1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 pNew = &standin; 69 memset(pNew, 0, sizeof(*pNew)); 70 } 71 if( pEList==0 ){ 72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 73 } 74 pNew->pEList = pEList; 75 pNew->pSrc = pSrc; 76 pNew->pWhere = pWhere; 77 pNew->pGroupBy = pGroupBy; 78 pNew->pHaving = pHaving; 79 pNew->pOrderBy = pOrderBy; 80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 81 pNew->op = TK_SELECT; 82 pNew->pLimit = pLimit; 83 pNew->pOffset = pOffset; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->addrOpenEphm[0] = -1; 86 pNew->addrOpenEphm[1] = -1; 87 pNew->addrOpenEphm[2] = -1; 88 if( db->mallocFailed ) { 89 clearSelect(db, pNew); 90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 91 pNew = 0; 92 } 93 return pNew; 94 } 95 96 /* 97 ** Delete the given Select structure and all of its substructures. 98 */ 99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 100 if( p ){ 101 clearSelect(db, p); 102 sqlite3DbFree(db, p); 103 } 104 } 105 106 /* 107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 108 ** type of join. Return an integer constant that expresses that type 109 ** in terms of the following bit values: 110 ** 111 ** JT_INNER 112 ** JT_CROSS 113 ** JT_OUTER 114 ** JT_NATURAL 115 ** JT_LEFT 116 ** JT_RIGHT 117 ** 118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 119 ** 120 ** If an illegal or unsupported join type is seen, then still return 121 ** a join type, but put an error in the pParse structure. 122 */ 123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 124 int jointype = 0; 125 Token *apAll[3]; 126 Token *p; 127 /* 0123456789 123456789 123456789 123 */ 128 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 129 static const struct { 130 u8 i; /* Beginning of keyword text in zKeyText[] */ 131 u8 nChar; /* Length of the keyword in characters */ 132 u8 code; /* Join type mask */ 133 } aKeyword[] = { 134 /* natural */ { 0, 7, JT_NATURAL }, 135 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 136 /* outer */ { 10, 5, JT_OUTER }, 137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 139 /* inner */ { 23, 5, JT_INNER }, 140 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<ArraySize(aKeyword); j++){ 149 if( p->n==aKeyword[j].nChar 150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 151 jointype |= aKeyword[j].code; 152 break; 153 } 154 } 155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 156 if( j>=ArraySize(aKeyword) ){ 157 jointype |= JT_ERROR; 158 break; 159 } 160 } 161 if( 162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 163 (jointype & JT_ERROR)!=0 164 ){ 165 const char *zSp = " "; 166 assert( pB!=0 ); 167 if( pC==0 ){ zSp++; } 168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 169 "%T %T%s%T", pA, pB, zSp, pC); 170 jointype = JT_INNER; 171 }else if( (jointype & JT_OUTER)!=0 172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 173 sqlite3ErrorMsg(pParse, 174 "RIGHT and FULL OUTER JOINs are not currently supported"); 175 jointype = JT_INNER; 176 } 177 return jointype; 178 } 179 180 /* 181 ** Return the index of a column in a table. Return -1 if the column 182 ** is not contained in the table. 183 */ 184 static int columnIndex(Table *pTab, const char *zCol){ 185 int i; 186 for(i=0; i<pTab->nCol; i++){ 187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 188 } 189 return -1; 190 } 191 192 /* 193 ** This function is used to add terms implied by JOIN syntax to the 194 ** WHERE clause expression of a SELECT statement. The new term, which 195 ** is ANDed with the existing WHERE clause, is of the form: 196 ** 197 ** (tab1.col1 = tab2.col2) 198 ** 199 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 200 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 201 ** column iColRight of tab2. 202 */ 203 static void addWhereTerm( 204 Parse *pParse, /* Parsing context */ 205 SrcList *pSrc, /* List of tables in FROM clause */ 206 int iSrc, /* Index of first table to join in pSrc */ 207 int iColLeft, /* Index of column in first table */ 208 int iColRight, /* Index of column in second table */ 209 int isOuterJoin, /* True if this is an OUTER join */ 210 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 211 ){ 212 sqlite3 *db = pParse->db; 213 Expr *pE1; 214 Expr *pE2; 215 Expr *pEq; 216 217 assert( pSrc->nSrc>(iSrc+1) ); 218 assert( pSrc->a[iSrc].pTab ); 219 assert( pSrc->a[iSrc+1].pTab ); 220 221 pE1 = sqlite3CreateColumnExpr(db, pSrc, iSrc, iColLeft); 222 pE2 = sqlite3CreateColumnExpr(db, pSrc, iSrc+1, iColRight); 223 224 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 225 if( pEq && isOuterJoin ){ 226 ExprSetProperty(pEq, EP_FromJoin); 227 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 228 ExprSetIrreducible(pEq); 229 pEq->iRightJoinTable = (i16)pE2->iTable; 230 } 231 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 232 } 233 234 /* 235 ** Set the EP_FromJoin property on all terms of the given expression. 236 ** And set the Expr.iRightJoinTable to iTable for every term in the 237 ** expression. 238 ** 239 ** The EP_FromJoin property is used on terms of an expression to tell 240 ** the LEFT OUTER JOIN processing logic that this term is part of the 241 ** join restriction specified in the ON or USING clause and not a part 242 ** of the more general WHERE clause. These terms are moved over to the 243 ** WHERE clause during join processing but we need to remember that they 244 ** originated in the ON or USING clause. 245 ** 246 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 247 ** expression depends on table iRightJoinTable even if that table is not 248 ** explicitly mentioned in the expression. That information is needed 249 ** for cases like this: 250 ** 251 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 252 ** 253 ** The where clause needs to defer the handling of the t1.x=5 254 ** term until after the t2 loop of the join. In that way, a 255 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 256 ** defer the handling of t1.x=5, it will be processed immediately 257 ** after the t1 loop and rows with t1.x!=5 will never appear in 258 ** the output, which is incorrect. 259 */ 260 static void setJoinExpr(Expr *p, int iTable){ 261 while( p ){ 262 ExprSetProperty(p, EP_FromJoin); 263 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 264 ExprSetIrreducible(p); 265 p->iRightJoinTable = (i16)iTable; 266 setJoinExpr(p->pLeft, iTable); 267 p = p->pRight; 268 } 269 } 270 271 /* 272 ** This routine processes the join information for a SELECT statement. 273 ** ON and USING clauses are converted into extra terms of the WHERE clause. 274 ** NATURAL joins also create extra WHERE clause terms. 275 ** 276 ** The terms of a FROM clause are contained in the Select.pSrc structure. 277 ** The left most table is the first entry in Select.pSrc. The right-most 278 ** table is the last entry. The join operator is held in the entry to 279 ** the left. Thus entry 0 contains the join operator for the join between 280 ** entries 0 and 1. Any ON or USING clauses associated with the join are 281 ** also attached to the left entry. 282 ** 283 ** This routine returns the number of errors encountered. 284 */ 285 static int sqliteProcessJoin(Parse *pParse, Select *p){ 286 SrcList *pSrc; /* All tables in the FROM clause */ 287 int i, j; /* Loop counters */ 288 struct SrcList_item *pLeft; /* Left table being joined */ 289 struct SrcList_item *pRight; /* Right table being joined */ 290 291 pSrc = p->pSrc; 292 pLeft = &pSrc->a[0]; 293 pRight = &pLeft[1]; 294 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 295 Table *pLeftTab = pLeft->pTab; 296 Table *pRightTab = pRight->pTab; 297 int isOuter; 298 299 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 300 isOuter = (pRight->jointype & JT_OUTER)!=0; 301 302 /* When the NATURAL keyword is present, add WHERE clause terms for 303 ** every column that the two tables have in common. 304 */ 305 if( pRight->jointype & JT_NATURAL ){ 306 if( pRight->pOn || pRight->pUsing ){ 307 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 308 "an ON or USING clause", 0); 309 return 1; 310 } 311 for(j=0; j<pLeftTab->nCol; j++){ 312 char *zName = pLeftTab->aCol[j].zName; 313 int iRightCol = columnIndex(pRightTab, zName); 314 if( iRightCol>=0 ){ 315 addWhereTerm(pParse, pSrc, i, j, iRightCol, isOuter, &p->pWhere); 316 } 317 } 318 } 319 320 /* Disallow both ON and USING clauses in the same join 321 */ 322 if( pRight->pOn && pRight->pUsing ){ 323 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 324 "clauses in the same join"); 325 return 1; 326 } 327 328 /* Add the ON clause to the end of the WHERE clause, connected by 329 ** an AND operator. 330 */ 331 if( pRight->pOn ){ 332 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 333 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 334 pRight->pOn = 0; 335 } 336 337 /* Create extra terms on the WHERE clause for each column named 338 ** in the USING clause. Example: If the two tables to be joined are 339 ** A and B and the USING clause names X, Y, and Z, then add this 340 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 341 ** Report an error if any column mentioned in the USING clause is 342 ** not contained in both tables to be joined. 343 */ 344 if( pRight->pUsing ){ 345 IdList *pList = pRight->pUsing; 346 for(j=0; j<pList->nId; j++){ 347 char *zName = pList->a[j].zName; 348 int iLeftCol = columnIndex(pLeftTab, zName); 349 int iRightCol = columnIndex(pRightTab, zName); 350 if( iLeftCol<0 || iRightCol<0 ){ 351 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 352 "not present in both tables", zName); 353 return 1; 354 } 355 addWhereTerm(pParse, pSrc, i, iLeftCol, iRightCol, isOuter, &p->pWhere); 356 } 357 } 358 } 359 return 0; 360 } 361 362 /* 363 ** Insert code into "v" that will push the record on the top of the 364 ** stack into the sorter. 365 */ 366 static void pushOntoSorter( 367 Parse *pParse, /* Parser context */ 368 ExprList *pOrderBy, /* The ORDER BY clause */ 369 Select *pSelect, /* The whole SELECT statement */ 370 int regData /* Register holding data to be sorted */ 371 ){ 372 Vdbe *v = pParse->pVdbe; 373 int nExpr = pOrderBy->nExpr; 374 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 375 int regRecord = sqlite3GetTempReg(pParse); 376 sqlite3ExprCacheClear(pParse); 377 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 378 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 379 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 380 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 381 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 382 sqlite3ReleaseTempReg(pParse, regRecord); 383 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 384 if( pSelect->iLimit ){ 385 int addr1, addr2; 386 int iLimit; 387 if( pSelect->iOffset ){ 388 iLimit = pSelect->iOffset+1; 389 }else{ 390 iLimit = pSelect->iLimit; 391 } 392 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 393 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 394 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 395 sqlite3VdbeJumpHere(v, addr1); 396 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 397 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 398 sqlite3VdbeJumpHere(v, addr2); 399 pSelect->iLimit = 0; 400 } 401 } 402 403 /* 404 ** Add code to implement the OFFSET 405 */ 406 static void codeOffset( 407 Vdbe *v, /* Generate code into this VM */ 408 Select *p, /* The SELECT statement being coded */ 409 int iContinue /* Jump here to skip the current record */ 410 ){ 411 if( p->iOffset && iContinue!=0 ){ 412 int addr; 413 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 414 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 415 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 416 VdbeComment((v, "skip OFFSET records")); 417 sqlite3VdbeJumpHere(v, addr); 418 } 419 } 420 421 /* 422 ** Add code that will check to make sure the N registers starting at iMem 423 ** form a distinct entry. iTab is a sorting index that holds previously 424 ** seen combinations of the N values. A new entry is made in iTab 425 ** if the current N values are new. 426 ** 427 ** A jump to addrRepeat is made and the N+1 values are popped from the 428 ** stack if the top N elements are not distinct. 429 */ 430 static void codeDistinct( 431 Parse *pParse, /* Parsing and code generating context */ 432 int iTab, /* A sorting index used to test for distinctness */ 433 int addrRepeat, /* Jump to here if not distinct */ 434 int N, /* Number of elements */ 435 int iMem /* First element */ 436 ){ 437 Vdbe *v; 438 int r1; 439 440 v = pParse->pVdbe; 441 r1 = sqlite3GetTempReg(pParse); 442 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 443 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 444 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 445 sqlite3ReleaseTempReg(pParse, r1); 446 } 447 448 /* 449 ** Generate an error message when a SELECT is used within a subexpression 450 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 451 ** column. We do this in a subroutine because the error occurs in multiple 452 ** places. 453 */ 454 static int checkForMultiColumnSelectError( 455 Parse *pParse, /* Parse context. */ 456 SelectDest *pDest, /* Destination of SELECT results */ 457 int nExpr /* Number of result columns returned by SELECT */ 458 ){ 459 int eDest = pDest->eDest; 460 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 461 sqlite3ErrorMsg(pParse, "only a single result allowed for " 462 "a SELECT that is part of an expression"); 463 return 1; 464 }else{ 465 return 0; 466 } 467 } 468 469 /* 470 ** This routine generates the code for the inside of the inner loop 471 ** of a SELECT. 472 ** 473 ** If srcTab and nColumn are both zero, then the pEList expressions 474 ** are evaluated in order to get the data for this row. If nColumn>0 475 ** then data is pulled from srcTab and pEList is used only to get the 476 ** datatypes for each column. 477 */ 478 static void selectInnerLoop( 479 Parse *pParse, /* The parser context */ 480 Select *p, /* The complete select statement being coded */ 481 ExprList *pEList, /* List of values being extracted */ 482 int srcTab, /* Pull data from this table */ 483 int nColumn, /* Number of columns in the source table */ 484 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 485 int distinct, /* If >=0, make sure results are distinct */ 486 SelectDest *pDest, /* How to dispose of the results */ 487 int iContinue, /* Jump here to continue with next row */ 488 int iBreak /* Jump here to break out of the inner loop */ 489 ){ 490 Vdbe *v = pParse->pVdbe; 491 int i; 492 int hasDistinct; /* True if the DISTINCT keyword is present */ 493 int regResult; /* Start of memory holding result set */ 494 int eDest = pDest->eDest; /* How to dispose of results */ 495 int iParm = pDest->iParm; /* First argument to disposal method */ 496 int nResultCol; /* Number of result columns */ 497 498 assert( v ); 499 if( NEVER(v==0) ) return; 500 assert( pEList!=0 ); 501 hasDistinct = distinct>=0; 502 if( pOrderBy==0 && !hasDistinct ){ 503 codeOffset(v, p, iContinue); 504 } 505 506 /* Pull the requested columns. 507 */ 508 if( nColumn>0 ){ 509 nResultCol = nColumn; 510 }else{ 511 nResultCol = pEList->nExpr; 512 } 513 if( pDest->iMem==0 ){ 514 pDest->iMem = pParse->nMem+1; 515 pDest->nMem = nResultCol; 516 pParse->nMem += nResultCol; 517 }else{ 518 assert( pDest->nMem==nResultCol ); 519 } 520 regResult = pDest->iMem; 521 if( nColumn>0 ){ 522 for(i=0; i<nColumn; i++){ 523 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 524 } 525 }else if( eDest!=SRT_Exists ){ 526 /* If the destination is an EXISTS(...) expression, the actual 527 ** values returned by the SELECT are not required. 528 */ 529 sqlite3ExprCacheClear(pParse); 530 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 531 } 532 nColumn = nResultCol; 533 534 /* If the DISTINCT keyword was present on the SELECT statement 535 ** and this row has been seen before, then do not make this row 536 ** part of the result. 537 */ 538 if( hasDistinct ){ 539 assert( pEList!=0 ); 540 assert( pEList->nExpr==nColumn ); 541 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 542 if( pOrderBy==0 ){ 543 codeOffset(v, p, iContinue); 544 } 545 } 546 547 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 548 return; 549 } 550 551 switch( eDest ){ 552 /* In this mode, write each query result to the key of the temporary 553 ** table iParm. 554 */ 555 #ifndef SQLITE_OMIT_COMPOUND_SELECT 556 case SRT_Union: { 557 int r1; 558 r1 = sqlite3GetTempReg(pParse); 559 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 560 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 561 sqlite3ReleaseTempReg(pParse, r1); 562 break; 563 } 564 565 /* Construct a record from the query result, but instead of 566 ** saving that record, use it as a key to delete elements from 567 ** the temporary table iParm. 568 */ 569 case SRT_Except: { 570 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 571 break; 572 } 573 #endif 574 575 /* Store the result as data using a unique key. 576 */ 577 case SRT_Table: 578 case SRT_EphemTab: { 579 int r1 = sqlite3GetTempReg(pParse); 580 testcase( eDest==SRT_Table ); 581 testcase( eDest==SRT_EphemTab ); 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 583 if( pOrderBy ){ 584 pushOntoSorter(pParse, pOrderBy, p, r1); 585 }else{ 586 int r2 = sqlite3GetTempReg(pParse); 587 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 588 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 589 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 590 sqlite3ReleaseTempReg(pParse, r2); 591 } 592 sqlite3ReleaseTempReg(pParse, r1); 593 break; 594 } 595 596 #ifndef SQLITE_OMIT_SUBQUERY 597 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 598 ** then there should be a single item on the stack. Write this 599 ** item into the set table with bogus data. 600 */ 601 case SRT_Set: { 602 assert( nColumn==1 ); 603 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 604 if( pOrderBy ){ 605 /* At first glance you would think we could optimize out the 606 ** ORDER BY in this case since the order of entries in the set 607 ** does not matter. But there might be a LIMIT clause, in which 608 ** case the order does matter */ 609 pushOntoSorter(pParse, pOrderBy, p, regResult); 610 }else{ 611 int r1 = sqlite3GetTempReg(pParse); 612 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 613 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 614 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 615 sqlite3ReleaseTempReg(pParse, r1); 616 } 617 break; 618 } 619 620 /* If any row exist in the result set, record that fact and abort. 621 */ 622 case SRT_Exists: { 623 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 624 /* The LIMIT clause will terminate the loop for us */ 625 break; 626 } 627 628 /* If this is a scalar select that is part of an expression, then 629 ** store the results in the appropriate memory cell and break out 630 ** of the scan loop. 631 */ 632 case SRT_Mem: { 633 assert( nColumn==1 ); 634 if( pOrderBy ){ 635 pushOntoSorter(pParse, pOrderBy, p, regResult); 636 }else{ 637 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 638 /* The LIMIT clause will jump out of the loop for us */ 639 } 640 break; 641 } 642 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 643 644 /* Send the data to the callback function or to a subroutine. In the 645 ** case of a subroutine, the subroutine itself is responsible for 646 ** popping the data from the stack. 647 */ 648 case SRT_Coroutine: 649 case SRT_Output: { 650 testcase( eDest==SRT_Coroutine ); 651 testcase( eDest==SRT_Output ); 652 if( pOrderBy ){ 653 int r1 = sqlite3GetTempReg(pParse); 654 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 655 pushOntoSorter(pParse, pOrderBy, p, r1); 656 sqlite3ReleaseTempReg(pParse, r1); 657 }else if( eDest==SRT_Coroutine ){ 658 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 659 }else{ 660 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 661 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 662 } 663 break; 664 } 665 666 #if !defined(SQLITE_OMIT_TRIGGER) 667 /* Discard the results. This is used for SELECT statements inside 668 ** the body of a TRIGGER. The purpose of such selects is to call 669 ** user-defined functions that have side effects. We do not care 670 ** about the actual results of the select. 671 */ 672 default: { 673 assert( eDest==SRT_Discard ); 674 break; 675 } 676 #endif 677 } 678 679 /* Jump to the end of the loop if the LIMIT is reached. 680 */ 681 if( p->iLimit ){ 682 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 683 ** pushOntoSorter() would have cleared p->iLimit */ 684 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 685 } 686 } 687 688 /* 689 ** Given an expression list, generate a KeyInfo structure that records 690 ** the collating sequence for each expression in that expression list. 691 ** 692 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 693 ** KeyInfo structure is appropriate for initializing a virtual index to 694 ** implement that clause. If the ExprList is the result set of a SELECT 695 ** then the KeyInfo structure is appropriate for initializing a virtual 696 ** index to implement a DISTINCT test. 697 ** 698 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 699 ** function is responsible for seeing that this structure is eventually 700 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 701 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 702 */ 703 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 704 sqlite3 *db = pParse->db; 705 int nExpr; 706 KeyInfo *pInfo; 707 struct ExprList_item *pItem; 708 int i; 709 710 nExpr = pList->nExpr; 711 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 712 if( pInfo ){ 713 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 714 pInfo->nField = (u16)nExpr; 715 pInfo->enc = ENC(db); 716 pInfo->db = db; 717 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 718 CollSeq *pColl; 719 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 720 if( !pColl ){ 721 pColl = db->pDfltColl; 722 } 723 pInfo->aColl[i] = pColl; 724 pInfo->aSortOrder[i] = pItem->sortOrder; 725 } 726 } 727 return pInfo; 728 } 729 730 731 /* 732 ** If the inner loop was generated using a non-null pOrderBy argument, 733 ** then the results were placed in a sorter. After the loop is terminated 734 ** we need to run the sorter and output the results. The following 735 ** routine generates the code needed to do that. 736 */ 737 static void generateSortTail( 738 Parse *pParse, /* Parsing context */ 739 Select *p, /* The SELECT statement */ 740 Vdbe *v, /* Generate code into this VDBE */ 741 int nColumn, /* Number of columns of data */ 742 SelectDest *pDest /* Write the sorted results here */ 743 ){ 744 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 745 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 746 int addr; 747 int iTab; 748 int pseudoTab = 0; 749 ExprList *pOrderBy = p->pOrderBy; 750 751 int eDest = pDest->eDest; 752 int iParm = pDest->iParm; 753 754 int regRow; 755 int regRowid; 756 757 iTab = pOrderBy->iECursor; 758 regRow = sqlite3GetTempReg(pParse); 759 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 760 pseudoTab = pParse->nTab++; 761 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 762 regRowid = 0; 763 }else{ 764 regRowid = sqlite3GetTempReg(pParse); 765 } 766 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 767 codeOffset(v, p, addrContinue); 768 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 769 switch( eDest ){ 770 case SRT_Table: 771 case SRT_EphemTab: { 772 testcase( eDest==SRT_Table ); 773 testcase( eDest==SRT_EphemTab ); 774 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 775 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 776 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 777 break; 778 } 779 #ifndef SQLITE_OMIT_SUBQUERY 780 case SRT_Set: { 781 assert( nColumn==1 ); 782 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 783 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 784 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 785 break; 786 } 787 case SRT_Mem: { 788 assert( nColumn==1 ); 789 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 790 /* The LIMIT clause will terminate the loop for us */ 791 break; 792 } 793 #endif 794 default: { 795 int i; 796 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 797 testcase( eDest==SRT_Output ); 798 testcase( eDest==SRT_Coroutine ); 799 for(i=0; i<nColumn; i++){ 800 assert( regRow!=pDest->iMem+i ); 801 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 802 if( i==0 ){ 803 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 804 } 805 } 806 if( eDest==SRT_Output ){ 807 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 808 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 809 }else{ 810 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 811 } 812 break; 813 } 814 } 815 sqlite3ReleaseTempReg(pParse, regRow); 816 sqlite3ReleaseTempReg(pParse, regRowid); 817 818 /* LIMIT has been implemented by the pushOntoSorter() routine. 819 */ 820 assert( p->iLimit==0 ); 821 822 /* The bottom of the loop 823 */ 824 sqlite3VdbeResolveLabel(v, addrContinue); 825 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 826 sqlite3VdbeResolveLabel(v, addrBreak); 827 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 828 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 829 } 830 } 831 832 /* 833 ** Return a pointer to a string containing the 'declaration type' of the 834 ** expression pExpr. The string may be treated as static by the caller. 835 ** 836 ** The declaration type is the exact datatype definition extracted from the 837 ** original CREATE TABLE statement if the expression is a column. The 838 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 839 ** is considered a column can be complex in the presence of subqueries. The 840 ** result-set expression in all of the following SELECT statements is 841 ** considered a column by this function. 842 ** 843 ** SELECT col FROM tbl; 844 ** SELECT (SELECT col FROM tbl; 845 ** SELECT (SELECT col FROM tbl); 846 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 847 ** 848 ** The declaration type for any expression other than a column is NULL. 849 */ 850 static const char *columnType( 851 NameContext *pNC, 852 Expr *pExpr, 853 const char **pzOriginDb, 854 const char **pzOriginTab, 855 const char **pzOriginCol 856 ){ 857 char const *zType = 0; 858 char const *zOriginDb = 0; 859 char const *zOriginTab = 0; 860 char const *zOriginCol = 0; 861 int j; 862 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 863 864 switch( pExpr->op ){ 865 case TK_AGG_COLUMN: 866 case TK_COLUMN: { 867 /* The expression is a column. Locate the table the column is being 868 ** extracted from in NameContext.pSrcList. This table may be real 869 ** database table or a subquery. 870 */ 871 Table *pTab = 0; /* Table structure column is extracted from */ 872 Select *pS = 0; /* Select the column is extracted from */ 873 int iCol = pExpr->iColumn; /* Index of column in pTab */ 874 testcase( pExpr->op==TK_AGG_COLUMN ); 875 testcase( pExpr->op==TK_COLUMN ); 876 while( pNC && !pTab ){ 877 SrcList *pTabList = pNC->pSrcList; 878 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 879 if( j<pTabList->nSrc ){ 880 pTab = pTabList->a[j].pTab; 881 pS = pTabList->a[j].pSelect; 882 }else{ 883 pNC = pNC->pNext; 884 } 885 } 886 887 if( pTab==0 ){ 888 /* At one time, code such as "SELECT new.x" within a trigger would 889 ** cause this condition to run. Since then, we have restructured how 890 ** trigger code is generated and so this condition is no longer 891 ** possible. However, it can still be true for statements like 892 ** the following: 893 ** 894 ** CREATE TABLE t1(col INTEGER); 895 ** SELECT (SELECT t1.col) FROM FROM t1; 896 ** 897 ** when columnType() is called on the expression "t1.col" in the 898 ** sub-select. In this case, set the column type to NULL, even 899 ** though it should really be "INTEGER". 900 ** 901 ** This is not a problem, as the column type of "t1.col" is never 902 ** used. When columnType() is called on the expression 903 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 904 ** branch below. */ 905 break; 906 } 907 908 assert( pTab && pExpr->pTab==pTab ); 909 if( pS ){ 910 /* The "table" is actually a sub-select or a view in the FROM clause 911 ** of the SELECT statement. Return the declaration type and origin 912 ** data for the result-set column of the sub-select. 913 */ 914 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 915 /* If iCol is less than zero, then the expression requests the 916 ** rowid of the sub-select or view. This expression is legal (see 917 ** test case misc2.2.2) - it always evaluates to NULL. 918 */ 919 NameContext sNC; 920 Expr *p = pS->pEList->a[iCol].pExpr; 921 sNC.pSrcList = pS->pSrc; 922 sNC.pNext = pNC; 923 sNC.pParse = pNC->pParse; 924 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 925 } 926 }else if( ALWAYS(pTab->pSchema) ){ 927 /* A real table */ 928 assert( !pS ); 929 if( iCol<0 ) iCol = pTab->iPKey; 930 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 931 if( iCol<0 ){ 932 zType = "INTEGER"; 933 zOriginCol = "rowid"; 934 }else{ 935 zType = pTab->aCol[iCol].zType; 936 zOriginCol = pTab->aCol[iCol].zName; 937 } 938 zOriginTab = pTab->zName; 939 if( pNC->pParse ){ 940 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 941 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 942 } 943 } 944 break; 945 } 946 #ifndef SQLITE_OMIT_SUBQUERY 947 case TK_SELECT: { 948 /* The expression is a sub-select. Return the declaration type and 949 ** origin info for the single column in the result set of the SELECT 950 ** statement. 951 */ 952 NameContext sNC; 953 Select *pS = pExpr->x.pSelect; 954 Expr *p = pS->pEList->a[0].pExpr; 955 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 956 sNC.pSrcList = pS->pSrc; 957 sNC.pNext = pNC; 958 sNC.pParse = pNC->pParse; 959 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 960 break; 961 } 962 #endif 963 } 964 965 if( pzOriginDb ){ 966 assert( pzOriginTab && pzOriginCol ); 967 *pzOriginDb = zOriginDb; 968 *pzOriginTab = zOriginTab; 969 *pzOriginCol = zOriginCol; 970 } 971 return zType; 972 } 973 974 /* 975 ** Generate code that will tell the VDBE the declaration types of columns 976 ** in the result set. 977 */ 978 static void generateColumnTypes( 979 Parse *pParse, /* Parser context */ 980 SrcList *pTabList, /* List of tables */ 981 ExprList *pEList /* Expressions defining the result set */ 982 ){ 983 #ifndef SQLITE_OMIT_DECLTYPE 984 Vdbe *v = pParse->pVdbe; 985 int i; 986 NameContext sNC; 987 sNC.pSrcList = pTabList; 988 sNC.pParse = pParse; 989 for(i=0; i<pEList->nExpr; i++){ 990 Expr *p = pEList->a[i].pExpr; 991 const char *zType; 992 #ifdef SQLITE_ENABLE_COLUMN_METADATA 993 const char *zOrigDb = 0; 994 const char *zOrigTab = 0; 995 const char *zOrigCol = 0; 996 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 997 998 /* The vdbe must make its own copy of the column-type and other 999 ** column specific strings, in case the schema is reset before this 1000 ** virtual machine is deleted. 1001 */ 1002 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1003 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1004 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1005 #else 1006 zType = columnType(&sNC, p, 0, 0, 0); 1007 #endif 1008 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1009 } 1010 #endif /* SQLITE_OMIT_DECLTYPE */ 1011 } 1012 1013 /* 1014 ** Generate code that will tell the VDBE the names of columns 1015 ** in the result set. This information is used to provide the 1016 ** azCol[] values in the callback. 1017 */ 1018 static void generateColumnNames( 1019 Parse *pParse, /* Parser context */ 1020 SrcList *pTabList, /* List of tables */ 1021 ExprList *pEList /* Expressions defining the result set */ 1022 ){ 1023 Vdbe *v = pParse->pVdbe; 1024 int i, j; 1025 sqlite3 *db = pParse->db; 1026 int fullNames, shortNames; 1027 1028 #ifndef SQLITE_OMIT_EXPLAIN 1029 /* If this is an EXPLAIN, skip this step */ 1030 if( pParse->explain ){ 1031 return; 1032 } 1033 #endif 1034 1035 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1036 pParse->colNamesSet = 1; 1037 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1038 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1039 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1040 for(i=0; i<pEList->nExpr; i++){ 1041 Expr *p; 1042 p = pEList->a[i].pExpr; 1043 if( NEVER(p==0) ) continue; 1044 if( pEList->a[i].zName ){ 1045 char *zName = pEList->a[i].zName; 1046 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1047 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1048 Table *pTab; 1049 char *zCol; 1050 int iCol = p->iColumn; 1051 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1052 if( pTabList->a[j].iCursor==p->iTable ) break; 1053 } 1054 assert( j<pTabList->nSrc ); 1055 pTab = pTabList->a[j].pTab; 1056 if( iCol<0 ) iCol = pTab->iPKey; 1057 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1058 if( iCol<0 ){ 1059 zCol = "rowid"; 1060 }else{ 1061 zCol = pTab->aCol[iCol].zName; 1062 } 1063 if( !shortNames && !fullNames ){ 1064 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1065 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1066 }else if( fullNames ){ 1067 char *zName = 0; 1068 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1069 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1070 }else{ 1071 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1072 } 1073 }else{ 1074 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1075 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1076 } 1077 } 1078 generateColumnTypes(pParse, pTabList, pEList); 1079 } 1080 1081 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1082 /* 1083 ** Name of the connection operator, used for error messages. 1084 */ 1085 static const char *selectOpName(int id){ 1086 char *z; 1087 switch( id ){ 1088 case TK_ALL: z = "UNION ALL"; break; 1089 case TK_INTERSECT: z = "INTERSECT"; break; 1090 case TK_EXCEPT: z = "EXCEPT"; break; 1091 default: z = "UNION"; break; 1092 } 1093 return z; 1094 } 1095 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1096 1097 /* 1098 ** Given a an expression list (which is really the list of expressions 1099 ** that form the result set of a SELECT statement) compute appropriate 1100 ** column names for a table that would hold the expression list. 1101 ** 1102 ** All column names will be unique. 1103 ** 1104 ** Only the column names are computed. Column.zType, Column.zColl, 1105 ** and other fields of Column are zeroed. 1106 ** 1107 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1108 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1109 */ 1110 static int selectColumnsFromExprList( 1111 Parse *pParse, /* Parsing context */ 1112 ExprList *pEList, /* Expr list from which to derive column names */ 1113 int *pnCol, /* Write the number of columns here */ 1114 Column **paCol /* Write the new column list here */ 1115 ){ 1116 sqlite3 *db = pParse->db; /* Database connection */ 1117 int i, j; /* Loop counters */ 1118 int cnt; /* Index added to make the name unique */ 1119 Column *aCol, *pCol; /* For looping over result columns */ 1120 int nCol; /* Number of columns in the result set */ 1121 Expr *p; /* Expression for a single result column */ 1122 char *zName; /* Column name */ 1123 int nName; /* Size of name in zName[] */ 1124 1125 *pnCol = nCol = pEList->nExpr; 1126 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1127 if( aCol==0 ) return SQLITE_NOMEM; 1128 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1129 /* Get an appropriate name for the column 1130 */ 1131 p = pEList->a[i].pExpr; 1132 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1133 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1134 if( (zName = pEList->a[i].zName)!=0 ){ 1135 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1136 zName = sqlite3DbStrDup(db, zName); 1137 }else{ 1138 Expr *pColExpr = p; /* The expression that is the result column name */ 1139 Table *pTab; /* Table associated with this expression */ 1140 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1141 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1142 /* For columns use the column name name */ 1143 int iCol = pColExpr->iColumn; 1144 pTab = pColExpr->pTab; 1145 if( iCol<0 ) iCol = pTab->iPKey; 1146 zName = sqlite3MPrintf(db, "%s", 1147 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1148 }else if( pColExpr->op==TK_ID ){ 1149 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1150 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1151 }else{ 1152 /* Use the original text of the column expression as its name */ 1153 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1154 } 1155 } 1156 if( db->mallocFailed ){ 1157 sqlite3DbFree(db, zName); 1158 break; 1159 } 1160 1161 /* Make sure the column name is unique. If the name is not unique, 1162 ** append a integer to the name so that it becomes unique. 1163 */ 1164 nName = sqlite3Strlen30(zName); 1165 for(j=cnt=0; j<i; j++){ 1166 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1167 char *zNewName; 1168 zName[nName] = 0; 1169 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1170 sqlite3DbFree(db, zName); 1171 zName = zNewName; 1172 j = -1; 1173 if( zName==0 ) break; 1174 } 1175 } 1176 pCol->zName = zName; 1177 } 1178 if( db->mallocFailed ){ 1179 for(j=0; j<i; j++){ 1180 sqlite3DbFree(db, aCol[j].zName); 1181 } 1182 sqlite3DbFree(db, aCol); 1183 *paCol = 0; 1184 *pnCol = 0; 1185 return SQLITE_NOMEM; 1186 } 1187 return SQLITE_OK; 1188 } 1189 1190 /* 1191 ** Add type and collation information to a column list based on 1192 ** a SELECT statement. 1193 ** 1194 ** The column list presumably came from selectColumnNamesFromExprList(). 1195 ** The column list has only names, not types or collations. This 1196 ** routine goes through and adds the types and collations. 1197 ** 1198 ** This routine requires that all identifiers in the SELECT 1199 ** statement be resolved. 1200 */ 1201 static void selectAddColumnTypeAndCollation( 1202 Parse *pParse, /* Parsing contexts */ 1203 int nCol, /* Number of columns */ 1204 Column *aCol, /* List of columns */ 1205 Select *pSelect /* SELECT used to determine types and collations */ 1206 ){ 1207 sqlite3 *db = pParse->db; 1208 NameContext sNC; 1209 Column *pCol; 1210 CollSeq *pColl; 1211 int i; 1212 Expr *p; 1213 struct ExprList_item *a; 1214 1215 assert( pSelect!=0 ); 1216 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1217 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1218 if( db->mallocFailed ) return; 1219 memset(&sNC, 0, sizeof(sNC)); 1220 sNC.pSrcList = pSelect->pSrc; 1221 a = pSelect->pEList->a; 1222 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1223 p = a[i].pExpr; 1224 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1225 pCol->affinity = sqlite3ExprAffinity(p); 1226 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1227 pColl = sqlite3ExprCollSeq(pParse, p); 1228 if( pColl ){ 1229 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1230 } 1231 } 1232 } 1233 1234 /* 1235 ** Given a SELECT statement, generate a Table structure that describes 1236 ** the result set of that SELECT. 1237 */ 1238 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1239 Table *pTab; 1240 sqlite3 *db = pParse->db; 1241 int savedFlags; 1242 1243 savedFlags = db->flags; 1244 db->flags &= ~SQLITE_FullColNames; 1245 db->flags |= SQLITE_ShortColNames; 1246 sqlite3SelectPrep(pParse, pSelect, 0); 1247 if( pParse->nErr ) return 0; 1248 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1249 db->flags = savedFlags; 1250 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1251 if( pTab==0 ){ 1252 return 0; 1253 } 1254 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1255 ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */ 1256 assert( db->lookaside.bEnabled==0 ); 1257 pTab->dbMem = 0; 1258 pTab->nRef = 1; 1259 pTab->zName = 0; 1260 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1261 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1262 pTab->iPKey = -1; 1263 if( db->mallocFailed ){ 1264 sqlite3DeleteTable(pTab); 1265 return 0; 1266 } 1267 return pTab; 1268 } 1269 1270 /* 1271 ** Get a VDBE for the given parser context. Create a new one if necessary. 1272 ** If an error occurs, return NULL and leave a message in pParse. 1273 */ 1274 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1275 Vdbe *v = pParse->pVdbe; 1276 if( v==0 ){ 1277 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1278 #ifndef SQLITE_OMIT_TRACE 1279 if( v ){ 1280 sqlite3VdbeAddOp0(v, OP_Trace); 1281 } 1282 #endif 1283 } 1284 return v; 1285 } 1286 1287 1288 /* 1289 ** Compute the iLimit and iOffset fields of the SELECT based on the 1290 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1291 ** that appear in the original SQL statement after the LIMIT and OFFSET 1292 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1293 ** are the integer memory register numbers for counters used to compute 1294 ** the limit and offset. If there is no limit and/or offset, then 1295 ** iLimit and iOffset are negative. 1296 ** 1297 ** This routine changes the values of iLimit and iOffset only if 1298 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1299 ** iOffset should have been preset to appropriate default values 1300 ** (usually but not always -1) prior to calling this routine. 1301 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1302 ** redefined. The UNION ALL operator uses this property to force 1303 ** the reuse of the same limit and offset registers across multiple 1304 ** SELECT statements. 1305 */ 1306 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1307 Vdbe *v = 0; 1308 int iLimit = 0; 1309 int iOffset; 1310 int addr1, n; 1311 if( p->iLimit ) return; 1312 1313 /* 1314 ** "LIMIT -1" always shows all rows. There is some 1315 ** contraversy about what the correct behavior should be. 1316 ** The current implementation interprets "LIMIT 0" to mean 1317 ** no rows. 1318 */ 1319 sqlite3ExprCacheClear(pParse); 1320 assert( p->pOffset==0 || p->pLimit!=0 ); 1321 if( p->pLimit ){ 1322 p->iLimit = iLimit = ++pParse->nMem; 1323 v = sqlite3GetVdbe(pParse); 1324 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1325 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1326 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1327 VdbeComment((v, "LIMIT counter")); 1328 if( n==0 ){ 1329 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1330 } 1331 }else{ 1332 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1333 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1334 VdbeComment((v, "LIMIT counter")); 1335 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1336 } 1337 if( p->pOffset ){ 1338 p->iOffset = iOffset = ++pParse->nMem; 1339 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1340 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1341 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1342 VdbeComment((v, "OFFSET counter")); 1343 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1344 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1345 sqlite3VdbeJumpHere(v, addr1); 1346 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1347 VdbeComment((v, "LIMIT+OFFSET")); 1348 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1349 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1350 sqlite3VdbeJumpHere(v, addr1); 1351 } 1352 } 1353 } 1354 1355 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1356 /* 1357 ** Return the appropriate collating sequence for the iCol-th column of 1358 ** the result set for the compound-select statement "p". Return NULL if 1359 ** the column has no default collating sequence. 1360 ** 1361 ** The collating sequence for the compound select is taken from the 1362 ** left-most term of the select that has a collating sequence. 1363 */ 1364 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1365 CollSeq *pRet; 1366 if( p->pPrior ){ 1367 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1368 }else{ 1369 pRet = 0; 1370 } 1371 assert( iCol>=0 ); 1372 if( pRet==0 && iCol<p->pEList->nExpr ){ 1373 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1374 } 1375 return pRet; 1376 } 1377 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1378 1379 /* Forward reference */ 1380 static int multiSelectOrderBy( 1381 Parse *pParse, /* Parsing context */ 1382 Select *p, /* The right-most of SELECTs to be coded */ 1383 SelectDest *pDest /* What to do with query results */ 1384 ); 1385 1386 1387 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1388 /* 1389 ** This routine is called to process a compound query form from 1390 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1391 ** INTERSECT 1392 ** 1393 ** "p" points to the right-most of the two queries. the query on the 1394 ** left is p->pPrior. The left query could also be a compound query 1395 ** in which case this routine will be called recursively. 1396 ** 1397 ** The results of the total query are to be written into a destination 1398 ** of type eDest with parameter iParm. 1399 ** 1400 ** Example 1: Consider a three-way compound SQL statement. 1401 ** 1402 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1403 ** 1404 ** This statement is parsed up as follows: 1405 ** 1406 ** SELECT c FROM t3 1407 ** | 1408 ** `-----> SELECT b FROM t2 1409 ** | 1410 ** `------> SELECT a FROM t1 1411 ** 1412 ** The arrows in the diagram above represent the Select.pPrior pointer. 1413 ** So if this routine is called with p equal to the t3 query, then 1414 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1415 ** 1416 ** Notice that because of the way SQLite parses compound SELECTs, the 1417 ** individual selects always group from left to right. 1418 */ 1419 static int multiSelect( 1420 Parse *pParse, /* Parsing context */ 1421 Select *p, /* The right-most of SELECTs to be coded */ 1422 SelectDest *pDest /* What to do with query results */ 1423 ){ 1424 int rc = SQLITE_OK; /* Success code from a subroutine */ 1425 Select *pPrior; /* Another SELECT immediately to our left */ 1426 Vdbe *v; /* Generate code to this VDBE */ 1427 SelectDest dest; /* Alternative data destination */ 1428 Select *pDelete = 0; /* Chain of simple selects to delete */ 1429 sqlite3 *db; /* Database connection */ 1430 1431 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1432 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1433 */ 1434 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1435 db = pParse->db; 1436 pPrior = p->pPrior; 1437 assert( pPrior->pRightmost!=pPrior ); 1438 assert( pPrior->pRightmost==p->pRightmost ); 1439 dest = *pDest; 1440 if( pPrior->pOrderBy ){ 1441 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1442 selectOpName(p->op)); 1443 rc = 1; 1444 goto multi_select_end; 1445 } 1446 if( pPrior->pLimit ){ 1447 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1448 selectOpName(p->op)); 1449 rc = 1; 1450 goto multi_select_end; 1451 } 1452 1453 v = sqlite3GetVdbe(pParse); 1454 assert( v!=0 ); /* The VDBE already created by calling function */ 1455 1456 /* Create the destination temporary table if necessary 1457 */ 1458 if( dest.eDest==SRT_EphemTab ){ 1459 assert( p->pEList ); 1460 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1461 dest.eDest = SRT_Table; 1462 } 1463 1464 /* Make sure all SELECTs in the statement have the same number of elements 1465 ** in their result sets. 1466 */ 1467 assert( p->pEList && pPrior->pEList ); 1468 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1469 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1470 " do not have the same number of result columns", selectOpName(p->op)); 1471 rc = 1; 1472 goto multi_select_end; 1473 } 1474 1475 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1476 */ 1477 if( p->pOrderBy ){ 1478 return multiSelectOrderBy(pParse, p, pDest); 1479 } 1480 1481 /* Generate code for the left and right SELECT statements. 1482 */ 1483 switch( p->op ){ 1484 case TK_ALL: { 1485 int addr = 0; 1486 assert( !pPrior->pLimit ); 1487 pPrior->pLimit = p->pLimit; 1488 pPrior->pOffset = p->pOffset; 1489 rc = sqlite3Select(pParse, pPrior, &dest); 1490 p->pLimit = 0; 1491 p->pOffset = 0; 1492 if( rc ){ 1493 goto multi_select_end; 1494 } 1495 p->pPrior = 0; 1496 p->iLimit = pPrior->iLimit; 1497 p->iOffset = pPrior->iOffset; 1498 if( p->iLimit ){ 1499 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1500 VdbeComment((v, "Jump ahead if LIMIT reached")); 1501 } 1502 rc = sqlite3Select(pParse, p, &dest); 1503 testcase( rc!=SQLITE_OK ); 1504 pDelete = p->pPrior; 1505 p->pPrior = pPrior; 1506 if( addr ){ 1507 sqlite3VdbeJumpHere(v, addr); 1508 } 1509 break; 1510 } 1511 case TK_EXCEPT: 1512 case TK_UNION: { 1513 int unionTab; /* Cursor number of the temporary table holding result */ 1514 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1515 int priorOp; /* The SRT_ operation to apply to prior selects */ 1516 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1517 int addr; 1518 SelectDest uniondest; 1519 1520 testcase( p->op==TK_EXCEPT ); 1521 testcase( p->op==TK_UNION ); 1522 priorOp = SRT_Union; 1523 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1524 /* We can reuse a temporary table generated by a SELECT to our 1525 ** right. 1526 */ 1527 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1528 ** of a 3-way or more compound */ 1529 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1530 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1531 unionTab = dest.iParm; 1532 }else{ 1533 /* We will need to create our own temporary table to hold the 1534 ** intermediate results. 1535 */ 1536 unionTab = pParse->nTab++; 1537 assert( p->pOrderBy==0 ); 1538 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1539 assert( p->addrOpenEphm[0] == -1 ); 1540 p->addrOpenEphm[0] = addr; 1541 p->pRightmost->selFlags |= SF_UsesEphemeral; 1542 assert( p->pEList ); 1543 } 1544 1545 /* Code the SELECT statements to our left 1546 */ 1547 assert( !pPrior->pOrderBy ); 1548 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1549 rc = sqlite3Select(pParse, pPrior, &uniondest); 1550 if( rc ){ 1551 goto multi_select_end; 1552 } 1553 1554 /* Code the current SELECT statement 1555 */ 1556 if( p->op==TK_EXCEPT ){ 1557 op = SRT_Except; 1558 }else{ 1559 assert( p->op==TK_UNION ); 1560 op = SRT_Union; 1561 } 1562 p->pPrior = 0; 1563 pLimit = p->pLimit; 1564 p->pLimit = 0; 1565 pOffset = p->pOffset; 1566 p->pOffset = 0; 1567 uniondest.eDest = op; 1568 rc = sqlite3Select(pParse, p, &uniondest); 1569 testcase( rc!=SQLITE_OK ); 1570 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1571 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1572 sqlite3ExprListDelete(db, p->pOrderBy); 1573 pDelete = p->pPrior; 1574 p->pPrior = pPrior; 1575 p->pOrderBy = 0; 1576 sqlite3ExprDelete(db, p->pLimit); 1577 p->pLimit = pLimit; 1578 p->pOffset = pOffset; 1579 p->iLimit = 0; 1580 p->iOffset = 0; 1581 1582 /* Convert the data in the temporary table into whatever form 1583 ** it is that we currently need. 1584 */ 1585 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1586 if( dest.eDest!=priorOp ){ 1587 int iCont, iBreak, iStart; 1588 assert( p->pEList ); 1589 if( dest.eDest==SRT_Output ){ 1590 Select *pFirst = p; 1591 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1592 generateColumnNames(pParse, 0, pFirst->pEList); 1593 } 1594 iBreak = sqlite3VdbeMakeLabel(v); 1595 iCont = sqlite3VdbeMakeLabel(v); 1596 computeLimitRegisters(pParse, p, iBreak); 1597 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1598 iStart = sqlite3VdbeCurrentAddr(v); 1599 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1600 0, -1, &dest, iCont, iBreak); 1601 sqlite3VdbeResolveLabel(v, iCont); 1602 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1603 sqlite3VdbeResolveLabel(v, iBreak); 1604 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1605 } 1606 break; 1607 } 1608 default: assert( p->op==TK_INTERSECT ); { 1609 int tab1, tab2; 1610 int iCont, iBreak, iStart; 1611 Expr *pLimit, *pOffset; 1612 int addr; 1613 SelectDest intersectdest; 1614 int r1; 1615 1616 /* INTERSECT is different from the others since it requires 1617 ** two temporary tables. Hence it has its own case. Begin 1618 ** by allocating the tables we will need. 1619 */ 1620 tab1 = pParse->nTab++; 1621 tab2 = pParse->nTab++; 1622 assert( p->pOrderBy==0 ); 1623 1624 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1625 assert( p->addrOpenEphm[0] == -1 ); 1626 p->addrOpenEphm[0] = addr; 1627 p->pRightmost->selFlags |= SF_UsesEphemeral; 1628 assert( p->pEList ); 1629 1630 /* Code the SELECTs to our left into temporary table "tab1". 1631 */ 1632 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1633 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1634 if( rc ){ 1635 goto multi_select_end; 1636 } 1637 1638 /* Code the current SELECT into temporary table "tab2" 1639 */ 1640 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1641 assert( p->addrOpenEphm[1] == -1 ); 1642 p->addrOpenEphm[1] = addr; 1643 p->pPrior = 0; 1644 pLimit = p->pLimit; 1645 p->pLimit = 0; 1646 pOffset = p->pOffset; 1647 p->pOffset = 0; 1648 intersectdest.iParm = tab2; 1649 rc = sqlite3Select(pParse, p, &intersectdest); 1650 testcase( rc!=SQLITE_OK ); 1651 pDelete = p->pPrior; 1652 p->pPrior = pPrior; 1653 sqlite3ExprDelete(db, p->pLimit); 1654 p->pLimit = pLimit; 1655 p->pOffset = pOffset; 1656 1657 /* Generate code to take the intersection of the two temporary 1658 ** tables. 1659 */ 1660 assert( p->pEList ); 1661 if( dest.eDest==SRT_Output ){ 1662 Select *pFirst = p; 1663 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1664 generateColumnNames(pParse, 0, pFirst->pEList); 1665 } 1666 iBreak = sqlite3VdbeMakeLabel(v); 1667 iCont = sqlite3VdbeMakeLabel(v); 1668 computeLimitRegisters(pParse, p, iBreak); 1669 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1670 r1 = sqlite3GetTempReg(pParse); 1671 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1672 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1673 sqlite3ReleaseTempReg(pParse, r1); 1674 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1675 0, -1, &dest, iCont, iBreak); 1676 sqlite3VdbeResolveLabel(v, iCont); 1677 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1678 sqlite3VdbeResolveLabel(v, iBreak); 1679 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1680 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1681 break; 1682 } 1683 } 1684 1685 /* Compute collating sequences used by 1686 ** temporary tables needed to implement the compound select. 1687 ** Attach the KeyInfo structure to all temporary tables. 1688 ** 1689 ** This section is run by the right-most SELECT statement only. 1690 ** SELECT statements to the left always skip this part. The right-most 1691 ** SELECT might also skip this part if it has no ORDER BY clause and 1692 ** no temp tables are required. 1693 */ 1694 if( p->selFlags & SF_UsesEphemeral ){ 1695 int i; /* Loop counter */ 1696 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1697 Select *pLoop; /* For looping through SELECT statements */ 1698 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1699 int nCol; /* Number of columns in result set */ 1700 1701 assert( p->pRightmost==p ); 1702 nCol = p->pEList->nExpr; 1703 pKeyInfo = sqlite3DbMallocZero(db, 1704 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1705 if( !pKeyInfo ){ 1706 rc = SQLITE_NOMEM; 1707 goto multi_select_end; 1708 } 1709 1710 pKeyInfo->enc = ENC(db); 1711 pKeyInfo->nField = (u16)nCol; 1712 1713 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1714 *apColl = multiSelectCollSeq(pParse, p, i); 1715 if( 0==*apColl ){ 1716 *apColl = db->pDfltColl; 1717 } 1718 } 1719 1720 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1721 for(i=0; i<2; i++){ 1722 int addr = pLoop->addrOpenEphm[i]; 1723 if( addr<0 ){ 1724 /* If [0] is unused then [1] is also unused. So we can 1725 ** always safely abort as soon as the first unused slot is found */ 1726 assert( pLoop->addrOpenEphm[1]<0 ); 1727 break; 1728 } 1729 sqlite3VdbeChangeP2(v, addr, nCol); 1730 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1731 pLoop->addrOpenEphm[i] = -1; 1732 } 1733 } 1734 sqlite3DbFree(db, pKeyInfo); 1735 } 1736 1737 multi_select_end: 1738 pDest->iMem = dest.iMem; 1739 pDest->nMem = dest.nMem; 1740 sqlite3SelectDelete(db, pDelete); 1741 return rc; 1742 } 1743 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1744 1745 /* 1746 ** Code an output subroutine for a coroutine implementation of a 1747 ** SELECT statment. 1748 ** 1749 ** The data to be output is contained in pIn->iMem. There are 1750 ** pIn->nMem columns to be output. pDest is where the output should 1751 ** be sent. 1752 ** 1753 ** regReturn is the number of the register holding the subroutine 1754 ** return address. 1755 ** 1756 ** If regPrev>0 then it is a the first register in a vector that 1757 ** records the previous output. mem[regPrev] is a flag that is false 1758 ** if there has been no previous output. If regPrev>0 then code is 1759 ** generated to suppress duplicates. pKeyInfo is used for comparing 1760 ** keys. 1761 ** 1762 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1763 ** iBreak. 1764 */ 1765 static int generateOutputSubroutine( 1766 Parse *pParse, /* Parsing context */ 1767 Select *p, /* The SELECT statement */ 1768 SelectDest *pIn, /* Coroutine supplying data */ 1769 SelectDest *pDest, /* Where to send the data */ 1770 int regReturn, /* The return address register */ 1771 int regPrev, /* Previous result register. No uniqueness if 0 */ 1772 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1773 int p4type, /* The p4 type for pKeyInfo */ 1774 int iBreak /* Jump here if we hit the LIMIT */ 1775 ){ 1776 Vdbe *v = pParse->pVdbe; 1777 int iContinue; 1778 int addr; 1779 1780 addr = sqlite3VdbeCurrentAddr(v); 1781 iContinue = sqlite3VdbeMakeLabel(v); 1782 1783 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1784 */ 1785 if( regPrev ){ 1786 int j1, j2; 1787 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1788 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1789 (char*)pKeyInfo, p4type); 1790 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1791 sqlite3VdbeJumpHere(v, j1); 1792 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1793 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1794 } 1795 if( pParse->db->mallocFailed ) return 0; 1796 1797 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1798 */ 1799 codeOffset(v, p, iContinue); 1800 1801 switch( pDest->eDest ){ 1802 /* Store the result as data using a unique key. 1803 */ 1804 case SRT_Table: 1805 case SRT_EphemTab: { 1806 int r1 = sqlite3GetTempReg(pParse); 1807 int r2 = sqlite3GetTempReg(pParse); 1808 testcase( pDest->eDest==SRT_Table ); 1809 testcase( pDest->eDest==SRT_EphemTab ); 1810 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1811 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1812 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1813 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1814 sqlite3ReleaseTempReg(pParse, r2); 1815 sqlite3ReleaseTempReg(pParse, r1); 1816 break; 1817 } 1818 1819 #ifndef SQLITE_OMIT_SUBQUERY 1820 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1821 ** then there should be a single item on the stack. Write this 1822 ** item into the set table with bogus data. 1823 */ 1824 case SRT_Set: { 1825 int r1; 1826 assert( pIn->nMem==1 ); 1827 p->affinity = 1828 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1829 r1 = sqlite3GetTempReg(pParse); 1830 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1831 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1832 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1833 sqlite3ReleaseTempReg(pParse, r1); 1834 break; 1835 } 1836 1837 #if 0 /* Never occurs on an ORDER BY query */ 1838 /* If any row exist in the result set, record that fact and abort. 1839 */ 1840 case SRT_Exists: { 1841 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1842 /* The LIMIT clause will terminate the loop for us */ 1843 break; 1844 } 1845 #endif 1846 1847 /* If this is a scalar select that is part of an expression, then 1848 ** store the results in the appropriate memory cell and break out 1849 ** of the scan loop. 1850 */ 1851 case SRT_Mem: { 1852 assert( pIn->nMem==1 ); 1853 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1854 /* The LIMIT clause will jump out of the loop for us */ 1855 break; 1856 } 1857 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1858 1859 /* The results are stored in a sequence of registers 1860 ** starting at pDest->iMem. Then the co-routine yields. 1861 */ 1862 case SRT_Coroutine: { 1863 if( pDest->iMem==0 ){ 1864 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1865 pDest->nMem = pIn->nMem; 1866 } 1867 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1868 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1869 break; 1870 } 1871 1872 /* If none of the above, then the result destination must be 1873 ** SRT_Output. This routine is never called with any other 1874 ** destination other than the ones handled above or SRT_Output. 1875 ** 1876 ** For SRT_Output, results are stored in a sequence of registers. 1877 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1878 ** return the next row of result. 1879 */ 1880 default: { 1881 assert( pDest->eDest==SRT_Output ); 1882 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1883 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1884 break; 1885 } 1886 } 1887 1888 /* Jump to the end of the loop if the LIMIT is reached. 1889 */ 1890 if( p->iLimit ){ 1891 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 1892 } 1893 1894 /* Generate the subroutine return 1895 */ 1896 sqlite3VdbeResolveLabel(v, iContinue); 1897 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1898 1899 return addr; 1900 } 1901 1902 /* 1903 ** Alternative compound select code generator for cases when there 1904 ** is an ORDER BY clause. 1905 ** 1906 ** We assume a query of the following form: 1907 ** 1908 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1909 ** 1910 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1911 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1912 ** co-routines. Then run the co-routines in parallel and merge the results 1913 ** into the output. In addition to the two coroutines (called selectA and 1914 ** selectB) there are 7 subroutines: 1915 ** 1916 ** outA: Move the output of the selectA coroutine into the output 1917 ** of the compound query. 1918 ** 1919 ** outB: Move the output of the selectB coroutine into the output 1920 ** of the compound query. (Only generated for UNION and 1921 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1922 ** appears only in B.) 1923 ** 1924 ** AltB: Called when there is data from both coroutines and A<B. 1925 ** 1926 ** AeqB: Called when there is data from both coroutines and A==B. 1927 ** 1928 ** AgtB: Called when there is data from both coroutines and A>B. 1929 ** 1930 ** EofA: Called when data is exhausted from selectA. 1931 ** 1932 ** EofB: Called when data is exhausted from selectB. 1933 ** 1934 ** The implementation of the latter five subroutines depend on which 1935 ** <operator> is used: 1936 ** 1937 ** 1938 ** UNION ALL UNION EXCEPT INTERSECT 1939 ** ------------- ----------------- -------------- ----------------- 1940 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1941 ** 1942 ** AeqB: outA, nextA nextA nextA outA, nextA 1943 ** 1944 ** AgtB: outB, nextB outB, nextB nextB nextB 1945 ** 1946 ** EofA: outB, nextB outB, nextB halt halt 1947 ** 1948 ** EofB: outA, nextA outA, nextA outA, nextA halt 1949 ** 1950 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1951 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1952 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1953 ** following nextX causes a jump to the end of the select processing. 1954 ** 1955 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1956 ** within the output subroutine. The regPrev register set holds the previously 1957 ** output value. A comparison is made against this value and the output 1958 ** is skipped if the next results would be the same as the previous. 1959 ** 1960 ** The implementation plan is to implement the two coroutines and seven 1961 ** subroutines first, then put the control logic at the bottom. Like this: 1962 ** 1963 ** goto Init 1964 ** coA: coroutine for left query (A) 1965 ** coB: coroutine for right query (B) 1966 ** outA: output one row of A 1967 ** outB: output one row of B (UNION and UNION ALL only) 1968 ** EofA: ... 1969 ** EofB: ... 1970 ** AltB: ... 1971 ** AeqB: ... 1972 ** AgtB: ... 1973 ** Init: initialize coroutine registers 1974 ** yield coA 1975 ** if eof(A) goto EofA 1976 ** yield coB 1977 ** if eof(B) goto EofB 1978 ** Cmpr: Compare A, B 1979 ** Jump AltB, AeqB, AgtB 1980 ** End: ... 1981 ** 1982 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 1983 ** actually called using Gosub and they do not Return. EofA and EofB loop 1984 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 1985 ** and AgtB jump to either L2 or to one of EofA or EofB. 1986 */ 1987 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1988 static int multiSelectOrderBy( 1989 Parse *pParse, /* Parsing context */ 1990 Select *p, /* The right-most of SELECTs to be coded */ 1991 SelectDest *pDest /* What to do with query results */ 1992 ){ 1993 int i, j; /* Loop counters */ 1994 Select *pPrior; /* Another SELECT immediately to our left */ 1995 Vdbe *v; /* Generate code to this VDBE */ 1996 SelectDest destA; /* Destination for coroutine A */ 1997 SelectDest destB; /* Destination for coroutine B */ 1998 int regAddrA; /* Address register for select-A coroutine */ 1999 int regEofA; /* Flag to indicate when select-A is complete */ 2000 int regAddrB; /* Address register for select-B coroutine */ 2001 int regEofB; /* Flag to indicate when select-B is complete */ 2002 int addrSelectA; /* Address of the select-A coroutine */ 2003 int addrSelectB; /* Address of the select-B coroutine */ 2004 int regOutA; /* Address register for the output-A subroutine */ 2005 int regOutB; /* Address register for the output-B subroutine */ 2006 int addrOutA; /* Address of the output-A subroutine */ 2007 int addrOutB = 0; /* Address of the output-B subroutine */ 2008 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2009 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2010 int addrAltB; /* Address of the A<B subroutine */ 2011 int addrAeqB; /* Address of the A==B subroutine */ 2012 int addrAgtB; /* Address of the A>B subroutine */ 2013 int regLimitA; /* Limit register for select-A */ 2014 int regLimitB; /* Limit register for select-A */ 2015 int regPrev; /* A range of registers to hold previous output */ 2016 int savedLimit; /* Saved value of p->iLimit */ 2017 int savedOffset; /* Saved value of p->iOffset */ 2018 int labelCmpr; /* Label for the start of the merge algorithm */ 2019 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2020 int j1; /* Jump instructions that get retargetted */ 2021 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2022 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2023 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2024 sqlite3 *db; /* Database connection */ 2025 ExprList *pOrderBy; /* The ORDER BY clause */ 2026 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2027 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2028 2029 assert( p->pOrderBy!=0 ); 2030 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2031 db = pParse->db; 2032 v = pParse->pVdbe; 2033 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2034 labelEnd = sqlite3VdbeMakeLabel(v); 2035 labelCmpr = sqlite3VdbeMakeLabel(v); 2036 2037 2038 /* Patch up the ORDER BY clause 2039 */ 2040 op = p->op; 2041 pPrior = p->pPrior; 2042 assert( pPrior->pOrderBy==0 ); 2043 pOrderBy = p->pOrderBy; 2044 assert( pOrderBy ); 2045 nOrderBy = pOrderBy->nExpr; 2046 2047 /* For operators other than UNION ALL we have to make sure that 2048 ** the ORDER BY clause covers every term of the result set. Add 2049 ** terms to the ORDER BY clause as necessary. 2050 */ 2051 if( op!=TK_ALL ){ 2052 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2053 struct ExprList_item *pItem; 2054 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2055 assert( pItem->iCol>0 ); 2056 if( pItem->iCol==i ) break; 2057 } 2058 if( j==nOrderBy ){ 2059 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2060 if( pNew==0 ) return SQLITE_NOMEM; 2061 pNew->flags |= EP_IntValue; 2062 pNew->u.iValue = i; 2063 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2064 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2065 } 2066 } 2067 } 2068 2069 /* Compute the comparison permutation and keyinfo that is used with 2070 ** the permutation used to determine if the next 2071 ** row of results comes from selectA or selectB. Also add explicit 2072 ** collations to the ORDER BY clause terms so that when the subqueries 2073 ** to the right and the left are evaluated, they use the correct 2074 ** collation. 2075 */ 2076 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2077 if( aPermute ){ 2078 struct ExprList_item *pItem; 2079 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2080 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2081 aPermute[i] = pItem->iCol - 1; 2082 } 2083 pKeyMerge = 2084 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2085 if( pKeyMerge ){ 2086 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2087 pKeyMerge->nField = (u16)nOrderBy; 2088 pKeyMerge->enc = ENC(db); 2089 for(i=0; i<nOrderBy; i++){ 2090 CollSeq *pColl; 2091 Expr *pTerm = pOrderBy->a[i].pExpr; 2092 if( pTerm->flags & EP_ExpCollate ){ 2093 pColl = pTerm->pColl; 2094 }else{ 2095 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2096 pTerm->flags |= EP_ExpCollate; 2097 pTerm->pColl = pColl; 2098 } 2099 pKeyMerge->aColl[i] = pColl; 2100 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2101 } 2102 } 2103 }else{ 2104 pKeyMerge = 0; 2105 } 2106 2107 /* Reattach the ORDER BY clause to the query. 2108 */ 2109 p->pOrderBy = pOrderBy; 2110 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2111 2112 /* Allocate a range of temporary registers and the KeyInfo needed 2113 ** for the logic that removes duplicate result rows when the 2114 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2115 */ 2116 if( op==TK_ALL ){ 2117 regPrev = 0; 2118 }else{ 2119 int nExpr = p->pEList->nExpr; 2120 assert( nOrderBy>=nExpr || db->mallocFailed ); 2121 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2122 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2123 pKeyDup = sqlite3DbMallocZero(db, 2124 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2125 if( pKeyDup ){ 2126 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2127 pKeyDup->nField = (u16)nExpr; 2128 pKeyDup->enc = ENC(db); 2129 for(i=0; i<nExpr; i++){ 2130 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2131 pKeyDup->aSortOrder[i] = 0; 2132 } 2133 } 2134 } 2135 2136 /* Separate the left and the right query from one another 2137 */ 2138 p->pPrior = 0; 2139 pPrior->pRightmost = 0; 2140 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2141 if( pPrior->pPrior==0 ){ 2142 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2143 } 2144 2145 /* Compute the limit registers */ 2146 computeLimitRegisters(pParse, p, labelEnd); 2147 if( p->iLimit && op==TK_ALL ){ 2148 regLimitA = ++pParse->nMem; 2149 regLimitB = ++pParse->nMem; 2150 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2151 regLimitA); 2152 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2153 }else{ 2154 regLimitA = regLimitB = 0; 2155 } 2156 sqlite3ExprDelete(db, p->pLimit); 2157 p->pLimit = 0; 2158 sqlite3ExprDelete(db, p->pOffset); 2159 p->pOffset = 0; 2160 2161 regAddrA = ++pParse->nMem; 2162 regEofA = ++pParse->nMem; 2163 regAddrB = ++pParse->nMem; 2164 regEofB = ++pParse->nMem; 2165 regOutA = ++pParse->nMem; 2166 regOutB = ++pParse->nMem; 2167 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2168 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2169 2170 /* Jump past the various subroutines and coroutines to the main 2171 ** merge loop 2172 */ 2173 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2174 addrSelectA = sqlite3VdbeCurrentAddr(v); 2175 2176 2177 /* Generate a coroutine to evaluate the SELECT statement to the 2178 ** left of the compound operator - the "A" select. 2179 */ 2180 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2181 pPrior->iLimit = regLimitA; 2182 sqlite3Select(pParse, pPrior, &destA); 2183 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2184 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2185 VdbeNoopComment((v, "End coroutine for left SELECT")); 2186 2187 /* Generate a coroutine to evaluate the SELECT statement on 2188 ** the right - the "B" select 2189 */ 2190 addrSelectB = sqlite3VdbeCurrentAddr(v); 2191 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2192 savedLimit = p->iLimit; 2193 savedOffset = p->iOffset; 2194 p->iLimit = regLimitB; 2195 p->iOffset = 0; 2196 sqlite3Select(pParse, p, &destB); 2197 p->iLimit = savedLimit; 2198 p->iOffset = savedOffset; 2199 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2200 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2201 VdbeNoopComment((v, "End coroutine for right SELECT")); 2202 2203 /* Generate a subroutine that outputs the current row of the A 2204 ** select as the next output row of the compound select. 2205 */ 2206 VdbeNoopComment((v, "Output routine for A")); 2207 addrOutA = generateOutputSubroutine(pParse, 2208 p, &destA, pDest, regOutA, 2209 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2210 2211 /* Generate a subroutine that outputs the current row of the B 2212 ** select as the next output row of the compound select. 2213 */ 2214 if( op==TK_ALL || op==TK_UNION ){ 2215 VdbeNoopComment((v, "Output routine for B")); 2216 addrOutB = generateOutputSubroutine(pParse, 2217 p, &destB, pDest, regOutB, 2218 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2219 } 2220 2221 /* Generate a subroutine to run when the results from select A 2222 ** are exhausted and only data in select B remains. 2223 */ 2224 VdbeNoopComment((v, "eof-A subroutine")); 2225 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2226 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2227 }else{ 2228 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2229 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2230 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2231 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2232 } 2233 2234 /* Generate a subroutine to run when the results from select B 2235 ** are exhausted and only data in select A remains. 2236 */ 2237 if( op==TK_INTERSECT ){ 2238 addrEofB = addrEofA; 2239 }else{ 2240 VdbeNoopComment((v, "eof-B subroutine")); 2241 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2242 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2243 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2244 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2245 } 2246 2247 /* Generate code to handle the case of A<B 2248 */ 2249 VdbeNoopComment((v, "A-lt-B subroutine")); 2250 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2251 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2252 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2253 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2254 2255 /* Generate code to handle the case of A==B 2256 */ 2257 if( op==TK_ALL ){ 2258 addrAeqB = addrAltB; 2259 }else if( op==TK_INTERSECT ){ 2260 addrAeqB = addrAltB; 2261 addrAltB++; 2262 }else{ 2263 VdbeNoopComment((v, "A-eq-B subroutine")); 2264 addrAeqB = 2265 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2266 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2267 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2268 } 2269 2270 /* Generate code to handle the case of A>B 2271 */ 2272 VdbeNoopComment((v, "A-gt-B subroutine")); 2273 addrAgtB = sqlite3VdbeCurrentAddr(v); 2274 if( op==TK_ALL || op==TK_UNION ){ 2275 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2276 } 2277 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2278 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2279 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2280 2281 /* This code runs once to initialize everything. 2282 */ 2283 sqlite3VdbeJumpHere(v, j1); 2284 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2285 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2286 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2287 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2288 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2289 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2290 2291 /* Implement the main merge loop 2292 */ 2293 sqlite3VdbeResolveLabel(v, labelCmpr); 2294 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2295 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2296 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2297 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2298 2299 /* Release temporary registers 2300 */ 2301 if( regPrev ){ 2302 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2303 } 2304 2305 /* Jump to the this point in order to terminate the query. 2306 */ 2307 sqlite3VdbeResolveLabel(v, labelEnd); 2308 2309 /* Set the number of output columns 2310 */ 2311 if( pDest->eDest==SRT_Output ){ 2312 Select *pFirst = pPrior; 2313 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2314 generateColumnNames(pParse, 0, pFirst->pEList); 2315 } 2316 2317 /* Reassembly the compound query so that it will be freed correctly 2318 ** by the calling function */ 2319 if( p->pPrior ){ 2320 sqlite3SelectDelete(db, p->pPrior); 2321 } 2322 p->pPrior = pPrior; 2323 2324 /*** TBD: Insert subroutine calls to close cursors on incomplete 2325 **** subqueries ****/ 2326 return SQLITE_OK; 2327 } 2328 #endif 2329 2330 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2331 /* Forward Declarations */ 2332 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2333 static void substSelect(sqlite3*, Select *, int, ExprList *); 2334 2335 /* 2336 ** Scan through the expression pExpr. Replace every reference to 2337 ** a column in table number iTable with a copy of the iColumn-th 2338 ** entry in pEList. (But leave references to the ROWID column 2339 ** unchanged.) 2340 ** 2341 ** This routine is part of the flattening procedure. A subquery 2342 ** whose result set is defined by pEList appears as entry in the 2343 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2344 ** FORM clause entry is iTable. This routine make the necessary 2345 ** changes to pExpr so that it refers directly to the source table 2346 ** of the subquery rather the result set of the subquery. 2347 */ 2348 static Expr *substExpr( 2349 sqlite3 *db, /* Report malloc errors to this connection */ 2350 Expr *pExpr, /* Expr in which substitution occurs */ 2351 int iTable, /* Table to be substituted */ 2352 ExprList *pEList /* Substitute expressions */ 2353 ){ 2354 if( pExpr==0 ) return 0; 2355 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2356 if( pExpr->iColumn<0 ){ 2357 pExpr->op = TK_NULL; 2358 }else{ 2359 Expr *pNew; 2360 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2361 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2362 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2363 if( pNew && pExpr->pColl ){ 2364 pNew->pColl = pExpr->pColl; 2365 } 2366 sqlite3ExprDelete(db, pExpr); 2367 pExpr = pNew; 2368 } 2369 }else{ 2370 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2371 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2372 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2373 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2374 }else{ 2375 substExprList(db, pExpr->x.pList, iTable, pEList); 2376 } 2377 } 2378 return pExpr; 2379 } 2380 static void substExprList( 2381 sqlite3 *db, /* Report malloc errors here */ 2382 ExprList *pList, /* List to scan and in which to make substitutes */ 2383 int iTable, /* Table to be substituted */ 2384 ExprList *pEList /* Substitute values */ 2385 ){ 2386 int i; 2387 if( pList==0 ) return; 2388 for(i=0; i<pList->nExpr; i++){ 2389 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2390 } 2391 } 2392 static void substSelect( 2393 sqlite3 *db, /* Report malloc errors here */ 2394 Select *p, /* SELECT statement in which to make substitutions */ 2395 int iTable, /* Table to be replaced */ 2396 ExprList *pEList /* Substitute values */ 2397 ){ 2398 SrcList *pSrc; 2399 struct SrcList_item *pItem; 2400 int i; 2401 if( !p ) return; 2402 substExprList(db, p->pEList, iTable, pEList); 2403 substExprList(db, p->pGroupBy, iTable, pEList); 2404 substExprList(db, p->pOrderBy, iTable, pEList); 2405 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2406 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2407 substSelect(db, p->pPrior, iTable, pEList); 2408 pSrc = p->pSrc; 2409 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2410 if( ALWAYS(pSrc) ){ 2411 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2412 substSelect(db, pItem->pSelect, iTable, pEList); 2413 } 2414 } 2415 } 2416 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2417 2418 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2419 /* 2420 ** This routine attempts to flatten subqueries in order to speed 2421 ** execution. It returns 1 if it makes changes and 0 if no flattening 2422 ** occurs. 2423 ** 2424 ** To understand the concept of flattening, consider the following 2425 ** query: 2426 ** 2427 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2428 ** 2429 ** The default way of implementing this query is to execute the 2430 ** subquery first and store the results in a temporary table, then 2431 ** run the outer query on that temporary table. This requires two 2432 ** passes over the data. Furthermore, because the temporary table 2433 ** has no indices, the WHERE clause on the outer query cannot be 2434 ** optimized. 2435 ** 2436 ** This routine attempts to rewrite queries such as the above into 2437 ** a single flat select, like this: 2438 ** 2439 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2440 ** 2441 ** The code generated for this simpification gives the same result 2442 ** but only has to scan the data once. And because indices might 2443 ** exist on the table t1, a complete scan of the data might be 2444 ** avoided. 2445 ** 2446 ** Flattening is only attempted if all of the following are true: 2447 ** 2448 ** (1) The subquery and the outer query do not both use aggregates. 2449 ** 2450 ** (2) The subquery is not an aggregate or the outer query is not a join. 2451 ** 2452 ** (3) The subquery is not the right operand of a left outer join 2453 ** (Originally ticket #306. Strenghtened by ticket #3300) 2454 ** 2455 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2456 ** 2457 ** (5) The subquery is not DISTINCT or the outer query does not use 2458 ** aggregates. 2459 ** 2460 ** (6) The subquery does not use aggregates or the outer query is not 2461 ** DISTINCT. 2462 ** 2463 ** (7) The subquery has a FROM clause. 2464 ** 2465 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2466 ** 2467 ** (9) The subquery does not use LIMIT or the outer query does not use 2468 ** aggregates. 2469 ** 2470 ** (10) The subquery does not use aggregates or the outer query does not 2471 ** use LIMIT. 2472 ** 2473 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2474 ** 2475 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2476 ** a separate restriction deriving from ticket #350. 2477 ** 2478 ** (13) The subquery and outer query do not both use LIMIT 2479 ** 2480 ** (14) The subquery does not use OFFSET 2481 ** 2482 ** (15) The outer query is not part of a compound select or the 2483 ** subquery does not have both an ORDER BY and a LIMIT clause. 2484 ** (See ticket #2339) 2485 ** 2486 ** (16) The outer query is not an aggregate or the subquery does 2487 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2488 ** until we introduced the group_concat() function. 2489 ** 2490 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2491 ** compound clause made up entirely of non-aggregate queries, and 2492 ** the parent query: 2493 ** 2494 ** * is not itself part of a compound select, 2495 ** * is not an aggregate or DISTINCT query, and 2496 ** * has no other tables or sub-selects in the FROM clause. 2497 ** 2498 ** The parent and sub-query may contain WHERE clauses. Subject to 2499 ** rules (11), (13) and (14), they may also contain ORDER BY, 2500 ** LIMIT and OFFSET clauses. 2501 ** 2502 ** (18) If the sub-query is a compound select, then all terms of the 2503 ** ORDER by clause of the parent must be simple references to 2504 ** columns of the sub-query. 2505 ** 2506 ** (19) The subquery does not use LIMIT or the outer query does not 2507 ** have a WHERE clause. 2508 ** 2509 ** (20) If the sub-query is a compound select, then it must not use 2510 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2511 ** somewhat by saying that the terms of the ORDER BY clause must 2512 ** appear as unmodified result columns in the outer query. But 2513 ** have other optimizations in mind to deal with that case. 2514 ** 2515 ** In this routine, the "p" parameter is a pointer to the outer query. 2516 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2517 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2518 ** 2519 ** If flattening is not attempted, this routine is a no-op and returns 0. 2520 ** If flattening is attempted this routine returns 1. 2521 ** 2522 ** All of the expression analysis must occur on both the outer query and 2523 ** the subquery before this routine runs. 2524 */ 2525 static int flattenSubquery( 2526 Parse *pParse, /* Parsing context */ 2527 Select *p, /* The parent or outer SELECT statement */ 2528 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2529 int isAgg, /* True if outer SELECT uses aggregate functions */ 2530 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2531 ){ 2532 const char *zSavedAuthContext = pParse->zAuthContext; 2533 Select *pParent; 2534 Select *pSub; /* The inner query or "subquery" */ 2535 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2536 SrcList *pSrc; /* The FROM clause of the outer query */ 2537 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2538 ExprList *pList; /* The result set of the outer query */ 2539 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2540 int i; /* Loop counter */ 2541 Expr *pWhere; /* The WHERE clause */ 2542 struct SrcList_item *pSubitem; /* The subquery */ 2543 sqlite3 *db = pParse->db; 2544 2545 /* Check to see if flattening is permitted. Return 0 if not. 2546 */ 2547 assert( p!=0 ); 2548 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2549 pSrc = p->pSrc; 2550 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2551 pSubitem = &pSrc->a[iFrom]; 2552 iParent = pSubitem->iCursor; 2553 pSub = pSubitem->pSelect; 2554 assert( pSub!=0 ); 2555 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2556 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2557 pSubSrc = pSub->pSrc; 2558 assert( pSubSrc ); 2559 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2560 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2561 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2562 ** became arbitrary expressions, we were forced to add restrictions (13) 2563 ** and (14). */ 2564 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2565 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2566 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2567 return 0; /* Restriction (15) */ 2568 } 2569 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2570 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2571 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2572 return 0; 2573 } 2574 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2575 return 0; /* Restriction (6) */ 2576 } 2577 if( p->pOrderBy && pSub->pOrderBy ){ 2578 return 0; /* Restriction (11) */ 2579 } 2580 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2581 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2582 2583 /* OBSOLETE COMMENT 1: 2584 ** Restriction 3: If the subquery is a join, make sure the subquery is 2585 ** not used as the right operand of an outer join. Examples of why this 2586 ** is not allowed: 2587 ** 2588 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2589 ** 2590 ** If we flatten the above, we would get 2591 ** 2592 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2593 ** 2594 ** which is not at all the same thing. 2595 ** 2596 ** OBSOLETE COMMENT 2: 2597 ** Restriction 12: If the subquery is the right operand of a left outer 2598 ** join, make sure the subquery has no WHERE clause. 2599 ** An examples of why this is not allowed: 2600 ** 2601 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2602 ** 2603 ** If we flatten the above, we would get 2604 ** 2605 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2606 ** 2607 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2608 ** effectively converts the OUTER JOIN into an INNER JOIN. 2609 ** 2610 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2611 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2612 ** is fraught with danger. Best to avoid the whole thing. If the 2613 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2614 */ 2615 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2616 return 0; 2617 } 2618 2619 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2620 ** use only the UNION ALL operator. And none of the simple select queries 2621 ** that make up the compound SELECT are allowed to be aggregate or distinct 2622 ** queries. 2623 */ 2624 if( pSub->pPrior ){ 2625 if( pSub->pOrderBy ){ 2626 return 0; /* Restriction 20 */ 2627 } 2628 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2629 return 0; 2630 } 2631 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2632 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2633 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2634 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2635 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2636 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2637 ){ 2638 return 0; 2639 } 2640 } 2641 2642 /* Restriction 18. */ 2643 if( p->pOrderBy ){ 2644 int ii; 2645 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2646 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2647 } 2648 } 2649 } 2650 2651 /***** If we reach this point, flattening is permitted. *****/ 2652 2653 /* Authorize the subquery */ 2654 pParse->zAuthContext = pSubitem->zName; 2655 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2656 pParse->zAuthContext = zSavedAuthContext; 2657 2658 /* If the sub-query is a compound SELECT statement, then (by restrictions 2659 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2660 ** be of the form: 2661 ** 2662 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2663 ** 2664 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2665 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2666 ** OFFSET clauses and joins them to the left-hand-side of the original 2667 ** using UNION ALL operators. In this case N is the number of simple 2668 ** select statements in the compound sub-query. 2669 ** 2670 ** Example: 2671 ** 2672 ** SELECT a+1 FROM ( 2673 ** SELECT x FROM tab 2674 ** UNION ALL 2675 ** SELECT y FROM tab 2676 ** UNION ALL 2677 ** SELECT abs(z*2) FROM tab2 2678 ** ) WHERE a!=5 ORDER BY 1 2679 ** 2680 ** Transformed into: 2681 ** 2682 ** SELECT x+1 FROM tab WHERE x+1!=5 2683 ** UNION ALL 2684 ** SELECT y+1 FROM tab WHERE y+1!=5 2685 ** UNION ALL 2686 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2687 ** ORDER BY 1 2688 ** 2689 ** We call this the "compound-subquery flattening". 2690 */ 2691 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2692 Select *pNew; 2693 ExprList *pOrderBy = p->pOrderBy; 2694 Expr *pLimit = p->pLimit; 2695 Select *pPrior = p->pPrior; 2696 p->pOrderBy = 0; 2697 p->pSrc = 0; 2698 p->pPrior = 0; 2699 p->pLimit = 0; 2700 pNew = sqlite3SelectDup(db, p, 0); 2701 p->pLimit = pLimit; 2702 p->pOrderBy = pOrderBy; 2703 p->pSrc = pSrc; 2704 p->op = TK_ALL; 2705 p->pRightmost = 0; 2706 if( pNew==0 ){ 2707 pNew = pPrior; 2708 }else{ 2709 pNew->pPrior = pPrior; 2710 pNew->pRightmost = 0; 2711 } 2712 p->pPrior = pNew; 2713 if( db->mallocFailed ) return 1; 2714 } 2715 2716 /* Begin flattening the iFrom-th entry of the FROM clause 2717 ** in the outer query. 2718 */ 2719 pSub = pSub1 = pSubitem->pSelect; 2720 2721 /* Delete the transient table structure associated with the 2722 ** subquery 2723 */ 2724 sqlite3DbFree(db, pSubitem->zDatabase); 2725 sqlite3DbFree(db, pSubitem->zName); 2726 sqlite3DbFree(db, pSubitem->zAlias); 2727 pSubitem->zDatabase = 0; 2728 pSubitem->zName = 0; 2729 pSubitem->zAlias = 0; 2730 pSubitem->pSelect = 0; 2731 2732 /* Defer deleting the Table object associated with the 2733 ** subquery until code generation is 2734 ** complete, since there may still exist Expr.pTab entries that 2735 ** refer to the subquery even after flattening. Ticket #3346. 2736 ** 2737 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2738 */ 2739 if( ALWAYS(pSubitem->pTab!=0) ){ 2740 Table *pTabToDel = pSubitem->pTab; 2741 if( pTabToDel->nRef==1 ){ 2742 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2743 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2744 pToplevel->pZombieTab = pTabToDel; 2745 }else{ 2746 pTabToDel->nRef--; 2747 } 2748 pSubitem->pTab = 0; 2749 } 2750 2751 /* The following loop runs once for each term in a compound-subquery 2752 ** flattening (as described above). If we are doing a different kind 2753 ** of flattening - a flattening other than a compound-subquery flattening - 2754 ** then this loop only runs once. 2755 ** 2756 ** This loop moves all of the FROM elements of the subquery into the 2757 ** the FROM clause of the outer query. Before doing this, remember 2758 ** the cursor number for the original outer query FROM element in 2759 ** iParent. The iParent cursor will never be used. Subsequent code 2760 ** will scan expressions looking for iParent references and replace 2761 ** those references with expressions that resolve to the subquery FROM 2762 ** elements we are now copying in. 2763 */ 2764 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2765 int nSubSrc; 2766 u8 jointype = 0; 2767 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2768 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2769 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2770 2771 if( pSrc ){ 2772 assert( pParent==p ); /* First time through the loop */ 2773 jointype = pSubitem->jointype; 2774 }else{ 2775 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2776 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2777 if( pSrc==0 ){ 2778 assert( db->mallocFailed ); 2779 break; 2780 } 2781 } 2782 2783 /* The subquery uses a single slot of the FROM clause of the outer 2784 ** query. If the subquery has more than one element in its FROM clause, 2785 ** then expand the outer query to make space for it to hold all elements 2786 ** of the subquery. 2787 ** 2788 ** Example: 2789 ** 2790 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2791 ** 2792 ** The outer query has 3 slots in its FROM clause. One slot of the 2793 ** outer query (the middle slot) is used by the subquery. The next 2794 ** block of code will expand the out query to 4 slots. The middle 2795 ** slot is expanded to two slots in order to make space for the 2796 ** two elements in the FROM clause of the subquery. 2797 */ 2798 if( nSubSrc>1 ){ 2799 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2800 if( db->mallocFailed ){ 2801 break; 2802 } 2803 } 2804 2805 /* Transfer the FROM clause terms from the subquery into the 2806 ** outer query. 2807 */ 2808 for(i=0; i<nSubSrc; i++){ 2809 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2810 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2811 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2812 } 2813 pSrc->a[iFrom].jointype = jointype; 2814 2815 /* Now begin substituting subquery result set expressions for 2816 ** references to the iParent in the outer query. 2817 ** 2818 ** Example: 2819 ** 2820 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2821 ** \ \_____________ subquery __________/ / 2822 ** \_____________________ outer query ______________________________/ 2823 ** 2824 ** We look at every expression in the outer query and every place we see 2825 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2826 */ 2827 pList = pParent->pEList; 2828 for(i=0; i<pList->nExpr; i++){ 2829 if( pList->a[i].zName==0 ){ 2830 const char *zSpan = pList->a[i].zSpan; 2831 if( ALWAYS(zSpan) ){ 2832 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2833 } 2834 } 2835 } 2836 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2837 if( isAgg ){ 2838 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2839 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2840 } 2841 if( pSub->pOrderBy ){ 2842 assert( pParent->pOrderBy==0 ); 2843 pParent->pOrderBy = pSub->pOrderBy; 2844 pSub->pOrderBy = 0; 2845 }else if( pParent->pOrderBy ){ 2846 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2847 } 2848 if( pSub->pWhere ){ 2849 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2850 }else{ 2851 pWhere = 0; 2852 } 2853 if( subqueryIsAgg ){ 2854 assert( pParent->pHaving==0 ); 2855 pParent->pHaving = pParent->pWhere; 2856 pParent->pWhere = pWhere; 2857 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2858 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2859 sqlite3ExprDup(db, pSub->pHaving, 0)); 2860 assert( pParent->pGroupBy==0 ); 2861 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2862 }else{ 2863 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2864 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2865 } 2866 2867 /* The flattened query is distinct if either the inner or the 2868 ** outer query is distinct. 2869 */ 2870 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2871 2872 /* 2873 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2874 ** 2875 ** One is tempted to try to add a and b to combine the limits. But this 2876 ** does not work if either limit is negative. 2877 */ 2878 if( pSub->pLimit ){ 2879 pParent->pLimit = pSub->pLimit; 2880 pSub->pLimit = 0; 2881 } 2882 } 2883 2884 /* Finially, delete what is left of the subquery and return 2885 ** success. 2886 */ 2887 sqlite3SelectDelete(db, pSub1); 2888 2889 return 1; 2890 } 2891 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2892 2893 /* 2894 ** Analyze the SELECT statement passed as an argument to see if it 2895 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2896 ** it is, or 0 otherwise. At present, a query is considered to be 2897 ** a min()/max() query if: 2898 ** 2899 ** 1. There is a single object in the FROM clause. 2900 ** 2901 ** 2. There is a single expression in the result set, and it is 2902 ** either min(x) or max(x), where x is a column reference. 2903 */ 2904 static u8 minMaxQuery(Select *p){ 2905 Expr *pExpr; 2906 ExprList *pEList = p->pEList; 2907 2908 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2909 pExpr = pEList->a[0].pExpr; 2910 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2911 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2912 pEList = pExpr->x.pList; 2913 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2914 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2915 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2916 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 2917 return WHERE_ORDERBY_MIN; 2918 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 2919 return WHERE_ORDERBY_MAX; 2920 } 2921 return WHERE_ORDERBY_NORMAL; 2922 } 2923 2924 /* 2925 ** The select statement passed as the first argument is an aggregate query. 2926 ** The second argment is the associated aggregate-info object. This 2927 ** function tests if the SELECT is of the form: 2928 ** 2929 ** SELECT count(*) FROM <tbl> 2930 ** 2931 ** where table is a database table, not a sub-select or view. If the query 2932 ** does match this pattern, then a pointer to the Table object representing 2933 ** <tbl> is returned. Otherwise, 0 is returned. 2934 */ 2935 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2936 Table *pTab; 2937 Expr *pExpr; 2938 2939 assert( !p->pGroupBy ); 2940 2941 if( p->pWhere || p->pEList->nExpr!=1 2942 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2943 ){ 2944 return 0; 2945 } 2946 pTab = p->pSrc->a[0].pTab; 2947 pExpr = p->pEList->a[0].pExpr; 2948 assert( pTab && !pTab->pSelect && pExpr ); 2949 2950 if( IsVirtual(pTab) ) return 0; 2951 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2952 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2953 if( pExpr->flags&EP_Distinct ) return 0; 2954 2955 return pTab; 2956 } 2957 2958 /* 2959 ** If the source-list item passed as an argument was augmented with an 2960 ** INDEXED BY clause, then try to locate the specified index. If there 2961 ** was such a clause and the named index cannot be found, return 2962 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2963 ** pFrom->pIndex and return SQLITE_OK. 2964 */ 2965 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2966 if( pFrom->pTab && pFrom->zIndex ){ 2967 Table *pTab = pFrom->pTab; 2968 char *zIndex = pFrom->zIndex; 2969 Index *pIdx; 2970 for(pIdx=pTab->pIndex; 2971 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 2972 pIdx=pIdx->pNext 2973 ); 2974 if( !pIdx ){ 2975 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 2976 return SQLITE_ERROR; 2977 } 2978 pFrom->pIndex = pIdx; 2979 } 2980 return SQLITE_OK; 2981 } 2982 2983 /* 2984 ** This routine is a Walker callback for "expanding" a SELECT statement. 2985 ** "Expanding" means to do the following: 2986 ** 2987 ** (1) Make sure VDBE cursor numbers have been assigned to every 2988 ** element of the FROM clause. 2989 ** 2990 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 2991 ** defines FROM clause. When views appear in the FROM clause, 2992 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 2993 ** that implements the view. A copy is made of the view's SELECT 2994 ** statement so that we can freely modify or delete that statement 2995 ** without worrying about messing up the presistent representation 2996 ** of the view. 2997 ** 2998 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 2999 ** on joins and the ON and USING clause of joins. 3000 ** 3001 ** (4) Scan the list of columns in the result set (pEList) looking 3002 ** for instances of the "*" operator or the TABLE.* operator. 3003 ** If found, expand each "*" to be every column in every table 3004 ** and TABLE.* to be every column in TABLE. 3005 ** 3006 */ 3007 static int selectExpander(Walker *pWalker, Select *p){ 3008 Parse *pParse = pWalker->pParse; 3009 int i, j, k; 3010 SrcList *pTabList; 3011 ExprList *pEList; 3012 struct SrcList_item *pFrom; 3013 sqlite3 *db = pParse->db; 3014 3015 if( db->mallocFailed ){ 3016 return WRC_Abort; 3017 } 3018 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3019 return WRC_Prune; 3020 } 3021 p->selFlags |= SF_Expanded; 3022 pTabList = p->pSrc; 3023 pEList = p->pEList; 3024 3025 /* Make sure cursor numbers have been assigned to all entries in 3026 ** the FROM clause of the SELECT statement. 3027 */ 3028 sqlite3SrcListAssignCursors(pParse, pTabList); 3029 3030 /* Look up every table named in the FROM clause of the select. If 3031 ** an entry of the FROM clause is a subquery instead of a table or view, 3032 ** then create a transient table structure to describe the subquery. 3033 */ 3034 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3035 Table *pTab; 3036 if( pFrom->pTab!=0 ){ 3037 /* This statement has already been prepared. There is no need 3038 ** to go further. */ 3039 assert( i==0 ); 3040 return WRC_Prune; 3041 } 3042 if( pFrom->zName==0 ){ 3043 #ifndef SQLITE_OMIT_SUBQUERY 3044 Select *pSel = pFrom->pSelect; 3045 /* A sub-query in the FROM clause of a SELECT */ 3046 assert( pSel!=0 ); 3047 assert( pFrom->pTab==0 ); 3048 sqlite3WalkSelect(pWalker, pSel); 3049 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3050 if( pTab==0 ) return WRC_Abort; 3051 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 3052 pTab->nRef = 1; 3053 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3054 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3055 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3056 pTab->iPKey = -1; 3057 pTab->tabFlags |= TF_Ephemeral; 3058 #endif 3059 }else{ 3060 /* An ordinary table or view name in the FROM clause */ 3061 assert( pFrom->pTab==0 ); 3062 pFrom->pTab = pTab = 3063 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3064 if( pTab==0 ) return WRC_Abort; 3065 pTab->nRef++; 3066 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3067 if( pTab->pSelect || IsVirtual(pTab) ){ 3068 /* We reach here if the named table is a really a view */ 3069 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3070 assert( pFrom->pSelect==0 ); 3071 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3072 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3073 } 3074 #endif 3075 } 3076 3077 /* Locate the index named by the INDEXED BY clause, if any. */ 3078 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3079 return WRC_Abort; 3080 } 3081 } 3082 3083 /* Process NATURAL keywords, and ON and USING clauses of joins. 3084 */ 3085 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3086 return WRC_Abort; 3087 } 3088 3089 /* For every "*" that occurs in the column list, insert the names of 3090 ** all columns in all tables. And for every TABLE.* insert the names 3091 ** of all columns in TABLE. The parser inserted a special expression 3092 ** with the TK_ALL operator for each "*" that it found in the column list. 3093 ** The following code just has to locate the TK_ALL expressions and expand 3094 ** each one to the list of all columns in all tables. 3095 ** 3096 ** The first loop just checks to see if there are any "*" operators 3097 ** that need expanding. 3098 */ 3099 for(k=0; k<pEList->nExpr; k++){ 3100 Expr *pE = pEList->a[k].pExpr; 3101 if( pE->op==TK_ALL ) break; 3102 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3103 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3104 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3105 } 3106 if( k<pEList->nExpr ){ 3107 /* 3108 ** If we get here it means the result set contains one or more "*" 3109 ** operators that need to be expanded. Loop through each expression 3110 ** in the result set and expand them one by one. 3111 */ 3112 struct ExprList_item *a = pEList->a; 3113 ExprList *pNew = 0; 3114 int flags = pParse->db->flags; 3115 int longNames = (flags & SQLITE_FullColNames)!=0 3116 && (flags & SQLITE_ShortColNames)==0; 3117 3118 for(k=0; k<pEList->nExpr; k++){ 3119 Expr *pE = a[k].pExpr; 3120 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3121 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3122 /* This particular expression does not need to be expanded. 3123 */ 3124 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3125 if( pNew ){ 3126 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3127 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3128 a[k].zName = 0; 3129 a[k].zSpan = 0; 3130 } 3131 a[k].pExpr = 0; 3132 }else{ 3133 /* This expression is a "*" or a "TABLE.*" and needs to be 3134 ** expanded. */ 3135 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3136 char *zTName; /* text of name of TABLE */ 3137 if( pE->op==TK_DOT ){ 3138 assert( pE->pLeft!=0 ); 3139 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3140 zTName = pE->pLeft->u.zToken; 3141 }else{ 3142 zTName = 0; 3143 } 3144 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3145 Table *pTab = pFrom->pTab; 3146 char *zTabName = pFrom->zAlias; 3147 if( zTabName==0 ){ 3148 zTabName = pTab->zName; 3149 } 3150 if( db->mallocFailed ) break; 3151 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3152 continue; 3153 } 3154 tableSeen = 1; 3155 for(j=0; j<pTab->nCol; j++){ 3156 Expr *pExpr, *pRight; 3157 char *zName = pTab->aCol[j].zName; 3158 char *zColname; /* The computed column name */ 3159 char *zToFree; /* Malloced string that needs to be freed */ 3160 Token sColname; /* Computed column name as a token */ 3161 3162 /* If a column is marked as 'hidden' (currently only possible 3163 ** for virtual tables), do not include it in the expanded 3164 ** result-set list. 3165 */ 3166 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3167 assert(IsVirtual(pTab)); 3168 continue; 3169 } 3170 3171 if( i>0 && zTName==0 ){ 3172 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3173 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3174 columnIndex(pLeft->pTab, zName)>=0 ){ 3175 /* In a NATURAL join, omit the join columns from the 3176 ** table on the right */ 3177 continue; 3178 } 3179 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3180 /* In a join with a USING clause, omit columns in the 3181 ** using clause from the table on the right. */ 3182 continue; 3183 } 3184 } 3185 pRight = sqlite3Expr(db, TK_ID, zName); 3186 zColname = zName; 3187 zToFree = 0; 3188 if( longNames || pTabList->nSrc>1 ){ 3189 Expr *pLeft; 3190 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3191 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3192 if( longNames ){ 3193 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3194 zToFree = zColname; 3195 } 3196 }else{ 3197 pExpr = pRight; 3198 } 3199 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3200 sColname.z = zColname; 3201 sColname.n = sqlite3Strlen30(zColname); 3202 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3203 sqlite3DbFree(db, zToFree); 3204 } 3205 } 3206 if( !tableSeen ){ 3207 if( zTName ){ 3208 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3209 }else{ 3210 sqlite3ErrorMsg(pParse, "no tables specified"); 3211 } 3212 } 3213 } 3214 } 3215 sqlite3ExprListDelete(db, pEList); 3216 p->pEList = pNew; 3217 } 3218 #if SQLITE_MAX_COLUMN 3219 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3220 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3221 } 3222 #endif 3223 return WRC_Continue; 3224 } 3225 3226 /* 3227 ** No-op routine for the parse-tree walker. 3228 ** 3229 ** When this routine is the Walker.xExprCallback then expression trees 3230 ** are walked without any actions being taken at each node. Presumably, 3231 ** when this routine is used for Walker.xExprCallback then 3232 ** Walker.xSelectCallback is set to do something useful for every 3233 ** subquery in the parser tree. 3234 */ 3235 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3236 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3237 return WRC_Continue; 3238 } 3239 3240 /* 3241 ** This routine "expands" a SELECT statement and all of its subqueries. 3242 ** For additional information on what it means to "expand" a SELECT 3243 ** statement, see the comment on the selectExpand worker callback above. 3244 ** 3245 ** Expanding a SELECT statement is the first step in processing a 3246 ** SELECT statement. The SELECT statement must be expanded before 3247 ** name resolution is performed. 3248 ** 3249 ** If anything goes wrong, an error message is written into pParse. 3250 ** The calling function can detect the problem by looking at pParse->nErr 3251 ** and/or pParse->db->mallocFailed. 3252 */ 3253 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3254 Walker w; 3255 w.xSelectCallback = selectExpander; 3256 w.xExprCallback = exprWalkNoop; 3257 w.pParse = pParse; 3258 sqlite3WalkSelect(&w, pSelect); 3259 } 3260 3261 3262 #ifndef SQLITE_OMIT_SUBQUERY 3263 /* 3264 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3265 ** interface. 3266 ** 3267 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3268 ** information to the Table structure that represents the result set 3269 ** of that subquery. 3270 ** 3271 ** The Table structure that represents the result set was constructed 3272 ** by selectExpander() but the type and collation information was omitted 3273 ** at that point because identifiers had not yet been resolved. This 3274 ** routine is called after identifier resolution. 3275 */ 3276 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3277 Parse *pParse; 3278 int i; 3279 SrcList *pTabList; 3280 struct SrcList_item *pFrom; 3281 3282 assert( p->selFlags & SF_Resolved ); 3283 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 3284 p->selFlags |= SF_HasTypeInfo; 3285 pParse = pWalker->pParse; 3286 pTabList = p->pSrc; 3287 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3288 Table *pTab = pFrom->pTab; 3289 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3290 /* A sub-query in the FROM clause of a SELECT */ 3291 Select *pSel = pFrom->pSelect; 3292 assert( pSel ); 3293 while( pSel->pPrior ) pSel = pSel->pPrior; 3294 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3295 } 3296 } 3297 return WRC_Continue; 3298 } 3299 #endif 3300 3301 3302 /* 3303 ** This routine adds datatype and collating sequence information to 3304 ** the Table structures of all FROM-clause subqueries in a 3305 ** SELECT statement. 3306 ** 3307 ** Use this routine after name resolution. 3308 */ 3309 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3310 #ifndef SQLITE_OMIT_SUBQUERY 3311 Walker w; 3312 w.xSelectCallback = selectAddSubqueryTypeInfo; 3313 w.xExprCallback = exprWalkNoop; 3314 w.pParse = pParse; 3315 sqlite3WalkSelect(&w, pSelect); 3316 #endif 3317 } 3318 3319 3320 /* 3321 ** This routine sets of a SELECT statement for processing. The 3322 ** following is accomplished: 3323 ** 3324 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3325 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3326 ** * ON and USING clauses are shifted into WHERE statements 3327 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3328 ** * Identifiers in expression are matched to tables. 3329 ** 3330 ** This routine acts recursively on all subqueries within the SELECT. 3331 */ 3332 void sqlite3SelectPrep( 3333 Parse *pParse, /* The parser context */ 3334 Select *p, /* The SELECT statement being coded. */ 3335 NameContext *pOuterNC /* Name context for container */ 3336 ){ 3337 sqlite3 *db; 3338 if( NEVER(p==0) ) return; 3339 db = pParse->db; 3340 if( p->selFlags & SF_HasTypeInfo ) return; 3341 sqlite3SelectExpand(pParse, p); 3342 if( pParse->nErr || db->mallocFailed ) return; 3343 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3344 if( pParse->nErr || db->mallocFailed ) return; 3345 sqlite3SelectAddTypeInfo(pParse, p); 3346 } 3347 3348 /* 3349 ** Reset the aggregate accumulator. 3350 ** 3351 ** The aggregate accumulator is a set of memory cells that hold 3352 ** intermediate results while calculating an aggregate. This 3353 ** routine simply stores NULLs in all of those memory cells. 3354 */ 3355 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3356 Vdbe *v = pParse->pVdbe; 3357 int i; 3358 struct AggInfo_func *pFunc; 3359 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3360 return; 3361 } 3362 for(i=0; i<pAggInfo->nColumn; i++){ 3363 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3364 } 3365 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3366 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3367 if( pFunc->iDistinct>=0 ){ 3368 Expr *pE = pFunc->pExpr; 3369 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3370 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3371 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3372 "argument"); 3373 pFunc->iDistinct = -1; 3374 }else{ 3375 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3376 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3377 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3378 } 3379 } 3380 } 3381 } 3382 3383 /* 3384 ** Invoke the OP_AggFinalize opcode for every aggregate function 3385 ** in the AggInfo structure. 3386 */ 3387 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3388 Vdbe *v = pParse->pVdbe; 3389 int i; 3390 struct AggInfo_func *pF; 3391 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3392 ExprList *pList = pF->pExpr->x.pList; 3393 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3394 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3395 (void*)pF->pFunc, P4_FUNCDEF); 3396 } 3397 } 3398 3399 /* 3400 ** Update the accumulator memory cells for an aggregate based on 3401 ** the current cursor position. 3402 */ 3403 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3404 Vdbe *v = pParse->pVdbe; 3405 int i; 3406 struct AggInfo_func *pF; 3407 struct AggInfo_col *pC; 3408 3409 pAggInfo->directMode = 1; 3410 sqlite3ExprCacheClear(pParse); 3411 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3412 int nArg; 3413 int addrNext = 0; 3414 int regAgg; 3415 ExprList *pList = pF->pExpr->x.pList; 3416 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3417 if( pList ){ 3418 nArg = pList->nExpr; 3419 regAgg = sqlite3GetTempRange(pParse, nArg); 3420 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3421 }else{ 3422 nArg = 0; 3423 regAgg = 0; 3424 } 3425 if( pF->iDistinct>=0 ){ 3426 addrNext = sqlite3VdbeMakeLabel(v); 3427 assert( nArg==1 ); 3428 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3429 } 3430 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3431 CollSeq *pColl = 0; 3432 struct ExprList_item *pItem; 3433 int j; 3434 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3435 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3436 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3437 } 3438 if( !pColl ){ 3439 pColl = pParse->db->pDfltColl; 3440 } 3441 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3442 } 3443 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3444 (void*)pF->pFunc, P4_FUNCDEF); 3445 sqlite3VdbeChangeP5(v, (u8)nArg); 3446 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3447 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3448 if( addrNext ){ 3449 sqlite3VdbeResolveLabel(v, addrNext); 3450 sqlite3ExprCacheClear(pParse); 3451 } 3452 } 3453 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3454 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3455 } 3456 pAggInfo->directMode = 0; 3457 sqlite3ExprCacheClear(pParse); 3458 } 3459 3460 /* 3461 ** Generate code for the SELECT statement given in the p argument. 3462 ** 3463 ** The results are distributed in various ways depending on the 3464 ** contents of the SelectDest structure pointed to by argument pDest 3465 ** as follows: 3466 ** 3467 ** pDest->eDest Result 3468 ** ------------ ------------------------------------------- 3469 ** SRT_Output Generate a row of output (using the OP_ResultRow 3470 ** opcode) for each row in the result set. 3471 ** 3472 ** SRT_Mem Only valid if the result is a single column. 3473 ** Store the first column of the first result row 3474 ** in register pDest->iParm then abandon the rest 3475 ** of the query. This destination implies "LIMIT 1". 3476 ** 3477 ** SRT_Set The result must be a single column. Store each 3478 ** row of result as the key in table pDest->iParm. 3479 ** Apply the affinity pDest->affinity before storing 3480 ** results. Used to implement "IN (SELECT ...)". 3481 ** 3482 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3483 ** 3484 ** SRT_Except Remove results from the temporary table pDest->iParm. 3485 ** 3486 ** SRT_Table Store results in temporary table pDest->iParm. 3487 ** This is like SRT_EphemTab except that the table 3488 ** is assumed to already be open. 3489 ** 3490 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3491 ** the result there. The cursor is left open after 3492 ** returning. This is like SRT_Table except that 3493 ** this destination uses OP_OpenEphemeral to create 3494 ** the table first. 3495 ** 3496 ** SRT_Coroutine Generate a co-routine that returns a new row of 3497 ** results each time it is invoked. The entry point 3498 ** of the co-routine is stored in register pDest->iParm. 3499 ** 3500 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3501 ** set is not empty. 3502 ** 3503 ** SRT_Discard Throw the results away. This is used by SELECT 3504 ** statements within triggers whose only purpose is 3505 ** the side-effects of functions. 3506 ** 3507 ** This routine returns the number of errors. If any errors are 3508 ** encountered, then an appropriate error message is left in 3509 ** pParse->zErrMsg. 3510 ** 3511 ** This routine does NOT free the Select structure passed in. The 3512 ** calling function needs to do that. 3513 */ 3514 int sqlite3Select( 3515 Parse *pParse, /* The parser context */ 3516 Select *p, /* The SELECT statement being coded. */ 3517 SelectDest *pDest /* What to do with the query results */ 3518 ){ 3519 int i, j; /* Loop counters */ 3520 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3521 Vdbe *v; /* The virtual machine under construction */ 3522 int isAgg; /* True for select lists like "count(*)" */ 3523 ExprList *pEList; /* List of columns to extract. */ 3524 SrcList *pTabList; /* List of tables to select from */ 3525 Expr *pWhere; /* The WHERE clause. May be NULL */ 3526 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3527 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3528 Expr *pHaving; /* The HAVING clause. May be NULL */ 3529 int isDistinct; /* True if the DISTINCT keyword is present */ 3530 int distinct; /* Table to use for the distinct set */ 3531 int rc = 1; /* Value to return from this function */ 3532 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3533 AggInfo sAggInfo; /* Information used by aggregate queries */ 3534 int iEnd; /* Address of the end of the query */ 3535 sqlite3 *db; /* The database connection */ 3536 3537 db = pParse->db; 3538 if( p==0 || db->mallocFailed || pParse->nErr ){ 3539 return 1; 3540 } 3541 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3542 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3543 3544 if( IgnorableOrderby(pDest) ){ 3545 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3546 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3547 /* If ORDER BY makes no difference in the output then neither does 3548 ** DISTINCT so it can be removed too. */ 3549 sqlite3ExprListDelete(db, p->pOrderBy); 3550 p->pOrderBy = 0; 3551 p->selFlags &= ~SF_Distinct; 3552 } 3553 sqlite3SelectPrep(pParse, p, 0); 3554 pOrderBy = p->pOrderBy; 3555 pTabList = p->pSrc; 3556 pEList = p->pEList; 3557 if( pParse->nErr || db->mallocFailed ){ 3558 goto select_end; 3559 } 3560 isAgg = (p->selFlags & SF_Aggregate)!=0; 3561 assert( pEList!=0 ); 3562 3563 /* Begin generating code. 3564 */ 3565 v = sqlite3GetVdbe(pParse); 3566 if( v==0 ) goto select_end; 3567 3568 /* Generate code for all sub-queries in the FROM clause 3569 */ 3570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3571 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3572 struct SrcList_item *pItem = &pTabList->a[i]; 3573 SelectDest dest; 3574 Select *pSub = pItem->pSelect; 3575 int isAggSub; 3576 3577 if( pSub==0 || pItem->isPopulated ) continue; 3578 3579 /* Increment Parse.nHeight by the height of the largest expression 3580 ** tree refered to by this, the parent select. The child select 3581 ** may contain expression trees of at most 3582 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3583 ** more conservative than necessary, but much easier than enforcing 3584 ** an exact limit. 3585 */ 3586 pParse->nHeight += sqlite3SelectExprHeight(p); 3587 3588 /* Check to see if the subquery can be absorbed into the parent. */ 3589 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3590 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3591 if( isAggSub ){ 3592 isAgg = 1; 3593 p->selFlags |= SF_Aggregate; 3594 } 3595 i = -1; 3596 }else{ 3597 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3598 assert( pItem->isPopulated==0 ); 3599 sqlite3Select(pParse, pSub, &dest); 3600 pItem->isPopulated = 1; 3601 } 3602 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3603 goto select_end; 3604 } 3605 pParse->nHeight -= sqlite3SelectExprHeight(p); 3606 pTabList = p->pSrc; 3607 if( !IgnorableOrderby(pDest) ){ 3608 pOrderBy = p->pOrderBy; 3609 } 3610 } 3611 pEList = p->pEList; 3612 #endif 3613 pWhere = p->pWhere; 3614 pGroupBy = p->pGroupBy; 3615 pHaving = p->pHaving; 3616 isDistinct = (p->selFlags & SF_Distinct)!=0; 3617 3618 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3619 /* If there is are a sequence of queries, do the earlier ones first. 3620 */ 3621 if( p->pPrior ){ 3622 if( p->pRightmost==0 ){ 3623 Select *pLoop, *pRight = 0; 3624 int cnt = 0; 3625 int mxSelect; 3626 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3627 pLoop->pRightmost = p; 3628 pLoop->pNext = pRight; 3629 pRight = pLoop; 3630 } 3631 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3632 if( mxSelect && cnt>mxSelect ){ 3633 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3634 return 1; 3635 } 3636 } 3637 return multiSelect(pParse, p, pDest); 3638 } 3639 #endif 3640 3641 /* If writing to memory or generating a set 3642 ** only a single column may be output. 3643 */ 3644 #ifndef SQLITE_OMIT_SUBQUERY 3645 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3646 goto select_end; 3647 } 3648 #endif 3649 3650 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3651 ** GROUP BY might use an index, DISTINCT never does. 3652 */ 3653 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3654 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3655 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3656 pGroupBy = p->pGroupBy; 3657 p->selFlags &= ~SF_Distinct; 3658 isDistinct = 0; 3659 } 3660 3661 /* If there is an ORDER BY clause, then this sorting 3662 ** index might end up being unused if the data can be 3663 ** extracted in pre-sorted order. If that is the case, then the 3664 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3665 ** we figure out that the sorting index is not needed. The addrSortIndex 3666 ** variable is used to facilitate that change. 3667 */ 3668 if( pOrderBy ){ 3669 KeyInfo *pKeyInfo; 3670 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3671 pOrderBy->iECursor = pParse->nTab++; 3672 p->addrOpenEphm[2] = addrSortIndex = 3673 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3674 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3675 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3676 }else{ 3677 addrSortIndex = -1; 3678 } 3679 3680 /* If the output is destined for a temporary table, open that table. 3681 */ 3682 if( pDest->eDest==SRT_EphemTab ){ 3683 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3684 } 3685 3686 /* Set the limiter. 3687 */ 3688 iEnd = sqlite3VdbeMakeLabel(v); 3689 computeLimitRegisters(pParse, p, iEnd); 3690 3691 /* Open a virtual index to use for the distinct set. 3692 */ 3693 if( isDistinct ){ 3694 KeyInfo *pKeyInfo; 3695 assert( isAgg || pGroupBy ); 3696 distinct = pParse->nTab++; 3697 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3698 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3699 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3700 }else{ 3701 distinct = -1; 3702 } 3703 3704 /* Aggregate and non-aggregate queries are handled differently */ 3705 if( !isAgg && pGroupBy==0 ){ 3706 /* This case is for non-aggregate queries 3707 ** Begin the database scan 3708 */ 3709 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3710 if( pWInfo==0 ) goto select_end; 3711 3712 /* If sorting index that was created by a prior OP_OpenEphemeral 3713 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3714 ** into an OP_Noop. 3715 */ 3716 if( addrSortIndex>=0 && pOrderBy==0 ){ 3717 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3718 p->addrOpenEphm[2] = -1; 3719 } 3720 3721 /* Use the standard inner loop 3722 */ 3723 assert(!isDistinct); 3724 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3725 pWInfo->iContinue, pWInfo->iBreak); 3726 3727 /* End the database scan loop. 3728 */ 3729 sqlite3WhereEnd(pWInfo); 3730 }else{ 3731 /* This is the processing for aggregate queries */ 3732 NameContext sNC; /* Name context for processing aggregate information */ 3733 int iAMem; /* First Mem address for storing current GROUP BY */ 3734 int iBMem; /* First Mem address for previous GROUP BY */ 3735 int iUseFlag; /* Mem address holding flag indicating that at least 3736 ** one row of the input to the aggregator has been 3737 ** processed */ 3738 int iAbortFlag; /* Mem address which causes query abort if positive */ 3739 int groupBySort; /* Rows come from source in GROUP BY order */ 3740 int addrEnd; /* End of processing for this SELECT */ 3741 3742 /* Remove any and all aliases between the result set and the 3743 ** GROUP BY clause. 3744 */ 3745 if( pGroupBy ){ 3746 int k; /* Loop counter */ 3747 struct ExprList_item *pItem; /* For looping over expression in a list */ 3748 3749 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3750 pItem->iAlias = 0; 3751 } 3752 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3753 pItem->iAlias = 0; 3754 } 3755 } 3756 3757 3758 /* Create a label to jump to when we want to abort the query */ 3759 addrEnd = sqlite3VdbeMakeLabel(v); 3760 3761 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3762 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3763 ** SELECT statement. 3764 */ 3765 memset(&sNC, 0, sizeof(sNC)); 3766 sNC.pParse = pParse; 3767 sNC.pSrcList = pTabList; 3768 sNC.pAggInfo = &sAggInfo; 3769 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3770 sAggInfo.pGroupBy = pGroupBy; 3771 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3772 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3773 if( pHaving ){ 3774 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3775 } 3776 sAggInfo.nAccumulator = sAggInfo.nColumn; 3777 for(i=0; i<sAggInfo.nFunc; i++){ 3778 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3779 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3780 } 3781 if( db->mallocFailed ) goto select_end; 3782 3783 /* Processing for aggregates with GROUP BY is very different and 3784 ** much more complex than aggregates without a GROUP BY. 3785 */ 3786 if( pGroupBy ){ 3787 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3788 int j1; /* A-vs-B comparision jump */ 3789 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3790 int regOutputRow; /* Return address register for output subroutine */ 3791 int addrSetAbort; /* Set the abort flag and return */ 3792 int addrTopOfLoop; /* Top of the input loop */ 3793 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3794 int addrReset; /* Subroutine for resetting the accumulator */ 3795 int regReset; /* Return address register for reset subroutine */ 3796 3797 /* If there is a GROUP BY clause we might need a sorting index to 3798 ** implement it. Allocate that sorting index now. If it turns out 3799 ** that we do not need it after all, the OpenEphemeral instruction 3800 ** will be converted into a Noop. 3801 */ 3802 sAggInfo.sortingIdx = pParse->nTab++; 3803 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3804 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3805 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3806 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3807 3808 /* Initialize memory locations used by GROUP BY aggregate processing 3809 */ 3810 iUseFlag = ++pParse->nMem; 3811 iAbortFlag = ++pParse->nMem; 3812 regOutputRow = ++pParse->nMem; 3813 addrOutputRow = sqlite3VdbeMakeLabel(v); 3814 regReset = ++pParse->nMem; 3815 addrReset = sqlite3VdbeMakeLabel(v); 3816 iAMem = pParse->nMem + 1; 3817 pParse->nMem += pGroupBy->nExpr; 3818 iBMem = pParse->nMem + 1; 3819 pParse->nMem += pGroupBy->nExpr; 3820 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3821 VdbeComment((v, "clear abort flag")); 3822 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3823 VdbeComment((v, "indicate accumulator empty")); 3824 3825 /* Begin a loop that will extract all source rows in GROUP BY order. 3826 ** This might involve two separate loops with an OP_Sort in between, or 3827 ** it might be a single loop that uses an index to extract information 3828 ** in the right order to begin with. 3829 */ 3830 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3831 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3832 if( pWInfo==0 ) goto select_end; 3833 if( pGroupBy==0 ){ 3834 /* The optimizer is able to deliver rows in group by order so 3835 ** we do not have to sort. The OP_OpenEphemeral table will be 3836 ** cancelled later because we still need to use the pKeyInfo 3837 */ 3838 pGroupBy = p->pGroupBy; 3839 groupBySort = 0; 3840 }else{ 3841 /* Rows are coming out in undetermined order. We have to push 3842 ** each row into a sorting index, terminate the first loop, 3843 ** then loop over the sorting index in order to get the output 3844 ** in sorted order 3845 */ 3846 int regBase; 3847 int regRecord; 3848 int nCol; 3849 int nGroupBy; 3850 3851 groupBySort = 1; 3852 nGroupBy = pGroupBy->nExpr; 3853 nCol = nGroupBy + 1; 3854 j = nGroupBy+1; 3855 for(i=0; i<sAggInfo.nColumn; i++){ 3856 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3857 nCol++; 3858 j++; 3859 } 3860 } 3861 regBase = sqlite3GetTempRange(pParse, nCol); 3862 sqlite3ExprCacheClear(pParse); 3863 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3864 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3865 j = nGroupBy+1; 3866 for(i=0; i<sAggInfo.nColumn; i++){ 3867 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3868 if( pCol->iSorterColumn>=j ){ 3869 int r1 = j + regBase; 3870 int r2; 3871 3872 r2 = sqlite3ExprCodeGetColumn(pParse, 3873 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3874 if( r1!=r2 ){ 3875 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3876 } 3877 j++; 3878 } 3879 } 3880 regRecord = sqlite3GetTempReg(pParse); 3881 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3882 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3883 sqlite3ReleaseTempReg(pParse, regRecord); 3884 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3885 sqlite3WhereEnd(pWInfo); 3886 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3887 VdbeComment((v, "GROUP BY sort")); 3888 sAggInfo.useSortingIdx = 1; 3889 sqlite3ExprCacheClear(pParse); 3890 } 3891 3892 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3893 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3894 ** Then compare the current GROUP BY terms against the GROUP BY terms 3895 ** from the previous row currently stored in a0, a1, a2... 3896 */ 3897 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3898 sqlite3ExprCacheClear(pParse); 3899 for(j=0; j<pGroupBy->nExpr; j++){ 3900 if( groupBySort ){ 3901 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3902 }else{ 3903 sAggInfo.directMode = 1; 3904 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3905 } 3906 } 3907 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3908 (char*)pKeyInfo, P4_KEYINFO); 3909 j1 = sqlite3VdbeCurrentAddr(v); 3910 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3911 3912 /* Generate code that runs whenever the GROUP BY changes. 3913 ** Changes in the GROUP BY are detected by the previous code 3914 ** block. If there were no changes, this block is skipped. 3915 ** 3916 ** This code copies current group by terms in b0,b1,b2,... 3917 ** over to a0,a1,a2. It then calls the output subroutine 3918 ** and resets the aggregate accumulator registers in preparation 3919 ** for the next GROUP BY batch. 3920 */ 3921 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3922 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3923 VdbeComment((v, "output one row")); 3924 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3925 VdbeComment((v, "check abort flag")); 3926 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3927 VdbeComment((v, "reset accumulator")); 3928 3929 /* Update the aggregate accumulators based on the content of 3930 ** the current row 3931 */ 3932 sqlite3VdbeJumpHere(v, j1); 3933 updateAccumulator(pParse, &sAggInfo); 3934 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3935 VdbeComment((v, "indicate data in accumulator")); 3936 3937 /* End of the loop 3938 */ 3939 if( groupBySort ){ 3940 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3941 }else{ 3942 sqlite3WhereEnd(pWInfo); 3943 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3944 } 3945 3946 /* Output the final row of result 3947 */ 3948 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3949 VdbeComment((v, "output final row")); 3950 3951 /* Jump over the subroutines 3952 */ 3953 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 3954 3955 /* Generate a subroutine that outputs a single row of the result 3956 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3957 ** is less than or equal to zero, the subroutine is a no-op. If 3958 ** the processing calls for the query to abort, this subroutine 3959 ** increments the iAbortFlag memory location before returning in 3960 ** order to signal the caller to abort. 3961 */ 3962 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3963 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3964 VdbeComment((v, "set abort flag")); 3965 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3966 sqlite3VdbeResolveLabel(v, addrOutputRow); 3967 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3968 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3969 VdbeComment((v, "Groupby result generator entry point")); 3970 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3971 finalizeAggFunctions(pParse, &sAggInfo); 3972 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3973 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3974 distinct, pDest, 3975 addrOutputRow+1, addrSetAbort); 3976 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3977 VdbeComment((v, "end groupby result generator")); 3978 3979 /* Generate a subroutine that will reset the group-by accumulator 3980 */ 3981 sqlite3VdbeResolveLabel(v, addrReset); 3982 resetAccumulator(pParse, &sAggInfo); 3983 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3984 3985 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 3986 else { 3987 ExprList *pDel = 0; 3988 #ifndef SQLITE_OMIT_BTREECOUNT 3989 Table *pTab; 3990 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 3991 /* If isSimpleCount() returns a pointer to a Table structure, then 3992 ** the SQL statement is of the form: 3993 ** 3994 ** SELECT count(*) FROM <tbl> 3995 ** 3996 ** where the Table structure returned represents table <tbl>. 3997 ** 3998 ** This statement is so common that it is optimized specially. The 3999 ** OP_Count instruction is executed either on the intkey table that 4000 ** contains the data for table <tbl> or on one of its indexes. It 4001 ** is better to execute the op on an index, as indexes are almost 4002 ** always spread across less pages than their corresponding tables. 4003 */ 4004 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4005 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4006 Index *pIdx; /* Iterator variable */ 4007 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4008 Index *pBest = 0; /* Best index found so far */ 4009 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4010 4011 sqlite3CodeVerifySchema(pParse, iDb); 4012 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4013 4014 /* Search for the index that has the least amount of columns. If 4015 ** there is such an index, and it has less columns than the table 4016 ** does, then we can assume that it consumes less space on disk and 4017 ** will therefore be cheaper to scan to determine the query result. 4018 ** In this case set iRoot to the root page number of the index b-tree 4019 ** and pKeyInfo to the KeyInfo structure required to navigate the 4020 ** index. 4021 ** 4022 ** In practice the KeyInfo structure will not be used. It is only 4023 ** passed to keep OP_OpenRead happy. 4024 */ 4025 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4026 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4027 pBest = pIdx; 4028 } 4029 } 4030 if( pBest && pBest->nColumn<pTab->nCol ){ 4031 iRoot = pBest->tnum; 4032 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4033 } 4034 4035 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4036 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4037 if( pKeyInfo ){ 4038 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4039 } 4040 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4041 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4042 }else 4043 #endif /* SQLITE_OMIT_BTREECOUNT */ 4044 { 4045 /* Check if the query is of one of the following forms: 4046 ** 4047 ** SELECT min(x) FROM ... 4048 ** SELECT max(x) FROM ... 4049 ** 4050 ** If it is, then ask the code in where.c to attempt to sort results 4051 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4052 ** If where.c is able to produce results sorted in this order, then 4053 ** add vdbe code to break out of the processing loop after the 4054 ** first iteration (since the first iteration of the loop is 4055 ** guaranteed to operate on the row with the minimum or maximum 4056 ** value of x, the only row required). 4057 ** 4058 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4059 ** modify behaviour as follows: 4060 ** 4061 ** + If the query is a "SELECT min(x)", then the loop coded by 4062 ** where.c should not iterate over any values with a NULL value 4063 ** for x. 4064 ** 4065 ** + The optimizer code in where.c (the thing that decides which 4066 ** index or indices to use) should place a different priority on 4067 ** satisfying the 'ORDER BY' clause than it does in other cases. 4068 ** Refer to code and comments in where.c for details. 4069 */ 4070 ExprList *pMinMax = 0; 4071 u8 flag = minMaxQuery(p); 4072 if( flag ){ 4073 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4074 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4075 pDel = pMinMax; 4076 if( pMinMax && !db->mallocFailed ){ 4077 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4078 pMinMax->a[0].pExpr->op = TK_COLUMN; 4079 } 4080 } 4081 4082 /* This case runs if the aggregate has no GROUP BY clause. The 4083 ** processing is much simpler since there is only a single row 4084 ** of output. 4085 */ 4086 resetAccumulator(pParse, &sAggInfo); 4087 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4088 if( pWInfo==0 ){ 4089 sqlite3ExprListDelete(db, pDel); 4090 goto select_end; 4091 } 4092 updateAccumulator(pParse, &sAggInfo); 4093 if( !pMinMax && flag ){ 4094 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4095 VdbeComment((v, "%s() by index", 4096 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4097 } 4098 sqlite3WhereEnd(pWInfo); 4099 finalizeAggFunctions(pParse, &sAggInfo); 4100 } 4101 4102 pOrderBy = 0; 4103 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4104 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4105 pDest, addrEnd, addrEnd); 4106 sqlite3ExprListDelete(db, pDel); 4107 } 4108 sqlite3VdbeResolveLabel(v, addrEnd); 4109 4110 } /* endif aggregate query */ 4111 4112 /* If there is an ORDER BY clause, then we need to sort the results 4113 ** and send them to the callback one by one. 4114 */ 4115 if( pOrderBy ){ 4116 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4117 } 4118 4119 /* Jump here to skip this query 4120 */ 4121 sqlite3VdbeResolveLabel(v, iEnd); 4122 4123 /* The SELECT was successfully coded. Set the return code to 0 4124 ** to indicate no errors. 4125 */ 4126 rc = 0; 4127 4128 /* Control jumps to here if an error is encountered above, or upon 4129 ** successful coding of the SELECT. 4130 */ 4131 select_end: 4132 4133 /* Identify column names if results of the SELECT are to be output. 4134 */ 4135 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4136 generateColumnNames(pParse, pTabList, pEList); 4137 } 4138 4139 sqlite3DbFree(db, sAggInfo.aCol); 4140 sqlite3DbFree(db, sAggInfo.aFunc); 4141 return rc; 4142 } 4143 4144 #if defined(SQLITE_DEBUG) 4145 /* 4146 ******************************************************************************* 4147 ** The following code is used for testing and debugging only. The code 4148 ** that follows does not appear in normal builds. 4149 ** 4150 ** These routines are used to print out the content of all or part of a 4151 ** parse structures such as Select or Expr. Such printouts are useful 4152 ** for helping to understand what is happening inside the code generator 4153 ** during the execution of complex SELECT statements. 4154 ** 4155 ** These routine are not called anywhere from within the normal 4156 ** code base. Then are intended to be called from within the debugger 4157 ** or from temporary "printf" statements inserted for debugging. 4158 */ 4159 void sqlite3PrintExpr(Expr *p){ 4160 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4161 sqlite3DebugPrintf("(%s", p->u.zToken); 4162 }else{ 4163 sqlite3DebugPrintf("(%d", p->op); 4164 } 4165 if( p->pLeft ){ 4166 sqlite3DebugPrintf(" "); 4167 sqlite3PrintExpr(p->pLeft); 4168 } 4169 if( p->pRight ){ 4170 sqlite3DebugPrintf(" "); 4171 sqlite3PrintExpr(p->pRight); 4172 } 4173 sqlite3DebugPrintf(")"); 4174 } 4175 void sqlite3PrintExprList(ExprList *pList){ 4176 int i; 4177 for(i=0; i<pList->nExpr; i++){ 4178 sqlite3PrintExpr(pList->a[i].pExpr); 4179 if( i<pList->nExpr-1 ){ 4180 sqlite3DebugPrintf(", "); 4181 } 4182 } 4183 } 4184 void sqlite3PrintSelect(Select *p, int indent){ 4185 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4186 sqlite3PrintExprList(p->pEList); 4187 sqlite3DebugPrintf("\n"); 4188 if( p->pSrc ){ 4189 char *zPrefix; 4190 int i; 4191 zPrefix = "FROM"; 4192 for(i=0; i<p->pSrc->nSrc; i++){ 4193 struct SrcList_item *pItem = &p->pSrc->a[i]; 4194 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4195 zPrefix = ""; 4196 if( pItem->pSelect ){ 4197 sqlite3DebugPrintf("(\n"); 4198 sqlite3PrintSelect(pItem->pSelect, indent+10); 4199 sqlite3DebugPrintf("%*s)", indent+8, ""); 4200 }else if( pItem->zName ){ 4201 sqlite3DebugPrintf("%s", pItem->zName); 4202 } 4203 if( pItem->pTab ){ 4204 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4205 } 4206 if( pItem->zAlias ){ 4207 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4208 } 4209 if( i<p->pSrc->nSrc-1 ){ 4210 sqlite3DebugPrintf(","); 4211 } 4212 sqlite3DebugPrintf("\n"); 4213 } 4214 } 4215 if( p->pWhere ){ 4216 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4217 sqlite3PrintExpr(p->pWhere); 4218 sqlite3DebugPrintf("\n"); 4219 } 4220 if( p->pGroupBy ){ 4221 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4222 sqlite3PrintExprList(p->pGroupBy); 4223 sqlite3DebugPrintf("\n"); 4224 } 4225 if( p->pHaving ){ 4226 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4227 sqlite3PrintExpr(p->pHaving); 4228 sqlite3DebugPrintf("\n"); 4229 } 4230 if( p->pOrderBy ){ 4231 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4232 sqlite3PrintExprList(p->pOrderBy); 4233 sqlite3DebugPrintf("\n"); 4234 } 4235 } 4236 /* End of the structure debug printing code 4237 *****************************************************************************/ 4238 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4239