alternative collating sequence.
4645 **
4646 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4647 **
4648 ** These are rewritten as a subquery:
4649 **
4650 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4651 **     ORDER BY ... COLLATE ...
4652 **
4653 ** This transformation is necessary because the multiSelectOrderBy() routine
4654 ** above that generates the code for a compound SELECT with an ORDER BY clause
4655 ** uses a merge algorithm that requires the same collating sequence on the
4656 ** result columns as on the ORDER BY clause.  See ticket
4657 ** http://www.sqlite.org/src/info/6709574d2a
4658 **
4659 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4660 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4661 ** there are COLLATE terms in the ORDER BY.
4662 */
4663 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4664   int i;
4665   Select *pNew;
4666   Select *pX;
4667   sqlite3 *db;
4668   struct ExprList_item *a;
4669   SrcList *pNewSrc;
4670   Parse *pParse;
4671   Token dummy;
4672 
4673   if( p->pPrior==0 ) return WRC_Continue;
4674   if( p->pOrderBy==0 ) return WRC_Continue;
4675   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4676   if( pX==0 ) return WRC_Continue;
4677   a = p->pOrderBy->a;
4678 #ifndef SQLITE_OMIT_WINDOWFUNC
4679   /* If iOrderByCol is already non-zero, then it has already been matched
4680   ** to a result column of the SELECT statement. This occurs when the
4681   ** SELECT is rewritten for window-functions processing and then passed
4682   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4683   ** by this function is not required in this case. */
4684   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4685 #endif
4686   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4687     if( a[i].pExpr->flags & EP_Collate ) break;
4688   }
4689   if( i<0 ) return WRC_Continue;
4690 
4691   /* If we reach this point, that means the transformation is required. */
4692 
4693   pParse = pWalker->pParse;
4694   db = pParse->db;
4695   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4696   if( pNew==0 ) return WRC_Abort;
4697   memset(&dummy, 0, sizeof(dummy));
4698   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4699   if( pNewSrc==0 ) return WRC_Abort;
4700   *pNew = *p;
4701   p->pSrc = pNewSrc;
4702   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4703   p->op = TK_SELECT;
4704   p->pWhere = 0;
4705   pNew->pGroupBy = 0;
4706   pNew->pHaving = 0;
4707   pNew->pOrderBy = 0;
4708   p->pPrior = 0;
4709   p->pNext = 0;
4710   p->pWith = 0;
4711 #ifndef SQLITE_OMIT_WINDOWFUNC
4712   p->pWinDefn = 0;
4713 #endif
4714   p->selFlags &= ~SF_Compound;
4715   assert( (p->selFlags & SF_Converted)==0 );
4716   p->selFlags |= SF_Converted;
4717   assert( pNew->pPrior!=0 );
4718   pNew->pPrior->pNext = pNew;
4719   pNew->pLimit = 0;
4720   return WRC_Continue;
4721 }
4722 
4723 /*
4724 ** Check to see if the FROM clause term pFrom has table-valued function
4725 ** arguments.  If it does, leave an error message in pParse and return
4726 ** non-zero, since pFrom is not allowed to be a table-valued function.
4727 */
4728 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4729   if( pFrom->fg.isTabFunc ){
4730     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4731     return 1;
4732   }
4733   return 0;
4734 }
4735 
4736 #ifndef SQLITE_OMIT_CTE
4737 /*
4738 ** Argument pWith (which may be NULL) points to a linked list of nested
4739 ** WITH contexts, from inner to outermost. If the table identified by
4740 ** FROM clause element pItem is really a common-table-expression (CTE)
4741 ** then return a pointer to the CTE definition for that table. Otherwise
4742 ** return NULL.
4743 **
4744 ** If a non-NULL value is returned, set *ppContext to point to the With
4745 ** object that the returned CTE belongs to.
4746 */
4747 static struct Cte *searchWith(
4748   With *pWith,                    /* Current innermost WITH clause */
4749   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4750   With **ppContext                /* OUT: WITH clause return value belongs to */
4751 ){
4752   const char *zName;
4753   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4754     With *p;
4755     for(p=pWith; p; p=p->pOuter){
4756       int i;
4757       for(i=0; i<p->nCte; i++){
4758         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4759           *ppContext = p;
4760           return &p->a[i];
4761         }
4762       }
4763     }
4764   }
4765   return 0;
4766 }
4767 
4768 /* The code generator maintains a stack of active WITH clauses
4769 ** with the inner-most WITH clause being at the top of the stack.
4770 **
4771 ** This routine pushes the WITH clause passed as the second argument
4772 ** onto the top of the stack. If argument bFree is true, then this
4773 ** WITH clause will never be popped from the stack. In this case it
4774 ** should be freed along with the Parse object. In other cases, when
4775 ** bFree==0, the With object will be freed along with the SELECT
4776 ** statement with which it is associated.
4777 */
4778 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4779   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4780   if( pWith ){
4781     assert( pParse->pWith!=pWith );
4782     pWith->pOuter = pParse->pWith;
4783     pParse->pWith = pWith;
4784     if( bFree ) pParse->pWithToFree = pWith;
4785   }
4786 }
4787 
4788 /*
4789 ** This function checks if argument pFrom refers to a CTE declared by
4790 ** a WITH clause on the stack currently maintained by the parser. And,
4791 ** if currently processing a CTE expression, if it is a recursive
4792 ** reference to the current CTE.
4793 **
4794 ** If pFrom falls into either of the two categories above, pFrom->pTab
4795 ** and other fields are populated accordingly. The caller should check
4796 ** (pFrom->pTab!=0) to determine whether or not a successful match
4797 ** was found.
4798 **
4799 ** Whether or not a match is found, SQLITE_OK is returned if no error
4800 ** occurs. If an error does occur, an error message is stored in the
4801 ** parser and some error code other than SQLITE_OK returned.
4802 */
4803 static int withExpand(
4804   Walker *pWalker,
4805   struct SrcList_item *pFrom
4806 ){
4807   Parse *pParse = pWalker->pParse;
4808   sqlite3 *db = pParse->db;
4809   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4810   With *pWith;                    /* WITH clause that pCte belongs to */
4811 
4812   assert( pFrom->pTab==0 );
4813   if( pParse->nErr ){
4814     return SQLITE_ERROR;
4815   }
4816 
4817   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4818   if( pCte ){
4819     Table *pTab;
4820     ExprList *pEList;
4821     Select *pSel;
4822     Select *pLeft;                /* Left-most SELECT statement */
4823     Select *pRecTerm;             /* Left-most recursive term */
4824     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4825     With *pSavedWith;             /* Initial value of pParse->pWith */
4826     int iRecTab = -1;             /* Cursor for recursive table */
4827 
4828     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4829     ** recursive reference to CTE pCte. Leave an error in pParse and return
4830     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4831     ** In this case, proceed.  */
4832     if( pCte->zCteErr ){
4833       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4834       return SQLITE_ERROR;
4835     }
4836     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4837 
4838     assert( pFrom->pTab==0 );
4839     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4840     if( pTab==0 ) return WRC_Abort;
4841     pTab->nTabRef = 1;
4842     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4843     pTab->iPKey = -1;
4844     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4845     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4846     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4847     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4848     assert( pFrom->pSelect );
4849 
4850     /* Check if this is a recursive CTE. */
4851     pRecTerm = pSel = pFrom->pSelect;
4852     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4853     while( bMayRecursive && pRecTerm->op==pSel->op ){
4854       int i;
4855       SrcList *pSrc = pRecTerm->pSrc;
4856       assert( pRecTerm->pPrior!=0 );
4857       for(i=0; i<pSrc->nSrc; i++){
4858         struct SrcList_item *pItem = &pSrc->a[i];
4859         if( pItem->zDatabase==0
4860          && pItem->zName!=0
4861          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4862         ){
4863           pItem->pTab = pTab;
4864           pTab->nTabRef++;
4865           pItem->fg.isRecursive = 1;
4866           if( pRecTerm->selFlags & SF_Recursive ){
4867             sqlite3ErrorMsg(pParse,
4868                "multiple references to recursive table: %s", pCte->zName
4869             );
4870             return SQLITE_ERROR;
4871           }
4872           pRecTerm->selFlags |= SF_Recursive;
4873           if( iRecTab<0 ) iRecTab = pParse->nTab++;
4874           pItem->iCursor = iRecTab;
4875         }
4876       }
4877       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
4878       pRecTerm = pRecTerm->pPrior;
4879     }
4880 
4881     pCte->zCteErr = "circular reference: %s";
4882     pSavedWith = pParse->pWith;
4883     pParse->pWith = pWith;
4884     if( pSel->selFlags & SF_Recursive ){
4885       assert( pRecTerm!=0 );
4886       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
4887       assert( pRecTerm->pNext!=0 );
4888       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
4889       assert( pRecTerm->pWith==0 );
4890       pRecTerm->pWith = pSel->pWith;
4891       sqlite3WalkSelect(pWalker, pRecTerm);
4892       pRecTerm->pWith = 0;
4893     }else{
4894       sqlite3WalkSelect(pWalker, pSel);
4895     }
4896     pParse->pWith = pWith;
4897 
4898     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4899     pEList = pLeft->pEList;
4900     if( pCte->pCols ){
4901       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4902         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4903             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4904         );
4905         pParse->pWith = pSavedWith;
4906         return SQLITE_ERROR;
4907       }
4908       pEList = pCte->pCols;
4909     }
4910 
4911     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4912     if( bMayRecursive ){
4913       if( pSel->selFlags & SF_Recursive ){
4914         pCte->zCteErr = "multiple recursive references: %s";
4915       }else{
4916         pCte->zCteErr = "recursive reference in a subquery: %s";
4917       }
4918       sqlite3WalkSelect(pWalker, pSel);
4919     }
4920     pCte->zCteErr = 0;
4921     pParse->pWith = pSavedWith;
4922   }
4923 
4924   return SQLITE_OK;
4925 }
4926 #endif
4927 
4928 #ifndef SQLITE_OMIT_CTE
4929 /*
4930 ** If the SELECT passed as the second argument has an associated WITH
4931 ** clause, pop it from the stack stored as part of the Parse object.
4932 **
4933 ** This function is used as the xSelectCallback2() callback by
4934 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4935 ** names and other FROM clause elements.
4936 */
4937 static void selectPopWith(Walker *pWalker, Select *p){
4938   Parse *pParse = pWalker->pParse;
4939   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4940     With *pWith = findRightmost(p)->pWith;
4941     if( pWith!=0 ){
4942       assert( pParse->pWith==pWith || pParse->nErr );
4943       pParse->pWith = pWith->pOuter;
4944     }
4945   }
4946 }
4947 #else
4948 #define selectPopWith 0
4949 #endif
4950 
4951 /*
4952 ** The SrcList_item structure passed as the second argument represents a
4953 ** sub-query in the FROM clause of a SELECT statement. This function
4954 ** allocates and populates the SrcList_item.pTab object. If successful,
4955 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4956 ** SQLITE_NOMEM.
4957 */
4958 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4959   Select *pSel = pFrom->pSelect;
4960   Table *pTab;
4961 
4962   assert( pSel );
4963   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4964   if( pTab==0 ) return SQLITE_NOMEM;
4965   pTab->nTabRef = 1;
4966   if( pFrom->zAlias ){
4967     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4968   }else{
4969     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4970   }
4971   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4972   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4973   pTab->iPKey = -1;
4974   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4975   pTab->tabFlags |= TF_Ephemeral;
4976 
4977   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4978 }
4979 
4980 /*
4981 ** This routine is a Walker callback for "expanding" a SELECT statement.
4982 ** "Expanding" means to do the following:
4983 **
4984 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4985 **         element of the FROM clause.
4986 **
4987 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4988 **         defines FROM clause.  When views appear in the FROM clause,
4989 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4990 **         that implements the view.  A copy is made of the view's SELECT
4991 **         statement so that we can freely modify or delete that statement
4992 **         without worrying about messing up the persistent representation
4993 **         of the view.
4994 **
4995 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4996 **         on joins and the ON and USING clause of joins.
4997 **
4998 **    (4)  Scan the list of columns in the result set (pEList) looking
4999 **         for instances of the "*" operator or the TABLE.* operator.
5000 **         If found, expand each "*" to be every column in every table
5001 **         and TABLE.* to be every column in TABLE.
5002 **
5003 */
5004 static int selectExpander(Walker *pWalker, Select *p){
5005   Parse *pParse = pWalker->pParse;
5006   int i, j, k;
5007   SrcList *pTabList;
5008   ExprList *pEList;
5009   struct SrcList_item *pFrom;
5010   sqlite3 *db = pParse->db;
5011   Expr *pE, *pRight, *pExpr;
5012   u16 selFlags = p->selFlags;
5013   u32 elistFlags = 0;
5014 
5015   p->selFlags |= SF_Expanded;
5016   if( db->mallocFailed  ){
5017     return WRC_Abort;
5018   }
5019   assert( p->pSrc!=0 );
5020   if( (selFlags & SF_Expanded)!=0 ){
5021     return WRC_Prune;
5022   }
5023   if( pWalker->eCode ){
5024     /* Renumber selId because it has been copied from a view */
5025     p->selId = ++pParse->nSelect;
5026   }
5027   pTabList = p->pSrc;
5028   pEList = p->pEList;
5029   sqlite3WithPush(pParse, p->pWith, 0);
5030 
5031   /* Make sure cursor numbers have been assigned to all entries in
5032   ** the FROM clause of the SELECT statement.
5033   */
5034   sqlite3SrcListAssignCursors(pParse, pTabList);
5035 
5036   /* Look up every table named in the FROM clause of the select.  If
5037   ** an entry of the FROM clause is a subquery instead of a table or view,
5038   ** then create a transient table structure to describe the subquery.
5039   */
5040   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5041     Table *pTab;
5042     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5043     if( pFrom->pTab ) continue;
5044     assert( pFrom->fg.isRecursive==0 );
5045 #ifndef SQLITE_OMIT_CTE
5046     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
5047     if( pFrom->pTab ) {} else
5048 #endif
5049     if( pFrom->zName==0 ){
5050 #ifndef SQLITE_OMIT_SUBQUERY
5051       Select *pSel = pFrom->pSelect;
5052       /* A sub-query in the FROM clause of a SELECT */
5053       assert( pSel!=0 );
5054       assert( pFrom->pTab==0 );
5055       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5056       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5057 #endif
5058     }else{
5059       /* An ordinary table or view name in the FROM clause */
5060       assert( pFrom->pTab==0 );
5061       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5062       if( pTab==0 ) return WRC_Abort;
5063       if( pTab->nTabRef>=0xffff ){
5064         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5065            pTab->zName);
5066         pFrom->pTab = 0;
5067         return WRC_Abort;
5068       }
5069       pTab->nTabRef++;
5070       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5071         return WRC_Abort;
5072       }
5073 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5074       if( IsVirtual(pTab) || pTab->pSelect ){
5075         i16 nCol;
5076         u8 eCodeOrig = pWalker->eCode;
5077         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5078         assert( pFrom->pSelect==0 );
5079         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5080           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5081             pTab->zName);
5082         }
5083 #ifndef SQLITE_OMIT_VIRTUALTABLE
5084         if( IsVirtual(pTab)
5085          && pFrom->fg.fromDDL
5086          && ALWAYS(pTab->pVTable!=0)
5087          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5088         ){
5089           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5090                                   pTab->zName);
5091         }
5092 #endif
5093         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5094         nCol = pTab->nCol;
5095         pTab->nCol = -1;
5096         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5097         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5098         pWalker->eCode = eCodeOrig;
5099         pTab->nCol = nCol;
5100       }
5101 #endif
5102     }
5103 
5104     /* Locate the index named by the INDEXED BY clause, if any. */
5105     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5106       return WRC_Abort;
5107     }
5108   }
5109 
5110   /* Process NATURAL keywords, and ON and USING clauses of joins.
5111   */
5112   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5113     return WRC_Abort;
5114   }
5115 
5116   /* For every "*" that occurs in the column list, insert the names of
5117   ** all columns in all tables.  And for every TABLE.* insert the names
5118   ** of all columns in TABLE.  The parser inserted a special expression
5119   ** with the TK_ASTERISK operator for each "*" that it found in the column
5120   ** list.  The following code just has to locate the TK_ASTERISK
5121   ** expressions and expand each one to the list of all columns in
5122   ** all tables.
5123   **
5124   ** The first loop just checks to see if there are any "*" operators
5125   ** that need expanding.
5126   */
5127   for(k=0; k<pEList->nExpr; k++){
5128     pE = pEList->a[k].pExpr;
5129     if( pE->op==TK_ASTERISK ) break;
5130     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5131     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5132     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5133     elistFlags |= pE->flags;
5134   }
5135   if( k<pEList->nExpr ){
5136     /*
5137     ** If we get here it means the result set contains one or more "*"
5138     ** operators that need to be expanded.  Loop through each expression
5139     ** in the result set and expand them one by one.
5140     */
5141     struct ExprList_item *a = pEList->a;
5142     ExprList *pNew = 0;
5143     int flags = pParse->db->flags;
5144     int longNames = (flags & SQLITE_FullColNames)!=0
5145                       && (flags & SQLITE_ShortColNames)==0;
5146 
5147     for(k=0; k<pEList->nExpr; k++){
5148       pE = a[k].pExpr;
5149       elistFlags |= pE->flags;
5150       pRight = pE->pRight;
5151       assert( pE->op!=TK_DOT || pRight!=0 );
5152       if( pE->op!=TK_ASTERISK
5153        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5154       ){
5155         /* This particular expression does not need to be expanded.
5156         */
5157         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5158         if( pNew ){
5159           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5160           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5161           a[k].zEName = 0;
5162         }
5163         a[k].pExpr = 0;
5164       }else{
5165         /* This expression is a "*" or a "TABLE.*" and needs to be
5166         ** expanded. */
5167         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5168         char *zTName = 0;       /* text of name of TABLE */
5169         if( pE->op==TK_DOT ){
5170           assert( pE->pLeft!=0 );
5171           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5172           zTName = pE->pLeft->u.zToken;
5173         }
5174         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5175           Table *pTab = pFrom->pTab;
5176           Select *pSub = pFrom->pSelect;
5177           char *zTabName = pFrom->zAlias;
5178           const char *zSchemaName = 0;
5179           int iDb;
5180           if( zTabName==0 ){
5181             zTabName = pTab->zName;
5182           }
5183           if( db->mallocFailed ) break;
5184           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5185             pSub = 0;
5186             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5187               continue;
5188             }
5189             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5190             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5191           }
5192           for(j=0; j<pTab->nCol; j++){
5193             char *zName = pTab->aCol[j].zName;
5194             char *zColname;  /* The computed column name */
5195             char *zToFree;   /* Malloced string that needs to be freed */
5196             Token sColname;  /* Computed column name as a token */
5197 
5198             assert( zName );
5199             if( zTName && pSub
5200              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5201             ){
5202               continue;
5203             }
5204 
5205             /* If a column is marked as 'hidden', omit it from the expanded
5206             ** result-set list unless the SELECT has the SF_IncludeHidden
5207             ** bit set.
5208             */
5209             if( (p->selFlags & SF_IncludeHidden)==0
5210              && IsHiddenColumn(&pTab->aCol[j])
5211             ){
5212               continue;
5213             }
5214             tableSeen = 1;
5215 
5216             if( i>0 && zTName==0 ){
5217               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5218                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5219               ){
5220                 /* In a NATURAL join, omit the join columns from the
5221                 ** table to the right of the join */
5222                 continue;
5223               }
5224               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5225                 /* In a join with a USING clause, omit columns in the
5226                 ** using clause from the table on the right. */
5227                 continue;
5228               }
5229             }
5230             pRight = sqlite3Expr(db, TK_ID, zName);
5231             zColname = zName;
5232             zToFree = 0;
5233             if( longNames || pTabList->nSrc>1 ){
5234               Expr *pLeft;
5235               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5236               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5237               if( zSchemaName ){
5238                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5239                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5240               }
5241               if( longNames ){
5242                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5243                 zToFree = zColname;
5244               }
5245             }else{
5246               pExpr = pRight;
5247             }
5248             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5249             sqlite3TokenInit(&sColname, zColname);
5250             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5251             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5252               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5253               sqlite3DbFree(db, pX->zEName);
5254               if( pSub ){
5255                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5256                 testcase( pX->zEName==0 );
5257               }else{
5258                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5259                                            zSchemaName, zTabName, zColname);
5260                 testcase( pX->zEName==0 );
5261               }
5262               pX->eEName = ENAME_TAB;
5263             }
5264             sqlite3DbFree(db, zToFree);
5265           }
5266         }
5267         if( !tableSeen ){
5268           if( zTName ){
5269             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5270           }else{
5271             sqlite3ErrorMsg(pParse, "no tables specified");
5272           }
5273         }
5274       }
5275     }
5276     sqlite3ExprListDelete(db, pEList);
5277     p->pEList = pNew;
5278   }
5279   if( p->pEList ){
5280     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5281       sqlite3ErrorMsg(pParse, "too many columns in result set");
5282       return WRC_Abort;
5283     }
5284     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5285       p->selFlags |= SF_ComplexResult;
5286     }
5287   }
5288   return WRC_Continue;
5289 }
5290 
5291 #if SQLITE_DEBUG
5292 /*
5293 ** Always assert.  This xSelectCallback2 implementation proves that the
5294 ** xSelectCallback2 is never invoked.
5295 */
5296 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5297   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5298   assert( 0 );
5299 }
5300 #endif
5301 /*
5302 ** This routine "expands" a SELECT statement and all of its subqueries.
5303 ** For additional information on what it means to "expand" a SELECT
5304 ** statement, see the comment on the selectExpand worker callback above.
5305 **
5306 ** Expanding a SELECT statement is the first step in processing a
5307 ** SELECT statement.  The SELECT statement must be expanded before
5308 ** name resolution is performed.
5309 **
5310 ** If anything goes wrong, an error message is written into pParse.
5311 ** The calling function can detect the problem by looking at pParse->nErr
5312 ** and/or pParse->db->mallocFailed.
5313 */
5314 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5315   Walker w;
5316   w.xExprCallback = sqlite3ExprWalkNoop;
5317   w.pParse = pParse;
5318   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5319     w.xSelectCallback = convertCompoundSelectToSubquery;
5320     w.xSelectCallback2 = 0;
5321     sqlite3WalkSelect(&w, pSelect);
5322   }
5323   w.xSelectCallback = selectExpander;
5324   w.xSelectCallback2 = selectPopWith;
5325   w.eCode = 0;
5326   sqlite3WalkSelect(&w, pSelect);
5327 }
5328 
5329 
5330 #ifndef SQLITE_OMIT_SUBQUERY
5331 /*
5332 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5333 ** interface.
5334 **
5335 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5336 ** information to the Table structure that represents the result set
5337 ** of that subquery.
5338 **
5339 ** The Table structure that represents the result set was constructed
5340 ** by selectExpander() but the type and collation information was omitted
5341 ** at that point because identifiers had not yet been resolved.  This
5342 ** routine is called after identifier resolution.
5343 */
5344 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5345   Parse *pParse;
5346   int i;
5347   SrcList *pTabList;
5348   struct SrcList_item *pFrom;
5349 
5350   assert( p->selFlags & SF_Resolved );
5351   if( p->selFlags & SF_HasTypeInfo ) return;
5352   p->selFlags |= SF_HasTypeInfo;
5353   pParse = pWalker->pParse;
5354   pTabList = p->pSrc;
5355   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5356     Table *pTab = pFrom->pTab;
5357     assert( pTab!=0 );
5358     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5359       /* A sub-query in the FROM clause of a SELECT */
5360       Select *pSel = pFrom->pSelect;
5361       if( pSel ){
5362         while( pSel->pPrior ) pSel = pSel->pPrior;
5363         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5364                                                SQLITE_AFF_NONE);
5365       }
5366     }
5367   }
5368 }
5369 #endif
5370 
5371 
5372 /*
5373 ** This routine adds datatype and collating sequence information to
5374 ** the Table structures of all FROM-clause subqueries in a
5375 ** SELECT statement.
5376 **
5377 ** Use this routine after name resolution.
5378 */
5379 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5380 #ifndef SQLITE_OMIT_SUBQUERY
5381   Walker w;
5382   w.xSelectCallback = sqlite3SelectWalkNoop;
5383   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5384   w.xExprCallback = sqlite3ExprWalkNoop;
5385   w.pParse = pParse;
5386   sqlite3WalkSelect(&w, pSelect);
5387 #endif
5388 }
5389 
5390 
5391 /*
5392 ** This routine sets up a SELECT statement for processing.  The
5393 ** following is accomplished:
5394 **
5395 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5396 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5397 **     *  ON and USING clauses are shifted into WHERE statements
5398 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5399 **     *  Identifiers in expression are matched to tables.
5400 **
5401 ** This routine acts recursively on all subqueries within the SELECT.
5402 */
5403 void sqlite3SelectPrep(
5404   Parse *pParse,         /* The parser context */
5405   Select *p,             /* The SELECT statement being coded. */
5406   NameContext *pOuterNC  /* Name context for container */
5407 ){
5408   assert( p!=0 || pParse->db->mallocFailed );
5409   if( pParse->db->mallocFailed ) return;
5410   if( p->selFlags & SF_HasTypeInfo ) return;
5411   sqlite3SelectExpand(pParse, p);
5412   if( pParse->nErr || pParse->db->mallocFailed ) return;
5413   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5414   if( pParse->nErr || pParse->db->mallocFailed ) return;
5415   sqlite3SelectAddTypeInfo(pParse, p);
5416 }
5417 
5418 /*
5419 ** Reset the aggregate accumulator.
5420 **
5421 ** The aggregate accumulator is a set of memory cells that hold
5422 ** intermediate results while calculating an aggregate.  This
5423 ** routine generates code that stores NULLs in all of those memory
5424 ** cells.
5425 */
5426 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5427   Vdbe *v = pParse->pVdbe;
5428   int i;
5429   struct AggInfo_func *pFunc;
5430   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5431   if( nReg==0 ) return;
5432   if( pParse->nErr || pParse->db->mallocFailed ) return;
5433 #ifdef SQLITE_DEBUG
5434   /* Verify that all AggInfo registers are within the range specified by
5435   ** AggInfo.mnReg..AggInfo.mxReg */
5436   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5437   for(i=0; i<pAggInfo->nColumn; i++){
5438     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5439          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5440   }
5441   for(i=0; i<pAggInfo->nFunc; i++){
5442     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5443          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5444   }
5445 #endif
5446   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5447   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5448     if( pFunc->iDistinct>=0 ){
5449       Expr *pE = pFunc->pFExpr;
5450       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5451       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5452         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5453            "argument");
5454         pFunc->iDistinct = -1;
5455       }else{
5456         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5457         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5458                           (char*)pKeyInfo, P4_KEYINFO);
5459       }
5460     }
5461   }
5462 }
5463 
5464 /*
5465 ** Invoke the OP_AggFinalize opcode for every aggregate function
5466 ** in the AggInfo structure.
5467 */
5468 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5469   Vdbe *v = pParse->pVdbe;
5470   int i;
5471   struct AggInfo_func *pF;
5472   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5473     ExprList *pList = pF->pFExpr->x.pList;
5474     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5475     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5476     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5477   }
5478 }
5479 
5480 
5481 /*
5482 ** Update the accumulator memory cells for an aggregate based on
5483 ** the current cursor position.
5484 **
5485 ** If regAcc is non-zero and there are no min() or max() aggregates
5486 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5487 ** registers if register regAcc contains 0. The caller will take care
5488 ** of setting and clearing regAcc.
5489 */
5490 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5491   Vdbe *v = pParse->pVdbe;
5492   int i;
5493   int regHit = 0;
5494   int addrHitTest = 0;
5495   struct AggInfo_func *pF;
5496   struct AggInfo_col *pC;
5497 
5498   pAggInfo->directMode = 1;
5499   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5500     int nArg;
5501     int addrNext = 0;
5502     int regAgg;
5503     ExprList *pList = pF->pFExpr->x.pList;
5504     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5505     assert( !IsWindowFunc(pF->pFExpr) );
5506     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5507       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5508       if( pAggInfo->nAccumulator
5509        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5510        && regAcc
5511       ){
5512         /* If regAcc==0, there there exists some min() or max() function
5513         ** without a FILTER clause that will ensure the magnet registers
5514         ** are populated. */
5515         if( regHit==0 ) regHit = ++pParse->nMem;
5516         /* If this is the first row of the group (regAcc contains 0), clear the
5517         ** "magnet" register regHit so that the accumulator registers
5518         ** are populated if the FILTER clause jumps over the the
5519         ** invocation of min() or max() altogether. Or, if this is not
5520         ** the first row (regAcc contains 1), set the magnet register so that
5521         ** the accumulators are not populated unless the min()/max() is invoked
5522         ** and indicates that they should be.  */
5523         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5524       }
5525       addrNext = sqlite3VdbeMakeLabel(pParse);
5526       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5527     }
5528     if( pList ){
5529       nArg = pList->nExpr;
5530       regAgg = sqlite3GetTempRange(pParse, nArg);
5531       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5532     }else{
5533       nArg = 0;
5534       regAgg = 0;
5535     }
5536     if( pF->iDistinct>=0 ){
5537       if( addrNext==0 ){
5538         addrNext = sqlite3VdbeMakeLabel(pParse);
5539       }
5540       testcase( nArg==0 );  /* Error condition */
5541       testcase( nArg>1 );   /* Also an error */
5542       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5543     }
5544     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5545       CollSeq *pColl = 0;
5546       struct ExprList_item *pItem;
5547       int j;
5548       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5549       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5550         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5551       }
5552       if( !pColl ){
5553         pColl = pParse->db->pDfltColl;
5554       }
5555       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5556       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5557     }
5558     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5559     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5560     sqlite3VdbeChangeP5(v, (u8)nArg);
5561     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5562     if( addrNext ){
5563       sqlite3VdbeResolveLabel(v, addrNext);
5564     }
5565   }
5566   if( regHit==0 && pAggInfo->nAccumulator ){
5567     regHit = regAcc;
5568   }
5569   if( regHit ){
5570     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5571   }
5572   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5573     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5574   }
5575 
5576   pAggInfo->directMode = 0;
5577   if( addrHitTest ){
5578     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5579   }
5580 }
5581 
5582 /*
5583 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5584 ** count(*) query ("SELECT count(*) FROM pTab").
5585 */
5586 #ifndef SQLITE_OMIT_EXPLAIN
5587 static void explainSimpleCount(
5588   Parse *pParse,                  /* Parse context */
5589   Table *pTab,                    /* Table being queried */
5590   Index *pIdx                     /* Index used to optimize scan, or NULL */
5591 ){
5592   if( pParse->explain==2 ){
5593     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5594     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5595         pTab->zName,
5596         bCover ? " USING COVERING INDEX " : "",
5597         bCover ? pIdx->zName : ""
5598     );
5599   }
5600 }
5601 #else
5602 # define explainSimpleCount(a,b,c)
5603 #endif
5604 
5605 /*
5606 ** sqlite3WalkExpr() callback used by havingToWhere().
5607 **
5608 ** If the node passed to the callback is a TK_AND node, return
5609 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5610 **
5611 ** Otherwise, return WRC_Prune. In this case, also check if the
5612 ** sub-expression matches the criteria for being moved to the WHERE
5613 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5614 ** within the HAVING expression with a constant "1".
5615 */
5616 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5617   if( pExpr->op!=TK_AND ){
5618     Select *pS = pWalker->u.pSelect;
5619     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5620       sqlite3 *db = pWalker->pParse->db;
5621       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5622       if( pNew ){
5623         Expr *pWhere = pS->pWhere;
5624         SWAP(Expr, *pNew, *pExpr);
5625         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5626         pS->pWhere = pNew;
5627         pWalker->eCode = 1;
5628       }
5629     }
5630     return WRC_Prune;
5631   }
5632   return WRC_Continue;
5633 }
5634 
5635 /*
5636 ** Transfer eligible terms from the HAVING clause of a query, which is
5637 ** processed after grouping, to the WHERE clause, which is processed before
5638 ** grouping. For example, the query:
5639 **
5640 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5641 **
5642 ** can be rewritten as:
5643 **
5644 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5645 **
5646 ** A term of the HAVING expression is eligible for transfer if it consists
5647 ** entirely of constants and expressions that are also GROUP BY terms that
5648 ** use the "BINARY" collation sequence.
5649 */
5650 static void havingToWhere(Parse *pParse, Select *p){
5651   Walker sWalker;
5652   memset(&sWalker, 0, sizeof(sWalker));
5653   sWalker.pParse = pParse;
5654   sWalker.xExprCallback = havingToWhereExprCb;
5655   sWalker.u.pSelect = p;
5656   sqlite3WalkExpr(&sWalker, p->pHaving);
5657 #if SELECTTRACE_ENABLED
5658   if( sWalker.eCode && (sqlite3_unsupported_selecttrace & 0x100)!=0 ){
5659     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5660     sqlite3TreeViewSelect(0, p, 0);
5661   }
5662 #endif
5663 }
5664 
5665 /*
5666 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5667 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5668 ** then return 0.
5669 */
5670 static struct SrcList_item *isSelfJoinView(
5671   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5672   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5673 ){
5674   struct SrcList_item *pItem;
5675   for(pItem = pTabList->a; pItem<pThis; pItem++){
5676     Select *pS1;
5677     if( pItem->pSelect==0 ) continue;
5678     if( pItem->fg.viaCoroutine ) continue;
5679     if( pItem->zName==0 ) continue;
5680     assert( pItem->pTab!=0 );
5681     assert( pThis->pTab!=0 );
5682     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5683     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5684     pS1 = pItem->pSelect;
5685     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5686       /* The query flattener left two different CTE tables with identical
5687       ** names in the same FROM clause. */
5688       continue;
5689     }
5690     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5691      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5692     ){
5693       /* The view was modified by some other optimization such as
5694       ** pushDownWhereTerms() */
5695       continue;
5696     }
5697     return pItem;
5698   }
5699   return 0;
5700 }
5701 
5702 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5703 /*
5704 ** Attempt to transform a query of the form
5705 **
5706 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5707 **
5708 ** Into this:
5709 **
5710 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5711 **
5712 ** The transformation only works if all of the following are true:
5713 **
5714 **   *  The subquery is a UNION ALL of two or more terms
5715 **   *  The subquery does not have a LIMIT clause
5716 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5717 **   *  The outer query is a simple count(*) with no WHERE clause or other
5718 **      extraneous syntax.
5719 **
5720 ** Return TRUE if the optimization is undertaken.
5721 */
5722 static int countOfViewOptimization(Parse *pParse, Select *p){
5723   Select *pSub, *pPrior;
5724   Expr *pExpr;
5725   Expr *pCount;
5726   sqlite3 *db;
5727   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5728   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5729   if( p->pWhere ) return 0;
5730   if( p->pGroupBy ) return 0;
5731   pExpr = p->pEList->a[0].pExpr;
5732   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5733   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5734   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5735   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5736   pSub = p->pSrc->a[0].pSelect;
5737   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5738   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5739   do{
5740     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5741     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5742     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5743     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5744     pSub = pSub->pPrior;                              /* Repeat over compound */
5745   }while( pSub );
5746 
5747   /* If we reach this point then it is OK to perform the transformation */
5748 
5749   db = pParse->db;
5750   pCount = pExpr;
5751   pExpr = 0;
5752   pSub = p->pSrc->a[0].pSelect;
5753   p->pSrc->a[0].pSelect = 0;
5754   sqlite3SrcListDelete(db, p->pSrc);
5755   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5756   while( pSub ){
5757     Expr *pTerm;
5758     pPrior = pSub->pPrior;
5759     pSub->pPrior = 0;
5760     pSub->pNext = 0;
5761     pSub->selFlags |= SF_Aggregate;
5762     pSub->selFlags &= ~SF_Compound;
5763     pSub->nSelectRow = 0;
5764     sqlite3ExprListDelete(db, pSub->pEList);
5765     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5766     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5767     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5768     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5769     if( pExpr==0 ){
5770       pExpr = pTerm;
5771     }else{
5772       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5773     }
5774     pSub = pPrior;
5775   }
5776   p->pEList->a[0].pExpr = pExpr;
5777   p->selFlags &= ~SF_Aggregate;
5778 
5779 #if SELECTTRACE_ENABLED
5780   if( sqlite3_unsupported_selecttrace & 0x400 ){
5781     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5782     sqlite3TreeViewSelect(0, p, 0);
5783   }
5784 #endif
5785   return 1;
5786 }
5787 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5788 
5789 /*
5790 ** Generate code for the SELECT statement given in the p argument.
5791 **
5792 ** The results are returned according to the SelectDest structure.
5793 ** See comments in sqliteInt.h for further information.
5794 **
5795 ** This routine returns the number of errors.  If any errors are
5796 ** encountered, then an appropriate error message is left in
5797 ** pParse->zErrMsg.
5798 **
5799 ** This routine does NOT free the Select structure passed in.  The
5800 ** calling function needs to do that.
5801 */
5802 int sqlite3Select(
5803   Parse *pParse,         /* The parser context */
5804   Select *p,             /* The SELECT statement being coded. */
5805   SelectDest *pDest      /* What to do with the query results */
5806 ){
5807   int i, j;              /* Loop counters */
5808   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5809   Vdbe *v;               /* The virtual machine under construction */
5810   int isAgg;             /* True for select lists like "count(*)" */
5811   ExprList *pEList = 0;  /* List of columns to extract. */
5812   SrcList *pTabList;     /* List of tables to select from */
5813   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5814   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5815   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5816   AggInfo *pAggInfo = 0; /* Aggregate information */
5817   int rc = 1;            /* Value to return from this function */
5818   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5819   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5820   int iEnd;              /* Address of the end of the query */
5821   sqlite3 *db;           /* The database connection */
5822   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5823   u8 minMaxFlag;                 /* Flag for min/max queries */
5824 
5825   db = pParse->db;
5826   v = sqlite3GetVdbe(pParse);
5827   if( p==0 || db->mallocFailed || pParse->nErr ){
5828     return 1;
5829   }
5830   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5831 #if SELECTTRACE_ENABLED
5832   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5833   if( sqlite3_unsupported_selecttrace & 0x100 ){
5834     sqlite3TreeViewSelect(0, p, 0);
5835   }
5836 #endif
5837 
5838   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5839   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5840   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5841   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5842   if( IgnorableDistinct(pDest) ){
5843     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
5844            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
5845            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
5846     /* All of these destinations are also able to ignore the ORDER BY clause */
5847     sqlite3ExprListDelete(db, p->pOrderBy);
5848     p->pOrderBy = 0;
5849     p->selFlags &= ~SF_Distinct;
5850     p->selFlags |= SF_NoopOrderBy;
5851   }
5852   sqlite3SelectPrep(pParse, p, 0);
5853   if( pParse->nErr || db->mallocFailed ){
5854     goto select_end;
5855   }
5856   assert( p->pEList!=0 );
5857 #if SELECTTRACE_ENABLED
5858   if( sqlite3_unsupported_selecttrace & 0x104 ){
5859     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5860     sqlite3TreeViewSelect(0, p, 0);
5861   }
5862 #endif
5863 
5864   /* If the SF_UpdateFrom flag is set, then this function is being called
5865   ** as part of populating the temp table for an UPDATE...FROM statement.
5866   ** In this case, it is an error if the target object (pSrc->a[0]) name
5867   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
5868   if( p->selFlags & SF_UpdateFrom ){
5869     struct SrcList_item *p0 = &p->pSrc->a[0];
5870     for(i=1; i<p->pSrc->nSrc; i++){
5871       struct SrcList_item *p1 = &p->pSrc->a[i];
5872       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
5873         sqlite3ErrorMsg(pParse,
5874             "target object/alias may not appear in FROM clause: %s",
5875             p0->zAlias ? p0->zAlias : p0->pTab->zName
5876         );
5877         goto select_end;
5878       }
5879     }
5880   }
5881 
5882   if( pDest->eDest==SRT_Output ){
5883     generateColumnNames(pParse, p);
5884   }
5885 
5886 #ifndef SQLITE_OMIT_WINDOWFUNC
5887   rc = sqlite3WindowRewrite(pParse, p);
5888   if( rc ){
5889     assert( db->mallocFailed || pParse->nErr>0 );
5890     goto select_end;
5891   }
5892 #if SELECTTRACE_ENABLED
5893   if( p->pWin && (sqlite3_unsupported_selecttrace & 0x108)!=0 ){
5894     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5895     sqlite3TreeViewSelect(0, p, 0);
5896   }
5897 #endif
5898 #endif /* SQLITE_OMIT_WINDOWFUNC */
5899   pTabList = p->pSrc;
5900   isAgg = (p->selFlags & SF_Aggregate)!=0;
5901   memset(&sSort, 0, sizeof(sSort));
5902   sSort.pOrderBy = p->pOrderBy;
5903 
5904   /* Try to do various optimizations (flattening subqueries, and strength
5905   ** reduction of join operators) in the FROM clause up into the main query
5906   */
5907 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5908   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5909     struct SrcList_item *pItem = &pTabList->a[i];
5910     Select *pSub = pItem->pSelect;
5911     Table *pTab = pItem->pTab;
5912 
5913     /* The expander should have already created transient Table objects
5914     ** even for FROM clause elements such as subqueries that do not correspond
5915     ** to a real table */
5916     assert( pTab!=0 );
5917 
5918     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5919     ** of the LEFT JOIN used in the WHERE clause.
5920     */
5921     if( (pItem->fg.jointype & JT_LEFT)!=0
5922      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5923      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5924     ){
5925       SELECTTRACE(0x100,pParse,p,
5926                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5927       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5928       unsetJoinExpr(p->pWhere, pItem->iCursor);
5929     }
5930 
5931     /* No futher action if this term of the FROM clause is no a subquery */
5932     if( pSub==0 ) continue;
5933 
5934     /* Catch mismatch in the declared columns of a view and the number of
5935     ** columns in the SELECT on the RHS */
5936     if( pTab->nCol!=pSub->pEList->nExpr ){
5937       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5938                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5939       goto select_end;
5940     }
5941 
5942     /* Do not try to flatten an aggregate subquery.
5943     **
5944     ** Flattening an aggregate subquery is only possible if the outer query
5945     ** is not a join.  But if the outer query is not a join, then the subquery
5946     ** will be implemented as a co-routine and there is no advantage to
5947     ** flattening in that case.
5948     */
5949     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5950     assert( pSub->pGroupBy==0 );
5951 
5952     /* If the outer query contains a "complex" result set (that is,
5953     ** if the result set of the outer query uses functions or subqueries)
5954     ** and if the subquery contains an ORDER BY clause and if
5955     ** it will be implemented as a co-routine, then do not flatten.  This
5956     ** restriction allows SQL constructs like this:
5957     **
5958     **  SELECT expensive_function(x)
5959     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5960     **
5961     ** The expensive_function() is only computed on the 10 rows that
5962     ** are output, rather than every row of the table.
5963     **
5964     ** The requirement that the outer query have a complex result set
5965     ** means that flattening does occur on simpler SQL constraints without
5966     ** the expensive_function() like:
5967     **
5968     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5969     */
5970     if( pSub->pOrderBy!=0
5971      && i==0
5972      && (p->selFlags & SF_ComplexResult)!=0
5973      && (pTabList->nSrc==1
5974          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5975     ){
5976       continue;
5977     }
5978 
5979     if( flattenSubquery(pParse, p, i, isAgg) ){
5980       if( pParse->nErr ) goto select_end;
5981       /* This subquery can be absorbed into its parent. */
5982       i = -1;
5983     }
5984     pTabList = p->pSrc;
5985     if( db->mallocFailed ) goto select_end;
5986     if( !IgnorableOrderby(pDest) ){
5987       sSort.pOrderBy = p->pOrderBy;
5988     }
5989   }
5990 #endif
5991 
5992 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5993   /* Handle compound SELECT statements using the separate multiSelect()
5994   ** procedure.
5995   */
5996   if( p->pPrior ){
5997     rc = multiSelect(pParse, p, pDest);
5998 #if SELECTTRACE_ENABLED
5999     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6000     if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6001       sqlite3TreeViewSelect(0, p, 0);
6002     }
6003 #endif
6004     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6005     return rc;
6006   }
6007 #endif
6008 
6009   /* Do the WHERE-clause constant propagation optimization if this is
6010   ** a join.  No need to speed time on this operation for non-join queries
6011   ** as the equivalent optimization will be handled by query planner in
6012   ** sqlite3WhereBegin().
6013   */
6014   if( pTabList->nSrc>1
6015    && OptimizationEnabled(db, SQLITE_PropagateConst)
6016    && propagateConstants(pParse, p)
6017   ){
6018 #if SELECTTRACE_ENABLED
6019     if( sqlite3_unsupported_selecttrace & 0x100 ){
6020       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6021       sqlite3TreeViewSelect(0, p, 0);
6022     }
6023 #endif
6024   }else{
6025     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6026   }
6027 
6028 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6029   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6030    && countOfViewOptimization(pParse, p)
6031   ){
6032     if( db->mallocFailed ) goto select_end;
6033     pEList = p->pEList;
6034     pTabList = p->pSrc;
6035   }
6036 #endif
6037 
6038   /* For each term in the FROM clause, do two things:
6039   ** (1) Authorized unreferenced tables
6040   ** (2) Generate code for all sub-queries
6041   */
6042   for(i=0; i<pTabList->nSrc; i++){
6043     struct SrcList_item *pItem = &pTabList->a[i];
6044     SelectDest dest;
6045     Select *pSub;
6046 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6047     const char *zSavedAuthContext;
6048 #endif
6049 
6050     /* Issue SQLITE_READ authorizations with a fake column name for any
6051     ** tables that are referenced but from which no values are extracted.
6052     ** Examples of where these kinds of null SQLITE_READ authorizations
6053     ** would occur:
6054     **
6055     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6056     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6057     **
6058     ** The fake column name is an empty string.  It is possible for a table to
6059     ** have a column named by the empty string, in which case there is no way to
6060     ** distinguish between an unreferenced table and an actual reference to the
6061     ** "" column. The original design was for the fake column name to be a NULL,
6062     ** which would be unambiguous.  But legacy authorization callbacks might
6063     ** assume the column name is non-NULL and segfault.  The use of an empty
6064     ** string for the fake column name seems safer.
6065     */
6066     if( pItem->colUsed==0 && pItem->zName!=0 ){
6067       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6068     }
6069 
6070 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6071     /* Generate code for all sub-queries in the FROM clause
6072     */
6073     pSub = pItem->pSelect;
6074     if( pSub==0 ) continue;
6075 
6076     /* The code for a subquery should only be generated once, though it is
6077     ** technically harmless for it to be generated multiple times. The
6078     ** following assert() will detect if something changes to cause
6079     ** the same subquery to be coded multiple times, as a signal to the
6080     ** developers to try to optimize the situation.
6081     **
6082     ** Update 2019-07-24:
6083     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6084     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6085     ** coded twice.  So this assert() now becomes a testcase().  It should
6086     ** be very rare, though.
6087     */
6088     testcase( pItem->addrFillSub!=0 );
6089 
6090     /* Increment Parse.nHeight by the height of the largest expression
6091     ** tree referred to by this, the parent select. The child select
6092     ** may contain expression trees of at most
6093     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6094     ** more conservative than necessary, but much easier than enforcing
6095     ** an exact limit.
6096     */
6097     pParse->nHeight += sqlite3SelectExprHeight(p);
6098 
6099     /* Make copies of constant WHERE-clause terms in the outer query down
6100     ** inside the subquery.  This can help the subquery to run more efficiently.
6101     */
6102     if( OptimizationEnabled(db, SQLITE_PushDown)
6103      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6104                            (pItem->fg.jointype & JT_OUTER)!=0)
6105     ){
6106 #if SELECTTRACE_ENABLED
6107       if( sqlite3_unsupported_selecttrace & 0x100 ){
6108         SELECTTRACE(0x100,pParse,p,
6109             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6110         sqlite3TreeViewSelect(0, p, 0);
6111       }
6112 #endif
6113     }else{
6114       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6115     }
6116 
6117     zSavedAuthContext = pParse->zAuthContext;
6118     pParse->zAuthContext = pItem->zName;
6119 
6120     /* Generate code to implement the subquery
6121     **
6122     ** The subquery is implemented as a co-routine if the subquery is
6123     ** guaranteed to be the outer loop (so that it does not need to be
6124     ** computed more than once)
6125     **
6126     ** TODO: Are there other reasons beside (1) to use a co-routine
6127     ** implementation?
6128     */
6129     if( i==0
6130      && (pTabList->nSrc==1
6131             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6132     ){
6133       /* Implement a co-routine that will return a single row of the result
6134       ** set on each invocation.
6135       */
6136       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6137 
6138       pItem->regReturn = ++pParse->nMem;
6139       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6140       VdbeComment((v, "%s", pItem->pTab->zName));
6141       pItem->addrFillSub = addrTop;
6142       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6143       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6144       sqlite3Select(pParse, pSub, &dest);
6145       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6146       pItem->fg.viaCoroutine = 1;
6147       pItem->regResult = dest.iSdst;
6148       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6149       sqlite3VdbeJumpHere(v, addrTop-1);
6150       sqlite3ClearTempRegCache(pParse);
6151     }else{
6152       /* Generate a subroutine that will fill an ephemeral table with
6153       ** the content of this subquery.  pItem->addrFillSub will point
6154       ** to the address of the generated subroutine.  pItem->regReturn
6155       ** is a register allocated to hold the subroutine return address
6156       */
6157       int topAddr;
6158       int onceAddr = 0;
6159       int retAddr;
6160       struct SrcList_item *pPrior;
6161 
6162       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6163       pItem->regReturn = ++pParse->nMem;
6164       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6165       pItem->addrFillSub = topAddr+1;
6166       if( pItem->fg.isCorrelated==0 ){
6167         /* If the subquery is not correlated and if we are not inside of
6168         ** a trigger, then we only need to compute the value of the subquery
6169         ** once. */
6170         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6171         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6172       }else{
6173         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6174       }
6175       pPrior = isSelfJoinView(pTabList, pItem);
6176       if( pPrior ){
6177         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6178         assert( pPrior->pSelect!=0 );
6179         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6180       }else{
6181         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6182         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6183         sqlite3Select(pParse, pSub, &dest);
6184       }
6185       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6186       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6187       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6188       VdbeComment((v, "end %s", pItem->pTab->zName));
6189       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6190       sqlite3ClearTempRegCache(pParse);
6191     }
6192     if( db->mallocFailed ) goto select_end;
6193     pParse->nHeight -= sqlite3SelectExprHeight(p);
6194     pParse->zAuthContext = zSavedAuthContext;
6195 #endif
6196   }
6197 
6198   /* Various elements of the SELECT copied into local variables for
6199   ** convenience */
6200   pEList = p->pEList;
6201   pWhere = p->pWhere;
6202   pGroupBy = p->pGroupBy;
6203   pHaving = p->pHaving;
6204   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6205 
6206 #if SELECTTRACE_ENABLED
6207   if( sqlite3_unsupported_selecttrace & 0x400 ){
6208     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6209     sqlite3TreeViewSelect(0, p, 0);
6210   }
6211 #endif
6212 
6213   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6214   ** if the select-list is the same as the ORDER BY list, then this query
6215   ** can be rewritten as a GROUP BY. In other words, this:
6216   **
6217   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6218   **
6219   ** is transformed to:
6220   **
6221   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6222   **
6223   ** The second form is preferred as a single index (or temp-table) may be
6224   ** used for both the ORDER BY and DISTINCT processing. As originally
6225   ** written the query must use a temp-table for at least one of the ORDER
6226   ** BY and DISTINCT, and an index or separate temp-table for the other.
6227   */
6228   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6229    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6230 #ifndef SQLITE_OMIT_WINDOWFUNC
6231    && p->pWin==0
6232 #endif
6233   ){
6234     p->selFlags &= ~SF_Distinct;
6235     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6236     p->selFlags |= SF_Aggregate;
6237     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6238     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6239     ** original setting of the SF_Distinct flag, not the current setting */
6240     assert( sDistinct.isTnct );
6241 
6242 #if SELECTTRACE_ENABLED
6243     if( sqlite3_unsupported_selecttrace & 0x400 ){
6244       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6245       sqlite3TreeViewSelect(0, p, 0);
6246     }
6247 #endif
6248   }
6249 
6250   /* If there is an ORDER BY clause, then create an ephemeral index to
6251   ** do the sorting.  But this sorting ephemeral index might end up
6252   ** being unused if the data can be extracted in pre-sorted order.
6253   ** If that is the case, then the OP_OpenEphemeral instruction will be
6254   ** changed to an OP_Noop once we figure out that the sorting index is
6255   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6256   ** that change.
6257   */
6258   if( sSort.pOrderBy ){
6259     KeyInfo *pKeyInfo;
6260     pKeyInfo = sqlite3KeyInfoFromExprList(
6261         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6262     sSort.iECursor = pParse->nTab++;
6263     sSort.addrSortIndex =
6264       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6265           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6266           (char*)pKeyInfo, P4_KEYINFO
6267       );
6268   }else{
6269     sSort.addrSortIndex = -1;
6270   }
6271 
6272   /* If the output is destined for a temporary table, open that table.
6273   */
6274   if( pDest->eDest==SRT_EphemTab ){
6275     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6276   }
6277 
6278   /* Set the limiter.
6279   */
6280   iEnd = sqlite3VdbeMakeLabel(pParse);
6281   if( (p->selFlags & SF_FixedLimit)==0 ){
6282     p->nSelectRow = 320;  /* 4 billion rows */
6283   }
6284   computeLimitRegisters(pParse, p, iEnd);
6285   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6286     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6287     sSort.sortFlags |= SORTFLAG_UseSorter;
6288   }
6289 
6290   /* Open an ephemeral index to use for the distinct set.
6291   */
6292   if( p->selFlags & SF_Distinct ){
6293     sDistinct.tabTnct = pParse->nTab++;
6294     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6295                        sDistinct.tabTnct, 0, 0,
6296                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6297                        P4_KEYINFO);
6298     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6299     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6300   }else{
6301     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6302   }
6303 
6304   if( !isAgg && pGroupBy==0 ){
6305     /* No aggregate functions and no GROUP BY clause */
6306     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6307                    | (p->selFlags & SF_FixedLimit);
6308 #ifndef SQLITE_OMIT_WINDOWFUNC
6309     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6310     if( pWin ){
6311       sqlite3WindowCodeInit(pParse, p);
6312     }
6313 #endif
6314     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6315 
6316 
6317     /* Begin the database scan. */
6318     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6319     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6320                                p->pEList, wctrlFlags, p->nSelectRow);
6321     if( pWInfo==0 ) goto select_end;
6322     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6323       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6324     }
6325     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6326       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6327     }
6328     if( sSort.pOrderBy ){
6329       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6330       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6331       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6332         sSort.pOrderBy = 0;
6333       }
6334     }
6335 
6336     /* If sorting index that was created by a prior OP_OpenEphemeral
6337     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6338     ** into an OP_Noop.
6339     */
6340     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6341       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6342     }
6343 
6344     assert( p->pEList==pEList );
6345 #ifndef SQLITE_OMIT_WINDOWFUNC
6346     if( pWin ){
6347       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6348       int iCont = sqlite3VdbeMakeLabel(pParse);
6349       int iBreak = sqlite3VdbeMakeLabel(pParse);
6350       int regGosub = ++pParse->nMem;
6351 
6352       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6353 
6354       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6355       sqlite3VdbeResolveLabel(v, addrGosub);
6356       VdbeNoopComment((v, "inner-loop subroutine"));
6357       sSort.labelOBLopt = 0;
6358       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6359       sqlite3VdbeResolveLabel(v, iCont);
6360       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6361       VdbeComment((v, "end inner-loop subroutine"));
6362       sqlite3VdbeResolveLabel(v, iBreak);
6363     }else
6364 #endif /* SQLITE_OMIT_WINDOWFUNC */
6365     {
6366       /* Use the standard inner loop. */
6367       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6368           sqlite3WhereContinueLabel(pWInfo),
6369           sqlite3WhereBreakLabel(pWInfo));
6370 
6371       /* End the database scan loop.
6372       */
6373       sqlite3WhereEnd(pWInfo);
6374     }
6375   }else{
6376     /* This case when there exist aggregate functions or a GROUP BY clause
6377     ** or both */
6378     NameContext sNC;    /* Name context for processing aggregate information */
6379     int iAMem;          /* First Mem address for storing current GROUP BY */
6380     int iBMem;          /* First Mem address for previous GROUP BY */
6381     int iUseFlag;       /* Mem address holding flag indicating that at least
6382                         ** one row of the input to the aggregator has been
6383                         ** processed */
6384     int iAbortFlag;     /* Mem address which causes query abort if positive */
6385     int groupBySort;    /* Rows come from source in GROUP BY order */
6386     int addrEnd;        /* End of processing for this SELECT */
6387     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6388     int sortOut = 0;    /* Output register from the sorter */
6389     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6390 
6391     /* Remove any and all aliases between the result set and the
6392     ** GROUP BY clause.
6393     */
6394     if( pGroupBy ){
6395       int k;                        /* Loop counter */
6396       struct ExprList_item *pItem;  /* For looping over expression in a list */
6397 
6398       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6399         pItem->u.x.iAlias = 0;
6400       }
6401       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6402         pItem->u.x.iAlias = 0;
6403       }
6404       assert( 66==sqlite3LogEst(100) );
6405       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6406 
6407       /* If there is both a GROUP BY and an ORDER BY clause and they are
6408       ** identical, then it may be possible to disable the ORDER BY clause
6409       ** on the grounds that the GROUP BY will cause elements to come out
6410       ** in the correct order. It also may not - the GROUP BY might use a
6411       ** database index that causes rows to be grouped together as required
6412       ** but not actually sorted. Either way, record the fact that the
6413       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6414       ** variable.  */
6415       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6416         int ii;
6417         /* The GROUP BY processing doesn't care whether rows are delivered in
6418         ** ASC or DESC order - only that each group is returned contiguously.
6419         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6420         ** ORDER BY to maximize the chances of rows being delivered in an
6421         ** order that makes the ORDER BY redundant.  */
6422         for(ii=0; ii<pGroupBy->nExpr; ii++){
6423           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6424           pGroupBy->a[ii].sortFlags = sortFlags;
6425         }
6426         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6427           orderByGrp = 1;
6428         }
6429       }
6430     }else{
6431       assert( 0==sqlite3LogEst(1) );
6432       p->nSelectRow = 0;
6433     }
6434 
6435     /* Create a label to jump to when we want to abort the query */
6436     addrEnd = sqlite3VdbeMakeLabel(pParse);
6437 
6438     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6439     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6440     ** SELECT statement.
6441     */
6442     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6443     if( pAggInfo==0 ){
6444       goto select_end;
6445     }
6446     pAggInfo->pNext = pParse->pAggList;
6447     pParse->pAggList = pAggInfo;
6448     pAggInfo->selId = p->selId;
6449     memset(&sNC, 0, sizeof(sNC));
6450     sNC.pParse = pParse;
6451     sNC.pSrcList = pTabList;
6452     sNC.uNC.pAggInfo = pAggInfo;
6453     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6454     pAggInfo->mnReg = pParse->nMem+1;
6455     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6456     pAggInfo->pGroupBy = pGroupBy;
6457     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6458     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6459     if( pHaving ){
6460       if( pGroupBy ){
6461         assert( pWhere==p->pWhere );
6462         assert( pHaving==p->pHaving );
6463         assert( pGroupBy==p->pGroupBy );
6464         havingToWhere(pParse, p);
6465         pWhere = p->pWhere;
6466       }
6467       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6468     }
6469     pAggInfo->nAccumulator = pAggInfo->nColumn;
6470     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6471       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6472     }else{
6473       minMaxFlag = WHERE_ORDERBY_NORMAL;
6474     }
6475     for(i=0; i<pAggInfo->nFunc; i++){
6476       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6477       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6478       sNC.ncFlags |= NC_InAggFunc;
6479       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6480 #ifndef SQLITE_OMIT_WINDOWFUNC
6481       assert( !IsWindowFunc(pExpr) );
6482       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6483         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6484       }
6485 #endif
6486       sNC.ncFlags &= ~NC_InAggFunc;
6487     }
6488     pAggInfo->mxReg = pParse->nMem;
6489     if( db->mallocFailed ) goto select_end;
6490 #if SELECTTRACE_ENABLED
6491     if( sqlite3_unsupported_selecttrace & 0x400 ){
6492       int ii;
6493       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6494       sqlite3TreeViewSelect(0, p, 0);
6495       for(ii=0; ii<pAggInfo->nColumn; ii++){
6496         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6497             ii, pAggInfo->aCol[ii].iMem);
6498         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6499       }
6500       for(ii=0; ii<pAggInfo->nFunc; ii++){
6501         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6502             ii, pAggInfo->aFunc[ii].iMem);
6503         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6504       }
6505     }
6506 #endif
6507 
6508 
6509     /* Processing for aggregates with GROUP BY is very different and
6510     ** much more complex than aggregates without a GROUP BY.
6511     */
6512     if( pGroupBy ){
6513       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6514       int addr1;          /* A-vs-B comparision jump */
6515       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6516       int regOutputRow;   /* Return address register for output subroutine */
6517       int addrSetAbort;   /* Set the abort flag and return */
6518       int addrTopOfLoop;  /* Top of the input loop */
6519       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6520       int addrReset;      /* Subroutine for resetting the accumulator */
6521       int regReset;       /* Return address register for reset subroutine */
6522 
6523       /* If there is a GROUP BY clause we might need a sorting index to
6524       ** implement it.  Allocate that sorting index now.  If it turns out
6525       ** that we do not need it after all, the OP_SorterOpen instruction
6526       ** will be converted into a Noop.
6527       */
6528       pAggInfo->sortingIdx = pParse->nTab++;
6529       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6530                                             0, pAggInfo->nColumn);
6531       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6532           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6533           0, (char*)pKeyInfo, P4_KEYINFO);
6534 
6535       /* Initialize memory locations used by GROUP BY aggregate processing
6536       */
6537       iUseFlag = ++pParse->nMem;
6538       iAbortFlag = ++pParse->nMem;
6539       regOutputRow = ++pParse->nMem;
6540       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6541       regReset = ++pParse->nMem;
6542       addrReset = sqlite3VdbeMakeLabel(pParse);
6543       iAMem = pParse->nMem + 1;
6544       pParse->nMem += pGroupBy->nExpr;
6545       iBMem = pParse->nMem + 1;
6546       pParse->nMem += pGroupBy->nExpr;
6547       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6548       VdbeComment((v, "clear abort flag"));
6549       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6550 
6551       /* Begin a loop that will extract all source rows in GROUP BY order.
6552       ** This might involve two separate loops with an OP_Sort in between, or
6553       ** it might be a single loop that uses an index to extract information
6554       ** in the right order to begin with.
6555       */
6556       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6557       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6558       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6559           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6560       );
6561       if( pWInfo==0 ) goto select_end;
6562       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6563         /* The optimizer is able to deliver rows in group by order so
6564         ** we do not have to sort.  The OP_OpenEphemeral table will be
6565         ** cancelled later because we still need to use the pKeyInfo
6566         */
6567         groupBySort = 0;
6568       }else{
6569         /* Rows are coming out in undetermined order.  We have to push
6570         ** each row into a sorting index, terminate the first loop,
6571         ** then loop over the sorting index in order to get the output
6572         ** in sorted order
6573         */
6574         int regBase;
6575         int regRecord;
6576         int nCol;
6577         int nGroupBy;
6578 
6579         explainTempTable(pParse,
6580             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6581                     "DISTINCT" : "GROUP BY");
6582 
6583         groupBySort = 1;
6584         nGroupBy = pGroupBy->nExpr;
6585         nCol = nGroupBy;
6586         j = nGroupBy;
6587         for(i=0; i<pAggInfo->nColumn; i++){
6588           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6589             nCol++;
6590             j++;
6591           }
6592         }
6593         regBase = sqlite3GetTempRange(pParse, nCol);
6594         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6595         j = nGroupBy;
6596         for(i=0; i<pAggInfo->nColumn; i++){
6597           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6598           if( pCol->iSorterColumn>=j ){
6599             int r1 = j + regBase;
6600             sqlite3ExprCodeGetColumnOfTable(v,
6601                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6602             j++;
6603           }
6604         }
6605         regRecord = sqlite3GetTempReg(pParse);
6606         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6607         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6608         sqlite3ReleaseTempReg(pParse, regRecord);
6609         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6610         sqlite3WhereEnd(pWInfo);
6611         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6612         sortOut = sqlite3GetTempReg(pParse);
6613         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6614         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6615         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6616         pAggInfo->useSortingIdx = 1;
6617       }
6618 
6619       /* If the index or temporary table used by the GROUP BY sort
6620       ** will naturally deliver rows in the order required by the ORDER BY
6621       ** clause, cancel the ephemeral table open coded earlier.
6622       **
6623       ** This is an optimization - the correct answer should result regardless.
6624       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6625       ** disable this optimization for testing purposes.  */
6626       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6627        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6628       ){
6629         sSort.pOrderBy = 0;
6630         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6631       }
6632 
6633       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6634       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6635       ** Then compare the current GROUP BY terms against the GROUP BY terms
6636       ** from the previous row currently stored in a0, a1, a2...
6637       */
6638       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6639       if( groupBySort ){
6640         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6641                           sortOut, sortPTab);
6642       }
6643       for(j=0; j<pGroupBy->nExpr; j++){
6644         if( groupBySort ){
6645           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6646         }else{
6647           pAggInfo->directMode = 1;
6648           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6649         }
6650       }
6651       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6652                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6653       addr1 = sqlite3VdbeCurrentAddr(v);
6654       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6655 
6656       /* Generate code that runs whenever the GROUP BY changes.
6657       ** Changes in the GROUP BY are detected by the previous code
6658       ** block.  If there were no changes, this block is skipped.
6659       **
6660       ** This code copies current group by terms in b0,b1,b2,...
6661       ** over to a0,a1,a2.  It then calls the output subroutine
6662       ** and resets the aggregate accumulator registers in preparation
6663       ** for the next GROUP BY batch.
6664       */
6665       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6666       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6667       VdbeComment((v, "output one row"));
6668       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6669       VdbeComment((v, "check abort flag"));
6670       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6671       VdbeComment((v, "reset accumulator"));
6672 
6673       /* Update the aggregate accumulators based on the content of
6674       ** the current row
6675       */
6676       sqlite3VdbeJumpHere(v, addr1);
6677       updateAccumulator(pParse, iUseFlag, pAggInfo);
6678       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6679       VdbeComment((v, "indicate data in accumulator"));
6680 
6681       /* End of the loop
6682       */
6683       if( groupBySort ){
6684         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop);
6685         VdbeCoverage(v);
6686       }else{
6687         sqlite3WhereEnd(pWInfo);
6688         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6689       }
6690 
6691       /* Output the final row of result
6692       */
6693       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6694       VdbeComment((v, "output final row"));
6695 
6696       /* Jump over the subroutines
6697       */
6698       sqlite3VdbeGoto(v, addrEnd);
6699 
6700       /* Generate a subroutine that outputs a single row of the result
6701       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6702       ** is less than or equal to zero, the subroutine is a no-op.  If
6703       ** the processing calls for the query to abort, this subroutine
6704       ** increments the iAbortFlag memory location before returning in
6705       ** order to signal the caller to abort.
6706       */
6707       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6708       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6709       VdbeComment((v, "set abort flag"));
6710       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6711       sqlite3VdbeResolveLabel(v, addrOutputRow);
6712       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6713       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6714       VdbeCoverage(v);
6715       VdbeComment((v, "Groupby result generator entry point"));
6716       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6717       finalizeAggFunctions(pParse, pAggInfo);
6718       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6719       selectInnerLoop(pParse, p, -1, &sSort,
6720                       &sDistinct, pDest,
6721                       addrOutputRow+1, addrSetAbort);
6722       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6723       VdbeComment((v, "end groupby result generator"));
6724 
6725       /* Generate a subroutine that will reset the group-by accumulator
6726       */
6727       sqlite3VdbeResolveLabel(v, addrReset);
6728       resetAccumulator(pParse, pAggInfo);
6729       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6730       VdbeComment((v, "indicate accumulator empty"));
6731       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6732 
6733     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6734     else {
6735       Table *pTab;
6736       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6737         /* If isSimpleCount() returns a pointer to a Table structure, then
6738         ** the SQL statement is of the form:
6739         **
6740         **   SELECT count(*) FROM <tbl>
6741         **
6742         ** where the Table structure returned represents table <tbl>.
6743         **
6744         ** This statement is so common that it is optimized specially. The
6745         ** OP_Count instruction is executed either on the intkey table that
6746         ** contains the data for table <tbl> or on one of its indexes. It
6747         ** is better to execute the op on an index, as indexes are almost
6748         ** always spread across less pages than their corresponding tables.
6749         */
6750         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6751         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6752         Index *pIdx;                         /* Iterator variable */
6753         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6754         Index *pBest = 0;                    /* Best index found so far */
6755         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
6756 
6757         sqlite3CodeVerifySchema(pParse, iDb);
6758         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6759 
6760         /* Search for the index that has the lowest scan cost.
6761         **
6762         ** (2011-04-15) Do not do a full scan of an unordered index.
6763         **
6764         ** (2013-10-03) Do not count the entries in a partial index.
6765         **
6766         ** In practice the KeyInfo structure will not be used. It is only
6767         ** passed to keep OP_OpenRead happy.
6768         */
6769         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6770         if( !p->pSrc->a[0].fg.notIndexed ){
6771           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6772             if( pIdx->bUnordered==0
6773              && pIdx->szIdxRow<pTab->szTabRow
6774              && pIdx->pPartIdxWhere==0
6775              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6776             ){
6777               pBest = pIdx;
6778             }
6779           }
6780         }
6781         if( pBest ){
6782           iRoot = pBest->tnum;
6783           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6784         }
6785 
6786         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6787         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
6788         if( pKeyInfo ){
6789           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6790         }
6791         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
6792         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6793         explainSimpleCount(pParse, pTab, pBest);
6794       }else{
6795         int regAcc = 0;           /* "populate accumulators" flag */
6796         int addrSkip;
6797 
6798         /* If there are accumulator registers but no min() or max() functions
6799         ** without FILTER clauses, allocate register regAcc. Register regAcc
6800         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6801         ** The code generated by updateAccumulator() uses this to ensure
6802         ** that the accumulator registers are (a) updated only once if
6803         ** there are no min() or max functions or (b) always updated for the
6804         ** first row visited by the aggregate, so that they are updated at
6805         ** least once even if the FILTER clause means the min() or max()
6806         ** function visits zero rows.  */
6807         if( pAggInfo->nAccumulator ){
6808           for(i=0; i<pAggInfo->nFunc; i++){
6809             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
6810               continue;
6811             }
6812             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
6813               break;
6814             }
6815           }
6816           if( i==pAggInfo->nFunc ){
6817             regAcc = ++pParse->nMem;
6818             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6819           }
6820         }
6821 
6822         /* This case runs if the aggregate has no GROUP BY clause.  The
6823         ** processing is much simpler since there is only a single row
6824         ** of output.
6825         */
6826         assert( p->pGroupBy==0 );
6827         resetAccumulator(pParse, pAggInfo);
6828 
6829         /* If this query is a candidate for the min/max optimization, then
6830         ** minMaxFlag will have been previously set to either
6831         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6832         ** be an appropriate ORDER BY expression for the optimization.
6833         */
6834         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6835         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6836 
6837         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6838         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6839                                    0, minMaxFlag, 0);
6840         if( pWInfo==0 ){
6841           goto select_end;
6842         }
6843         updateAccumulator(pParse, regAcc, pAggInfo);
6844         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6845         addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6846         if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){
6847           sqlite3VdbeGoto(v, addrSkip);
6848         }
6849         sqlite3WhereEnd(pWInfo);
6850         finalizeAggFunctions(pParse, pAggInfo);
6851       }
6852 
6853       sSort.pOrderBy = 0;
6854       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6855       selectInnerLoop(pParse, p, -1, 0, 0,
6856                       pDest, addrEnd, addrEnd);
6857     }
6858     sqlite3VdbeResolveLabel(v, addrEnd);
6859 
6860   } /* endif aggregate query */
6861 
6862   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6863     explainTempTable(pParse, "DISTINCT");
6864   }
6865 
6866   /* If there is an ORDER BY clause, then we need to sort the results
6867   ** and send them to the callback one by one.
6868   */
6869   if( sSort.pOrderBy ){
6870     explainTempTable(pParse,
6871                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6872     assert( p->pEList==pEList );
6873     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6874   }
6875 
6876   /* Jump here to skip this query
6877   */
6878   sqlite3VdbeResolveLabel(v, iEnd);
6879 
6880   /* The SELECT has been coded. If there is an error in the Parse structure,
6881   ** set the return code to 1. Otherwise 0. */
6882   rc = (pParse->nErr>0);
6883 
6884   /* Control jumps to here if an error is encountered above, or upon
6885   ** successful coding of the SELECT.
6886   */
6887 select_end:
6888   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6889 #ifdef SQLITE_DEBUG
6890   if( pAggInfo && !db->mallocFailed ){
6891     for(i=0; i<pAggInfo->nColumn; i++){
6892       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
6893       assert( pExpr!=0 || db->mallocFailed );
6894       if( pExpr==0 ) continue;
6895       assert( pExpr->pAggInfo==pAggInfo );
6896       assert( pExpr->iAgg==i );
6897     }
6898     for(i=0; i<pAggInfo->nFunc; i++){
6899       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6900       assert( pExpr!=0 || db->mallocFailed );
6901       if( pExpr==0 ) continue;
6902       assert( pExpr->pAggInfo==pAggInfo );
6903       assert( pExpr->iAgg==i );
6904     }
6905   }
6906 #endif
6907 
6908 #if SELECTTRACE_ENABLED
6909   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6910   if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6911     sqlite3TreeViewSelect(0, p, 0);
6912   }
6913 #endif
6914   ExplainQueryPlanPop(pParse);
6915   return rc;
6916 }
6917