1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 #ifndef SQLITE_OMIT_WINDOWFUNC 89 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 90 sqlite3WindowListDelete(db, p->pWinDefn); 91 } 92 #endif 93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 94 if( bFree ) sqlite3DbFreeNN(db, p); 95 p = pPrior; 96 bFree = 1; 97 } 98 } 99 100 /* 101 ** Initialize a SelectDest structure. 102 */ 103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 104 pDest->eDest = (u8)eDest; 105 pDest->iSDParm = iParm; 106 pDest->iSDParm2 = 0; 107 pDest->zAffSdst = 0; 108 pDest->iSdst = 0; 109 pDest->nSdst = 0; 110 } 111 112 113 /* 114 ** Allocate a new Select structure and return a pointer to that 115 ** structure. 116 */ 117 Select *sqlite3SelectNew( 118 Parse *pParse, /* Parsing context */ 119 ExprList *pEList, /* which columns to include in the result */ 120 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 121 Expr *pWhere, /* the WHERE clause */ 122 ExprList *pGroupBy, /* the GROUP BY clause */ 123 Expr *pHaving, /* the HAVING clause */ 124 ExprList *pOrderBy, /* the ORDER BY clause */ 125 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 126 Expr *pLimit /* LIMIT value. NULL means not used */ 127 ){ 128 Select *pNew, *pAllocated; 129 Select standin; 130 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 131 if( pNew==0 ){ 132 assert( pParse->db->mallocFailed ); 133 pNew = &standin; 134 } 135 if( pEList==0 ){ 136 pEList = sqlite3ExprListAppend(pParse, 0, 137 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 138 } 139 pNew->pEList = pEList; 140 pNew->op = TK_SELECT; 141 pNew->selFlags = selFlags; 142 pNew->iLimit = 0; 143 pNew->iOffset = 0; 144 pNew->selId = ++pParse->nSelect; 145 pNew->addrOpenEphm[0] = -1; 146 pNew->addrOpenEphm[1] = -1; 147 pNew->nSelectRow = 0; 148 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 149 pNew->pSrc = pSrc; 150 pNew->pWhere = pWhere; 151 pNew->pGroupBy = pGroupBy; 152 pNew->pHaving = pHaving; 153 pNew->pOrderBy = pOrderBy; 154 pNew->pPrior = 0; 155 pNew->pNext = 0; 156 pNew->pLimit = pLimit; 157 pNew->pWith = 0; 158 #ifndef SQLITE_OMIT_WINDOWFUNC 159 pNew->pWin = 0; 160 pNew->pWinDefn = 0; 161 #endif 162 if( pParse->db->mallocFailed ) { 163 clearSelect(pParse->db, pNew, pNew!=&standin); 164 pAllocated = 0; 165 }else{ 166 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 167 } 168 return pAllocated; 169 } 170 171 172 /* 173 ** Delete the given Select structure and all of its substructures. 174 */ 175 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 176 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 177 } 178 179 /* 180 ** Return a pointer to the right-most SELECT statement in a compound. 181 */ 182 static Select *findRightmost(Select *p){ 183 while( p->pNext ) p = p->pNext; 184 return p; 185 } 186 187 /* 188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 189 ** type of join. Return an integer constant that expresses that type 190 ** in terms of the following bit values: 191 ** 192 ** JT_INNER 193 ** JT_CROSS 194 ** JT_OUTER 195 ** JT_NATURAL 196 ** JT_LEFT 197 ** JT_RIGHT 198 ** 199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 200 ** 201 ** If an illegal or unsupported join type is seen, then still return 202 ** a join type, but put an error in the pParse structure. 203 */ 204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 205 int jointype = 0; 206 Token *apAll[3]; 207 Token *p; 208 /* 0123456789 123456789 123456789 123 */ 209 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 210 static const struct { 211 u8 i; /* Beginning of keyword text in zKeyText[] */ 212 u8 nChar; /* Length of the keyword in characters */ 213 u8 code; /* Join type mask */ 214 } aKeyword[] = { 215 /* natural */ { 0, 7, JT_NATURAL }, 216 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 217 /* outer */ { 10, 5, JT_OUTER }, 218 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 219 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 220 /* inner */ { 23, 5, JT_INNER }, 221 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 222 }; 223 int i, j; 224 apAll[0] = pA; 225 apAll[1] = pB; 226 apAll[2] = pC; 227 for(i=0; i<3 && apAll[i]; i++){ 228 p = apAll[i]; 229 for(j=0; j<ArraySize(aKeyword); j++){ 230 if( p->n==aKeyword[j].nChar 231 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 232 jointype |= aKeyword[j].code; 233 break; 234 } 235 } 236 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 237 if( j>=ArraySize(aKeyword) ){ 238 jointype |= JT_ERROR; 239 break; 240 } 241 } 242 if( 243 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 244 (jointype & JT_ERROR)!=0 245 ){ 246 const char *zSp = " "; 247 assert( pB!=0 ); 248 if( pC==0 ){ zSp++; } 249 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 250 "%T %T%s%T", pA, pB, zSp, pC); 251 jointype = JT_INNER; 252 }else if( (jointype & JT_OUTER)!=0 253 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 254 sqlite3ErrorMsg(pParse, 255 "RIGHT and FULL OUTER JOINs are not currently supported"); 256 jointype = JT_INNER; 257 } 258 return jointype; 259 } 260 261 /* 262 ** Return the index of a column in a table. Return -1 if the column 263 ** is not contained in the table. 264 */ 265 static int columnIndex(Table *pTab, const char *zCol){ 266 int i; 267 u8 h = sqlite3StrIHash(zCol); 268 Column *pCol; 269 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 270 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 271 } 272 return -1; 273 } 274 275 /* 276 ** Search the first N tables in pSrc, from left to right, looking for a 277 ** table that has a column named zCol. 278 ** 279 ** When found, set *piTab and *piCol to the table index and column index 280 ** of the matching column and return TRUE. 281 ** 282 ** If not found, return FALSE. 283 */ 284 static int tableAndColumnIndex( 285 SrcList *pSrc, /* Array of tables to search */ 286 int N, /* Number of tables in pSrc->a[] to search */ 287 const char *zCol, /* Name of the column we are looking for */ 288 int *piTab, /* Write index of pSrc->a[] here */ 289 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 290 int bIgnoreHidden /* True to ignore hidden columns */ 291 ){ 292 int i; /* For looping over tables in pSrc */ 293 int iCol; /* Index of column matching zCol */ 294 295 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 296 for(i=0; i<N; i++){ 297 iCol = columnIndex(pSrc->a[i].pTab, zCol); 298 if( iCol>=0 299 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 300 ){ 301 if( piTab ){ 302 *piTab = i; 303 *piCol = iCol; 304 } 305 return 1; 306 } 307 } 308 return 0; 309 } 310 311 /* 312 ** This function is used to add terms implied by JOIN syntax to the 313 ** WHERE clause expression of a SELECT statement. The new term, which 314 ** is ANDed with the existing WHERE clause, is of the form: 315 ** 316 ** (tab1.col1 = tab2.col2) 317 ** 318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 320 ** column iColRight of tab2. 321 */ 322 static void addWhereTerm( 323 Parse *pParse, /* Parsing context */ 324 SrcList *pSrc, /* List of tables in FROM clause */ 325 int iLeft, /* Index of first table to join in pSrc */ 326 int iColLeft, /* Index of column in first table */ 327 int iRight, /* Index of second table in pSrc */ 328 int iColRight, /* Index of column in second table */ 329 int isOuterJoin, /* True if this is an OUTER join */ 330 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 331 ){ 332 sqlite3 *db = pParse->db; 333 Expr *pE1; 334 Expr *pE2; 335 Expr *pEq; 336 337 assert( iLeft<iRight ); 338 assert( pSrc->nSrc>iRight ); 339 assert( pSrc->a[iLeft].pTab ); 340 assert( pSrc->a[iRight].pTab ); 341 342 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 343 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 344 345 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 346 if( pEq && isOuterJoin ){ 347 ExprSetProperty(pEq, EP_FromJoin); 348 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 349 ExprSetVVAProperty(pEq, EP_NoReduce); 350 pEq->iRightJoinTable = (i16)pE2->iTable; 351 } 352 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 353 } 354 355 /* 356 ** Set the EP_FromJoin property on all terms of the given expression. 357 ** And set the Expr.iRightJoinTable to iTable for every term in the 358 ** expression. 359 ** 360 ** The EP_FromJoin property is used on terms of an expression to tell 361 ** the LEFT OUTER JOIN processing logic that this term is part of the 362 ** join restriction specified in the ON or USING clause and not a part 363 ** of the more general WHERE clause. These terms are moved over to the 364 ** WHERE clause during join processing but we need to remember that they 365 ** originated in the ON or USING clause. 366 ** 367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 368 ** expression depends on table iRightJoinTable even if that table is not 369 ** explicitly mentioned in the expression. That information is needed 370 ** for cases like this: 371 ** 372 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 373 ** 374 ** The where clause needs to defer the handling of the t1.x=5 375 ** term until after the t2 loop of the join. In that way, a 376 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 377 ** defer the handling of t1.x=5, it will be processed immediately 378 ** after the t1 loop and rows with t1.x!=5 will never appear in 379 ** the output, which is incorrect. 380 */ 381 void sqlite3SetJoinExpr(Expr *p, int iTable){ 382 while( p ){ 383 ExprSetProperty(p, EP_FromJoin); 384 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 385 ExprSetVVAProperty(p, EP_NoReduce); 386 p->iRightJoinTable = (i16)iTable; 387 if( p->op==TK_FUNCTION && p->x.pList ){ 388 int i; 389 for(i=0; i<p->x.pList->nExpr; i++){ 390 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 391 } 392 } 393 sqlite3SetJoinExpr(p->pLeft, iTable); 394 p = p->pRight; 395 } 396 } 397 398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 400 ** an ordinary term that omits the EP_FromJoin mark. 401 ** 402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 403 */ 404 static void unsetJoinExpr(Expr *p, int iTable){ 405 while( p ){ 406 if( ExprHasProperty(p, EP_FromJoin) 407 && (iTable<0 || p->iRightJoinTable==iTable) ){ 408 ExprClearProperty(p, EP_FromJoin); 409 } 410 if( p->op==TK_FUNCTION && p->x.pList ){ 411 int i; 412 for(i=0; i<p->x.pList->nExpr; i++){ 413 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 414 } 415 } 416 unsetJoinExpr(p->pLeft, iTable); 417 p = p->pRight; 418 } 419 } 420 421 /* 422 ** This routine processes the join information for a SELECT statement. 423 ** ON and USING clauses are converted into extra terms of the WHERE clause. 424 ** NATURAL joins also create extra WHERE clause terms. 425 ** 426 ** The terms of a FROM clause are contained in the Select.pSrc structure. 427 ** The left most table is the first entry in Select.pSrc. The right-most 428 ** table is the last entry. The join operator is held in the entry to 429 ** the left. Thus entry 0 contains the join operator for the join between 430 ** entries 0 and 1. Any ON or USING clauses associated with the join are 431 ** also attached to the left entry. 432 ** 433 ** This routine returns the number of errors encountered. 434 */ 435 static int sqliteProcessJoin(Parse *pParse, Select *p){ 436 SrcList *pSrc; /* All tables in the FROM clause */ 437 int i, j; /* Loop counters */ 438 struct SrcList_item *pLeft; /* Left table being joined */ 439 struct SrcList_item *pRight; /* Right table being joined */ 440 441 pSrc = p->pSrc; 442 pLeft = &pSrc->a[0]; 443 pRight = &pLeft[1]; 444 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 445 Table *pRightTab = pRight->pTab; 446 int isOuter; 447 448 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 449 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 450 451 /* When the NATURAL keyword is present, add WHERE clause terms for 452 ** every column that the two tables have in common. 453 */ 454 if( pRight->fg.jointype & JT_NATURAL ){ 455 if( pRight->pOn || pRight->pUsing ){ 456 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 457 "an ON or USING clause", 0); 458 return 1; 459 } 460 for(j=0; j<pRightTab->nCol; j++){ 461 char *zName; /* Name of column in the right table */ 462 int iLeft; /* Matching left table */ 463 int iLeftCol; /* Matching column in the left table */ 464 465 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 466 zName = pRightTab->aCol[j].zName; 467 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 474 /* Disallow both ON and USING clauses in the same join 475 */ 476 if( pRight->pOn && pRight->pUsing ){ 477 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 478 "clauses in the same join"); 479 return 1; 480 } 481 482 /* Add the ON clause to the end of the WHERE clause, connected by 483 ** an AND operator. 484 */ 485 if( pRight->pOn ){ 486 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 487 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 488 pRight->pOn = 0; 489 } 490 491 /* Create extra terms on the WHERE clause for each column named 492 ** in the USING clause. Example: If the two tables to be joined are 493 ** A and B and the USING clause names X, Y, and Z, then add this 494 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 495 ** Report an error if any column mentioned in the USING clause is 496 ** not contained in both tables to be joined. 497 */ 498 if( pRight->pUsing ){ 499 IdList *pList = pRight->pUsing; 500 for(j=0; j<pList->nId; j++){ 501 char *zName; /* Name of the term in the USING clause */ 502 int iLeft; /* Table on the left with matching column name */ 503 int iLeftCol; /* Column number of matching column on the left */ 504 int iRightCol; /* Column number of matching column on the right */ 505 506 zName = pList->a[j].zName; 507 iRightCol = columnIndex(pRightTab, zName); 508 if( iRightCol<0 509 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 510 ){ 511 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 512 "not present in both tables", zName); 513 return 1; 514 } 515 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 516 isOuter, &p->pWhere); 517 } 518 } 519 } 520 return 0; 521 } 522 523 /* 524 ** An instance of this object holds information (beyond pParse and pSelect) 525 ** needed to load the next result row that is to be added to the sorter. 526 */ 527 typedef struct RowLoadInfo RowLoadInfo; 528 struct RowLoadInfo { 529 int regResult; /* Store results in array of registers here */ 530 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 532 ExprList *pExtra; /* Extra columns needed by sorter refs */ 533 int regExtraResult; /* Where to load the extra columns */ 534 #endif 535 }; 536 537 /* 538 ** This routine does the work of loading query data into an array of 539 ** registers so that it can be added to the sorter. 540 */ 541 static void innerLoopLoadRow( 542 Parse *pParse, /* Statement under construction */ 543 Select *pSelect, /* The query being coded */ 544 RowLoadInfo *pInfo /* Info needed to complete the row load */ 545 ){ 546 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 547 0, pInfo->ecelFlags); 548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 549 if( pInfo->pExtra ){ 550 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 551 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 552 } 553 #endif 554 } 555 556 /* 557 ** Code the OP_MakeRecord instruction that generates the entry to be 558 ** added into the sorter. 559 ** 560 ** Return the register in which the result is stored. 561 */ 562 static int makeSorterRecord( 563 Parse *pParse, 564 SortCtx *pSort, 565 Select *pSelect, 566 int regBase, 567 int nBase 568 ){ 569 int nOBSat = pSort->nOBSat; 570 Vdbe *v = pParse->pVdbe; 571 int regOut = ++pParse->nMem; 572 if( pSort->pDeferredRowLoad ){ 573 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 574 } 575 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 576 return regOut; 577 } 578 579 /* 580 ** Generate code that will push the record in registers regData 581 ** through regData+nData-1 onto the sorter. 582 */ 583 static void pushOntoSorter( 584 Parse *pParse, /* Parser context */ 585 SortCtx *pSort, /* Information about the ORDER BY clause */ 586 Select *pSelect, /* The whole SELECT statement */ 587 int regData, /* First register holding data to be sorted */ 588 int regOrigData, /* First register holding data before packing */ 589 int nData, /* Number of elements in the regData data array */ 590 int nPrefixReg /* No. of reg prior to regData available for use */ 591 ){ 592 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 593 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 594 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 595 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 596 int regBase; /* Regs for sorter record */ 597 int regRecord = 0; /* Assembled sorter record */ 598 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 599 int op; /* Opcode to add sorter record to sorter */ 600 int iLimit; /* LIMIT counter */ 601 int iSkip = 0; /* End of the sorter insert loop */ 602 603 assert( bSeq==0 || bSeq==1 ); 604 605 /* Three cases: 606 ** (1) The data to be sorted has already been packed into a Record 607 ** by a prior OP_MakeRecord. In this case nData==1 and regData 608 ** will be completely unrelated to regOrigData. 609 ** (2) All output columns are included in the sort record. In that 610 ** case regData==regOrigData. 611 ** (3) Some output columns are omitted from the sort record due to 612 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 613 ** SQLITE_ECEL_OMITREF optimization, or due to the 614 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 615 ** regOrigData is 0 to prevent this routine from trying to copy 616 ** values that might not yet exist. 617 */ 618 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 619 620 if( nPrefixReg ){ 621 assert( nPrefixReg==nExpr+bSeq ); 622 regBase = regData - nPrefixReg; 623 }else{ 624 regBase = pParse->nMem + 1; 625 pParse->nMem += nBase; 626 } 627 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 628 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 629 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 630 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 631 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 632 if( bSeq ){ 633 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 634 } 635 if( nPrefixReg==0 && nData>0 ){ 636 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 637 } 638 if( nOBSat>0 ){ 639 int regPrevKey; /* The first nOBSat columns of the previous row */ 640 int addrFirst; /* Address of the OP_IfNot opcode */ 641 int addrJmp; /* Address of the OP_Jump opcode */ 642 VdbeOp *pOp; /* Opcode that opens the sorter */ 643 int nKey; /* Number of sorting key columns, including OP_Sequence */ 644 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 645 646 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 647 regPrevKey = pParse->nMem+1; 648 pParse->nMem += pSort->nOBSat; 649 nKey = nExpr - pSort->nOBSat + bSeq; 650 if( bSeq ){ 651 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 652 }else{ 653 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 654 } 655 VdbeCoverage(v); 656 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 657 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 658 if( pParse->db->mallocFailed ) return; 659 pOp->p2 = nKey + nData; 660 pKI = pOp->p4.pKeyInfo; 661 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 662 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 663 testcase( pKI->nAllField > pKI->nKeyField+2 ); 664 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 665 pKI->nAllField-pKI->nKeyField-1); 666 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 667 addrJmp = sqlite3VdbeCurrentAddr(v); 668 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 669 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 670 pSort->regReturn = ++pParse->nMem; 671 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 672 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 673 if( iLimit ){ 674 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 675 VdbeCoverage(v); 676 } 677 sqlite3VdbeJumpHere(v, addrFirst); 678 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 679 sqlite3VdbeJumpHere(v, addrJmp); 680 } 681 if( iLimit ){ 682 /* At this point the values for the new sorter entry are stored 683 ** in an array of registers. They need to be composed into a record 684 ** and inserted into the sorter if either (a) there are currently 685 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 686 ** the largest record currently in the sorter. If (b) is true and there 687 ** are already LIMIT+OFFSET items in the sorter, delete the largest 688 ** entry before inserting the new one. This way there are never more 689 ** than LIMIT+OFFSET items in the sorter. 690 ** 691 ** If the new record does not need to be inserted into the sorter, 692 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 693 ** value is not zero, then it is a label of where to jump. Otherwise, 694 ** just bypass the row insert logic. See the header comment on the 695 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 696 */ 697 int iCsr = pSort->iECursor; 698 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 699 VdbeCoverage(v); 700 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 701 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 702 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 705 } 706 if( regRecord==0 ){ 707 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 708 } 709 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 710 op = OP_SorterInsert; 711 }else{ 712 op = OP_IdxInsert; 713 } 714 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 715 regBase+nOBSat, nBase-nOBSat); 716 if( iSkip ){ 717 sqlite3VdbeChangeP2(v, iSkip, 718 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 719 } 720 } 721 722 /* 723 ** Add code to implement the OFFSET 724 */ 725 static void codeOffset( 726 Vdbe *v, /* Generate code into this VM */ 727 int iOffset, /* Register holding the offset counter */ 728 int iContinue /* Jump here to skip the current record */ 729 ){ 730 if( iOffset>0 ){ 731 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 732 VdbeComment((v, "OFFSET")); 733 } 734 } 735 736 /* 737 ** Add code that will check to make sure the N registers starting at iMem 738 ** form a distinct entry. iTab is a sorting index that holds previously 739 ** seen combinations of the N values. A new entry is made in iTab 740 ** if the current N values are new. 741 ** 742 ** A jump to addrRepeat is made and the N+1 values are popped from the 743 ** stack if the top N elements are not distinct. 744 */ 745 static void codeDistinct( 746 Parse *pParse, /* Parsing and code generating context */ 747 int iTab, /* A sorting index used to test for distinctness */ 748 int addrRepeat, /* Jump to here if not distinct */ 749 int N, /* Number of elements */ 750 int iMem /* First element */ 751 ){ 752 Vdbe *v; 753 int r1; 754 755 v = pParse->pVdbe; 756 r1 = sqlite3GetTempReg(pParse); 757 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 758 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 759 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 760 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 761 sqlite3ReleaseTempReg(pParse, r1); 762 } 763 764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 765 /* 766 ** This function is called as part of inner-loop generation for a SELECT 767 ** statement with an ORDER BY that is not optimized by an index. It 768 ** determines the expressions, if any, that the sorter-reference 769 ** optimization should be used for. The sorter-reference optimization 770 ** is used for SELECT queries like: 771 ** 772 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 773 ** 774 ** If the optimization is used for expression "bigblob", then instead of 775 ** storing values read from that column in the sorter records, the PK of 776 ** the row from table t1 is stored instead. Then, as records are extracted from 777 ** the sorter to return to the user, the required value of bigblob is 778 ** retrieved directly from table t1. If the values are very large, this 779 ** can be more efficient than storing them directly in the sorter records. 780 ** 781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 782 ** for which the sorter-reference optimization should be enabled. 783 ** Additionally, the pSort->aDefer[] array is populated with entries 784 ** for all cursors required to evaluate all selected expressions. Finally. 785 ** output variable (*ppExtra) is set to an expression list containing 786 ** expressions for all extra PK values that should be stored in the 787 ** sorter records. 788 */ 789 static void selectExprDefer( 790 Parse *pParse, /* Leave any error here */ 791 SortCtx *pSort, /* Sorter context */ 792 ExprList *pEList, /* Expressions destined for sorter */ 793 ExprList **ppExtra /* Expressions to append to sorter record */ 794 ){ 795 int i; 796 int nDefer = 0; 797 ExprList *pExtra = 0; 798 for(i=0; i<pEList->nExpr; i++){ 799 struct ExprList_item *pItem = &pEList->a[i]; 800 if( pItem->u.x.iOrderByCol==0 ){ 801 Expr *pExpr = pItem->pExpr; 802 Table *pTab = pExpr->y.pTab; 803 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 804 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 805 ){ 806 int j; 807 for(j=0; j<nDefer; j++){ 808 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 809 } 810 if( j==nDefer ){ 811 if( nDefer==ArraySize(pSort->aDefer) ){ 812 continue; 813 }else{ 814 int nKey = 1; 815 int k; 816 Index *pPk = 0; 817 if( !HasRowid(pTab) ){ 818 pPk = sqlite3PrimaryKeyIndex(pTab); 819 nKey = pPk->nKeyCol; 820 } 821 for(k=0; k<nKey; k++){ 822 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 823 if( pNew ){ 824 pNew->iTable = pExpr->iTable; 825 pNew->y.pTab = pExpr->y.pTab; 826 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 827 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 828 } 829 } 830 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 831 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 832 pSort->aDefer[nDefer].nKey = nKey; 833 nDefer++; 834 } 835 } 836 pItem->bSorterRef = 1; 837 } 838 } 839 } 840 pSort->nDefer = (u8)nDefer; 841 *ppExtra = pExtra; 842 } 843 #endif 844 845 /* 846 ** This routine generates the code for the inside of the inner loop 847 ** of a SELECT. 848 ** 849 ** If srcTab is negative, then the p->pEList expressions 850 ** are evaluated in order to get the data for this row. If srcTab is 851 ** zero or more, then data is pulled from srcTab and p->pEList is used only 852 ** to get the number of columns and the collation sequence for each column. 853 */ 854 static void selectInnerLoop( 855 Parse *pParse, /* The parser context */ 856 Select *p, /* The complete select statement being coded */ 857 int srcTab, /* Pull data from this table if non-negative */ 858 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 859 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 860 SelectDest *pDest, /* How to dispose of the results */ 861 int iContinue, /* Jump here to continue with next row */ 862 int iBreak /* Jump here to break out of the inner loop */ 863 ){ 864 Vdbe *v = pParse->pVdbe; 865 int i; 866 int hasDistinct; /* True if the DISTINCT keyword is present */ 867 int eDest = pDest->eDest; /* How to dispose of results */ 868 int iParm = pDest->iSDParm; /* First argument to disposal method */ 869 int nResultCol; /* Number of result columns */ 870 int nPrefixReg = 0; /* Number of extra registers before regResult */ 871 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 872 873 /* Usually, regResult is the first cell in an array of memory cells 874 ** containing the current result row. In this case regOrig is set to the 875 ** same value. However, if the results are being sent to the sorter, the 876 ** values for any expressions that are also part of the sort-key are omitted 877 ** from this array. In this case regOrig is set to zero. */ 878 int regResult; /* Start of memory holding current results */ 879 int regOrig; /* Start of memory holding full result (or 0) */ 880 881 assert( v ); 882 assert( p->pEList!=0 ); 883 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 884 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 885 if( pSort==0 && !hasDistinct ){ 886 assert( iContinue!=0 ); 887 codeOffset(v, p->iOffset, iContinue); 888 } 889 890 /* Pull the requested columns. 891 */ 892 nResultCol = p->pEList->nExpr; 893 894 if( pDest->iSdst==0 ){ 895 if( pSort ){ 896 nPrefixReg = pSort->pOrderBy->nExpr; 897 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 898 pParse->nMem += nPrefixReg; 899 } 900 pDest->iSdst = pParse->nMem+1; 901 pParse->nMem += nResultCol; 902 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 903 /* This is an error condition that can result, for example, when a SELECT 904 ** on the right-hand side of an INSERT contains more result columns than 905 ** there are columns in the table on the left. The error will be caught 906 ** and reported later. But we need to make sure enough memory is allocated 907 ** to avoid other spurious errors in the meantime. */ 908 pParse->nMem += nResultCol; 909 } 910 pDest->nSdst = nResultCol; 911 regOrig = regResult = pDest->iSdst; 912 if( srcTab>=0 ){ 913 for(i=0; i<nResultCol; i++){ 914 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 915 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 916 } 917 }else if( eDest!=SRT_Exists ){ 918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 919 ExprList *pExtra = 0; 920 #endif 921 /* If the destination is an EXISTS(...) expression, the actual 922 ** values returned by the SELECT are not required. 923 */ 924 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 925 ExprList *pEList; 926 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 927 ecelFlags = SQLITE_ECEL_DUP; 928 }else{ 929 ecelFlags = 0; 930 } 931 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 932 /* For each expression in p->pEList that is a copy of an expression in 933 ** the ORDER BY clause (pSort->pOrderBy), set the associated 934 ** iOrderByCol value to one more than the index of the ORDER BY 935 ** expression within the sort-key that pushOntoSorter() will generate. 936 ** This allows the p->pEList field to be omitted from the sorted record, 937 ** saving space and CPU cycles. */ 938 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 939 940 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 941 int j; 942 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 943 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 944 } 945 } 946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 947 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 948 if( pExtra && pParse->db->mallocFailed==0 ){ 949 /* If there are any extra PK columns to add to the sorter records, 950 ** allocate extra memory cells and adjust the OpenEphemeral 951 ** instruction to account for the larger records. This is only 952 ** required if there are one or more WITHOUT ROWID tables with 953 ** composite primary keys in the SortCtx.aDefer[] array. */ 954 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 955 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 956 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 957 pParse->nMem += pExtra->nExpr; 958 } 959 #endif 960 961 /* Adjust nResultCol to account for columns that are omitted 962 ** from the sorter by the optimizations in this branch */ 963 pEList = p->pEList; 964 for(i=0; i<pEList->nExpr; i++){ 965 if( pEList->a[i].u.x.iOrderByCol>0 966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 967 || pEList->a[i].bSorterRef 968 #endif 969 ){ 970 nResultCol--; 971 regOrig = 0; 972 } 973 } 974 975 testcase( regOrig ); 976 testcase( eDest==SRT_Set ); 977 testcase( eDest==SRT_Mem ); 978 testcase( eDest==SRT_Coroutine ); 979 testcase( eDest==SRT_Output ); 980 assert( eDest==SRT_Set || eDest==SRT_Mem 981 || eDest==SRT_Coroutine || eDest==SRT_Output 982 || eDest==SRT_Upfrom ); 983 } 984 sRowLoadInfo.regResult = regResult; 985 sRowLoadInfo.ecelFlags = ecelFlags; 986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 987 sRowLoadInfo.pExtra = pExtra; 988 sRowLoadInfo.regExtraResult = regResult + nResultCol; 989 if( pExtra ) nResultCol += pExtra->nExpr; 990 #endif 991 if( p->iLimit 992 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 993 && nPrefixReg>0 994 ){ 995 assert( pSort!=0 ); 996 assert( hasDistinct==0 ); 997 pSort->pDeferredRowLoad = &sRowLoadInfo; 998 regOrig = 0; 999 }else{ 1000 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1001 } 1002 } 1003 1004 /* If the DISTINCT keyword was present on the SELECT statement 1005 ** and this row has been seen before, then do not make this row 1006 ** part of the result. 1007 */ 1008 if( hasDistinct ){ 1009 switch( pDistinct->eTnctType ){ 1010 case WHERE_DISTINCT_ORDERED: { 1011 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1012 int iJump; /* Jump destination */ 1013 int regPrev; /* Previous row content */ 1014 1015 /* Allocate space for the previous row */ 1016 regPrev = pParse->nMem+1; 1017 pParse->nMem += nResultCol; 1018 1019 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1020 ** sets the MEM_Cleared bit on the first register of the 1021 ** previous value. This will cause the OP_Ne below to always 1022 ** fail on the first iteration of the loop even if the first 1023 ** row is all NULLs. 1024 */ 1025 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1026 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1027 pOp->opcode = OP_Null; 1028 pOp->p1 = 1; 1029 pOp->p2 = regPrev; 1030 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1031 1032 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1033 for(i=0; i<nResultCol; i++){ 1034 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1035 if( i<nResultCol-1 ){ 1036 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1037 VdbeCoverage(v); 1038 }else{ 1039 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1040 VdbeCoverage(v); 1041 } 1042 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1043 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1044 } 1045 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1046 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1047 break; 1048 } 1049 1050 case WHERE_DISTINCT_UNIQUE: { 1051 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1052 break; 1053 } 1054 1055 default: { 1056 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1057 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1058 regResult); 1059 break; 1060 } 1061 } 1062 if( pSort==0 ){ 1063 codeOffset(v, p->iOffset, iContinue); 1064 } 1065 } 1066 1067 switch( eDest ){ 1068 /* In this mode, write each query result to the key of the temporary 1069 ** table iParm. 1070 */ 1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1072 case SRT_Union: { 1073 int r1; 1074 r1 = sqlite3GetTempReg(pParse); 1075 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1076 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1077 sqlite3ReleaseTempReg(pParse, r1); 1078 break; 1079 } 1080 1081 /* Construct a record from the query result, but instead of 1082 ** saving that record, use it as a key to delete elements from 1083 ** the temporary table iParm. 1084 */ 1085 case SRT_Except: { 1086 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1087 break; 1088 } 1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1090 1091 /* Store the result as data using a unique key. 1092 */ 1093 case SRT_Fifo: 1094 case SRT_DistFifo: 1095 case SRT_Table: 1096 case SRT_EphemTab: { 1097 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1098 testcase( eDest==SRT_Table ); 1099 testcase( eDest==SRT_EphemTab ); 1100 testcase( eDest==SRT_Fifo ); 1101 testcase( eDest==SRT_DistFifo ); 1102 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1103 #ifndef SQLITE_OMIT_CTE 1104 if( eDest==SRT_DistFifo ){ 1105 /* If the destination is DistFifo, then cursor (iParm+1) is open 1106 ** on an ephemeral index. If the current row is already present 1107 ** in the index, do not write it to the output. If not, add the 1108 ** current row to the index and proceed with writing it to the 1109 ** output table as well. */ 1110 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1111 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1112 VdbeCoverage(v); 1113 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1114 assert( pSort==0 ); 1115 } 1116 #endif 1117 if( pSort ){ 1118 assert( regResult==regOrig ); 1119 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1120 }else{ 1121 int r2 = sqlite3GetTempReg(pParse); 1122 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1123 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1124 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1125 sqlite3ReleaseTempReg(pParse, r2); 1126 } 1127 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1128 break; 1129 } 1130 1131 case SRT_Upfrom: { 1132 if( pSort ){ 1133 pushOntoSorter( 1134 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1135 }else{ 1136 int i2 = pDest->iSDParm2; 1137 int r1 = sqlite3GetTempReg(pParse); 1138 1139 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1140 ** might still be trying to return one row, because that is what 1141 ** aggregates do. Don't record that empty row in the output table. */ 1142 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1143 1144 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1145 regResult+(i2<0), nResultCol-(i2<0), r1); 1146 if( i2<0 ){ 1147 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1148 }else{ 1149 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1150 } 1151 } 1152 break; 1153 } 1154 1155 #ifndef SQLITE_OMIT_SUBQUERY 1156 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1157 ** then there should be a single item on the stack. Write this 1158 ** item into the set table with bogus data. 1159 */ 1160 case SRT_Set: { 1161 if( pSort ){ 1162 /* At first glance you would think we could optimize out the 1163 ** ORDER BY in this case since the order of entries in the set 1164 ** does not matter. But there might be a LIMIT clause, in which 1165 ** case the order does matter */ 1166 pushOntoSorter( 1167 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1168 }else{ 1169 int r1 = sqlite3GetTempReg(pParse); 1170 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1171 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1172 r1, pDest->zAffSdst, nResultCol); 1173 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1174 sqlite3ReleaseTempReg(pParse, r1); 1175 } 1176 break; 1177 } 1178 1179 1180 /* If any row exist in the result set, record that fact and abort. 1181 */ 1182 case SRT_Exists: { 1183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1184 /* The LIMIT clause will terminate the loop for us */ 1185 break; 1186 } 1187 1188 /* If this is a scalar select that is part of an expression, then 1189 ** store the results in the appropriate memory cell or array of 1190 ** memory cells and break out of the scan loop. 1191 */ 1192 case SRT_Mem: { 1193 if( pSort ){ 1194 assert( nResultCol<=pDest->nSdst ); 1195 pushOntoSorter( 1196 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1197 }else{ 1198 assert( nResultCol==pDest->nSdst ); 1199 assert( regResult==iParm ); 1200 /* The LIMIT clause will jump out of the loop for us */ 1201 } 1202 break; 1203 } 1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1205 1206 case SRT_Coroutine: /* Send data to a co-routine */ 1207 case SRT_Output: { /* Return the results */ 1208 testcase( eDest==SRT_Coroutine ); 1209 testcase( eDest==SRT_Output ); 1210 if( pSort ){ 1211 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1212 nPrefixReg); 1213 }else if( eDest==SRT_Coroutine ){ 1214 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1215 }else{ 1216 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1217 } 1218 break; 1219 } 1220 1221 #ifndef SQLITE_OMIT_CTE 1222 /* Write the results into a priority queue that is order according to 1223 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1224 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1225 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1226 ** final OP_Sequence column. The last column is the record as a blob. 1227 */ 1228 case SRT_DistQueue: 1229 case SRT_Queue: { 1230 int nKey; 1231 int r1, r2, r3; 1232 int addrTest = 0; 1233 ExprList *pSO; 1234 pSO = pDest->pOrderBy; 1235 assert( pSO ); 1236 nKey = pSO->nExpr; 1237 r1 = sqlite3GetTempReg(pParse); 1238 r2 = sqlite3GetTempRange(pParse, nKey+2); 1239 r3 = r2+nKey+1; 1240 if( eDest==SRT_DistQueue ){ 1241 /* If the destination is DistQueue, then cursor (iParm+1) is open 1242 ** on a second ephemeral index that holds all values every previously 1243 ** added to the queue. */ 1244 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1245 regResult, nResultCol); 1246 VdbeCoverage(v); 1247 } 1248 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1249 if( eDest==SRT_DistQueue ){ 1250 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1251 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1252 } 1253 for(i=0; i<nKey; i++){ 1254 sqlite3VdbeAddOp2(v, OP_SCopy, 1255 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1256 r2+i); 1257 } 1258 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1259 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1260 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1261 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1262 sqlite3ReleaseTempReg(pParse, r1); 1263 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1264 break; 1265 } 1266 #endif /* SQLITE_OMIT_CTE */ 1267 1268 1269 1270 #if !defined(SQLITE_OMIT_TRIGGER) 1271 /* Discard the results. This is used for SELECT statements inside 1272 ** the body of a TRIGGER. The purpose of such selects is to call 1273 ** user-defined functions that have side effects. We do not care 1274 ** about the actual results of the select. 1275 */ 1276 default: { 1277 assert( eDest==SRT_Discard ); 1278 break; 1279 } 1280 #endif 1281 } 1282 1283 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1284 ** there is a sorter, in which case the sorter has already limited 1285 ** the output for us. 1286 */ 1287 if( pSort==0 && p->iLimit ){ 1288 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1289 } 1290 } 1291 1292 /* 1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1294 ** X extra columns. 1295 */ 1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1297 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1298 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1299 if( p ){ 1300 p->aSortFlags = (u8*)&p->aColl[N+X]; 1301 p->nKeyField = (u16)N; 1302 p->nAllField = (u16)(N+X); 1303 p->enc = ENC(db); 1304 p->db = db; 1305 p->nRef = 1; 1306 memset(&p[1], 0, nExtra); 1307 }else{ 1308 sqlite3OomFault(db); 1309 } 1310 return p; 1311 } 1312 1313 /* 1314 ** Deallocate a KeyInfo object 1315 */ 1316 void sqlite3KeyInfoUnref(KeyInfo *p){ 1317 if( p ){ 1318 assert( p->nRef>0 ); 1319 p->nRef--; 1320 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1321 } 1322 } 1323 1324 /* 1325 ** Make a new pointer to a KeyInfo object 1326 */ 1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1328 if( p ){ 1329 assert( p->nRef>0 ); 1330 p->nRef++; 1331 } 1332 return p; 1333 } 1334 1335 #ifdef SQLITE_DEBUG 1336 /* 1337 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1338 ** can only be changed if this is just a single reference to the object. 1339 ** 1340 ** This routine is used only inside of assert() statements. 1341 */ 1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1343 #endif /* SQLITE_DEBUG */ 1344 1345 /* 1346 ** Given an expression list, generate a KeyInfo structure that records 1347 ** the collating sequence for each expression in that expression list. 1348 ** 1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1350 ** KeyInfo structure is appropriate for initializing a virtual index to 1351 ** implement that clause. If the ExprList is the result set of a SELECT 1352 ** then the KeyInfo structure is appropriate for initializing a virtual 1353 ** index to implement a DISTINCT test. 1354 ** 1355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1356 ** function is responsible for seeing that this structure is eventually 1357 ** freed. 1358 */ 1359 KeyInfo *sqlite3KeyInfoFromExprList( 1360 Parse *pParse, /* Parsing context */ 1361 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1362 int iStart, /* Begin with this column of pList */ 1363 int nExtra /* Add this many extra columns to the end */ 1364 ){ 1365 int nExpr; 1366 KeyInfo *pInfo; 1367 struct ExprList_item *pItem; 1368 sqlite3 *db = pParse->db; 1369 int i; 1370 1371 nExpr = pList->nExpr; 1372 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1373 if( pInfo ){ 1374 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1375 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1376 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1377 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1378 } 1379 } 1380 return pInfo; 1381 } 1382 1383 /* 1384 ** Name of the connection operator, used for error messages. 1385 */ 1386 static const char *selectOpName(int id){ 1387 char *z; 1388 switch( id ){ 1389 case TK_ALL: z = "UNION ALL"; break; 1390 case TK_INTERSECT: z = "INTERSECT"; break; 1391 case TK_EXCEPT: z = "EXCEPT"; break; 1392 default: z = "UNION"; break; 1393 } 1394 return z; 1395 } 1396 1397 #ifndef SQLITE_OMIT_EXPLAIN 1398 /* 1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1401 ** where the caption is of the form: 1402 ** 1403 ** "USE TEMP B-TREE FOR xxx" 1404 ** 1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1406 ** is determined by the zUsage argument. 1407 */ 1408 static void explainTempTable(Parse *pParse, const char *zUsage){ 1409 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1410 } 1411 1412 /* 1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1415 ** in sqlite3Select() to assign values to structure member variables that 1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1417 ** code with #ifndef directives. 1418 */ 1419 # define explainSetInteger(a, b) a = b 1420 1421 #else 1422 /* No-op versions of the explainXXX() functions and macros. */ 1423 # define explainTempTable(y,z) 1424 # define explainSetInteger(y,z) 1425 #endif 1426 1427 1428 /* 1429 ** If the inner loop was generated using a non-null pOrderBy argument, 1430 ** then the results were placed in a sorter. After the loop is terminated 1431 ** we need to run the sorter and output the results. The following 1432 ** routine generates the code needed to do that. 1433 */ 1434 static void generateSortTail( 1435 Parse *pParse, /* Parsing context */ 1436 Select *p, /* The SELECT statement */ 1437 SortCtx *pSort, /* Information on the ORDER BY clause */ 1438 int nColumn, /* Number of columns of data */ 1439 SelectDest *pDest /* Write the sorted results here */ 1440 ){ 1441 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1442 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1443 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1444 int addr; /* Top of output loop. Jump for Next. */ 1445 int addrOnce = 0; 1446 int iTab; 1447 ExprList *pOrderBy = pSort->pOrderBy; 1448 int eDest = pDest->eDest; 1449 int iParm = pDest->iSDParm; 1450 int regRow; 1451 int regRowid; 1452 int iCol; 1453 int nKey; /* Number of key columns in sorter record */ 1454 int iSortTab; /* Sorter cursor to read from */ 1455 int i; 1456 int bSeq; /* True if sorter record includes seq. no. */ 1457 int nRefKey = 0; 1458 struct ExprList_item *aOutEx = p->pEList->a; 1459 1460 assert( addrBreak<0 ); 1461 if( pSort->labelBkOut ){ 1462 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1463 sqlite3VdbeGoto(v, addrBreak); 1464 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1465 } 1466 1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1468 /* Open any cursors needed for sorter-reference expressions */ 1469 for(i=0; i<pSort->nDefer; i++){ 1470 Table *pTab = pSort->aDefer[i].pTab; 1471 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1472 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1473 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1474 } 1475 #endif 1476 1477 iTab = pSort->iECursor; 1478 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1479 regRowid = 0; 1480 regRow = pDest->iSdst; 1481 }else{ 1482 regRowid = sqlite3GetTempReg(pParse); 1483 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1484 regRow = sqlite3GetTempReg(pParse); 1485 nColumn = 0; 1486 }else{ 1487 regRow = sqlite3GetTempRange(pParse, nColumn); 1488 } 1489 } 1490 nKey = pOrderBy->nExpr - pSort->nOBSat; 1491 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1492 int regSortOut = ++pParse->nMem; 1493 iSortTab = pParse->nTab++; 1494 if( pSort->labelBkOut ){ 1495 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1496 } 1497 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1498 nKey+1+nColumn+nRefKey); 1499 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1500 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1501 VdbeCoverage(v); 1502 codeOffset(v, p->iOffset, addrContinue); 1503 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1504 bSeq = 0; 1505 }else{ 1506 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1507 codeOffset(v, p->iOffset, addrContinue); 1508 iSortTab = iTab; 1509 bSeq = 1; 1510 } 1511 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1513 if( aOutEx[i].bSorterRef ) continue; 1514 #endif 1515 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1516 } 1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1518 if( pSort->nDefer ){ 1519 int iKey = iCol+1; 1520 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1521 1522 for(i=0; i<pSort->nDefer; i++){ 1523 int iCsr = pSort->aDefer[i].iCsr; 1524 Table *pTab = pSort->aDefer[i].pTab; 1525 int nKey = pSort->aDefer[i].nKey; 1526 1527 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1528 if( HasRowid(pTab) ){ 1529 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1530 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1531 sqlite3VdbeCurrentAddr(v)+1, regKey); 1532 }else{ 1533 int k; 1534 int iJmp; 1535 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1536 for(k=0; k<nKey; k++){ 1537 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1538 } 1539 iJmp = sqlite3VdbeCurrentAddr(v); 1540 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1541 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1542 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1543 } 1544 } 1545 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1546 } 1547 #endif 1548 for(i=nColumn-1; i>=0; i--){ 1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1550 if( aOutEx[i].bSorterRef ){ 1551 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1552 }else 1553 #endif 1554 { 1555 int iRead; 1556 if( aOutEx[i].u.x.iOrderByCol ){ 1557 iRead = aOutEx[i].u.x.iOrderByCol-1; 1558 }else{ 1559 iRead = iCol--; 1560 } 1561 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1562 VdbeComment((v, "%s", aOutEx[i].zEName)); 1563 } 1564 } 1565 switch( eDest ){ 1566 case SRT_Table: 1567 case SRT_EphemTab: { 1568 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1569 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1570 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1571 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1572 break; 1573 } 1574 #ifndef SQLITE_OMIT_SUBQUERY 1575 case SRT_Set: { 1576 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1577 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1578 pDest->zAffSdst, nColumn); 1579 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1580 break; 1581 } 1582 case SRT_Mem: { 1583 /* The LIMIT clause will terminate the loop for us */ 1584 break; 1585 } 1586 #endif 1587 case SRT_Upfrom: { 1588 int i2 = pDest->iSDParm2; 1589 int r1 = sqlite3GetTempReg(pParse); 1590 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1591 if( i2<0 ){ 1592 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1593 }else{ 1594 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1595 } 1596 break; 1597 } 1598 default: { 1599 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1600 testcase( eDest==SRT_Output ); 1601 testcase( eDest==SRT_Coroutine ); 1602 if( eDest==SRT_Output ){ 1603 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1604 }else{ 1605 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1606 } 1607 break; 1608 } 1609 } 1610 if( regRowid ){ 1611 if( eDest==SRT_Set ){ 1612 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1613 }else{ 1614 sqlite3ReleaseTempReg(pParse, regRow); 1615 } 1616 sqlite3ReleaseTempReg(pParse, regRowid); 1617 } 1618 /* The bottom of the loop 1619 */ 1620 sqlite3VdbeResolveLabel(v, addrContinue); 1621 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1622 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1623 }else{ 1624 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1625 } 1626 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1627 sqlite3VdbeResolveLabel(v, addrBreak); 1628 } 1629 1630 /* 1631 ** Return a pointer to a string containing the 'declaration type' of the 1632 ** expression pExpr. The string may be treated as static by the caller. 1633 ** 1634 ** Also try to estimate the size of the returned value and return that 1635 ** result in *pEstWidth. 1636 ** 1637 ** The declaration type is the exact datatype definition extracted from the 1638 ** original CREATE TABLE statement if the expression is a column. The 1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1640 ** is considered a column can be complex in the presence of subqueries. The 1641 ** result-set expression in all of the following SELECT statements is 1642 ** considered a column by this function. 1643 ** 1644 ** SELECT col FROM tbl; 1645 ** SELECT (SELECT col FROM tbl; 1646 ** SELECT (SELECT col FROM tbl); 1647 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1648 ** 1649 ** The declaration type for any expression other than a column is NULL. 1650 ** 1651 ** This routine has either 3 or 6 parameters depending on whether or not 1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1653 */ 1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1658 #endif 1659 static const char *columnTypeImpl( 1660 NameContext *pNC, 1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1662 Expr *pExpr 1663 #else 1664 Expr *pExpr, 1665 const char **pzOrigDb, 1666 const char **pzOrigTab, 1667 const char **pzOrigCol 1668 #endif 1669 ){ 1670 char const *zType = 0; 1671 int j; 1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1673 char const *zOrigDb = 0; 1674 char const *zOrigTab = 0; 1675 char const *zOrigCol = 0; 1676 #endif 1677 1678 assert( pExpr!=0 ); 1679 assert( pNC->pSrcList!=0 ); 1680 switch( pExpr->op ){ 1681 case TK_COLUMN: { 1682 /* The expression is a column. Locate the table the column is being 1683 ** extracted from in NameContext.pSrcList. This table may be real 1684 ** database table or a subquery. 1685 */ 1686 Table *pTab = 0; /* Table structure column is extracted from */ 1687 Select *pS = 0; /* Select the column is extracted from */ 1688 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1689 while( pNC && !pTab ){ 1690 SrcList *pTabList = pNC->pSrcList; 1691 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1692 if( j<pTabList->nSrc ){ 1693 pTab = pTabList->a[j].pTab; 1694 pS = pTabList->a[j].pSelect; 1695 }else{ 1696 pNC = pNC->pNext; 1697 } 1698 } 1699 1700 if( pTab==0 ){ 1701 /* At one time, code such as "SELECT new.x" within a trigger would 1702 ** cause this condition to run. Since then, we have restructured how 1703 ** trigger code is generated and so this condition is no longer 1704 ** possible. However, it can still be true for statements like 1705 ** the following: 1706 ** 1707 ** CREATE TABLE t1(col INTEGER); 1708 ** SELECT (SELECT t1.col) FROM FROM t1; 1709 ** 1710 ** when columnType() is called on the expression "t1.col" in the 1711 ** sub-select. In this case, set the column type to NULL, even 1712 ** though it should really be "INTEGER". 1713 ** 1714 ** This is not a problem, as the column type of "t1.col" is never 1715 ** used. When columnType() is called on the expression 1716 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1717 ** branch below. */ 1718 break; 1719 } 1720 1721 assert( pTab && pExpr->y.pTab==pTab ); 1722 if( pS ){ 1723 /* The "table" is actually a sub-select or a view in the FROM clause 1724 ** of the SELECT statement. Return the declaration type and origin 1725 ** data for the result-set column of the sub-select. 1726 */ 1727 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1728 /* If iCol is less than zero, then the expression requests the 1729 ** rowid of the sub-select or view. This expression is legal (see 1730 ** test case misc2.2.2) - it always evaluates to NULL. 1731 */ 1732 NameContext sNC; 1733 Expr *p = pS->pEList->a[iCol].pExpr; 1734 sNC.pSrcList = pS->pSrc; 1735 sNC.pNext = pNC; 1736 sNC.pParse = pNC->pParse; 1737 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1738 } 1739 }else{ 1740 /* A real table or a CTE table */ 1741 assert( !pS ); 1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1743 if( iCol<0 ) iCol = pTab->iPKey; 1744 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1745 if( iCol<0 ){ 1746 zType = "INTEGER"; 1747 zOrigCol = "rowid"; 1748 }else{ 1749 zOrigCol = pTab->aCol[iCol].zName; 1750 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1751 } 1752 zOrigTab = pTab->zName; 1753 if( pNC->pParse && pTab->pSchema ){ 1754 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1755 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1756 } 1757 #else 1758 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1759 if( iCol<0 ){ 1760 zType = "INTEGER"; 1761 }else{ 1762 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1763 } 1764 #endif 1765 } 1766 break; 1767 } 1768 #ifndef SQLITE_OMIT_SUBQUERY 1769 case TK_SELECT: { 1770 /* The expression is a sub-select. Return the declaration type and 1771 ** origin info for the single column in the result set of the SELECT 1772 ** statement. 1773 */ 1774 NameContext sNC; 1775 Select *pS = pExpr->x.pSelect; 1776 Expr *p = pS->pEList->a[0].pExpr; 1777 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1778 sNC.pSrcList = pS->pSrc; 1779 sNC.pNext = pNC; 1780 sNC.pParse = pNC->pParse; 1781 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1782 break; 1783 } 1784 #endif 1785 } 1786 1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1788 if( pzOrigDb ){ 1789 assert( pzOrigTab && pzOrigCol ); 1790 *pzOrigDb = zOrigDb; 1791 *pzOrigTab = zOrigTab; 1792 *pzOrigCol = zOrigCol; 1793 } 1794 #endif 1795 return zType; 1796 } 1797 1798 /* 1799 ** Generate code that will tell the VDBE the declaration types of columns 1800 ** in the result set. 1801 */ 1802 static void generateColumnTypes( 1803 Parse *pParse, /* Parser context */ 1804 SrcList *pTabList, /* List of tables */ 1805 ExprList *pEList /* Expressions defining the result set */ 1806 ){ 1807 #ifndef SQLITE_OMIT_DECLTYPE 1808 Vdbe *v = pParse->pVdbe; 1809 int i; 1810 NameContext sNC; 1811 sNC.pSrcList = pTabList; 1812 sNC.pParse = pParse; 1813 sNC.pNext = 0; 1814 for(i=0; i<pEList->nExpr; i++){ 1815 Expr *p = pEList->a[i].pExpr; 1816 const char *zType; 1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1818 const char *zOrigDb = 0; 1819 const char *zOrigTab = 0; 1820 const char *zOrigCol = 0; 1821 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1822 1823 /* The vdbe must make its own copy of the column-type and other 1824 ** column specific strings, in case the schema is reset before this 1825 ** virtual machine is deleted. 1826 */ 1827 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1828 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1829 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1830 #else 1831 zType = columnType(&sNC, p, 0, 0, 0); 1832 #endif 1833 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1834 } 1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1836 } 1837 1838 1839 /* 1840 ** Compute the column names for a SELECT statement. 1841 ** 1842 ** The only guarantee that SQLite makes about column names is that if the 1843 ** column has an AS clause assigning it a name, that will be the name used. 1844 ** That is the only documented guarantee. However, countless applications 1845 ** developed over the years have made baseless assumptions about column names 1846 ** and will break if those assumptions changes. Hence, use extreme caution 1847 ** when modifying this routine to avoid breaking legacy. 1848 ** 1849 ** See Also: sqlite3ColumnsFromExprList() 1850 ** 1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1852 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1853 ** applications should operate this way. Nevertheless, we need to support the 1854 ** other modes for legacy: 1855 ** 1856 ** short=OFF, full=OFF: Column name is the text of the expression has it 1857 ** originally appears in the SELECT statement. In 1858 ** other words, the zSpan of the result expression. 1859 ** 1860 ** short=ON, full=OFF: (This is the default setting). If the result 1861 ** refers directly to a table column, then the 1862 ** result column name is just the table column 1863 ** name: COLUMN. Otherwise use zSpan. 1864 ** 1865 ** full=ON, short=ANY: If the result refers directly to a table column, 1866 ** then the result column name with the table name 1867 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1868 */ 1869 static void generateColumnNames( 1870 Parse *pParse, /* Parser context */ 1871 Select *pSelect /* Generate column names for this SELECT statement */ 1872 ){ 1873 Vdbe *v = pParse->pVdbe; 1874 int i; 1875 Table *pTab; 1876 SrcList *pTabList; 1877 ExprList *pEList; 1878 sqlite3 *db = pParse->db; 1879 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1880 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1881 1882 #ifndef SQLITE_OMIT_EXPLAIN 1883 /* If this is an EXPLAIN, skip this step */ 1884 if( pParse->explain ){ 1885 return; 1886 } 1887 #endif 1888 1889 if( pParse->colNamesSet ) return; 1890 /* Column names are determined by the left-most term of a compound select */ 1891 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1892 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1893 pTabList = pSelect->pSrc; 1894 pEList = pSelect->pEList; 1895 assert( v!=0 ); 1896 assert( pTabList!=0 ); 1897 pParse->colNamesSet = 1; 1898 fullName = (db->flags & SQLITE_FullColNames)!=0; 1899 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1900 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1901 for(i=0; i<pEList->nExpr; i++){ 1902 Expr *p = pEList->a[i].pExpr; 1903 1904 assert( p!=0 ); 1905 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1906 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1907 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1908 /* An AS clause always takes first priority */ 1909 char *zName = pEList->a[i].zEName; 1910 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1911 }else if( srcName && p->op==TK_COLUMN ){ 1912 char *zCol; 1913 int iCol = p->iColumn; 1914 pTab = p->y.pTab; 1915 assert( pTab!=0 ); 1916 if( iCol<0 ) iCol = pTab->iPKey; 1917 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1918 if( iCol<0 ){ 1919 zCol = "rowid"; 1920 }else{ 1921 zCol = pTab->aCol[iCol].zName; 1922 } 1923 if( fullName ){ 1924 char *zName = 0; 1925 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1926 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1927 }else{ 1928 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1929 } 1930 }else{ 1931 const char *z = pEList->a[i].zEName; 1932 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1933 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1934 } 1935 } 1936 generateColumnTypes(pParse, pTabList, pEList); 1937 } 1938 1939 /* 1940 ** Given an expression list (which is really the list of expressions 1941 ** that form the result set of a SELECT statement) compute appropriate 1942 ** column names for a table that would hold the expression list. 1943 ** 1944 ** All column names will be unique. 1945 ** 1946 ** Only the column names are computed. Column.zType, Column.zColl, 1947 ** and other fields of Column are zeroed. 1948 ** 1949 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1951 ** 1952 ** The only guarantee that SQLite makes about column names is that if the 1953 ** column has an AS clause assigning it a name, that will be the name used. 1954 ** That is the only documented guarantee. However, countless applications 1955 ** developed over the years have made baseless assumptions about column names 1956 ** and will break if those assumptions changes. Hence, use extreme caution 1957 ** when modifying this routine to avoid breaking legacy. 1958 ** 1959 ** See Also: generateColumnNames() 1960 */ 1961 int sqlite3ColumnsFromExprList( 1962 Parse *pParse, /* Parsing context */ 1963 ExprList *pEList, /* Expr list from which to derive column names */ 1964 i16 *pnCol, /* Write the number of columns here */ 1965 Column **paCol /* Write the new column list here */ 1966 ){ 1967 sqlite3 *db = pParse->db; /* Database connection */ 1968 int i, j; /* Loop counters */ 1969 u32 cnt; /* Index added to make the name unique */ 1970 Column *aCol, *pCol; /* For looping over result columns */ 1971 int nCol; /* Number of columns in the result set */ 1972 char *zName; /* Column name */ 1973 int nName; /* Size of name in zName[] */ 1974 Hash ht; /* Hash table of column names */ 1975 1976 sqlite3HashInit(&ht); 1977 if( pEList ){ 1978 nCol = pEList->nExpr; 1979 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1980 testcase( aCol==0 ); 1981 if( nCol>32767 ) nCol = 32767; 1982 }else{ 1983 nCol = 0; 1984 aCol = 0; 1985 } 1986 assert( nCol==(i16)nCol ); 1987 *pnCol = nCol; 1988 *paCol = aCol; 1989 1990 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1991 /* Get an appropriate name for the column 1992 */ 1993 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1994 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1995 }else{ 1996 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1997 while( pColExpr->op==TK_DOT ){ 1998 pColExpr = pColExpr->pRight; 1999 assert( pColExpr!=0 ); 2000 } 2001 if( pColExpr->op==TK_COLUMN ){ 2002 /* For columns use the column name name */ 2003 int iCol = pColExpr->iColumn; 2004 Table *pTab = pColExpr->y.pTab; 2005 assert( pTab!=0 ); 2006 if( iCol<0 ) iCol = pTab->iPKey; 2007 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2008 }else if( pColExpr->op==TK_ID ){ 2009 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2010 zName = pColExpr->u.zToken; 2011 }else{ 2012 /* Use the original text of the column expression as its name */ 2013 zName = pEList->a[i].zEName; 2014 } 2015 } 2016 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2017 zName = sqlite3DbStrDup(db, zName); 2018 }else{ 2019 zName = sqlite3MPrintf(db,"column%d",i+1); 2020 } 2021 2022 /* Make sure the column name is unique. If the name is not unique, 2023 ** append an integer to the name so that it becomes unique. 2024 */ 2025 cnt = 0; 2026 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2027 nName = sqlite3Strlen30(zName); 2028 if( nName>0 ){ 2029 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2030 if( zName[j]==':' ) nName = j; 2031 } 2032 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2033 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2034 } 2035 pCol->zName = zName; 2036 pCol->hName = sqlite3StrIHash(zName); 2037 sqlite3ColumnPropertiesFromName(0, pCol); 2038 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2039 sqlite3OomFault(db); 2040 } 2041 } 2042 sqlite3HashClear(&ht); 2043 if( db->mallocFailed ){ 2044 for(j=0; j<i; j++){ 2045 sqlite3DbFree(db, aCol[j].zName); 2046 } 2047 sqlite3DbFree(db, aCol); 2048 *paCol = 0; 2049 *pnCol = 0; 2050 return SQLITE_NOMEM_BKPT; 2051 } 2052 return SQLITE_OK; 2053 } 2054 2055 /* 2056 ** Add type and collation information to a column list based on 2057 ** a SELECT statement. 2058 ** 2059 ** The column list presumably came from selectColumnNamesFromExprList(). 2060 ** The column list has only names, not types or collations. This 2061 ** routine goes through and adds the types and collations. 2062 ** 2063 ** This routine requires that all identifiers in the SELECT 2064 ** statement be resolved. 2065 */ 2066 void sqlite3SelectAddColumnTypeAndCollation( 2067 Parse *pParse, /* Parsing contexts */ 2068 Table *pTab, /* Add column type information to this table */ 2069 Select *pSelect, /* SELECT used to determine types and collations */ 2070 char aff /* Default affinity for columns */ 2071 ){ 2072 sqlite3 *db = pParse->db; 2073 NameContext sNC; 2074 Column *pCol; 2075 CollSeq *pColl; 2076 int i; 2077 Expr *p; 2078 struct ExprList_item *a; 2079 2080 assert( pSelect!=0 ); 2081 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2082 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2083 if( db->mallocFailed ) return; 2084 memset(&sNC, 0, sizeof(sNC)); 2085 sNC.pSrcList = pSelect->pSrc; 2086 a = pSelect->pEList->a; 2087 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2088 const char *zType; 2089 int n, m; 2090 p = a[i].pExpr; 2091 zType = columnType(&sNC, p, 0, 0, 0); 2092 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2093 pCol->affinity = sqlite3ExprAffinity(p); 2094 if( zType ){ 2095 m = sqlite3Strlen30(zType); 2096 n = sqlite3Strlen30(pCol->zName); 2097 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2098 if( pCol->zName ){ 2099 memcpy(&pCol->zName[n+1], zType, m+1); 2100 pCol->colFlags |= COLFLAG_HASTYPE; 2101 } 2102 } 2103 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2104 pColl = sqlite3ExprCollSeq(pParse, p); 2105 if( pColl && pCol->zColl==0 ){ 2106 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2107 } 2108 } 2109 pTab->szTabRow = 1; /* Any non-zero value works */ 2110 } 2111 2112 /* 2113 ** Given a SELECT statement, generate a Table structure that describes 2114 ** the result set of that SELECT. 2115 */ 2116 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2117 Table *pTab; 2118 sqlite3 *db = pParse->db; 2119 u64 savedFlags; 2120 2121 savedFlags = db->flags; 2122 db->flags &= ~(u64)SQLITE_FullColNames; 2123 db->flags |= SQLITE_ShortColNames; 2124 sqlite3SelectPrep(pParse, pSelect, 0); 2125 db->flags = savedFlags; 2126 if( pParse->nErr ) return 0; 2127 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2128 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2129 if( pTab==0 ){ 2130 return 0; 2131 } 2132 pTab->nTabRef = 1; 2133 pTab->zName = 0; 2134 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2135 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2136 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2137 pTab->iPKey = -1; 2138 if( db->mallocFailed ){ 2139 sqlite3DeleteTable(db, pTab); 2140 return 0; 2141 } 2142 return pTab; 2143 } 2144 2145 /* 2146 ** Get a VDBE for the given parser context. Create a new one if necessary. 2147 ** If an error occurs, return NULL and leave a message in pParse. 2148 */ 2149 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2150 if( pParse->pVdbe ){ 2151 return pParse->pVdbe; 2152 } 2153 if( pParse->pToplevel==0 2154 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2155 ){ 2156 pParse->okConstFactor = 1; 2157 } 2158 return sqlite3VdbeCreate(pParse); 2159 } 2160 2161 2162 /* 2163 ** Compute the iLimit and iOffset fields of the SELECT based on the 2164 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2165 ** that appear in the original SQL statement after the LIMIT and OFFSET 2166 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2167 ** are the integer memory register numbers for counters used to compute 2168 ** the limit and offset. If there is no limit and/or offset, then 2169 ** iLimit and iOffset are negative. 2170 ** 2171 ** This routine changes the values of iLimit and iOffset only if 2172 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2173 ** and iOffset should have been preset to appropriate default values (zero) 2174 ** prior to calling this routine. 2175 ** 2176 ** The iOffset register (if it exists) is initialized to the value 2177 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2178 ** iOffset+1 is initialized to LIMIT+OFFSET. 2179 ** 2180 ** Only if pLimit->pLeft!=0 do the limit registers get 2181 ** redefined. The UNION ALL operator uses this property to force 2182 ** the reuse of the same limit and offset registers across multiple 2183 ** SELECT statements. 2184 */ 2185 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2186 Vdbe *v = 0; 2187 int iLimit = 0; 2188 int iOffset; 2189 int n; 2190 Expr *pLimit = p->pLimit; 2191 2192 if( p->iLimit ) return; 2193 2194 /* 2195 ** "LIMIT -1" always shows all rows. There is some 2196 ** controversy about what the correct behavior should be. 2197 ** The current implementation interprets "LIMIT 0" to mean 2198 ** no rows. 2199 */ 2200 if( pLimit ){ 2201 assert( pLimit->op==TK_LIMIT ); 2202 assert( pLimit->pLeft!=0 ); 2203 p->iLimit = iLimit = ++pParse->nMem; 2204 v = sqlite3GetVdbe(pParse); 2205 assert( v!=0 ); 2206 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2207 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2208 VdbeComment((v, "LIMIT counter")); 2209 if( n==0 ){ 2210 sqlite3VdbeGoto(v, iBreak); 2211 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2212 p->nSelectRow = sqlite3LogEst((u64)n); 2213 p->selFlags |= SF_FixedLimit; 2214 } 2215 }else{ 2216 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2217 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2218 VdbeComment((v, "LIMIT counter")); 2219 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2220 } 2221 if( pLimit->pRight ){ 2222 p->iOffset = iOffset = ++pParse->nMem; 2223 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2224 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2225 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2226 VdbeComment((v, "OFFSET counter")); 2227 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2228 VdbeComment((v, "LIMIT+OFFSET")); 2229 } 2230 } 2231 } 2232 2233 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2234 /* 2235 ** Return the appropriate collating sequence for the iCol-th column of 2236 ** the result set for the compound-select statement "p". Return NULL if 2237 ** the column has no default collating sequence. 2238 ** 2239 ** The collating sequence for the compound select is taken from the 2240 ** left-most term of the select that has a collating sequence. 2241 */ 2242 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2243 CollSeq *pRet; 2244 if( p->pPrior ){ 2245 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2246 }else{ 2247 pRet = 0; 2248 } 2249 assert( iCol>=0 ); 2250 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2251 ** have been thrown during name resolution and we would not have gotten 2252 ** this far */ 2253 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2254 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2255 } 2256 return pRet; 2257 } 2258 2259 /* 2260 ** The select statement passed as the second parameter is a compound SELECT 2261 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2262 ** structure suitable for implementing the ORDER BY. 2263 ** 2264 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2265 ** function is responsible for ensuring that this structure is eventually 2266 ** freed. 2267 */ 2268 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2269 ExprList *pOrderBy = p->pOrderBy; 2270 int nOrderBy = p->pOrderBy->nExpr; 2271 sqlite3 *db = pParse->db; 2272 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2273 if( pRet ){ 2274 int i; 2275 for(i=0; i<nOrderBy; i++){ 2276 struct ExprList_item *pItem = &pOrderBy->a[i]; 2277 Expr *pTerm = pItem->pExpr; 2278 CollSeq *pColl; 2279 2280 if( pTerm->flags & EP_Collate ){ 2281 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2282 }else{ 2283 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2284 if( pColl==0 ) pColl = db->pDfltColl; 2285 pOrderBy->a[i].pExpr = 2286 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2287 } 2288 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2289 pRet->aColl[i] = pColl; 2290 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2291 } 2292 } 2293 2294 return pRet; 2295 } 2296 2297 #ifndef SQLITE_OMIT_CTE 2298 /* 2299 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2300 ** query of the form: 2301 ** 2302 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2303 ** \___________/ \_______________/ 2304 ** p->pPrior p 2305 ** 2306 ** 2307 ** There is exactly one reference to the recursive-table in the FROM clause 2308 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2309 ** 2310 ** The setup-query runs once to generate an initial set of rows that go 2311 ** into a Queue table. Rows are extracted from the Queue table one by 2312 ** one. Each row extracted from Queue is output to pDest. Then the single 2313 ** extracted row (now in the iCurrent table) becomes the content of the 2314 ** recursive-table for a recursive-query run. The output of the recursive-query 2315 ** is added back into the Queue table. Then another row is extracted from Queue 2316 ** and the iteration continues until the Queue table is empty. 2317 ** 2318 ** If the compound query operator is UNION then no duplicate rows are ever 2319 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2320 ** that have ever been inserted into Queue and causes duplicates to be 2321 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2322 ** 2323 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2324 ** ORDER BY order and the first entry is extracted for each cycle. Without 2325 ** an ORDER BY, the Queue table is just a FIFO. 2326 ** 2327 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2328 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2329 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2330 ** with a positive value, then the first OFFSET outputs are discarded rather 2331 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2332 ** rows have been skipped. 2333 */ 2334 static void generateWithRecursiveQuery( 2335 Parse *pParse, /* Parsing context */ 2336 Select *p, /* The recursive SELECT to be coded */ 2337 SelectDest *pDest /* What to do with query results */ 2338 ){ 2339 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2340 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2341 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2342 Select *pSetup = p->pPrior; /* The setup query */ 2343 Select *pFirstRec; /* Left-most recursive term */ 2344 int addrTop; /* Top of the loop */ 2345 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2346 int iCurrent = 0; /* The Current table */ 2347 int regCurrent; /* Register holding Current table */ 2348 int iQueue; /* The Queue table */ 2349 int iDistinct = 0; /* To ensure unique results if UNION */ 2350 int eDest = SRT_Fifo; /* How to write to Queue */ 2351 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2352 int i; /* Loop counter */ 2353 int rc; /* Result code */ 2354 ExprList *pOrderBy; /* The ORDER BY clause */ 2355 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2356 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2357 2358 #ifndef SQLITE_OMIT_WINDOWFUNC 2359 if( p->pWin ){ 2360 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2361 return; 2362 } 2363 #endif 2364 2365 /* Obtain authorization to do a recursive query */ 2366 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2367 2368 /* Process the LIMIT and OFFSET clauses, if they exist */ 2369 addrBreak = sqlite3VdbeMakeLabel(pParse); 2370 p->nSelectRow = 320; /* 4 billion rows */ 2371 computeLimitRegisters(pParse, p, addrBreak); 2372 pLimit = p->pLimit; 2373 regLimit = p->iLimit; 2374 regOffset = p->iOffset; 2375 p->pLimit = 0; 2376 p->iLimit = p->iOffset = 0; 2377 pOrderBy = p->pOrderBy; 2378 2379 /* Locate the cursor number of the Current table */ 2380 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2381 if( pSrc->a[i].fg.isRecursive ){ 2382 iCurrent = pSrc->a[i].iCursor; 2383 break; 2384 } 2385 } 2386 2387 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2388 ** the Distinct table must be exactly one greater than Queue in order 2389 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2390 iQueue = pParse->nTab++; 2391 if( p->op==TK_UNION ){ 2392 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2393 iDistinct = pParse->nTab++; 2394 }else{ 2395 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2396 } 2397 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2398 2399 /* Allocate cursors for Current, Queue, and Distinct. */ 2400 regCurrent = ++pParse->nMem; 2401 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2402 if( pOrderBy ){ 2403 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2404 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2405 (char*)pKeyInfo, P4_KEYINFO); 2406 destQueue.pOrderBy = pOrderBy; 2407 }else{ 2408 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2409 } 2410 VdbeComment((v, "Queue table")); 2411 if( iDistinct ){ 2412 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2413 p->selFlags |= SF_UsesEphemeral; 2414 } 2415 2416 /* Detach the ORDER BY clause from the compound SELECT */ 2417 p->pOrderBy = 0; 2418 2419 /* Figure out how many elements of the compound SELECT are part of the 2420 ** recursive query. Make sure no recursive elements use aggregate 2421 ** functions. Mark the recursive elements as UNION ALL even if they 2422 ** are really UNION because the distinctness will be enforced by the 2423 ** iDistinct table. pFirstRec is left pointing to the left-most 2424 ** recursive term of the CTE. 2425 */ 2426 pFirstRec = p; 2427 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2428 if( pFirstRec->selFlags & SF_Aggregate ){ 2429 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2430 goto end_of_recursive_query; 2431 } 2432 pFirstRec->op = TK_ALL; 2433 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2434 } 2435 2436 /* Store the results of the setup-query in Queue. */ 2437 pSetup = pFirstRec->pPrior; 2438 pSetup->pNext = 0; 2439 ExplainQueryPlan((pParse, 1, "SETUP")); 2440 rc = sqlite3Select(pParse, pSetup, &destQueue); 2441 pSetup->pNext = p; 2442 if( rc ) goto end_of_recursive_query; 2443 2444 /* Find the next row in the Queue and output that row */ 2445 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2446 2447 /* Transfer the next row in Queue over to Current */ 2448 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2449 if( pOrderBy ){ 2450 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2451 }else{ 2452 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2453 } 2454 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2455 2456 /* Output the single row in Current */ 2457 addrCont = sqlite3VdbeMakeLabel(pParse); 2458 codeOffset(v, regOffset, addrCont); 2459 selectInnerLoop(pParse, p, iCurrent, 2460 0, 0, pDest, addrCont, addrBreak); 2461 if( regLimit ){ 2462 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2463 VdbeCoverage(v); 2464 } 2465 sqlite3VdbeResolveLabel(v, addrCont); 2466 2467 /* Execute the recursive SELECT taking the single row in Current as 2468 ** the value for the recursive-table. Store the results in the Queue. 2469 */ 2470 pFirstRec->pPrior = 0; 2471 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2472 sqlite3Select(pParse, p, &destQueue); 2473 assert( pFirstRec->pPrior==0 ); 2474 pFirstRec->pPrior = pSetup; 2475 2476 /* Keep running the loop until the Queue is empty */ 2477 sqlite3VdbeGoto(v, addrTop); 2478 sqlite3VdbeResolveLabel(v, addrBreak); 2479 2480 end_of_recursive_query: 2481 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2482 p->pOrderBy = pOrderBy; 2483 p->pLimit = pLimit; 2484 return; 2485 } 2486 #endif /* SQLITE_OMIT_CTE */ 2487 2488 /* Forward references */ 2489 static int multiSelectOrderBy( 2490 Parse *pParse, /* Parsing context */ 2491 Select *p, /* The right-most of SELECTs to be coded */ 2492 SelectDest *pDest /* What to do with query results */ 2493 ); 2494 2495 /* 2496 ** Handle the special case of a compound-select that originates from a 2497 ** VALUES clause. By handling this as a special case, we avoid deep 2498 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2499 ** on a VALUES clause. 2500 ** 2501 ** Because the Select object originates from a VALUES clause: 2502 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2503 ** (2) All terms are UNION ALL 2504 ** (3) There is no ORDER BY clause 2505 ** 2506 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2507 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2508 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2509 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2510 */ 2511 static int multiSelectValues( 2512 Parse *pParse, /* Parsing context */ 2513 Select *p, /* The right-most of SELECTs to be coded */ 2514 SelectDest *pDest /* What to do with query results */ 2515 ){ 2516 int nRow = 1; 2517 int rc = 0; 2518 int bShowAll = p->pLimit==0; 2519 assert( p->selFlags & SF_MultiValue ); 2520 do{ 2521 assert( p->selFlags & SF_Values ); 2522 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2523 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2524 #ifndef SQLITE_OMIT_WINDOWFUNC 2525 if( p->pWin ) return -1; 2526 #endif 2527 if( p->pPrior==0 ) break; 2528 assert( p->pPrior->pNext==p ); 2529 p = p->pPrior; 2530 nRow += bShowAll; 2531 }while(1); 2532 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2533 nRow==1 ? "" : "S")); 2534 while( p ){ 2535 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2536 if( !bShowAll ) break; 2537 p->nSelectRow = nRow; 2538 p = p->pNext; 2539 } 2540 return rc; 2541 } 2542 2543 /* 2544 ** Return true if the SELECT statement which is known to be the recursive 2545 ** part of a recursive CTE still has its anchor terms attached. If the 2546 ** anchor terms have already been removed, then return false. 2547 */ 2548 static int hasAnchor(Select *p){ 2549 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2550 return p!=0; 2551 } 2552 2553 /* 2554 ** This routine is called to process a compound query form from 2555 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2556 ** INTERSECT 2557 ** 2558 ** "p" points to the right-most of the two queries. the query on the 2559 ** left is p->pPrior. The left query could also be a compound query 2560 ** in which case this routine will be called recursively. 2561 ** 2562 ** The results of the total query are to be written into a destination 2563 ** of type eDest with parameter iParm. 2564 ** 2565 ** Example 1: Consider a three-way compound SQL statement. 2566 ** 2567 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2568 ** 2569 ** This statement is parsed up as follows: 2570 ** 2571 ** SELECT c FROM t3 2572 ** | 2573 ** `-----> SELECT b FROM t2 2574 ** | 2575 ** `------> SELECT a FROM t1 2576 ** 2577 ** The arrows in the diagram above represent the Select.pPrior pointer. 2578 ** So if this routine is called with p equal to the t3 query, then 2579 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2580 ** 2581 ** Notice that because of the way SQLite parses compound SELECTs, the 2582 ** individual selects always group from left to right. 2583 */ 2584 static int multiSelect( 2585 Parse *pParse, /* Parsing context */ 2586 Select *p, /* The right-most of SELECTs to be coded */ 2587 SelectDest *pDest /* What to do with query results */ 2588 ){ 2589 int rc = SQLITE_OK; /* Success code from a subroutine */ 2590 Select *pPrior; /* Another SELECT immediately to our left */ 2591 Vdbe *v; /* Generate code to this VDBE */ 2592 SelectDest dest; /* Alternative data destination */ 2593 Select *pDelete = 0; /* Chain of simple selects to delete */ 2594 sqlite3 *db; /* Database connection */ 2595 2596 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2597 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2598 */ 2599 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2600 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2601 assert( p->selFlags & SF_Compound ); 2602 db = pParse->db; 2603 pPrior = p->pPrior; 2604 dest = *pDest; 2605 if( pPrior->pOrderBy || pPrior->pLimit ){ 2606 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2607 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2608 rc = 1; 2609 goto multi_select_end; 2610 } 2611 2612 v = sqlite3GetVdbe(pParse); 2613 assert( v!=0 ); /* The VDBE already created by calling function */ 2614 2615 /* Create the destination temporary table if necessary 2616 */ 2617 if( dest.eDest==SRT_EphemTab ){ 2618 assert( p->pEList ); 2619 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2620 dest.eDest = SRT_Table; 2621 } 2622 2623 /* Special handling for a compound-select that originates as a VALUES clause. 2624 */ 2625 if( p->selFlags & SF_MultiValue ){ 2626 rc = multiSelectValues(pParse, p, &dest); 2627 if( rc>=0 ) goto multi_select_end; 2628 rc = SQLITE_OK; 2629 } 2630 2631 /* Make sure all SELECTs in the statement have the same number of elements 2632 ** in their result sets. 2633 */ 2634 assert( p->pEList && pPrior->pEList ); 2635 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2636 2637 #ifndef SQLITE_OMIT_CTE 2638 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2639 generateWithRecursiveQuery(pParse, p, &dest); 2640 }else 2641 #endif 2642 2643 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2644 */ 2645 if( p->pOrderBy ){ 2646 return multiSelectOrderBy(pParse, p, pDest); 2647 }else{ 2648 2649 #ifndef SQLITE_OMIT_EXPLAIN 2650 if( pPrior->pPrior==0 ){ 2651 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2652 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2653 } 2654 #endif 2655 2656 /* Generate code for the left and right SELECT statements. 2657 */ 2658 switch( p->op ){ 2659 case TK_ALL: { 2660 int addr = 0; 2661 int nLimit; 2662 assert( !pPrior->pLimit ); 2663 pPrior->iLimit = p->iLimit; 2664 pPrior->iOffset = p->iOffset; 2665 pPrior->pLimit = p->pLimit; 2666 rc = sqlite3Select(pParse, pPrior, &dest); 2667 p->pLimit = 0; 2668 if( rc ){ 2669 goto multi_select_end; 2670 } 2671 p->pPrior = 0; 2672 p->iLimit = pPrior->iLimit; 2673 p->iOffset = pPrior->iOffset; 2674 if( p->iLimit ){ 2675 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2676 VdbeComment((v, "Jump ahead if LIMIT reached")); 2677 if( p->iOffset ){ 2678 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2679 p->iLimit, p->iOffset+1, p->iOffset); 2680 } 2681 } 2682 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2683 rc = sqlite3Select(pParse, p, &dest); 2684 testcase( rc!=SQLITE_OK ); 2685 pDelete = p->pPrior; 2686 p->pPrior = pPrior; 2687 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2688 if( pPrior->pLimit 2689 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2690 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2691 ){ 2692 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2693 } 2694 if( addr ){ 2695 sqlite3VdbeJumpHere(v, addr); 2696 } 2697 break; 2698 } 2699 case TK_EXCEPT: 2700 case TK_UNION: { 2701 int unionTab; /* Cursor number of the temp table holding result */ 2702 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2703 int priorOp; /* The SRT_ operation to apply to prior selects */ 2704 Expr *pLimit; /* Saved values of p->nLimit */ 2705 int addr; 2706 SelectDest uniondest; 2707 2708 testcase( p->op==TK_EXCEPT ); 2709 testcase( p->op==TK_UNION ); 2710 priorOp = SRT_Union; 2711 if( dest.eDest==priorOp ){ 2712 /* We can reuse a temporary table generated by a SELECT to our 2713 ** right. 2714 */ 2715 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2716 unionTab = dest.iSDParm; 2717 }else{ 2718 /* We will need to create our own temporary table to hold the 2719 ** intermediate results. 2720 */ 2721 unionTab = pParse->nTab++; 2722 assert( p->pOrderBy==0 ); 2723 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2724 assert( p->addrOpenEphm[0] == -1 ); 2725 p->addrOpenEphm[0] = addr; 2726 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2727 assert( p->pEList ); 2728 } 2729 2730 2731 /* Code the SELECT statements to our left 2732 */ 2733 assert( !pPrior->pOrderBy ); 2734 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2735 rc = sqlite3Select(pParse, pPrior, &uniondest); 2736 if( rc ){ 2737 goto multi_select_end; 2738 } 2739 2740 /* Code the current SELECT statement 2741 */ 2742 if( p->op==TK_EXCEPT ){ 2743 op = SRT_Except; 2744 }else{ 2745 assert( p->op==TK_UNION ); 2746 op = SRT_Union; 2747 } 2748 p->pPrior = 0; 2749 pLimit = p->pLimit; 2750 p->pLimit = 0; 2751 uniondest.eDest = op; 2752 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2753 selectOpName(p->op))); 2754 rc = sqlite3Select(pParse, p, &uniondest); 2755 testcase( rc!=SQLITE_OK ); 2756 assert( p->pOrderBy==0 ); 2757 pDelete = p->pPrior; 2758 p->pPrior = pPrior; 2759 p->pOrderBy = 0; 2760 if( p->op==TK_UNION ){ 2761 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2762 } 2763 sqlite3ExprDelete(db, p->pLimit); 2764 p->pLimit = pLimit; 2765 p->iLimit = 0; 2766 p->iOffset = 0; 2767 2768 /* Convert the data in the temporary table into whatever form 2769 ** it is that we currently need. 2770 */ 2771 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2772 assert( p->pEList || db->mallocFailed ); 2773 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2774 int iCont, iBreak, iStart; 2775 iBreak = sqlite3VdbeMakeLabel(pParse); 2776 iCont = sqlite3VdbeMakeLabel(pParse); 2777 computeLimitRegisters(pParse, p, iBreak); 2778 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2779 iStart = sqlite3VdbeCurrentAddr(v); 2780 selectInnerLoop(pParse, p, unionTab, 2781 0, 0, &dest, iCont, iBreak); 2782 sqlite3VdbeResolveLabel(v, iCont); 2783 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2784 sqlite3VdbeResolveLabel(v, iBreak); 2785 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2786 } 2787 break; 2788 } 2789 default: assert( p->op==TK_INTERSECT ); { 2790 int tab1, tab2; 2791 int iCont, iBreak, iStart; 2792 Expr *pLimit; 2793 int addr; 2794 SelectDest intersectdest; 2795 int r1; 2796 2797 /* INTERSECT is different from the others since it requires 2798 ** two temporary tables. Hence it has its own case. Begin 2799 ** by allocating the tables we will need. 2800 */ 2801 tab1 = pParse->nTab++; 2802 tab2 = pParse->nTab++; 2803 assert( p->pOrderBy==0 ); 2804 2805 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2806 assert( p->addrOpenEphm[0] == -1 ); 2807 p->addrOpenEphm[0] = addr; 2808 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2809 assert( p->pEList ); 2810 2811 /* Code the SELECTs to our left into temporary table "tab1". 2812 */ 2813 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2814 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2815 if( rc ){ 2816 goto multi_select_end; 2817 } 2818 2819 /* Code the current SELECT into temporary table "tab2" 2820 */ 2821 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2822 assert( p->addrOpenEphm[1] == -1 ); 2823 p->addrOpenEphm[1] = addr; 2824 p->pPrior = 0; 2825 pLimit = p->pLimit; 2826 p->pLimit = 0; 2827 intersectdest.iSDParm = tab2; 2828 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2829 selectOpName(p->op))); 2830 rc = sqlite3Select(pParse, p, &intersectdest); 2831 testcase( rc!=SQLITE_OK ); 2832 pDelete = p->pPrior; 2833 p->pPrior = pPrior; 2834 if( p->nSelectRow>pPrior->nSelectRow ){ 2835 p->nSelectRow = pPrior->nSelectRow; 2836 } 2837 sqlite3ExprDelete(db, p->pLimit); 2838 p->pLimit = pLimit; 2839 2840 /* Generate code to take the intersection of the two temporary 2841 ** tables. 2842 */ 2843 if( rc ) break; 2844 assert( p->pEList ); 2845 iBreak = sqlite3VdbeMakeLabel(pParse); 2846 iCont = sqlite3VdbeMakeLabel(pParse); 2847 computeLimitRegisters(pParse, p, iBreak); 2848 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2849 r1 = sqlite3GetTempReg(pParse); 2850 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2851 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2852 VdbeCoverage(v); 2853 sqlite3ReleaseTempReg(pParse, r1); 2854 selectInnerLoop(pParse, p, tab1, 2855 0, 0, &dest, iCont, iBreak); 2856 sqlite3VdbeResolveLabel(v, iCont); 2857 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2858 sqlite3VdbeResolveLabel(v, iBreak); 2859 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2860 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2861 break; 2862 } 2863 } 2864 2865 #ifndef SQLITE_OMIT_EXPLAIN 2866 if( p->pNext==0 ){ 2867 ExplainQueryPlanPop(pParse); 2868 } 2869 #endif 2870 } 2871 if( pParse->nErr ) goto multi_select_end; 2872 2873 /* Compute collating sequences used by 2874 ** temporary tables needed to implement the compound select. 2875 ** Attach the KeyInfo structure to all temporary tables. 2876 ** 2877 ** This section is run by the right-most SELECT statement only. 2878 ** SELECT statements to the left always skip this part. The right-most 2879 ** SELECT might also skip this part if it has no ORDER BY clause and 2880 ** no temp tables are required. 2881 */ 2882 if( p->selFlags & SF_UsesEphemeral ){ 2883 int i; /* Loop counter */ 2884 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2885 Select *pLoop; /* For looping through SELECT statements */ 2886 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2887 int nCol; /* Number of columns in result set */ 2888 2889 assert( p->pNext==0 ); 2890 nCol = p->pEList->nExpr; 2891 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2892 if( !pKeyInfo ){ 2893 rc = SQLITE_NOMEM_BKPT; 2894 goto multi_select_end; 2895 } 2896 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2897 *apColl = multiSelectCollSeq(pParse, p, i); 2898 if( 0==*apColl ){ 2899 *apColl = db->pDfltColl; 2900 } 2901 } 2902 2903 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2904 for(i=0; i<2; i++){ 2905 int addr = pLoop->addrOpenEphm[i]; 2906 if( addr<0 ){ 2907 /* If [0] is unused then [1] is also unused. So we can 2908 ** always safely abort as soon as the first unused slot is found */ 2909 assert( pLoop->addrOpenEphm[1]<0 ); 2910 break; 2911 } 2912 sqlite3VdbeChangeP2(v, addr, nCol); 2913 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2914 P4_KEYINFO); 2915 pLoop->addrOpenEphm[i] = -1; 2916 } 2917 } 2918 sqlite3KeyInfoUnref(pKeyInfo); 2919 } 2920 2921 multi_select_end: 2922 pDest->iSdst = dest.iSdst; 2923 pDest->nSdst = dest.nSdst; 2924 sqlite3SelectDelete(db, pDelete); 2925 return rc; 2926 } 2927 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2928 2929 /* 2930 ** Error message for when two or more terms of a compound select have different 2931 ** size result sets. 2932 */ 2933 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2934 if( p->selFlags & SF_Values ){ 2935 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2936 }else{ 2937 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2938 " do not have the same number of result columns", selectOpName(p->op)); 2939 } 2940 } 2941 2942 /* 2943 ** Code an output subroutine for a coroutine implementation of a 2944 ** SELECT statment. 2945 ** 2946 ** The data to be output is contained in pIn->iSdst. There are 2947 ** pIn->nSdst columns to be output. pDest is where the output should 2948 ** be sent. 2949 ** 2950 ** regReturn is the number of the register holding the subroutine 2951 ** return address. 2952 ** 2953 ** If regPrev>0 then it is the first register in a vector that 2954 ** records the previous output. mem[regPrev] is a flag that is false 2955 ** if there has been no previous output. If regPrev>0 then code is 2956 ** generated to suppress duplicates. pKeyInfo is used for comparing 2957 ** keys. 2958 ** 2959 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2960 ** iBreak. 2961 */ 2962 static int generateOutputSubroutine( 2963 Parse *pParse, /* Parsing context */ 2964 Select *p, /* The SELECT statement */ 2965 SelectDest *pIn, /* Coroutine supplying data */ 2966 SelectDest *pDest, /* Where to send the data */ 2967 int regReturn, /* The return address register */ 2968 int regPrev, /* Previous result register. No uniqueness if 0 */ 2969 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2970 int iBreak /* Jump here if we hit the LIMIT */ 2971 ){ 2972 Vdbe *v = pParse->pVdbe; 2973 int iContinue; 2974 int addr; 2975 2976 addr = sqlite3VdbeCurrentAddr(v); 2977 iContinue = sqlite3VdbeMakeLabel(pParse); 2978 2979 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2980 */ 2981 if( regPrev ){ 2982 int addr1, addr2; 2983 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2984 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2985 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2986 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2987 sqlite3VdbeJumpHere(v, addr1); 2988 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2989 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2990 } 2991 if( pParse->db->mallocFailed ) return 0; 2992 2993 /* Suppress the first OFFSET entries if there is an OFFSET clause 2994 */ 2995 codeOffset(v, p->iOffset, iContinue); 2996 2997 assert( pDest->eDest!=SRT_Exists ); 2998 assert( pDest->eDest!=SRT_Table ); 2999 switch( pDest->eDest ){ 3000 /* Store the result as data using a unique key. 3001 */ 3002 case SRT_EphemTab: { 3003 int r1 = sqlite3GetTempReg(pParse); 3004 int r2 = sqlite3GetTempReg(pParse); 3005 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3006 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3007 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3008 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3009 sqlite3ReleaseTempReg(pParse, r2); 3010 sqlite3ReleaseTempReg(pParse, r1); 3011 break; 3012 } 3013 3014 #ifndef SQLITE_OMIT_SUBQUERY 3015 /* If we are creating a set for an "expr IN (SELECT ...)". 3016 */ 3017 case SRT_Set: { 3018 int r1; 3019 testcase( pIn->nSdst>1 ); 3020 r1 = sqlite3GetTempReg(pParse); 3021 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3022 r1, pDest->zAffSdst, pIn->nSdst); 3023 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3024 pIn->iSdst, pIn->nSdst); 3025 sqlite3ReleaseTempReg(pParse, r1); 3026 break; 3027 } 3028 3029 /* If this is a scalar select that is part of an expression, then 3030 ** store the results in the appropriate memory cell and break out 3031 ** of the scan loop. Note that the select might return multiple columns 3032 ** if it is the RHS of a row-value IN operator. 3033 */ 3034 case SRT_Mem: { 3035 if( pParse->nErr==0 ){ 3036 testcase( pIn->nSdst>1 ); 3037 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3038 } 3039 /* The LIMIT clause will jump out of the loop for us */ 3040 break; 3041 } 3042 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3043 3044 /* The results are stored in a sequence of registers 3045 ** starting at pDest->iSdst. Then the co-routine yields. 3046 */ 3047 case SRT_Coroutine: { 3048 if( pDest->iSdst==0 ){ 3049 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3050 pDest->nSdst = pIn->nSdst; 3051 } 3052 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3053 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3054 break; 3055 } 3056 3057 /* If none of the above, then the result destination must be 3058 ** SRT_Output. This routine is never called with any other 3059 ** destination other than the ones handled above or SRT_Output. 3060 ** 3061 ** For SRT_Output, results are stored in a sequence of registers. 3062 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3063 ** return the next row of result. 3064 */ 3065 default: { 3066 assert( pDest->eDest==SRT_Output ); 3067 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3068 break; 3069 } 3070 } 3071 3072 /* Jump to the end of the loop if the LIMIT is reached. 3073 */ 3074 if( p->iLimit ){ 3075 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3076 } 3077 3078 /* Generate the subroutine return 3079 */ 3080 sqlite3VdbeResolveLabel(v, iContinue); 3081 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3082 3083 return addr; 3084 } 3085 3086 /* 3087 ** Alternative compound select code generator for cases when there 3088 ** is an ORDER BY clause. 3089 ** 3090 ** We assume a query of the following form: 3091 ** 3092 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3093 ** 3094 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3095 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3096 ** co-routines. Then run the co-routines in parallel and merge the results 3097 ** into the output. In addition to the two coroutines (called selectA and 3098 ** selectB) there are 7 subroutines: 3099 ** 3100 ** outA: Move the output of the selectA coroutine into the output 3101 ** of the compound query. 3102 ** 3103 ** outB: Move the output of the selectB coroutine into the output 3104 ** of the compound query. (Only generated for UNION and 3105 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3106 ** appears only in B.) 3107 ** 3108 ** AltB: Called when there is data from both coroutines and A<B. 3109 ** 3110 ** AeqB: Called when there is data from both coroutines and A==B. 3111 ** 3112 ** AgtB: Called when there is data from both coroutines and A>B. 3113 ** 3114 ** EofA: Called when data is exhausted from selectA. 3115 ** 3116 ** EofB: Called when data is exhausted from selectB. 3117 ** 3118 ** The implementation of the latter five subroutines depend on which 3119 ** <operator> is used: 3120 ** 3121 ** 3122 ** UNION ALL UNION EXCEPT INTERSECT 3123 ** ------------- ----------------- -------------- ----------------- 3124 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3125 ** 3126 ** AeqB: outA, nextA nextA nextA outA, nextA 3127 ** 3128 ** AgtB: outB, nextB outB, nextB nextB nextB 3129 ** 3130 ** EofA: outB, nextB outB, nextB halt halt 3131 ** 3132 ** EofB: outA, nextA outA, nextA outA, nextA halt 3133 ** 3134 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3135 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3136 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3137 ** following nextX causes a jump to the end of the select processing. 3138 ** 3139 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3140 ** within the output subroutine. The regPrev register set holds the previously 3141 ** output value. A comparison is made against this value and the output 3142 ** is skipped if the next results would be the same as the previous. 3143 ** 3144 ** The implementation plan is to implement the two coroutines and seven 3145 ** subroutines first, then put the control logic at the bottom. Like this: 3146 ** 3147 ** goto Init 3148 ** coA: coroutine for left query (A) 3149 ** coB: coroutine for right query (B) 3150 ** outA: output one row of A 3151 ** outB: output one row of B (UNION and UNION ALL only) 3152 ** EofA: ... 3153 ** EofB: ... 3154 ** AltB: ... 3155 ** AeqB: ... 3156 ** AgtB: ... 3157 ** Init: initialize coroutine registers 3158 ** yield coA 3159 ** if eof(A) goto EofA 3160 ** yield coB 3161 ** if eof(B) goto EofB 3162 ** Cmpr: Compare A, B 3163 ** Jump AltB, AeqB, AgtB 3164 ** End: ... 3165 ** 3166 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3167 ** actually called using Gosub and they do not Return. EofA and EofB loop 3168 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3169 ** and AgtB jump to either L2 or to one of EofA or EofB. 3170 */ 3171 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3172 static int multiSelectOrderBy( 3173 Parse *pParse, /* Parsing context */ 3174 Select *p, /* The right-most of SELECTs to be coded */ 3175 SelectDest *pDest /* What to do with query results */ 3176 ){ 3177 int i, j; /* Loop counters */ 3178 Select *pPrior; /* Another SELECT immediately to our left */ 3179 Vdbe *v; /* Generate code to this VDBE */ 3180 SelectDest destA; /* Destination for coroutine A */ 3181 SelectDest destB; /* Destination for coroutine B */ 3182 int regAddrA; /* Address register for select-A coroutine */ 3183 int regAddrB; /* Address register for select-B coroutine */ 3184 int addrSelectA; /* Address of the select-A coroutine */ 3185 int addrSelectB; /* Address of the select-B coroutine */ 3186 int regOutA; /* Address register for the output-A subroutine */ 3187 int regOutB; /* Address register for the output-B subroutine */ 3188 int addrOutA; /* Address of the output-A subroutine */ 3189 int addrOutB = 0; /* Address of the output-B subroutine */ 3190 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3191 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3192 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3193 int addrAltB; /* Address of the A<B subroutine */ 3194 int addrAeqB; /* Address of the A==B subroutine */ 3195 int addrAgtB; /* Address of the A>B subroutine */ 3196 int regLimitA; /* Limit register for select-A */ 3197 int regLimitB; /* Limit register for select-A */ 3198 int regPrev; /* A range of registers to hold previous output */ 3199 int savedLimit; /* Saved value of p->iLimit */ 3200 int savedOffset; /* Saved value of p->iOffset */ 3201 int labelCmpr; /* Label for the start of the merge algorithm */ 3202 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3203 int addr1; /* Jump instructions that get retargetted */ 3204 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3205 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3206 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3207 sqlite3 *db; /* Database connection */ 3208 ExprList *pOrderBy; /* The ORDER BY clause */ 3209 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3210 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3211 3212 assert( p->pOrderBy!=0 ); 3213 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3214 db = pParse->db; 3215 v = pParse->pVdbe; 3216 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3217 labelEnd = sqlite3VdbeMakeLabel(pParse); 3218 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3219 3220 3221 /* Patch up the ORDER BY clause 3222 */ 3223 op = p->op; 3224 pPrior = p->pPrior; 3225 assert( pPrior->pOrderBy==0 ); 3226 pOrderBy = p->pOrderBy; 3227 assert( pOrderBy ); 3228 nOrderBy = pOrderBy->nExpr; 3229 3230 /* For operators other than UNION ALL we have to make sure that 3231 ** the ORDER BY clause covers every term of the result set. Add 3232 ** terms to the ORDER BY clause as necessary. 3233 */ 3234 if( op!=TK_ALL ){ 3235 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3236 struct ExprList_item *pItem; 3237 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3238 assert( pItem->u.x.iOrderByCol>0 ); 3239 if( pItem->u.x.iOrderByCol==i ) break; 3240 } 3241 if( j==nOrderBy ){ 3242 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3243 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3244 pNew->flags |= EP_IntValue; 3245 pNew->u.iValue = i; 3246 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3247 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3248 } 3249 } 3250 } 3251 3252 /* Compute the comparison permutation and keyinfo that is used with 3253 ** the permutation used to determine if the next 3254 ** row of results comes from selectA or selectB. Also add explicit 3255 ** collations to the ORDER BY clause terms so that when the subqueries 3256 ** to the right and the left are evaluated, they use the correct 3257 ** collation. 3258 */ 3259 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3260 if( aPermute ){ 3261 struct ExprList_item *pItem; 3262 aPermute[0] = nOrderBy; 3263 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3264 assert( pItem->u.x.iOrderByCol>0 ); 3265 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3266 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3267 } 3268 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3269 }else{ 3270 pKeyMerge = 0; 3271 } 3272 3273 /* Reattach the ORDER BY clause to the query. 3274 */ 3275 p->pOrderBy = pOrderBy; 3276 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3277 3278 /* Allocate a range of temporary registers and the KeyInfo needed 3279 ** for the logic that removes duplicate result rows when the 3280 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3281 */ 3282 if( op==TK_ALL ){ 3283 regPrev = 0; 3284 }else{ 3285 int nExpr = p->pEList->nExpr; 3286 assert( nOrderBy>=nExpr || db->mallocFailed ); 3287 regPrev = pParse->nMem+1; 3288 pParse->nMem += nExpr+1; 3289 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3290 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3291 if( pKeyDup ){ 3292 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3293 for(i=0; i<nExpr; i++){ 3294 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3295 pKeyDup->aSortFlags[i] = 0; 3296 } 3297 } 3298 } 3299 3300 /* Separate the left and the right query from one another 3301 */ 3302 p->pPrior = 0; 3303 pPrior->pNext = 0; 3304 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3305 if( pPrior->pPrior==0 ){ 3306 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3307 } 3308 3309 /* Compute the limit registers */ 3310 computeLimitRegisters(pParse, p, labelEnd); 3311 if( p->iLimit && op==TK_ALL ){ 3312 regLimitA = ++pParse->nMem; 3313 regLimitB = ++pParse->nMem; 3314 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3315 regLimitA); 3316 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3317 }else{ 3318 regLimitA = regLimitB = 0; 3319 } 3320 sqlite3ExprDelete(db, p->pLimit); 3321 p->pLimit = 0; 3322 3323 regAddrA = ++pParse->nMem; 3324 regAddrB = ++pParse->nMem; 3325 regOutA = ++pParse->nMem; 3326 regOutB = ++pParse->nMem; 3327 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3328 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3329 3330 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3331 3332 /* Generate a coroutine to evaluate the SELECT statement to the 3333 ** left of the compound operator - the "A" select. 3334 */ 3335 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3336 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3337 VdbeComment((v, "left SELECT")); 3338 pPrior->iLimit = regLimitA; 3339 ExplainQueryPlan((pParse, 1, "LEFT")); 3340 sqlite3Select(pParse, pPrior, &destA); 3341 sqlite3VdbeEndCoroutine(v, regAddrA); 3342 sqlite3VdbeJumpHere(v, addr1); 3343 3344 /* Generate a coroutine to evaluate the SELECT statement on 3345 ** the right - the "B" select 3346 */ 3347 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3348 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3349 VdbeComment((v, "right SELECT")); 3350 savedLimit = p->iLimit; 3351 savedOffset = p->iOffset; 3352 p->iLimit = regLimitB; 3353 p->iOffset = 0; 3354 ExplainQueryPlan((pParse, 1, "RIGHT")); 3355 sqlite3Select(pParse, p, &destB); 3356 p->iLimit = savedLimit; 3357 p->iOffset = savedOffset; 3358 sqlite3VdbeEndCoroutine(v, regAddrB); 3359 3360 /* Generate a subroutine that outputs the current row of the A 3361 ** select as the next output row of the compound select. 3362 */ 3363 VdbeNoopComment((v, "Output routine for A")); 3364 addrOutA = generateOutputSubroutine(pParse, 3365 p, &destA, pDest, regOutA, 3366 regPrev, pKeyDup, labelEnd); 3367 3368 /* Generate a subroutine that outputs the current row of the B 3369 ** select as the next output row of the compound select. 3370 */ 3371 if( op==TK_ALL || op==TK_UNION ){ 3372 VdbeNoopComment((v, "Output routine for B")); 3373 addrOutB = generateOutputSubroutine(pParse, 3374 p, &destB, pDest, regOutB, 3375 regPrev, pKeyDup, labelEnd); 3376 } 3377 sqlite3KeyInfoUnref(pKeyDup); 3378 3379 /* Generate a subroutine to run when the results from select A 3380 ** are exhausted and only data in select B remains. 3381 */ 3382 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3383 addrEofA_noB = addrEofA = labelEnd; 3384 }else{ 3385 VdbeNoopComment((v, "eof-A subroutine")); 3386 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3387 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3388 VdbeCoverage(v); 3389 sqlite3VdbeGoto(v, addrEofA); 3390 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3391 } 3392 3393 /* Generate a subroutine to run when the results from select B 3394 ** are exhausted and only data in select A remains. 3395 */ 3396 if( op==TK_INTERSECT ){ 3397 addrEofB = addrEofA; 3398 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3399 }else{ 3400 VdbeNoopComment((v, "eof-B subroutine")); 3401 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3402 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3403 sqlite3VdbeGoto(v, addrEofB); 3404 } 3405 3406 /* Generate code to handle the case of A<B 3407 */ 3408 VdbeNoopComment((v, "A-lt-B subroutine")); 3409 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3410 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3411 sqlite3VdbeGoto(v, labelCmpr); 3412 3413 /* Generate code to handle the case of A==B 3414 */ 3415 if( op==TK_ALL ){ 3416 addrAeqB = addrAltB; 3417 }else if( op==TK_INTERSECT ){ 3418 addrAeqB = addrAltB; 3419 addrAltB++; 3420 }else{ 3421 VdbeNoopComment((v, "A-eq-B subroutine")); 3422 addrAeqB = 3423 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3424 sqlite3VdbeGoto(v, labelCmpr); 3425 } 3426 3427 /* Generate code to handle the case of A>B 3428 */ 3429 VdbeNoopComment((v, "A-gt-B subroutine")); 3430 addrAgtB = sqlite3VdbeCurrentAddr(v); 3431 if( op==TK_ALL || op==TK_UNION ){ 3432 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3433 } 3434 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3435 sqlite3VdbeGoto(v, labelCmpr); 3436 3437 /* This code runs once to initialize everything. 3438 */ 3439 sqlite3VdbeJumpHere(v, addr1); 3440 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3441 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3442 3443 /* Implement the main merge loop 3444 */ 3445 sqlite3VdbeResolveLabel(v, labelCmpr); 3446 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3447 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3448 (char*)pKeyMerge, P4_KEYINFO); 3449 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3450 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3451 3452 /* Jump to the this point in order to terminate the query. 3453 */ 3454 sqlite3VdbeResolveLabel(v, labelEnd); 3455 3456 /* Reassembly the compound query so that it will be freed correctly 3457 ** by the calling function */ 3458 if( p->pPrior ){ 3459 sqlite3SelectDelete(db, p->pPrior); 3460 } 3461 p->pPrior = pPrior; 3462 pPrior->pNext = p; 3463 3464 /*** TBD: Insert subroutine calls to close cursors on incomplete 3465 **** subqueries ****/ 3466 ExplainQueryPlanPop(pParse); 3467 return pParse->nErr!=0; 3468 } 3469 #endif 3470 3471 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3472 3473 /* An instance of the SubstContext object describes an substitution edit 3474 ** to be performed on a parse tree. 3475 ** 3476 ** All references to columns in table iTable are to be replaced by corresponding 3477 ** expressions in pEList. 3478 */ 3479 typedef struct SubstContext { 3480 Parse *pParse; /* The parsing context */ 3481 int iTable; /* Replace references to this table */ 3482 int iNewTable; /* New table number */ 3483 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3484 ExprList *pEList; /* Replacement expressions */ 3485 } SubstContext; 3486 3487 /* Forward Declarations */ 3488 static void substExprList(SubstContext*, ExprList*); 3489 static void substSelect(SubstContext*, Select*, int); 3490 3491 /* 3492 ** Scan through the expression pExpr. Replace every reference to 3493 ** a column in table number iTable with a copy of the iColumn-th 3494 ** entry in pEList. (But leave references to the ROWID column 3495 ** unchanged.) 3496 ** 3497 ** This routine is part of the flattening procedure. A subquery 3498 ** whose result set is defined by pEList appears as entry in the 3499 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3500 ** FORM clause entry is iTable. This routine makes the necessary 3501 ** changes to pExpr so that it refers directly to the source table 3502 ** of the subquery rather the result set of the subquery. 3503 */ 3504 static Expr *substExpr( 3505 SubstContext *pSubst, /* Description of the substitution */ 3506 Expr *pExpr /* Expr in which substitution occurs */ 3507 ){ 3508 if( pExpr==0 ) return 0; 3509 if( ExprHasProperty(pExpr, EP_FromJoin) 3510 && pExpr->iRightJoinTable==pSubst->iTable 3511 ){ 3512 pExpr->iRightJoinTable = pSubst->iNewTable; 3513 } 3514 if( pExpr->op==TK_COLUMN 3515 && pExpr->iTable==pSubst->iTable 3516 && !ExprHasProperty(pExpr, EP_FixedCol) 3517 ){ 3518 if( pExpr->iColumn<0 ){ 3519 pExpr->op = TK_NULL; 3520 }else{ 3521 Expr *pNew; 3522 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3523 Expr ifNullRow; 3524 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3525 assert( pExpr->pRight==0 ); 3526 if( sqlite3ExprIsVector(pCopy) ){ 3527 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3528 }else{ 3529 sqlite3 *db = pSubst->pParse->db; 3530 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3531 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3532 ifNullRow.op = TK_IF_NULL_ROW; 3533 ifNullRow.pLeft = pCopy; 3534 ifNullRow.iTable = pSubst->iNewTable; 3535 ifNullRow.flags = EP_IfNullRow; 3536 pCopy = &ifNullRow; 3537 } 3538 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3539 pNew = sqlite3ExprDup(db, pCopy, 0); 3540 if( pNew && pSubst->isLeftJoin ){ 3541 ExprSetProperty(pNew, EP_CanBeNull); 3542 } 3543 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3544 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3545 } 3546 sqlite3ExprDelete(db, pExpr); 3547 pExpr = pNew; 3548 3549 /* Ensure that the expression now has an implicit collation sequence, 3550 ** just as it did when it was a column of a view or sub-query. */ 3551 if( pExpr ){ 3552 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3553 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3554 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3555 (pColl ? pColl->zName : "BINARY") 3556 ); 3557 } 3558 ExprClearProperty(pExpr, EP_Collate); 3559 } 3560 } 3561 } 3562 }else{ 3563 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3564 pExpr->iTable = pSubst->iNewTable; 3565 } 3566 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3567 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3568 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3569 substSelect(pSubst, pExpr->x.pSelect, 1); 3570 }else{ 3571 substExprList(pSubst, pExpr->x.pList); 3572 } 3573 #ifndef SQLITE_OMIT_WINDOWFUNC 3574 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3575 Window *pWin = pExpr->y.pWin; 3576 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3577 substExprList(pSubst, pWin->pPartition); 3578 substExprList(pSubst, pWin->pOrderBy); 3579 } 3580 #endif 3581 } 3582 return pExpr; 3583 } 3584 static void substExprList( 3585 SubstContext *pSubst, /* Description of the substitution */ 3586 ExprList *pList /* List to scan and in which to make substitutes */ 3587 ){ 3588 int i; 3589 if( pList==0 ) return; 3590 for(i=0; i<pList->nExpr; i++){ 3591 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3592 } 3593 } 3594 static void substSelect( 3595 SubstContext *pSubst, /* Description of the substitution */ 3596 Select *p, /* SELECT statement in which to make substitutions */ 3597 int doPrior /* Do substitutes on p->pPrior too */ 3598 ){ 3599 SrcList *pSrc; 3600 struct SrcList_item *pItem; 3601 int i; 3602 if( !p ) return; 3603 do{ 3604 substExprList(pSubst, p->pEList); 3605 substExprList(pSubst, p->pGroupBy); 3606 substExprList(pSubst, p->pOrderBy); 3607 p->pHaving = substExpr(pSubst, p->pHaving); 3608 p->pWhere = substExpr(pSubst, p->pWhere); 3609 pSrc = p->pSrc; 3610 assert( pSrc!=0 ); 3611 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3612 substSelect(pSubst, pItem->pSelect, 1); 3613 if( pItem->fg.isTabFunc ){ 3614 substExprList(pSubst, pItem->u1.pFuncArg); 3615 } 3616 } 3617 }while( doPrior && (p = p->pPrior)!=0 ); 3618 } 3619 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3620 3621 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3622 /* 3623 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3624 ** clause of that SELECT. 3625 ** 3626 ** This routine scans the entire SELECT statement and recomputes the 3627 ** pSrcItem->colUsed mask. 3628 */ 3629 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3630 struct SrcList_item *pItem; 3631 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3632 pItem = pWalker->u.pSrcItem; 3633 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3634 if( pExpr->iColumn<0 ) return WRC_Continue; 3635 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3636 return WRC_Continue; 3637 } 3638 static void recomputeColumnsUsed( 3639 Select *pSelect, /* The complete SELECT statement */ 3640 struct SrcList_item *pSrcItem /* Which FROM clause item to recompute */ 3641 ){ 3642 Walker w; 3643 if( NEVER(pSrcItem->pTab==0) ) return; 3644 memset(&w, 0, sizeof(w)); 3645 w.xExprCallback = recomputeColumnsUsedExpr; 3646 w.xSelectCallback = sqlite3SelectWalkNoop; 3647 w.u.pSrcItem = pSrcItem; 3648 pSrcItem->colUsed = 0; 3649 sqlite3WalkSelect(&w, pSelect); 3650 } 3651 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3652 3653 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3654 /* 3655 ** This routine attempts to flatten subqueries as a performance optimization. 3656 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3657 ** 3658 ** To understand the concept of flattening, consider the following 3659 ** query: 3660 ** 3661 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3662 ** 3663 ** The default way of implementing this query is to execute the 3664 ** subquery first and store the results in a temporary table, then 3665 ** run the outer query on that temporary table. This requires two 3666 ** passes over the data. Furthermore, because the temporary table 3667 ** has no indices, the WHERE clause on the outer query cannot be 3668 ** optimized. 3669 ** 3670 ** This routine attempts to rewrite queries such as the above into 3671 ** a single flat select, like this: 3672 ** 3673 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3674 ** 3675 ** The code generated for this simplification gives the same result 3676 ** but only has to scan the data once. And because indices might 3677 ** exist on the table t1, a complete scan of the data might be 3678 ** avoided. 3679 ** 3680 ** Flattening is subject to the following constraints: 3681 ** 3682 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3683 ** The subquery and the outer query cannot both be aggregates. 3684 ** 3685 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3686 ** (2) If the subquery is an aggregate then 3687 ** (2a) the outer query must not be a join and 3688 ** (2b) the outer query must not use subqueries 3689 ** other than the one FROM-clause subquery that is a candidate 3690 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3691 ** from 2015-02-09.) 3692 ** 3693 ** (3) If the subquery is the right operand of a LEFT JOIN then 3694 ** (3a) the subquery may not be a join and 3695 ** (3b) the FROM clause of the subquery may not contain a virtual 3696 ** table and 3697 ** (3c) the outer query may not be an aggregate. 3698 ** (3d) the outer query may not be DISTINCT. 3699 ** 3700 ** (4) The subquery can not be DISTINCT. 3701 ** 3702 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3703 ** sub-queries that were excluded from this optimization. Restriction 3704 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3705 ** 3706 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3707 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3708 ** 3709 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3710 ** A FROM clause, consider adding a FROM clause with the special 3711 ** table sqlite_once that consists of a single row containing a 3712 ** single NULL. 3713 ** 3714 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3715 ** 3716 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3717 ** 3718 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3719 ** accidently carried the comment forward until 2014-09-15. Original 3720 ** constraint: "If the subquery is aggregate then the outer query 3721 ** may not use LIMIT." 3722 ** 3723 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3724 ** 3725 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3726 ** a separate restriction deriving from ticket #350. 3727 ** 3728 ** (13) The subquery and outer query may not both use LIMIT. 3729 ** 3730 ** (14) The subquery may not use OFFSET. 3731 ** 3732 ** (15) If the outer query is part of a compound select, then the 3733 ** subquery may not use LIMIT. 3734 ** (See ticket #2339 and ticket [02a8e81d44]). 3735 ** 3736 ** (16) If the outer query is aggregate, then the subquery may not 3737 ** use ORDER BY. (Ticket #2942) This used to not matter 3738 ** until we introduced the group_concat() function. 3739 ** 3740 ** (17) If the subquery is a compound select, then 3741 ** (17a) all compound operators must be a UNION ALL, and 3742 ** (17b) no terms within the subquery compound may be aggregate 3743 ** or DISTINCT, and 3744 ** (17c) every term within the subquery compound must have a FROM clause 3745 ** (17d) the outer query may not be 3746 ** (17d1) aggregate, or 3747 ** (17d2) DISTINCT, or 3748 ** (17d3) a join. 3749 ** (17e) the subquery may not contain window functions 3750 ** 3751 ** The parent and sub-query may contain WHERE clauses. Subject to 3752 ** rules (11), (13) and (14), they may also contain ORDER BY, 3753 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3754 ** operator other than UNION ALL because all the other compound 3755 ** operators have an implied DISTINCT which is disallowed by 3756 ** restriction (4). 3757 ** 3758 ** Also, each component of the sub-query must return the same number 3759 ** of result columns. This is actually a requirement for any compound 3760 ** SELECT statement, but all the code here does is make sure that no 3761 ** such (illegal) sub-query is flattened. The caller will detect the 3762 ** syntax error and return a detailed message. 3763 ** 3764 ** (18) If the sub-query is a compound select, then all terms of the 3765 ** ORDER BY clause of the parent must be simple references to 3766 ** columns of the sub-query. 3767 ** 3768 ** (19) If the subquery uses LIMIT then the outer query may not 3769 ** have a WHERE clause. 3770 ** 3771 ** (20) If the sub-query is a compound select, then it must not use 3772 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3773 ** somewhat by saying that the terms of the ORDER BY clause must 3774 ** appear as unmodified result columns in the outer query. But we 3775 ** have other optimizations in mind to deal with that case. 3776 ** 3777 ** (21) If the subquery uses LIMIT then the outer query may not be 3778 ** DISTINCT. (See ticket [752e1646fc]). 3779 ** 3780 ** (22) The subquery may not be a recursive CTE. 3781 ** 3782 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3783 ** a recursive CTE, then the sub-query may not be a compound query. 3784 ** This restriction is because transforming the 3785 ** parent to a compound query confuses the code that handles 3786 ** recursive queries in multiSelect(). 3787 ** 3788 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3789 ** The subquery may not be an aggregate that uses the built-in min() or 3790 ** or max() functions. (Without this restriction, a query like: 3791 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3792 ** return the value X for which Y was maximal.) 3793 ** 3794 ** (25) If either the subquery or the parent query contains a window 3795 ** function in the select list or ORDER BY clause, flattening 3796 ** is not attempted. 3797 ** 3798 ** 3799 ** In this routine, the "p" parameter is a pointer to the outer query. 3800 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3801 ** uses aggregates. 3802 ** 3803 ** If flattening is not attempted, this routine is a no-op and returns 0. 3804 ** If flattening is attempted this routine returns 1. 3805 ** 3806 ** All of the expression analysis must occur on both the outer query and 3807 ** the subquery before this routine runs. 3808 */ 3809 static int flattenSubquery( 3810 Parse *pParse, /* Parsing context */ 3811 Select *p, /* The parent or outer SELECT statement */ 3812 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3813 int isAgg /* True if outer SELECT uses aggregate functions */ 3814 ){ 3815 const char *zSavedAuthContext = pParse->zAuthContext; 3816 Select *pParent; /* Current UNION ALL term of the other query */ 3817 Select *pSub; /* The inner query or "subquery" */ 3818 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3819 SrcList *pSrc; /* The FROM clause of the outer query */ 3820 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3821 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3822 int iNewParent = -1;/* Replacement table for iParent */ 3823 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3824 int i; /* Loop counter */ 3825 Expr *pWhere; /* The WHERE clause */ 3826 struct SrcList_item *pSubitem; /* The subquery */ 3827 sqlite3 *db = pParse->db; 3828 Walker w; /* Walker to persist agginfo data */ 3829 3830 /* Check to see if flattening is permitted. Return 0 if not. 3831 */ 3832 assert( p!=0 ); 3833 assert( p->pPrior==0 ); 3834 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3835 pSrc = p->pSrc; 3836 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3837 pSubitem = &pSrc->a[iFrom]; 3838 iParent = pSubitem->iCursor; 3839 pSub = pSubitem->pSelect; 3840 assert( pSub!=0 ); 3841 3842 #ifndef SQLITE_OMIT_WINDOWFUNC 3843 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3844 #endif 3845 3846 pSubSrc = pSub->pSrc; 3847 assert( pSubSrc ); 3848 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3849 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3850 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3851 ** became arbitrary expressions, we were forced to add restrictions (13) 3852 ** and (14). */ 3853 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3854 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3855 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3856 return 0; /* Restriction (15) */ 3857 } 3858 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3859 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3860 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3861 return 0; /* Restrictions (8)(9) */ 3862 } 3863 if( p->pOrderBy && pSub->pOrderBy ){ 3864 return 0; /* Restriction (11) */ 3865 } 3866 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3867 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3868 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3869 return 0; /* Restriction (21) */ 3870 } 3871 if( pSub->selFlags & (SF_Recursive) ){ 3872 return 0; /* Restrictions (22) */ 3873 } 3874 3875 /* 3876 ** If the subquery is the right operand of a LEFT JOIN, then the 3877 ** subquery may not be a join itself (3a). Example of why this is not 3878 ** allowed: 3879 ** 3880 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3881 ** 3882 ** If we flatten the above, we would get 3883 ** 3884 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3885 ** 3886 ** which is not at all the same thing. 3887 ** 3888 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3889 ** query cannot be an aggregate. (3c) This is an artifact of the way 3890 ** aggregates are processed - there is no mechanism to determine if 3891 ** the LEFT JOIN table should be all-NULL. 3892 ** 3893 ** See also tickets #306, #350, and #3300. 3894 */ 3895 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3896 isLeftJoin = 1; 3897 if( pSubSrc->nSrc>1 /* (3a) */ 3898 || isAgg /* (3b) */ 3899 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3900 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3901 ){ 3902 return 0; 3903 } 3904 } 3905 #ifdef SQLITE_EXTRA_IFNULLROW 3906 else if( iFrom>0 && !isAgg ){ 3907 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3908 ** every reference to any result column from subquery in a join, even 3909 ** though they are not necessary. This will stress-test the OP_IfNullRow 3910 ** opcode. */ 3911 isLeftJoin = -1; 3912 } 3913 #endif 3914 3915 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3916 ** use only the UNION ALL operator. And none of the simple select queries 3917 ** that make up the compound SELECT are allowed to be aggregate or distinct 3918 ** queries. 3919 */ 3920 if( pSub->pPrior ){ 3921 if( pSub->pOrderBy ){ 3922 return 0; /* Restriction (20) */ 3923 } 3924 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3925 return 0; /* (17d1), (17d2), or (17d3) */ 3926 } 3927 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3928 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3929 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3930 assert( pSub->pSrc!=0 ); 3931 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3932 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3933 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3934 || pSub1->pSrc->nSrc<1 /* (17c) */ 3935 #ifndef SQLITE_OMIT_WINDOWFUNC 3936 || pSub1->pWin /* (17e) */ 3937 #endif 3938 ){ 3939 return 0; 3940 } 3941 testcase( pSub1->pSrc->nSrc>1 ); 3942 } 3943 3944 /* Restriction (18). */ 3945 if( p->pOrderBy ){ 3946 int ii; 3947 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3948 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3949 } 3950 } 3951 } 3952 3953 /* Ex-restriction (23): 3954 ** The only way that the recursive part of a CTE can contain a compound 3955 ** subquery is for the subquery to be one term of a join. But if the 3956 ** subquery is a join, then the flattening has already been stopped by 3957 ** restriction (17d3) 3958 */ 3959 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3960 3961 /***** If we reach this point, flattening is permitted. *****/ 3962 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3963 pSub->selId, pSub, iFrom)); 3964 3965 /* Authorize the subquery */ 3966 pParse->zAuthContext = pSubitem->zName; 3967 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3968 testcase( i==SQLITE_DENY ); 3969 pParse->zAuthContext = zSavedAuthContext; 3970 3971 /* If the sub-query is a compound SELECT statement, then (by restrictions 3972 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3973 ** be of the form: 3974 ** 3975 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3976 ** 3977 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3978 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3979 ** OFFSET clauses and joins them to the left-hand-side of the original 3980 ** using UNION ALL operators. In this case N is the number of simple 3981 ** select statements in the compound sub-query. 3982 ** 3983 ** Example: 3984 ** 3985 ** SELECT a+1 FROM ( 3986 ** SELECT x FROM tab 3987 ** UNION ALL 3988 ** SELECT y FROM tab 3989 ** UNION ALL 3990 ** SELECT abs(z*2) FROM tab2 3991 ** ) WHERE a!=5 ORDER BY 1 3992 ** 3993 ** Transformed into: 3994 ** 3995 ** SELECT x+1 FROM tab WHERE x+1!=5 3996 ** UNION ALL 3997 ** SELECT y+1 FROM tab WHERE y+1!=5 3998 ** UNION ALL 3999 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4000 ** ORDER BY 1 4001 ** 4002 ** We call this the "compound-subquery flattening". 4003 */ 4004 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4005 Select *pNew; 4006 ExprList *pOrderBy = p->pOrderBy; 4007 Expr *pLimit = p->pLimit; 4008 Select *pPrior = p->pPrior; 4009 p->pOrderBy = 0; 4010 p->pSrc = 0; 4011 p->pPrior = 0; 4012 p->pLimit = 0; 4013 pNew = sqlite3SelectDup(db, p, 0); 4014 p->pLimit = pLimit; 4015 p->pOrderBy = pOrderBy; 4016 p->pSrc = pSrc; 4017 p->op = TK_ALL; 4018 if( pNew==0 ){ 4019 p->pPrior = pPrior; 4020 }else{ 4021 pNew->pPrior = pPrior; 4022 if( pPrior ) pPrior->pNext = pNew; 4023 pNew->pNext = p; 4024 p->pPrior = pNew; 4025 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4026 " creates %u as peer\n",pNew->selId)); 4027 } 4028 if( db->mallocFailed ) return 1; 4029 } 4030 4031 /* Begin flattening the iFrom-th entry of the FROM clause 4032 ** in the outer query. 4033 */ 4034 pSub = pSub1 = pSubitem->pSelect; 4035 4036 /* Delete the transient table structure associated with the 4037 ** subquery 4038 */ 4039 sqlite3DbFree(db, pSubitem->zDatabase); 4040 sqlite3DbFree(db, pSubitem->zName); 4041 sqlite3DbFree(db, pSubitem->zAlias); 4042 pSubitem->zDatabase = 0; 4043 pSubitem->zName = 0; 4044 pSubitem->zAlias = 0; 4045 pSubitem->pSelect = 0; 4046 4047 /* Defer deleting the Table object associated with the 4048 ** subquery until code generation is 4049 ** complete, since there may still exist Expr.pTab entries that 4050 ** refer to the subquery even after flattening. Ticket #3346. 4051 ** 4052 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4053 */ 4054 if( ALWAYS(pSubitem->pTab!=0) ){ 4055 Table *pTabToDel = pSubitem->pTab; 4056 if( pTabToDel->nTabRef==1 ){ 4057 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4058 pTabToDel->pNextZombie = pToplevel->pZombieTab; 4059 pToplevel->pZombieTab = pTabToDel; 4060 }else{ 4061 pTabToDel->nTabRef--; 4062 } 4063 pSubitem->pTab = 0; 4064 } 4065 4066 /* The following loop runs once for each term in a compound-subquery 4067 ** flattening (as described above). If we are doing a different kind 4068 ** of flattening - a flattening other than a compound-subquery flattening - 4069 ** then this loop only runs once. 4070 ** 4071 ** This loop moves all of the FROM elements of the subquery into the 4072 ** the FROM clause of the outer query. Before doing this, remember 4073 ** the cursor number for the original outer query FROM element in 4074 ** iParent. The iParent cursor will never be used. Subsequent code 4075 ** will scan expressions looking for iParent references and replace 4076 ** those references with expressions that resolve to the subquery FROM 4077 ** elements we are now copying in. 4078 */ 4079 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4080 int nSubSrc; 4081 u8 jointype = 0; 4082 assert( pSub!=0 ); 4083 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4084 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4085 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4086 4087 if( pSrc ){ 4088 assert( pParent==p ); /* First time through the loop */ 4089 jointype = pSubitem->fg.jointype; 4090 }else{ 4091 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4092 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4093 if( pSrc==0 ) break; 4094 pParent->pSrc = pSrc; 4095 } 4096 4097 /* The subquery uses a single slot of the FROM clause of the outer 4098 ** query. If the subquery has more than one element in its FROM clause, 4099 ** then expand the outer query to make space for it to hold all elements 4100 ** of the subquery. 4101 ** 4102 ** Example: 4103 ** 4104 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4105 ** 4106 ** The outer query has 3 slots in its FROM clause. One slot of the 4107 ** outer query (the middle slot) is used by the subquery. The next 4108 ** block of code will expand the outer query FROM clause to 4 slots. 4109 ** The middle slot is expanded to two slots in order to make space 4110 ** for the two elements in the FROM clause of the subquery. 4111 */ 4112 if( nSubSrc>1 ){ 4113 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4114 if( pSrc==0 ) break; 4115 pParent->pSrc = pSrc; 4116 } 4117 4118 /* Transfer the FROM clause terms from the subquery into the 4119 ** outer query. 4120 */ 4121 for(i=0; i<nSubSrc; i++){ 4122 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4123 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4124 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4125 iNewParent = pSubSrc->a[i].iCursor; 4126 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4127 } 4128 pSrc->a[iFrom].fg.jointype = jointype; 4129 4130 /* Now begin substituting subquery result set expressions for 4131 ** references to the iParent in the outer query. 4132 ** 4133 ** Example: 4134 ** 4135 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4136 ** \ \_____________ subquery __________/ / 4137 ** \_____________________ outer query ______________________________/ 4138 ** 4139 ** We look at every expression in the outer query and every place we see 4140 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4141 */ 4142 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4143 /* At this point, any non-zero iOrderByCol values indicate that the 4144 ** ORDER BY column expression is identical to the iOrderByCol'th 4145 ** expression returned by SELECT statement pSub. Since these values 4146 ** do not necessarily correspond to columns in SELECT statement pParent, 4147 ** zero them before transfering the ORDER BY clause. 4148 ** 4149 ** Not doing this may cause an error if a subsequent call to this 4150 ** function attempts to flatten a compound sub-query into pParent 4151 ** (the only way this can happen is if the compound sub-query is 4152 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4153 ExprList *pOrderBy = pSub->pOrderBy; 4154 for(i=0; i<pOrderBy->nExpr; i++){ 4155 pOrderBy->a[i].u.x.iOrderByCol = 0; 4156 } 4157 assert( pParent->pOrderBy==0 ); 4158 pParent->pOrderBy = pOrderBy; 4159 pSub->pOrderBy = 0; 4160 } 4161 pWhere = pSub->pWhere; 4162 pSub->pWhere = 0; 4163 if( isLeftJoin>0 ){ 4164 sqlite3SetJoinExpr(pWhere, iNewParent); 4165 } 4166 if( pWhere ){ 4167 if( pParent->pWhere ){ 4168 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4169 }else{ 4170 pParent->pWhere = pWhere; 4171 } 4172 } 4173 if( db->mallocFailed==0 ){ 4174 SubstContext x; 4175 x.pParse = pParse; 4176 x.iTable = iParent; 4177 x.iNewTable = iNewParent; 4178 x.isLeftJoin = isLeftJoin; 4179 x.pEList = pSub->pEList; 4180 substSelect(&x, pParent, 0); 4181 } 4182 4183 /* The flattened query is a compound if either the inner or the 4184 ** outer query is a compound. */ 4185 pParent->selFlags |= pSub->selFlags & SF_Compound; 4186 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4187 4188 /* 4189 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4190 ** 4191 ** One is tempted to try to add a and b to combine the limits. But this 4192 ** does not work if either limit is negative. 4193 */ 4194 if( pSub->pLimit ){ 4195 pParent->pLimit = pSub->pLimit; 4196 pSub->pLimit = 0; 4197 } 4198 4199 /* Recompute the SrcList_item.colUsed masks for the flattened 4200 ** tables. */ 4201 for(i=0; i<nSubSrc; i++){ 4202 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4203 } 4204 } 4205 4206 /* Finially, delete what is left of the subquery and return 4207 ** success. 4208 */ 4209 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4210 sqlite3WalkSelect(&w,pSub1); 4211 sqlite3SelectDelete(db, pSub1); 4212 4213 #if SELECTTRACE_ENABLED 4214 if( sqlite3_unsupported_selecttrace & 0x100 ){ 4215 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4216 sqlite3TreeViewSelect(0, p, 0); 4217 } 4218 #endif 4219 4220 return 1; 4221 } 4222 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4223 4224 /* 4225 ** A structure to keep track of all of the column values that are fixed to 4226 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4227 */ 4228 typedef struct WhereConst WhereConst; 4229 struct WhereConst { 4230 Parse *pParse; /* Parsing context */ 4231 int nConst; /* Number for COLUMN=CONSTANT terms */ 4232 int nChng; /* Number of times a constant is propagated */ 4233 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4234 }; 4235 4236 /* 4237 ** Add a new entry to the pConst object. Except, do not add duplicate 4238 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4239 ** 4240 ** The caller guarantees the pColumn is a column and pValue is a constant. 4241 ** This routine has to do some additional checks before completing the 4242 ** insert. 4243 */ 4244 static void constInsert( 4245 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4246 Expr *pColumn, /* The COLUMN part of the constraint */ 4247 Expr *pValue, /* The VALUE part of the constraint */ 4248 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4249 ){ 4250 int i; 4251 assert( pColumn->op==TK_COLUMN ); 4252 assert( sqlite3ExprIsConstant(pValue) ); 4253 4254 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4255 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4256 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4257 return; 4258 } 4259 4260 /* 2018-10-25 ticket [cf5ed20f] 4261 ** Make sure the same pColumn is not inserted more than once */ 4262 for(i=0; i<pConst->nConst; i++){ 4263 const Expr *pE2 = pConst->apExpr[i*2]; 4264 assert( pE2->op==TK_COLUMN ); 4265 if( pE2->iTable==pColumn->iTable 4266 && pE2->iColumn==pColumn->iColumn 4267 ){ 4268 return; /* Already present. Return without doing anything. */ 4269 } 4270 } 4271 4272 pConst->nConst++; 4273 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4274 pConst->nConst*2*sizeof(Expr*)); 4275 if( pConst->apExpr==0 ){ 4276 pConst->nConst = 0; 4277 }else{ 4278 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4279 pConst->apExpr[pConst->nConst*2-1] = pValue; 4280 } 4281 } 4282 4283 /* 4284 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4285 ** is a constant expression and where the term must be true because it 4286 ** is part of the AND-connected terms of the expression. For each term 4287 ** found, add it to the pConst structure. 4288 */ 4289 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4290 Expr *pRight, *pLeft; 4291 if( pExpr==0 ) return; 4292 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4293 if( pExpr->op==TK_AND ){ 4294 findConstInWhere(pConst, pExpr->pRight); 4295 findConstInWhere(pConst, pExpr->pLeft); 4296 return; 4297 } 4298 if( pExpr->op!=TK_EQ ) return; 4299 pRight = pExpr->pRight; 4300 pLeft = pExpr->pLeft; 4301 assert( pRight!=0 ); 4302 assert( pLeft!=0 ); 4303 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4304 constInsert(pConst,pRight,pLeft,pExpr); 4305 } 4306 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4307 constInsert(pConst,pLeft,pRight,pExpr); 4308 } 4309 } 4310 4311 /* 4312 ** This is a Walker expression callback. pExpr is a candidate expression 4313 ** to be replaced by a value. If pExpr is equivalent to one of the 4314 ** columns named in pWalker->u.pConst, then overwrite it with its 4315 ** corresponding value. 4316 */ 4317 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4318 int i; 4319 WhereConst *pConst; 4320 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4321 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4322 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4323 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4324 return WRC_Continue; 4325 } 4326 pConst = pWalker->u.pConst; 4327 for(i=0; i<pConst->nConst; i++){ 4328 Expr *pColumn = pConst->apExpr[i*2]; 4329 if( pColumn==pExpr ) continue; 4330 if( pColumn->iTable!=pExpr->iTable ) continue; 4331 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4332 /* A match is found. Add the EP_FixedCol property */ 4333 pConst->nChng++; 4334 ExprClearProperty(pExpr, EP_Leaf); 4335 ExprSetProperty(pExpr, EP_FixedCol); 4336 assert( pExpr->pLeft==0 ); 4337 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4338 break; 4339 } 4340 return WRC_Prune; 4341 } 4342 4343 /* 4344 ** The WHERE-clause constant propagation optimization. 4345 ** 4346 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4347 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4348 ** part of a ON clause from a LEFT JOIN, then throughout the query 4349 ** replace all other occurrences of COLUMN with CONSTANT. 4350 ** 4351 ** For example, the query: 4352 ** 4353 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4354 ** 4355 ** Is transformed into 4356 ** 4357 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4358 ** 4359 ** Return true if any transformations where made and false if not. 4360 ** 4361 ** Implementation note: Constant propagation is tricky due to affinity 4362 ** and collating sequence interactions. Consider this example: 4363 ** 4364 ** CREATE TABLE t1(a INT,b TEXT); 4365 ** INSERT INTO t1 VALUES(123,'0123'); 4366 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4367 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4368 ** 4369 ** The two SELECT statements above should return different answers. b=a 4370 ** is alway true because the comparison uses numeric affinity, but b=123 4371 ** is false because it uses text affinity and '0123' is not the same as '123'. 4372 ** To work around this, the expression tree is not actually changed from 4373 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4374 ** and the "123" value is hung off of the pLeft pointer. Code generator 4375 ** routines know to generate the constant "123" instead of looking up the 4376 ** column value. Also, to avoid collation problems, this optimization is 4377 ** only attempted if the "a=123" term uses the default BINARY collation. 4378 */ 4379 static int propagateConstants( 4380 Parse *pParse, /* The parsing context */ 4381 Select *p /* The query in which to propagate constants */ 4382 ){ 4383 WhereConst x; 4384 Walker w; 4385 int nChng = 0; 4386 x.pParse = pParse; 4387 do{ 4388 x.nConst = 0; 4389 x.nChng = 0; 4390 x.apExpr = 0; 4391 findConstInWhere(&x, p->pWhere); 4392 if( x.nConst ){ 4393 memset(&w, 0, sizeof(w)); 4394 w.pParse = pParse; 4395 w.xExprCallback = propagateConstantExprRewrite; 4396 w.xSelectCallback = sqlite3SelectWalkNoop; 4397 w.xSelectCallback2 = 0; 4398 w.walkerDepth = 0; 4399 w.u.pConst = &x; 4400 sqlite3WalkExpr(&w, p->pWhere); 4401 sqlite3DbFree(x.pParse->db, x.apExpr); 4402 nChng += x.nChng; 4403 } 4404 }while( x.nChng ); 4405 return nChng; 4406 } 4407 4408 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4409 /* 4410 ** Make copies of relevant WHERE clause terms of the outer query into 4411 ** the WHERE clause of subquery. Example: 4412 ** 4413 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4414 ** 4415 ** Transformed into: 4416 ** 4417 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4418 ** WHERE x=5 AND y=10; 4419 ** 4420 ** The hope is that the terms added to the inner query will make it more 4421 ** efficient. 4422 ** 4423 ** Do not attempt this optimization if: 4424 ** 4425 ** (1) (** This restriction was removed on 2017-09-29. We used to 4426 ** disallow this optimization for aggregate subqueries, but now 4427 ** it is allowed by putting the extra terms on the HAVING clause. 4428 ** The added HAVING clause is pointless if the subquery lacks 4429 ** a GROUP BY clause. But such a HAVING clause is also harmless 4430 ** so there does not appear to be any reason to add extra logic 4431 ** to suppress it. **) 4432 ** 4433 ** (2) The inner query is the recursive part of a common table expression. 4434 ** 4435 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4436 ** clause would change the meaning of the LIMIT). 4437 ** 4438 ** (4) The inner query is the right operand of a LEFT JOIN and the 4439 ** expression to be pushed down does not come from the ON clause 4440 ** on that LEFT JOIN. 4441 ** 4442 ** (5) The WHERE clause expression originates in the ON or USING clause 4443 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4444 ** left join. An example: 4445 ** 4446 ** SELECT * 4447 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4448 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4449 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4450 ** 4451 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4452 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4453 ** then the (1,1,NULL) row would be suppressed. 4454 ** 4455 ** (6) The inner query features one or more window-functions (since 4456 ** changes to the WHERE clause of the inner query could change the 4457 ** window over which window functions are calculated). 4458 ** 4459 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4460 ** terms are duplicated into the subquery. 4461 */ 4462 static int pushDownWhereTerms( 4463 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4464 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4465 Expr *pWhere, /* The WHERE clause of the outer query */ 4466 int iCursor, /* Cursor number of the subquery */ 4467 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4468 ){ 4469 Expr *pNew; 4470 int nChng = 0; 4471 Select *pSel; 4472 if( pWhere==0 ) return 0; 4473 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4474 4475 #ifndef SQLITE_OMIT_WINDOWFUNC 4476 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4477 if( pSel->pWin ) return 0; /* restriction (6) */ 4478 } 4479 #endif 4480 4481 #ifdef SQLITE_DEBUG 4482 /* Only the first term of a compound can have a WITH clause. But make 4483 ** sure no other terms are marked SF_Recursive in case something changes 4484 ** in the future. 4485 */ 4486 { 4487 Select *pX; 4488 for(pX=pSubq; pX; pX=pX->pPrior){ 4489 assert( (pX->selFlags & (SF_Recursive))==0 ); 4490 } 4491 } 4492 #endif 4493 4494 if( pSubq->pLimit!=0 ){ 4495 return 0; /* restriction (3) */ 4496 } 4497 while( pWhere->op==TK_AND ){ 4498 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4499 iCursor, isLeftJoin); 4500 pWhere = pWhere->pLeft; 4501 } 4502 if( isLeftJoin 4503 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4504 || pWhere->iRightJoinTable!=iCursor) 4505 ){ 4506 return 0; /* restriction (4) */ 4507 } 4508 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4509 return 0; /* restriction (5) */ 4510 } 4511 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4512 nChng++; 4513 while( pSubq ){ 4514 SubstContext x; 4515 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4516 unsetJoinExpr(pNew, -1); 4517 x.pParse = pParse; 4518 x.iTable = iCursor; 4519 x.iNewTable = iCursor; 4520 x.isLeftJoin = 0; 4521 x.pEList = pSubq->pEList; 4522 pNew = substExpr(&x, pNew); 4523 if( pSubq->selFlags & SF_Aggregate ){ 4524 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4525 }else{ 4526 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4527 } 4528 pSubq = pSubq->pPrior; 4529 } 4530 } 4531 return nChng; 4532 } 4533 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4534 4535 /* 4536 ** The pFunc is the only aggregate function in the query. Check to see 4537 ** if the query is a candidate for the min/max optimization. 4538 ** 4539 ** If the query is a candidate for the min/max optimization, then set 4540 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4541 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4542 ** whether pFunc is a min() or max() function. 4543 ** 4544 ** If the query is not a candidate for the min/max optimization, return 4545 ** WHERE_ORDERBY_NORMAL (which must be zero). 4546 ** 4547 ** This routine must be called after aggregate functions have been 4548 ** located but before their arguments have been subjected to aggregate 4549 ** analysis. 4550 */ 4551 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4552 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4553 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4554 const char *zFunc; /* Name of aggregate function pFunc */ 4555 ExprList *pOrderBy; 4556 u8 sortFlags = 0; 4557 4558 assert( *ppMinMax==0 ); 4559 assert( pFunc->op==TK_AGG_FUNCTION ); 4560 assert( !IsWindowFunc(pFunc) ); 4561 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4562 return eRet; 4563 } 4564 zFunc = pFunc->u.zToken; 4565 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4566 eRet = WHERE_ORDERBY_MIN; 4567 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4568 sortFlags = KEYINFO_ORDER_BIGNULL; 4569 } 4570 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4571 eRet = WHERE_ORDERBY_MAX; 4572 sortFlags = KEYINFO_ORDER_DESC; 4573 }else{ 4574 return eRet; 4575 } 4576 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4577 assert( pOrderBy!=0 || db->mallocFailed ); 4578 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4579 return eRet; 4580 } 4581 4582 /* 4583 ** The select statement passed as the first argument is an aggregate query. 4584 ** The second argument is the associated aggregate-info object. This 4585 ** function tests if the SELECT is of the form: 4586 ** 4587 ** SELECT count(*) FROM <tbl> 4588 ** 4589 ** where table is a database table, not a sub-select or view. If the query 4590 ** does match this pattern, then a pointer to the Table object representing 4591 ** <tbl> is returned. Otherwise, 0 is returned. 4592 */ 4593 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4594 Table *pTab; 4595 Expr *pExpr; 4596 4597 assert( !p->pGroupBy ); 4598 4599 if( p->pWhere || p->pEList->nExpr!=1 4600 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4601 ){ 4602 return 0; 4603 } 4604 pTab = p->pSrc->a[0].pTab; 4605 pExpr = p->pEList->a[0].pExpr; 4606 assert( pTab && !pTab->pSelect && pExpr ); 4607 4608 if( IsVirtual(pTab) ) return 0; 4609 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4610 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4611 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4612 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4613 4614 return pTab; 4615 } 4616 4617 /* 4618 ** If the source-list item passed as an argument was augmented with an 4619 ** INDEXED BY clause, then try to locate the specified index. If there 4620 ** was such a clause and the named index cannot be found, return 4621 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4622 ** pFrom->pIndex and return SQLITE_OK. 4623 */ 4624 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4625 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4626 Table *pTab = pFrom->pTab; 4627 char *zIndexedBy = pFrom->u1.zIndexedBy; 4628 Index *pIdx; 4629 for(pIdx=pTab->pIndex; 4630 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4631 pIdx=pIdx->pNext 4632 ); 4633 if( !pIdx ){ 4634 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4635 pParse->checkSchema = 1; 4636 return SQLITE_ERROR; 4637 } 4638 pFrom->pIBIndex = pIdx; 4639 } 4640 return SQLITE_OK; 4641 } 4642 /* 4643 ** Detect compound SELECT statements that use an ORDER BY clause with 4644 ** an alternative collating sequence. 4645 ** 4646 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4647 ** 4648 ** These are rewritten as a subquery: 4649 ** 4650 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4651 ** ORDER BY ... COLLATE ... 4652 ** 4653 ** This transformation is necessary because the multiSelectOrderBy() routine 4654 ** above that generates the code for a compound SELECT with an ORDER BY clause 4655 ** uses a merge algorithm that requires the same collating sequence on the 4656 ** result columns as on the ORDER BY clause. See ticket 4657 ** http://www.sqlite.org/src/info/6709574d2a 4658 ** 4659 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4660 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4661 ** there are COLLATE terms in the ORDER BY. 4662 */ 4663 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4664 int i; 4665 Select *pNew; 4666 Select *pX; 4667 sqlite3 *db; 4668 struct ExprList_item *a; 4669 SrcList *pNewSrc; 4670 Parse *pParse; 4671 Token dummy; 4672 4673 if( p->pPrior==0 ) return WRC_Continue; 4674 if( p->pOrderBy==0 ) return WRC_Continue; 4675 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4676 if( pX==0 ) return WRC_Continue; 4677 a = p->pOrderBy->a; 4678 #ifndef SQLITE_OMIT_WINDOWFUNC 4679 /* If iOrderByCol is already non-zero, then it has already been matched 4680 ** to a result column of the SELECT statement. This occurs when the 4681 ** SELECT is rewritten for window-functions processing and then passed 4682 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4683 ** by this function is not required in this case. */ 4684 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4685 #endif 4686 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4687 if( a[i].pExpr->flags & EP_Collate ) break; 4688 } 4689 if( i<0 ) return WRC_Continue; 4690 4691 /* If we reach this point, that means the transformation is required. */ 4692 4693 pParse = pWalker->pParse; 4694 db = pParse->db; 4695 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4696 if( pNew==0 ) return WRC_Abort; 4697 memset(&dummy, 0, sizeof(dummy)); 4698 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4699 if( pNewSrc==0 ) return WRC_Abort; 4700 *pNew = *p; 4701 p->pSrc = pNewSrc; 4702 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4703 p->op = TK_SELECT; 4704 p->pWhere = 0; 4705 pNew->pGroupBy = 0; 4706 pNew->pHaving = 0; 4707 pNew->pOrderBy = 0; 4708 p->pPrior = 0; 4709 p->pNext = 0; 4710 p->pWith = 0; 4711 #ifndef SQLITE_OMIT_WINDOWFUNC 4712 p->pWinDefn = 0; 4713 #endif 4714 p->selFlags &= ~SF_Compound; 4715 assert( (p->selFlags & SF_Converted)==0 ); 4716 p->selFlags |= SF_Converted; 4717 assert( pNew->pPrior!=0 ); 4718 pNew->pPrior->pNext = pNew; 4719 pNew->pLimit = 0; 4720 return WRC_Continue; 4721 } 4722 4723 /* 4724 ** Check to see if the FROM clause term pFrom has table-valued function 4725 ** arguments. If it does, leave an error message in pParse and return 4726 ** non-zero, since pFrom is not allowed to be a table-valued function. 4727 */ 4728 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4729 if( pFrom->fg.isTabFunc ){ 4730 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4731 return 1; 4732 } 4733 return 0; 4734 } 4735 4736 #ifndef SQLITE_OMIT_CTE 4737 /* 4738 ** Argument pWith (which may be NULL) points to a linked list of nested 4739 ** WITH contexts, from inner to outermost. If the table identified by 4740 ** FROM clause element pItem is really a common-table-expression (CTE) 4741 ** then return a pointer to the CTE definition for that table. Otherwise 4742 ** return NULL. 4743 ** 4744 ** If a non-NULL value is returned, set *ppContext to point to the With 4745 ** object that the returned CTE belongs to. 4746 */ 4747 static struct Cte *searchWith( 4748 With *pWith, /* Current innermost WITH clause */ 4749 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4750 With **ppContext /* OUT: WITH clause return value belongs to */ 4751 ){ 4752 const char *zName; 4753 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4754 With *p; 4755 for(p=pWith; p; p=p->pOuter){ 4756 int i; 4757 for(i=0; i<p->nCte; i++){ 4758 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4759 *ppContext = p; 4760 return &p->a[i]; 4761 } 4762 } 4763 } 4764 } 4765 return 0; 4766 } 4767 4768 /* The code generator maintains a stack of active WITH clauses 4769 ** with the inner-most WITH clause being at the top of the stack. 4770 ** 4771 ** This routine pushes the WITH clause passed as the second argument 4772 ** onto the top of the stack. If argument bFree is true, then this 4773 ** WITH clause will never be popped from the stack. In this case it 4774 ** should be freed along with the Parse object. In other cases, when 4775 ** bFree==0, the With object will be freed along with the SELECT 4776 ** statement with which it is associated. 4777 */ 4778 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4779 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4780 if( pWith ){ 4781 assert( pParse->pWith!=pWith ); 4782 pWith->pOuter = pParse->pWith; 4783 pParse->pWith = pWith; 4784 if( bFree ) pParse->pWithToFree = pWith; 4785 } 4786 } 4787 4788 /* 4789 ** This function checks if argument pFrom refers to a CTE declared by 4790 ** a WITH clause on the stack currently maintained by the parser. And, 4791 ** if currently processing a CTE expression, if it is a recursive 4792 ** reference to the current CTE. 4793 ** 4794 ** If pFrom falls into either of the two categories above, pFrom->pTab 4795 ** and other fields are populated accordingly. The caller should check 4796 ** (pFrom->pTab!=0) to determine whether or not a successful match 4797 ** was found. 4798 ** 4799 ** Whether or not a match is found, SQLITE_OK is returned if no error 4800 ** occurs. If an error does occur, an error message is stored in the 4801 ** parser and some error code other than SQLITE_OK returned. 4802 */ 4803 static int withExpand( 4804 Walker *pWalker, 4805 struct SrcList_item *pFrom 4806 ){ 4807 Parse *pParse = pWalker->pParse; 4808 sqlite3 *db = pParse->db; 4809 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4810 With *pWith; /* WITH clause that pCte belongs to */ 4811 4812 assert( pFrom->pTab==0 ); 4813 if( pParse->nErr ){ 4814 return SQLITE_ERROR; 4815 } 4816 4817 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4818 if( pCte ){ 4819 Table *pTab; 4820 ExprList *pEList; 4821 Select *pSel; 4822 Select *pLeft; /* Left-most SELECT statement */ 4823 Select *pRecTerm; /* Left-most recursive term */ 4824 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4825 With *pSavedWith; /* Initial value of pParse->pWith */ 4826 int iRecTab = -1; /* Cursor for recursive table */ 4827 4828 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4829 ** recursive reference to CTE pCte. Leave an error in pParse and return 4830 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4831 ** In this case, proceed. */ 4832 if( pCte->zCteErr ){ 4833 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4834 return SQLITE_ERROR; 4835 } 4836 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4837 4838 assert( pFrom->pTab==0 ); 4839 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4840 if( pTab==0 ) return WRC_Abort; 4841 pTab->nTabRef = 1; 4842 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4843 pTab->iPKey = -1; 4844 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4845 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4846 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4847 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4848 assert( pFrom->pSelect ); 4849 4850 /* Check if this is a recursive CTE. */ 4851 pRecTerm = pSel = pFrom->pSelect; 4852 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4853 while( bMayRecursive && pRecTerm->op==pSel->op ){ 4854 int i; 4855 SrcList *pSrc = pRecTerm->pSrc; 4856 assert( pRecTerm->pPrior!=0 ); 4857 for(i=0; i<pSrc->nSrc; i++){ 4858 struct SrcList_item *pItem = &pSrc->a[i]; 4859 if( pItem->zDatabase==0 4860 && pItem->zName!=0 4861 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4862 ){ 4863 pItem->pTab = pTab; 4864 pTab->nTabRef++; 4865 pItem->fg.isRecursive = 1; 4866 if( pRecTerm->selFlags & SF_Recursive ){ 4867 sqlite3ErrorMsg(pParse, 4868 "multiple references to recursive table: %s", pCte->zName 4869 ); 4870 return SQLITE_ERROR; 4871 } 4872 pRecTerm->selFlags |= SF_Recursive; 4873 if( iRecTab<0 ) iRecTab = pParse->nTab++; 4874 pItem->iCursor = iRecTab; 4875 } 4876 } 4877 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 4878 pRecTerm = pRecTerm->pPrior; 4879 } 4880 4881 pCte->zCteErr = "circular reference: %s"; 4882 pSavedWith = pParse->pWith; 4883 pParse->pWith = pWith; 4884 if( pSel->selFlags & SF_Recursive ){ 4885 assert( pRecTerm!=0 ); 4886 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 4887 assert( pRecTerm->pNext!=0 ); 4888 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 4889 assert( pRecTerm->pWith==0 ); 4890 pRecTerm->pWith = pSel->pWith; 4891 sqlite3WalkSelect(pWalker, pRecTerm); 4892 pRecTerm->pWith = 0; 4893 }else{ 4894 sqlite3WalkSelect(pWalker, pSel); 4895 } 4896 pParse->pWith = pWith; 4897 4898 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4899 pEList = pLeft->pEList; 4900 if( pCte->pCols ){ 4901 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4902 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4903 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4904 ); 4905 pParse->pWith = pSavedWith; 4906 return SQLITE_ERROR; 4907 } 4908 pEList = pCte->pCols; 4909 } 4910 4911 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4912 if( bMayRecursive ){ 4913 if( pSel->selFlags & SF_Recursive ){ 4914 pCte->zCteErr = "multiple recursive references: %s"; 4915 }else{ 4916 pCte->zCteErr = "recursive reference in a subquery: %s"; 4917 } 4918 sqlite3WalkSelect(pWalker, pSel); 4919 } 4920 pCte->zCteErr = 0; 4921 pParse->pWith = pSavedWith; 4922 } 4923 4924 return SQLITE_OK; 4925 } 4926 #endif 4927 4928 #ifndef SQLITE_OMIT_CTE 4929 /* 4930 ** If the SELECT passed as the second argument has an associated WITH 4931 ** clause, pop it from the stack stored as part of the Parse object. 4932 ** 4933 ** This function is used as the xSelectCallback2() callback by 4934 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4935 ** names and other FROM clause elements. 4936 */ 4937 static void selectPopWith(Walker *pWalker, Select *p){ 4938 Parse *pParse = pWalker->pParse; 4939 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4940 With *pWith = findRightmost(p)->pWith; 4941 if( pWith!=0 ){ 4942 assert( pParse->pWith==pWith || pParse->nErr ); 4943 pParse->pWith = pWith->pOuter; 4944 } 4945 } 4946 } 4947 #else 4948 #define selectPopWith 0 4949 #endif 4950 4951 /* 4952 ** The SrcList_item structure passed as the second argument represents a 4953 ** sub-query in the FROM clause of a SELECT statement. This function 4954 ** allocates and populates the SrcList_item.pTab object. If successful, 4955 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4956 ** SQLITE_NOMEM. 4957 */ 4958 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4959 Select *pSel = pFrom->pSelect; 4960 Table *pTab; 4961 4962 assert( pSel ); 4963 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4964 if( pTab==0 ) return SQLITE_NOMEM; 4965 pTab->nTabRef = 1; 4966 if( pFrom->zAlias ){ 4967 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4968 }else{ 4969 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4970 } 4971 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4972 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4973 pTab->iPKey = -1; 4974 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4975 pTab->tabFlags |= TF_Ephemeral; 4976 4977 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4978 } 4979 4980 /* 4981 ** This routine is a Walker callback for "expanding" a SELECT statement. 4982 ** "Expanding" means to do the following: 4983 ** 4984 ** (1) Make sure VDBE cursor numbers have been assigned to every 4985 ** element of the FROM clause. 4986 ** 4987 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4988 ** defines FROM clause. When views appear in the FROM clause, 4989 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4990 ** that implements the view. A copy is made of the view's SELECT 4991 ** statement so that we can freely modify or delete that statement 4992 ** without worrying about messing up the persistent representation 4993 ** of the view. 4994 ** 4995 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4996 ** on joins and the ON and USING clause of joins. 4997 ** 4998 ** (4) Scan the list of columns in the result set (pEList) looking 4999 ** for instances of the "*" operator or the TABLE.* operator. 5000 ** If found, expand each "*" to be every column in every table 5001 ** and TABLE.* to be every column in TABLE. 5002 ** 5003 */ 5004 static int selectExpander(Walker *pWalker, Select *p){ 5005 Parse *pParse = pWalker->pParse; 5006 int i, j, k; 5007 SrcList *pTabList; 5008 ExprList *pEList; 5009 struct SrcList_item *pFrom; 5010 sqlite3 *db = pParse->db; 5011 Expr *pE, *pRight, *pExpr; 5012 u16 selFlags = p->selFlags; 5013 u32 elistFlags = 0; 5014 5015 p->selFlags |= SF_Expanded; 5016 if( db->mallocFailed ){ 5017 return WRC_Abort; 5018 } 5019 assert( p->pSrc!=0 ); 5020 if( (selFlags & SF_Expanded)!=0 ){ 5021 return WRC_Prune; 5022 } 5023 if( pWalker->eCode ){ 5024 /* Renumber selId because it has been copied from a view */ 5025 p->selId = ++pParse->nSelect; 5026 } 5027 pTabList = p->pSrc; 5028 pEList = p->pEList; 5029 sqlite3WithPush(pParse, p->pWith, 0); 5030 5031 /* Make sure cursor numbers have been assigned to all entries in 5032 ** the FROM clause of the SELECT statement. 5033 */ 5034 sqlite3SrcListAssignCursors(pParse, pTabList); 5035 5036 /* Look up every table named in the FROM clause of the select. If 5037 ** an entry of the FROM clause is a subquery instead of a table or view, 5038 ** then create a transient table structure to describe the subquery. 5039 */ 5040 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5041 Table *pTab; 5042 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5043 if( pFrom->pTab ) continue; 5044 assert( pFrom->fg.isRecursive==0 ); 5045 #ifndef SQLITE_OMIT_CTE 5046 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 5047 if( pFrom->pTab ) {} else 5048 #endif 5049 if( pFrom->zName==0 ){ 5050 #ifndef SQLITE_OMIT_SUBQUERY 5051 Select *pSel = pFrom->pSelect; 5052 /* A sub-query in the FROM clause of a SELECT */ 5053 assert( pSel!=0 ); 5054 assert( pFrom->pTab==0 ); 5055 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5056 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5057 #endif 5058 }else{ 5059 /* An ordinary table or view name in the FROM clause */ 5060 assert( pFrom->pTab==0 ); 5061 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5062 if( pTab==0 ) return WRC_Abort; 5063 if( pTab->nTabRef>=0xffff ){ 5064 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5065 pTab->zName); 5066 pFrom->pTab = 0; 5067 return WRC_Abort; 5068 } 5069 pTab->nTabRef++; 5070 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5071 return WRC_Abort; 5072 } 5073 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5074 if( IsVirtual(pTab) || pTab->pSelect ){ 5075 i16 nCol; 5076 u8 eCodeOrig = pWalker->eCode; 5077 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5078 assert( pFrom->pSelect==0 ); 5079 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 5080 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5081 pTab->zName); 5082 } 5083 #ifndef SQLITE_OMIT_VIRTUALTABLE 5084 if( IsVirtual(pTab) 5085 && pFrom->fg.fromDDL 5086 && ALWAYS(pTab->pVTable!=0) 5087 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5088 ){ 5089 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5090 pTab->zName); 5091 } 5092 #endif 5093 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5094 nCol = pTab->nCol; 5095 pTab->nCol = -1; 5096 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5097 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5098 pWalker->eCode = eCodeOrig; 5099 pTab->nCol = nCol; 5100 } 5101 #endif 5102 } 5103 5104 /* Locate the index named by the INDEXED BY clause, if any. */ 5105 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5106 return WRC_Abort; 5107 } 5108 } 5109 5110 /* Process NATURAL keywords, and ON and USING clauses of joins. 5111 */ 5112 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5113 return WRC_Abort; 5114 } 5115 5116 /* For every "*" that occurs in the column list, insert the names of 5117 ** all columns in all tables. And for every TABLE.* insert the names 5118 ** of all columns in TABLE. The parser inserted a special expression 5119 ** with the TK_ASTERISK operator for each "*" that it found in the column 5120 ** list. The following code just has to locate the TK_ASTERISK 5121 ** expressions and expand each one to the list of all columns in 5122 ** all tables. 5123 ** 5124 ** The first loop just checks to see if there are any "*" operators 5125 ** that need expanding. 5126 */ 5127 for(k=0; k<pEList->nExpr; k++){ 5128 pE = pEList->a[k].pExpr; 5129 if( pE->op==TK_ASTERISK ) break; 5130 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5131 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5132 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5133 elistFlags |= pE->flags; 5134 } 5135 if( k<pEList->nExpr ){ 5136 /* 5137 ** If we get here it means the result set contains one or more "*" 5138 ** operators that need to be expanded. Loop through each expression 5139 ** in the result set and expand them one by one. 5140 */ 5141 struct ExprList_item *a = pEList->a; 5142 ExprList *pNew = 0; 5143 int flags = pParse->db->flags; 5144 int longNames = (flags & SQLITE_FullColNames)!=0 5145 && (flags & SQLITE_ShortColNames)==0; 5146 5147 for(k=0; k<pEList->nExpr; k++){ 5148 pE = a[k].pExpr; 5149 elistFlags |= pE->flags; 5150 pRight = pE->pRight; 5151 assert( pE->op!=TK_DOT || pRight!=0 ); 5152 if( pE->op!=TK_ASTERISK 5153 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5154 ){ 5155 /* This particular expression does not need to be expanded. 5156 */ 5157 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5158 if( pNew ){ 5159 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5160 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5161 a[k].zEName = 0; 5162 } 5163 a[k].pExpr = 0; 5164 }else{ 5165 /* This expression is a "*" or a "TABLE.*" and needs to be 5166 ** expanded. */ 5167 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5168 char *zTName = 0; /* text of name of TABLE */ 5169 if( pE->op==TK_DOT ){ 5170 assert( pE->pLeft!=0 ); 5171 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5172 zTName = pE->pLeft->u.zToken; 5173 } 5174 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5175 Table *pTab = pFrom->pTab; 5176 Select *pSub = pFrom->pSelect; 5177 char *zTabName = pFrom->zAlias; 5178 const char *zSchemaName = 0; 5179 int iDb; 5180 if( zTabName==0 ){ 5181 zTabName = pTab->zName; 5182 } 5183 if( db->mallocFailed ) break; 5184 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5185 pSub = 0; 5186 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5187 continue; 5188 } 5189 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5190 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5191 } 5192 for(j=0; j<pTab->nCol; j++){ 5193 char *zName = pTab->aCol[j].zName; 5194 char *zColname; /* The computed column name */ 5195 char *zToFree; /* Malloced string that needs to be freed */ 5196 Token sColname; /* Computed column name as a token */ 5197 5198 assert( zName ); 5199 if( zTName && pSub 5200 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5201 ){ 5202 continue; 5203 } 5204 5205 /* If a column is marked as 'hidden', omit it from the expanded 5206 ** result-set list unless the SELECT has the SF_IncludeHidden 5207 ** bit set. 5208 */ 5209 if( (p->selFlags & SF_IncludeHidden)==0 5210 && IsHiddenColumn(&pTab->aCol[j]) 5211 ){ 5212 continue; 5213 } 5214 tableSeen = 1; 5215 5216 if( i>0 && zTName==0 ){ 5217 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5218 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5219 ){ 5220 /* In a NATURAL join, omit the join columns from the 5221 ** table to the right of the join */ 5222 continue; 5223 } 5224 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5225 /* In a join with a USING clause, omit columns in the 5226 ** using clause from the table on the right. */ 5227 continue; 5228 } 5229 } 5230 pRight = sqlite3Expr(db, TK_ID, zName); 5231 zColname = zName; 5232 zToFree = 0; 5233 if( longNames || pTabList->nSrc>1 ){ 5234 Expr *pLeft; 5235 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5236 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5237 if( zSchemaName ){ 5238 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5239 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5240 } 5241 if( longNames ){ 5242 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5243 zToFree = zColname; 5244 } 5245 }else{ 5246 pExpr = pRight; 5247 } 5248 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5249 sqlite3TokenInit(&sColname, zColname); 5250 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5251 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5252 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5253 sqlite3DbFree(db, pX->zEName); 5254 if( pSub ){ 5255 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5256 testcase( pX->zEName==0 ); 5257 }else{ 5258 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5259 zSchemaName, zTabName, zColname); 5260 testcase( pX->zEName==0 ); 5261 } 5262 pX->eEName = ENAME_TAB; 5263 } 5264 sqlite3DbFree(db, zToFree); 5265 } 5266 } 5267 if( !tableSeen ){ 5268 if( zTName ){ 5269 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5270 }else{ 5271 sqlite3ErrorMsg(pParse, "no tables specified"); 5272 } 5273 } 5274 } 5275 } 5276 sqlite3ExprListDelete(db, pEList); 5277 p->pEList = pNew; 5278 } 5279 if( p->pEList ){ 5280 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5281 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5282 return WRC_Abort; 5283 } 5284 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5285 p->selFlags |= SF_ComplexResult; 5286 } 5287 } 5288 return WRC_Continue; 5289 } 5290 5291 #if SQLITE_DEBUG 5292 /* 5293 ** Always assert. This xSelectCallback2 implementation proves that the 5294 ** xSelectCallback2 is never invoked. 5295 */ 5296 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5297 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5298 assert( 0 ); 5299 } 5300 #endif 5301 /* 5302 ** This routine "expands" a SELECT statement and all of its subqueries. 5303 ** For additional information on what it means to "expand" a SELECT 5304 ** statement, see the comment on the selectExpand worker callback above. 5305 ** 5306 ** Expanding a SELECT statement is the first step in processing a 5307 ** SELECT statement. The SELECT statement must be expanded before 5308 ** name resolution is performed. 5309 ** 5310 ** If anything goes wrong, an error message is written into pParse. 5311 ** The calling function can detect the problem by looking at pParse->nErr 5312 ** and/or pParse->db->mallocFailed. 5313 */ 5314 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5315 Walker w; 5316 w.xExprCallback = sqlite3ExprWalkNoop; 5317 w.pParse = pParse; 5318 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5319 w.xSelectCallback = convertCompoundSelectToSubquery; 5320 w.xSelectCallback2 = 0; 5321 sqlite3WalkSelect(&w, pSelect); 5322 } 5323 w.xSelectCallback = selectExpander; 5324 w.xSelectCallback2 = selectPopWith; 5325 w.eCode = 0; 5326 sqlite3WalkSelect(&w, pSelect); 5327 } 5328 5329 5330 #ifndef SQLITE_OMIT_SUBQUERY 5331 /* 5332 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5333 ** interface. 5334 ** 5335 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5336 ** information to the Table structure that represents the result set 5337 ** of that subquery. 5338 ** 5339 ** The Table structure that represents the result set was constructed 5340 ** by selectExpander() but the type and collation information was omitted 5341 ** at that point because identifiers had not yet been resolved. This 5342 ** routine is called after identifier resolution. 5343 */ 5344 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5345 Parse *pParse; 5346 int i; 5347 SrcList *pTabList; 5348 struct SrcList_item *pFrom; 5349 5350 assert( p->selFlags & SF_Resolved ); 5351 if( p->selFlags & SF_HasTypeInfo ) return; 5352 p->selFlags |= SF_HasTypeInfo; 5353 pParse = pWalker->pParse; 5354 pTabList = p->pSrc; 5355 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5356 Table *pTab = pFrom->pTab; 5357 assert( pTab!=0 ); 5358 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5359 /* A sub-query in the FROM clause of a SELECT */ 5360 Select *pSel = pFrom->pSelect; 5361 if( pSel ){ 5362 while( pSel->pPrior ) pSel = pSel->pPrior; 5363 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5364 SQLITE_AFF_NONE); 5365 } 5366 } 5367 } 5368 } 5369 #endif 5370 5371 5372 /* 5373 ** This routine adds datatype and collating sequence information to 5374 ** the Table structures of all FROM-clause subqueries in a 5375 ** SELECT statement. 5376 ** 5377 ** Use this routine after name resolution. 5378 */ 5379 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5380 #ifndef SQLITE_OMIT_SUBQUERY 5381 Walker w; 5382 w.xSelectCallback = sqlite3SelectWalkNoop; 5383 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5384 w.xExprCallback = sqlite3ExprWalkNoop; 5385 w.pParse = pParse; 5386 sqlite3WalkSelect(&w, pSelect); 5387 #endif 5388 } 5389 5390 5391 /* 5392 ** This routine sets up a SELECT statement for processing. The 5393 ** following is accomplished: 5394 ** 5395 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5396 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5397 ** * ON and USING clauses are shifted into WHERE statements 5398 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5399 ** * Identifiers in expression are matched to tables. 5400 ** 5401 ** This routine acts recursively on all subqueries within the SELECT. 5402 */ 5403 void sqlite3SelectPrep( 5404 Parse *pParse, /* The parser context */ 5405 Select *p, /* The SELECT statement being coded. */ 5406 NameContext *pOuterNC /* Name context for container */ 5407 ){ 5408 assert( p!=0 || pParse->db->mallocFailed ); 5409 if( pParse->db->mallocFailed ) return; 5410 if( p->selFlags & SF_HasTypeInfo ) return; 5411 sqlite3SelectExpand(pParse, p); 5412 if( pParse->nErr || pParse->db->mallocFailed ) return; 5413 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5414 if( pParse->nErr || pParse->db->mallocFailed ) return; 5415 sqlite3SelectAddTypeInfo(pParse, p); 5416 } 5417 5418 /* 5419 ** Reset the aggregate accumulator. 5420 ** 5421 ** The aggregate accumulator is a set of memory cells that hold 5422 ** intermediate results while calculating an aggregate. This 5423 ** routine generates code that stores NULLs in all of those memory 5424 ** cells. 5425 */ 5426 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5427 Vdbe *v = pParse->pVdbe; 5428 int i; 5429 struct AggInfo_func *pFunc; 5430 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5431 if( nReg==0 ) return; 5432 if( pParse->nErr || pParse->db->mallocFailed ) return; 5433 #ifdef SQLITE_DEBUG 5434 /* Verify that all AggInfo registers are within the range specified by 5435 ** AggInfo.mnReg..AggInfo.mxReg */ 5436 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5437 for(i=0; i<pAggInfo->nColumn; i++){ 5438 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5439 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5440 } 5441 for(i=0; i<pAggInfo->nFunc; i++){ 5442 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5443 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5444 } 5445 #endif 5446 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5447 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5448 if( pFunc->iDistinct>=0 ){ 5449 Expr *pE = pFunc->pFExpr; 5450 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5451 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5452 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5453 "argument"); 5454 pFunc->iDistinct = -1; 5455 }else{ 5456 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5457 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5458 (char*)pKeyInfo, P4_KEYINFO); 5459 } 5460 } 5461 } 5462 } 5463 5464 /* 5465 ** Invoke the OP_AggFinalize opcode for every aggregate function 5466 ** in the AggInfo structure. 5467 */ 5468 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5469 Vdbe *v = pParse->pVdbe; 5470 int i; 5471 struct AggInfo_func *pF; 5472 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5473 ExprList *pList = pF->pFExpr->x.pList; 5474 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5475 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5476 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5477 } 5478 } 5479 5480 5481 /* 5482 ** Update the accumulator memory cells for an aggregate based on 5483 ** the current cursor position. 5484 ** 5485 ** If regAcc is non-zero and there are no min() or max() aggregates 5486 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5487 ** registers if register regAcc contains 0. The caller will take care 5488 ** of setting and clearing regAcc. 5489 */ 5490 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5491 Vdbe *v = pParse->pVdbe; 5492 int i; 5493 int regHit = 0; 5494 int addrHitTest = 0; 5495 struct AggInfo_func *pF; 5496 struct AggInfo_col *pC; 5497 5498 pAggInfo->directMode = 1; 5499 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5500 int nArg; 5501 int addrNext = 0; 5502 int regAgg; 5503 ExprList *pList = pF->pFExpr->x.pList; 5504 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5505 assert( !IsWindowFunc(pF->pFExpr) ); 5506 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5507 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5508 if( pAggInfo->nAccumulator 5509 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5510 && regAcc 5511 ){ 5512 /* If regAcc==0, there there exists some min() or max() function 5513 ** without a FILTER clause that will ensure the magnet registers 5514 ** are populated. */ 5515 if( regHit==0 ) regHit = ++pParse->nMem; 5516 /* If this is the first row of the group (regAcc contains 0), clear the 5517 ** "magnet" register regHit so that the accumulator registers 5518 ** are populated if the FILTER clause jumps over the the 5519 ** invocation of min() or max() altogether. Or, if this is not 5520 ** the first row (regAcc contains 1), set the magnet register so that 5521 ** the accumulators are not populated unless the min()/max() is invoked 5522 ** and indicates that they should be. */ 5523 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5524 } 5525 addrNext = sqlite3VdbeMakeLabel(pParse); 5526 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5527 } 5528 if( pList ){ 5529 nArg = pList->nExpr; 5530 regAgg = sqlite3GetTempRange(pParse, nArg); 5531 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5532 }else{ 5533 nArg = 0; 5534 regAgg = 0; 5535 } 5536 if( pF->iDistinct>=0 ){ 5537 if( addrNext==0 ){ 5538 addrNext = sqlite3VdbeMakeLabel(pParse); 5539 } 5540 testcase( nArg==0 ); /* Error condition */ 5541 testcase( nArg>1 ); /* Also an error */ 5542 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5543 } 5544 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5545 CollSeq *pColl = 0; 5546 struct ExprList_item *pItem; 5547 int j; 5548 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5549 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5550 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5551 } 5552 if( !pColl ){ 5553 pColl = pParse->db->pDfltColl; 5554 } 5555 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5556 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5557 } 5558 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5559 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5560 sqlite3VdbeChangeP5(v, (u8)nArg); 5561 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5562 if( addrNext ){ 5563 sqlite3VdbeResolveLabel(v, addrNext); 5564 } 5565 } 5566 if( regHit==0 && pAggInfo->nAccumulator ){ 5567 regHit = regAcc; 5568 } 5569 if( regHit ){ 5570 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5571 } 5572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5573 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5574 } 5575 5576 pAggInfo->directMode = 0; 5577 if( addrHitTest ){ 5578 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5579 } 5580 } 5581 5582 /* 5583 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5584 ** count(*) query ("SELECT count(*) FROM pTab"). 5585 */ 5586 #ifndef SQLITE_OMIT_EXPLAIN 5587 static void explainSimpleCount( 5588 Parse *pParse, /* Parse context */ 5589 Table *pTab, /* Table being queried */ 5590 Index *pIdx /* Index used to optimize scan, or NULL */ 5591 ){ 5592 if( pParse->explain==2 ){ 5593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5594 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5595 pTab->zName, 5596 bCover ? " USING COVERING INDEX " : "", 5597 bCover ? pIdx->zName : "" 5598 ); 5599 } 5600 } 5601 #else 5602 # define explainSimpleCount(a,b,c) 5603 #endif 5604 5605 /* 5606 ** sqlite3WalkExpr() callback used by havingToWhere(). 5607 ** 5608 ** If the node passed to the callback is a TK_AND node, return 5609 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5610 ** 5611 ** Otherwise, return WRC_Prune. In this case, also check if the 5612 ** sub-expression matches the criteria for being moved to the WHERE 5613 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5614 ** within the HAVING expression with a constant "1". 5615 */ 5616 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5617 if( pExpr->op!=TK_AND ){ 5618 Select *pS = pWalker->u.pSelect; 5619 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5620 sqlite3 *db = pWalker->pParse->db; 5621 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5622 if( pNew ){ 5623 Expr *pWhere = pS->pWhere; 5624 SWAP(Expr, *pNew, *pExpr); 5625 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5626 pS->pWhere = pNew; 5627 pWalker->eCode = 1; 5628 } 5629 } 5630 return WRC_Prune; 5631 } 5632 return WRC_Continue; 5633 } 5634 5635 /* 5636 ** Transfer eligible terms from the HAVING clause of a query, which is 5637 ** processed after grouping, to the WHERE clause, which is processed before 5638 ** grouping. For example, the query: 5639 ** 5640 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5641 ** 5642 ** can be rewritten as: 5643 ** 5644 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5645 ** 5646 ** A term of the HAVING expression is eligible for transfer if it consists 5647 ** entirely of constants and expressions that are also GROUP BY terms that 5648 ** use the "BINARY" collation sequence. 5649 */ 5650 static void havingToWhere(Parse *pParse, Select *p){ 5651 Walker sWalker; 5652 memset(&sWalker, 0, sizeof(sWalker)); 5653 sWalker.pParse = pParse; 5654 sWalker.xExprCallback = havingToWhereExprCb; 5655 sWalker.u.pSelect = p; 5656 sqlite3WalkExpr(&sWalker, p->pHaving); 5657 #if SELECTTRACE_ENABLED 5658 if( sWalker.eCode && (sqlite3_unsupported_selecttrace & 0x100)!=0 ){ 5659 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5660 sqlite3TreeViewSelect(0, p, 0); 5661 } 5662 #endif 5663 } 5664 5665 /* 5666 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5667 ** If it is, then return the SrcList_item for the prior view. If it is not, 5668 ** then return 0. 5669 */ 5670 static struct SrcList_item *isSelfJoinView( 5671 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5672 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5673 ){ 5674 struct SrcList_item *pItem; 5675 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5676 Select *pS1; 5677 if( pItem->pSelect==0 ) continue; 5678 if( pItem->fg.viaCoroutine ) continue; 5679 if( pItem->zName==0 ) continue; 5680 assert( pItem->pTab!=0 ); 5681 assert( pThis->pTab!=0 ); 5682 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5683 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5684 pS1 = pItem->pSelect; 5685 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5686 /* The query flattener left two different CTE tables with identical 5687 ** names in the same FROM clause. */ 5688 continue; 5689 } 5690 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5691 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5692 ){ 5693 /* The view was modified by some other optimization such as 5694 ** pushDownWhereTerms() */ 5695 continue; 5696 } 5697 return pItem; 5698 } 5699 return 0; 5700 } 5701 5702 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5703 /* 5704 ** Attempt to transform a query of the form 5705 ** 5706 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5707 ** 5708 ** Into this: 5709 ** 5710 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5711 ** 5712 ** The transformation only works if all of the following are true: 5713 ** 5714 ** * The subquery is a UNION ALL of two or more terms 5715 ** * The subquery does not have a LIMIT clause 5716 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5717 ** * The outer query is a simple count(*) with no WHERE clause or other 5718 ** extraneous syntax. 5719 ** 5720 ** Return TRUE if the optimization is undertaken. 5721 */ 5722 static int countOfViewOptimization(Parse *pParse, Select *p){ 5723 Select *pSub, *pPrior; 5724 Expr *pExpr; 5725 Expr *pCount; 5726 sqlite3 *db; 5727 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5728 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5729 if( p->pWhere ) return 0; 5730 if( p->pGroupBy ) return 0; 5731 pExpr = p->pEList->a[0].pExpr; 5732 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5733 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5734 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5735 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5736 pSub = p->pSrc->a[0].pSelect; 5737 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5738 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5739 do{ 5740 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5741 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5742 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5743 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5744 pSub = pSub->pPrior; /* Repeat over compound */ 5745 }while( pSub ); 5746 5747 /* If we reach this point then it is OK to perform the transformation */ 5748 5749 db = pParse->db; 5750 pCount = pExpr; 5751 pExpr = 0; 5752 pSub = p->pSrc->a[0].pSelect; 5753 p->pSrc->a[0].pSelect = 0; 5754 sqlite3SrcListDelete(db, p->pSrc); 5755 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5756 while( pSub ){ 5757 Expr *pTerm; 5758 pPrior = pSub->pPrior; 5759 pSub->pPrior = 0; 5760 pSub->pNext = 0; 5761 pSub->selFlags |= SF_Aggregate; 5762 pSub->selFlags &= ~SF_Compound; 5763 pSub->nSelectRow = 0; 5764 sqlite3ExprListDelete(db, pSub->pEList); 5765 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5766 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5767 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5768 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5769 if( pExpr==0 ){ 5770 pExpr = pTerm; 5771 }else{ 5772 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5773 } 5774 pSub = pPrior; 5775 } 5776 p->pEList->a[0].pExpr = pExpr; 5777 p->selFlags &= ~SF_Aggregate; 5778 5779 #if SELECTTRACE_ENABLED 5780 if( sqlite3_unsupported_selecttrace & 0x400 ){ 5781 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5782 sqlite3TreeViewSelect(0, p, 0); 5783 } 5784 #endif 5785 return 1; 5786 } 5787 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5788 5789 /* 5790 ** Generate code for the SELECT statement given in the p argument. 5791 ** 5792 ** The results are returned according to the SelectDest structure. 5793 ** See comments in sqliteInt.h for further information. 5794 ** 5795 ** This routine returns the number of errors. If any errors are 5796 ** encountered, then an appropriate error message is left in 5797 ** pParse->zErrMsg. 5798 ** 5799 ** This routine does NOT free the Select structure passed in. The 5800 ** calling function needs to do that. 5801 */ 5802 int sqlite3Select( 5803 Parse *pParse, /* The parser context */ 5804 Select *p, /* The SELECT statement being coded. */ 5805 SelectDest *pDest /* What to do with the query results */ 5806 ){ 5807 int i, j; /* Loop counters */ 5808 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5809 Vdbe *v; /* The virtual machine under construction */ 5810 int isAgg; /* True for select lists like "count(*)" */ 5811 ExprList *pEList = 0; /* List of columns to extract. */ 5812 SrcList *pTabList; /* List of tables to select from */ 5813 Expr *pWhere; /* The WHERE clause. May be NULL */ 5814 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5815 Expr *pHaving; /* The HAVING clause. May be NULL */ 5816 AggInfo *pAggInfo = 0; /* Aggregate information */ 5817 int rc = 1; /* Value to return from this function */ 5818 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5819 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5820 int iEnd; /* Address of the end of the query */ 5821 sqlite3 *db; /* The database connection */ 5822 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5823 u8 minMaxFlag; /* Flag for min/max queries */ 5824 5825 db = pParse->db; 5826 v = sqlite3GetVdbe(pParse); 5827 if( p==0 || db->mallocFailed || pParse->nErr ){ 5828 return 1; 5829 } 5830 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5831 #if SELECTTRACE_ENABLED 5832 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5833 if( sqlite3_unsupported_selecttrace & 0x100 ){ 5834 sqlite3TreeViewSelect(0, p, 0); 5835 } 5836 #endif 5837 5838 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5839 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5840 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5841 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5842 if( IgnorableDistinct(pDest) ){ 5843 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5844 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5845 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 5846 /* All of these destinations are also able to ignore the ORDER BY clause */ 5847 sqlite3ExprListDelete(db, p->pOrderBy); 5848 p->pOrderBy = 0; 5849 p->selFlags &= ~SF_Distinct; 5850 p->selFlags |= SF_NoopOrderBy; 5851 } 5852 sqlite3SelectPrep(pParse, p, 0); 5853 if( pParse->nErr || db->mallocFailed ){ 5854 goto select_end; 5855 } 5856 assert( p->pEList!=0 ); 5857 #if SELECTTRACE_ENABLED 5858 if( sqlite3_unsupported_selecttrace & 0x104 ){ 5859 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5860 sqlite3TreeViewSelect(0, p, 0); 5861 } 5862 #endif 5863 5864 /* If the SF_UpdateFrom flag is set, then this function is being called 5865 ** as part of populating the temp table for an UPDATE...FROM statement. 5866 ** In this case, it is an error if the target object (pSrc->a[0]) name 5867 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 5868 if( p->selFlags & SF_UpdateFrom ){ 5869 struct SrcList_item *p0 = &p->pSrc->a[0]; 5870 for(i=1; i<p->pSrc->nSrc; i++){ 5871 struct SrcList_item *p1 = &p->pSrc->a[i]; 5872 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 5873 sqlite3ErrorMsg(pParse, 5874 "target object/alias may not appear in FROM clause: %s", 5875 p0->zAlias ? p0->zAlias : p0->pTab->zName 5876 ); 5877 goto select_end; 5878 } 5879 } 5880 } 5881 5882 if( pDest->eDest==SRT_Output ){ 5883 generateColumnNames(pParse, p); 5884 } 5885 5886 #ifndef SQLITE_OMIT_WINDOWFUNC 5887 rc = sqlite3WindowRewrite(pParse, p); 5888 if( rc ){ 5889 assert( db->mallocFailed || pParse->nErr>0 ); 5890 goto select_end; 5891 } 5892 #if SELECTTRACE_ENABLED 5893 if( p->pWin && (sqlite3_unsupported_selecttrace & 0x108)!=0 ){ 5894 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5895 sqlite3TreeViewSelect(0, p, 0); 5896 } 5897 #endif 5898 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5899 pTabList = p->pSrc; 5900 isAgg = (p->selFlags & SF_Aggregate)!=0; 5901 memset(&sSort, 0, sizeof(sSort)); 5902 sSort.pOrderBy = p->pOrderBy; 5903 5904 /* Try to do various optimizations (flattening subqueries, and strength 5905 ** reduction of join operators) in the FROM clause up into the main query 5906 */ 5907 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5908 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5909 struct SrcList_item *pItem = &pTabList->a[i]; 5910 Select *pSub = pItem->pSelect; 5911 Table *pTab = pItem->pTab; 5912 5913 /* The expander should have already created transient Table objects 5914 ** even for FROM clause elements such as subqueries that do not correspond 5915 ** to a real table */ 5916 assert( pTab!=0 ); 5917 5918 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5919 ** of the LEFT JOIN used in the WHERE clause. 5920 */ 5921 if( (pItem->fg.jointype & JT_LEFT)!=0 5922 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5923 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5924 ){ 5925 SELECTTRACE(0x100,pParse,p, 5926 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5927 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5928 unsetJoinExpr(p->pWhere, pItem->iCursor); 5929 } 5930 5931 /* No futher action if this term of the FROM clause is no a subquery */ 5932 if( pSub==0 ) continue; 5933 5934 /* Catch mismatch in the declared columns of a view and the number of 5935 ** columns in the SELECT on the RHS */ 5936 if( pTab->nCol!=pSub->pEList->nExpr ){ 5937 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5938 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5939 goto select_end; 5940 } 5941 5942 /* Do not try to flatten an aggregate subquery. 5943 ** 5944 ** Flattening an aggregate subquery is only possible if the outer query 5945 ** is not a join. But if the outer query is not a join, then the subquery 5946 ** will be implemented as a co-routine and there is no advantage to 5947 ** flattening in that case. 5948 */ 5949 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5950 assert( pSub->pGroupBy==0 ); 5951 5952 /* If the outer query contains a "complex" result set (that is, 5953 ** if the result set of the outer query uses functions or subqueries) 5954 ** and if the subquery contains an ORDER BY clause and if 5955 ** it will be implemented as a co-routine, then do not flatten. This 5956 ** restriction allows SQL constructs like this: 5957 ** 5958 ** SELECT expensive_function(x) 5959 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5960 ** 5961 ** The expensive_function() is only computed on the 10 rows that 5962 ** are output, rather than every row of the table. 5963 ** 5964 ** The requirement that the outer query have a complex result set 5965 ** means that flattening does occur on simpler SQL constraints without 5966 ** the expensive_function() like: 5967 ** 5968 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5969 */ 5970 if( pSub->pOrderBy!=0 5971 && i==0 5972 && (p->selFlags & SF_ComplexResult)!=0 5973 && (pTabList->nSrc==1 5974 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5975 ){ 5976 continue; 5977 } 5978 5979 if( flattenSubquery(pParse, p, i, isAgg) ){ 5980 if( pParse->nErr ) goto select_end; 5981 /* This subquery can be absorbed into its parent. */ 5982 i = -1; 5983 } 5984 pTabList = p->pSrc; 5985 if( db->mallocFailed ) goto select_end; 5986 if( !IgnorableOrderby(pDest) ){ 5987 sSort.pOrderBy = p->pOrderBy; 5988 } 5989 } 5990 #endif 5991 5992 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5993 /* Handle compound SELECT statements using the separate multiSelect() 5994 ** procedure. 5995 */ 5996 if( p->pPrior ){ 5997 rc = multiSelect(pParse, p, pDest); 5998 #if SELECTTRACE_ENABLED 5999 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6000 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6001 sqlite3TreeViewSelect(0, p, 0); 6002 } 6003 #endif 6004 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6005 return rc; 6006 } 6007 #endif 6008 6009 /* Do the WHERE-clause constant propagation optimization if this is 6010 ** a join. No need to speed time on this operation for non-join queries 6011 ** as the equivalent optimization will be handled by query planner in 6012 ** sqlite3WhereBegin(). 6013 */ 6014 if( pTabList->nSrc>1 6015 && OptimizationEnabled(db, SQLITE_PropagateConst) 6016 && propagateConstants(pParse, p) 6017 ){ 6018 #if SELECTTRACE_ENABLED 6019 if( sqlite3_unsupported_selecttrace & 0x100 ){ 6020 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6021 sqlite3TreeViewSelect(0, p, 0); 6022 } 6023 #endif 6024 }else{ 6025 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6026 } 6027 6028 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6029 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6030 && countOfViewOptimization(pParse, p) 6031 ){ 6032 if( db->mallocFailed ) goto select_end; 6033 pEList = p->pEList; 6034 pTabList = p->pSrc; 6035 } 6036 #endif 6037 6038 /* For each term in the FROM clause, do two things: 6039 ** (1) Authorized unreferenced tables 6040 ** (2) Generate code for all sub-queries 6041 */ 6042 for(i=0; i<pTabList->nSrc; i++){ 6043 struct SrcList_item *pItem = &pTabList->a[i]; 6044 SelectDest dest; 6045 Select *pSub; 6046 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6047 const char *zSavedAuthContext; 6048 #endif 6049 6050 /* Issue SQLITE_READ authorizations with a fake column name for any 6051 ** tables that are referenced but from which no values are extracted. 6052 ** Examples of where these kinds of null SQLITE_READ authorizations 6053 ** would occur: 6054 ** 6055 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6056 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6057 ** 6058 ** The fake column name is an empty string. It is possible for a table to 6059 ** have a column named by the empty string, in which case there is no way to 6060 ** distinguish between an unreferenced table and an actual reference to the 6061 ** "" column. The original design was for the fake column name to be a NULL, 6062 ** which would be unambiguous. But legacy authorization callbacks might 6063 ** assume the column name is non-NULL and segfault. The use of an empty 6064 ** string for the fake column name seems safer. 6065 */ 6066 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6067 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6068 } 6069 6070 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6071 /* Generate code for all sub-queries in the FROM clause 6072 */ 6073 pSub = pItem->pSelect; 6074 if( pSub==0 ) continue; 6075 6076 /* The code for a subquery should only be generated once, though it is 6077 ** technically harmless for it to be generated multiple times. The 6078 ** following assert() will detect if something changes to cause 6079 ** the same subquery to be coded multiple times, as a signal to the 6080 ** developers to try to optimize the situation. 6081 ** 6082 ** Update 2019-07-24: 6083 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6084 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6085 ** coded twice. So this assert() now becomes a testcase(). It should 6086 ** be very rare, though. 6087 */ 6088 testcase( pItem->addrFillSub!=0 ); 6089 6090 /* Increment Parse.nHeight by the height of the largest expression 6091 ** tree referred to by this, the parent select. The child select 6092 ** may contain expression trees of at most 6093 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6094 ** more conservative than necessary, but much easier than enforcing 6095 ** an exact limit. 6096 */ 6097 pParse->nHeight += sqlite3SelectExprHeight(p); 6098 6099 /* Make copies of constant WHERE-clause terms in the outer query down 6100 ** inside the subquery. This can help the subquery to run more efficiently. 6101 */ 6102 if( OptimizationEnabled(db, SQLITE_PushDown) 6103 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6104 (pItem->fg.jointype & JT_OUTER)!=0) 6105 ){ 6106 #if SELECTTRACE_ENABLED 6107 if( sqlite3_unsupported_selecttrace & 0x100 ){ 6108 SELECTTRACE(0x100,pParse,p, 6109 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6110 sqlite3TreeViewSelect(0, p, 0); 6111 } 6112 #endif 6113 }else{ 6114 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6115 } 6116 6117 zSavedAuthContext = pParse->zAuthContext; 6118 pParse->zAuthContext = pItem->zName; 6119 6120 /* Generate code to implement the subquery 6121 ** 6122 ** The subquery is implemented as a co-routine if the subquery is 6123 ** guaranteed to be the outer loop (so that it does not need to be 6124 ** computed more than once) 6125 ** 6126 ** TODO: Are there other reasons beside (1) to use a co-routine 6127 ** implementation? 6128 */ 6129 if( i==0 6130 && (pTabList->nSrc==1 6131 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6132 ){ 6133 /* Implement a co-routine that will return a single row of the result 6134 ** set on each invocation. 6135 */ 6136 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6137 6138 pItem->regReturn = ++pParse->nMem; 6139 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6140 VdbeComment((v, "%s", pItem->pTab->zName)); 6141 pItem->addrFillSub = addrTop; 6142 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6143 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6144 sqlite3Select(pParse, pSub, &dest); 6145 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6146 pItem->fg.viaCoroutine = 1; 6147 pItem->regResult = dest.iSdst; 6148 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6149 sqlite3VdbeJumpHere(v, addrTop-1); 6150 sqlite3ClearTempRegCache(pParse); 6151 }else{ 6152 /* Generate a subroutine that will fill an ephemeral table with 6153 ** the content of this subquery. pItem->addrFillSub will point 6154 ** to the address of the generated subroutine. pItem->regReturn 6155 ** is a register allocated to hold the subroutine return address 6156 */ 6157 int topAddr; 6158 int onceAddr = 0; 6159 int retAddr; 6160 struct SrcList_item *pPrior; 6161 6162 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6163 pItem->regReturn = ++pParse->nMem; 6164 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6165 pItem->addrFillSub = topAddr+1; 6166 if( pItem->fg.isCorrelated==0 ){ 6167 /* If the subquery is not correlated and if we are not inside of 6168 ** a trigger, then we only need to compute the value of the subquery 6169 ** once. */ 6170 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6171 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6172 }else{ 6173 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6174 } 6175 pPrior = isSelfJoinView(pTabList, pItem); 6176 if( pPrior ){ 6177 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6178 assert( pPrior->pSelect!=0 ); 6179 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6180 }else{ 6181 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6182 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6183 sqlite3Select(pParse, pSub, &dest); 6184 } 6185 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6186 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6187 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6188 VdbeComment((v, "end %s", pItem->pTab->zName)); 6189 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6190 sqlite3ClearTempRegCache(pParse); 6191 } 6192 if( db->mallocFailed ) goto select_end; 6193 pParse->nHeight -= sqlite3SelectExprHeight(p); 6194 pParse->zAuthContext = zSavedAuthContext; 6195 #endif 6196 } 6197 6198 /* Various elements of the SELECT copied into local variables for 6199 ** convenience */ 6200 pEList = p->pEList; 6201 pWhere = p->pWhere; 6202 pGroupBy = p->pGroupBy; 6203 pHaving = p->pHaving; 6204 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6205 6206 #if SELECTTRACE_ENABLED 6207 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6208 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6209 sqlite3TreeViewSelect(0, p, 0); 6210 } 6211 #endif 6212 6213 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6214 ** if the select-list is the same as the ORDER BY list, then this query 6215 ** can be rewritten as a GROUP BY. In other words, this: 6216 ** 6217 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6218 ** 6219 ** is transformed to: 6220 ** 6221 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6222 ** 6223 ** The second form is preferred as a single index (or temp-table) may be 6224 ** used for both the ORDER BY and DISTINCT processing. As originally 6225 ** written the query must use a temp-table for at least one of the ORDER 6226 ** BY and DISTINCT, and an index or separate temp-table for the other. 6227 */ 6228 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6229 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6230 #ifndef SQLITE_OMIT_WINDOWFUNC 6231 && p->pWin==0 6232 #endif 6233 ){ 6234 p->selFlags &= ~SF_Distinct; 6235 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6236 p->selFlags |= SF_Aggregate; 6237 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6238 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6239 ** original setting of the SF_Distinct flag, not the current setting */ 6240 assert( sDistinct.isTnct ); 6241 6242 #if SELECTTRACE_ENABLED 6243 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6244 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6245 sqlite3TreeViewSelect(0, p, 0); 6246 } 6247 #endif 6248 } 6249 6250 /* If there is an ORDER BY clause, then create an ephemeral index to 6251 ** do the sorting. But this sorting ephemeral index might end up 6252 ** being unused if the data can be extracted in pre-sorted order. 6253 ** If that is the case, then the OP_OpenEphemeral instruction will be 6254 ** changed to an OP_Noop once we figure out that the sorting index is 6255 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6256 ** that change. 6257 */ 6258 if( sSort.pOrderBy ){ 6259 KeyInfo *pKeyInfo; 6260 pKeyInfo = sqlite3KeyInfoFromExprList( 6261 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6262 sSort.iECursor = pParse->nTab++; 6263 sSort.addrSortIndex = 6264 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6265 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6266 (char*)pKeyInfo, P4_KEYINFO 6267 ); 6268 }else{ 6269 sSort.addrSortIndex = -1; 6270 } 6271 6272 /* If the output is destined for a temporary table, open that table. 6273 */ 6274 if( pDest->eDest==SRT_EphemTab ){ 6275 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6276 } 6277 6278 /* Set the limiter. 6279 */ 6280 iEnd = sqlite3VdbeMakeLabel(pParse); 6281 if( (p->selFlags & SF_FixedLimit)==0 ){ 6282 p->nSelectRow = 320; /* 4 billion rows */ 6283 } 6284 computeLimitRegisters(pParse, p, iEnd); 6285 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6286 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6287 sSort.sortFlags |= SORTFLAG_UseSorter; 6288 } 6289 6290 /* Open an ephemeral index to use for the distinct set. 6291 */ 6292 if( p->selFlags & SF_Distinct ){ 6293 sDistinct.tabTnct = pParse->nTab++; 6294 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6295 sDistinct.tabTnct, 0, 0, 6296 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6297 P4_KEYINFO); 6298 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6299 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6300 }else{ 6301 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6302 } 6303 6304 if( !isAgg && pGroupBy==0 ){ 6305 /* No aggregate functions and no GROUP BY clause */ 6306 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6307 | (p->selFlags & SF_FixedLimit); 6308 #ifndef SQLITE_OMIT_WINDOWFUNC 6309 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6310 if( pWin ){ 6311 sqlite3WindowCodeInit(pParse, p); 6312 } 6313 #endif 6314 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6315 6316 6317 /* Begin the database scan. */ 6318 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6319 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6320 p->pEList, wctrlFlags, p->nSelectRow); 6321 if( pWInfo==0 ) goto select_end; 6322 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6323 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6324 } 6325 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6326 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6327 } 6328 if( sSort.pOrderBy ){ 6329 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6330 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6331 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6332 sSort.pOrderBy = 0; 6333 } 6334 } 6335 6336 /* If sorting index that was created by a prior OP_OpenEphemeral 6337 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6338 ** into an OP_Noop. 6339 */ 6340 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6341 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6342 } 6343 6344 assert( p->pEList==pEList ); 6345 #ifndef SQLITE_OMIT_WINDOWFUNC 6346 if( pWin ){ 6347 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6348 int iCont = sqlite3VdbeMakeLabel(pParse); 6349 int iBreak = sqlite3VdbeMakeLabel(pParse); 6350 int regGosub = ++pParse->nMem; 6351 6352 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6353 6354 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6355 sqlite3VdbeResolveLabel(v, addrGosub); 6356 VdbeNoopComment((v, "inner-loop subroutine")); 6357 sSort.labelOBLopt = 0; 6358 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6359 sqlite3VdbeResolveLabel(v, iCont); 6360 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6361 VdbeComment((v, "end inner-loop subroutine")); 6362 sqlite3VdbeResolveLabel(v, iBreak); 6363 }else 6364 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6365 { 6366 /* Use the standard inner loop. */ 6367 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6368 sqlite3WhereContinueLabel(pWInfo), 6369 sqlite3WhereBreakLabel(pWInfo)); 6370 6371 /* End the database scan loop. 6372 */ 6373 sqlite3WhereEnd(pWInfo); 6374 } 6375 }else{ 6376 /* This case when there exist aggregate functions or a GROUP BY clause 6377 ** or both */ 6378 NameContext sNC; /* Name context for processing aggregate information */ 6379 int iAMem; /* First Mem address for storing current GROUP BY */ 6380 int iBMem; /* First Mem address for previous GROUP BY */ 6381 int iUseFlag; /* Mem address holding flag indicating that at least 6382 ** one row of the input to the aggregator has been 6383 ** processed */ 6384 int iAbortFlag; /* Mem address which causes query abort if positive */ 6385 int groupBySort; /* Rows come from source in GROUP BY order */ 6386 int addrEnd; /* End of processing for this SELECT */ 6387 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6388 int sortOut = 0; /* Output register from the sorter */ 6389 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6390 6391 /* Remove any and all aliases between the result set and the 6392 ** GROUP BY clause. 6393 */ 6394 if( pGroupBy ){ 6395 int k; /* Loop counter */ 6396 struct ExprList_item *pItem; /* For looping over expression in a list */ 6397 6398 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6399 pItem->u.x.iAlias = 0; 6400 } 6401 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6402 pItem->u.x.iAlias = 0; 6403 } 6404 assert( 66==sqlite3LogEst(100) ); 6405 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6406 6407 /* If there is both a GROUP BY and an ORDER BY clause and they are 6408 ** identical, then it may be possible to disable the ORDER BY clause 6409 ** on the grounds that the GROUP BY will cause elements to come out 6410 ** in the correct order. It also may not - the GROUP BY might use a 6411 ** database index that causes rows to be grouped together as required 6412 ** but not actually sorted. Either way, record the fact that the 6413 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6414 ** variable. */ 6415 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6416 int ii; 6417 /* The GROUP BY processing doesn't care whether rows are delivered in 6418 ** ASC or DESC order - only that each group is returned contiguously. 6419 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6420 ** ORDER BY to maximize the chances of rows being delivered in an 6421 ** order that makes the ORDER BY redundant. */ 6422 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6423 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6424 pGroupBy->a[ii].sortFlags = sortFlags; 6425 } 6426 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6427 orderByGrp = 1; 6428 } 6429 } 6430 }else{ 6431 assert( 0==sqlite3LogEst(1) ); 6432 p->nSelectRow = 0; 6433 } 6434 6435 /* Create a label to jump to when we want to abort the query */ 6436 addrEnd = sqlite3VdbeMakeLabel(pParse); 6437 6438 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6439 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6440 ** SELECT statement. 6441 */ 6442 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6443 if( pAggInfo==0 ){ 6444 goto select_end; 6445 } 6446 pAggInfo->pNext = pParse->pAggList; 6447 pParse->pAggList = pAggInfo; 6448 pAggInfo->selId = p->selId; 6449 memset(&sNC, 0, sizeof(sNC)); 6450 sNC.pParse = pParse; 6451 sNC.pSrcList = pTabList; 6452 sNC.uNC.pAggInfo = pAggInfo; 6453 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6454 pAggInfo->mnReg = pParse->nMem+1; 6455 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6456 pAggInfo->pGroupBy = pGroupBy; 6457 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6458 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6459 if( pHaving ){ 6460 if( pGroupBy ){ 6461 assert( pWhere==p->pWhere ); 6462 assert( pHaving==p->pHaving ); 6463 assert( pGroupBy==p->pGroupBy ); 6464 havingToWhere(pParse, p); 6465 pWhere = p->pWhere; 6466 } 6467 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6468 } 6469 pAggInfo->nAccumulator = pAggInfo->nColumn; 6470 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6471 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6472 }else{ 6473 minMaxFlag = WHERE_ORDERBY_NORMAL; 6474 } 6475 for(i=0; i<pAggInfo->nFunc; i++){ 6476 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6477 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6478 sNC.ncFlags |= NC_InAggFunc; 6479 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6480 #ifndef SQLITE_OMIT_WINDOWFUNC 6481 assert( !IsWindowFunc(pExpr) ); 6482 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6483 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6484 } 6485 #endif 6486 sNC.ncFlags &= ~NC_InAggFunc; 6487 } 6488 pAggInfo->mxReg = pParse->nMem; 6489 if( db->mallocFailed ) goto select_end; 6490 #if SELECTTRACE_ENABLED 6491 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6492 int ii; 6493 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6494 sqlite3TreeViewSelect(0, p, 0); 6495 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6496 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6497 ii, pAggInfo->aCol[ii].iMem); 6498 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6499 } 6500 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6501 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6502 ii, pAggInfo->aFunc[ii].iMem); 6503 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6504 } 6505 } 6506 #endif 6507 6508 6509 /* Processing for aggregates with GROUP BY is very different and 6510 ** much more complex than aggregates without a GROUP BY. 6511 */ 6512 if( pGroupBy ){ 6513 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6514 int addr1; /* A-vs-B comparision jump */ 6515 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6516 int regOutputRow; /* Return address register for output subroutine */ 6517 int addrSetAbort; /* Set the abort flag and return */ 6518 int addrTopOfLoop; /* Top of the input loop */ 6519 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6520 int addrReset; /* Subroutine for resetting the accumulator */ 6521 int regReset; /* Return address register for reset subroutine */ 6522 6523 /* If there is a GROUP BY clause we might need a sorting index to 6524 ** implement it. Allocate that sorting index now. If it turns out 6525 ** that we do not need it after all, the OP_SorterOpen instruction 6526 ** will be converted into a Noop. 6527 */ 6528 pAggInfo->sortingIdx = pParse->nTab++; 6529 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6530 0, pAggInfo->nColumn); 6531 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6532 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6533 0, (char*)pKeyInfo, P4_KEYINFO); 6534 6535 /* Initialize memory locations used by GROUP BY aggregate processing 6536 */ 6537 iUseFlag = ++pParse->nMem; 6538 iAbortFlag = ++pParse->nMem; 6539 regOutputRow = ++pParse->nMem; 6540 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6541 regReset = ++pParse->nMem; 6542 addrReset = sqlite3VdbeMakeLabel(pParse); 6543 iAMem = pParse->nMem + 1; 6544 pParse->nMem += pGroupBy->nExpr; 6545 iBMem = pParse->nMem + 1; 6546 pParse->nMem += pGroupBy->nExpr; 6547 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6548 VdbeComment((v, "clear abort flag")); 6549 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6550 6551 /* Begin a loop that will extract all source rows in GROUP BY order. 6552 ** This might involve two separate loops with an OP_Sort in between, or 6553 ** it might be a single loop that uses an index to extract information 6554 ** in the right order to begin with. 6555 */ 6556 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6557 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6558 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6559 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6560 ); 6561 if( pWInfo==0 ) goto select_end; 6562 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6563 /* The optimizer is able to deliver rows in group by order so 6564 ** we do not have to sort. The OP_OpenEphemeral table will be 6565 ** cancelled later because we still need to use the pKeyInfo 6566 */ 6567 groupBySort = 0; 6568 }else{ 6569 /* Rows are coming out in undetermined order. We have to push 6570 ** each row into a sorting index, terminate the first loop, 6571 ** then loop over the sorting index in order to get the output 6572 ** in sorted order 6573 */ 6574 int regBase; 6575 int regRecord; 6576 int nCol; 6577 int nGroupBy; 6578 6579 explainTempTable(pParse, 6580 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6581 "DISTINCT" : "GROUP BY"); 6582 6583 groupBySort = 1; 6584 nGroupBy = pGroupBy->nExpr; 6585 nCol = nGroupBy; 6586 j = nGroupBy; 6587 for(i=0; i<pAggInfo->nColumn; i++){ 6588 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6589 nCol++; 6590 j++; 6591 } 6592 } 6593 regBase = sqlite3GetTempRange(pParse, nCol); 6594 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6595 j = nGroupBy; 6596 for(i=0; i<pAggInfo->nColumn; i++){ 6597 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6598 if( pCol->iSorterColumn>=j ){ 6599 int r1 = j + regBase; 6600 sqlite3ExprCodeGetColumnOfTable(v, 6601 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6602 j++; 6603 } 6604 } 6605 regRecord = sqlite3GetTempReg(pParse); 6606 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6607 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6608 sqlite3ReleaseTempReg(pParse, regRecord); 6609 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6610 sqlite3WhereEnd(pWInfo); 6611 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6612 sortOut = sqlite3GetTempReg(pParse); 6613 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6614 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6615 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6616 pAggInfo->useSortingIdx = 1; 6617 } 6618 6619 /* If the index or temporary table used by the GROUP BY sort 6620 ** will naturally deliver rows in the order required by the ORDER BY 6621 ** clause, cancel the ephemeral table open coded earlier. 6622 ** 6623 ** This is an optimization - the correct answer should result regardless. 6624 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6625 ** disable this optimization for testing purposes. */ 6626 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6627 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6628 ){ 6629 sSort.pOrderBy = 0; 6630 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6631 } 6632 6633 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6634 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6635 ** Then compare the current GROUP BY terms against the GROUP BY terms 6636 ** from the previous row currently stored in a0, a1, a2... 6637 */ 6638 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6639 if( groupBySort ){ 6640 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6641 sortOut, sortPTab); 6642 } 6643 for(j=0; j<pGroupBy->nExpr; j++){ 6644 if( groupBySort ){ 6645 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6646 }else{ 6647 pAggInfo->directMode = 1; 6648 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6649 } 6650 } 6651 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6652 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6653 addr1 = sqlite3VdbeCurrentAddr(v); 6654 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6655 6656 /* Generate code that runs whenever the GROUP BY changes. 6657 ** Changes in the GROUP BY are detected by the previous code 6658 ** block. If there were no changes, this block is skipped. 6659 ** 6660 ** This code copies current group by terms in b0,b1,b2,... 6661 ** over to a0,a1,a2. It then calls the output subroutine 6662 ** and resets the aggregate accumulator registers in preparation 6663 ** for the next GROUP BY batch. 6664 */ 6665 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6666 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6667 VdbeComment((v, "output one row")); 6668 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6669 VdbeComment((v, "check abort flag")); 6670 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6671 VdbeComment((v, "reset accumulator")); 6672 6673 /* Update the aggregate accumulators based on the content of 6674 ** the current row 6675 */ 6676 sqlite3VdbeJumpHere(v, addr1); 6677 updateAccumulator(pParse, iUseFlag, pAggInfo); 6678 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6679 VdbeComment((v, "indicate data in accumulator")); 6680 6681 /* End of the loop 6682 */ 6683 if( groupBySort ){ 6684 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop); 6685 VdbeCoverage(v); 6686 }else{ 6687 sqlite3WhereEnd(pWInfo); 6688 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6689 } 6690 6691 /* Output the final row of result 6692 */ 6693 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6694 VdbeComment((v, "output final row")); 6695 6696 /* Jump over the subroutines 6697 */ 6698 sqlite3VdbeGoto(v, addrEnd); 6699 6700 /* Generate a subroutine that outputs a single row of the result 6701 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6702 ** is less than or equal to zero, the subroutine is a no-op. If 6703 ** the processing calls for the query to abort, this subroutine 6704 ** increments the iAbortFlag memory location before returning in 6705 ** order to signal the caller to abort. 6706 */ 6707 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6708 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6709 VdbeComment((v, "set abort flag")); 6710 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6711 sqlite3VdbeResolveLabel(v, addrOutputRow); 6712 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6713 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6714 VdbeCoverage(v); 6715 VdbeComment((v, "Groupby result generator entry point")); 6716 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6717 finalizeAggFunctions(pParse, pAggInfo); 6718 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6719 selectInnerLoop(pParse, p, -1, &sSort, 6720 &sDistinct, pDest, 6721 addrOutputRow+1, addrSetAbort); 6722 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6723 VdbeComment((v, "end groupby result generator")); 6724 6725 /* Generate a subroutine that will reset the group-by accumulator 6726 */ 6727 sqlite3VdbeResolveLabel(v, addrReset); 6728 resetAccumulator(pParse, pAggInfo); 6729 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6730 VdbeComment((v, "indicate accumulator empty")); 6731 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6732 6733 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6734 else { 6735 Table *pTab; 6736 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 6737 /* If isSimpleCount() returns a pointer to a Table structure, then 6738 ** the SQL statement is of the form: 6739 ** 6740 ** SELECT count(*) FROM <tbl> 6741 ** 6742 ** where the Table structure returned represents table <tbl>. 6743 ** 6744 ** This statement is so common that it is optimized specially. The 6745 ** OP_Count instruction is executed either on the intkey table that 6746 ** contains the data for table <tbl> or on one of its indexes. It 6747 ** is better to execute the op on an index, as indexes are almost 6748 ** always spread across less pages than their corresponding tables. 6749 */ 6750 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6751 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6752 Index *pIdx; /* Iterator variable */ 6753 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6754 Index *pBest = 0; /* Best index found so far */ 6755 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6756 6757 sqlite3CodeVerifySchema(pParse, iDb); 6758 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6759 6760 /* Search for the index that has the lowest scan cost. 6761 ** 6762 ** (2011-04-15) Do not do a full scan of an unordered index. 6763 ** 6764 ** (2013-10-03) Do not count the entries in a partial index. 6765 ** 6766 ** In practice the KeyInfo structure will not be used. It is only 6767 ** passed to keep OP_OpenRead happy. 6768 */ 6769 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6770 if( !p->pSrc->a[0].fg.notIndexed ){ 6771 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6772 if( pIdx->bUnordered==0 6773 && pIdx->szIdxRow<pTab->szTabRow 6774 && pIdx->pPartIdxWhere==0 6775 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6776 ){ 6777 pBest = pIdx; 6778 } 6779 } 6780 } 6781 if( pBest ){ 6782 iRoot = pBest->tnum; 6783 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6784 } 6785 6786 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6787 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 6788 if( pKeyInfo ){ 6789 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6790 } 6791 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 6792 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6793 explainSimpleCount(pParse, pTab, pBest); 6794 }else{ 6795 int regAcc = 0; /* "populate accumulators" flag */ 6796 int addrSkip; 6797 6798 /* If there are accumulator registers but no min() or max() functions 6799 ** without FILTER clauses, allocate register regAcc. Register regAcc 6800 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6801 ** The code generated by updateAccumulator() uses this to ensure 6802 ** that the accumulator registers are (a) updated only once if 6803 ** there are no min() or max functions or (b) always updated for the 6804 ** first row visited by the aggregate, so that they are updated at 6805 ** least once even if the FILTER clause means the min() or max() 6806 ** function visits zero rows. */ 6807 if( pAggInfo->nAccumulator ){ 6808 for(i=0; i<pAggInfo->nFunc; i++){ 6809 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 6810 continue; 6811 } 6812 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 6813 break; 6814 } 6815 } 6816 if( i==pAggInfo->nFunc ){ 6817 regAcc = ++pParse->nMem; 6818 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6819 } 6820 } 6821 6822 /* This case runs if the aggregate has no GROUP BY clause. The 6823 ** processing is much simpler since there is only a single row 6824 ** of output. 6825 */ 6826 assert( p->pGroupBy==0 ); 6827 resetAccumulator(pParse, pAggInfo); 6828 6829 /* If this query is a candidate for the min/max optimization, then 6830 ** minMaxFlag will have been previously set to either 6831 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6832 ** be an appropriate ORDER BY expression for the optimization. 6833 */ 6834 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6835 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6836 6837 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6838 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6839 0, minMaxFlag, 0); 6840 if( pWInfo==0 ){ 6841 goto select_end; 6842 } 6843 updateAccumulator(pParse, regAcc, pAggInfo); 6844 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6845 addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6846 if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){ 6847 sqlite3VdbeGoto(v, addrSkip); 6848 } 6849 sqlite3WhereEnd(pWInfo); 6850 finalizeAggFunctions(pParse, pAggInfo); 6851 } 6852 6853 sSort.pOrderBy = 0; 6854 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6855 selectInnerLoop(pParse, p, -1, 0, 0, 6856 pDest, addrEnd, addrEnd); 6857 } 6858 sqlite3VdbeResolveLabel(v, addrEnd); 6859 6860 } /* endif aggregate query */ 6861 6862 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6863 explainTempTable(pParse, "DISTINCT"); 6864 } 6865 6866 /* If there is an ORDER BY clause, then we need to sort the results 6867 ** and send them to the callback one by one. 6868 */ 6869 if( sSort.pOrderBy ){ 6870 explainTempTable(pParse, 6871 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6872 assert( p->pEList==pEList ); 6873 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6874 } 6875 6876 /* Jump here to skip this query 6877 */ 6878 sqlite3VdbeResolveLabel(v, iEnd); 6879 6880 /* The SELECT has been coded. If there is an error in the Parse structure, 6881 ** set the return code to 1. Otherwise 0. */ 6882 rc = (pParse->nErr>0); 6883 6884 /* Control jumps to here if an error is encountered above, or upon 6885 ** successful coding of the SELECT. 6886 */ 6887 select_end: 6888 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6889 #ifdef SQLITE_DEBUG 6890 if( pAggInfo && !db->mallocFailed ){ 6891 for(i=0; i<pAggInfo->nColumn; i++){ 6892 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 6893 assert( pExpr!=0 || db->mallocFailed ); 6894 if( pExpr==0 ) continue; 6895 assert( pExpr->pAggInfo==pAggInfo ); 6896 assert( pExpr->iAgg==i ); 6897 } 6898 for(i=0; i<pAggInfo->nFunc; i++){ 6899 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6900 assert( pExpr!=0 || db->mallocFailed ); 6901 if( pExpr==0 ) continue; 6902 assert( pExpr->pAggInfo==pAggInfo ); 6903 assert( pExpr->iAgg==i ); 6904 } 6905 } 6906 #endif 6907 6908 #if SELECTTRACE_ENABLED 6909 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6910 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6911 sqlite3TreeViewSelect(0, p, 0); 6912 } 6913 #endif 6914 ExplainQueryPlanPop(pParse); 6915 return rc; 6916 } 6917