xref: /sqlite-3.40.0/src/select.c (revision 19125aaf)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     pNew = &standin;
69     memset(pNew, 0, sizeof(*pNew));
70   }
71   if( pEList==0 ){
72     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
73   }
74   pNew->pEList = pEList;
75   pNew->pSrc = pSrc;
76   pNew->pWhere = pWhere;
77   pNew->pGroupBy = pGroupBy;
78   pNew->pHaving = pHaving;
79   pNew->pOrderBy = pOrderBy;
80   pNew->selFlags = isDistinct ? SF_Distinct : 0;
81   pNew->op = TK_SELECT;
82   pNew->pLimit = pLimit;
83   pNew->pOffset = pOffset;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->addrOpenEphm[0] = -1;
86   pNew->addrOpenEphm[1] = -1;
87   pNew->addrOpenEphm[2] = -1;
88   if( db->mallocFailed ) {
89     clearSelect(db, pNew);
90     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91     pNew = 0;
92   }
93   return pNew;
94 }
95 
96 /*
97 ** Delete the given Select structure and all of its substructures.
98 */
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100   if( p ){
101     clearSelect(db, p);
102     sqlite3DbFree(db, p);
103   }
104 }
105 
106 /*
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
108 ** type of join.  Return an integer constant that expresses that type
109 ** in terms of the following bit values:
110 **
111 **     JT_INNER
112 **     JT_CROSS
113 **     JT_OUTER
114 **     JT_NATURAL
115 **     JT_LEFT
116 **     JT_RIGHT
117 **
118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
119 **
120 ** If an illegal or unsupported join type is seen, then still return
121 ** a join type, but put an error in the pParse structure.
122 */
123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
124   int jointype = 0;
125   Token *apAll[3];
126   Token *p;
127                              /*   0123456789 123456789 123456789 123 */
128   static const char zKeyText[] = "naturaleftouterightfullinnercross";
129   static const struct {
130     u8 i;        /* Beginning of keyword text in zKeyText[] */
131     u8 nChar;    /* Length of the keyword in characters */
132     u8 code;     /* Join type mask */
133   } aKeyword[] = {
134     /* natural */ { 0,  7, JT_NATURAL                },
135     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
136     /* outer   */ { 10, 5, JT_OUTER                  },
137     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
138     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
139     /* inner   */ { 23, 5, JT_INNER                  },
140     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
141   };
142   int i, j;
143   apAll[0] = pA;
144   apAll[1] = pB;
145   apAll[2] = pC;
146   for(i=0; i<3 && apAll[i]; i++){
147     p = apAll[i];
148     for(j=0; j<ArraySize(aKeyword); j++){
149       if( p->n==aKeyword[j].nChar
150           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
151         jointype |= aKeyword[j].code;
152         break;
153       }
154     }
155     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
156     if( j>=ArraySize(aKeyword) ){
157       jointype |= JT_ERROR;
158       break;
159     }
160   }
161   if(
162      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
163      (jointype & JT_ERROR)!=0
164   ){
165     const char *zSp = " ";
166     assert( pB!=0 );
167     if( pC==0 ){ zSp++; }
168     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
169        "%T %T%s%T", pA, pB, zSp, pC);
170     jointype = JT_INNER;
171   }else if( (jointype & JT_OUTER)!=0
172          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
173     sqlite3ErrorMsg(pParse,
174       "RIGHT and FULL OUTER JOINs are not currently supported");
175     jointype = JT_INNER;
176   }
177   return jointype;
178 }
179 
180 /*
181 ** Return the index of a column in a table.  Return -1 if the column
182 ** is not contained in the table.
183 */
184 static int columnIndex(Table *pTab, const char *zCol){
185   int i;
186   for(i=0; i<pTab->nCol; i++){
187     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
188   }
189   return -1;
190 }
191 
192 /*
193 ** This function is used to add terms implied by JOIN syntax to the
194 ** WHERE clause expression of a SELECT statement. The new term, which
195 ** is ANDed with the existing WHERE clause, is of the form:
196 **
197 **    (tab1.col1 = tab2.col2)
198 **
199 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
200 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
201 ** column iColRight of tab2.
202 */
203 static void addWhereTerm(
204   Parse *pParse,                  /* Parsing context */
205   SrcList *pSrc,                  /* List of tables in FROM clause */
206   int iSrc,                       /* Index of first table to join in pSrc */
207   int iColLeft,                   /* Index of column in first table */
208   int iColRight,                  /* Index of column in second table */
209   int isOuterJoin,                /* True if this is an OUTER join */
210   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
211 ){
212   sqlite3 *db = pParse->db;
213   Expr *pE1;
214   Expr *pE2;
215   Expr *pEq;
216 
217   assert( pSrc->nSrc>(iSrc+1) );
218   assert( pSrc->a[iSrc].pTab );
219   assert( pSrc->a[iSrc+1].pTab );
220 
221   pE1 = sqlite3CreateColumnExpr(db, pSrc, iSrc, iColLeft);
222   pE2 = sqlite3CreateColumnExpr(db, pSrc, iSrc+1, iColRight);
223 
224   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
225   if( pEq && isOuterJoin ){
226     ExprSetProperty(pEq, EP_FromJoin);
227     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
228     ExprSetIrreducible(pEq);
229     pEq->iRightJoinTable = (i16)pE2->iTable;
230   }
231   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
232 }
233 
234 /*
235 ** Set the EP_FromJoin property on all terms of the given expression.
236 ** And set the Expr.iRightJoinTable to iTable for every term in the
237 ** expression.
238 **
239 ** The EP_FromJoin property is used on terms of an expression to tell
240 ** the LEFT OUTER JOIN processing logic that this term is part of the
241 ** join restriction specified in the ON or USING clause and not a part
242 ** of the more general WHERE clause.  These terms are moved over to the
243 ** WHERE clause during join processing but we need to remember that they
244 ** originated in the ON or USING clause.
245 **
246 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
247 ** expression depends on table iRightJoinTable even if that table is not
248 ** explicitly mentioned in the expression.  That information is needed
249 ** for cases like this:
250 **
251 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
252 **
253 ** The where clause needs to defer the handling of the t1.x=5
254 ** term until after the t2 loop of the join.  In that way, a
255 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
256 ** defer the handling of t1.x=5, it will be processed immediately
257 ** after the t1 loop and rows with t1.x!=5 will never appear in
258 ** the output, which is incorrect.
259 */
260 static void setJoinExpr(Expr *p, int iTable){
261   while( p ){
262     ExprSetProperty(p, EP_FromJoin);
263     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
264     ExprSetIrreducible(p);
265     p->iRightJoinTable = (i16)iTable;
266     setJoinExpr(p->pLeft, iTable);
267     p = p->pRight;
268   }
269 }
270 
271 /*
272 ** This routine processes the join information for a SELECT statement.
273 ** ON and USING clauses are converted into extra terms of the WHERE clause.
274 ** NATURAL joins also create extra WHERE clause terms.
275 **
276 ** The terms of a FROM clause are contained in the Select.pSrc structure.
277 ** The left most table is the first entry in Select.pSrc.  The right-most
278 ** table is the last entry.  The join operator is held in the entry to
279 ** the left.  Thus entry 0 contains the join operator for the join between
280 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
281 ** also attached to the left entry.
282 **
283 ** This routine returns the number of errors encountered.
284 */
285 static int sqliteProcessJoin(Parse *pParse, Select *p){
286   SrcList *pSrc;                  /* All tables in the FROM clause */
287   int i, j;                       /* Loop counters */
288   struct SrcList_item *pLeft;     /* Left table being joined */
289   struct SrcList_item *pRight;    /* Right table being joined */
290 
291   pSrc = p->pSrc;
292   pLeft = &pSrc->a[0];
293   pRight = &pLeft[1];
294   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
295     Table *pLeftTab = pLeft->pTab;
296     Table *pRightTab = pRight->pTab;
297     int isOuter;
298 
299     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
300     isOuter = (pRight->jointype & JT_OUTER)!=0;
301 
302     /* When the NATURAL keyword is present, add WHERE clause terms for
303     ** every column that the two tables have in common.
304     */
305     if( pRight->jointype & JT_NATURAL ){
306       if( pRight->pOn || pRight->pUsing ){
307         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
308            "an ON or USING clause", 0);
309         return 1;
310       }
311       for(j=0; j<pLeftTab->nCol; j++){
312         char *zName = pLeftTab->aCol[j].zName;
313         int iRightCol = columnIndex(pRightTab, zName);
314         if( iRightCol>=0 ){
315           addWhereTerm(pParse, pSrc, i, j, iRightCol, isOuter, &p->pWhere);
316         }
317       }
318     }
319 
320     /* Disallow both ON and USING clauses in the same join
321     */
322     if( pRight->pOn && pRight->pUsing ){
323       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
324         "clauses in the same join");
325       return 1;
326     }
327 
328     /* Add the ON clause to the end of the WHERE clause, connected by
329     ** an AND operator.
330     */
331     if( pRight->pOn ){
332       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
333       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
334       pRight->pOn = 0;
335     }
336 
337     /* Create extra terms on the WHERE clause for each column named
338     ** in the USING clause.  Example: If the two tables to be joined are
339     ** A and B and the USING clause names X, Y, and Z, then add this
340     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
341     ** Report an error if any column mentioned in the USING clause is
342     ** not contained in both tables to be joined.
343     */
344     if( pRight->pUsing ){
345       IdList *pList = pRight->pUsing;
346       for(j=0; j<pList->nId; j++){
347         char *zName = pList->a[j].zName;
348         int iLeftCol = columnIndex(pLeftTab, zName);
349         int iRightCol = columnIndex(pRightTab, zName);
350         if( iLeftCol<0 || iRightCol<0 ){
351           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
352             "not present in both tables", zName);
353           return 1;
354         }
355         addWhereTerm(pParse, pSrc, i, iLeftCol, iRightCol, isOuter, &p->pWhere);
356       }
357     }
358   }
359   return 0;
360 }
361 
362 /*
363 ** Insert code into "v" that will push the record on the top of the
364 ** stack into the sorter.
365 */
366 static void pushOntoSorter(
367   Parse *pParse,         /* Parser context */
368   ExprList *pOrderBy,    /* The ORDER BY clause */
369   Select *pSelect,       /* The whole SELECT statement */
370   int regData            /* Register holding data to be sorted */
371 ){
372   Vdbe *v = pParse->pVdbe;
373   int nExpr = pOrderBy->nExpr;
374   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
375   int regRecord = sqlite3GetTempReg(pParse);
376   sqlite3ExprCacheClear(pParse);
377   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
378   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
379   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
380   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
381   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
382   sqlite3ReleaseTempReg(pParse, regRecord);
383   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
384   if( pSelect->iLimit ){
385     int addr1, addr2;
386     int iLimit;
387     if( pSelect->iOffset ){
388       iLimit = pSelect->iOffset+1;
389     }else{
390       iLimit = pSelect->iLimit;
391     }
392     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
393     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
394     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
395     sqlite3VdbeJumpHere(v, addr1);
396     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
397     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
398     sqlite3VdbeJumpHere(v, addr2);
399     pSelect->iLimit = 0;
400   }
401 }
402 
403 /*
404 ** Add code to implement the OFFSET
405 */
406 static void codeOffset(
407   Vdbe *v,          /* Generate code into this VM */
408   Select *p,        /* The SELECT statement being coded */
409   int iContinue     /* Jump here to skip the current record */
410 ){
411   if( p->iOffset && iContinue!=0 ){
412     int addr;
413     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
414     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
415     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
416     VdbeComment((v, "skip OFFSET records"));
417     sqlite3VdbeJumpHere(v, addr);
418   }
419 }
420 
421 /*
422 ** Add code that will check to make sure the N registers starting at iMem
423 ** form a distinct entry.  iTab is a sorting index that holds previously
424 ** seen combinations of the N values.  A new entry is made in iTab
425 ** if the current N values are new.
426 **
427 ** A jump to addrRepeat is made and the N+1 values are popped from the
428 ** stack if the top N elements are not distinct.
429 */
430 static void codeDistinct(
431   Parse *pParse,     /* Parsing and code generating context */
432   int iTab,          /* A sorting index used to test for distinctness */
433   int addrRepeat,    /* Jump to here if not distinct */
434   int N,             /* Number of elements */
435   int iMem           /* First element */
436 ){
437   Vdbe *v;
438   int r1;
439 
440   v = pParse->pVdbe;
441   r1 = sqlite3GetTempReg(pParse);
442   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
443   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
444   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
445   sqlite3ReleaseTempReg(pParse, r1);
446 }
447 
448 /*
449 ** Generate an error message when a SELECT is used within a subexpression
450 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
451 ** column.  We do this in a subroutine because the error occurs in multiple
452 ** places.
453 */
454 static int checkForMultiColumnSelectError(
455   Parse *pParse,       /* Parse context. */
456   SelectDest *pDest,   /* Destination of SELECT results */
457   int nExpr            /* Number of result columns returned by SELECT */
458 ){
459   int eDest = pDest->eDest;
460   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
461     sqlite3ErrorMsg(pParse, "only a single result allowed for "
462        "a SELECT that is part of an expression");
463     return 1;
464   }else{
465     return 0;
466   }
467 }
468 
469 /*
470 ** This routine generates the code for the inside of the inner loop
471 ** of a SELECT.
472 **
473 ** If srcTab and nColumn are both zero, then the pEList expressions
474 ** are evaluated in order to get the data for this row.  If nColumn>0
475 ** then data is pulled from srcTab and pEList is used only to get the
476 ** datatypes for each column.
477 */
478 static void selectInnerLoop(
479   Parse *pParse,          /* The parser context */
480   Select *p,              /* The complete select statement being coded */
481   ExprList *pEList,       /* List of values being extracted */
482   int srcTab,             /* Pull data from this table */
483   int nColumn,            /* Number of columns in the source table */
484   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
485   int distinct,           /* If >=0, make sure results are distinct */
486   SelectDest *pDest,      /* How to dispose of the results */
487   int iContinue,          /* Jump here to continue with next row */
488   int iBreak              /* Jump here to break out of the inner loop */
489 ){
490   Vdbe *v = pParse->pVdbe;
491   int i;
492   int hasDistinct;        /* True if the DISTINCT keyword is present */
493   int regResult;              /* Start of memory holding result set */
494   int eDest = pDest->eDest;   /* How to dispose of results */
495   int iParm = pDest->iParm;   /* First argument to disposal method */
496   int nResultCol;             /* Number of result columns */
497 
498   assert( v );
499   if( NEVER(v==0) ) return;
500   assert( pEList!=0 );
501   hasDistinct = distinct>=0;
502   if( pOrderBy==0 && !hasDistinct ){
503     codeOffset(v, p, iContinue);
504   }
505 
506   /* Pull the requested columns.
507   */
508   if( nColumn>0 ){
509     nResultCol = nColumn;
510   }else{
511     nResultCol = pEList->nExpr;
512   }
513   if( pDest->iMem==0 ){
514     pDest->iMem = pParse->nMem+1;
515     pDest->nMem = nResultCol;
516     pParse->nMem += nResultCol;
517   }else{
518     assert( pDest->nMem==nResultCol );
519   }
520   regResult = pDest->iMem;
521   if( nColumn>0 ){
522     for(i=0; i<nColumn; i++){
523       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
524     }
525   }else if( eDest!=SRT_Exists ){
526     /* If the destination is an EXISTS(...) expression, the actual
527     ** values returned by the SELECT are not required.
528     */
529     sqlite3ExprCacheClear(pParse);
530     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
531   }
532   nColumn = nResultCol;
533 
534   /* If the DISTINCT keyword was present on the SELECT statement
535   ** and this row has been seen before, then do not make this row
536   ** part of the result.
537   */
538   if( hasDistinct ){
539     assert( pEList!=0 );
540     assert( pEList->nExpr==nColumn );
541     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
542     if( pOrderBy==0 ){
543       codeOffset(v, p, iContinue);
544     }
545   }
546 
547   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
548     return;
549   }
550 
551   switch( eDest ){
552     /* In this mode, write each query result to the key of the temporary
553     ** table iParm.
554     */
555 #ifndef SQLITE_OMIT_COMPOUND_SELECT
556     case SRT_Union: {
557       int r1;
558       r1 = sqlite3GetTempReg(pParse);
559       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
560       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
561       sqlite3ReleaseTempReg(pParse, r1);
562       break;
563     }
564 
565     /* Construct a record from the query result, but instead of
566     ** saving that record, use it as a key to delete elements from
567     ** the temporary table iParm.
568     */
569     case SRT_Except: {
570       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
571       break;
572     }
573 #endif
574 
575     /* Store the result as data using a unique key.
576     */
577     case SRT_Table:
578     case SRT_EphemTab: {
579       int r1 = sqlite3GetTempReg(pParse);
580       testcase( eDest==SRT_Table );
581       testcase( eDest==SRT_EphemTab );
582       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
583       if( pOrderBy ){
584         pushOntoSorter(pParse, pOrderBy, p, r1);
585       }else{
586         int r2 = sqlite3GetTempReg(pParse);
587         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
588         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
589         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
590         sqlite3ReleaseTempReg(pParse, r2);
591       }
592       sqlite3ReleaseTempReg(pParse, r1);
593       break;
594     }
595 
596 #ifndef SQLITE_OMIT_SUBQUERY
597     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
598     ** then there should be a single item on the stack.  Write this
599     ** item into the set table with bogus data.
600     */
601     case SRT_Set: {
602       assert( nColumn==1 );
603       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
604       if( pOrderBy ){
605         /* At first glance you would think we could optimize out the
606         ** ORDER BY in this case since the order of entries in the set
607         ** does not matter.  But there might be a LIMIT clause, in which
608         ** case the order does matter */
609         pushOntoSorter(pParse, pOrderBy, p, regResult);
610       }else{
611         int r1 = sqlite3GetTempReg(pParse);
612         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
613         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
614         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
615         sqlite3ReleaseTempReg(pParse, r1);
616       }
617       break;
618     }
619 
620     /* If any row exist in the result set, record that fact and abort.
621     */
622     case SRT_Exists: {
623       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
624       /* The LIMIT clause will terminate the loop for us */
625       break;
626     }
627 
628     /* If this is a scalar select that is part of an expression, then
629     ** store the results in the appropriate memory cell and break out
630     ** of the scan loop.
631     */
632     case SRT_Mem: {
633       assert( nColumn==1 );
634       if( pOrderBy ){
635         pushOntoSorter(pParse, pOrderBy, p, regResult);
636       }else{
637         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
638         /* The LIMIT clause will jump out of the loop for us */
639       }
640       break;
641     }
642 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
643 
644     /* Send the data to the callback function or to a subroutine.  In the
645     ** case of a subroutine, the subroutine itself is responsible for
646     ** popping the data from the stack.
647     */
648     case SRT_Coroutine:
649     case SRT_Output: {
650       testcase( eDest==SRT_Coroutine );
651       testcase( eDest==SRT_Output );
652       if( pOrderBy ){
653         int r1 = sqlite3GetTempReg(pParse);
654         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
655         pushOntoSorter(pParse, pOrderBy, p, r1);
656         sqlite3ReleaseTempReg(pParse, r1);
657       }else if( eDest==SRT_Coroutine ){
658         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
659       }else{
660         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
661         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
662       }
663       break;
664     }
665 
666 #if !defined(SQLITE_OMIT_TRIGGER)
667     /* Discard the results.  This is used for SELECT statements inside
668     ** the body of a TRIGGER.  The purpose of such selects is to call
669     ** user-defined functions that have side effects.  We do not care
670     ** about the actual results of the select.
671     */
672     default: {
673       assert( eDest==SRT_Discard );
674       break;
675     }
676 #endif
677   }
678 
679   /* Jump to the end of the loop if the LIMIT is reached.
680   */
681   if( p->iLimit ){
682     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
683                             ** pushOntoSorter() would have cleared p->iLimit */
684     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
685   }
686 }
687 
688 /*
689 ** Given an expression list, generate a KeyInfo structure that records
690 ** the collating sequence for each expression in that expression list.
691 **
692 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
693 ** KeyInfo structure is appropriate for initializing a virtual index to
694 ** implement that clause.  If the ExprList is the result set of a SELECT
695 ** then the KeyInfo structure is appropriate for initializing a virtual
696 ** index to implement a DISTINCT test.
697 **
698 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
699 ** function is responsible for seeing that this structure is eventually
700 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
701 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
702 */
703 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
704   sqlite3 *db = pParse->db;
705   int nExpr;
706   KeyInfo *pInfo;
707   struct ExprList_item *pItem;
708   int i;
709 
710   nExpr = pList->nExpr;
711   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
712   if( pInfo ){
713     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
714     pInfo->nField = (u16)nExpr;
715     pInfo->enc = ENC(db);
716     pInfo->db = db;
717     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
718       CollSeq *pColl;
719       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
720       if( !pColl ){
721         pColl = db->pDfltColl;
722       }
723       pInfo->aColl[i] = pColl;
724       pInfo->aSortOrder[i] = pItem->sortOrder;
725     }
726   }
727   return pInfo;
728 }
729 
730 
731 /*
732 ** If the inner loop was generated using a non-null pOrderBy argument,
733 ** then the results were placed in a sorter.  After the loop is terminated
734 ** we need to run the sorter and output the results.  The following
735 ** routine generates the code needed to do that.
736 */
737 static void generateSortTail(
738   Parse *pParse,    /* Parsing context */
739   Select *p,        /* The SELECT statement */
740   Vdbe *v,          /* Generate code into this VDBE */
741   int nColumn,      /* Number of columns of data */
742   SelectDest *pDest /* Write the sorted results here */
743 ){
744   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
745   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
746   int addr;
747   int iTab;
748   int pseudoTab = 0;
749   ExprList *pOrderBy = p->pOrderBy;
750 
751   int eDest = pDest->eDest;
752   int iParm = pDest->iParm;
753 
754   int regRow;
755   int regRowid;
756 
757   iTab = pOrderBy->iECursor;
758   regRow = sqlite3GetTempReg(pParse);
759   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
760     pseudoTab = pParse->nTab++;
761     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
762     regRowid = 0;
763   }else{
764     regRowid = sqlite3GetTempReg(pParse);
765   }
766   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
767   codeOffset(v, p, addrContinue);
768   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
769   switch( eDest ){
770     case SRT_Table:
771     case SRT_EphemTab: {
772       testcase( eDest==SRT_Table );
773       testcase( eDest==SRT_EphemTab );
774       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
775       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
776       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
777       break;
778     }
779 #ifndef SQLITE_OMIT_SUBQUERY
780     case SRT_Set: {
781       assert( nColumn==1 );
782       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
783       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
784       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
785       break;
786     }
787     case SRT_Mem: {
788       assert( nColumn==1 );
789       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
790       /* The LIMIT clause will terminate the loop for us */
791       break;
792     }
793 #endif
794     default: {
795       int i;
796       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
797       testcase( eDest==SRT_Output );
798       testcase( eDest==SRT_Coroutine );
799       for(i=0; i<nColumn; i++){
800         assert( regRow!=pDest->iMem+i );
801         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
802         if( i==0 ){
803           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
804         }
805       }
806       if( eDest==SRT_Output ){
807         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
808         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
809       }else{
810         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
811       }
812       break;
813     }
814   }
815   sqlite3ReleaseTempReg(pParse, regRow);
816   sqlite3ReleaseTempReg(pParse, regRowid);
817 
818   /* LIMIT has been implemented by the pushOntoSorter() routine.
819   */
820   assert( p->iLimit==0 );
821 
822   /* The bottom of the loop
823   */
824   sqlite3VdbeResolveLabel(v, addrContinue);
825   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
826   sqlite3VdbeResolveLabel(v, addrBreak);
827   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
828     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
829   }
830 }
831 
832 /*
833 ** Return a pointer to a string containing the 'declaration type' of the
834 ** expression pExpr. The string may be treated as static by the caller.
835 **
836 ** The declaration type is the exact datatype definition extracted from the
837 ** original CREATE TABLE statement if the expression is a column. The
838 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
839 ** is considered a column can be complex in the presence of subqueries. The
840 ** result-set expression in all of the following SELECT statements is
841 ** considered a column by this function.
842 **
843 **   SELECT col FROM tbl;
844 **   SELECT (SELECT col FROM tbl;
845 **   SELECT (SELECT col FROM tbl);
846 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
847 **
848 ** The declaration type for any expression other than a column is NULL.
849 */
850 static const char *columnType(
851   NameContext *pNC,
852   Expr *pExpr,
853   const char **pzOriginDb,
854   const char **pzOriginTab,
855   const char **pzOriginCol
856 ){
857   char const *zType = 0;
858   char const *zOriginDb = 0;
859   char const *zOriginTab = 0;
860   char const *zOriginCol = 0;
861   int j;
862   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
863 
864   switch( pExpr->op ){
865     case TK_AGG_COLUMN:
866     case TK_COLUMN: {
867       /* The expression is a column. Locate the table the column is being
868       ** extracted from in NameContext.pSrcList. This table may be real
869       ** database table or a subquery.
870       */
871       Table *pTab = 0;            /* Table structure column is extracted from */
872       Select *pS = 0;             /* Select the column is extracted from */
873       int iCol = pExpr->iColumn;  /* Index of column in pTab */
874       testcase( pExpr->op==TK_AGG_COLUMN );
875       testcase( pExpr->op==TK_COLUMN );
876       while( pNC && !pTab ){
877         SrcList *pTabList = pNC->pSrcList;
878         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
879         if( j<pTabList->nSrc ){
880           pTab = pTabList->a[j].pTab;
881           pS = pTabList->a[j].pSelect;
882         }else{
883           pNC = pNC->pNext;
884         }
885       }
886 
887       if( pTab==0 ){
888         /* At one time, code such as "SELECT new.x" within a trigger would
889         ** cause this condition to run.  Since then, we have restructured how
890         ** trigger code is generated and so this condition is no longer
891         ** possible. However, it can still be true for statements like
892         ** the following:
893         **
894         **   CREATE TABLE t1(col INTEGER);
895         **   SELECT (SELECT t1.col) FROM FROM t1;
896         **
897         ** when columnType() is called on the expression "t1.col" in the
898         ** sub-select. In this case, set the column type to NULL, even
899         ** though it should really be "INTEGER".
900         **
901         ** This is not a problem, as the column type of "t1.col" is never
902         ** used. When columnType() is called on the expression
903         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
904         ** branch below.  */
905         break;
906       }
907 
908       assert( pTab && pExpr->pTab==pTab );
909       if( pS ){
910         /* The "table" is actually a sub-select or a view in the FROM clause
911         ** of the SELECT statement. Return the declaration type and origin
912         ** data for the result-set column of the sub-select.
913         */
914         if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
915           /* If iCol is less than zero, then the expression requests the
916           ** rowid of the sub-select or view. This expression is legal (see
917           ** test case misc2.2.2) - it always evaluates to NULL.
918           */
919           NameContext sNC;
920           Expr *p = pS->pEList->a[iCol].pExpr;
921           sNC.pSrcList = pS->pSrc;
922           sNC.pNext = pNC;
923           sNC.pParse = pNC->pParse;
924           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
925         }
926       }else if( ALWAYS(pTab->pSchema) ){
927         /* A real table */
928         assert( !pS );
929         if( iCol<0 ) iCol = pTab->iPKey;
930         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
931         if( iCol<0 ){
932           zType = "INTEGER";
933           zOriginCol = "rowid";
934         }else{
935           zType = pTab->aCol[iCol].zType;
936           zOriginCol = pTab->aCol[iCol].zName;
937         }
938         zOriginTab = pTab->zName;
939         if( pNC->pParse ){
940           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
941           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
942         }
943       }
944       break;
945     }
946 #ifndef SQLITE_OMIT_SUBQUERY
947     case TK_SELECT: {
948       /* The expression is a sub-select. Return the declaration type and
949       ** origin info for the single column in the result set of the SELECT
950       ** statement.
951       */
952       NameContext sNC;
953       Select *pS = pExpr->x.pSelect;
954       Expr *p = pS->pEList->a[0].pExpr;
955       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
956       sNC.pSrcList = pS->pSrc;
957       sNC.pNext = pNC;
958       sNC.pParse = pNC->pParse;
959       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
960       break;
961     }
962 #endif
963   }
964 
965   if( pzOriginDb ){
966     assert( pzOriginTab && pzOriginCol );
967     *pzOriginDb = zOriginDb;
968     *pzOriginTab = zOriginTab;
969     *pzOriginCol = zOriginCol;
970   }
971   return zType;
972 }
973 
974 /*
975 ** Generate code that will tell the VDBE the declaration types of columns
976 ** in the result set.
977 */
978 static void generateColumnTypes(
979   Parse *pParse,      /* Parser context */
980   SrcList *pTabList,  /* List of tables */
981   ExprList *pEList    /* Expressions defining the result set */
982 ){
983 #ifndef SQLITE_OMIT_DECLTYPE
984   Vdbe *v = pParse->pVdbe;
985   int i;
986   NameContext sNC;
987   sNC.pSrcList = pTabList;
988   sNC.pParse = pParse;
989   for(i=0; i<pEList->nExpr; i++){
990     Expr *p = pEList->a[i].pExpr;
991     const char *zType;
992 #ifdef SQLITE_ENABLE_COLUMN_METADATA
993     const char *zOrigDb = 0;
994     const char *zOrigTab = 0;
995     const char *zOrigCol = 0;
996     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
997 
998     /* The vdbe must make its own copy of the column-type and other
999     ** column specific strings, in case the schema is reset before this
1000     ** virtual machine is deleted.
1001     */
1002     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1003     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1004     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1005 #else
1006     zType = columnType(&sNC, p, 0, 0, 0);
1007 #endif
1008     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1009   }
1010 #endif /* SQLITE_OMIT_DECLTYPE */
1011 }
1012 
1013 /*
1014 ** Generate code that will tell the VDBE the names of columns
1015 ** in the result set.  This information is used to provide the
1016 ** azCol[] values in the callback.
1017 */
1018 static void generateColumnNames(
1019   Parse *pParse,      /* Parser context */
1020   SrcList *pTabList,  /* List of tables */
1021   ExprList *pEList    /* Expressions defining the result set */
1022 ){
1023   Vdbe *v = pParse->pVdbe;
1024   int i, j;
1025   sqlite3 *db = pParse->db;
1026   int fullNames, shortNames;
1027 
1028 #ifndef SQLITE_OMIT_EXPLAIN
1029   /* If this is an EXPLAIN, skip this step */
1030   if( pParse->explain ){
1031     return;
1032   }
1033 #endif
1034 
1035   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1036   pParse->colNamesSet = 1;
1037   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1038   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1039   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1040   for(i=0; i<pEList->nExpr; i++){
1041     Expr *p;
1042     p = pEList->a[i].pExpr;
1043     if( NEVER(p==0) ) continue;
1044     if( pEList->a[i].zName ){
1045       char *zName = pEList->a[i].zName;
1046       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1047     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1048       Table *pTab;
1049       char *zCol;
1050       int iCol = p->iColumn;
1051       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1052         if( pTabList->a[j].iCursor==p->iTable ) break;
1053       }
1054       assert( j<pTabList->nSrc );
1055       pTab = pTabList->a[j].pTab;
1056       if( iCol<0 ) iCol = pTab->iPKey;
1057       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1058       if( iCol<0 ){
1059         zCol = "rowid";
1060       }else{
1061         zCol = pTab->aCol[iCol].zName;
1062       }
1063       if( !shortNames && !fullNames ){
1064         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1065             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1066       }else if( fullNames ){
1067         char *zName = 0;
1068         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1069         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1070       }else{
1071         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1072       }
1073     }else{
1074       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1075           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1076     }
1077   }
1078   generateColumnTypes(pParse, pTabList, pEList);
1079 }
1080 
1081 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1082 /*
1083 ** Name of the connection operator, used for error messages.
1084 */
1085 static const char *selectOpName(int id){
1086   char *z;
1087   switch( id ){
1088     case TK_ALL:       z = "UNION ALL";   break;
1089     case TK_INTERSECT: z = "INTERSECT";   break;
1090     case TK_EXCEPT:    z = "EXCEPT";      break;
1091     default:           z = "UNION";       break;
1092   }
1093   return z;
1094 }
1095 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1096 
1097 /*
1098 ** Given a an expression list (which is really the list of expressions
1099 ** that form the result set of a SELECT statement) compute appropriate
1100 ** column names for a table that would hold the expression list.
1101 **
1102 ** All column names will be unique.
1103 **
1104 ** Only the column names are computed.  Column.zType, Column.zColl,
1105 ** and other fields of Column are zeroed.
1106 **
1107 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1108 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1109 */
1110 static int selectColumnsFromExprList(
1111   Parse *pParse,          /* Parsing context */
1112   ExprList *pEList,       /* Expr list from which to derive column names */
1113   int *pnCol,             /* Write the number of columns here */
1114   Column **paCol          /* Write the new column list here */
1115 ){
1116   sqlite3 *db = pParse->db;   /* Database connection */
1117   int i, j;                   /* Loop counters */
1118   int cnt;                    /* Index added to make the name unique */
1119   Column *aCol, *pCol;        /* For looping over result columns */
1120   int nCol;                   /* Number of columns in the result set */
1121   Expr *p;                    /* Expression for a single result column */
1122   char *zName;                /* Column name */
1123   int nName;                  /* Size of name in zName[] */
1124 
1125   *pnCol = nCol = pEList->nExpr;
1126   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1127   if( aCol==0 ) return SQLITE_NOMEM;
1128   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1129     /* Get an appropriate name for the column
1130     */
1131     p = pEList->a[i].pExpr;
1132     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1133                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1134     if( (zName = pEList->a[i].zName)!=0 ){
1135       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1136       zName = sqlite3DbStrDup(db, zName);
1137     }else{
1138       Expr *pColExpr = p;  /* The expression that is the result column name */
1139       Table *pTab;         /* Table associated with this expression */
1140       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1141       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1142         /* For columns use the column name name */
1143         int iCol = pColExpr->iColumn;
1144         pTab = pColExpr->pTab;
1145         if( iCol<0 ) iCol = pTab->iPKey;
1146         zName = sqlite3MPrintf(db, "%s",
1147                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1148       }else if( pColExpr->op==TK_ID ){
1149         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1150         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1151       }else{
1152         /* Use the original text of the column expression as its name */
1153         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1154       }
1155     }
1156     if( db->mallocFailed ){
1157       sqlite3DbFree(db, zName);
1158       break;
1159     }
1160 
1161     /* Make sure the column name is unique.  If the name is not unique,
1162     ** append a integer to the name so that it becomes unique.
1163     */
1164     nName = sqlite3Strlen30(zName);
1165     for(j=cnt=0; j<i; j++){
1166       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1167         char *zNewName;
1168         zName[nName] = 0;
1169         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1170         sqlite3DbFree(db, zName);
1171         zName = zNewName;
1172         j = -1;
1173         if( zName==0 ) break;
1174       }
1175     }
1176     pCol->zName = zName;
1177   }
1178   if( db->mallocFailed ){
1179     for(j=0; j<i; j++){
1180       sqlite3DbFree(db, aCol[j].zName);
1181     }
1182     sqlite3DbFree(db, aCol);
1183     *paCol = 0;
1184     *pnCol = 0;
1185     return SQLITE_NOMEM;
1186   }
1187   return SQLITE_OK;
1188 }
1189 
1190 /*
1191 ** Add type and collation information to a column list based on
1192 ** a SELECT statement.
1193 **
1194 ** The column list presumably came from selectColumnNamesFromExprList().
1195 ** The column list has only names, not types or collations.  This
1196 ** routine goes through and adds the types and collations.
1197 **
1198 ** This routine requires that all identifiers in the SELECT
1199 ** statement be resolved.
1200 */
1201 static void selectAddColumnTypeAndCollation(
1202   Parse *pParse,        /* Parsing contexts */
1203   int nCol,             /* Number of columns */
1204   Column *aCol,         /* List of columns */
1205   Select *pSelect       /* SELECT used to determine types and collations */
1206 ){
1207   sqlite3 *db = pParse->db;
1208   NameContext sNC;
1209   Column *pCol;
1210   CollSeq *pColl;
1211   int i;
1212   Expr *p;
1213   struct ExprList_item *a;
1214 
1215   assert( pSelect!=0 );
1216   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1217   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1218   if( db->mallocFailed ) return;
1219   memset(&sNC, 0, sizeof(sNC));
1220   sNC.pSrcList = pSelect->pSrc;
1221   a = pSelect->pEList->a;
1222   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1223     p = a[i].pExpr;
1224     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1225     pCol->affinity = sqlite3ExprAffinity(p);
1226     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1227     pColl = sqlite3ExprCollSeq(pParse, p);
1228     if( pColl ){
1229       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1230     }
1231   }
1232 }
1233 
1234 /*
1235 ** Given a SELECT statement, generate a Table structure that describes
1236 ** the result set of that SELECT.
1237 */
1238 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1239   Table *pTab;
1240   sqlite3 *db = pParse->db;
1241   int savedFlags;
1242 
1243   savedFlags = db->flags;
1244   db->flags &= ~SQLITE_FullColNames;
1245   db->flags |= SQLITE_ShortColNames;
1246   sqlite3SelectPrep(pParse, pSelect, 0);
1247   if( pParse->nErr ) return 0;
1248   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1249   db->flags = savedFlags;
1250   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1251   if( pTab==0 ){
1252     return 0;
1253   }
1254   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1255   ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
1256   assert( db->lookaside.bEnabled==0 );
1257   pTab->dbMem = 0;
1258   pTab->nRef = 1;
1259   pTab->zName = 0;
1260   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1261   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1262   pTab->iPKey = -1;
1263   if( db->mallocFailed ){
1264     sqlite3DeleteTable(pTab);
1265     return 0;
1266   }
1267   return pTab;
1268 }
1269 
1270 /*
1271 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1272 ** If an error occurs, return NULL and leave a message in pParse.
1273 */
1274 Vdbe *sqlite3GetVdbe(Parse *pParse){
1275   Vdbe *v = pParse->pVdbe;
1276   if( v==0 ){
1277     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1278 #ifndef SQLITE_OMIT_TRACE
1279     if( v ){
1280       sqlite3VdbeAddOp0(v, OP_Trace);
1281     }
1282 #endif
1283   }
1284   return v;
1285 }
1286 
1287 
1288 /*
1289 ** Compute the iLimit and iOffset fields of the SELECT based on the
1290 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1291 ** that appear in the original SQL statement after the LIMIT and OFFSET
1292 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1293 ** are the integer memory register numbers for counters used to compute
1294 ** the limit and offset.  If there is no limit and/or offset, then
1295 ** iLimit and iOffset are negative.
1296 **
1297 ** This routine changes the values of iLimit and iOffset only if
1298 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1299 ** iOffset should have been preset to appropriate default values
1300 ** (usually but not always -1) prior to calling this routine.
1301 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1302 ** redefined.  The UNION ALL operator uses this property to force
1303 ** the reuse of the same limit and offset registers across multiple
1304 ** SELECT statements.
1305 */
1306 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1307   Vdbe *v = 0;
1308   int iLimit = 0;
1309   int iOffset;
1310   int addr1, n;
1311   if( p->iLimit ) return;
1312 
1313   /*
1314   ** "LIMIT -1" always shows all rows.  There is some
1315   ** contraversy about what the correct behavior should be.
1316   ** The current implementation interprets "LIMIT 0" to mean
1317   ** no rows.
1318   */
1319   sqlite3ExprCacheClear(pParse);
1320   assert( p->pOffset==0 || p->pLimit!=0 );
1321   if( p->pLimit ){
1322     p->iLimit = iLimit = ++pParse->nMem;
1323     v = sqlite3GetVdbe(pParse);
1324     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1325     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1326       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1327       VdbeComment((v, "LIMIT counter"));
1328       if( n==0 ){
1329         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1330       }
1331     }else{
1332       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1333       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1334       VdbeComment((v, "LIMIT counter"));
1335       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1336     }
1337     if( p->pOffset ){
1338       p->iOffset = iOffset = ++pParse->nMem;
1339       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1340       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1341       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1342       VdbeComment((v, "OFFSET counter"));
1343       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1344       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1345       sqlite3VdbeJumpHere(v, addr1);
1346       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1347       VdbeComment((v, "LIMIT+OFFSET"));
1348       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1349       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1350       sqlite3VdbeJumpHere(v, addr1);
1351     }
1352   }
1353 }
1354 
1355 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1356 /*
1357 ** Return the appropriate collating sequence for the iCol-th column of
1358 ** the result set for the compound-select statement "p".  Return NULL if
1359 ** the column has no default collating sequence.
1360 **
1361 ** The collating sequence for the compound select is taken from the
1362 ** left-most term of the select that has a collating sequence.
1363 */
1364 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1365   CollSeq *pRet;
1366   if( p->pPrior ){
1367     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1368   }else{
1369     pRet = 0;
1370   }
1371   assert( iCol>=0 );
1372   if( pRet==0 && iCol<p->pEList->nExpr ){
1373     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1374   }
1375   return pRet;
1376 }
1377 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1378 
1379 /* Forward reference */
1380 static int multiSelectOrderBy(
1381   Parse *pParse,        /* Parsing context */
1382   Select *p,            /* The right-most of SELECTs to be coded */
1383   SelectDest *pDest     /* What to do with query results */
1384 );
1385 
1386 
1387 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1388 /*
1389 ** This routine is called to process a compound query form from
1390 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1391 ** INTERSECT
1392 **
1393 ** "p" points to the right-most of the two queries.  the query on the
1394 ** left is p->pPrior.  The left query could also be a compound query
1395 ** in which case this routine will be called recursively.
1396 **
1397 ** The results of the total query are to be written into a destination
1398 ** of type eDest with parameter iParm.
1399 **
1400 ** Example 1:  Consider a three-way compound SQL statement.
1401 **
1402 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1403 **
1404 ** This statement is parsed up as follows:
1405 **
1406 **     SELECT c FROM t3
1407 **      |
1408 **      `----->  SELECT b FROM t2
1409 **                |
1410 **                `------>  SELECT a FROM t1
1411 **
1412 ** The arrows in the diagram above represent the Select.pPrior pointer.
1413 ** So if this routine is called with p equal to the t3 query, then
1414 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1415 **
1416 ** Notice that because of the way SQLite parses compound SELECTs, the
1417 ** individual selects always group from left to right.
1418 */
1419 static int multiSelect(
1420   Parse *pParse,        /* Parsing context */
1421   Select *p,            /* The right-most of SELECTs to be coded */
1422   SelectDest *pDest     /* What to do with query results */
1423 ){
1424   int rc = SQLITE_OK;   /* Success code from a subroutine */
1425   Select *pPrior;       /* Another SELECT immediately to our left */
1426   Vdbe *v;              /* Generate code to this VDBE */
1427   SelectDest dest;      /* Alternative data destination */
1428   Select *pDelete = 0;  /* Chain of simple selects to delete */
1429   sqlite3 *db;          /* Database connection */
1430 
1431   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1432   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1433   */
1434   assert( p && p->pPrior );  /* Calling function guarantees this much */
1435   db = pParse->db;
1436   pPrior = p->pPrior;
1437   assert( pPrior->pRightmost!=pPrior );
1438   assert( pPrior->pRightmost==p->pRightmost );
1439   dest = *pDest;
1440   if( pPrior->pOrderBy ){
1441     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1442       selectOpName(p->op));
1443     rc = 1;
1444     goto multi_select_end;
1445   }
1446   if( pPrior->pLimit ){
1447     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1448       selectOpName(p->op));
1449     rc = 1;
1450     goto multi_select_end;
1451   }
1452 
1453   v = sqlite3GetVdbe(pParse);
1454   assert( v!=0 );  /* The VDBE already created by calling function */
1455 
1456   /* Create the destination temporary table if necessary
1457   */
1458   if( dest.eDest==SRT_EphemTab ){
1459     assert( p->pEList );
1460     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1461     dest.eDest = SRT_Table;
1462   }
1463 
1464   /* Make sure all SELECTs in the statement have the same number of elements
1465   ** in their result sets.
1466   */
1467   assert( p->pEList && pPrior->pEList );
1468   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1469     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1470       " do not have the same number of result columns", selectOpName(p->op));
1471     rc = 1;
1472     goto multi_select_end;
1473   }
1474 
1475   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1476   */
1477   if( p->pOrderBy ){
1478     return multiSelectOrderBy(pParse, p, pDest);
1479   }
1480 
1481   /* Generate code for the left and right SELECT statements.
1482   */
1483   switch( p->op ){
1484     case TK_ALL: {
1485       int addr = 0;
1486       assert( !pPrior->pLimit );
1487       pPrior->pLimit = p->pLimit;
1488       pPrior->pOffset = p->pOffset;
1489       rc = sqlite3Select(pParse, pPrior, &dest);
1490       p->pLimit = 0;
1491       p->pOffset = 0;
1492       if( rc ){
1493         goto multi_select_end;
1494       }
1495       p->pPrior = 0;
1496       p->iLimit = pPrior->iLimit;
1497       p->iOffset = pPrior->iOffset;
1498       if( p->iLimit ){
1499         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1500         VdbeComment((v, "Jump ahead if LIMIT reached"));
1501       }
1502       rc = sqlite3Select(pParse, p, &dest);
1503       testcase( rc!=SQLITE_OK );
1504       pDelete = p->pPrior;
1505       p->pPrior = pPrior;
1506       if( addr ){
1507         sqlite3VdbeJumpHere(v, addr);
1508       }
1509       break;
1510     }
1511     case TK_EXCEPT:
1512     case TK_UNION: {
1513       int unionTab;    /* Cursor number of the temporary table holding result */
1514       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1515       int priorOp;     /* The SRT_ operation to apply to prior selects */
1516       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1517       int addr;
1518       SelectDest uniondest;
1519 
1520       testcase( p->op==TK_EXCEPT );
1521       testcase( p->op==TK_UNION );
1522       priorOp = SRT_Union;
1523       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1524         /* We can reuse a temporary table generated by a SELECT to our
1525         ** right.
1526         */
1527         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1528                                      ** of a 3-way or more compound */
1529         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1530         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1531         unionTab = dest.iParm;
1532       }else{
1533         /* We will need to create our own temporary table to hold the
1534         ** intermediate results.
1535         */
1536         unionTab = pParse->nTab++;
1537         assert( p->pOrderBy==0 );
1538         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1539         assert( p->addrOpenEphm[0] == -1 );
1540         p->addrOpenEphm[0] = addr;
1541         p->pRightmost->selFlags |= SF_UsesEphemeral;
1542         assert( p->pEList );
1543       }
1544 
1545       /* Code the SELECT statements to our left
1546       */
1547       assert( !pPrior->pOrderBy );
1548       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1549       rc = sqlite3Select(pParse, pPrior, &uniondest);
1550       if( rc ){
1551         goto multi_select_end;
1552       }
1553 
1554       /* Code the current SELECT statement
1555       */
1556       if( p->op==TK_EXCEPT ){
1557         op = SRT_Except;
1558       }else{
1559         assert( p->op==TK_UNION );
1560         op = SRT_Union;
1561       }
1562       p->pPrior = 0;
1563       pLimit = p->pLimit;
1564       p->pLimit = 0;
1565       pOffset = p->pOffset;
1566       p->pOffset = 0;
1567       uniondest.eDest = op;
1568       rc = sqlite3Select(pParse, p, &uniondest);
1569       testcase( rc!=SQLITE_OK );
1570       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1571       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1572       sqlite3ExprListDelete(db, p->pOrderBy);
1573       pDelete = p->pPrior;
1574       p->pPrior = pPrior;
1575       p->pOrderBy = 0;
1576       sqlite3ExprDelete(db, p->pLimit);
1577       p->pLimit = pLimit;
1578       p->pOffset = pOffset;
1579       p->iLimit = 0;
1580       p->iOffset = 0;
1581 
1582       /* Convert the data in the temporary table into whatever form
1583       ** it is that we currently need.
1584       */
1585       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1586       if( dest.eDest!=priorOp ){
1587         int iCont, iBreak, iStart;
1588         assert( p->pEList );
1589         if( dest.eDest==SRT_Output ){
1590           Select *pFirst = p;
1591           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1592           generateColumnNames(pParse, 0, pFirst->pEList);
1593         }
1594         iBreak = sqlite3VdbeMakeLabel(v);
1595         iCont = sqlite3VdbeMakeLabel(v);
1596         computeLimitRegisters(pParse, p, iBreak);
1597         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1598         iStart = sqlite3VdbeCurrentAddr(v);
1599         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1600                         0, -1, &dest, iCont, iBreak);
1601         sqlite3VdbeResolveLabel(v, iCont);
1602         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1603         sqlite3VdbeResolveLabel(v, iBreak);
1604         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1605       }
1606       break;
1607     }
1608     default: assert( p->op==TK_INTERSECT ); {
1609       int tab1, tab2;
1610       int iCont, iBreak, iStart;
1611       Expr *pLimit, *pOffset;
1612       int addr;
1613       SelectDest intersectdest;
1614       int r1;
1615 
1616       /* INTERSECT is different from the others since it requires
1617       ** two temporary tables.  Hence it has its own case.  Begin
1618       ** by allocating the tables we will need.
1619       */
1620       tab1 = pParse->nTab++;
1621       tab2 = pParse->nTab++;
1622       assert( p->pOrderBy==0 );
1623 
1624       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1625       assert( p->addrOpenEphm[0] == -1 );
1626       p->addrOpenEphm[0] = addr;
1627       p->pRightmost->selFlags |= SF_UsesEphemeral;
1628       assert( p->pEList );
1629 
1630       /* Code the SELECTs to our left into temporary table "tab1".
1631       */
1632       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1633       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1634       if( rc ){
1635         goto multi_select_end;
1636       }
1637 
1638       /* Code the current SELECT into temporary table "tab2"
1639       */
1640       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1641       assert( p->addrOpenEphm[1] == -1 );
1642       p->addrOpenEphm[1] = addr;
1643       p->pPrior = 0;
1644       pLimit = p->pLimit;
1645       p->pLimit = 0;
1646       pOffset = p->pOffset;
1647       p->pOffset = 0;
1648       intersectdest.iParm = tab2;
1649       rc = sqlite3Select(pParse, p, &intersectdest);
1650       testcase( rc!=SQLITE_OK );
1651       pDelete = p->pPrior;
1652       p->pPrior = pPrior;
1653       sqlite3ExprDelete(db, p->pLimit);
1654       p->pLimit = pLimit;
1655       p->pOffset = pOffset;
1656 
1657       /* Generate code to take the intersection of the two temporary
1658       ** tables.
1659       */
1660       assert( p->pEList );
1661       if( dest.eDest==SRT_Output ){
1662         Select *pFirst = p;
1663         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1664         generateColumnNames(pParse, 0, pFirst->pEList);
1665       }
1666       iBreak = sqlite3VdbeMakeLabel(v);
1667       iCont = sqlite3VdbeMakeLabel(v);
1668       computeLimitRegisters(pParse, p, iBreak);
1669       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1670       r1 = sqlite3GetTempReg(pParse);
1671       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1672       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1673       sqlite3ReleaseTempReg(pParse, r1);
1674       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1675                       0, -1, &dest, iCont, iBreak);
1676       sqlite3VdbeResolveLabel(v, iCont);
1677       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1678       sqlite3VdbeResolveLabel(v, iBreak);
1679       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1680       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1681       break;
1682     }
1683   }
1684 
1685   /* Compute collating sequences used by
1686   ** temporary tables needed to implement the compound select.
1687   ** Attach the KeyInfo structure to all temporary tables.
1688   **
1689   ** This section is run by the right-most SELECT statement only.
1690   ** SELECT statements to the left always skip this part.  The right-most
1691   ** SELECT might also skip this part if it has no ORDER BY clause and
1692   ** no temp tables are required.
1693   */
1694   if( p->selFlags & SF_UsesEphemeral ){
1695     int i;                        /* Loop counter */
1696     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1697     Select *pLoop;                /* For looping through SELECT statements */
1698     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1699     int nCol;                     /* Number of columns in result set */
1700 
1701     assert( p->pRightmost==p );
1702     nCol = p->pEList->nExpr;
1703     pKeyInfo = sqlite3DbMallocZero(db,
1704                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1705     if( !pKeyInfo ){
1706       rc = SQLITE_NOMEM;
1707       goto multi_select_end;
1708     }
1709 
1710     pKeyInfo->enc = ENC(db);
1711     pKeyInfo->nField = (u16)nCol;
1712 
1713     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1714       *apColl = multiSelectCollSeq(pParse, p, i);
1715       if( 0==*apColl ){
1716         *apColl = db->pDfltColl;
1717       }
1718     }
1719 
1720     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1721       for(i=0; i<2; i++){
1722         int addr = pLoop->addrOpenEphm[i];
1723         if( addr<0 ){
1724           /* If [0] is unused then [1] is also unused.  So we can
1725           ** always safely abort as soon as the first unused slot is found */
1726           assert( pLoop->addrOpenEphm[1]<0 );
1727           break;
1728         }
1729         sqlite3VdbeChangeP2(v, addr, nCol);
1730         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1731         pLoop->addrOpenEphm[i] = -1;
1732       }
1733     }
1734     sqlite3DbFree(db, pKeyInfo);
1735   }
1736 
1737 multi_select_end:
1738   pDest->iMem = dest.iMem;
1739   pDest->nMem = dest.nMem;
1740   sqlite3SelectDelete(db, pDelete);
1741   return rc;
1742 }
1743 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1744 
1745 /*
1746 ** Code an output subroutine for a coroutine implementation of a
1747 ** SELECT statment.
1748 **
1749 ** The data to be output is contained in pIn->iMem.  There are
1750 ** pIn->nMem columns to be output.  pDest is where the output should
1751 ** be sent.
1752 **
1753 ** regReturn is the number of the register holding the subroutine
1754 ** return address.
1755 **
1756 ** If regPrev>0 then it is a the first register in a vector that
1757 ** records the previous output.  mem[regPrev] is a flag that is false
1758 ** if there has been no previous output.  If regPrev>0 then code is
1759 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1760 ** keys.
1761 **
1762 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1763 ** iBreak.
1764 */
1765 static int generateOutputSubroutine(
1766   Parse *pParse,          /* Parsing context */
1767   Select *p,              /* The SELECT statement */
1768   SelectDest *pIn,        /* Coroutine supplying data */
1769   SelectDest *pDest,      /* Where to send the data */
1770   int regReturn,          /* The return address register */
1771   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1772   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1773   int p4type,             /* The p4 type for pKeyInfo */
1774   int iBreak              /* Jump here if we hit the LIMIT */
1775 ){
1776   Vdbe *v = pParse->pVdbe;
1777   int iContinue;
1778   int addr;
1779 
1780   addr = sqlite3VdbeCurrentAddr(v);
1781   iContinue = sqlite3VdbeMakeLabel(v);
1782 
1783   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1784   */
1785   if( regPrev ){
1786     int j1, j2;
1787     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1788     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1789                               (char*)pKeyInfo, p4type);
1790     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1791     sqlite3VdbeJumpHere(v, j1);
1792     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1793     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1794   }
1795   if( pParse->db->mallocFailed ) return 0;
1796 
1797   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1798   */
1799   codeOffset(v, p, iContinue);
1800 
1801   switch( pDest->eDest ){
1802     /* Store the result as data using a unique key.
1803     */
1804     case SRT_Table:
1805     case SRT_EphemTab: {
1806       int r1 = sqlite3GetTempReg(pParse);
1807       int r2 = sqlite3GetTempReg(pParse);
1808       testcase( pDest->eDest==SRT_Table );
1809       testcase( pDest->eDest==SRT_EphemTab );
1810       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1811       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1812       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1813       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1814       sqlite3ReleaseTempReg(pParse, r2);
1815       sqlite3ReleaseTempReg(pParse, r1);
1816       break;
1817     }
1818 
1819 #ifndef SQLITE_OMIT_SUBQUERY
1820     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1821     ** then there should be a single item on the stack.  Write this
1822     ** item into the set table with bogus data.
1823     */
1824     case SRT_Set: {
1825       int r1;
1826       assert( pIn->nMem==1 );
1827       p->affinity =
1828          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1829       r1 = sqlite3GetTempReg(pParse);
1830       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1831       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1832       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1833       sqlite3ReleaseTempReg(pParse, r1);
1834       break;
1835     }
1836 
1837 #if 0  /* Never occurs on an ORDER BY query */
1838     /* If any row exist in the result set, record that fact and abort.
1839     */
1840     case SRT_Exists: {
1841       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1842       /* The LIMIT clause will terminate the loop for us */
1843       break;
1844     }
1845 #endif
1846 
1847     /* If this is a scalar select that is part of an expression, then
1848     ** store the results in the appropriate memory cell and break out
1849     ** of the scan loop.
1850     */
1851     case SRT_Mem: {
1852       assert( pIn->nMem==1 );
1853       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1854       /* The LIMIT clause will jump out of the loop for us */
1855       break;
1856     }
1857 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1858 
1859     /* The results are stored in a sequence of registers
1860     ** starting at pDest->iMem.  Then the co-routine yields.
1861     */
1862     case SRT_Coroutine: {
1863       if( pDest->iMem==0 ){
1864         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1865         pDest->nMem = pIn->nMem;
1866       }
1867       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1868       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1869       break;
1870     }
1871 
1872     /* If none of the above, then the result destination must be
1873     ** SRT_Output.  This routine is never called with any other
1874     ** destination other than the ones handled above or SRT_Output.
1875     **
1876     ** For SRT_Output, results are stored in a sequence of registers.
1877     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
1878     ** return the next row of result.
1879     */
1880     default: {
1881       assert( pDest->eDest==SRT_Output );
1882       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1883       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1884       break;
1885     }
1886   }
1887 
1888   /* Jump to the end of the loop if the LIMIT is reached.
1889   */
1890   if( p->iLimit ){
1891     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
1892   }
1893 
1894   /* Generate the subroutine return
1895   */
1896   sqlite3VdbeResolveLabel(v, iContinue);
1897   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1898 
1899   return addr;
1900 }
1901 
1902 /*
1903 ** Alternative compound select code generator for cases when there
1904 ** is an ORDER BY clause.
1905 **
1906 ** We assume a query of the following form:
1907 **
1908 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1909 **
1910 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1911 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1912 ** co-routines.  Then run the co-routines in parallel and merge the results
1913 ** into the output.  In addition to the two coroutines (called selectA and
1914 ** selectB) there are 7 subroutines:
1915 **
1916 **    outA:    Move the output of the selectA coroutine into the output
1917 **             of the compound query.
1918 **
1919 **    outB:    Move the output of the selectB coroutine into the output
1920 **             of the compound query.  (Only generated for UNION and
1921 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1922 **             appears only in B.)
1923 **
1924 **    AltB:    Called when there is data from both coroutines and A<B.
1925 **
1926 **    AeqB:    Called when there is data from both coroutines and A==B.
1927 **
1928 **    AgtB:    Called when there is data from both coroutines and A>B.
1929 **
1930 **    EofA:    Called when data is exhausted from selectA.
1931 **
1932 **    EofB:    Called when data is exhausted from selectB.
1933 **
1934 ** The implementation of the latter five subroutines depend on which
1935 ** <operator> is used:
1936 **
1937 **
1938 **             UNION ALL         UNION            EXCEPT          INTERSECT
1939 **          -------------  -----------------  --------------  -----------------
1940 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1941 **
1942 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1943 **
1944 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1945 **
1946 **   EofA:   outB, nextB      outB, nextB          halt             halt
1947 **
1948 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1949 **
1950 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1951 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1952 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1953 ** following nextX causes a jump to the end of the select processing.
1954 **
1955 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1956 ** within the output subroutine.  The regPrev register set holds the previously
1957 ** output value.  A comparison is made against this value and the output
1958 ** is skipped if the next results would be the same as the previous.
1959 **
1960 ** The implementation plan is to implement the two coroutines and seven
1961 ** subroutines first, then put the control logic at the bottom.  Like this:
1962 **
1963 **          goto Init
1964 **     coA: coroutine for left query (A)
1965 **     coB: coroutine for right query (B)
1966 **    outA: output one row of A
1967 **    outB: output one row of B (UNION and UNION ALL only)
1968 **    EofA: ...
1969 **    EofB: ...
1970 **    AltB: ...
1971 **    AeqB: ...
1972 **    AgtB: ...
1973 **    Init: initialize coroutine registers
1974 **          yield coA
1975 **          if eof(A) goto EofA
1976 **          yield coB
1977 **          if eof(B) goto EofB
1978 **    Cmpr: Compare A, B
1979 **          Jump AltB, AeqB, AgtB
1980 **     End: ...
1981 **
1982 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
1983 ** actually called using Gosub and they do not Return.  EofA and EofB loop
1984 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
1985 ** and AgtB jump to either L2 or to one of EofA or EofB.
1986 */
1987 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1988 static int multiSelectOrderBy(
1989   Parse *pParse,        /* Parsing context */
1990   Select *p,            /* The right-most of SELECTs to be coded */
1991   SelectDest *pDest     /* What to do with query results */
1992 ){
1993   int i, j;             /* Loop counters */
1994   Select *pPrior;       /* Another SELECT immediately to our left */
1995   Vdbe *v;              /* Generate code to this VDBE */
1996   SelectDest destA;     /* Destination for coroutine A */
1997   SelectDest destB;     /* Destination for coroutine B */
1998   int regAddrA;         /* Address register for select-A coroutine */
1999   int regEofA;          /* Flag to indicate when select-A is complete */
2000   int regAddrB;         /* Address register for select-B coroutine */
2001   int regEofB;          /* Flag to indicate when select-B is complete */
2002   int addrSelectA;      /* Address of the select-A coroutine */
2003   int addrSelectB;      /* Address of the select-B coroutine */
2004   int regOutA;          /* Address register for the output-A subroutine */
2005   int regOutB;          /* Address register for the output-B subroutine */
2006   int addrOutA;         /* Address of the output-A subroutine */
2007   int addrOutB = 0;     /* Address of the output-B subroutine */
2008   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2009   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2010   int addrAltB;         /* Address of the A<B subroutine */
2011   int addrAeqB;         /* Address of the A==B subroutine */
2012   int addrAgtB;         /* Address of the A>B subroutine */
2013   int regLimitA;        /* Limit register for select-A */
2014   int regLimitB;        /* Limit register for select-A */
2015   int regPrev;          /* A range of registers to hold previous output */
2016   int savedLimit;       /* Saved value of p->iLimit */
2017   int savedOffset;      /* Saved value of p->iOffset */
2018   int labelCmpr;        /* Label for the start of the merge algorithm */
2019   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2020   int j1;               /* Jump instructions that get retargetted */
2021   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2022   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2023   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2024   sqlite3 *db;          /* Database connection */
2025   ExprList *pOrderBy;   /* The ORDER BY clause */
2026   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2027   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2028 
2029   assert( p->pOrderBy!=0 );
2030   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2031   db = pParse->db;
2032   v = pParse->pVdbe;
2033   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2034   labelEnd = sqlite3VdbeMakeLabel(v);
2035   labelCmpr = sqlite3VdbeMakeLabel(v);
2036 
2037 
2038   /* Patch up the ORDER BY clause
2039   */
2040   op = p->op;
2041   pPrior = p->pPrior;
2042   assert( pPrior->pOrderBy==0 );
2043   pOrderBy = p->pOrderBy;
2044   assert( pOrderBy );
2045   nOrderBy = pOrderBy->nExpr;
2046 
2047   /* For operators other than UNION ALL we have to make sure that
2048   ** the ORDER BY clause covers every term of the result set.  Add
2049   ** terms to the ORDER BY clause as necessary.
2050   */
2051   if( op!=TK_ALL ){
2052     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2053       struct ExprList_item *pItem;
2054       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2055         assert( pItem->iCol>0 );
2056         if( pItem->iCol==i ) break;
2057       }
2058       if( j==nOrderBy ){
2059         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2060         if( pNew==0 ) return SQLITE_NOMEM;
2061         pNew->flags |= EP_IntValue;
2062         pNew->u.iValue = i;
2063         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2064         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2065       }
2066     }
2067   }
2068 
2069   /* Compute the comparison permutation and keyinfo that is used with
2070   ** the permutation used to determine if the next
2071   ** row of results comes from selectA or selectB.  Also add explicit
2072   ** collations to the ORDER BY clause terms so that when the subqueries
2073   ** to the right and the left are evaluated, they use the correct
2074   ** collation.
2075   */
2076   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2077   if( aPermute ){
2078     struct ExprList_item *pItem;
2079     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2080       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2081       aPermute[i] = pItem->iCol - 1;
2082     }
2083     pKeyMerge =
2084       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2085     if( pKeyMerge ){
2086       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2087       pKeyMerge->nField = (u16)nOrderBy;
2088       pKeyMerge->enc = ENC(db);
2089       for(i=0; i<nOrderBy; i++){
2090         CollSeq *pColl;
2091         Expr *pTerm = pOrderBy->a[i].pExpr;
2092         if( pTerm->flags & EP_ExpCollate ){
2093           pColl = pTerm->pColl;
2094         }else{
2095           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2096           pTerm->flags |= EP_ExpCollate;
2097           pTerm->pColl = pColl;
2098         }
2099         pKeyMerge->aColl[i] = pColl;
2100         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2101       }
2102     }
2103   }else{
2104     pKeyMerge = 0;
2105   }
2106 
2107   /* Reattach the ORDER BY clause to the query.
2108   */
2109   p->pOrderBy = pOrderBy;
2110   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2111 
2112   /* Allocate a range of temporary registers and the KeyInfo needed
2113   ** for the logic that removes duplicate result rows when the
2114   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2115   */
2116   if( op==TK_ALL ){
2117     regPrev = 0;
2118   }else{
2119     int nExpr = p->pEList->nExpr;
2120     assert( nOrderBy>=nExpr || db->mallocFailed );
2121     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2122     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2123     pKeyDup = sqlite3DbMallocZero(db,
2124                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2125     if( pKeyDup ){
2126       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2127       pKeyDup->nField = (u16)nExpr;
2128       pKeyDup->enc = ENC(db);
2129       for(i=0; i<nExpr; i++){
2130         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2131         pKeyDup->aSortOrder[i] = 0;
2132       }
2133     }
2134   }
2135 
2136   /* Separate the left and the right query from one another
2137   */
2138   p->pPrior = 0;
2139   pPrior->pRightmost = 0;
2140   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2141   if( pPrior->pPrior==0 ){
2142     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2143   }
2144 
2145   /* Compute the limit registers */
2146   computeLimitRegisters(pParse, p, labelEnd);
2147   if( p->iLimit && op==TK_ALL ){
2148     regLimitA = ++pParse->nMem;
2149     regLimitB = ++pParse->nMem;
2150     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2151                                   regLimitA);
2152     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2153   }else{
2154     regLimitA = regLimitB = 0;
2155   }
2156   sqlite3ExprDelete(db, p->pLimit);
2157   p->pLimit = 0;
2158   sqlite3ExprDelete(db, p->pOffset);
2159   p->pOffset = 0;
2160 
2161   regAddrA = ++pParse->nMem;
2162   regEofA = ++pParse->nMem;
2163   regAddrB = ++pParse->nMem;
2164   regEofB = ++pParse->nMem;
2165   regOutA = ++pParse->nMem;
2166   regOutB = ++pParse->nMem;
2167   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2168   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2169 
2170   /* Jump past the various subroutines and coroutines to the main
2171   ** merge loop
2172   */
2173   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2174   addrSelectA = sqlite3VdbeCurrentAddr(v);
2175 
2176 
2177   /* Generate a coroutine to evaluate the SELECT statement to the
2178   ** left of the compound operator - the "A" select.
2179   */
2180   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2181   pPrior->iLimit = regLimitA;
2182   sqlite3Select(pParse, pPrior, &destA);
2183   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2184   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2185   VdbeNoopComment((v, "End coroutine for left SELECT"));
2186 
2187   /* Generate a coroutine to evaluate the SELECT statement on
2188   ** the right - the "B" select
2189   */
2190   addrSelectB = sqlite3VdbeCurrentAddr(v);
2191   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2192   savedLimit = p->iLimit;
2193   savedOffset = p->iOffset;
2194   p->iLimit = regLimitB;
2195   p->iOffset = 0;
2196   sqlite3Select(pParse, p, &destB);
2197   p->iLimit = savedLimit;
2198   p->iOffset = savedOffset;
2199   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2200   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2201   VdbeNoopComment((v, "End coroutine for right SELECT"));
2202 
2203   /* Generate a subroutine that outputs the current row of the A
2204   ** select as the next output row of the compound select.
2205   */
2206   VdbeNoopComment((v, "Output routine for A"));
2207   addrOutA = generateOutputSubroutine(pParse,
2208                  p, &destA, pDest, regOutA,
2209                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2210 
2211   /* Generate a subroutine that outputs the current row of the B
2212   ** select as the next output row of the compound select.
2213   */
2214   if( op==TK_ALL || op==TK_UNION ){
2215     VdbeNoopComment((v, "Output routine for B"));
2216     addrOutB = generateOutputSubroutine(pParse,
2217                  p, &destB, pDest, regOutB,
2218                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2219   }
2220 
2221   /* Generate a subroutine to run when the results from select A
2222   ** are exhausted and only data in select B remains.
2223   */
2224   VdbeNoopComment((v, "eof-A subroutine"));
2225   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2226     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2227   }else{
2228     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2229     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2230     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2231     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2232   }
2233 
2234   /* Generate a subroutine to run when the results from select B
2235   ** are exhausted and only data in select A remains.
2236   */
2237   if( op==TK_INTERSECT ){
2238     addrEofB = addrEofA;
2239   }else{
2240     VdbeNoopComment((v, "eof-B subroutine"));
2241     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2242     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2243     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2244     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2245   }
2246 
2247   /* Generate code to handle the case of A<B
2248   */
2249   VdbeNoopComment((v, "A-lt-B subroutine"));
2250   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2251   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2252   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2253   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2254 
2255   /* Generate code to handle the case of A==B
2256   */
2257   if( op==TK_ALL ){
2258     addrAeqB = addrAltB;
2259   }else if( op==TK_INTERSECT ){
2260     addrAeqB = addrAltB;
2261     addrAltB++;
2262   }else{
2263     VdbeNoopComment((v, "A-eq-B subroutine"));
2264     addrAeqB =
2265     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2266     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2267     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2268   }
2269 
2270   /* Generate code to handle the case of A>B
2271   */
2272   VdbeNoopComment((v, "A-gt-B subroutine"));
2273   addrAgtB = sqlite3VdbeCurrentAddr(v);
2274   if( op==TK_ALL || op==TK_UNION ){
2275     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2276   }
2277   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2278   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2279   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2280 
2281   /* This code runs once to initialize everything.
2282   */
2283   sqlite3VdbeJumpHere(v, j1);
2284   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2285   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2286   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2287   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2288   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2289   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2290 
2291   /* Implement the main merge loop
2292   */
2293   sqlite3VdbeResolveLabel(v, labelCmpr);
2294   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2295   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2296                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2297   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2298 
2299   /* Release temporary registers
2300   */
2301   if( regPrev ){
2302     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2303   }
2304 
2305   /* Jump to the this point in order to terminate the query.
2306   */
2307   sqlite3VdbeResolveLabel(v, labelEnd);
2308 
2309   /* Set the number of output columns
2310   */
2311   if( pDest->eDest==SRT_Output ){
2312     Select *pFirst = pPrior;
2313     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2314     generateColumnNames(pParse, 0, pFirst->pEList);
2315   }
2316 
2317   /* Reassembly the compound query so that it will be freed correctly
2318   ** by the calling function */
2319   if( p->pPrior ){
2320     sqlite3SelectDelete(db, p->pPrior);
2321   }
2322   p->pPrior = pPrior;
2323 
2324   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2325   **** subqueries ****/
2326   return SQLITE_OK;
2327 }
2328 #endif
2329 
2330 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2331 /* Forward Declarations */
2332 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2333 static void substSelect(sqlite3*, Select *, int, ExprList *);
2334 
2335 /*
2336 ** Scan through the expression pExpr.  Replace every reference to
2337 ** a column in table number iTable with a copy of the iColumn-th
2338 ** entry in pEList.  (But leave references to the ROWID column
2339 ** unchanged.)
2340 **
2341 ** This routine is part of the flattening procedure.  A subquery
2342 ** whose result set is defined by pEList appears as entry in the
2343 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2344 ** FORM clause entry is iTable.  This routine make the necessary
2345 ** changes to pExpr so that it refers directly to the source table
2346 ** of the subquery rather the result set of the subquery.
2347 */
2348 static Expr *substExpr(
2349   sqlite3 *db,        /* Report malloc errors to this connection */
2350   Expr *pExpr,        /* Expr in which substitution occurs */
2351   int iTable,         /* Table to be substituted */
2352   ExprList *pEList    /* Substitute expressions */
2353 ){
2354   if( pExpr==0 ) return 0;
2355   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2356     if( pExpr->iColumn<0 ){
2357       pExpr->op = TK_NULL;
2358     }else{
2359       Expr *pNew;
2360       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2361       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2362       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2363       if( pNew && pExpr->pColl ){
2364         pNew->pColl = pExpr->pColl;
2365       }
2366       sqlite3ExprDelete(db, pExpr);
2367       pExpr = pNew;
2368     }
2369   }else{
2370     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2371     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2372     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2373       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2374     }else{
2375       substExprList(db, pExpr->x.pList, iTable, pEList);
2376     }
2377   }
2378   return pExpr;
2379 }
2380 static void substExprList(
2381   sqlite3 *db,         /* Report malloc errors here */
2382   ExprList *pList,     /* List to scan and in which to make substitutes */
2383   int iTable,          /* Table to be substituted */
2384   ExprList *pEList     /* Substitute values */
2385 ){
2386   int i;
2387   if( pList==0 ) return;
2388   for(i=0; i<pList->nExpr; i++){
2389     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2390   }
2391 }
2392 static void substSelect(
2393   sqlite3 *db,         /* Report malloc errors here */
2394   Select *p,           /* SELECT statement in which to make substitutions */
2395   int iTable,          /* Table to be replaced */
2396   ExprList *pEList     /* Substitute values */
2397 ){
2398   SrcList *pSrc;
2399   struct SrcList_item *pItem;
2400   int i;
2401   if( !p ) return;
2402   substExprList(db, p->pEList, iTable, pEList);
2403   substExprList(db, p->pGroupBy, iTable, pEList);
2404   substExprList(db, p->pOrderBy, iTable, pEList);
2405   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2406   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2407   substSelect(db, p->pPrior, iTable, pEList);
2408   pSrc = p->pSrc;
2409   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2410   if( ALWAYS(pSrc) ){
2411     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2412       substSelect(db, pItem->pSelect, iTable, pEList);
2413     }
2414   }
2415 }
2416 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2417 
2418 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2419 /*
2420 ** This routine attempts to flatten subqueries in order to speed
2421 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2422 ** occurs.
2423 **
2424 ** To understand the concept of flattening, consider the following
2425 ** query:
2426 **
2427 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2428 **
2429 ** The default way of implementing this query is to execute the
2430 ** subquery first and store the results in a temporary table, then
2431 ** run the outer query on that temporary table.  This requires two
2432 ** passes over the data.  Furthermore, because the temporary table
2433 ** has no indices, the WHERE clause on the outer query cannot be
2434 ** optimized.
2435 **
2436 ** This routine attempts to rewrite queries such as the above into
2437 ** a single flat select, like this:
2438 **
2439 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2440 **
2441 ** The code generated for this simpification gives the same result
2442 ** but only has to scan the data once.  And because indices might
2443 ** exist on the table t1, a complete scan of the data might be
2444 ** avoided.
2445 **
2446 ** Flattening is only attempted if all of the following are true:
2447 **
2448 **   (1)  The subquery and the outer query do not both use aggregates.
2449 **
2450 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2451 **
2452 **   (3)  The subquery is not the right operand of a left outer join
2453 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2454 **
2455 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2456 **
2457 **   (5)  The subquery is not DISTINCT or the outer query does not use
2458 **        aggregates.
2459 **
2460 **   (6)  The subquery does not use aggregates or the outer query is not
2461 **        DISTINCT.
2462 **
2463 **   (7)  The subquery has a FROM clause.
2464 **
2465 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2466 **
2467 **   (9)  The subquery does not use LIMIT or the outer query does not use
2468 **        aggregates.
2469 **
2470 **  (10)  The subquery does not use aggregates or the outer query does not
2471 **        use LIMIT.
2472 **
2473 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2474 **
2475 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2476 **        a separate restriction deriving from ticket #350.
2477 **
2478 **  (13)  The subquery and outer query do not both use LIMIT
2479 **
2480 **  (14)  The subquery does not use OFFSET
2481 **
2482 **  (15)  The outer query is not part of a compound select or the
2483 **        subquery does not have both an ORDER BY and a LIMIT clause.
2484 **        (See ticket #2339)
2485 **
2486 **  (16)  The outer query is not an aggregate or the subquery does
2487 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2488 **        until we introduced the group_concat() function.
2489 **
2490 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2491 **        compound clause made up entirely of non-aggregate queries, and
2492 **        the parent query:
2493 **
2494 **          * is not itself part of a compound select,
2495 **          * is not an aggregate or DISTINCT query, and
2496 **          * has no other tables or sub-selects in the FROM clause.
2497 **
2498 **        The parent and sub-query may contain WHERE clauses. Subject to
2499 **        rules (11), (13) and (14), they may also contain ORDER BY,
2500 **        LIMIT and OFFSET clauses.
2501 **
2502 **  (18)  If the sub-query is a compound select, then all terms of the
2503 **        ORDER by clause of the parent must be simple references to
2504 **        columns of the sub-query.
2505 **
2506 **  (19)  The subquery does not use LIMIT or the outer query does not
2507 **        have a WHERE clause.
2508 **
2509 **  (20)  If the sub-query is a compound select, then it must not use
2510 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2511 **        somewhat by saying that the terms of the ORDER BY clause must
2512 **        appear as unmodified result columns in the outer query.  But
2513 **        have other optimizations in mind to deal with that case.
2514 **
2515 ** In this routine, the "p" parameter is a pointer to the outer query.
2516 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2517 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2518 **
2519 ** If flattening is not attempted, this routine is a no-op and returns 0.
2520 ** If flattening is attempted this routine returns 1.
2521 **
2522 ** All of the expression analysis must occur on both the outer query and
2523 ** the subquery before this routine runs.
2524 */
2525 static int flattenSubquery(
2526   Parse *pParse,       /* Parsing context */
2527   Select *p,           /* The parent or outer SELECT statement */
2528   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2529   int isAgg,           /* True if outer SELECT uses aggregate functions */
2530   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2531 ){
2532   const char *zSavedAuthContext = pParse->zAuthContext;
2533   Select *pParent;
2534   Select *pSub;       /* The inner query or "subquery" */
2535   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2536   SrcList *pSrc;      /* The FROM clause of the outer query */
2537   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2538   ExprList *pList;    /* The result set of the outer query */
2539   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2540   int i;              /* Loop counter */
2541   Expr *pWhere;                    /* The WHERE clause */
2542   struct SrcList_item *pSubitem;   /* The subquery */
2543   sqlite3 *db = pParse->db;
2544 
2545   /* Check to see if flattening is permitted.  Return 0 if not.
2546   */
2547   assert( p!=0 );
2548   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2549   pSrc = p->pSrc;
2550   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2551   pSubitem = &pSrc->a[iFrom];
2552   iParent = pSubitem->iCursor;
2553   pSub = pSubitem->pSelect;
2554   assert( pSub!=0 );
2555   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2556   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2557   pSubSrc = pSub->pSrc;
2558   assert( pSubSrc );
2559   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2560   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2561   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2562   ** became arbitrary expressions, we were forced to add restrictions (13)
2563   ** and (14). */
2564   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2565   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2566   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2567     return 0;                                            /* Restriction (15) */
2568   }
2569   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2570   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2571          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2572      return 0;
2573   }
2574   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2575      return 0;         /* Restriction (6)  */
2576   }
2577   if( p->pOrderBy && pSub->pOrderBy ){
2578      return 0;                                           /* Restriction (11) */
2579   }
2580   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2581   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2582 
2583   /* OBSOLETE COMMENT 1:
2584   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2585   ** not used as the right operand of an outer join.  Examples of why this
2586   ** is not allowed:
2587   **
2588   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2589   **
2590   ** If we flatten the above, we would get
2591   **
2592   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2593   **
2594   ** which is not at all the same thing.
2595   **
2596   ** OBSOLETE COMMENT 2:
2597   ** Restriction 12:  If the subquery is the right operand of a left outer
2598   ** join, make sure the subquery has no WHERE clause.
2599   ** An examples of why this is not allowed:
2600   **
2601   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2602   **
2603   ** If we flatten the above, we would get
2604   **
2605   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2606   **
2607   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2608   ** effectively converts the OUTER JOIN into an INNER JOIN.
2609   **
2610   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2611   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2612   ** is fraught with danger.  Best to avoid the whole thing.  If the
2613   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2614   */
2615   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2616     return 0;
2617   }
2618 
2619   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2620   ** use only the UNION ALL operator. And none of the simple select queries
2621   ** that make up the compound SELECT are allowed to be aggregate or distinct
2622   ** queries.
2623   */
2624   if( pSub->pPrior ){
2625     if( pSub->pOrderBy ){
2626       return 0;  /* Restriction 20 */
2627     }
2628     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2629       return 0;
2630     }
2631     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2632       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2633       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2634       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2635        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2636        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2637       ){
2638         return 0;
2639       }
2640     }
2641 
2642     /* Restriction 18. */
2643     if( p->pOrderBy ){
2644       int ii;
2645       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2646         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2647       }
2648     }
2649   }
2650 
2651   /***** If we reach this point, flattening is permitted. *****/
2652 
2653   /* Authorize the subquery */
2654   pParse->zAuthContext = pSubitem->zName;
2655   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2656   pParse->zAuthContext = zSavedAuthContext;
2657 
2658   /* If the sub-query is a compound SELECT statement, then (by restrictions
2659   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2660   ** be of the form:
2661   **
2662   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2663   **
2664   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2665   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2666   ** OFFSET clauses and joins them to the left-hand-side of the original
2667   ** using UNION ALL operators. In this case N is the number of simple
2668   ** select statements in the compound sub-query.
2669   **
2670   ** Example:
2671   **
2672   **     SELECT a+1 FROM (
2673   **        SELECT x FROM tab
2674   **        UNION ALL
2675   **        SELECT y FROM tab
2676   **        UNION ALL
2677   **        SELECT abs(z*2) FROM tab2
2678   **     ) WHERE a!=5 ORDER BY 1
2679   **
2680   ** Transformed into:
2681   **
2682   **     SELECT x+1 FROM tab WHERE x+1!=5
2683   **     UNION ALL
2684   **     SELECT y+1 FROM tab WHERE y+1!=5
2685   **     UNION ALL
2686   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2687   **     ORDER BY 1
2688   **
2689   ** We call this the "compound-subquery flattening".
2690   */
2691   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2692     Select *pNew;
2693     ExprList *pOrderBy = p->pOrderBy;
2694     Expr *pLimit = p->pLimit;
2695     Select *pPrior = p->pPrior;
2696     p->pOrderBy = 0;
2697     p->pSrc = 0;
2698     p->pPrior = 0;
2699     p->pLimit = 0;
2700     pNew = sqlite3SelectDup(db, p, 0);
2701     p->pLimit = pLimit;
2702     p->pOrderBy = pOrderBy;
2703     p->pSrc = pSrc;
2704     p->op = TK_ALL;
2705     p->pRightmost = 0;
2706     if( pNew==0 ){
2707       pNew = pPrior;
2708     }else{
2709       pNew->pPrior = pPrior;
2710       pNew->pRightmost = 0;
2711     }
2712     p->pPrior = pNew;
2713     if( db->mallocFailed ) return 1;
2714   }
2715 
2716   /* Begin flattening the iFrom-th entry of the FROM clause
2717   ** in the outer query.
2718   */
2719   pSub = pSub1 = pSubitem->pSelect;
2720 
2721   /* Delete the transient table structure associated with the
2722   ** subquery
2723   */
2724   sqlite3DbFree(db, pSubitem->zDatabase);
2725   sqlite3DbFree(db, pSubitem->zName);
2726   sqlite3DbFree(db, pSubitem->zAlias);
2727   pSubitem->zDatabase = 0;
2728   pSubitem->zName = 0;
2729   pSubitem->zAlias = 0;
2730   pSubitem->pSelect = 0;
2731 
2732   /* Defer deleting the Table object associated with the
2733   ** subquery until code generation is
2734   ** complete, since there may still exist Expr.pTab entries that
2735   ** refer to the subquery even after flattening.  Ticket #3346.
2736   **
2737   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2738   */
2739   if( ALWAYS(pSubitem->pTab!=0) ){
2740     Table *pTabToDel = pSubitem->pTab;
2741     if( pTabToDel->nRef==1 ){
2742       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2743       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2744       pToplevel->pZombieTab = pTabToDel;
2745     }else{
2746       pTabToDel->nRef--;
2747     }
2748     pSubitem->pTab = 0;
2749   }
2750 
2751   /* The following loop runs once for each term in a compound-subquery
2752   ** flattening (as described above).  If we are doing a different kind
2753   ** of flattening - a flattening other than a compound-subquery flattening -
2754   ** then this loop only runs once.
2755   **
2756   ** This loop moves all of the FROM elements of the subquery into the
2757   ** the FROM clause of the outer query.  Before doing this, remember
2758   ** the cursor number for the original outer query FROM element in
2759   ** iParent.  The iParent cursor will never be used.  Subsequent code
2760   ** will scan expressions looking for iParent references and replace
2761   ** those references with expressions that resolve to the subquery FROM
2762   ** elements we are now copying in.
2763   */
2764   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2765     int nSubSrc;
2766     u8 jointype = 0;
2767     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2768     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2769     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2770 
2771     if( pSrc ){
2772       assert( pParent==p );  /* First time through the loop */
2773       jointype = pSubitem->jointype;
2774     }else{
2775       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2776       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2777       if( pSrc==0 ){
2778         assert( db->mallocFailed );
2779         break;
2780       }
2781     }
2782 
2783     /* The subquery uses a single slot of the FROM clause of the outer
2784     ** query.  If the subquery has more than one element in its FROM clause,
2785     ** then expand the outer query to make space for it to hold all elements
2786     ** of the subquery.
2787     **
2788     ** Example:
2789     **
2790     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2791     **
2792     ** The outer query has 3 slots in its FROM clause.  One slot of the
2793     ** outer query (the middle slot) is used by the subquery.  The next
2794     ** block of code will expand the out query to 4 slots.  The middle
2795     ** slot is expanded to two slots in order to make space for the
2796     ** two elements in the FROM clause of the subquery.
2797     */
2798     if( nSubSrc>1 ){
2799       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2800       if( db->mallocFailed ){
2801         break;
2802       }
2803     }
2804 
2805     /* Transfer the FROM clause terms from the subquery into the
2806     ** outer query.
2807     */
2808     for(i=0; i<nSubSrc; i++){
2809       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2810       pSrc->a[i+iFrom] = pSubSrc->a[i];
2811       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2812     }
2813     pSrc->a[iFrom].jointype = jointype;
2814 
2815     /* Now begin substituting subquery result set expressions for
2816     ** references to the iParent in the outer query.
2817     **
2818     ** Example:
2819     **
2820     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2821     **   \                     \_____________ subquery __________/          /
2822     **    \_____________________ outer query ______________________________/
2823     **
2824     ** We look at every expression in the outer query and every place we see
2825     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2826     */
2827     pList = pParent->pEList;
2828     for(i=0; i<pList->nExpr; i++){
2829       if( pList->a[i].zName==0 ){
2830         const char *zSpan = pList->a[i].zSpan;
2831         if( ALWAYS(zSpan) ){
2832           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2833         }
2834       }
2835     }
2836     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2837     if( isAgg ){
2838       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2839       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2840     }
2841     if( pSub->pOrderBy ){
2842       assert( pParent->pOrderBy==0 );
2843       pParent->pOrderBy = pSub->pOrderBy;
2844       pSub->pOrderBy = 0;
2845     }else if( pParent->pOrderBy ){
2846       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2847     }
2848     if( pSub->pWhere ){
2849       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2850     }else{
2851       pWhere = 0;
2852     }
2853     if( subqueryIsAgg ){
2854       assert( pParent->pHaving==0 );
2855       pParent->pHaving = pParent->pWhere;
2856       pParent->pWhere = pWhere;
2857       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2858       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2859                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2860       assert( pParent->pGroupBy==0 );
2861       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2862     }else{
2863       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2864       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2865     }
2866 
2867     /* The flattened query is distinct if either the inner or the
2868     ** outer query is distinct.
2869     */
2870     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2871 
2872     /*
2873     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2874     **
2875     ** One is tempted to try to add a and b to combine the limits.  But this
2876     ** does not work if either limit is negative.
2877     */
2878     if( pSub->pLimit ){
2879       pParent->pLimit = pSub->pLimit;
2880       pSub->pLimit = 0;
2881     }
2882   }
2883 
2884   /* Finially, delete what is left of the subquery and return
2885   ** success.
2886   */
2887   sqlite3SelectDelete(db, pSub1);
2888 
2889   return 1;
2890 }
2891 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2892 
2893 /*
2894 ** Analyze the SELECT statement passed as an argument to see if it
2895 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2896 ** it is, or 0 otherwise. At present, a query is considered to be
2897 ** a min()/max() query if:
2898 **
2899 **   1. There is a single object in the FROM clause.
2900 **
2901 **   2. There is a single expression in the result set, and it is
2902 **      either min(x) or max(x), where x is a column reference.
2903 */
2904 static u8 minMaxQuery(Select *p){
2905   Expr *pExpr;
2906   ExprList *pEList = p->pEList;
2907 
2908   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2909   pExpr = pEList->a[0].pExpr;
2910   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2911   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
2912   pEList = pExpr->x.pList;
2913   if( pEList==0 || pEList->nExpr!=1 ) return 0;
2914   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2915   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2916   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
2917     return WHERE_ORDERBY_MIN;
2918   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
2919     return WHERE_ORDERBY_MAX;
2920   }
2921   return WHERE_ORDERBY_NORMAL;
2922 }
2923 
2924 /*
2925 ** The select statement passed as the first argument is an aggregate query.
2926 ** The second argment is the associated aggregate-info object. This
2927 ** function tests if the SELECT is of the form:
2928 **
2929 **   SELECT count(*) FROM <tbl>
2930 **
2931 ** where table is a database table, not a sub-select or view. If the query
2932 ** does match this pattern, then a pointer to the Table object representing
2933 ** <tbl> is returned. Otherwise, 0 is returned.
2934 */
2935 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2936   Table *pTab;
2937   Expr *pExpr;
2938 
2939   assert( !p->pGroupBy );
2940 
2941   if( p->pWhere || p->pEList->nExpr!=1
2942    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2943   ){
2944     return 0;
2945   }
2946   pTab = p->pSrc->a[0].pTab;
2947   pExpr = p->pEList->a[0].pExpr;
2948   assert( pTab && !pTab->pSelect && pExpr );
2949 
2950   if( IsVirtual(pTab) ) return 0;
2951   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2952   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
2953   if( pExpr->flags&EP_Distinct ) return 0;
2954 
2955   return pTab;
2956 }
2957 
2958 /*
2959 ** If the source-list item passed as an argument was augmented with an
2960 ** INDEXED BY clause, then try to locate the specified index. If there
2961 ** was such a clause and the named index cannot be found, return
2962 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
2963 ** pFrom->pIndex and return SQLITE_OK.
2964 */
2965 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
2966   if( pFrom->pTab && pFrom->zIndex ){
2967     Table *pTab = pFrom->pTab;
2968     char *zIndex = pFrom->zIndex;
2969     Index *pIdx;
2970     for(pIdx=pTab->pIndex;
2971         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
2972         pIdx=pIdx->pNext
2973     );
2974     if( !pIdx ){
2975       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
2976       return SQLITE_ERROR;
2977     }
2978     pFrom->pIndex = pIdx;
2979   }
2980   return SQLITE_OK;
2981 }
2982 
2983 /*
2984 ** This routine is a Walker callback for "expanding" a SELECT statement.
2985 ** "Expanding" means to do the following:
2986 **
2987 **    (1)  Make sure VDBE cursor numbers have been assigned to every
2988 **         element of the FROM clause.
2989 **
2990 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
2991 **         defines FROM clause.  When views appear in the FROM clause,
2992 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
2993 **         that implements the view.  A copy is made of the view's SELECT
2994 **         statement so that we can freely modify or delete that statement
2995 **         without worrying about messing up the presistent representation
2996 **         of the view.
2997 **
2998 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
2999 **         on joins and the ON and USING clause of joins.
3000 **
3001 **    (4)  Scan the list of columns in the result set (pEList) looking
3002 **         for instances of the "*" operator or the TABLE.* operator.
3003 **         If found, expand each "*" to be every column in every table
3004 **         and TABLE.* to be every column in TABLE.
3005 **
3006 */
3007 static int selectExpander(Walker *pWalker, Select *p){
3008   Parse *pParse = pWalker->pParse;
3009   int i, j, k;
3010   SrcList *pTabList;
3011   ExprList *pEList;
3012   struct SrcList_item *pFrom;
3013   sqlite3 *db = pParse->db;
3014 
3015   if( db->mallocFailed  ){
3016     return WRC_Abort;
3017   }
3018   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3019     return WRC_Prune;
3020   }
3021   p->selFlags |= SF_Expanded;
3022   pTabList = p->pSrc;
3023   pEList = p->pEList;
3024 
3025   /* Make sure cursor numbers have been assigned to all entries in
3026   ** the FROM clause of the SELECT statement.
3027   */
3028   sqlite3SrcListAssignCursors(pParse, pTabList);
3029 
3030   /* Look up every table named in the FROM clause of the select.  If
3031   ** an entry of the FROM clause is a subquery instead of a table or view,
3032   ** then create a transient table structure to describe the subquery.
3033   */
3034   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3035     Table *pTab;
3036     if( pFrom->pTab!=0 ){
3037       /* This statement has already been prepared.  There is no need
3038       ** to go further. */
3039       assert( i==0 );
3040       return WRC_Prune;
3041     }
3042     if( pFrom->zName==0 ){
3043 #ifndef SQLITE_OMIT_SUBQUERY
3044       Select *pSel = pFrom->pSelect;
3045       /* A sub-query in the FROM clause of a SELECT */
3046       assert( pSel!=0 );
3047       assert( pFrom->pTab==0 );
3048       sqlite3WalkSelect(pWalker, pSel);
3049       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3050       if( pTab==0 ) return WRC_Abort;
3051       pTab->dbMem = db->lookaside.bEnabled ? db : 0;
3052       pTab->nRef = 1;
3053       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3054       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3055       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3056       pTab->iPKey = -1;
3057       pTab->tabFlags |= TF_Ephemeral;
3058 #endif
3059     }else{
3060       /* An ordinary table or view name in the FROM clause */
3061       assert( pFrom->pTab==0 );
3062       pFrom->pTab = pTab =
3063         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3064       if( pTab==0 ) return WRC_Abort;
3065       pTab->nRef++;
3066 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3067       if( pTab->pSelect || IsVirtual(pTab) ){
3068         /* We reach here if the named table is a really a view */
3069         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3070         assert( pFrom->pSelect==0 );
3071         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3072         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3073       }
3074 #endif
3075     }
3076 
3077     /* Locate the index named by the INDEXED BY clause, if any. */
3078     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3079       return WRC_Abort;
3080     }
3081   }
3082 
3083   /* Process NATURAL keywords, and ON and USING clauses of joins.
3084   */
3085   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3086     return WRC_Abort;
3087   }
3088 
3089   /* For every "*" that occurs in the column list, insert the names of
3090   ** all columns in all tables.  And for every TABLE.* insert the names
3091   ** of all columns in TABLE.  The parser inserted a special expression
3092   ** with the TK_ALL operator for each "*" that it found in the column list.
3093   ** The following code just has to locate the TK_ALL expressions and expand
3094   ** each one to the list of all columns in all tables.
3095   **
3096   ** The first loop just checks to see if there are any "*" operators
3097   ** that need expanding.
3098   */
3099   for(k=0; k<pEList->nExpr; k++){
3100     Expr *pE = pEList->a[k].pExpr;
3101     if( pE->op==TK_ALL ) break;
3102     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3103     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3104     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3105   }
3106   if( k<pEList->nExpr ){
3107     /*
3108     ** If we get here it means the result set contains one or more "*"
3109     ** operators that need to be expanded.  Loop through each expression
3110     ** in the result set and expand them one by one.
3111     */
3112     struct ExprList_item *a = pEList->a;
3113     ExprList *pNew = 0;
3114     int flags = pParse->db->flags;
3115     int longNames = (flags & SQLITE_FullColNames)!=0
3116                       && (flags & SQLITE_ShortColNames)==0;
3117 
3118     for(k=0; k<pEList->nExpr; k++){
3119       Expr *pE = a[k].pExpr;
3120       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3121       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3122         /* This particular expression does not need to be expanded.
3123         */
3124         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3125         if( pNew ){
3126           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3127           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3128           a[k].zName = 0;
3129           a[k].zSpan = 0;
3130         }
3131         a[k].pExpr = 0;
3132       }else{
3133         /* This expression is a "*" or a "TABLE.*" and needs to be
3134         ** expanded. */
3135         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3136         char *zTName;            /* text of name of TABLE */
3137         if( pE->op==TK_DOT ){
3138           assert( pE->pLeft!=0 );
3139           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3140           zTName = pE->pLeft->u.zToken;
3141         }else{
3142           zTName = 0;
3143         }
3144         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3145           Table *pTab = pFrom->pTab;
3146           char *zTabName = pFrom->zAlias;
3147           if( zTabName==0 ){
3148             zTabName = pTab->zName;
3149           }
3150           if( db->mallocFailed ) break;
3151           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3152             continue;
3153           }
3154           tableSeen = 1;
3155           for(j=0; j<pTab->nCol; j++){
3156             Expr *pExpr, *pRight;
3157             char *zName = pTab->aCol[j].zName;
3158             char *zColname;  /* The computed column name */
3159             char *zToFree;   /* Malloced string that needs to be freed */
3160             Token sColname;  /* Computed column name as a token */
3161 
3162             /* If a column is marked as 'hidden' (currently only possible
3163             ** for virtual tables), do not include it in the expanded
3164             ** result-set list.
3165             */
3166             if( IsHiddenColumn(&pTab->aCol[j]) ){
3167               assert(IsVirtual(pTab));
3168               continue;
3169             }
3170 
3171             if( i>0 && zTName==0 ){
3172               struct SrcList_item *pLeft = &pTabList->a[i-1];
3173               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3174                         columnIndex(pLeft->pTab, zName)>=0 ){
3175                 /* In a NATURAL join, omit the join columns from the
3176                 ** table on the right */
3177                 continue;
3178               }
3179               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3180                 /* In a join with a USING clause, omit columns in the
3181                 ** using clause from the table on the right. */
3182                 continue;
3183               }
3184             }
3185             pRight = sqlite3Expr(db, TK_ID, zName);
3186             zColname = zName;
3187             zToFree = 0;
3188             if( longNames || pTabList->nSrc>1 ){
3189               Expr *pLeft;
3190               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3191               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3192               if( longNames ){
3193                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3194                 zToFree = zColname;
3195               }
3196             }else{
3197               pExpr = pRight;
3198             }
3199             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3200             sColname.z = zColname;
3201             sColname.n = sqlite3Strlen30(zColname);
3202             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3203             sqlite3DbFree(db, zToFree);
3204           }
3205         }
3206         if( !tableSeen ){
3207           if( zTName ){
3208             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3209           }else{
3210             sqlite3ErrorMsg(pParse, "no tables specified");
3211           }
3212         }
3213       }
3214     }
3215     sqlite3ExprListDelete(db, pEList);
3216     p->pEList = pNew;
3217   }
3218 #if SQLITE_MAX_COLUMN
3219   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3220     sqlite3ErrorMsg(pParse, "too many columns in result set");
3221   }
3222 #endif
3223   return WRC_Continue;
3224 }
3225 
3226 /*
3227 ** No-op routine for the parse-tree walker.
3228 **
3229 ** When this routine is the Walker.xExprCallback then expression trees
3230 ** are walked without any actions being taken at each node.  Presumably,
3231 ** when this routine is used for Walker.xExprCallback then
3232 ** Walker.xSelectCallback is set to do something useful for every
3233 ** subquery in the parser tree.
3234 */
3235 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3236   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3237   return WRC_Continue;
3238 }
3239 
3240 /*
3241 ** This routine "expands" a SELECT statement and all of its subqueries.
3242 ** For additional information on what it means to "expand" a SELECT
3243 ** statement, see the comment on the selectExpand worker callback above.
3244 **
3245 ** Expanding a SELECT statement is the first step in processing a
3246 ** SELECT statement.  The SELECT statement must be expanded before
3247 ** name resolution is performed.
3248 **
3249 ** If anything goes wrong, an error message is written into pParse.
3250 ** The calling function can detect the problem by looking at pParse->nErr
3251 ** and/or pParse->db->mallocFailed.
3252 */
3253 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3254   Walker w;
3255   w.xSelectCallback = selectExpander;
3256   w.xExprCallback = exprWalkNoop;
3257   w.pParse = pParse;
3258   sqlite3WalkSelect(&w, pSelect);
3259 }
3260 
3261 
3262 #ifndef SQLITE_OMIT_SUBQUERY
3263 /*
3264 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3265 ** interface.
3266 **
3267 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3268 ** information to the Table structure that represents the result set
3269 ** of that subquery.
3270 **
3271 ** The Table structure that represents the result set was constructed
3272 ** by selectExpander() but the type and collation information was omitted
3273 ** at that point because identifiers had not yet been resolved.  This
3274 ** routine is called after identifier resolution.
3275 */
3276 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3277   Parse *pParse;
3278   int i;
3279   SrcList *pTabList;
3280   struct SrcList_item *pFrom;
3281 
3282   assert( p->selFlags & SF_Resolved );
3283   assert( (p->selFlags & SF_HasTypeInfo)==0 );
3284   p->selFlags |= SF_HasTypeInfo;
3285   pParse = pWalker->pParse;
3286   pTabList = p->pSrc;
3287   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3288     Table *pTab = pFrom->pTab;
3289     if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3290       /* A sub-query in the FROM clause of a SELECT */
3291       Select *pSel = pFrom->pSelect;
3292       assert( pSel );
3293       while( pSel->pPrior ) pSel = pSel->pPrior;
3294       selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3295     }
3296   }
3297   return WRC_Continue;
3298 }
3299 #endif
3300 
3301 
3302 /*
3303 ** This routine adds datatype and collating sequence information to
3304 ** the Table structures of all FROM-clause subqueries in a
3305 ** SELECT statement.
3306 **
3307 ** Use this routine after name resolution.
3308 */
3309 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3310 #ifndef SQLITE_OMIT_SUBQUERY
3311   Walker w;
3312   w.xSelectCallback = selectAddSubqueryTypeInfo;
3313   w.xExprCallback = exprWalkNoop;
3314   w.pParse = pParse;
3315   sqlite3WalkSelect(&w, pSelect);
3316 #endif
3317 }
3318 
3319 
3320 /*
3321 ** This routine sets of a SELECT statement for processing.  The
3322 ** following is accomplished:
3323 **
3324 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3325 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3326 **     *  ON and USING clauses are shifted into WHERE statements
3327 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3328 **     *  Identifiers in expression are matched to tables.
3329 **
3330 ** This routine acts recursively on all subqueries within the SELECT.
3331 */
3332 void sqlite3SelectPrep(
3333   Parse *pParse,         /* The parser context */
3334   Select *p,             /* The SELECT statement being coded. */
3335   NameContext *pOuterNC  /* Name context for container */
3336 ){
3337   sqlite3 *db;
3338   if( NEVER(p==0) ) return;
3339   db = pParse->db;
3340   if( p->selFlags & SF_HasTypeInfo ) return;
3341   sqlite3SelectExpand(pParse, p);
3342   if( pParse->nErr || db->mallocFailed ) return;
3343   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3344   if( pParse->nErr || db->mallocFailed ) return;
3345   sqlite3SelectAddTypeInfo(pParse, p);
3346 }
3347 
3348 /*
3349 ** Reset the aggregate accumulator.
3350 **
3351 ** The aggregate accumulator is a set of memory cells that hold
3352 ** intermediate results while calculating an aggregate.  This
3353 ** routine simply stores NULLs in all of those memory cells.
3354 */
3355 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3356   Vdbe *v = pParse->pVdbe;
3357   int i;
3358   struct AggInfo_func *pFunc;
3359   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3360     return;
3361   }
3362   for(i=0; i<pAggInfo->nColumn; i++){
3363     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3364   }
3365   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3366     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3367     if( pFunc->iDistinct>=0 ){
3368       Expr *pE = pFunc->pExpr;
3369       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3370       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3371         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3372            "argument");
3373         pFunc->iDistinct = -1;
3374       }else{
3375         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3376         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3377                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3378       }
3379     }
3380   }
3381 }
3382 
3383 /*
3384 ** Invoke the OP_AggFinalize opcode for every aggregate function
3385 ** in the AggInfo structure.
3386 */
3387 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3388   Vdbe *v = pParse->pVdbe;
3389   int i;
3390   struct AggInfo_func *pF;
3391   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3392     ExprList *pList = pF->pExpr->x.pList;
3393     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3394     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3395                       (void*)pF->pFunc, P4_FUNCDEF);
3396   }
3397 }
3398 
3399 /*
3400 ** Update the accumulator memory cells for an aggregate based on
3401 ** the current cursor position.
3402 */
3403 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3404   Vdbe *v = pParse->pVdbe;
3405   int i;
3406   struct AggInfo_func *pF;
3407   struct AggInfo_col *pC;
3408 
3409   pAggInfo->directMode = 1;
3410   sqlite3ExprCacheClear(pParse);
3411   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3412     int nArg;
3413     int addrNext = 0;
3414     int regAgg;
3415     ExprList *pList = pF->pExpr->x.pList;
3416     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3417     if( pList ){
3418       nArg = pList->nExpr;
3419       regAgg = sqlite3GetTempRange(pParse, nArg);
3420       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3421     }else{
3422       nArg = 0;
3423       regAgg = 0;
3424     }
3425     if( pF->iDistinct>=0 ){
3426       addrNext = sqlite3VdbeMakeLabel(v);
3427       assert( nArg==1 );
3428       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3429     }
3430     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3431       CollSeq *pColl = 0;
3432       struct ExprList_item *pItem;
3433       int j;
3434       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3435       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3436         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3437       }
3438       if( !pColl ){
3439         pColl = pParse->db->pDfltColl;
3440       }
3441       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3442     }
3443     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3444                       (void*)pF->pFunc, P4_FUNCDEF);
3445     sqlite3VdbeChangeP5(v, (u8)nArg);
3446     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3447     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3448     if( addrNext ){
3449       sqlite3VdbeResolveLabel(v, addrNext);
3450       sqlite3ExprCacheClear(pParse);
3451     }
3452   }
3453   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3454     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3455   }
3456   pAggInfo->directMode = 0;
3457   sqlite3ExprCacheClear(pParse);
3458 }
3459 
3460 /*
3461 ** Generate code for the SELECT statement given in the p argument.
3462 **
3463 ** The results are distributed in various ways depending on the
3464 ** contents of the SelectDest structure pointed to by argument pDest
3465 ** as follows:
3466 **
3467 **     pDest->eDest    Result
3468 **     ------------    -------------------------------------------
3469 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3470 **                     opcode) for each row in the result set.
3471 **
3472 **     SRT_Mem         Only valid if the result is a single column.
3473 **                     Store the first column of the first result row
3474 **                     in register pDest->iParm then abandon the rest
3475 **                     of the query.  This destination implies "LIMIT 1".
3476 **
3477 **     SRT_Set         The result must be a single column.  Store each
3478 **                     row of result as the key in table pDest->iParm.
3479 **                     Apply the affinity pDest->affinity before storing
3480 **                     results.  Used to implement "IN (SELECT ...)".
3481 **
3482 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3483 **
3484 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3485 **
3486 **     SRT_Table       Store results in temporary table pDest->iParm.
3487 **                     This is like SRT_EphemTab except that the table
3488 **                     is assumed to already be open.
3489 **
3490 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3491 **                     the result there. The cursor is left open after
3492 **                     returning.  This is like SRT_Table except that
3493 **                     this destination uses OP_OpenEphemeral to create
3494 **                     the table first.
3495 **
3496 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3497 **                     results each time it is invoked.  The entry point
3498 **                     of the co-routine is stored in register pDest->iParm.
3499 **
3500 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3501 **                     set is not empty.
3502 **
3503 **     SRT_Discard     Throw the results away.  This is used by SELECT
3504 **                     statements within triggers whose only purpose is
3505 **                     the side-effects of functions.
3506 **
3507 ** This routine returns the number of errors.  If any errors are
3508 ** encountered, then an appropriate error message is left in
3509 ** pParse->zErrMsg.
3510 **
3511 ** This routine does NOT free the Select structure passed in.  The
3512 ** calling function needs to do that.
3513 */
3514 int sqlite3Select(
3515   Parse *pParse,         /* The parser context */
3516   Select *p,             /* The SELECT statement being coded. */
3517   SelectDest *pDest      /* What to do with the query results */
3518 ){
3519   int i, j;              /* Loop counters */
3520   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3521   Vdbe *v;               /* The virtual machine under construction */
3522   int isAgg;             /* True for select lists like "count(*)" */
3523   ExprList *pEList;      /* List of columns to extract. */
3524   SrcList *pTabList;     /* List of tables to select from */
3525   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3526   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3527   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3528   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3529   int isDistinct;        /* True if the DISTINCT keyword is present */
3530   int distinct;          /* Table to use for the distinct set */
3531   int rc = 1;            /* Value to return from this function */
3532   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3533   AggInfo sAggInfo;      /* Information used by aggregate queries */
3534   int iEnd;              /* Address of the end of the query */
3535   sqlite3 *db;           /* The database connection */
3536 
3537   db = pParse->db;
3538   if( p==0 || db->mallocFailed || pParse->nErr ){
3539     return 1;
3540   }
3541   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3542   memset(&sAggInfo, 0, sizeof(sAggInfo));
3543 
3544   if( IgnorableOrderby(pDest) ){
3545     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3546            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3547     /* If ORDER BY makes no difference in the output then neither does
3548     ** DISTINCT so it can be removed too. */
3549     sqlite3ExprListDelete(db, p->pOrderBy);
3550     p->pOrderBy = 0;
3551     p->selFlags &= ~SF_Distinct;
3552   }
3553   sqlite3SelectPrep(pParse, p, 0);
3554   pOrderBy = p->pOrderBy;
3555   pTabList = p->pSrc;
3556   pEList = p->pEList;
3557   if( pParse->nErr || db->mallocFailed ){
3558     goto select_end;
3559   }
3560   isAgg = (p->selFlags & SF_Aggregate)!=0;
3561   assert( pEList!=0 );
3562 
3563   /* Begin generating code.
3564   */
3565   v = sqlite3GetVdbe(pParse);
3566   if( v==0 ) goto select_end;
3567 
3568   /* Generate code for all sub-queries in the FROM clause
3569   */
3570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3571   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3572     struct SrcList_item *pItem = &pTabList->a[i];
3573     SelectDest dest;
3574     Select *pSub = pItem->pSelect;
3575     int isAggSub;
3576 
3577     if( pSub==0 || pItem->isPopulated ) continue;
3578 
3579     /* Increment Parse.nHeight by the height of the largest expression
3580     ** tree refered to by this, the parent select. The child select
3581     ** may contain expression trees of at most
3582     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3583     ** more conservative than necessary, but much easier than enforcing
3584     ** an exact limit.
3585     */
3586     pParse->nHeight += sqlite3SelectExprHeight(p);
3587 
3588     /* Check to see if the subquery can be absorbed into the parent. */
3589     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3590     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3591       if( isAggSub ){
3592         isAgg = 1;
3593         p->selFlags |= SF_Aggregate;
3594       }
3595       i = -1;
3596     }else{
3597       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3598       assert( pItem->isPopulated==0 );
3599       sqlite3Select(pParse, pSub, &dest);
3600       pItem->isPopulated = 1;
3601     }
3602     if( /*pParse->nErr ||*/ db->mallocFailed ){
3603       goto select_end;
3604     }
3605     pParse->nHeight -= sqlite3SelectExprHeight(p);
3606     pTabList = p->pSrc;
3607     if( !IgnorableOrderby(pDest) ){
3608       pOrderBy = p->pOrderBy;
3609     }
3610   }
3611   pEList = p->pEList;
3612 #endif
3613   pWhere = p->pWhere;
3614   pGroupBy = p->pGroupBy;
3615   pHaving = p->pHaving;
3616   isDistinct = (p->selFlags & SF_Distinct)!=0;
3617 
3618 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3619   /* If there is are a sequence of queries, do the earlier ones first.
3620   */
3621   if( p->pPrior ){
3622     if( p->pRightmost==0 ){
3623       Select *pLoop, *pRight = 0;
3624       int cnt = 0;
3625       int mxSelect;
3626       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3627         pLoop->pRightmost = p;
3628         pLoop->pNext = pRight;
3629         pRight = pLoop;
3630       }
3631       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3632       if( mxSelect && cnt>mxSelect ){
3633         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3634         return 1;
3635       }
3636     }
3637     return multiSelect(pParse, p, pDest);
3638   }
3639 #endif
3640 
3641   /* If writing to memory or generating a set
3642   ** only a single column may be output.
3643   */
3644 #ifndef SQLITE_OMIT_SUBQUERY
3645   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3646     goto select_end;
3647   }
3648 #endif
3649 
3650   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3651   ** GROUP BY might use an index, DISTINCT never does.
3652   */
3653   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3654   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3655     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3656     pGroupBy = p->pGroupBy;
3657     p->selFlags &= ~SF_Distinct;
3658     isDistinct = 0;
3659   }
3660 
3661   /* If there is an ORDER BY clause, then this sorting
3662   ** index might end up being unused if the data can be
3663   ** extracted in pre-sorted order.  If that is the case, then the
3664   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3665   ** we figure out that the sorting index is not needed.  The addrSortIndex
3666   ** variable is used to facilitate that change.
3667   */
3668   if( pOrderBy ){
3669     KeyInfo *pKeyInfo;
3670     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3671     pOrderBy->iECursor = pParse->nTab++;
3672     p->addrOpenEphm[2] = addrSortIndex =
3673       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3674                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3675                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3676   }else{
3677     addrSortIndex = -1;
3678   }
3679 
3680   /* If the output is destined for a temporary table, open that table.
3681   */
3682   if( pDest->eDest==SRT_EphemTab ){
3683     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3684   }
3685 
3686   /* Set the limiter.
3687   */
3688   iEnd = sqlite3VdbeMakeLabel(v);
3689   computeLimitRegisters(pParse, p, iEnd);
3690 
3691   /* Open a virtual index to use for the distinct set.
3692   */
3693   if( isDistinct ){
3694     KeyInfo *pKeyInfo;
3695     assert( isAgg || pGroupBy );
3696     distinct = pParse->nTab++;
3697     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3698     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3699                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3700   }else{
3701     distinct = -1;
3702   }
3703 
3704   /* Aggregate and non-aggregate queries are handled differently */
3705   if( !isAgg && pGroupBy==0 ){
3706     /* This case is for non-aggregate queries
3707     ** Begin the database scan
3708     */
3709     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3710     if( pWInfo==0 ) goto select_end;
3711 
3712     /* If sorting index that was created by a prior OP_OpenEphemeral
3713     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3714     ** into an OP_Noop.
3715     */
3716     if( addrSortIndex>=0 && pOrderBy==0 ){
3717       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3718       p->addrOpenEphm[2] = -1;
3719     }
3720 
3721     /* Use the standard inner loop
3722     */
3723     assert(!isDistinct);
3724     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3725                     pWInfo->iContinue, pWInfo->iBreak);
3726 
3727     /* End the database scan loop.
3728     */
3729     sqlite3WhereEnd(pWInfo);
3730   }else{
3731     /* This is the processing for aggregate queries */
3732     NameContext sNC;    /* Name context for processing aggregate information */
3733     int iAMem;          /* First Mem address for storing current GROUP BY */
3734     int iBMem;          /* First Mem address for previous GROUP BY */
3735     int iUseFlag;       /* Mem address holding flag indicating that at least
3736                         ** one row of the input to the aggregator has been
3737                         ** processed */
3738     int iAbortFlag;     /* Mem address which causes query abort if positive */
3739     int groupBySort;    /* Rows come from source in GROUP BY order */
3740     int addrEnd;        /* End of processing for this SELECT */
3741 
3742     /* Remove any and all aliases between the result set and the
3743     ** GROUP BY clause.
3744     */
3745     if( pGroupBy ){
3746       int k;                        /* Loop counter */
3747       struct ExprList_item *pItem;  /* For looping over expression in a list */
3748 
3749       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3750         pItem->iAlias = 0;
3751       }
3752       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3753         pItem->iAlias = 0;
3754       }
3755     }
3756 
3757 
3758     /* Create a label to jump to when we want to abort the query */
3759     addrEnd = sqlite3VdbeMakeLabel(v);
3760 
3761     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3762     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3763     ** SELECT statement.
3764     */
3765     memset(&sNC, 0, sizeof(sNC));
3766     sNC.pParse = pParse;
3767     sNC.pSrcList = pTabList;
3768     sNC.pAggInfo = &sAggInfo;
3769     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3770     sAggInfo.pGroupBy = pGroupBy;
3771     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3772     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3773     if( pHaving ){
3774       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3775     }
3776     sAggInfo.nAccumulator = sAggInfo.nColumn;
3777     for(i=0; i<sAggInfo.nFunc; i++){
3778       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3779       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3780     }
3781     if( db->mallocFailed ) goto select_end;
3782 
3783     /* Processing for aggregates with GROUP BY is very different and
3784     ** much more complex than aggregates without a GROUP BY.
3785     */
3786     if( pGroupBy ){
3787       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3788       int j1;             /* A-vs-B comparision jump */
3789       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3790       int regOutputRow;   /* Return address register for output subroutine */
3791       int addrSetAbort;   /* Set the abort flag and return */
3792       int addrTopOfLoop;  /* Top of the input loop */
3793       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3794       int addrReset;      /* Subroutine for resetting the accumulator */
3795       int regReset;       /* Return address register for reset subroutine */
3796 
3797       /* If there is a GROUP BY clause we might need a sorting index to
3798       ** implement it.  Allocate that sorting index now.  If it turns out
3799       ** that we do not need it after all, the OpenEphemeral instruction
3800       ** will be converted into a Noop.
3801       */
3802       sAggInfo.sortingIdx = pParse->nTab++;
3803       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3804       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3805           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3806           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3807 
3808       /* Initialize memory locations used by GROUP BY aggregate processing
3809       */
3810       iUseFlag = ++pParse->nMem;
3811       iAbortFlag = ++pParse->nMem;
3812       regOutputRow = ++pParse->nMem;
3813       addrOutputRow = sqlite3VdbeMakeLabel(v);
3814       regReset = ++pParse->nMem;
3815       addrReset = sqlite3VdbeMakeLabel(v);
3816       iAMem = pParse->nMem + 1;
3817       pParse->nMem += pGroupBy->nExpr;
3818       iBMem = pParse->nMem + 1;
3819       pParse->nMem += pGroupBy->nExpr;
3820       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3821       VdbeComment((v, "clear abort flag"));
3822       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3823       VdbeComment((v, "indicate accumulator empty"));
3824 
3825       /* Begin a loop that will extract all source rows in GROUP BY order.
3826       ** This might involve two separate loops with an OP_Sort in between, or
3827       ** it might be a single loop that uses an index to extract information
3828       ** in the right order to begin with.
3829       */
3830       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3831       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3832       if( pWInfo==0 ) goto select_end;
3833       if( pGroupBy==0 ){
3834         /* The optimizer is able to deliver rows in group by order so
3835         ** we do not have to sort.  The OP_OpenEphemeral table will be
3836         ** cancelled later because we still need to use the pKeyInfo
3837         */
3838         pGroupBy = p->pGroupBy;
3839         groupBySort = 0;
3840       }else{
3841         /* Rows are coming out in undetermined order.  We have to push
3842         ** each row into a sorting index, terminate the first loop,
3843         ** then loop over the sorting index in order to get the output
3844         ** in sorted order
3845         */
3846         int regBase;
3847         int regRecord;
3848         int nCol;
3849         int nGroupBy;
3850 
3851         groupBySort = 1;
3852         nGroupBy = pGroupBy->nExpr;
3853         nCol = nGroupBy + 1;
3854         j = nGroupBy+1;
3855         for(i=0; i<sAggInfo.nColumn; i++){
3856           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3857             nCol++;
3858             j++;
3859           }
3860         }
3861         regBase = sqlite3GetTempRange(pParse, nCol);
3862         sqlite3ExprCacheClear(pParse);
3863         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3864         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3865         j = nGroupBy+1;
3866         for(i=0; i<sAggInfo.nColumn; i++){
3867           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3868           if( pCol->iSorterColumn>=j ){
3869             int r1 = j + regBase;
3870             int r2;
3871 
3872             r2 = sqlite3ExprCodeGetColumn(pParse,
3873                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3874             if( r1!=r2 ){
3875               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3876             }
3877             j++;
3878           }
3879         }
3880         regRecord = sqlite3GetTempReg(pParse);
3881         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3882         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3883         sqlite3ReleaseTempReg(pParse, regRecord);
3884         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3885         sqlite3WhereEnd(pWInfo);
3886         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3887         VdbeComment((v, "GROUP BY sort"));
3888         sAggInfo.useSortingIdx = 1;
3889         sqlite3ExprCacheClear(pParse);
3890       }
3891 
3892       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3893       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3894       ** Then compare the current GROUP BY terms against the GROUP BY terms
3895       ** from the previous row currently stored in a0, a1, a2...
3896       */
3897       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3898       sqlite3ExprCacheClear(pParse);
3899       for(j=0; j<pGroupBy->nExpr; j++){
3900         if( groupBySort ){
3901           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3902         }else{
3903           sAggInfo.directMode = 1;
3904           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3905         }
3906       }
3907       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3908                           (char*)pKeyInfo, P4_KEYINFO);
3909       j1 = sqlite3VdbeCurrentAddr(v);
3910       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3911 
3912       /* Generate code that runs whenever the GROUP BY changes.
3913       ** Changes in the GROUP BY are detected by the previous code
3914       ** block.  If there were no changes, this block is skipped.
3915       **
3916       ** This code copies current group by terms in b0,b1,b2,...
3917       ** over to a0,a1,a2.  It then calls the output subroutine
3918       ** and resets the aggregate accumulator registers in preparation
3919       ** for the next GROUP BY batch.
3920       */
3921       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3922       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3923       VdbeComment((v, "output one row"));
3924       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3925       VdbeComment((v, "check abort flag"));
3926       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3927       VdbeComment((v, "reset accumulator"));
3928 
3929       /* Update the aggregate accumulators based on the content of
3930       ** the current row
3931       */
3932       sqlite3VdbeJumpHere(v, j1);
3933       updateAccumulator(pParse, &sAggInfo);
3934       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3935       VdbeComment((v, "indicate data in accumulator"));
3936 
3937       /* End of the loop
3938       */
3939       if( groupBySort ){
3940         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3941       }else{
3942         sqlite3WhereEnd(pWInfo);
3943         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3944       }
3945 
3946       /* Output the final row of result
3947       */
3948       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3949       VdbeComment((v, "output final row"));
3950 
3951       /* Jump over the subroutines
3952       */
3953       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
3954 
3955       /* Generate a subroutine that outputs a single row of the result
3956       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3957       ** is less than or equal to zero, the subroutine is a no-op.  If
3958       ** the processing calls for the query to abort, this subroutine
3959       ** increments the iAbortFlag memory location before returning in
3960       ** order to signal the caller to abort.
3961       */
3962       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3963       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3964       VdbeComment((v, "set abort flag"));
3965       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3966       sqlite3VdbeResolveLabel(v, addrOutputRow);
3967       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3968       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3969       VdbeComment((v, "Groupby result generator entry point"));
3970       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3971       finalizeAggFunctions(pParse, &sAggInfo);
3972       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3973       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3974                       distinct, pDest,
3975                       addrOutputRow+1, addrSetAbort);
3976       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3977       VdbeComment((v, "end groupby result generator"));
3978 
3979       /* Generate a subroutine that will reset the group-by accumulator
3980       */
3981       sqlite3VdbeResolveLabel(v, addrReset);
3982       resetAccumulator(pParse, &sAggInfo);
3983       sqlite3VdbeAddOp1(v, OP_Return, regReset);
3984 
3985     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
3986     else {
3987       ExprList *pDel = 0;
3988 #ifndef SQLITE_OMIT_BTREECOUNT
3989       Table *pTab;
3990       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
3991         /* If isSimpleCount() returns a pointer to a Table structure, then
3992         ** the SQL statement is of the form:
3993         **
3994         **   SELECT count(*) FROM <tbl>
3995         **
3996         ** where the Table structure returned represents table <tbl>.
3997         **
3998         ** This statement is so common that it is optimized specially. The
3999         ** OP_Count instruction is executed either on the intkey table that
4000         ** contains the data for table <tbl> or on one of its indexes. It
4001         ** is better to execute the op on an index, as indexes are almost
4002         ** always spread across less pages than their corresponding tables.
4003         */
4004         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4005         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4006         Index *pIdx;                         /* Iterator variable */
4007         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4008         Index *pBest = 0;                    /* Best index found so far */
4009         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4010 
4011         sqlite3CodeVerifySchema(pParse, iDb);
4012         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4013 
4014         /* Search for the index that has the least amount of columns. If
4015         ** there is such an index, and it has less columns than the table
4016         ** does, then we can assume that it consumes less space on disk and
4017         ** will therefore be cheaper to scan to determine the query result.
4018         ** In this case set iRoot to the root page number of the index b-tree
4019         ** and pKeyInfo to the KeyInfo structure required to navigate the
4020         ** index.
4021         **
4022         ** In practice the KeyInfo structure will not be used. It is only
4023         ** passed to keep OP_OpenRead happy.
4024         */
4025         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4026           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4027             pBest = pIdx;
4028           }
4029         }
4030         if( pBest && pBest->nColumn<pTab->nCol ){
4031           iRoot = pBest->tnum;
4032           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4033         }
4034 
4035         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4036         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4037         if( pKeyInfo ){
4038           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4039         }
4040         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4041         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4042       }else
4043 #endif /* SQLITE_OMIT_BTREECOUNT */
4044       {
4045         /* Check if the query is of one of the following forms:
4046         **
4047         **   SELECT min(x) FROM ...
4048         **   SELECT max(x) FROM ...
4049         **
4050         ** If it is, then ask the code in where.c to attempt to sort results
4051         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4052         ** If where.c is able to produce results sorted in this order, then
4053         ** add vdbe code to break out of the processing loop after the
4054         ** first iteration (since the first iteration of the loop is
4055         ** guaranteed to operate on the row with the minimum or maximum
4056         ** value of x, the only row required).
4057         **
4058         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4059         ** modify behaviour as follows:
4060         **
4061         **   + If the query is a "SELECT min(x)", then the loop coded by
4062         **     where.c should not iterate over any values with a NULL value
4063         **     for x.
4064         **
4065         **   + The optimizer code in where.c (the thing that decides which
4066         **     index or indices to use) should place a different priority on
4067         **     satisfying the 'ORDER BY' clause than it does in other cases.
4068         **     Refer to code and comments in where.c for details.
4069         */
4070         ExprList *pMinMax = 0;
4071         u8 flag = minMaxQuery(p);
4072         if( flag ){
4073           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4074           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4075           pDel = pMinMax;
4076           if( pMinMax && !db->mallocFailed ){
4077             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4078             pMinMax->a[0].pExpr->op = TK_COLUMN;
4079           }
4080         }
4081 
4082         /* This case runs if the aggregate has no GROUP BY clause.  The
4083         ** processing is much simpler since there is only a single row
4084         ** of output.
4085         */
4086         resetAccumulator(pParse, &sAggInfo);
4087         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4088         if( pWInfo==0 ){
4089           sqlite3ExprListDelete(db, pDel);
4090           goto select_end;
4091         }
4092         updateAccumulator(pParse, &sAggInfo);
4093         if( !pMinMax && flag ){
4094           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4095           VdbeComment((v, "%s() by index",
4096                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4097         }
4098         sqlite3WhereEnd(pWInfo);
4099         finalizeAggFunctions(pParse, &sAggInfo);
4100       }
4101 
4102       pOrderBy = 0;
4103       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4104       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4105                       pDest, addrEnd, addrEnd);
4106       sqlite3ExprListDelete(db, pDel);
4107     }
4108     sqlite3VdbeResolveLabel(v, addrEnd);
4109 
4110   } /* endif aggregate query */
4111 
4112   /* If there is an ORDER BY clause, then we need to sort the results
4113   ** and send them to the callback one by one.
4114   */
4115   if( pOrderBy ){
4116     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4117   }
4118 
4119   /* Jump here to skip this query
4120   */
4121   sqlite3VdbeResolveLabel(v, iEnd);
4122 
4123   /* The SELECT was successfully coded.   Set the return code to 0
4124   ** to indicate no errors.
4125   */
4126   rc = 0;
4127 
4128   /* Control jumps to here if an error is encountered above, or upon
4129   ** successful coding of the SELECT.
4130   */
4131 select_end:
4132 
4133   /* Identify column names if results of the SELECT are to be output.
4134   */
4135   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4136     generateColumnNames(pParse, pTabList, pEList);
4137   }
4138 
4139   sqlite3DbFree(db, sAggInfo.aCol);
4140   sqlite3DbFree(db, sAggInfo.aFunc);
4141   return rc;
4142 }
4143 
4144 #if defined(SQLITE_DEBUG)
4145 /*
4146 *******************************************************************************
4147 ** The following code is used for testing and debugging only.  The code
4148 ** that follows does not appear in normal builds.
4149 **
4150 ** These routines are used to print out the content of all or part of a
4151 ** parse structures such as Select or Expr.  Such printouts are useful
4152 ** for helping to understand what is happening inside the code generator
4153 ** during the execution of complex SELECT statements.
4154 **
4155 ** These routine are not called anywhere from within the normal
4156 ** code base.  Then are intended to be called from within the debugger
4157 ** or from temporary "printf" statements inserted for debugging.
4158 */
4159 void sqlite3PrintExpr(Expr *p){
4160   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4161     sqlite3DebugPrintf("(%s", p->u.zToken);
4162   }else{
4163     sqlite3DebugPrintf("(%d", p->op);
4164   }
4165   if( p->pLeft ){
4166     sqlite3DebugPrintf(" ");
4167     sqlite3PrintExpr(p->pLeft);
4168   }
4169   if( p->pRight ){
4170     sqlite3DebugPrintf(" ");
4171     sqlite3PrintExpr(p->pRight);
4172   }
4173   sqlite3DebugPrintf(")");
4174 }
4175 void sqlite3PrintExprList(ExprList *pList){
4176   int i;
4177   for(i=0; i<pList->nExpr; i++){
4178     sqlite3PrintExpr(pList->a[i].pExpr);
4179     if( i<pList->nExpr-1 ){
4180       sqlite3DebugPrintf(", ");
4181     }
4182   }
4183 }
4184 void sqlite3PrintSelect(Select *p, int indent){
4185   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4186   sqlite3PrintExprList(p->pEList);
4187   sqlite3DebugPrintf("\n");
4188   if( p->pSrc ){
4189     char *zPrefix;
4190     int i;
4191     zPrefix = "FROM";
4192     for(i=0; i<p->pSrc->nSrc; i++){
4193       struct SrcList_item *pItem = &p->pSrc->a[i];
4194       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4195       zPrefix = "";
4196       if( pItem->pSelect ){
4197         sqlite3DebugPrintf("(\n");
4198         sqlite3PrintSelect(pItem->pSelect, indent+10);
4199         sqlite3DebugPrintf("%*s)", indent+8, "");
4200       }else if( pItem->zName ){
4201         sqlite3DebugPrintf("%s", pItem->zName);
4202       }
4203       if( pItem->pTab ){
4204         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4205       }
4206       if( pItem->zAlias ){
4207         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4208       }
4209       if( i<p->pSrc->nSrc-1 ){
4210         sqlite3DebugPrintf(",");
4211       }
4212       sqlite3DebugPrintf("\n");
4213     }
4214   }
4215   if( p->pWhere ){
4216     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4217     sqlite3PrintExpr(p->pWhere);
4218     sqlite3DebugPrintf("\n");
4219   }
4220   if( p->pGroupBy ){
4221     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4222     sqlite3PrintExprList(p->pGroupBy);
4223     sqlite3DebugPrintf("\n");
4224   }
4225   if( p->pHaving ){
4226     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4227     sqlite3PrintExpr(p->pHaving);
4228     sqlite3DebugPrintf("\n");
4229   }
4230   if( p->pOrderBy ){
4231     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4232     sqlite3PrintExprList(p->pOrderBy);
4233     sqlite3DebugPrintf("\n");
4234   }
4235 }
4236 /* End of the structure debug printing code
4237 *****************************************************************************/
4238 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4239