1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 ** 208 ** These are the valid join types: 209 ** 210 ** 211 ** pA pB pC Return Value 212 ** ------- ----- ----- ------------ 213 ** CROSS - - JT_CROSS 214 ** INNER - - JT_INNER 215 ** LEFT - - JT_LEFT|JT_OUTER 216 ** LEFT OUTER - JT_LEFT|JT_OUTER 217 ** RIGHT - - JT_RIGHT|JT_OUTER 218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** NATURAL INNER - JT_NATURAL|JT_INNER 222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 228 ** 229 ** To preserve historical compatibly, SQLite also accepts a variety 230 ** of other non-standard and in many cases non-sensical join types. 231 ** This routine makes as much sense at it can from the nonsense join 232 ** type and returns a result. Examples of accepted nonsense join types 233 ** include but are not limited to: 234 ** 235 ** INNER CROSS JOIN -> same as JOIN 236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 237 ** OUTER LEFT JOIN -> same as LEFT JOIN 238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 239 ** LEFT RIGHT JOIN -> same as FULL JOIN 240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 241 ** CROSS CROSS CROSS JOIN -> same as JOIN 242 ** 243 ** The only restrictions on the join type name are: 244 ** 245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 246 ** or "FULL". 247 ** 248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 249 ** or "FULL". 250 ** 251 ** * If "OUTER" is present then there must also be one of 252 ** "LEFT", "RIGHT", or "FULL" 253 */ 254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 255 int jointype = 0; 256 Token *apAll[3]; 257 Token *p; 258 /* 0123456789 123456789 123456789 123 */ 259 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 260 static const struct { 261 u8 i; /* Beginning of keyword text in zKeyText[] */ 262 u8 nChar; /* Length of the keyword in characters */ 263 u8 code; /* Join type mask */ 264 } aKeyword[] = { 265 /* (0) natural */ { 0, 7, JT_NATURAL }, 266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 267 /* (2) outer */ { 10, 5, JT_OUTER }, 268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 270 /* (5) inner */ { 23, 5, JT_INNER }, 271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 272 }; 273 int i, j; 274 apAll[0] = pA; 275 apAll[1] = pB; 276 apAll[2] = pC; 277 for(i=0; i<3 && apAll[i]; i++){ 278 p = apAll[i]; 279 for(j=0; j<ArraySize(aKeyword); j++){ 280 if( p->n==aKeyword[j].nChar 281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 282 jointype |= aKeyword[j].code; 283 break; 284 } 285 } 286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 287 if( j>=ArraySize(aKeyword) ){ 288 jointype |= JT_ERROR; 289 break; 290 } 291 } 292 if( 293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 294 (jointype & JT_ERROR)!=0 || 295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 296 ){ 297 const char *zSp1 = " "; 298 const char *zSp2 = " "; 299 if( pB==0 ){ zSp1++; } 300 if( pC==0 ){ zSp2++; } 301 sqlite3ErrorMsg(pParse, "unknown join type: " 302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 303 jointype = JT_INNER; 304 } 305 return jointype; 306 } 307 308 /* 309 ** Return the index of a column in a table. Return -1 if the column 310 ** is not contained in the table. 311 */ 312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 313 int i; 314 u8 h = sqlite3StrIHash(zCol); 315 Column *pCol; 316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 318 } 319 return -1; 320 } 321 322 /* 323 ** Mark a subquery result column as having been used. 324 */ 325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 326 assert( pItem!=0 ); 327 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 328 if( pItem->fg.isNestedFrom ){ 329 ExprList *pResults; 330 assert( pItem->pSelect!=0 ); 331 pResults = pItem->pSelect->pEList; 332 assert( pResults!=0 ); 333 assert( iCol>=0 && iCol<pResults->nExpr ); 334 pResults->a[iCol].fg.bUsed = 1; 335 } 336 } 337 338 /* 339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 340 ** table that has a column named zCol. The search is left-to-right. 341 ** The first match found is returned. 342 ** 343 ** When found, set *piTab and *piCol to the table index and column index 344 ** of the matching column and return TRUE. 345 ** 346 ** If not found, return FALSE. 347 */ 348 static int tableAndColumnIndex( 349 SrcList *pSrc, /* Array of tables to search */ 350 int iStart, /* First member of pSrc->a[] to check */ 351 int iEnd, /* Last member of pSrc->a[] to check */ 352 const char *zCol, /* Name of the column we are looking for */ 353 int *piTab, /* Write index of pSrc->a[] here */ 354 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 355 int bIgnoreHidden /* Ignore hidden columns */ 356 ){ 357 int i; /* For looping over tables in pSrc */ 358 int iCol; /* Index of column matching zCol */ 359 360 assert( iEnd<pSrc->nSrc ); 361 assert( iStart>=0 ); 362 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 363 364 for(i=iStart; i<=iEnd; i++){ 365 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 366 if( iCol>=0 367 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 368 ){ 369 if( piTab ){ 370 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 371 *piTab = i; 372 *piCol = iCol; 373 } 374 return 1; 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Set the EP_OuterON property on all terms of the given expression. 382 ** And set the Expr.w.iJoin to iTable for every term in the 383 ** expression. 384 ** 385 ** The EP_OuterON property is used on terms of an expression to tell 386 ** the OUTER JOIN processing logic that this term is part of the 387 ** join restriction specified in the ON or USING clause and not a part 388 ** of the more general WHERE clause. These terms are moved over to the 389 ** WHERE clause during join processing but we need to remember that they 390 ** originated in the ON or USING clause. 391 ** 392 ** The Expr.w.iJoin tells the WHERE clause processing that the 393 ** expression depends on table w.iJoin even if that table is not 394 ** explicitly mentioned in the expression. That information is needed 395 ** for cases like this: 396 ** 397 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 398 ** 399 ** The where clause needs to defer the handling of the t1.x=5 400 ** term until after the t2 loop of the join. In that way, a 401 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 402 ** defer the handling of t1.x=5, it will be processed immediately 403 ** after the t1 loop and rows with t1.x!=5 will never appear in 404 ** the output, which is incorrect. 405 */ 406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 407 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); 408 while( p ){ 409 ExprSetProperty(p, joinFlag); 410 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 411 ExprSetVVAProperty(p, EP_NoReduce); 412 p->w.iJoin = iTable; 413 if( p->op==TK_FUNCTION ){ 414 assert( ExprUseXList(p) ); 415 if( p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 419 } 420 } 421 } 422 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 423 p = p->pRight; 424 } 425 } 426 427 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN 428 ** is simplified into an ordinary JOIN, and when an ON expression is 429 ** "pushed down" into the WHERE clause of a subquery. 430 ** 431 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into 432 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then 433 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. 434 ** 435 ** If nullable is true, that means that Expr p might evaluate to NULL even 436 ** if it is a reference to a NOT NULL column. This can happen, for example, 437 ** if the table that p references is on the left side of a RIGHT JOIN. 438 ** If nullable is true, then take care to not remove the EP_CanBeNull bit. 439 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c 440 */ 441 static void unsetJoinExpr(Expr *p, int iTable, int nullable){ 442 while( p ){ 443 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ 444 ExprClearProperty(p, EP_OuterON|EP_InnerON); 445 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); 446 } 447 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ 448 ExprClearProperty(p, EP_CanBeNull); 449 } 450 if( p->op==TK_FUNCTION ){ 451 assert( ExprUseXList(p) ); 452 if( p->x.pList ){ 453 int i; 454 for(i=0; i<p->x.pList->nExpr; i++){ 455 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); 456 } 457 } 458 } 459 unsetJoinExpr(p->pLeft, iTable, nullable); 460 p = p->pRight; 461 } 462 } 463 464 /* 465 ** This routine processes the join information for a SELECT statement. 466 ** 467 ** * A NATURAL join is converted into a USING join. After that, we 468 ** do not need to be concerned with NATURAL joins and we only have 469 ** think about USING joins. 470 ** 471 ** * ON and USING clauses result in extra terms being added to the 472 ** WHERE clause to enforce the specified constraints. The extra 473 ** WHERE clause terms will be tagged with EP_OuterON or 474 ** EP_InnerON so that we know that they originated in ON/USING. 475 ** 476 ** The terms of a FROM clause are contained in the Select.pSrc structure. 477 ** The left most table is the first entry in Select.pSrc. The right-most 478 ** table is the last entry. The join operator is held in the entry to 479 ** the right. Thus entry 1 contains the join operator for the join between 480 ** entries 0 and 1. Any ON or USING clauses associated with the join are 481 ** also attached to the right entry. 482 ** 483 ** This routine returns the number of errors encountered. 484 */ 485 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 486 SrcList *pSrc; /* All tables in the FROM clause */ 487 int i, j; /* Loop counters */ 488 SrcItem *pLeft; /* Left table being joined */ 489 SrcItem *pRight; /* Right table being joined */ 490 491 pSrc = p->pSrc; 492 pLeft = &pSrc->a[0]; 493 pRight = &pLeft[1]; 494 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 495 Table *pRightTab = pRight->pTab; 496 u32 joinType; 497 498 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 499 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; 500 501 /* If this is a NATURAL join, synthesize an approprate USING clause 502 ** to specify which columns should be joined. 503 */ 504 if( pRight->fg.jointype & JT_NATURAL ){ 505 IdList *pUsing = 0; 506 if( pRight->fg.isUsing || pRight->u3.pOn ){ 507 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 508 "an ON or USING clause", 0); 509 return 1; 510 } 511 for(j=0; j<pRightTab->nCol; j++){ 512 char *zName; /* Name of column in the right table */ 513 514 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 515 zName = pRightTab->aCol[j].zCnName; 516 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 517 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 518 if( pUsing ){ 519 assert( pUsing->nId>0 ); 520 assert( pUsing->a[pUsing->nId-1].zName==0 ); 521 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 522 } 523 } 524 } 525 if( pUsing ){ 526 pRight->fg.isUsing = 1; 527 pRight->fg.isSynthUsing = 1; 528 pRight->u3.pUsing = pUsing; 529 } 530 if( pParse->nErr ) return 1; 531 } 532 533 /* Create extra terms on the WHERE clause for each column named 534 ** in the USING clause. Example: If the two tables to be joined are 535 ** A and B and the USING clause names X, Y, and Z, then add this 536 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 537 ** Report an error if any column mentioned in the USING clause is 538 ** not contained in both tables to be joined. 539 */ 540 if( pRight->fg.isUsing ){ 541 IdList *pList = pRight->u3.pUsing; 542 sqlite3 *db = pParse->db; 543 assert( pList!=0 ); 544 for(j=0; j<pList->nId; j++){ 545 char *zName; /* Name of the term in the USING clause */ 546 int iLeft; /* Table on the left with matching column name */ 547 int iLeftCol; /* Column number of matching column on the left */ 548 int iRightCol; /* Column number of matching column on the right */ 549 Expr *pE1; /* Reference to the column on the LEFT of the join */ 550 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 551 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 552 553 zName = pList->a[j].zName; 554 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 555 if( iRightCol<0 556 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 557 pRight->fg.isSynthUsing)==0 558 ){ 559 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 560 "not present in both tables", zName); 561 return 1; 562 } 563 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 564 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 565 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 566 /* This branch runs if the query contains one or more RIGHT or FULL 567 ** JOINs. If only a single table on the left side of this join 568 ** contains the zName column, then this branch is a no-op. 569 ** But if there are two or more tables on the left side 570 ** of the join, construct a coalesce() function that gathers all 571 ** such tables. Raise an error if more than one of those references 572 ** to zName is not also within a prior USING clause. 573 ** 574 ** We really ought to raise an error if there are two or more 575 ** non-USING references to zName on the left of an INNER or LEFT 576 ** JOIN. But older versions of SQLite do not do that, so we avoid 577 ** adding a new error so as to not break legacy applications. 578 */ 579 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 580 static const Token tkCoalesce = { "coalesce", 8 }; 581 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 582 pRight->fg.isSynthUsing)!=0 ){ 583 if( pSrc->a[iLeft].fg.isUsing==0 584 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 585 ){ 586 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 587 zName); 588 break; 589 } 590 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 591 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 592 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 593 } 594 if( pFuncArgs ){ 595 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 596 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 597 } 598 } 599 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 600 sqlite3SrcItemColumnUsed(pRight, iRightCol); 601 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 602 assert( pE2!=0 || pEq==0 ); 603 if( pEq ){ 604 ExprSetProperty(pEq, joinType); 605 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 606 ExprSetVVAProperty(pEq, EP_NoReduce); 607 pEq->w.iJoin = pE2->iTable; 608 } 609 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 610 } 611 } 612 613 /* Add the ON clause to the end of the WHERE clause, connected by 614 ** an AND operator. 615 */ 616 else if( pRight->u3.pOn ){ 617 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 619 pRight->u3.pOn = 0; 620 pRight->fg.isOn = 1; 621 } 622 } 623 return 0; 624 } 625 626 /* 627 ** An instance of this object holds information (beyond pParse and pSelect) 628 ** needed to load the next result row that is to be added to the sorter. 629 */ 630 typedef struct RowLoadInfo RowLoadInfo; 631 struct RowLoadInfo { 632 int regResult; /* Store results in array of registers here */ 633 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 635 ExprList *pExtra; /* Extra columns needed by sorter refs */ 636 int regExtraResult; /* Where to load the extra columns */ 637 #endif 638 }; 639 640 /* 641 ** This routine does the work of loading query data into an array of 642 ** registers so that it can be added to the sorter. 643 */ 644 static void innerLoopLoadRow( 645 Parse *pParse, /* Statement under construction */ 646 Select *pSelect, /* The query being coded */ 647 RowLoadInfo *pInfo /* Info needed to complete the row load */ 648 ){ 649 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 650 0, pInfo->ecelFlags); 651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 652 if( pInfo->pExtra ){ 653 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 654 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 655 } 656 #endif 657 } 658 659 /* 660 ** Code the OP_MakeRecord instruction that generates the entry to be 661 ** added into the sorter. 662 ** 663 ** Return the register in which the result is stored. 664 */ 665 static int makeSorterRecord( 666 Parse *pParse, 667 SortCtx *pSort, 668 Select *pSelect, 669 int regBase, 670 int nBase 671 ){ 672 int nOBSat = pSort->nOBSat; 673 Vdbe *v = pParse->pVdbe; 674 int regOut = ++pParse->nMem; 675 if( pSort->pDeferredRowLoad ){ 676 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 677 } 678 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 679 return regOut; 680 } 681 682 /* 683 ** Generate code that will push the record in registers regData 684 ** through regData+nData-1 onto the sorter. 685 */ 686 static void pushOntoSorter( 687 Parse *pParse, /* Parser context */ 688 SortCtx *pSort, /* Information about the ORDER BY clause */ 689 Select *pSelect, /* The whole SELECT statement */ 690 int regData, /* First register holding data to be sorted */ 691 int regOrigData, /* First register holding data before packing */ 692 int nData, /* Number of elements in the regData data array */ 693 int nPrefixReg /* No. of reg prior to regData available for use */ 694 ){ 695 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 696 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 697 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 698 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 699 int regBase; /* Regs for sorter record */ 700 int regRecord = 0; /* Assembled sorter record */ 701 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 702 int op; /* Opcode to add sorter record to sorter */ 703 int iLimit; /* LIMIT counter */ 704 int iSkip = 0; /* End of the sorter insert loop */ 705 706 assert( bSeq==0 || bSeq==1 ); 707 708 /* Three cases: 709 ** (1) The data to be sorted has already been packed into a Record 710 ** by a prior OP_MakeRecord. In this case nData==1 and regData 711 ** will be completely unrelated to regOrigData. 712 ** (2) All output columns are included in the sort record. In that 713 ** case regData==regOrigData. 714 ** (3) Some output columns are omitted from the sort record due to 715 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 716 ** SQLITE_ECEL_OMITREF optimization, or due to the 717 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 718 ** regOrigData is 0 to prevent this routine from trying to copy 719 ** values that might not yet exist. 720 */ 721 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 722 723 if( nPrefixReg ){ 724 assert( nPrefixReg==nExpr+bSeq ); 725 regBase = regData - nPrefixReg; 726 }else{ 727 regBase = pParse->nMem + 1; 728 pParse->nMem += nBase; 729 } 730 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 731 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 732 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 733 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 734 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 735 if( bSeq ){ 736 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 737 } 738 if( nPrefixReg==0 && nData>0 ){ 739 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 740 } 741 if( nOBSat>0 ){ 742 int regPrevKey; /* The first nOBSat columns of the previous row */ 743 int addrFirst; /* Address of the OP_IfNot opcode */ 744 int addrJmp; /* Address of the OP_Jump opcode */ 745 VdbeOp *pOp; /* Opcode that opens the sorter */ 746 int nKey; /* Number of sorting key columns, including OP_Sequence */ 747 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 748 749 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 750 regPrevKey = pParse->nMem+1; 751 pParse->nMem += pSort->nOBSat; 752 nKey = nExpr - pSort->nOBSat + bSeq; 753 if( bSeq ){ 754 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 755 }else{ 756 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 757 } 758 VdbeCoverage(v); 759 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 760 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 761 if( pParse->db->mallocFailed ) return; 762 pOp->p2 = nKey + nData; 763 pKI = pOp->p4.pKeyInfo; 764 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 765 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 766 testcase( pKI->nAllField > pKI->nKeyField+2 ); 767 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 768 pKI->nAllField-pKI->nKeyField-1); 769 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 770 addrJmp = sqlite3VdbeCurrentAddr(v); 771 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 772 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 773 pSort->regReturn = ++pParse->nMem; 774 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 775 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 776 if( iLimit ){ 777 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 778 VdbeCoverage(v); 779 } 780 sqlite3VdbeJumpHere(v, addrFirst); 781 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 782 sqlite3VdbeJumpHere(v, addrJmp); 783 } 784 if( iLimit ){ 785 /* At this point the values for the new sorter entry are stored 786 ** in an array of registers. They need to be composed into a record 787 ** and inserted into the sorter if either (a) there are currently 788 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 789 ** the largest record currently in the sorter. If (b) is true and there 790 ** are already LIMIT+OFFSET items in the sorter, delete the largest 791 ** entry before inserting the new one. This way there are never more 792 ** than LIMIT+OFFSET items in the sorter. 793 ** 794 ** If the new record does not need to be inserted into the sorter, 795 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 796 ** value is not zero, then it is a label of where to jump. Otherwise, 797 ** just bypass the row insert logic. See the header comment on the 798 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 799 */ 800 int iCsr = pSort->iECursor; 801 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 802 VdbeCoverage(v); 803 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 804 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 805 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 806 VdbeCoverage(v); 807 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 808 } 809 if( regRecord==0 ){ 810 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 811 } 812 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 813 op = OP_SorterInsert; 814 }else{ 815 op = OP_IdxInsert; 816 } 817 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 818 regBase+nOBSat, nBase-nOBSat); 819 if( iSkip ){ 820 sqlite3VdbeChangeP2(v, iSkip, 821 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 822 } 823 } 824 825 /* 826 ** Add code to implement the OFFSET 827 */ 828 static void codeOffset( 829 Vdbe *v, /* Generate code into this VM */ 830 int iOffset, /* Register holding the offset counter */ 831 int iContinue /* Jump here to skip the current record */ 832 ){ 833 if( iOffset>0 ){ 834 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 835 VdbeComment((v, "OFFSET")); 836 } 837 } 838 839 /* 840 ** Add code that will check to make sure the array of registers starting at 841 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 842 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 843 ** are available. Which is used depends on the value of parameter eTnctType, 844 ** as follows: 845 ** 846 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 847 ** Build an ephemeral table that contains all entries seen before and 848 ** skip entries which have been seen before. 849 ** 850 ** Parameter iTab is the cursor number of an ephemeral table that must 851 ** be opened before the VM code generated by this routine is executed. 852 ** The ephemeral cursor table is queried for a record identical to the 853 ** record formed by the current array of registers. If one is found, 854 ** jump to VM address addrRepeat. Otherwise, insert a new record into 855 ** the ephemeral cursor and proceed. 856 ** 857 ** The returned value in this case is a copy of parameter iTab. 858 ** 859 ** WHERE_DISTINCT_ORDERED: 860 ** In this case rows are being delivered sorted order. The ephermal 861 ** table is not required. Instead, the current set of values 862 ** is compared against previous row. If they match, the new row 863 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 864 ** the VM program proceeds with processing the new row. 865 ** 866 ** The returned value in this case is the register number of the first 867 ** in an array of registers used to store the previous result row so that 868 ** it can be compared to the next. The caller must ensure that this 869 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 870 ** will take care of this initialization.) 871 ** 872 ** WHERE_DISTINCT_UNIQUE: 873 ** In this case it has already been determined that the rows are distinct. 874 ** No special action is required. The return value is zero. 875 ** 876 ** Parameter pEList is the list of expressions used to generated the 877 ** contents of each row. It is used by this routine to determine (a) 878 ** how many elements there are in the array of registers and (b) the 879 ** collation sequences that should be used for the comparisons if 880 ** eTnctType is WHERE_DISTINCT_ORDERED. 881 */ 882 static int codeDistinct( 883 Parse *pParse, /* Parsing and code generating context */ 884 int eTnctType, /* WHERE_DISTINCT_* value */ 885 int iTab, /* A sorting index used to test for distinctness */ 886 int addrRepeat, /* Jump to here if not distinct */ 887 ExprList *pEList, /* Expression for each element */ 888 int regElem /* First element */ 889 ){ 890 int iRet = 0; 891 int nResultCol = pEList->nExpr; 892 Vdbe *v = pParse->pVdbe; 893 894 switch( eTnctType ){ 895 case WHERE_DISTINCT_ORDERED: { 896 int i; 897 int iJump; /* Jump destination */ 898 int regPrev; /* Previous row content */ 899 900 /* Allocate space for the previous row */ 901 iRet = regPrev = pParse->nMem+1; 902 pParse->nMem += nResultCol; 903 904 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 905 for(i=0; i<nResultCol; i++){ 906 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 907 if( i<nResultCol-1 ){ 908 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 909 VdbeCoverage(v); 910 }else{ 911 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 912 VdbeCoverage(v); 913 } 914 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 915 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 916 } 917 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 918 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 919 break; 920 } 921 922 case WHERE_DISTINCT_UNIQUE: { 923 /* nothing to do */ 924 break; 925 } 926 927 default: { 928 int r1 = sqlite3GetTempReg(pParse); 929 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 930 VdbeCoverage(v); 931 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 932 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 933 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 934 sqlite3ReleaseTempReg(pParse, r1); 935 iRet = iTab; 936 break; 937 } 938 } 939 940 return iRet; 941 } 942 943 /* 944 ** This routine runs after codeDistinct(). It makes necessary 945 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 946 ** routine made use of. This processing must be done separately since 947 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 948 ** laid down. 949 ** 950 ** WHERE_DISTINCT_NOOP: 951 ** WHERE_DISTINCT_UNORDERED: 952 ** 953 ** No adjustments necessary. This function is a no-op. 954 ** 955 ** WHERE_DISTINCT_UNIQUE: 956 ** 957 ** The ephemeral table is not needed. So change the 958 ** OP_OpenEphemeral opcode into an OP_Noop. 959 ** 960 ** WHERE_DISTINCT_ORDERED: 961 ** 962 ** The ephemeral table is not needed. But we do need register 963 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 964 ** into an OP_Null on the iVal register. 965 */ 966 static void fixDistinctOpenEph( 967 Parse *pParse, /* Parsing and code generating context */ 968 int eTnctType, /* WHERE_DISTINCT_* value */ 969 int iVal, /* Value returned by codeDistinct() */ 970 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 971 ){ 972 if( pParse->nErr==0 973 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 974 ){ 975 Vdbe *v = pParse->pVdbe; 976 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 977 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 978 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 979 } 980 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 981 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 982 ** bit on the first register of the previous value. This will cause the 983 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 984 ** the loop even if the first row is all NULLs. */ 985 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 986 pOp->opcode = OP_Null; 987 pOp->p1 = 1; 988 pOp->p2 = iVal; 989 } 990 } 991 } 992 993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 994 /* 995 ** This function is called as part of inner-loop generation for a SELECT 996 ** statement with an ORDER BY that is not optimized by an index. It 997 ** determines the expressions, if any, that the sorter-reference 998 ** optimization should be used for. The sorter-reference optimization 999 ** is used for SELECT queries like: 1000 ** 1001 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 1002 ** 1003 ** If the optimization is used for expression "bigblob", then instead of 1004 ** storing values read from that column in the sorter records, the PK of 1005 ** the row from table t1 is stored instead. Then, as records are extracted from 1006 ** the sorter to return to the user, the required value of bigblob is 1007 ** retrieved directly from table t1. If the values are very large, this 1008 ** can be more efficient than storing them directly in the sorter records. 1009 ** 1010 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList 1011 ** for which the sorter-reference optimization should be enabled. 1012 ** Additionally, the pSort->aDefer[] array is populated with entries 1013 ** for all cursors required to evaluate all selected expressions. Finally. 1014 ** output variable (*ppExtra) is set to an expression list containing 1015 ** expressions for all extra PK values that should be stored in the 1016 ** sorter records. 1017 */ 1018 static void selectExprDefer( 1019 Parse *pParse, /* Leave any error here */ 1020 SortCtx *pSort, /* Sorter context */ 1021 ExprList *pEList, /* Expressions destined for sorter */ 1022 ExprList **ppExtra /* Expressions to append to sorter record */ 1023 ){ 1024 int i; 1025 int nDefer = 0; 1026 ExprList *pExtra = 0; 1027 for(i=0; i<pEList->nExpr; i++){ 1028 struct ExprList_item *pItem = &pEList->a[i]; 1029 if( pItem->u.x.iOrderByCol==0 ){ 1030 Expr *pExpr = pItem->pExpr; 1031 Table *pTab; 1032 if( pExpr->op==TK_COLUMN 1033 && pExpr->iColumn>=0 1034 && ALWAYS( ExprUseYTab(pExpr) ) 1035 && (pTab = pExpr->y.pTab)!=0 1036 && IsOrdinaryTable(pTab) 1037 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1038 ){ 1039 int j; 1040 for(j=0; j<nDefer; j++){ 1041 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1042 } 1043 if( j==nDefer ){ 1044 if( nDefer==ArraySize(pSort->aDefer) ){ 1045 continue; 1046 }else{ 1047 int nKey = 1; 1048 int k; 1049 Index *pPk = 0; 1050 if( !HasRowid(pTab) ){ 1051 pPk = sqlite3PrimaryKeyIndex(pTab); 1052 nKey = pPk->nKeyCol; 1053 } 1054 for(k=0; k<nKey; k++){ 1055 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1056 if( pNew ){ 1057 pNew->iTable = pExpr->iTable; 1058 assert( ExprUseYTab(pNew) ); 1059 pNew->y.pTab = pExpr->y.pTab; 1060 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1061 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1062 } 1063 } 1064 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1065 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1066 pSort->aDefer[nDefer].nKey = nKey; 1067 nDefer++; 1068 } 1069 } 1070 pItem->fg.bSorterRef = 1; 1071 } 1072 } 1073 } 1074 pSort->nDefer = (u8)nDefer; 1075 *ppExtra = pExtra; 1076 } 1077 #endif 1078 1079 /* 1080 ** This routine generates the code for the inside of the inner loop 1081 ** of a SELECT. 1082 ** 1083 ** If srcTab is negative, then the p->pEList expressions 1084 ** are evaluated in order to get the data for this row. If srcTab is 1085 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1086 ** to get the number of columns and the collation sequence for each column. 1087 */ 1088 static void selectInnerLoop( 1089 Parse *pParse, /* The parser context */ 1090 Select *p, /* The complete select statement being coded */ 1091 int srcTab, /* Pull data from this table if non-negative */ 1092 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1093 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1094 SelectDest *pDest, /* How to dispose of the results */ 1095 int iContinue, /* Jump here to continue with next row */ 1096 int iBreak /* Jump here to break out of the inner loop */ 1097 ){ 1098 Vdbe *v = pParse->pVdbe; 1099 int i; 1100 int hasDistinct; /* True if the DISTINCT keyword is present */ 1101 int eDest = pDest->eDest; /* How to dispose of results */ 1102 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1103 int nResultCol; /* Number of result columns */ 1104 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1105 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1106 1107 /* Usually, regResult is the first cell in an array of memory cells 1108 ** containing the current result row. In this case regOrig is set to the 1109 ** same value. However, if the results are being sent to the sorter, the 1110 ** values for any expressions that are also part of the sort-key are omitted 1111 ** from this array. In this case regOrig is set to zero. */ 1112 int regResult; /* Start of memory holding current results */ 1113 int regOrig; /* Start of memory holding full result (or 0) */ 1114 1115 assert( v ); 1116 assert( p->pEList!=0 ); 1117 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1118 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1119 if( pSort==0 && !hasDistinct ){ 1120 assert( iContinue!=0 ); 1121 codeOffset(v, p->iOffset, iContinue); 1122 } 1123 1124 /* Pull the requested columns. 1125 */ 1126 nResultCol = p->pEList->nExpr; 1127 1128 if( pDest->iSdst==0 ){ 1129 if( pSort ){ 1130 nPrefixReg = pSort->pOrderBy->nExpr; 1131 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1132 pParse->nMem += nPrefixReg; 1133 } 1134 pDest->iSdst = pParse->nMem+1; 1135 pParse->nMem += nResultCol; 1136 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1137 /* This is an error condition that can result, for example, when a SELECT 1138 ** on the right-hand side of an INSERT contains more result columns than 1139 ** there are columns in the table on the left. The error will be caught 1140 ** and reported later. But we need to make sure enough memory is allocated 1141 ** to avoid other spurious errors in the meantime. */ 1142 pParse->nMem += nResultCol; 1143 } 1144 pDest->nSdst = nResultCol; 1145 regOrig = regResult = pDest->iSdst; 1146 if( srcTab>=0 ){ 1147 for(i=0; i<nResultCol; i++){ 1148 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1149 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1150 } 1151 }else if( eDest!=SRT_Exists ){ 1152 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1153 ExprList *pExtra = 0; 1154 #endif 1155 /* If the destination is an EXISTS(...) expression, the actual 1156 ** values returned by the SELECT are not required. 1157 */ 1158 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1159 ExprList *pEList; 1160 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1161 ecelFlags = SQLITE_ECEL_DUP; 1162 }else{ 1163 ecelFlags = 0; 1164 } 1165 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1166 /* For each expression in p->pEList that is a copy of an expression in 1167 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1168 ** iOrderByCol value to one more than the index of the ORDER BY 1169 ** expression within the sort-key that pushOntoSorter() will generate. 1170 ** This allows the p->pEList field to be omitted from the sorted record, 1171 ** saving space and CPU cycles. */ 1172 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1173 1174 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1175 int j; 1176 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1177 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1178 } 1179 } 1180 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1181 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1182 if( pExtra && pParse->db->mallocFailed==0 ){ 1183 /* If there are any extra PK columns to add to the sorter records, 1184 ** allocate extra memory cells and adjust the OpenEphemeral 1185 ** instruction to account for the larger records. This is only 1186 ** required if there are one or more WITHOUT ROWID tables with 1187 ** composite primary keys in the SortCtx.aDefer[] array. */ 1188 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1189 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1190 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1191 pParse->nMem += pExtra->nExpr; 1192 } 1193 #endif 1194 1195 /* Adjust nResultCol to account for columns that are omitted 1196 ** from the sorter by the optimizations in this branch */ 1197 pEList = p->pEList; 1198 for(i=0; i<pEList->nExpr; i++){ 1199 if( pEList->a[i].u.x.iOrderByCol>0 1200 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1201 || pEList->a[i].fg.bSorterRef 1202 #endif 1203 ){ 1204 nResultCol--; 1205 regOrig = 0; 1206 } 1207 } 1208 1209 testcase( regOrig ); 1210 testcase( eDest==SRT_Set ); 1211 testcase( eDest==SRT_Mem ); 1212 testcase( eDest==SRT_Coroutine ); 1213 testcase( eDest==SRT_Output ); 1214 assert( eDest==SRT_Set || eDest==SRT_Mem 1215 || eDest==SRT_Coroutine || eDest==SRT_Output 1216 || eDest==SRT_Upfrom ); 1217 } 1218 sRowLoadInfo.regResult = regResult; 1219 sRowLoadInfo.ecelFlags = ecelFlags; 1220 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1221 sRowLoadInfo.pExtra = pExtra; 1222 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1223 if( pExtra ) nResultCol += pExtra->nExpr; 1224 #endif 1225 if( p->iLimit 1226 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1227 && nPrefixReg>0 1228 ){ 1229 assert( pSort!=0 ); 1230 assert( hasDistinct==0 ); 1231 pSort->pDeferredRowLoad = &sRowLoadInfo; 1232 regOrig = 0; 1233 }else{ 1234 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1235 } 1236 } 1237 1238 /* If the DISTINCT keyword was present on the SELECT statement 1239 ** and this row has been seen before, then do not make this row 1240 ** part of the result. 1241 */ 1242 if( hasDistinct ){ 1243 int eType = pDistinct->eTnctType; 1244 int iTab = pDistinct->tabTnct; 1245 assert( nResultCol==p->pEList->nExpr ); 1246 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1247 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1248 if( pSort==0 ){ 1249 codeOffset(v, p->iOffset, iContinue); 1250 } 1251 } 1252 1253 switch( eDest ){ 1254 /* In this mode, write each query result to the key of the temporary 1255 ** table iParm. 1256 */ 1257 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1258 case SRT_Union: { 1259 int r1; 1260 r1 = sqlite3GetTempReg(pParse); 1261 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1262 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1263 sqlite3ReleaseTempReg(pParse, r1); 1264 break; 1265 } 1266 1267 /* Construct a record from the query result, but instead of 1268 ** saving that record, use it as a key to delete elements from 1269 ** the temporary table iParm. 1270 */ 1271 case SRT_Except: { 1272 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1273 break; 1274 } 1275 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1276 1277 /* Store the result as data using a unique key. 1278 */ 1279 case SRT_Fifo: 1280 case SRT_DistFifo: 1281 case SRT_Table: 1282 case SRT_EphemTab: { 1283 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1284 testcase( eDest==SRT_Table ); 1285 testcase( eDest==SRT_EphemTab ); 1286 testcase( eDest==SRT_Fifo ); 1287 testcase( eDest==SRT_DistFifo ); 1288 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1289 #ifndef SQLITE_OMIT_CTE 1290 if( eDest==SRT_DistFifo ){ 1291 /* If the destination is DistFifo, then cursor (iParm+1) is open 1292 ** on an ephemeral index. If the current row is already present 1293 ** in the index, do not write it to the output. If not, add the 1294 ** current row to the index and proceed with writing it to the 1295 ** output table as well. */ 1296 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1297 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1298 VdbeCoverage(v); 1299 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1300 assert( pSort==0 ); 1301 } 1302 #endif 1303 if( pSort ){ 1304 assert( regResult==regOrig ); 1305 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1306 }else{ 1307 int r2 = sqlite3GetTempReg(pParse); 1308 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1309 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1310 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1311 sqlite3ReleaseTempReg(pParse, r2); 1312 } 1313 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1314 break; 1315 } 1316 1317 case SRT_Upfrom: { 1318 if( pSort ){ 1319 pushOntoSorter( 1320 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1321 }else{ 1322 int i2 = pDest->iSDParm2; 1323 int r1 = sqlite3GetTempReg(pParse); 1324 1325 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1326 ** might still be trying to return one row, because that is what 1327 ** aggregates do. Don't record that empty row in the output table. */ 1328 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1329 1330 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1331 regResult+(i2<0), nResultCol-(i2<0), r1); 1332 if( i2<0 ){ 1333 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1334 }else{ 1335 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1336 } 1337 } 1338 break; 1339 } 1340 1341 #ifndef SQLITE_OMIT_SUBQUERY 1342 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1343 ** then there should be a single item on the stack. Write this 1344 ** item into the set table with bogus data. 1345 */ 1346 case SRT_Set: { 1347 if( pSort ){ 1348 /* At first glance you would think we could optimize out the 1349 ** ORDER BY in this case since the order of entries in the set 1350 ** does not matter. But there might be a LIMIT clause, in which 1351 ** case the order does matter */ 1352 pushOntoSorter( 1353 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1354 }else{ 1355 int r1 = sqlite3GetTempReg(pParse); 1356 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1357 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1358 r1, pDest->zAffSdst, nResultCol); 1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1360 sqlite3ReleaseTempReg(pParse, r1); 1361 } 1362 break; 1363 } 1364 1365 1366 /* If any row exist in the result set, record that fact and abort. 1367 */ 1368 case SRT_Exists: { 1369 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1370 /* The LIMIT clause will terminate the loop for us */ 1371 break; 1372 } 1373 1374 /* If this is a scalar select that is part of an expression, then 1375 ** store the results in the appropriate memory cell or array of 1376 ** memory cells and break out of the scan loop. 1377 */ 1378 case SRT_Mem: { 1379 if( pSort ){ 1380 assert( nResultCol<=pDest->nSdst ); 1381 pushOntoSorter( 1382 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1383 }else{ 1384 assert( nResultCol==pDest->nSdst ); 1385 assert( regResult==iParm ); 1386 /* The LIMIT clause will jump out of the loop for us */ 1387 } 1388 break; 1389 } 1390 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1391 1392 case SRT_Coroutine: /* Send data to a co-routine */ 1393 case SRT_Output: { /* Return the results */ 1394 testcase( eDest==SRT_Coroutine ); 1395 testcase( eDest==SRT_Output ); 1396 if( pSort ){ 1397 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1398 nPrefixReg); 1399 }else if( eDest==SRT_Coroutine ){ 1400 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1401 }else{ 1402 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1403 } 1404 break; 1405 } 1406 1407 #ifndef SQLITE_OMIT_CTE 1408 /* Write the results into a priority queue that is order according to 1409 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1410 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1411 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1412 ** final OP_Sequence column. The last column is the record as a blob. 1413 */ 1414 case SRT_DistQueue: 1415 case SRT_Queue: { 1416 int nKey; 1417 int r1, r2, r3; 1418 int addrTest = 0; 1419 ExprList *pSO; 1420 pSO = pDest->pOrderBy; 1421 assert( pSO ); 1422 nKey = pSO->nExpr; 1423 r1 = sqlite3GetTempReg(pParse); 1424 r2 = sqlite3GetTempRange(pParse, nKey+2); 1425 r3 = r2+nKey+1; 1426 if( eDest==SRT_DistQueue ){ 1427 /* If the destination is DistQueue, then cursor (iParm+1) is open 1428 ** on a second ephemeral index that holds all values every previously 1429 ** added to the queue. */ 1430 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1431 regResult, nResultCol); 1432 VdbeCoverage(v); 1433 } 1434 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1435 if( eDest==SRT_DistQueue ){ 1436 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1437 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1438 } 1439 for(i=0; i<nKey; i++){ 1440 sqlite3VdbeAddOp2(v, OP_SCopy, 1441 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1442 r2+i); 1443 } 1444 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1445 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1446 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1447 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1448 sqlite3ReleaseTempReg(pParse, r1); 1449 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1450 break; 1451 } 1452 #endif /* SQLITE_OMIT_CTE */ 1453 1454 1455 1456 #if !defined(SQLITE_OMIT_TRIGGER) 1457 /* Discard the results. This is used for SELECT statements inside 1458 ** the body of a TRIGGER. The purpose of such selects is to call 1459 ** user-defined functions that have side effects. We do not care 1460 ** about the actual results of the select. 1461 */ 1462 default: { 1463 assert( eDest==SRT_Discard ); 1464 break; 1465 } 1466 #endif 1467 } 1468 1469 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1470 ** there is a sorter, in which case the sorter has already limited 1471 ** the output for us. 1472 */ 1473 if( pSort==0 && p->iLimit ){ 1474 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1475 } 1476 } 1477 1478 /* 1479 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1480 ** X extra columns. 1481 */ 1482 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1483 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1484 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1485 if( p ){ 1486 p->aSortFlags = (u8*)&p->aColl[N+X]; 1487 p->nKeyField = (u16)N; 1488 p->nAllField = (u16)(N+X); 1489 p->enc = ENC(db); 1490 p->db = db; 1491 p->nRef = 1; 1492 memset(&p[1], 0, nExtra); 1493 }else{ 1494 return (KeyInfo*)sqlite3OomFault(db); 1495 } 1496 return p; 1497 } 1498 1499 /* 1500 ** Deallocate a KeyInfo object 1501 */ 1502 void sqlite3KeyInfoUnref(KeyInfo *p){ 1503 if( p ){ 1504 assert( p->nRef>0 ); 1505 p->nRef--; 1506 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1507 } 1508 } 1509 1510 /* 1511 ** Make a new pointer to a KeyInfo object 1512 */ 1513 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1514 if( p ){ 1515 assert( p->nRef>0 ); 1516 p->nRef++; 1517 } 1518 return p; 1519 } 1520 1521 #ifdef SQLITE_DEBUG 1522 /* 1523 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1524 ** can only be changed if this is just a single reference to the object. 1525 ** 1526 ** This routine is used only inside of assert() statements. 1527 */ 1528 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1529 #endif /* SQLITE_DEBUG */ 1530 1531 /* 1532 ** Given an expression list, generate a KeyInfo structure that records 1533 ** the collating sequence for each expression in that expression list. 1534 ** 1535 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1536 ** KeyInfo structure is appropriate for initializing a virtual index to 1537 ** implement that clause. If the ExprList is the result set of a SELECT 1538 ** then the KeyInfo structure is appropriate for initializing a virtual 1539 ** index to implement a DISTINCT test. 1540 ** 1541 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1542 ** function is responsible for seeing that this structure is eventually 1543 ** freed. 1544 */ 1545 KeyInfo *sqlite3KeyInfoFromExprList( 1546 Parse *pParse, /* Parsing context */ 1547 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1548 int iStart, /* Begin with this column of pList */ 1549 int nExtra /* Add this many extra columns to the end */ 1550 ){ 1551 int nExpr; 1552 KeyInfo *pInfo; 1553 struct ExprList_item *pItem; 1554 sqlite3 *db = pParse->db; 1555 int i; 1556 1557 nExpr = pList->nExpr; 1558 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1559 if( pInfo ){ 1560 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1561 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1562 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1563 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; 1564 } 1565 } 1566 return pInfo; 1567 } 1568 1569 /* 1570 ** Name of the connection operator, used for error messages. 1571 */ 1572 const char *sqlite3SelectOpName(int id){ 1573 char *z; 1574 switch( id ){ 1575 case TK_ALL: z = "UNION ALL"; break; 1576 case TK_INTERSECT: z = "INTERSECT"; break; 1577 case TK_EXCEPT: z = "EXCEPT"; break; 1578 default: z = "UNION"; break; 1579 } 1580 return z; 1581 } 1582 1583 #ifndef SQLITE_OMIT_EXPLAIN 1584 /* 1585 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1586 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1587 ** where the caption is of the form: 1588 ** 1589 ** "USE TEMP B-TREE FOR xxx" 1590 ** 1591 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1592 ** is determined by the zUsage argument. 1593 */ 1594 static void explainTempTable(Parse *pParse, const char *zUsage){ 1595 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1596 } 1597 1598 /* 1599 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1600 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1601 ** in sqlite3Select() to assign values to structure member variables that 1602 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1603 ** code with #ifndef directives. 1604 */ 1605 # define explainSetInteger(a, b) a = b 1606 1607 #else 1608 /* No-op versions of the explainXXX() functions and macros. */ 1609 # define explainTempTable(y,z) 1610 # define explainSetInteger(y,z) 1611 #endif 1612 1613 1614 /* 1615 ** If the inner loop was generated using a non-null pOrderBy argument, 1616 ** then the results were placed in a sorter. After the loop is terminated 1617 ** we need to run the sorter and output the results. The following 1618 ** routine generates the code needed to do that. 1619 */ 1620 static void generateSortTail( 1621 Parse *pParse, /* Parsing context */ 1622 Select *p, /* The SELECT statement */ 1623 SortCtx *pSort, /* Information on the ORDER BY clause */ 1624 int nColumn, /* Number of columns of data */ 1625 SelectDest *pDest /* Write the sorted results here */ 1626 ){ 1627 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1628 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1629 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1630 int addr; /* Top of output loop. Jump for Next. */ 1631 int addrOnce = 0; 1632 int iTab; 1633 ExprList *pOrderBy = pSort->pOrderBy; 1634 int eDest = pDest->eDest; 1635 int iParm = pDest->iSDParm; 1636 int regRow; 1637 int regRowid; 1638 int iCol; 1639 int nKey; /* Number of key columns in sorter record */ 1640 int iSortTab; /* Sorter cursor to read from */ 1641 int i; 1642 int bSeq; /* True if sorter record includes seq. no. */ 1643 int nRefKey = 0; 1644 struct ExprList_item *aOutEx = p->pEList->a; 1645 1646 assert( addrBreak<0 ); 1647 if( pSort->labelBkOut ){ 1648 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1649 sqlite3VdbeGoto(v, addrBreak); 1650 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1651 } 1652 1653 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1654 /* Open any cursors needed for sorter-reference expressions */ 1655 for(i=0; i<pSort->nDefer; i++){ 1656 Table *pTab = pSort->aDefer[i].pTab; 1657 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1658 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1659 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1660 } 1661 #endif 1662 1663 iTab = pSort->iECursor; 1664 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1665 if( eDest==SRT_Mem && p->iOffset ){ 1666 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1667 } 1668 regRowid = 0; 1669 regRow = pDest->iSdst; 1670 }else{ 1671 regRowid = sqlite3GetTempReg(pParse); 1672 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1673 regRow = sqlite3GetTempReg(pParse); 1674 nColumn = 0; 1675 }else{ 1676 regRow = sqlite3GetTempRange(pParse, nColumn); 1677 } 1678 } 1679 nKey = pOrderBy->nExpr - pSort->nOBSat; 1680 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1681 int regSortOut = ++pParse->nMem; 1682 iSortTab = pParse->nTab++; 1683 if( pSort->labelBkOut ){ 1684 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1685 } 1686 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1687 nKey+1+nColumn+nRefKey); 1688 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1689 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1690 VdbeCoverage(v); 1691 codeOffset(v, p->iOffset, addrContinue); 1692 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1693 bSeq = 0; 1694 }else{ 1695 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1696 codeOffset(v, p->iOffset, addrContinue); 1697 iSortTab = iTab; 1698 bSeq = 1; 1699 } 1700 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1701 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1702 if( aOutEx[i].fg.bSorterRef ) continue; 1703 #endif 1704 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1705 } 1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1707 if( pSort->nDefer ){ 1708 int iKey = iCol+1; 1709 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1710 1711 for(i=0; i<pSort->nDefer; i++){ 1712 int iCsr = pSort->aDefer[i].iCsr; 1713 Table *pTab = pSort->aDefer[i].pTab; 1714 int nKey = pSort->aDefer[i].nKey; 1715 1716 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1717 if( HasRowid(pTab) ){ 1718 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1719 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1720 sqlite3VdbeCurrentAddr(v)+1, regKey); 1721 }else{ 1722 int k; 1723 int iJmp; 1724 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1725 for(k=0; k<nKey; k++){ 1726 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1727 } 1728 iJmp = sqlite3VdbeCurrentAddr(v); 1729 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1730 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1731 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1732 } 1733 } 1734 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1735 } 1736 #endif 1737 for(i=nColumn-1; i>=0; i--){ 1738 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1739 if( aOutEx[i].fg.bSorterRef ){ 1740 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1741 }else 1742 #endif 1743 { 1744 int iRead; 1745 if( aOutEx[i].u.x.iOrderByCol ){ 1746 iRead = aOutEx[i].u.x.iOrderByCol-1; 1747 }else{ 1748 iRead = iCol--; 1749 } 1750 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1751 VdbeComment((v, "%s", aOutEx[i].zEName)); 1752 } 1753 } 1754 switch( eDest ){ 1755 case SRT_Table: 1756 case SRT_EphemTab: { 1757 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1758 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1759 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1760 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1761 break; 1762 } 1763 #ifndef SQLITE_OMIT_SUBQUERY 1764 case SRT_Set: { 1765 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1766 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1767 pDest->zAffSdst, nColumn); 1768 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1769 break; 1770 } 1771 case SRT_Mem: { 1772 /* The LIMIT clause will terminate the loop for us */ 1773 break; 1774 } 1775 #endif 1776 case SRT_Upfrom: { 1777 int i2 = pDest->iSDParm2; 1778 int r1 = sqlite3GetTempReg(pParse); 1779 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1780 if( i2<0 ){ 1781 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1782 }else{ 1783 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1784 } 1785 break; 1786 } 1787 default: { 1788 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1789 testcase( eDest==SRT_Output ); 1790 testcase( eDest==SRT_Coroutine ); 1791 if( eDest==SRT_Output ){ 1792 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1793 }else{ 1794 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1795 } 1796 break; 1797 } 1798 } 1799 if( regRowid ){ 1800 if( eDest==SRT_Set ){ 1801 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1802 }else{ 1803 sqlite3ReleaseTempReg(pParse, regRow); 1804 } 1805 sqlite3ReleaseTempReg(pParse, regRowid); 1806 } 1807 /* The bottom of the loop 1808 */ 1809 sqlite3VdbeResolveLabel(v, addrContinue); 1810 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1811 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1812 }else{ 1813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1814 } 1815 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1816 sqlite3VdbeResolveLabel(v, addrBreak); 1817 } 1818 1819 /* 1820 ** Return a pointer to a string containing the 'declaration type' of the 1821 ** expression pExpr. The string may be treated as static by the caller. 1822 ** 1823 ** The declaration type is the exact datatype definition extracted from the 1824 ** original CREATE TABLE statement if the expression is a column. The 1825 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1826 ** is considered a column can be complex in the presence of subqueries. The 1827 ** result-set expression in all of the following SELECT statements is 1828 ** considered a column by this function. 1829 ** 1830 ** SELECT col FROM tbl; 1831 ** SELECT (SELECT col FROM tbl; 1832 ** SELECT (SELECT col FROM tbl); 1833 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1834 ** 1835 ** The declaration type for any expression other than a column is NULL. 1836 ** 1837 ** This routine has either 3 or 6 parameters depending on whether or not 1838 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1839 */ 1840 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1841 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1842 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1843 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1844 #endif 1845 static const char *columnTypeImpl( 1846 NameContext *pNC, 1847 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1848 Expr *pExpr 1849 #else 1850 Expr *pExpr, 1851 const char **pzOrigDb, 1852 const char **pzOrigTab, 1853 const char **pzOrigCol 1854 #endif 1855 ){ 1856 char const *zType = 0; 1857 int j; 1858 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1859 char const *zOrigDb = 0; 1860 char const *zOrigTab = 0; 1861 char const *zOrigCol = 0; 1862 #endif 1863 1864 assert( pExpr!=0 ); 1865 assert( pNC->pSrcList!=0 ); 1866 switch( pExpr->op ){ 1867 case TK_COLUMN: { 1868 /* The expression is a column. Locate the table the column is being 1869 ** extracted from in NameContext.pSrcList. This table may be real 1870 ** database table or a subquery. 1871 */ 1872 Table *pTab = 0; /* Table structure column is extracted from */ 1873 Select *pS = 0; /* Select the column is extracted from */ 1874 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1875 while( pNC && !pTab ){ 1876 SrcList *pTabList = pNC->pSrcList; 1877 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1878 if( j<pTabList->nSrc ){ 1879 pTab = pTabList->a[j].pTab; 1880 pS = pTabList->a[j].pSelect; 1881 }else{ 1882 pNC = pNC->pNext; 1883 } 1884 } 1885 1886 if( pTab==0 ){ 1887 /* At one time, code such as "SELECT new.x" within a trigger would 1888 ** cause this condition to run. Since then, we have restructured how 1889 ** trigger code is generated and so this condition is no longer 1890 ** possible. However, it can still be true for statements like 1891 ** the following: 1892 ** 1893 ** CREATE TABLE t1(col INTEGER); 1894 ** SELECT (SELECT t1.col) FROM FROM t1; 1895 ** 1896 ** when columnType() is called on the expression "t1.col" in the 1897 ** sub-select. In this case, set the column type to NULL, even 1898 ** though it should really be "INTEGER". 1899 ** 1900 ** This is not a problem, as the column type of "t1.col" is never 1901 ** used. When columnType() is called on the expression 1902 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1903 ** branch below. */ 1904 break; 1905 } 1906 1907 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1908 if( pS ){ 1909 /* The "table" is actually a sub-select or a view in the FROM clause 1910 ** of the SELECT statement. Return the declaration type and origin 1911 ** data for the result-set column of the sub-select. 1912 */ 1913 if( iCol<pS->pEList->nExpr 1914 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1915 && iCol>=0 1916 #else 1917 && ALWAYS(iCol>=0) 1918 #endif 1919 ){ 1920 /* If iCol is less than zero, then the expression requests the 1921 ** rowid of the sub-select or view. This expression is legal (see 1922 ** test case misc2.2.2) - it always evaluates to NULL. 1923 */ 1924 NameContext sNC; 1925 Expr *p = pS->pEList->a[iCol].pExpr; 1926 sNC.pSrcList = pS->pSrc; 1927 sNC.pNext = pNC; 1928 sNC.pParse = pNC->pParse; 1929 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1930 } 1931 }else{ 1932 /* A real table or a CTE table */ 1933 assert( !pS ); 1934 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1935 if( iCol<0 ) iCol = pTab->iPKey; 1936 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1937 if( iCol<0 ){ 1938 zType = "INTEGER"; 1939 zOrigCol = "rowid"; 1940 }else{ 1941 zOrigCol = pTab->aCol[iCol].zCnName; 1942 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1943 } 1944 zOrigTab = pTab->zName; 1945 if( pNC->pParse && pTab->pSchema ){ 1946 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1947 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1948 } 1949 #else 1950 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1951 if( iCol<0 ){ 1952 zType = "INTEGER"; 1953 }else{ 1954 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1955 } 1956 #endif 1957 } 1958 break; 1959 } 1960 #ifndef SQLITE_OMIT_SUBQUERY 1961 case TK_SELECT: { 1962 /* The expression is a sub-select. Return the declaration type and 1963 ** origin info for the single column in the result set of the SELECT 1964 ** statement. 1965 */ 1966 NameContext sNC; 1967 Select *pS; 1968 Expr *p; 1969 assert( ExprUseXSelect(pExpr) ); 1970 pS = pExpr->x.pSelect; 1971 p = pS->pEList->a[0].pExpr; 1972 sNC.pSrcList = pS->pSrc; 1973 sNC.pNext = pNC; 1974 sNC.pParse = pNC->pParse; 1975 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1976 break; 1977 } 1978 #endif 1979 } 1980 1981 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1982 if( pzOrigDb ){ 1983 assert( pzOrigTab && pzOrigCol ); 1984 *pzOrigDb = zOrigDb; 1985 *pzOrigTab = zOrigTab; 1986 *pzOrigCol = zOrigCol; 1987 } 1988 #endif 1989 return zType; 1990 } 1991 1992 /* 1993 ** Generate code that will tell the VDBE the declaration types of columns 1994 ** in the result set. 1995 */ 1996 static void generateColumnTypes( 1997 Parse *pParse, /* Parser context */ 1998 SrcList *pTabList, /* List of tables */ 1999 ExprList *pEList /* Expressions defining the result set */ 2000 ){ 2001 #ifndef SQLITE_OMIT_DECLTYPE 2002 Vdbe *v = pParse->pVdbe; 2003 int i; 2004 NameContext sNC; 2005 sNC.pSrcList = pTabList; 2006 sNC.pParse = pParse; 2007 sNC.pNext = 0; 2008 for(i=0; i<pEList->nExpr; i++){ 2009 Expr *p = pEList->a[i].pExpr; 2010 const char *zType; 2011 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2012 const char *zOrigDb = 0; 2013 const char *zOrigTab = 0; 2014 const char *zOrigCol = 0; 2015 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2016 2017 /* The vdbe must make its own copy of the column-type and other 2018 ** column specific strings, in case the schema is reset before this 2019 ** virtual machine is deleted. 2020 */ 2021 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2022 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2023 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2024 #else 2025 zType = columnType(&sNC, p, 0, 0, 0); 2026 #endif 2027 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2028 } 2029 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2030 } 2031 2032 2033 /* 2034 ** Compute the column names for a SELECT statement. 2035 ** 2036 ** The only guarantee that SQLite makes about column names is that if the 2037 ** column has an AS clause assigning it a name, that will be the name used. 2038 ** That is the only documented guarantee. However, countless applications 2039 ** developed over the years have made baseless assumptions about column names 2040 ** and will break if those assumptions changes. Hence, use extreme caution 2041 ** when modifying this routine to avoid breaking legacy. 2042 ** 2043 ** See Also: sqlite3ColumnsFromExprList() 2044 ** 2045 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2046 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2047 ** applications should operate this way. Nevertheless, we need to support the 2048 ** other modes for legacy: 2049 ** 2050 ** short=OFF, full=OFF: Column name is the text of the expression has it 2051 ** originally appears in the SELECT statement. In 2052 ** other words, the zSpan of the result expression. 2053 ** 2054 ** short=ON, full=OFF: (This is the default setting). If the result 2055 ** refers directly to a table column, then the 2056 ** result column name is just the table column 2057 ** name: COLUMN. Otherwise use zSpan. 2058 ** 2059 ** full=ON, short=ANY: If the result refers directly to a table column, 2060 ** then the result column name with the table name 2061 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2062 */ 2063 void sqlite3GenerateColumnNames( 2064 Parse *pParse, /* Parser context */ 2065 Select *pSelect /* Generate column names for this SELECT statement */ 2066 ){ 2067 Vdbe *v = pParse->pVdbe; 2068 int i; 2069 Table *pTab; 2070 SrcList *pTabList; 2071 ExprList *pEList; 2072 sqlite3 *db = pParse->db; 2073 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2074 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2075 2076 #ifndef SQLITE_OMIT_EXPLAIN 2077 /* If this is an EXPLAIN, skip this step */ 2078 if( pParse->explain ){ 2079 return; 2080 } 2081 #endif 2082 2083 if( pParse->colNamesSet ) return; 2084 /* Column names are determined by the left-most term of a compound select */ 2085 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2086 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2087 pTabList = pSelect->pSrc; 2088 pEList = pSelect->pEList; 2089 assert( v!=0 ); 2090 assert( pTabList!=0 ); 2091 pParse->colNamesSet = 1; 2092 fullName = (db->flags & SQLITE_FullColNames)!=0; 2093 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2094 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2095 for(i=0; i<pEList->nExpr; i++){ 2096 Expr *p = pEList->a[i].pExpr; 2097 2098 assert( p!=0 ); 2099 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2100 assert( p->op!=TK_COLUMN 2101 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2102 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ 2103 /* An AS clause always takes first priority */ 2104 char *zName = pEList->a[i].zEName; 2105 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2106 }else if( srcName && p->op==TK_COLUMN ){ 2107 char *zCol; 2108 int iCol = p->iColumn; 2109 pTab = p->y.pTab; 2110 assert( pTab!=0 ); 2111 if( iCol<0 ) iCol = pTab->iPKey; 2112 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2113 if( iCol<0 ){ 2114 zCol = "rowid"; 2115 }else{ 2116 zCol = pTab->aCol[iCol].zCnName; 2117 } 2118 if( fullName ){ 2119 char *zName = 0; 2120 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2121 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2122 }else{ 2123 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2124 } 2125 }else{ 2126 const char *z = pEList->a[i].zEName; 2127 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2128 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2129 } 2130 } 2131 generateColumnTypes(pParse, pTabList, pEList); 2132 } 2133 2134 /* 2135 ** Given an expression list (which is really the list of expressions 2136 ** that form the result set of a SELECT statement) compute appropriate 2137 ** column names for a table that would hold the expression list. 2138 ** 2139 ** All column names will be unique. 2140 ** 2141 ** Only the column names are computed. Column.zType, Column.zColl, 2142 ** and other fields of Column are zeroed. 2143 ** 2144 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2146 ** 2147 ** The only guarantee that SQLite makes about column names is that if the 2148 ** column has an AS clause assigning it a name, that will be the name used. 2149 ** That is the only documented guarantee. However, countless applications 2150 ** developed over the years have made baseless assumptions about column names 2151 ** and will break if those assumptions changes. Hence, use extreme caution 2152 ** when modifying this routine to avoid breaking legacy. 2153 ** 2154 ** See Also: sqlite3GenerateColumnNames() 2155 */ 2156 int sqlite3ColumnsFromExprList( 2157 Parse *pParse, /* Parsing context */ 2158 ExprList *pEList, /* Expr list from which to derive column names */ 2159 i16 *pnCol, /* Write the number of columns here */ 2160 Column **paCol /* Write the new column list here */ 2161 ){ 2162 sqlite3 *db = pParse->db; /* Database connection */ 2163 int i, j; /* Loop counters */ 2164 u32 cnt; /* Index added to make the name unique */ 2165 Column *aCol, *pCol; /* For looping over result columns */ 2166 int nCol; /* Number of columns in the result set */ 2167 char *zName; /* Column name */ 2168 int nName; /* Size of name in zName[] */ 2169 Hash ht; /* Hash table of column names */ 2170 Table *pTab; 2171 2172 sqlite3HashInit(&ht); 2173 if( pEList ){ 2174 nCol = pEList->nExpr; 2175 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2176 testcase( aCol==0 ); 2177 if( NEVER(nCol>32767) ) nCol = 32767; 2178 }else{ 2179 nCol = 0; 2180 aCol = 0; 2181 } 2182 assert( nCol==(i16)nCol ); 2183 *pnCol = nCol; 2184 *paCol = aCol; 2185 2186 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2187 struct ExprList_item *pX = &pEList->a[i]; 2188 struct ExprList_item *pCollide; 2189 /* Get an appropriate name for the column 2190 */ 2191 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ 2192 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2193 }else{ 2194 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2195 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2196 pColExpr = pColExpr->pRight; 2197 assert( pColExpr!=0 ); 2198 } 2199 if( pColExpr->op==TK_COLUMN 2200 && ALWAYS( ExprUseYTab(pColExpr) ) 2201 && ALWAYS( pColExpr->y.pTab!=0 ) 2202 ){ 2203 /* For columns use the column name name */ 2204 int iCol = pColExpr->iColumn; 2205 pTab = pColExpr->y.pTab; 2206 if( iCol<0 ) iCol = pTab->iPKey; 2207 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2208 }else if( pColExpr->op==TK_ID ){ 2209 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2210 zName = pColExpr->u.zToken; 2211 }else{ 2212 /* Use the original text of the column expression as its name */ 2213 assert( zName==pX->zEName ); /* pointer comparison intended */ 2214 } 2215 } 2216 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2217 zName = sqlite3DbStrDup(db, zName); 2218 }else{ 2219 zName = sqlite3MPrintf(db,"column%d",i+1); 2220 } 2221 2222 /* Make sure the column name is unique. If the name is not unique, 2223 ** append an integer to the name so that it becomes unique. 2224 */ 2225 cnt = 0; 2226 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ 2227 if( pCollide->fg.bUsingTerm ){ 2228 pCol->colFlags |= COLFLAG_NOEXPAND; 2229 } 2230 nName = sqlite3Strlen30(zName); 2231 if( nName>0 ){ 2232 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2233 if( zName[j]==':' ) nName = j; 2234 } 2235 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2236 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2237 } 2238 pCol->zCnName = zName; 2239 pCol->hName = sqlite3StrIHash(zName); 2240 if( pX->fg.bNoExpand ){ 2241 pCol->colFlags |= COLFLAG_NOEXPAND; 2242 } 2243 sqlite3ColumnPropertiesFromName(0, pCol); 2244 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ 2245 sqlite3OomFault(db); 2246 } 2247 } 2248 sqlite3HashClear(&ht); 2249 if( db->mallocFailed ){ 2250 for(j=0; j<i; j++){ 2251 sqlite3DbFree(db, aCol[j].zCnName); 2252 } 2253 sqlite3DbFree(db, aCol); 2254 *paCol = 0; 2255 *pnCol = 0; 2256 return SQLITE_NOMEM_BKPT; 2257 } 2258 return SQLITE_OK; 2259 } 2260 2261 /* 2262 ** Add type and collation information to a column list based on 2263 ** a SELECT statement. 2264 ** 2265 ** The column list presumably came from selectColumnNamesFromExprList(). 2266 ** The column list has only names, not types or collations. This 2267 ** routine goes through and adds the types and collations. 2268 ** 2269 ** This routine requires that all identifiers in the SELECT 2270 ** statement be resolved. 2271 */ 2272 void sqlite3SelectAddColumnTypeAndCollation( 2273 Parse *pParse, /* Parsing contexts */ 2274 Table *pTab, /* Add column type information to this table */ 2275 Select *pSelect, /* SELECT used to determine types and collations */ 2276 char aff /* Default affinity for columns */ 2277 ){ 2278 sqlite3 *db = pParse->db; 2279 NameContext sNC; 2280 Column *pCol; 2281 CollSeq *pColl; 2282 int i; 2283 Expr *p; 2284 struct ExprList_item *a; 2285 2286 assert( pSelect!=0 ); 2287 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2288 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2289 if( db->mallocFailed ) return; 2290 memset(&sNC, 0, sizeof(sNC)); 2291 sNC.pSrcList = pSelect->pSrc; 2292 a = pSelect->pEList->a; 2293 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2294 const char *zType; 2295 i64 n, m; 2296 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2297 p = a[i].pExpr; 2298 zType = columnType(&sNC, p, 0, 0, 0); 2299 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2300 pCol->affinity = sqlite3ExprAffinity(p); 2301 if( zType ){ 2302 m = sqlite3Strlen30(zType); 2303 n = sqlite3Strlen30(pCol->zCnName); 2304 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2305 if( pCol->zCnName ){ 2306 memcpy(&pCol->zCnName[n+1], zType, m+1); 2307 pCol->colFlags |= COLFLAG_HASTYPE; 2308 }else{ 2309 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2310 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2311 } 2312 } 2313 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2314 pColl = sqlite3ExprCollSeq(pParse, p); 2315 if( pColl ){ 2316 assert( pTab->pIndex==0 ); 2317 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2318 } 2319 } 2320 pTab->szTabRow = 1; /* Any non-zero value works */ 2321 } 2322 2323 /* 2324 ** Given a SELECT statement, generate a Table structure that describes 2325 ** the result set of that SELECT. 2326 */ 2327 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2328 Table *pTab; 2329 sqlite3 *db = pParse->db; 2330 u64 savedFlags; 2331 2332 savedFlags = db->flags; 2333 db->flags &= ~(u64)SQLITE_FullColNames; 2334 db->flags |= SQLITE_ShortColNames; 2335 sqlite3SelectPrep(pParse, pSelect, 0); 2336 db->flags = savedFlags; 2337 if( pParse->nErr ) return 0; 2338 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2339 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2340 if( pTab==0 ){ 2341 return 0; 2342 } 2343 pTab->nTabRef = 1; 2344 pTab->zName = 0; 2345 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2346 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2347 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2348 pTab->iPKey = -1; 2349 if( db->mallocFailed ){ 2350 sqlite3DeleteTable(db, pTab); 2351 return 0; 2352 } 2353 return pTab; 2354 } 2355 2356 /* 2357 ** Get a VDBE for the given parser context. Create a new one if necessary. 2358 ** If an error occurs, return NULL and leave a message in pParse. 2359 */ 2360 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2361 if( pParse->pVdbe ){ 2362 return pParse->pVdbe; 2363 } 2364 if( pParse->pToplevel==0 2365 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2366 ){ 2367 pParse->okConstFactor = 1; 2368 } 2369 return sqlite3VdbeCreate(pParse); 2370 } 2371 2372 2373 /* 2374 ** Compute the iLimit and iOffset fields of the SELECT based on the 2375 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2376 ** that appear in the original SQL statement after the LIMIT and OFFSET 2377 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2378 ** are the integer memory register numbers for counters used to compute 2379 ** the limit and offset. If there is no limit and/or offset, then 2380 ** iLimit and iOffset are negative. 2381 ** 2382 ** This routine changes the values of iLimit and iOffset only if 2383 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2384 ** and iOffset should have been preset to appropriate default values (zero) 2385 ** prior to calling this routine. 2386 ** 2387 ** The iOffset register (if it exists) is initialized to the value 2388 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2389 ** iOffset+1 is initialized to LIMIT+OFFSET. 2390 ** 2391 ** Only if pLimit->pLeft!=0 do the limit registers get 2392 ** redefined. The UNION ALL operator uses this property to force 2393 ** the reuse of the same limit and offset registers across multiple 2394 ** SELECT statements. 2395 */ 2396 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2397 Vdbe *v = 0; 2398 int iLimit = 0; 2399 int iOffset; 2400 int n; 2401 Expr *pLimit = p->pLimit; 2402 2403 if( p->iLimit ) return; 2404 2405 /* 2406 ** "LIMIT -1" always shows all rows. There is some 2407 ** controversy about what the correct behavior should be. 2408 ** The current implementation interprets "LIMIT 0" to mean 2409 ** no rows. 2410 */ 2411 if( pLimit ){ 2412 assert( pLimit->op==TK_LIMIT ); 2413 assert( pLimit->pLeft!=0 ); 2414 p->iLimit = iLimit = ++pParse->nMem; 2415 v = sqlite3GetVdbe(pParse); 2416 assert( v!=0 ); 2417 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2418 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2419 VdbeComment((v, "LIMIT counter")); 2420 if( n==0 ){ 2421 sqlite3VdbeGoto(v, iBreak); 2422 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2423 p->nSelectRow = sqlite3LogEst((u64)n); 2424 p->selFlags |= SF_FixedLimit; 2425 } 2426 }else{ 2427 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2428 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2429 VdbeComment((v, "LIMIT counter")); 2430 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2431 } 2432 if( pLimit->pRight ){ 2433 p->iOffset = iOffset = ++pParse->nMem; 2434 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2435 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2436 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2437 VdbeComment((v, "OFFSET counter")); 2438 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2439 VdbeComment((v, "LIMIT+OFFSET")); 2440 } 2441 } 2442 } 2443 2444 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2445 /* 2446 ** Return the appropriate collating sequence for the iCol-th column of 2447 ** the result set for the compound-select statement "p". Return NULL if 2448 ** the column has no default collating sequence. 2449 ** 2450 ** The collating sequence for the compound select is taken from the 2451 ** left-most term of the select that has a collating sequence. 2452 */ 2453 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2454 CollSeq *pRet; 2455 if( p->pPrior ){ 2456 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2457 }else{ 2458 pRet = 0; 2459 } 2460 assert( iCol>=0 ); 2461 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2462 ** have been thrown during name resolution and we would not have gotten 2463 ** this far */ 2464 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2465 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2466 } 2467 return pRet; 2468 } 2469 2470 /* 2471 ** The select statement passed as the second parameter is a compound SELECT 2472 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2473 ** structure suitable for implementing the ORDER BY. 2474 ** 2475 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2476 ** function is responsible for ensuring that this structure is eventually 2477 ** freed. 2478 */ 2479 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2480 ExprList *pOrderBy = p->pOrderBy; 2481 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2482 sqlite3 *db = pParse->db; 2483 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2484 if( pRet ){ 2485 int i; 2486 for(i=0; i<nOrderBy; i++){ 2487 struct ExprList_item *pItem = &pOrderBy->a[i]; 2488 Expr *pTerm = pItem->pExpr; 2489 CollSeq *pColl; 2490 2491 if( pTerm->flags & EP_Collate ){ 2492 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2493 }else{ 2494 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2495 if( pColl==0 ) pColl = db->pDfltColl; 2496 pOrderBy->a[i].pExpr = 2497 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2498 } 2499 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2500 pRet->aColl[i] = pColl; 2501 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; 2502 } 2503 } 2504 2505 return pRet; 2506 } 2507 2508 #ifndef SQLITE_OMIT_CTE 2509 /* 2510 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2511 ** query of the form: 2512 ** 2513 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2514 ** \___________/ \_______________/ 2515 ** p->pPrior p 2516 ** 2517 ** 2518 ** There is exactly one reference to the recursive-table in the FROM clause 2519 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2520 ** 2521 ** The setup-query runs once to generate an initial set of rows that go 2522 ** into a Queue table. Rows are extracted from the Queue table one by 2523 ** one. Each row extracted from Queue is output to pDest. Then the single 2524 ** extracted row (now in the iCurrent table) becomes the content of the 2525 ** recursive-table for a recursive-query run. The output of the recursive-query 2526 ** is added back into the Queue table. Then another row is extracted from Queue 2527 ** and the iteration continues until the Queue table is empty. 2528 ** 2529 ** If the compound query operator is UNION then no duplicate rows are ever 2530 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2531 ** that have ever been inserted into Queue and causes duplicates to be 2532 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2533 ** 2534 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2535 ** ORDER BY order and the first entry is extracted for each cycle. Without 2536 ** an ORDER BY, the Queue table is just a FIFO. 2537 ** 2538 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2539 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2540 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2541 ** with a positive value, then the first OFFSET outputs are discarded rather 2542 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2543 ** rows have been skipped. 2544 */ 2545 static void generateWithRecursiveQuery( 2546 Parse *pParse, /* Parsing context */ 2547 Select *p, /* The recursive SELECT to be coded */ 2548 SelectDest *pDest /* What to do with query results */ 2549 ){ 2550 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2551 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2552 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2553 Select *pSetup; /* The setup query */ 2554 Select *pFirstRec; /* Left-most recursive term */ 2555 int addrTop; /* Top of the loop */ 2556 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2557 int iCurrent = 0; /* The Current table */ 2558 int regCurrent; /* Register holding Current table */ 2559 int iQueue; /* The Queue table */ 2560 int iDistinct = 0; /* To ensure unique results if UNION */ 2561 int eDest = SRT_Fifo; /* How to write to Queue */ 2562 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2563 int i; /* Loop counter */ 2564 int rc; /* Result code */ 2565 ExprList *pOrderBy; /* The ORDER BY clause */ 2566 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2567 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2568 2569 #ifndef SQLITE_OMIT_WINDOWFUNC 2570 if( p->pWin ){ 2571 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2572 return; 2573 } 2574 #endif 2575 2576 /* Obtain authorization to do a recursive query */ 2577 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2578 2579 /* Process the LIMIT and OFFSET clauses, if they exist */ 2580 addrBreak = sqlite3VdbeMakeLabel(pParse); 2581 p->nSelectRow = 320; /* 4 billion rows */ 2582 computeLimitRegisters(pParse, p, addrBreak); 2583 pLimit = p->pLimit; 2584 regLimit = p->iLimit; 2585 regOffset = p->iOffset; 2586 p->pLimit = 0; 2587 p->iLimit = p->iOffset = 0; 2588 pOrderBy = p->pOrderBy; 2589 2590 /* Locate the cursor number of the Current table */ 2591 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2592 if( pSrc->a[i].fg.isRecursive ){ 2593 iCurrent = pSrc->a[i].iCursor; 2594 break; 2595 } 2596 } 2597 2598 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2599 ** the Distinct table must be exactly one greater than Queue in order 2600 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2601 iQueue = pParse->nTab++; 2602 if( p->op==TK_UNION ){ 2603 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2604 iDistinct = pParse->nTab++; 2605 }else{ 2606 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2607 } 2608 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2609 2610 /* Allocate cursors for Current, Queue, and Distinct. */ 2611 regCurrent = ++pParse->nMem; 2612 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2613 if( pOrderBy ){ 2614 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2615 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2616 (char*)pKeyInfo, P4_KEYINFO); 2617 destQueue.pOrderBy = pOrderBy; 2618 }else{ 2619 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2620 } 2621 VdbeComment((v, "Queue table")); 2622 if( iDistinct ){ 2623 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2624 p->selFlags |= SF_UsesEphemeral; 2625 } 2626 2627 /* Detach the ORDER BY clause from the compound SELECT */ 2628 p->pOrderBy = 0; 2629 2630 /* Figure out how many elements of the compound SELECT are part of the 2631 ** recursive query. Make sure no recursive elements use aggregate 2632 ** functions. Mark the recursive elements as UNION ALL even if they 2633 ** are really UNION because the distinctness will be enforced by the 2634 ** iDistinct table. pFirstRec is left pointing to the left-most 2635 ** recursive term of the CTE. 2636 */ 2637 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2638 if( pFirstRec->selFlags & SF_Aggregate ){ 2639 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2640 goto end_of_recursive_query; 2641 } 2642 pFirstRec->op = TK_ALL; 2643 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2644 } 2645 2646 /* Store the results of the setup-query in Queue. */ 2647 pSetup = pFirstRec->pPrior; 2648 pSetup->pNext = 0; 2649 ExplainQueryPlan((pParse, 1, "SETUP")); 2650 rc = sqlite3Select(pParse, pSetup, &destQueue); 2651 pSetup->pNext = p; 2652 if( rc ) goto end_of_recursive_query; 2653 2654 /* Find the next row in the Queue and output that row */ 2655 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2656 2657 /* Transfer the next row in Queue over to Current */ 2658 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2659 if( pOrderBy ){ 2660 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2661 }else{ 2662 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2663 } 2664 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2665 2666 /* Output the single row in Current */ 2667 addrCont = sqlite3VdbeMakeLabel(pParse); 2668 codeOffset(v, regOffset, addrCont); 2669 selectInnerLoop(pParse, p, iCurrent, 2670 0, 0, pDest, addrCont, addrBreak); 2671 if( regLimit ){ 2672 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2673 VdbeCoverage(v); 2674 } 2675 sqlite3VdbeResolveLabel(v, addrCont); 2676 2677 /* Execute the recursive SELECT taking the single row in Current as 2678 ** the value for the recursive-table. Store the results in the Queue. 2679 */ 2680 pFirstRec->pPrior = 0; 2681 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2682 sqlite3Select(pParse, p, &destQueue); 2683 assert( pFirstRec->pPrior==0 ); 2684 pFirstRec->pPrior = pSetup; 2685 2686 /* Keep running the loop until the Queue is empty */ 2687 sqlite3VdbeGoto(v, addrTop); 2688 sqlite3VdbeResolveLabel(v, addrBreak); 2689 2690 end_of_recursive_query: 2691 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2692 p->pOrderBy = pOrderBy; 2693 p->pLimit = pLimit; 2694 return; 2695 } 2696 #endif /* SQLITE_OMIT_CTE */ 2697 2698 /* Forward references */ 2699 static int multiSelectOrderBy( 2700 Parse *pParse, /* Parsing context */ 2701 Select *p, /* The right-most of SELECTs to be coded */ 2702 SelectDest *pDest /* What to do with query results */ 2703 ); 2704 2705 /* 2706 ** Handle the special case of a compound-select that originates from a 2707 ** VALUES clause. By handling this as a special case, we avoid deep 2708 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2709 ** on a VALUES clause. 2710 ** 2711 ** Because the Select object originates from a VALUES clause: 2712 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2713 ** (2) All terms are UNION ALL 2714 ** (3) There is no ORDER BY clause 2715 ** 2716 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2717 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2718 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2719 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2720 */ 2721 static int multiSelectValues( 2722 Parse *pParse, /* Parsing context */ 2723 Select *p, /* The right-most of SELECTs to be coded */ 2724 SelectDest *pDest /* What to do with query results */ 2725 ){ 2726 int nRow = 1; 2727 int rc = 0; 2728 int bShowAll = p->pLimit==0; 2729 assert( p->selFlags & SF_MultiValue ); 2730 do{ 2731 assert( p->selFlags & SF_Values ); 2732 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2733 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2734 #ifndef SQLITE_OMIT_WINDOWFUNC 2735 if( p->pWin ) return -1; 2736 #endif 2737 if( p->pPrior==0 ) break; 2738 assert( p->pPrior->pNext==p ); 2739 p = p->pPrior; 2740 nRow += bShowAll; 2741 }while(1); 2742 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2743 nRow==1 ? "" : "S")); 2744 while( p ){ 2745 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2746 if( !bShowAll ) break; 2747 p->nSelectRow = nRow; 2748 p = p->pNext; 2749 } 2750 return rc; 2751 } 2752 2753 /* 2754 ** Return true if the SELECT statement which is known to be the recursive 2755 ** part of a recursive CTE still has its anchor terms attached. If the 2756 ** anchor terms have already been removed, then return false. 2757 */ 2758 static int hasAnchor(Select *p){ 2759 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2760 return p!=0; 2761 } 2762 2763 /* 2764 ** This routine is called to process a compound query form from 2765 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2766 ** INTERSECT 2767 ** 2768 ** "p" points to the right-most of the two queries. the query on the 2769 ** left is p->pPrior. The left query could also be a compound query 2770 ** in which case this routine will be called recursively. 2771 ** 2772 ** The results of the total query are to be written into a destination 2773 ** of type eDest with parameter iParm. 2774 ** 2775 ** Example 1: Consider a three-way compound SQL statement. 2776 ** 2777 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2778 ** 2779 ** This statement is parsed up as follows: 2780 ** 2781 ** SELECT c FROM t3 2782 ** | 2783 ** `-----> SELECT b FROM t2 2784 ** | 2785 ** `------> SELECT a FROM t1 2786 ** 2787 ** The arrows in the diagram above represent the Select.pPrior pointer. 2788 ** So if this routine is called with p equal to the t3 query, then 2789 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2790 ** 2791 ** Notice that because of the way SQLite parses compound SELECTs, the 2792 ** individual selects always group from left to right. 2793 */ 2794 static int multiSelect( 2795 Parse *pParse, /* Parsing context */ 2796 Select *p, /* The right-most of SELECTs to be coded */ 2797 SelectDest *pDest /* What to do with query results */ 2798 ){ 2799 int rc = SQLITE_OK; /* Success code from a subroutine */ 2800 Select *pPrior; /* Another SELECT immediately to our left */ 2801 Vdbe *v; /* Generate code to this VDBE */ 2802 SelectDest dest; /* Alternative data destination */ 2803 Select *pDelete = 0; /* Chain of simple selects to delete */ 2804 sqlite3 *db; /* Database connection */ 2805 2806 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2807 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2808 */ 2809 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2810 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2811 assert( p->selFlags & SF_Compound ); 2812 db = pParse->db; 2813 pPrior = p->pPrior; 2814 dest = *pDest; 2815 assert( pPrior->pOrderBy==0 ); 2816 assert( pPrior->pLimit==0 ); 2817 2818 v = sqlite3GetVdbe(pParse); 2819 assert( v!=0 ); /* The VDBE already created by calling function */ 2820 2821 /* Create the destination temporary table if necessary 2822 */ 2823 if( dest.eDest==SRT_EphemTab ){ 2824 assert( p->pEList ); 2825 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2826 dest.eDest = SRT_Table; 2827 } 2828 2829 /* Special handling for a compound-select that originates as a VALUES clause. 2830 */ 2831 if( p->selFlags & SF_MultiValue ){ 2832 rc = multiSelectValues(pParse, p, &dest); 2833 if( rc>=0 ) goto multi_select_end; 2834 rc = SQLITE_OK; 2835 } 2836 2837 /* Make sure all SELECTs in the statement have the same number of elements 2838 ** in their result sets. 2839 */ 2840 assert( p->pEList && pPrior->pEList ); 2841 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2842 2843 #ifndef SQLITE_OMIT_CTE 2844 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2845 generateWithRecursiveQuery(pParse, p, &dest); 2846 }else 2847 #endif 2848 2849 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2850 */ 2851 if( p->pOrderBy ){ 2852 return multiSelectOrderBy(pParse, p, pDest); 2853 }else{ 2854 2855 #ifndef SQLITE_OMIT_EXPLAIN 2856 if( pPrior->pPrior==0 ){ 2857 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2858 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2859 } 2860 #endif 2861 2862 /* Generate code for the left and right SELECT statements. 2863 */ 2864 switch( p->op ){ 2865 case TK_ALL: { 2866 int addr = 0; 2867 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2868 assert( !pPrior->pLimit ); 2869 pPrior->iLimit = p->iLimit; 2870 pPrior->iOffset = p->iOffset; 2871 pPrior->pLimit = p->pLimit; 2872 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2873 rc = sqlite3Select(pParse, pPrior, &dest); 2874 pPrior->pLimit = 0; 2875 if( rc ){ 2876 goto multi_select_end; 2877 } 2878 p->pPrior = 0; 2879 p->iLimit = pPrior->iLimit; 2880 p->iOffset = pPrior->iOffset; 2881 if( p->iLimit ){ 2882 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2883 VdbeComment((v, "Jump ahead if LIMIT reached")); 2884 if( p->iOffset ){ 2885 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2886 p->iLimit, p->iOffset+1, p->iOffset); 2887 } 2888 } 2889 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2890 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2891 rc = sqlite3Select(pParse, p, &dest); 2892 testcase( rc!=SQLITE_OK ); 2893 pDelete = p->pPrior; 2894 p->pPrior = pPrior; 2895 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2896 if( p->pLimit 2897 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2898 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2899 ){ 2900 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2901 } 2902 if( addr ){ 2903 sqlite3VdbeJumpHere(v, addr); 2904 } 2905 break; 2906 } 2907 case TK_EXCEPT: 2908 case TK_UNION: { 2909 int unionTab; /* Cursor number of the temp table holding result */ 2910 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2911 int priorOp; /* The SRT_ operation to apply to prior selects */ 2912 Expr *pLimit; /* Saved values of p->nLimit */ 2913 int addr; 2914 SelectDest uniondest; 2915 2916 testcase( p->op==TK_EXCEPT ); 2917 testcase( p->op==TK_UNION ); 2918 priorOp = SRT_Union; 2919 if( dest.eDest==priorOp ){ 2920 /* We can reuse a temporary table generated by a SELECT to our 2921 ** right. 2922 */ 2923 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2924 unionTab = dest.iSDParm; 2925 }else{ 2926 /* We will need to create our own temporary table to hold the 2927 ** intermediate results. 2928 */ 2929 unionTab = pParse->nTab++; 2930 assert( p->pOrderBy==0 ); 2931 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2932 assert( p->addrOpenEphm[0] == -1 ); 2933 p->addrOpenEphm[0] = addr; 2934 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2935 assert( p->pEList ); 2936 } 2937 2938 2939 /* Code the SELECT statements to our left 2940 */ 2941 assert( !pPrior->pOrderBy ); 2942 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2943 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2944 rc = sqlite3Select(pParse, pPrior, &uniondest); 2945 if( rc ){ 2946 goto multi_select_end; 2947 } 2948 2949 /* Code the current SELECT statement 2950 */ 2951 if( p->op==TK_EXCEPT ){ 2952 op = SRT_Except; 2953 }else{ 2954 assert( p->op==TK_UNION ); 2955 op = SRT_Union; 2956 } 2957 p->pPrior = 0; 2958 pLimit = p->pLimit; 2959 p->pLimit = 0; 2960 uniondest.eDest = op; 2961 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2962 sqlite3SelectOpName(p->op))); 2963 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2964 rc = sqlite3Select(pParse, p, &uniondest); 2965 testcase( rc!=SQLITE_OK ); 2966 assert( p->pOrderBy==0 ); 2967 pDelete = p->pPrior; 2968 p->pPrior = pPrior; 2969 p->pOrderBy = 0; 2970 if( p->op==TK_UNION ){ 2971 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2972 } 2973 sqlite3ExprDelete(db, p->pLimit); 2974 p->pLimit = pLimit; 2975 p->iLimit = 0; 2976 p->iOffset = 0; 2977 2978 /* Convert the data in the temporary table into whatever form 2979 ** it is that we currently need. 2980 */ 2981 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2982 assert( p->pEList || db->mallocFailed ); 2983 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2984 int iCont, iBreak, iStart; 2985 iBreak = sqlite3VdbeMakeLabel(pParse); 2986 iCont = sqlite3VdbeMakeLabel(pParse); 2987 computeLimitRegisters(pParse, p, iBreak); 2988 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2989 iStart = sqlite3VdbeCurrentAddr(v); 2990 selectInnerLoop(pParse, p, unionTab, 2991 0, 0, &dest, iCont, iBreak); 2992 sqlite3VdbeResolveLabel(v, iCont); 2993 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2994 sqlite3VdbeResolveLabel(v, iBreak); 2995 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2996 } 2997 break; 2998 } 2999 default: assert( p->op==TK_INTERSECT ); { 3000 int tab1, tab2; 3001 int iCont, iBreak, iStart; 3002 Expr *pLimit; 3003 int addr; 3004 SelectDest intersectdest; 3005 int r1; 3006 3007 /* INTERSECT is different from the others since it requires 3008 ** two temporary tables. Hence it has its own case. Begin 3009 ** by allocating the tables we will need. 3010 */ 3011 tab1 = pParse->nTab++; 3012 tab2 = pParse->nTab++; 3013 assert( p->pOrderBy==0 ); 3014 3015 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3016 assert( p->addrOpenEphm[0] == -1 ); 3017 p->addrOpenEphm[0] = addr; 3018 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3019 assert( p->pEList ); 3020 3021 /* Code the SELECTs to our left into temporary table "tab1". 3022 */ 3023 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3024 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3025 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3026 if( rc ){ 3027 goto multi_select_end; 3028 } 3029 3030 /* Code the current SELECT into temporary table "tab2" 3031 */ 3032 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3033 assert( p->addrOpenEphm[1] == -1 ); 3034 p->addrOpenEphm[1] = addr; 3035 p->pPrior = 0; 3036 pLimit = p->pLimit; 3037 p->pLimit = 0; 3038 intersectdest.iSDParm = tab2; 3039 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3040 sqlite3SelectOpName(p->op))); 3041 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3042 rc = sqlite3Select(pParse, p, &intersectdest); 3043 testcase( rc!=SQLITE_OK ); 3044 pDelete = p->pPrior; 3045 p->pPrior = pPrior; 3046 if( p->nSelectRow>pPrior->nSelectRow ){ 3047 p->nSelectRow = pPrior->nSelectRow; 3048 } 3049 sqlite3ExprDelete(db, p->pLimit); 3050 p->pLimit = pLimit; 3051 3052 /* Generate code to take the intersection of the two temporary 3053 ** tables. 3054 */ 3055 if( rc ) break; 3056 assert( p->pEList ); 3057 iBreak = sqlite3VdbeMakeLabel(pParse); 3058 iCont = sqlite3VdbeMakeLabel(pParse); 3059 computeLimitRegisters(pParse, p, iBreak); 3060 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3061 r1 = sqlite3GetTempReg(pParse); 3062 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3063 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3064 VdbeCoverage(v); 3065 sqlite3ReleaseTempReg(pParse, r1); 3066 selectInnerLoop(pParse, p, tab1, 3067 0, 0, &dest, iCont, iBreak); 3068 sqlite3VdbeResolveLabel(v, iCont); 3069 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3070 sqlite3VdbeResolveLabel(v, iBreak); 3071 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3072 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3073 break; 3074 } 3075 } 3076 3077 #ifndef SQLITE_OMIT_EXPLAIN 3078 if( p->pNext==0 ){ 3079 ExplainQueryPlanPop(pParse); 3080 } 3081 #endif 3082 } 3083 if( pParse->nErr ) goto multi_select_end; 3084 3085 /* Compute collating sequences used by 3086 ** temporary tables needed to implement the compound select. 3087 ** Attach the KeyInfo structure to all temporary tables. 3088 ** 3089 ** This section is run by the right-most SELECT statement only. 3090 ** SELECT statements to the left always skip this part. The right-most 3091 ** SELECT might also skip this part if it has no ORDER BY clause and 3092 ** no temp tables are required. 3093 */ 3094 if( p->selFlags & SF_UsesEphemeral ){ 3095 int i; /* Loop counter */ 3096 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3097 Select *pLoop; /* For looping through SELECT statements */ 3098 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3099 int nCol; /* Number of columns in result set */ 3100 3101 assert( p->pNext==0 ); 3102 assert( p->pEList!=0 ); 3103 nCol = p->pEList->nExpr; 3104 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3105 if( !pKeyInfo ){ 3106 rc = SQLITE_NOMEM_BKPT; 3107 goto multi_select_end; 3108 } 3109 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3110 *apColl = multiSelectCollSeq(pParse, p, i); 3111 if( 0==*apColl ){ 3112 *apColl = db->pDfltColl; 3113 } 3114 } 3115 3116 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3117 for(i=0; i<2; i++){ 3118 int addr = pLoop->addrOpenEphm[i]; 3119 if( addr<0 ){ 3120 /* If [0] is unused then [1] is also unused. So we can 3121 ** always safely abort as soon as the first unused slot is found */ 3122 assert( pLoop->addrOpenEphm[1]<0 ); 3123 break; 3124 } 3125 sqlite3VdbeChangeP2(v, addr, nCol); 3126 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3127 P4_KEYINFO); 3128 pLoop->addrOpenEphm[i] = -1; 3129 } 3130 } 3131 sqlite3KeyInfoUnref(pKeyInfo); 3132 } 3133 3134 multi_select_end: 3135 pDest->iSdst = dest.iSdst; 3136 pDest->nSdst = dest.nSdst; 3137 if( pDelete ){ 3138 sqlite3ParserAddCleanup(pParse, 3139 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3140 pDelete); 3141 } 3142 return rc; 3143 } 3144 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3145 3146 /* 3147 ** Error message for when two or more terms of a compound select have different 3148 ** size result sets. 3149 */ 3150 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3151 if( p->selFlags & SF_Values ){ 3152 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3153 }else{ 3154 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3155 " do not have the same number of result columns", 3156 sqlite3SelectOpName(p->op)); 3157 } 3158 } 3159 3160 /* 3161 ** Code an output subroutine for a coroutine implementation of a 3162 ** SELECT statment. 3163 ** 3164 ** The data to be output is contained in pIn->iSdst. There are 3165 ** pIn->nSdst columns to be output. pDest is where the output should 3166 ** be sent. 3167 ** 3168 ** regReturn is the number of the register holding the subroutine 3169 ** return address. 3170 ** 3171 ** If regPrev>0 then it is the first register in a vector that 3172 ** records the previous output. mem[regPrev] is a flag that is false 3173 ** if there has been no previous output. If regPrev>0 then code is 3174 ** generated to suppress duplicates. pKeyInfo is used for comparing 3175 ** keys. 3176 ** 3177 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3178 ** iBreak. 3179 */ 3180 static int generateOutputSubroutine( 3181 Parse *pParse, /* Parsing context */ 3182 Select *p, /* The SELECT statement */ 3183 SelectDest *pIn, /* Coroutine supplying data */ 3184 SelectDest *pDest, /* Where to send the data */ 3185 int regReturn, /* The return address register */ 3186 int regPrev, /* Previous result register. No uniqueness if 0 */ 3187 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3188 int iBreak /* Jump here if we hit the LIMIT */ 3189 ){ 3190 Vdbe *v = pParse->pVdbe; 3191 int iContinue; 3192 int addr; 3193 3194 addr = sqlite3VdbeCurrentAddr(v); 3195 iContinue = sqlite3VdbeMakeLabel(pParse); 3196 3197 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3198 */ 3199 if( regPrev ){ 3200 int addr1, addr2; 3201 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3202 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3203 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3204 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3205 sqlite3VdbeJumpHere(v, addr1); 3206 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3207 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3208 } 3209 if( pParse->db->mallocFailed ) return 0; 3210 3211 /* Suppress the first OFFSET entries if there is an OFFSET clause 3212 */ 3213 codeOffset(v, p->iOffset, iContinue); 3214 3215 assert( pDest->eDest!=SRT_Exists ); 3216 assert( pDest->eDest!=SRT_Table ); 3217 switch( pDest->eDest ){ 3218 /* Store the result as data using a unique key. 3219 */ 3220 case SRT_EphemTab: { 3221 int r1 = sqlite3GetTempReg(pParse); 3222 int r2 = sqlite3GetTempReg(pParse); 3223 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3224 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3225 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3226 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3227 sqlite3ReleaseTempReg(pParse, r2); 3228 sqlite3ReleaseTempReg(pParse, r1); 3229 break; 3230 } 3231 3232 #ifndef SQLITE_OMIT_SUBQUERY 3233 /* If we are creating a set for an "expr IN (SELECT ...)". 3234 */ 3235 case SRT_Set: { 3236 int r1; 3237 testcase( pIn->nSdst>1 ); 3238 r1 = sqlite3GetTempReg(pParse); 3239 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3240 r1, pDest->zAffSdst, pIn->nSdst); 3241 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3242 pIn->iSdst, pIn->nSdst); 3243 sqlite3ReleaseTempReg(pParse, r1); 3244 break; 3245 } 3246 3247 /* If this is a scalar select that is part of an expression, then 3248 ** store the results in the appropriate memory cell and break out 3249 ** of the scan loop. Note that the select might return multiple columns 3250 ** if it is the RHS of a row-value IN operator. 3251 */ 3252 case SRT_Mem: { 3253 testcase( pIn->nSdst>1 ); 3254 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3255 /* The LIMIT clause will jump out of the loop for us */ 3256 break; 3257 } 3258 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3259 3260 /* The results are stored in a sequence of registers 3261 ** starting at pDest->iSdst. Then the co-routine yields. 3262 */ 3263 case SRT_Coroutine: { 3264 if( pDest->iSdst==0 ){ 3265 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3266 pDest->nSdst = pIn->nSdst; 3267 } 3268 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3269 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3270 break; 3271 } 3272 3273 /* If none of the above, then the result destination must be 3274 ** SRT_Output. This routine is never called with any other 3275 ** destination other than the ones handled above or SRT_Output. 3276 ** 3277 ** For SRT_Output, results are stored in a sequence of registers. 3278 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3279 ** return the next row of result. 3280 */ 3281 default: { 3282 assert( pDest->eDest==SRT_Output ); 3283 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3284 break; 3285 } 3286 } 3287 3288 /* Jump to the end of the loop if the LIMIT is reached. 3289 */ 3290 if( p->iLimit ){ 3291 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3292 } 3293 3294 /* Generate the subroutine return 3295 */ 3296 sqlite3VdbeResolveLabel(v, iContinue); 3297 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3298 3299 return addr; 3300 } 3301 3302 /* 3303 ** Alternative compound select code generator for cases when there 3304 ** is an ORDER BY clause. 3305 ** 3306 ** We assume a query of the following form: 3307 ** 3308 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3309 ** 3310 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3311 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3312 ** co-routines. Then run the co-routines in parallel and merge the results 3313 ** into the output. In addition to the two coroutines (called selectA and 3314 ** selectB) there are 7 subroutines: 3315 ** 3316 ** outA: Move the output of the selectA coroutine into the output 3317 ** of the compound query. 3318 ** 3319 ** outB: Move the output of the selectB coroutine into the output 3320 ** of the compound query. (Only generated for UNION and 3321 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3322 ** appears only in B.) 3323 ** 3324 ** AltB: Called when there is data from both coroutines and A<B. 3325 ** 3326 ** AeqB: Called when there is data from both coroutines and A==B. 3327 ** 3328 ** AgtB: Called when there is data from both coroutines and A>B. 3329 ** 3330 ** EofA: Called when data is exhausted from selectA. 3331 ** 3332 ** EofB: Called when data is exhausted from selectB. 3333 ** 3334 ** The implementation of the latter five subroutines depend on which 3335 ** <operator> is used: 3336 ** 3337 ** 3338 ** UNION ALL UNION EXCEPT INTERSECT 3339 ** ------------- ----------------- -------------- ----------------- 3340 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3341 ** 3342 ** AeqB: outA, nextA nextA nextA outA, nextA 3343 ** 3344 ** AgtB: outB, nextB outB, nextB nextB nextB 3345 ** 3346 ** EofA: outB, nextB outB, nextB halt halt 3347 ** 3348 ** EofB: outA, nextA outA, nextA outA, nextA halt 3349 ** 3350 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3351 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3352 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3353 ** following nextX causes a jump to the end of the select processing. 3354 ** 3355 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3356 ** within the output subroutine. The regPrev register set holds the previously 3357 ** output value. A comparison is made against this value and the output 3358 ** is skipped if the next results would be the same as the previous. 3359 ** 3360 ** The implementation plan is to implement the two coroutines and seven 3361 ** subroutines first, then put the control logic at the bottom. Like this: 3362 ** 3363 ** goto Init 3364 ** coA: coroutine for left query (A) 3365 ** coB: coroutine for right query (B) 3366 ** outA: output one row of A 3367 ** outB: output one row of B (UNION and UNION ALL only) 3368 ** EofA: ... 3369 ** EofB: ... 3370 ** AltB: ... 3371 ** AeqB: ... 3372 ** AgtB: ... 3373 ** Init: initialize coroutine registers 3374 ** yield coA 3375 ** if eof(A) goto EofA 3376 ** yield coB 3377 ** if eof(B) goto EofB 3378 ** Cmpr: Compare A, B 3379 ** Jump AltB, AeqB, AgtB 3380 ** End: ... 3381 ** 3382 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3383 ** actually called using Gosub and they do not Return. EofA and EofB loop 3384 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3385 ** and AgtB jump to either L2 or to one of EofA or EofB. 3386 */ 3387 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3388 static int multiSelectOrderBy( 3389 Parse *pParse, /* Parsing context */ 3390 Select *p, /* The right-most of SELECTs to be coded */ 3391 SelectDest *pDest /* What to do with query results */ 3392 ){ 3393 int i, j; /* Loop counters */ 3394 Select *pPrior; /* Another SELECT immediately to our left */ 3395 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3396 int nSelect; /* Number of SELECT statements in the compound */ 3397 Vdbe *v; /* Generate code to this VDBE */ 3398 SelectDest destA; /* Destination for coroutine A */ 3399 SelectDest destB; /* Destination for coroutine B */ 3400 int regAddrA; /* Address register for select-A coroutine */ 3401 int regAddrB; /* Address register for select-B coroutine */ 3402 int addrSelectA; /* Address of the select-A coroutine */ 3403 int addrSelectB; /* Address of the select-B coroutine */ 3404 int regOutA; /* Address register for the output-A subroutine */ 3405 int regOutB; /* Address register for the output-B subroutine */ 3406 int addrOutA; /* Address of the output-A subroutine */ 3407 int addrOutB = 0; /* Address of the output-B subroutine */ 3408 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3409 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3410 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3411 int addrAltB; /* Address of the A<B subroutine */ 3412 int addrAeqB; /* Address of the A==B subroutine */ 3413 int addrAgtB; /* Address of the A>B subroutine */ 3414 int regLimitA; /* Limit register for select-A */ 3415 int regLimitB; /* Limit register for select-A */ 3416 int regPrev; /* A range of registers to hold previous output */ 3417 int savedLimit; /* Saved value of p->iLimit */ 3418 int savedOffset; /* Saved value of p->iOffset */ 3419 int labelCmpr; /* Label for the start of the merge algorithm */ 3420 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3421 int addr1; /* Jump instructions that get retargetted */ 3422 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3423 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3424 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3425 sqlite3 *db; /* Database connection */ 3426 ExprList *pOrderBy; /* The ORDER BY clause */ 3427 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3428 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3429 3430 assert( p->pOrderBy!=0 ); 3431 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3432 db = pParse->db; 3433 v = pParse->pVdbe; 3434 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3435 labelEnd = sqlite3VdbeMakeLabel(pParse); 3436 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3437 3438 3439 /* Patch up the ORDER BY clause 3440 */ 3441 op = p->op; 3442 assert( p->pPrior->pOrderBy==0 ); 3443 pOrderBy = p->pOrderBy; 3444 assert( pOrderBy ); 3445 nOrderBy = pOrderBy->nExpr; 3446 3447 /* For operators other than UNION ALL we have to make sure that 3448 ** the ORDER BY clause covers every term of the result set. Add 3449 ** terms to the ORDER BY clause as necessary. 3450 */ 3451 if( op!=TK_ALL ){ 3452 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3453 struct ExprList_item *pItem; 3454 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3455 assert( pItem!=0 ); 3456 assert( pItem->u.x.iOrderByCol>0 ); 3457 if( pItem->u.x.iOrderByCol==i ) break; 3458 } 3459 if( j==nOrderBy ){ 3460 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3461 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3462 pNew->flags |= EP_IntValue; 3463 pNew->u.iValue = i; 3464 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3465 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3466 } 3467 } 3468 } 3469 3470 /* Compute the comparison permutation and keyinfo that is used with 3471 ** the permutation used to determine if the next 3472 ** row of results comes from selectA or selectB. Also add explicit 3473 ** collations to the ORDER BY clause terms so that when the subqueries 3474 ** to the right and the left are evaluated, they use the correct 3475 ** collation. 3476 */ 3477 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3478 if( aPermute ){ 3479 struct ExprList_item *pItem; 3480 aPermute[0] = nOrderBy; 3481 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3482 assert( pItem!=0 ); 3483 assert( pItem->u.x.iOrderByCol>0 ); 3484 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3485 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3486 } 3487 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3488 }else{ 3489 pKeyMerge = 0; 3490 } 3491 3492 /* Allocate a range of temporary registers and the KeyInfo needed 3493 ** for the logic that removes duplicate result rows when the 3494 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3495 */ 3496 if( op==TK_ALL ){ 3497 regPrev = 0; 3498 }else{ 3499 int nExpr = p->pEList->nExpr; 3500 assert( nOrderBy>=nExpr || db->mallocFailed ); 3501 regPrev = pParse->nMem+1; 3502 pParse->nMem += nExpr+1; 3503 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3504 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3505 if( pKeyDup ){ 3506 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3507 for(i=0; i<nExpr; i++){ 3508 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3509 pKeyDup->aSortFlags[i] = 0; 3510 } 3511 } 3512 } 3513 3514 /* Separate the left and the right query from one another 3515 */ 3516 nSelect = 1; 3517 if( (op==TK_ALL || op==TK_UNION) 3518 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3519 ){ 3520 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3521 nSelect++; 3522 assert( pSplit->pPrior->pNext==pSplit ); 3523 } 3524 } 3525 if( nSelect<=3 ){ 3526 pSplit = p; 3527 }else{ 3528 pSplit = p; 3529 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3530 } 3531 pPrior = pSplit->pPrior; 3532 assert( pPrior!=0 ); 3533 pSplit->pPrior = 0; 3534 pPrior->pNext = 0; 3535 assert( p->pOrderBy == pOrderBy ); 3536 assert( pOrderBy!=0 || db->mallocFailed ); 3537 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3538 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3539 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3540 3541 /* Compute the limit registers */ 3542 computeLimitRegisters(pParse, p, labelEnd); 3543 if( p->iLimit && op==TK_ALL ){ 3544 regLimitA = ++pParse->nMem; 3545 regLimitB = ++pParse->nMem; 3546 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3547 regLimitA); 3548 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3549 }else{ 3550 regLimitA = regLimitB = 0; 3551 } 3552 sqlite3ExprDelete(db, p->pLimit); 3553 p->pLimit = 0; 3554 3555 regAddrA = ++pParse->nMem; 3556 regAddrB = ++pParse->nMem; 3557 regOutA = ++pParse->nMem; 3558 regOutB = ++pParse->nMem; 3559 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3560 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3561 3562 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3563 3564 /* Generate a coroutine to evaluate the SELECT statement to the 3565 ** left of the compound operator - the "A" select. 3566 */ 3567 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3568 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3569 VdbeComment((v, "left SELECT")); 3570 pPrior->iLimit = regLimitA; 3571 ExplainQueryPlan((pParse, 1, "LEFT")); 3572 sqlite3Select(pParse, pPrior, &destA); 3573 sqlite3VdbeEndCoroutine(v, regAddrA); 3574 sqlite3VdbeJumpHere(v, addr1); 3575 3576 /* Generate a coroutine to evaluate the SELECT statement on 3577 ** the right - the "B" select 3578 */ 3579 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3580 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3581 VdbeComment((v, "right SELECT")); 3582 savedLimit = p->iLimit; 3583 savedOffset = p->iOffset; 3584 p->iLimit = regLimitB; 3585 p->iOffset = 0; 3586 ExplainQueryPlan((pParse, 1, "RIGHT")); 3587 sqlite3Select(pParse, p, &destB); 3588 p->iLimit = savedLimit; 3589 p->iOffset = savedOffset; 3590 sqlite3VdbeEndCoroutine(v, regAddrB); 3591 3592 /* Generate a subroutine that outputs the current row of the A 3593 ** select as the next output row of the compound select. 3594 */ 3595 VdbeNoopComment((v, "Output routine for A")); 3596 addrOutA = generateOutputSubroutine(pParse, 3597 p, &destA, pDest, regOutA, 3598 regPrev, pKeyDup, labelEnd); 3599 3600 /* Generate a subroutine that outputs the current row of the B 3601 ** select as the next output row of the compound select. 3602 */ 3603 if( op==TK_ALL || op==TK_UNION ){ 3604 VdbeNoopComment((v, "Output routine for B")); 3605 addrOutB = generateOutputSubroutine(pParse, 3606 p, &destB, pDest, regOutB, 3607 regPrev, pKeyDup, labelEnd); 3608 } 3609 sqlite3KeyInfoUnref(pKeyDup); 3610 3611 /* Generate a subroutine to run when the results from select A 3612 ** are exhausted and only data in select B remains. 3613 */ 3614 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3615 addrEofA_noB = addrEofA = labelEnd; 3616 }else{ 3617 VdbeNoopComment((v, "eof-A subroutine")); 3618 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3619 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3620 VdbeCoverage(v); 3621 sqlite3VdbeGoto(v, addrEofA); 3622 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3623 } 3624 3625 /* Generate a subroutine to run when the results from select B 3626 ** are exhausted and only data in select A remains. 3627 */ 3628 if( op==TK_INTERSECT ){ 3629 addrEofB = addrEofA; 3630 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3631 }else{ 3632 VdbeNoopComment((v, "eof-B subroutine")); 3633 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3634 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3635 sqlite3VdbeGoto(v, addrEofB); 3636 } 3637 3638 /* Generate code to handle the case of A<B 3639 */ 3640 VdbeNoopComment((v, "A-lt-B subroutine")); 3641 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3642 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3643 sqlite3VdbeGoto(v, labelCmpr); 3644 3645 /* Generate code to handle the case of A==B 3646 */ 3647 if( op==TK_ALL ){ 3648 addrAeqB = addrAltB; 3649 }else if( op==TK_INTERSECT ){ 3650 addrAeqB = addrAltB; 3651 addrAltB++; 3652 }else{ 3653 VdbeNoopComment((v, "A-eq-B subroutine")); 3654 addrAeqB = 3655 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3656 sqlite3VdbeGoto(v, labelCmpr); 3657 } 3658 3659 /* Generate code to handle the case of A>B 3660 */ 3661 VdbeNoopComment((v, "A-gt-B subroutine")); 3662 addrAgtB = sqlite3VdbeCurrentAddr(v); 3663 if( op==TK_ALL || op==TK_UNION ){ 3664 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3665 } 3666 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3667 sqlite3VdbeGoto(v, labelCmpr); 3668 3669 /* This code runs once to initialize everything. 3670 */ 3671 sqlite3VdbeJumpHere(v, addr1); 3672 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3673 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3674 3675 /* Implement the main merge loop 3676 */ 3677 sqlite3VdbeResolveLabel(v, labelCmpr); 3678 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3679 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3680 (char*)pKeyMerge, P4_KEYINFO); 3681 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3682 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3683 3684 /* Jump to the this point in order to terminate the query. 3685 */ 3686 sqlite3VdbeResolveLabel(v, labelEnd); 3687 3688 /* Reassembly the compound query so that it will be freed correctly 3689 ** by the calling function */ 3690 if( pSplit->pPrior ){ 3691 sqlite3SelectDelete(db, pSplit->pPrior); 3692 } 3693 pSplit->pPrior = pPrior; 3694 pPrior->pNext = pSplit; 3695 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3696 pPrior->pOrderBy = 0; 3697 3698 /*** TBD: Insert subroutine calls to close cursors on incomplete 3699 **** subqueries ****/ 3700 ExplainQueryPlanPop(pParse); 3701 return pParse->nErr!=0; 3702 } 3703 #endif 3704 3705 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3706 3707 /* An instance of the SubstContext object describes an substitution edit 3708 ** to be performed on a parse tree. 3709 ** 3710 ** All references to columns in table iTable are to be replaced by corresponding 3711 ** expressions in pEList. 3712 ** 3713 ** ## About "isOuterJoin": 3714 ** 3715 ** The isOuterJoin column indicates that the replacement will occur into a 3716 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3717 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3718 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3719 ** bypass the substituted expression with OP_IfNullRow. 3720 ** 3721 ** Suppose the original expression integer constant. Even though the table 3722 ** has the nullRow flag set, because the expression is an integer constant, 3723 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3724 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3725 ** flag is set, then the value in the register is set to NULL and the original 3726 ** expression is bypassed. If the nullRow flag is not set, then the original 3727 ** expression runs to populate the register. 3728 ** 3729 ** Example where this is needed: 3730 ** 3731 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3732 ** CREATE TABLE t2(x INT UNIQUE); 3733 ** 3734 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3735 ** 3736 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3737 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3738 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3739 ** when processing a non-matched row of the left. 3740 */ 3741 typedef struct SubstContext { 3742 Parse *pParse; /* The parsing context */ 3743 int iTable; /* Replace references to this table */ 3744 int iNewTable; /* New table number */ 3745 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3746 ExprList *pEList; /* Replacement expressions */ 3747 } SubstContext; 3748 3749 /* Forward Declarations */ 3750 static void substExprList(SubstContext*, ExprList*); 3751 static void substSelect(SubstContext*, Select*, int); 3752 3753 /* 3754 ** Scan through the expression pExpr. Replace every reference to 3755 ** a column in table number iTable with a copy of the iColumn-th 3756 ** entry in pEList. (But leave references to the ROWID column 3757 ** unchanged.) 3758 ** 3759 ** This routine is part of the flattening procedure. A subquery 3760 ** whose result set is defined by pEList appears as entry in the 3761 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3762 ** FORM clause entry is iTable. This routine makes the necessary 3763 ** changes to pExpr so that it refers directly to the source table 3764 ** of the subquery rather the result set of the subquery. 3765 */ 3766 static Expr *substExpr( 3767 SubstContext *pSubst, /* Description of the substitution */ 3768 Expr *pExpr /* Expr in which substitution occurs */ 3769 ){ 3770 if( pExpr==0 ) return 0; 3771 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) 3772 && pExpr->w.iJoin==pSubst->iTable 3773 ){ 3774 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 3775 pExpr->w.iJoin = pSubst->iNewTable; 3776 } 3777 if( pExpr->op==TK_COLUMN 3778 && pExpr->iTable==pSubst->iTable 3779 && !ExprHasProperty(pExpr, EP_FixedCol) 3780 ){ 3781 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3782 if( pExpr->iColumn<0 ){ 3783 pExpr->op = TK_NULL; 3784 }else 3785 #endif 3786 { 3787 Expr *pNew; 3788 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3789 Expr ifNullRow; 3790 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3791 assert( pExpr->pRight==0 ); 3792 if( sqlite3ExprIsVector(pCopy) ){ 3793 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3794 }else{ 3795 sqlite3 *db = pSubst->pParse->db; 3796 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3797 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3798 ifNullRow.op = TK_IF_NULL_ROW; 3799 ifNullRow.pLeft = pCopy; 3800 ifNullRow.iTable = pSubst->iNewTable; 3801 ifNullRow.flags = EP_IfNullRow; 3802 pCopy = &ifNullRow; 3803 } 3804 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3805 pNew = sqlite3ExprDup(db, pCopy, 0); 3806 if( db->mallocFailed ){ 3807 sqlite3ExprDelete(db, pNew); 3808 return pExpr; 3809 } 3810 if( pSubst->isOuterJoin ){ 3811 ExprSetProperty(pNew, EP_CanBeNull); 3812 } 3813 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ 3814 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3815 pExpr->flags & (EP_OuterON|EP_InnerON)); 3816 } 3817 sqlite3ExprDelete(db, pExpr); 3818 pExpr = pNew; 3819 if( pExpr->op==TK_TRUEFALSE ){ 3820 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); 3821 pExpr->op = TK_INTEGER; 3822 ExprSetProperty(pExpr, EP_IntValue); 3823 } 3824 3825 /* Ensure that the expression now has an implicit collation sequence, 3826 ** just as it did when it was a column of a view or sub-query. */ 3827 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3828 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3829 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3830 (pColl ? pColl->zName : "BINARY") 3831 ); 3832 } 3833 ExprClearProperty(pExpr, EP_Collate); 3834 } 3835 } 3836 }else{ 3837 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3838 pExpr->iTable = pSubst->iNewTable; 3839 } 3840 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3841 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3842 if( ExprUseXSelect(pExpr) ){ 3843 substSelect(pSubst, pExpr->x.pSelect, 1); 3844 }else{ 3845 substExprList(pSubst, pExpr->x.pList); 3846 } 3847 #ifndef SQLITE_OMIT_WINDOWFUNC 3848 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3849 Window *pWin = pExpr->y.pWin; 3850 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3851 substExprList(pSubst, pWin->pPartition); 3852 substExprList(pSubst, pWin->pOrderBy); 3853 } 3854 #endif 3855 } 3856 return pExpr; 3857 } 3858 static void substExprList( 3859 SubstContext *pSubst, /* Description of the substitution */ 3860 ExprList *pList /* List to scan and in which to make substitutes */ 3861 ){ 3862 int i; 3863 if( pList==0 ) return; 3864 for(i=0; i<pList->nExpr; i++){ 3865 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3866 } 3867 } 3868 static void substSelect( 3869 SubstContext *pSubst, /* Description of the substitution */ 3870 Select *p, /* SELECT statement in which to make substitutions */ 3871 int doPrior /* Do substitutes on p->pPrior too */ 3872 ){ 3873 SrcList *pSrc; 3874 SrcItem *pItem; 3875 int i; 3876 if( !p ) return; 3877 do{ 3878 substExprList(pSubst, p->pEList); 3879 substExprList(pSubst, p->pGroupBy); 3880 substExprList(pSubst, p->pOrderBy); 3881 p->pHaving = substExpr(pSubst, p->pHaving); 3882 p->pWhere = substExpr(pSubst, p->pWhere); 3883 pSrc = p->pSrc; 3884 assert( pSrc!=0 ); 3885 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3886 substSelect(pSubst, pItem->pSelect, 1); 3887 if( pItem->fg.isTabFunc ){ 3888 substExprList(pSubst, pItem->u1.pFuncArg); 3889 } 3890 } 3891 }while( doPrior && (p = p->pPrior)!=0 ); 3892 } 3893 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3894 3895 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3896 /* 3897 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3898 ** clause of that SELECT. 3899 ** 3900 ** This routine scans the entire SELECT statement and recomputes the 3901 ** pSrcItem->colUsed mask. 3902 */ 3903 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3904 SrcItem *pItem; 3905 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3906 pItem = pWalker->u.pSrcItem; 3907 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3908 if( pExpr->iColumn<0 ) return WRC_Continue; 3909 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3910 return WRC_Continue; 3911 } 3912 static void recomputeColumnsUsed( 3913 Select *pSelect, /* The complete SELECT statement */ 3914 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3915 ){ 3916 Walker w; 3917 if( NEVER(pSrcItem->pTab==0) ) return; 3918 memset(&w, 0, sizeof(w)); 3919 w.xExprCallback = recomputeColumnsUsedExpr; 3920 w.xSelectCallback = sqlite3SelectWalkNoop; 3921 w.u.pSrcItem = pSrcItem; 3922 pSrcItem->colUsed = 0; 3923 sqlite3WalkSelect(&w, pSelect); 3924 } 3925 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3926 3927 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3928 /* 3929 ** Assign new cursor numbers to each of the items in pSrc. For each 3930 ** new cursor number assigned, set an entry in the aCsrMap[] array 3931 ** to map the old cursor number to the new: 3932 ** 3933 ** aCsrMap[iOld+1] = iNew; 3934 ** 3935 ** The array is guaranteed by the caller to be large enough for all 3936 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3937 ** 3938 ** If pSrc contains any sub-selects, call this routine recursively 3939 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3940 */ 3941 static void srclistRenumberCursors( 3942 Parse *pParse, /* Parse context */ 3943 int *aCsrMap, /* Array to store cursor mappings in */ 3944 SrcList *pSrc, /* FROM clause to renumber */ 3945 int iExcept /* FROM clause item to skip */ 3946 ){ 3947 int i; 3948 SrcItem *pItem; 3949 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3950 if( i!=iExcept ){ 3951 Select *p; 3952 assert( pItem->iCursor < aCsrMap[0] ); 3953 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3954 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3955 } 3956 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3957 for(p=pItem->pSelect; p; p=p->pPrior){ 3958 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3959 } 3960 } 3961 } 3962 } 3963 3964 /* 3965 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3966 */ 3967 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3968 int *aCsrMap = pWalker->u.aiCol; 3969 int iCsr = *piCursor; 3970 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3971 *piCursor = aCsrMap[iCsr+1]; 3972 } 3973 } 3974 3975 /* 3976 ** Expression walker callback used by renumberCursors() to update 3977 ** Expr objects to match newly assigned cursor numbers. 3978 */ 3979 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3980 int op = pExpr->op; 3981 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3982 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3983 } 3984 if( ExprHasProperty(pExpr, EP_OuterON) ){ 3985 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3986 } 3987 return WRC_Continue; 3988 } 3989 3990 /* 3991 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3992 ** of the SELECT statement passed as the second argument, and to each 3993 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3994 ** Except, do not assign a new cursor number to the iExcept'th element in 3995 ** the FROM clause of (*p). Update all expressions and other references 3996 ** to refer to the new cursor numbers. 3997 ** 3998 ** Argument aCsrMap is an array that may be used for temporary working 3999 ** space. Two guarantees are made by the caller: 4000 ** 4001 ** * the array is larger than the largest cursor number used within the 4002 ** select statement passed as an argument, and 4003 ** 4004 ** * the array entries for all cursor numbers that do *not* appear in 4005 ** FROM clauses of the select statement as described above are 4006 ** initialized to zero. 4007 */ 4008 static void renumberCursors( 4009 Parse *pParse, /* Parse context */ 4010 Select *p, /* Select to renumber cursors within */ 4011 int iExcept, /* FROM clause item to skip */ 4012 int *aCsrMap /* Working space */ 4013 ){ 4014 Walker w; 4015 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 4016 memset(&w, 0, sizeof(w)); 4017 w.u.aiCol = aCsrMap; 4018 w.xExprCallback = renumberCursorsCb; 4019 w.xSelectCallback = sqlite3SelectWalkNoop; 4020 sqlite3WalkSelect(&w, p); 4021 } 4022 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4023 4024 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4025 /* 4026 ** This routine attempts to flatten subqueries as a performance optimization. 4027 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4028 ** 4029 ** To understand the concept of flattening, consider the following 4030 ** query: 4031 ** 4032 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4033 ** 4034 ** The default way of implementing this query is to execute the 4035 ** subquery first and store the results in a temporary table, then 4036 ** run the outer query on that temporary table. This requires two 4037 ** passes over the data. Furthermore, because the temporary table 4038 ** has no indices, the WHERE clause on the outer query cannot be 4039 ** optimized. 4040 ** 4041 ** This routine attempts to rewrite queries such as the above into 4042 ** a single flat select, like this: 4043 ** 4044 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4045 ** 4046 ** The code generated for this simplification gives the same result 4047 ** but only has to scan the data once. And because indices might 4048 ** exist on the table t1, a complete scan of the data might be 4049 ** avoided. 4050 ** 4051 ** Flattening is subject to the following constraints: 4052 ** 4053 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4054 ** The subquery and the outer query cannot both be aggregates. 4055 ** 4056 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4057 ** (2) If the subquery is an aggregate then 4058 ** (2a) the outer query must not be a join and 4059 ** (2b) the outer query must not use subqueries 4060 ** other than the one FROM-clause subquery that is a candidate 4061 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4062 ** from 2015-02-09.) 4063 ** 4064 ** (3) If the subquery is the right operand of a LEFT JOIN then 4065 ** (3a) the subquery may not be a join and 4066 ** (3b) the FROM clause of the subquery may not contain a virtual 4067 ** table and 4068 ** (3c) The outer query may not have a GROUP BY. (This limitation is 4069 ** due to how TK_IF_NULL_ROW works. FIX ME!) 4070 ** (3d) the outer query may not be DISTINCT. 4071 ** See also (26) for restrictions on RIGHT JOIN. 4072 ** 4073 ** (4) The subquery can not be DISTINCT. 4074 ** 4075 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4076 ** sub-queries that were excluded from this optimization. Restriction 4077 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4078 ** 4079 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4080 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4081 ** 4082 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4083 ** A FROM clause, consider adding a FROM clause with the special 4084 ** table sqlite_once that consists of a single row containing a 4085 ** single NULL. 4086 ** 4087 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4088 ** 4089 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4090 ** 4091 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4092 ** accidently carried the comment forward until 2014-09-15. Original 4093 ** constraint: "If the subquery is aggregate then the outer query 4094 ** may not use LIMIT." 4095 ** 4096 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4097 ** 4098 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4099 ** a separate restriction deriving from ticket #350. 4100 ** 4101 ** (13) The subquery and outer query may not both use LIMIT. 4102 ** 4103 ** (14) The subquery may not use OFFSET. 4104 ** 4105 ** (15) If the outer query is part of a compound select, then the 4106 ** subquery may not use LIMIT. 4107 ** (See ticket #2339 and ticket [02a8e81d44]). 4108 ** 4109 ** (16) If the outer query is aggregate, then the subquery may not 4110 ** use ORDER BY. (Ticket #2942) This used to not matter 4111 ** until we introduced the group_concat() function. 4112 ** 4113 ** (17) If the subquery is a compound select, then 4114 ** (17a) all compound operators must be a UNION ALL, and 4115 ** (17b) no terms within the subquery compound may be aggregate 4116 ** or DISTINCT, and 4117 ** (17c) every term within the subquery compound must have a FROM clause 4118 ** (17d) the outer query may not be 4119 ** (17d1) aggregate, or 4120 ** (17d2) DISTINCT 4121 ** (17e) the subquery may not contain window functions, and 4122 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4123 ** 4124 ** The parent and sub-query may contain WHERE clauses. Subject to 4125 ** rules (11), (13) and (14), they may also contain ORDER BY, 4126 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4127 ** operator other than UNION ALL because all the other compound 4128 ** operators have an implied DISTINCT which is disallowed by 4129 ** restriction (4). 4130 ** 4131 ** Also, each component of the sub-query must return the same number 4132 ** of result columns. This is actually a requirement for any compound 4133 ** SELECT statement, but all the code here does is make sure that no 4134 ** such (illegal) sub-query is flattened. The caller will detect the 4135 ** syntax error and return a detailed message. 4136 ** 4137 ** (18) If the sub-query is a compound select, then all terms of the 4138 ** ORDER BY clause of the parent must be copies of a term returned 4139 ** by the parent query. 4140 ** 4141 ** (19) If the subquery uses LIMIT then the outer query may not 4142 ** have a WHERE clause. 4143 ** 4144 ** (20) If the sub-query is a compound select, then it must not use 4145 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4146 ** somewhat by saying that the terms of the ORDER BY clause must 4147 ** appear as unmodified result columns in the outer query. But we 4148 ** have other optimizations in mind to deal with that case. 4149 ** 4150 ** (21) If the subquery uses LIMIT then the outer query may not be 4151 ** DISTINCT. (See ticket [752e1646fc]). 4152 ** 4153 ** (22) The subquery may not be a recursive CTE. 4154 ** 4155 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4156 ** a compound query. This restriction is because transforming the 4157 ** parent to a compound query confuses the code that handles 4158 ** recursive queries in multiSelect(). 4159 ** 4160 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4161 ** The subquery may not be an aggregate that uses the built-in min() or 4162 ** or max() functions. (Without this restriction, a query like: 4163 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4164 ** return the value X for which Y was maximal.) 4165 ** 4166 ** (25) If either the subquery or the parent query contains a window 4167 ** function in the select list or ORDER BY clause, flattening 4168 ** is not attempted. 4169 ** 4170 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4171 ** See also (3) for restrictions on LEFT JOIN. 4172 ** 4173 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4174 ** is the first element of the parent query. 4175 ** 4176 ** (28) The subquery is not a MATERIALIZED CTE. 4177 ** 4178 ** (29) Either the subquery is not the right-hand operand of a join with an 4179 ** ON or USING clause nor the right-hand operand of a NATURAL JOIN, or 4180 ** the right-most table within the FROM clause of the subquery 4181 ** is not part of an outer join. 4182 ** 4183 ** 4184 ** In this routine, the "p" parameter is a pointer to the outer query. 4185 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4186 ** uses aggregates. 4187 ** 4188 ** If flattening is not attempted, this routine is a no-op and returns 0. 4189 ** If flattening is attempted this routine returns 1. 4190 ** 4191 ** All of the expression analysis must occur on both the outer query and 4192 ** the subquery before this routine runs. 4193 */ 4194 static int flattenSubquery( 4195 Parse *pParse, /* Parsing context */ 4196 Select *p, /* The parent or outer SELECT statement */ 4197 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4198 int isAgg /* True if outer SELECT uses aggregate functions */ 4199 ){ 4200 const char *zSavedAuthContext = pParse->zAuthContext; 4201 Select *pParent; /* Current UNION ALL term of the other query */ 4202 Select *pSub; /* The inner query or "subquery" */ 4203 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4204 SrcList *pSrc; /* The FROM clause of the outer query */ 4205 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4206 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4207 int iNewParent = -1;/* Replacement table for iParent */ 4208 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4209 int i; /* Loop counter */ 4210 Expr *pWhere; /* The WHERE clause */ 4211 SrcItem *pSubitem; /* The subquery */ 4212 sqlite3 *db = pParse->db; 4213 Walker w; /* Walker to persist agginfo data */ 4214 int *aCsrMap = 0; 4215 4216 /* Check to see if flattening is permitted. Return 0 if not. 4217 */ 4218 assert( p!=0 ); 4219 assert( p->pPrior==0 ); 4220 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4221 pSrc = p->pSrc; 4222 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4223 pSubitem = &pSrc->a[iFrom]; 4224 iParent = pSubitem->iCursor; 4225 pSub = pSubitem->pSelect; 4226 assert( pSub!=0 ); 4227 4228 #ifndef SQLITE_OMIT_WINDOWFUNC 4229 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4230 #endif 4231 4232 pSubSrc = pSub->pSrc; 4233 assert( pSubSrc ); 4234 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4235 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4236 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4237 ** became arbitrary expressions, we were forced to add restrictions (13) 4238 ** and (14). */ 4239 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4240 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4241 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4242 return 0; /* Restriction (15) */ 4243 } 4244 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4245 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4246 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4247 return 0; /* Restrictions (8)(9) */ 4248 } 4249 if( p->pOrderBy && pSub->pOrderBy ){ 4250 return 0; /* Restriction (11) */ 4251 } 4252 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4253 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4254 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4255 return 0; /* Restriction (21) */ 4256 } 4257 if( pSub->selFlags & (SF_Recursive) ){ 4258 return 0; /* Restrictions (22) */ 4259 } 4260 4261 /* 4262 ** If the subquery is the right operand of a LEFT JOIN, then the 4263 ** subquery may not be a join itself (3a). Example of why this is not 4264 ** allowed: 4265 ** 4266 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4267 ** 4268 ** If we flatten the above, we would get 4269 ** 4270 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4271 ** 4272 ** which is not at all the same thing. 4273 ** 4274 ** See also tickets #306, #350, and #3300. 4275 */ 4276 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4277 if( pSubSrc->nSrc>1 /* (3a) */ 4278 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ 4279 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4280 || (p->pGroupBy!=0) /* (3c) */ 4281 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4282 ){ 4283 return 0; 4284 } 4285 isOuterJoin = 1; 4286 } 4287 #ifdef SQLITE_EXTRA_IFNULLROW 4288 else if( iFrom>0 && !isAgg ){ 4289 /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for 4290 ** every reference to any result column from subquery in a join, even 4291 ** though they are not necessary. This will stress-test the OP_IfNullRow 4292 ** opcode. */ 4293 isOuterJoin = -1; 4294 } 4295 #endif 4296 4297 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4298 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4299 return 0; /* Restriction (27) */ 4300 } 4301 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4302 return 0; /* (28) */ 4303 } 4304 4305 /* Restriction (29): 4306 ** 4307 ** We do not want two constraints on the same term of the flattened 4308 ** query where one constraint has EP_InnerON and the other is EP_OuterON. 4309 ** To prevent this, one or the other of the following conditions must be 4310 ** false: 4311 ** 4312 ** (29a) The right-most entry in the FROM clause of the subquery 4313 ** must not be part of an outer join. 4314 ** 4315 ** (29b) The subquery itself must not be the right operand of a 4316 ** NATURAL join or a join that as an ON or USING clause. 4317 ** 4318 ** These conditions are sufficient to keep an EP_OuterON from being 4319 ** flattened into an EP_InnerON. Restrictions (3a) and (27) prevent 4320 ** an EP_InnerON from being flattened into an EP_OuterON. 4321 */ 4322 if( pSubSrc->nSrc>=2 4323 && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0 4324 ){ 4325 if( (pSubitem->fg.jointype & JT_NATURAL)!=0 4326 || pSubitem->fg.isUsing 4327 || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */ 4328 || pSubitem->fg.isOn 4329 ){ 4330 return 0; 4331 } 4332 } 4333 4334 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4335 ** use only the UNION ALL operator. And none of the simple select queries 4336 ** that make up the compound SELECT are allowed to be aggregate or distinct 4337 ** queries. 4338 */ 4339 if( pSub->pPrior ){ 4340 if( pSub->pOrderBy ){ 4341 return 0; /* Restriction (20) */ 4342 } 4343 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4344 return 0; /* (17d1), (17d2), or (17f) */ 4345 } 4346 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4347 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4348 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4349 assert( pSub->pSrc!=0 ); 4350 assert( (pSub->selFlags & SF_Recursive)==0 ); 4351 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4352 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4353 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4354 || pSub1->pSrc->nSrc<1 /* (17c) */ 4355 #ifndef SQLITE_OMIT_WINDOWFUNC 4356 || pSub1->pWin /* (17e) */ 4357 #endif 4358 ){ 4359 return 0; 4360 } 4361 testcase( pSub1->pSrc->nSrc>1 ); 4362 } 4363 4364 /* Restriction (18). */ 4365 if( p->pOrderBy ){ 4366 int ii; 4367 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4368 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4369 } 4370 } 4371 4372 /* Restriction (23) */ 4373 if( (p->selFlags & SF_Recursive) ) return 0; 4374 4375 if( pSrc->nSrc>1 ){ 4376 if( pParse->nSelect>500 ) return 0; 4377 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4378 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4379 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4380 } 4381 } 4382 4383 /***** If we reach this point, flattening is permitted. *****/ 4384 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4385 pSub->selId, pSub, iFrom)); 4386 4387 /* Authorize the subquery */ 4388 pParse->zAuthContext = pSubitem->zName; 4389 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4390 testcase( i==SQLITE_DENY ); 4391 pParse->zAuthContext = zSavedAuthContext; 4392 4393 /* Delete the transient structures associated with thesubquery */ 4394 pSub1 = pSubitem->pSelect; 4395 sqlite3DbFree(db, pSubitem->zDatabase); 4396 sqlite3DbFree(db, pSubitem->zName); 4397 sqlite3DbFree(db, pSubitem->zAlias); 4398 pSubitem->zDatabase = 0; 4399 pSubitem->zName = 0; 4400 pSubitem->zAlias = 0; 4401 pSubitem->pSelect = 0; 4402 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4403 4404 /* If the sub-query is a compound SELECT statement, then (by restrictions 4405 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4406 ** be of the form: 4407 ** 4408 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4409 ** 4410 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4411 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4412 ** OFFSET clauses and joins them to the left-hand-side of the original 4413 ** using UNION ALL operators. In this case N is the number of simple 4414 ** select statements in the compound sub-query. 4415 ** 4416 ** Example: 4417 ** 4418 ** SELECT a+1 FROM ( 4419 ** SELECT x FROM tab 4420 ** UNION ALL 4421 ** SELECT y FROM tab 4422 ** UNION ALL 4423 ** SELECT abs(z*2) FROM tab2 4424 ** ) WHERE a!=5 ORDER BY 1 4425 ** 4426 ** Transformed into: 4427 ** 4428 ** SELECT x+1 FROM tab WHERE x+1!=5 4429 ** UNION ALL 4430 ** SELECT y+1 FROM tab WHERE y+1!=5 4431 ** UNION ALL 4432 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4433 ** ORDER BY 1 4434 ** 4435 ** We call this the "compound-subquery flattening". 4436 */ 4437 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4438 Select *pNew; 4439 ExprList *pOrderBy = p->pOrderBy; 4440 Expr *pLimit = p->pLimit; 4441 Select *pPrior = p->pPrior; 4442 Table *pItemTab = pSubitem->pTab; 4443 pSubitem->pTab = 0; 4444 p->pOrderBy = 0; 4445 p->pPrior = 0; 4446 p->pLimit = 0; 4447 pNew = sqlite3SelectDup(db, p, 0); 4448 p->pLimit = pLimit; 4449 p->pOrderBy = pOrderBy; 4450 p->op = TK_ALL; 4451 pSubitem->pTab = pItemTab; 4452 if( pNew==0 ){ 4453 p->pPrior = pPrior; 4454 }else{ 4455 pNew->selId = ++pParse->nSelect; 4456 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4457 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4458 } 4459 pNew->pPrior = pPrior; 4460 if( pPrior ) pPrior->pNext = pNew; 4461 pNew->pNext = p; 4462 p->pPrior = pNew; 4463 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4464 " creates %u as peer\n",pNew->selId)); 4465 } 4466 assert( pSubitem->pSelect==0 ); 4467 } 4468 sqlite3DbFree(db, aCsrMap); 4469 if( db->mallocFailed ){ 4470 pSubitem->pSelect = pSub1; 4471 return 1; 4472 } 4473 4474 /* Defer deleting the Table object associated with the 4475 ** subquery until code generation is 4476 ** complete, since there may still exist Expr.pTab entries that 4477 ** refer to the subquery even after flattening. Ticket #3346. 4478 ** 4479 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4480 */ 4481 if( ALWAYS(pSubitem->pTab!=0) ){ 4482 Table *pTabToDel = pSubitem->pTab; 4483 if( pTabToDel->nTabRef==1 ){ 4484 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4485 sqlite3ParserAddCleanup(pToplevel, 4486 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4487 pTabToDel); 4488 testcase( pToplevel->earlyCleanup ); 4489 }else{ 4490 pTabToDel->nTabRef--; 4491 } 4492 pSubitem->pTab = 0; 4493 } 4494 4495 /* The following loop runs once for each term in a compound-subquery 4496 ** flattening (as described above). If we are doing a different kind 4497 ** of flattening - a flattening other than a compound-subquery flattening - 4498 ** then this loop only runs once. 4499 ** 4500 ** This loop moves all of the FROM elements of the subquery into the 4501 ** the FROM clause of the outer query. Before doing this, remember 4502 ** the cursor number for the original outer query FROM element in 4503 ** iParent. The iParent cursor will never be used. Subsequent code 4504 ** will scan expressions looking for iParent references and replace 4505 ** those references with expressions that resolve to the subquery FROM 4506 ** elements we are now copying in. 4507 */ 4508 pSub = pSub1; 4509 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4510 int nSubSrc; 4511 u8 jointype = 0; 4512 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4513 assert( pSub!=0 ); 4514 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4515 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4516 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4517 4518 if( pParent==p ){ 4519 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4520 } 4521 4522 /* The subquery uses a single slot of the FROM clause of the outer 4523 ** query. If the subquery has more than one element in its FROM clause, 4524 ** then expand the outer query to make space for it to hold all elements 4525 ** of the subquery. 4526 ** 4527 ** Example: 4528 ** 4529 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4530 ** 4531 ** The outer query has 3 slots in its FROM clause. One slot of the 4532 ** outer query (the middle slot) is used by the subquery. The next 4533 ** block of code will expand the outer query FROM clause to 4 slots. 4534 ** The middle slot is expanded to two slots in order to make space 4535 ** for the two elements in the FROM clause of the subquery. 4536 */ 4537 if( nSubSrc>1 ){ 4538 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4539 if( pSrc==0 ) break; 4540 pParent->pSrc = pSrc; 4541 } 4542 4543 /* Transfer the FROM clause terms from the subquery into the 4544 ** outer query. 4545 */ 4546 for(i=0; i<nSubSrc; i++){ 4547 SrcItem *pItem = &pSrc->a[i+iFrom]; 4548 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4549 assert( pItem->fg.isTabFunc==0 ); 4550 *pItem = pSubSrc->a[i]; 4551 pItem->fg.jointype |= ltorj; 4552 iNewParent = pSubSrc->a[i].iCursor; 4553 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4554 } 4555 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4556 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4557 4558 /* Now begin substituting subquery result set expressions for 4559 ** references to the iParent in the outer query. 4560 ** 4561 ** Example: 4562 ** 4563 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4564 ** \ \_____________ subquery __________/ / 4565 ** \_____________________ outer query ______________________________/ 4566 ** 4567 ** We look at every expression in the outer query and every place we see 4568 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4569 */ 4570 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4571 /* At this point, any non-zero iOrderByCol values indicate that the 4572 ** ORDER BY column expression is identical to the iOrderByCol'th 4573 ** expression returned by SELECT statement pSub. Since these values 4574 ** do not necessarily correspond to columns in SELECT statement pParent, 4575 ** zero them before transfering the ORDER BY clause. 4576 ** 4577 ** Not doing this may cause an error if a subsequent call to this 4578 ** function attempts to flatten a compound sub-query into pParent 4579 ** (the only way this can happen is if the compound sub-query is 4580 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4581 ExprList *pOrderBy = pSub->pOrderBy; 4582 for(i=0; i<pOrderBy->nExpr; i++){ 4583 pOrderBy->a[i].u.x.iOrderByCol = 0; 4584 } 4585 assert( pParent->pOrderBy==0 ); 4586 pParent->pOrderBy = pOrderBy; 4587 pSub->pOrderBy = 0; 4588 } 4589 pWhere = pSub->pWhere; 4590 pSub->pWhere = 0; 4591 if( isOuterJoin>0 ){ 4592 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); 4593 } 4594 if( pWhere ){ 4595 if( pParent->pWhere ){ 4596 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4597 }else{ 4598 pParent->pWhere = pWhere; 4599 } 4600 } 4601 if( db->mallocFailed==0 ){ 4602 SubstContext x; 4603 x.pParse = pParse; 4604 x.iTable = iParent; 4605 x.iNewTable = iNewParent; 4606 x.isOuterJoin = isOuterJoin; 4607 x.pEList = pSub->pEList; 4608 substSelect(&x, pParent, 0); 4609 } 4610 4611 /* The flattened query is a compound if either the inner or the 4612 ** outer query is a compound. */ 4613 pParent->selFlags |= pSub->selFlags & SF_Compound; 4614 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4615 4616 /* 4617 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4618 ** 4619 ** One is tempted to try to add a and b to combine the limits. But this 4620 ** does not work if either limit is negative. 4621 */ 4622 if( pSub->pLimit ){ 4623 pParent->pLimit = pSub->pLimit; 4624 pSub->pLimit = 0; 4625 } 4626 4627 /* Recompute the SrcList_item.colUsed masks for the flattened 4628 ** tables. */ 4629 for(i=0; i<nSubSrc; i++){ 4630 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4631 } 4632 } 4633 4634 /* Finially, delete what is left of the subquery and return 4635 ** success. 4636 */ 4637 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4638 sqlite3WalkSelect(&w,pSub1); 4639 sqlite3SelectDelete(db, pSub1); 4640 4641 #if TREETRACE_ENABLED 4642 if( sqlite3TreeTrace & 0x100 ){ 4643 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4644 sqlite3TreeViewSelect(0, p, 0); 4645 } 4646 #endif 4647 4648 return 1; 4649 } 4650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4651 4652 /* 4653 ** A structure to keep track of all of the column values that are fixed to 4654 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4655 */ 4656 typedef struct WhereConst WhereConst; 4657 struct WhereConst { 4658 Parse *pParse; /* Parsing context */ 4659 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4660 int nConst; /* Number for COLUMN=CONSTANT terms */ 4661 int nChng; /* Number of times a constant is propagated */ 4662 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4663 u32 mExcludeOn; /* Which ON expressions to exclude from considertion. 4664 ** Either EP_OuterON or EP_InnerON|EP_OuterON */ 4665 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4666 }; 4667 4668 /* 4669 ** Add a new entry to the pConst object. Except, do not add duplicate 4670 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4671 ** 4672 ** The caller guarantees the pColumn is a column and pValue is a constant. 4673 ** This routine has to do some additional checks before completing the 4674 ** insert. 4675 */ 4676 static void constInsert( 4677 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4678 Expr *pColumn, /* The COLUMN part of the constraint */ 4679 Expr *pValue, /* The VALUE part of the constraint */ 4680 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4681 ){ 4682 int i; 4683 assert( pColumn->op==TK_COLUMN ); 4684 assert( sqlite3ExprIsConstant(pValue) ); 4685 4686 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4687 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4688 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4689 return; 4690 } 4691 4692 /* 2018-10-25 ticket [cf5ed20f] 4693 ** Make sure the same pColumn is not inserted more than once */ 4694 for(i=0; i<pConst->nConst; i++){ 4695 const Expr *pE2 = pConst->apExpr[i*2]; 4696 assert( pE2->op==TK_COLUMN ); 4697 if( pE2->iTable==pColumn->iTable 4698 && pE2->iColumn==pColumn->iColumn 4699 ){ 4700 return; /* Already present. Return without doing anything. */ 4701 } 4702 } 4703 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4704 pConst->bHasAffBlob = 1; 4705 } 4706 4707 pConst->nConst++; 4708 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4709 pConst->nConst*2*sizeof(Expr*)); 4710 if( pConst->apExpr==0 ){ 4711 pConst->nConst = 0; 4712 }else{ 4713 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4714 pConst->apExpr[pConst->nConst*2-1] = pValue; 4715 } 4716 } 4717 4718 /* 4719 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4720 ** is a constant expression and where the term must be true because it 4721 ** is part of the AND-connected terms of the expression. For each term 4722 ** found, add it to the pConst structure. 4723 */ 4724 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4725 Expr *pRight, *pLeft; 4726 if( NEVER(pExpr==0) ) return; 4727 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ 4728 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4729 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4730 return; 4731 } 4732 if( pExpr->op==TK_AND ){ 4733 findConstInWhere(pConst, pExpr->pRight); 4734 findConstInWhere(pConst, pExpr->pLeft); 4735 return; 4736 } 4737 if( pExpr->op!=TK_EQ ) return; 4738 pRight = pExpr->pRight; 4739 pLeft = pExpr->pLeft; 4740 assert( pRight!=0 ); 4741 assert( pLeft!=0 ); 4742 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4743 constInsert(pConst,pRight,pLeft,pExpr); 4744 } 4745 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4746 constInsert(pConst,pLeft,pRight,pExpr); 4747 } 4748 } 4749 4750 /* 4751 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4752 ** 4753 ** Argument pExpr is a candidate expression to be replaced by a value. If 4754 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4755 ** then overwrite it with the corresponding value. Except, do not do so 4756 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4757 ** is SQLITE_AFF_BLOB. 4758 */ 4759 static int propagateConstantExprRewriteOne( 4760 WhereConst *pConst, 4761 Expr *pExpr, 4762 int bIgnoreAffBlob 4763 ){ 4764 int i; 4765 if( pConst->pOomFault[0] ) return WRC_Prune; 4766 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4767 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ 4768 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4769 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4770 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4771 return WRC_Continue; 4772 } 4773 for(i=0; i<pConst->nConst; i++){ 4774 Expr *pColumn = pConst->apExpr[i*2]; 4775 if( pColumn==pExpr ) continue; 4776 if( pColumn->iTable!=pExpr->iTable ) continue; 4777 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4778 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4779 break; 4780 } 4781 /* A match is found. Add the EP_FixedCol property */ 4782 pConst->nChng++; 4783 ExprClearProperty(pExpr, EP_Leaf); 4784 ExprSetProperty(pExpr, EP_FixedCol); 4785 assert( pExpr->pLeft==0 ); 4786 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4787 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4788 break; 4789 } 4790 return WRC_Prune; 4791 } 4792 4793 /* 4794 ** This is a Walker expression callback. pExpr is a node from the WHERE 4795 ** clause of a SELECT statement. This function examines pExpr to see if 4796 ** any substitutions based on the contents of pWalker->u.pConst should 4797 ** be made to pExpr or its immediate children. 4798 ** 4799 ** A substitution is made if: 4800 ** 4801 ** + pExpr is a column with an affinity other than BLOB that matches 4802 ** one of the columns in pWalker->u.pConst, or 4803 ** 4804 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4805 ** uses an affinity other than TEXT and one of its immediate 4806 ** children is a column that matches one of the columns in 4807 ** pWalker->u.pConst. 4808 */ 4809 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4810 WhereConst *pConst = pWalker->u.pConst; 4811 assert( TK_GT==TK_EQ+1 ); 4812 assert( TK_LE==TK_EQ+2 ); 4813 assert( TK_LT==TK_EQ+3 ); 4814 assert( TK_GE==TK_EQ+4 ); 4815 if( pConst->bHasAffBlob ){ 4816 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4817 || pExpr->op==TK_IS 4818 ){ 4819 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4820 if( pConst->pOomFault[0] ) return WRC_Prune; 4821 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4822 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4823 } 4824 } 4825 } 4826 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4827 } 4828 4829 /* 4830 ** The WHERE-clause constant propagation optimization. 4831 ** 4832 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4833 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4834 ** part of a ON clause from a LEFT JOIN, then throughout the query 4835 ** replace all other occurrences of COLUMN with CONSTANT. 4836 ** 4837 ** For example, the query: 4838 ** 4839 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4840 ** 4841 ** Is transformed into 4842 ** 4843 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4844 ** 4845 ** Return true if any transformations where made and false if not. 4846 ** 4847 ** Implementation note: Constant propagation is tricky due to affinity 4848 ** and collating sequence interactions. Consider this example: 4849 ** 4850 ** CREATE TABLE t1(a INT,b TEXT); 4851 ** INSERT INTO t1 VALUES(123,'0123'); 4852 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4853 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4854 ** 4855 ** The two SELECT statements above should return different answers. b=a 4856 ** is alway true because the comparison uses numeric affinity, but b=123 4857 ** is false because it uses text affinity and '0123' is not the same as '123'. 4858 ** To work around this, the expression tree is not actually changed from 4859 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4860 ** and the "123" value is hung off of the pLeft pointer. Code generator 4861 ** routines know to generate the constant "123" instead of looking up the 4862 ** column value. Also, to avoid collation problems, this optimization is 4863 ** only attempted if the "a=123" term uses the default BINARY collation. 4864 ** 4865 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4866 ** 4867 ** CREATE TABLE t1(x); 4868 ** INSERT INTO t1 VALUES(10.0); 4869 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4870 ** 4871 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4872 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4873 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4874 ** resulting in a false positive. To avoid this, constant propagation for 4875 ** columns with BLOB affinity is only allowed if the constant is used with 4876 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4877 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4878 ** for details. 4879 */ 4880 static int propagateConstants( 4881 Parse *pParse, /* The parsing context */ 4882 Select *p /* The query in which to propagate constants */ 4883 ){ 4884 WhereConst x; 4885 Walker w; 4886 int nChng = 0; 4887 x.pParse = pParse; 4888 x.pOomFault = &pParse->db->mallocFailed; 4889 do{ 4890 x.nConst = 0; 4891 x.nChng = 0; 4892 x.apExpr = 0; 4893 x.bHasAffBlob = 0; 4894 if( ALWAYS(p->pSrc!=0) 4895 && p->pSrc->nSrc>0 4896 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 4897 ){ 4898 /* Do not propagate constants on any ON clause if there is a 4899 ** RIGHT JOIN anywhere in the query */ 4900 x.mExcludeOn = EP_InnerON | EP_OuterON; 4901 }else{ 4902 /* Do not propagate constants through the ON clause of a LEFT JOIN */ 4903 x.mExcludeOn = EP_OuterON; 4904 } 4905 findConstInWhere(&x, p->pWhere); 4906 if( x.nConst ){ 4907 memset(&w, 0, sizeof(w)); 4908 w.pParse = pParse; 4909 w.xExprCallback = propagateConstantExprRewrite; 4910 w.xSelectCallback = sqlite3SelectWalkNoop; 4911 w.xSelectCallback2 = 0; 4912 w.walkerDepth = 0; 4913 w.u.pConst = &x; 4914 sqlite3WalkExpr(&w, p->pWhere); 4915 sqlite3DbFree(x.pParse->db, x.apExpr); 4916 nChng += x.nChng; 4917 } 4918 }while( x.nChng ); 4919 return nChng; 4920 } 4921 4922 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4923 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4924 /* 4925 ** This function is called to determine whether or not it is safe to 4926 ** push WHERE clause expression pExpr down to FROM clause sub-query 4927 ** pSubq, which contains at least one window function. Return 1 4928 ** if it is safe and the expression should be pushed down, or 0 4929 ** otherwise. 4930 ** 4931 ** It is only safe to push the expression down if it consists only 4932 ** of constants and copies of expressions that appear in the PARTITION 4933 ** BY clause of all window function used by the sub-query. It is safe 4934 ** to filter out entire partitions, but not rows within partitions, as 4935 ** this may change the results of the window functions. 4936 ** 4937 ** At the time this function is called it is guaranteed that 4938 ** 4939 ** * the sub-query uses only one distinct window frame, and 4940 ** * that the window frame has a PARTITION BY clase. 4941 */ 4942 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4943 assert( pSubq->pWin->pPartition ); 4944 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4945 assert( pSubq->pPrior==0 ); 4946 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4947 } 4948 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4949 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4950 4951 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4952 /* 4953 ** Make copies of relevant WHERE clause terms of the outer query into 4954 ** the WHERE clause of subquery. Example: 4955 ** 4956 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4957 ** 4958 ** Transformed into: 4959 ** 4960 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4961 ** WHERE x=5 AND y=10; 4962 ** 4963 ** The hope is that the terms added to the inner query will make it more 4964 ** efficient. 4965 ** 4966 ** Do not attempt this optimization if: 4967 ** 4968 ** (1) (** This restriction was removed on 2017-09-29. We used to 4969 ** disallow this optimization for aggregate subqueries, but now 4970 ** it is allowed by putting the extra terms on the HAVING clause. 4971 ** The added HAVING clause is pointless if the subquery lacks 4972 ** a GROUP BY clause. But such a HAVING clause is also harmless 4973 ** so there does not appear to be any reason to add extra logic 4974 ** to suppress it. **) 4975 ** 4976 ** (2) The inner query is the recursive part of a common table expression. 4977 ** 4978 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4979 ** clause would change the meaning of the LIMIT). 4980 ** 4981 ** (4) The inner query is the right operand of a LEFT JOIN and the 4982 ** expression to be pushed down does not come from the ON clause 4983 ** on that LEFT JOIN. 4984 ** 4985 ** (5) The WHERE clause expression originates in the ON or USING clause 4986 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4987 ** left join. An example: 4988 ** 4989 ** SELECT * 4990 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4991 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4992 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4993 ** 4994 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4995 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4996 ** then the (1,1,NULL) row would be suppressed. 4997 ** 4998 ** (6) Window functions make things tricky as changes to the WHERE clause 4999 ** of the inner query could change the window over which window 5000 ** functions are calculated. Therefore, do not attempt the optimization 5001 ** if: 5002 ** 5003 ** (6a) The inner query uses multiple incompatible window partitions. 5004 ** 5005 ** (6b) The inner query is a compound and uses window-functions. 5006 ** 5007 ** (6c) The WHERE clause does not consist entirely of constants and 5008 ** copies of expressions found in the PARTITION BY clause of 5009 ** all window-functions used by the sub-query. It is safe to 5010 ** filter out entire partitions, as this does not change the 5011 ** window over which any window-function is calculated. 5012 ** 5013 ** (7) The inner query is a Common Table Expression (CTE) that should 5014 ** be materialized. (This restriction is implemented in the calling 5015 ** routine.) 5016 ** 5017 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 5018 ** terms are duplicated into the subquery. 5019 */ 5020 static int pushDownWhereTerms( 5021 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 5022 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 5023 Expr *pWhere, /* The WHERE clause of the outer query */ 5024 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 5025 ){ 5026 Expr *pNew; 5027 int nChng = 0; 5028 if( pWhere==0 ) return 0; 5029 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 5030 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 5031 5032 #ifndef SQLITE_OMIT_WINDOWFUNC 5033 if( pSubq->pPrior ){ 5034 Select *pSel; 5035 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 5036 if( pSel->pWin ) return 0; /* restriction (6b) */ 5037 } 5038 }else{ 5039 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 5040 } 5041 #endif 5042 5043 #ifdef SQLITE_DEBUG 5044 /* Only the first term of a compound can have a WITH clause. But make 5045 ** sure no other terms are marked SF_Recursive in case something changes 5046 ** in the future. 5047 */ 5048 { 5049 Select *pX; 5050 for(pX=pSubq; pX; pX=pX->pPrior){ 5051 assert( (pX->selFlags & (SF_Recursive))==0 ); 5052 } 5053 } 5054 #endif 5055 5056 if( pSubq->pLimit!=0 ){ 5057 return 0; /* restriction (3) */ 5058 } 5059 while( pWhere->op==TK_AND ){ 5060 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 5061 pWhere = pWhere->pLeft; 5062 } 5063 5064 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 5065 if( isLeftJoin 5066 && (ExprHasProperty(pWhere,EP_OuterON)==0 5067 || pWhere->w.iJoin!=iCursor) 5068 ){ 5069 return 0; /* restriction (4) */ 5070 } 5071 if( ExprHasProperty(pWhere,EP_OuterON) 5072 && pWhere->w.iJoin!=iCursor 5073 ){ 5074 return 0; /* restriction (5) */ 5075 } 5076 #endif 5077 5078 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5079 nChng++; 5080 pSubq->selFlags |= SF_PushDown; 5081 while( pSubq ){ 5082 SubstContext x; 5083 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5084 unsetJoinExpr(pNew, -1, 1); 5085 x.pParse = pParse; 5086 x.iTable = pSrc->iCursor; 5087 x.iNewTable = pSrc->iCursor; 5088 x.isOuterJoin = 0; 5089 x.pEList = pSubq->pEList; 5090 pNew = substExpr(&x, pNew); 5091 #ifndef SQLITE_OMIT_WINDOWFUNC 5092 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5093 /* Restriction 6c has prevented push-down in this case */ 5094 sqlite3ExprDelete(pParse->db, pNew); 5095 nChng--; 5096 break; 5097 } 5098 #endif 5099 if( pSubq->selFlags & SF_Aggregate ){ 5100 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5101 }else{ 5102 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5103 } 5104 pSubq = pSubq->pPrior; 5105 } 5106 } 5107 return nChng; 5108 } 5109 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5110 5111 /* 5112 ** The pFunc is the only aggregate function in the query. Check to see 5113 ** if the query is a candidate for the min/max optimization. 5114 ** 5115 ** If the query is a candidate for the min/max optimization, then set 5116 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5117 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5118 ** whether pFunc is a min() or max() function. 5119 ** 5120 ** If the query is not a candidate for the min/max optimization, return 5121 ** WHERE_ORDERBY_NORMAL (which must be zero). 5122 ** 5123 ** This routine must be called after aggregate functions have been 5124 ** located but before their arguments have been subjected to aggregate 5125 ** analysis. 5126 */ 5127 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5128 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5129 ExprList *pEList; /* Arguments to agg function */ 5130 const char *zFunc; /* Name of aggregate function pFunc */ 5131 ExprList *pOrderBy; 5132 u8 sortFlags = 0; 5133 5134 assert( *ppMinMax==0 ); 5135 assert( pFunc->op==TK_AGG_FUNCTION ); 5136 assert( !IsWindowFunc(pFunc) ); 5137 assert( ExprUseXList(pFunc) ); 5138 pEList = pFunc->x.pList; 5139 if( pEList==0 5140 || pEList->nExpr!=1 5141 || ExprHasProperty(pFunc, EP_WinFunc) 5142 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5143 ){ 5144 return eRet; 5145 } 5146 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5147 zFunc = pFunc->u.zToken; 5148 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5149 eRet = WHERE_ORDERBY_MIN; 5150 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5151 sortFlags = KEYINFO_ORDER_BIGNULL; 5152 } 5153 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5154 eRet = WHERE_ORDERBY_MAX; 5155 sortFlags = KEYINFO_ORDER_DESC; 5156 }else{ 5157 return eRet; 5158 } 5159 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5160 assert( pOrderBy!=0 || db->mallocFailed ); 5161 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; 5162 return eRet; 5163 } 5164 5165 /* 5166 ** The select statement passed as the first argument is an aggregate query. 5167 ** The second argument is the associated aggregate-info object. This 5168 ** function tests if the SELECT is of the form: 5169 ** 5170 ** SELECT count(*) FROM <tbl> 5171 ** 5172 ** where table is a database table, not a sub-select or view. If the query 5173 ** does match this pattern, then a pointer to the Table object representing 5174 ** <tbl> is returned. Otherwise, NULL is returned. 5175 ** 5176 ** This routine checks to see if it is safe to use the count optimization. 5177 ** A correct answer is still obtained (though perhaps more slowly) if 5178 ** this routine returns NULL when it could have returned a table pointer. 5179 ** But returning the pointer when NULL should have been returned can 5180 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5181 */ 5182 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5183 Table *pTab; 5184 Expr *pExpr; 5185 5186 assert( !p->pGroupBy ); 5187 5188 if( p->pWhere 5189 || p->pEList->nExpr!=1 5190 || p->pSrc->nSrc!=1 5191 || p->pSrc->a[0].pSelect 5192 || pAggInfo->nFunc!=1 5193 || p->pHaving 5194 ){ 5195 return 0; 5196 } 5197 pTab = p->pSrc->a[0].pTab; 5198 assert( pTab!=0 ); 5199 assert( !IsView(pTab) ); 5200 if( !IsOrdinaryTable(pTab) ) return 0; 5201 pExpr = p->pEList->a[0].pExpr; 5202 assert( pExpr!=0 ); 5203 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5204 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5205 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5206 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5207 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5208 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5209 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5210 5211 return pTab; 5212 } 5213 5214 /* 5215 ** If the source-list item passed as an argument was augmented with an 5216 ** INDEXED BY clause, then try to locate the specified index. If there 5217 ** was such a clause and the named index cannot be found, return 5218 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5219 ** pFrom->pIndex and return SQLITE_OK. 5220 */ 5221 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5222 Table *pTab = pFrom->pTab; 5223 char *zIndexedBy = pFrom->u1.zIndexedBy; 5224 Index *pIdx; 5225 assert( pTab!=0 ); 5226 assert( pFrom->fg.isIndexedBy!=0 ); 5227 5228 for(pIdx=pTab->pIndex; 5229 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5230 pIdx=pIdx->pNext 5231 ); 5232 if( !pIdx ){ 5233 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5234 pParse->checkSchema = 1; 5235 return SQLITE_ERROR; 5236 } 5237 assert( pFrom->fg.isCte==0 ); 5238 pFrom->u2.pIBIndex = pIdx; 5239 return SQLITE_OK; 5240 } 5241 5242 /* 5243 ** Detect compound SELECT statements that use an ORDER BY clause with 5244 ** an alternative collating sequence. 5245 ** 5246 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5247 ** 5248 ** These are rewritten as a subquery: 5249 ** 5250 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5251 ** ORDER BY ... COLLATE ... 5252 ** 5253 ** This transformation is necessary because the multiSelectOrderBy() routine 5254 ** above that generates the code for a compound SELECT with an ORDER BY clause 5255 ** uses a merge algorithm that requires the same collating sequence on the 5256 ** result columns as on the ORDER BY clause. See ticket 5257 ** http://www.sqlite.org/src/info/6709574d2a 5258 ** 5259 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5260 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5261 ** there are COLLATE terms in the ORDER BY. 5262 */ 5263 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5264 int i; 5265 Select *pNew; 5266 Select *pX; 5267 sqlite3 *db; 5268 struct ExprList_item *a; 5269 SrcList *pNewSrc; 5270 Parse *pParse; 5271 Token dummy; 5272 5273 if( p->pPrior==0 ) return WRC_Continue; 5274 if( p->pOrderBy==0 ) return WRC_Continue; 5275 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5276 if( pX==0 ) return WRC_Continue; 5277 a = p->pOrderBy->a; 5278 #ifndef SQLITE_OMIT_WINDOWFUNC 5279 /* If iOrderByCol is already non-zero, then it has already been matched 5280 ** to a result column of the SELECT statement. This occurs when the 5281 ** SELECT is rewritten for window-functions processing and then passed 5282 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5283 ** by this function is not required in this case. */ 5284 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5285 #endif 5286 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5287 if( a[i].pExpr->flags & EP_Collate ) break; 5288 } 5289 if( i<0 ) return WRC_Continue; 5290 5291 /* If we reach this point, that means the transformation is required. */ 5292 5293 pParse = pWalker->pParse; 5294 db = pParse->db; 5295 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5296 if( pNew==0 ) return WRC_Abort; 5297 memset(&dummy, 0, sizeof(dummy)); 5298 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5299 if( pNewSrc==0 ) return WRC_Abort; 5300 *pNew = *p; 5301 p->pSrc = pNewSrc; 5302 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5303 p->op = TK_SELECT; 5304 p->pWhere = 0; 5305 pNew->pGroupBy = 0; 5306 pNew->pHaving = 0; 5307 pNew->pOrderBy = 0; 5308 p->pPrior = 0; 5309 p->pNext = 0; 5310 p->pWith = 0; 5311 #ifndef SQLITE_OMIT_WINDOWFUNC 5312 p->pWinDefn = 0; 5313 #endif 5314 p->selFlags &= ~SF_Compound; 5315 assert( (p->selFlags & SF_Converted)==0 ); 5316 p->selFlags |= SF_Converted; 5317 assert( pNew->pPrior!=0 ); 5318 pNew->pPrior->pNext = pNew; 5319 pNew->pLimit = 0; 5320 return WRC_Continue; 5321 } 5322 5323 /* 5324 ** Check to see if the FROM clause term pFrom has table-valued function 5325 ** arguments. If it does, leave an error message in pParse and return 5326 ** non-zero, since pFrom is not allowed to be a table-valued function. 5327 */ 5328 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5329 if( pFrom->fg.isTabFunc ){ 5330 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5331 return 1; 5332 } 5333 return 0; 5334 } 5335 5336 #ifndef SQLITE_OMIT_CTE 5337 /* 5338 ** Argument pWith (which may be NULL) points to a linked list of nested 5339 ** WITH contexts, from inner to outermost. If the table identified by 5340 ** FROM clause element pItem is really a common-table-expression (CTE) 5341 ** then return a pointer to the CTE definition for that table. Otherwise 5342 ** return NULL. 5343 ** 5344 ** If a non-NULL value is returned, set *ppContext to point to the With 5345 ** object that the returned CTE belongs to. 5346 */ 5347 static struct Cte *searchWith( 5348 With *pWith, /* Current innermost WITH clause */ 5349 SrcItem *pItem, /* FROM clause element to resolve */ 5350 With **ppContext /* OUT: WITH clause return value belongs to */ 5351 ){ 5352 const char *zName = pItem->zName; 5353 With *p; 5354 assert( pItem->zDatabase==0 ); 5355 assert( zName!=0 ); 5356 for(p=pWith; p; p=p->pOuter){ 5357 int i; 5358 for(i=0; i<p->nCte; i++){ 5359 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5360 *ppContext = p; 5361 return &p->a[i]; 5362 } 5363 } 5364 if( p->bView ) break; 5365 } 5366 return 0; 5367 } 5368 5369 /* The code generator maintains a stack of active WITH clauses 5370 ** with the inner-most WITH clause being at the top of the stack. 5371 ** 5372 ** This routine pushes the WITH clause passed as the second argument 5373 ** onto the top of the stack. If argument bFree is true, then this 5374 ** WITH clause will never be popped from the stack but should instead 5375 ** be freed along with the Parse object. In other cases, when 5376 ** bFree==0, the With object will be freed along with the SELECT 5377 ** statement with which it is associated. 5378 ** 5379 ** This routine returns a copy of pWith. Or, if bFree is true and 5380 ** the pWith object is destroyed immediately due to an OOM condition, 5381 ** then this routine return NULL. 5382 ** 5383 ** If bFree is true, do not continue to use the pWith pointer after 5384 ** calling this routine, Instead, use only the return value. 5385 */ 5386 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5387 if( pWith ){ 5388 if( bFree ){ 5389 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5390 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5391 pWith); 5392 if( pWith==0 ) return 0; 5393 } 5394 if( pParse->nErr==0 ){ 5395 assert( pParse->pWith!=pWith ); 5396 pWith->pOuter = pParse->pWith; 5397 pParse->pWith = pWith; 5398 } 5399 } 5400 return pWith; 5401 } 5402 5403 /* 5404 ** This function checks if argument pFrom refers to a CTE declared by 5405 ** a WITH clause on the stack currently maintained by the parser (on the 5406 ** pParse->pWith linked list). And if currently processing a CTE 5407 ** CTE expression, through routine checks to see if the reference is 5408 ** a recursive reference to the CTE. 5409 ** 5410 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5411 ** and other fields are populated accordingly. 5412 ** 5413 ** Return 0 if no match is found. 5414 ** Return 1 if a match is found. 5415 ** Return 2 if an error condition is detected. 5416 */ 5417 static int resolveFromTermToCte( 5418 Parse *pParse, /* The parsing context */ 5419 Walker *pWalker, /* Current tree walker */ 5420 SrcItem *pFrom /* The FROM clause term to check */ 5421 ){ 5422 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5423 With *pWith; /* The matching WITH */ 5424 5425 assert( pFrom->pTab==0 ); 5426 if( pParse->pWith==0 ){ 5427 /* There are no WITH clauses in the stack. No match is possible */ 5428 return 0; 5429 } 5430 if( pParse->nErr ){ 5431 /* Prior errors might have left pParse->pWith in a goofy state, so 5432 ** go no further. */ 5433 return 0; 5434 } 5435 if( pFrom->zDatabase!=0 ){ 5436 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5437 ** it cannot possibly be a CTE reference. */ 5438 return 0; 5439 } 5440 if( pFrom->fg.notCte ){ 5441 /* The FROM term is specifically excluded from matching a CTE. 5442 ** (1) It is part of a trigger that used to have zDatabase but had 5443 ** zDatabase removed by sqlite3FixTriggerStep(). 5444 ** (2) This is the first term in the FROM clause of an UPDATE. 5445 */ 5446 return 0; 5447 } 5448 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5449 if( pCte ){ 5450 sqlite3 *db = pParse->db; 5451 Table *pTab; 5452 ExprList *pEList; 5453 Select *pSel; 5454 Select *pLeft; /* Left-most SELECT statement */ 5455 Select *pRecTerm; /* Left-most recursive term */ 5456 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5457 With *pSavedWith; /* Initial value of pParse->pWith */ 5458 int iRecTab = -1; /* Cursor for recursive table */ 5459 CteUse *pCteUse; 5460 5461 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5462 ** recursive reference to CTE pCte. Leave an error in pParse and return 5463 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5464 ** In this case, proceed. */ 5465 if( pCte->zCteErr ){ 5466 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5467 return 2; 5468 } 5469 if( cannotBeFunction(pParse, pFrom) ) return 2; 5470 5471 assert( pFrom->pTab==0 ); 5472 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5473 if( pTab==0 ) return 2; 5474 pCteUse = pCte->pUse; 5475 if( pCteUse==0 ){ 5476 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5477 if( pCteUse==0 5478 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5479 ){ 5480 sqlite3DbFree(db, pTab); 5481 return 2; 5482 } 5483 pCteUse->eM10d = pCte->eM10d; 5484 } 5485 pFrom->pTab = pTab; 5486 pTab->nTabRef = 1; 5487 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5488 pTab->iPKey = -1; 5489 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5490 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5491 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5492 if( db->mallocFailed ) return 2; 5493 pFrom->pSelect->selFlags |= SF_CopyCte; 5494 assert( pFrom->pSelect ); 5495 if( pFrom->fg.isIndexedBy ){ 5496 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5497 return 2; 5498 } 5499 pFrom->fg.isCte = 1; 5500 pFrom->u2.pCteUse = pCteUse; 5501 pCteUse->nUse++; 5502 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5503 pCteUse->eM10d = M10d_Yes; 5504 } 5505 5506 /* Check if this is a recursive CTE. */ 5507 pRecTerm = pSel = pFrom->pSelect; 5508 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5509 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5510 int i; 5511 SrcList *pSrc = pRecTerm->pSrc; 5512 assert( pRecTerm->pPrior!=0 ); 5513 for(i=0; i<pSrc->nSrc; i++){ 5514 SrcItem *pItem = &pSrc->a[i]; 5515 if( pItem->zDatabase==0 5516 && pItem->zName!=0 5517 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5518 ){ 5519 pItem->pTab = pTab; 5520 pTab->nTabRef++; 5521 pItem->fg.isRecursive = 1; 5522 if( pRecTerm->selFlags & SF_Recursive ){ 5523 sqlite3ErrorMsg(pParse, 5524 "multiple references to recursive table: %s", pCte->zName 5525 ); 5526 return 2; 5527 } 5528 pRecTerm->selFlags |= SF_Recursive; 5529 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5530 pItem->iCursor = iRecTab; 5531 } 5532 } 5533 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5534 pRecTerm = pRecTerm->pPrior; 5535 } 5536 5537 pCte->zCteErr = "circular reference: %s"; 5538 pSavedWith = pParse->pWith; 5539 pParse->pWith = pWith; 5540 if( pSel->selFlags & SF_Recursive ){ 5541 int rc; 5542 assert( pRecTerm!=0 ); 5543 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5544 assert( pRecTerm->pNext!=0 ); 5545 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5546 assert( pRecTerm->pWith==0 ); 5547 pRecTerm->pWith = pSel->pWith; 5548 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5549 pRecTerm->pWith = 0; 5550 if( rc ){ 5551 pParse->pWith = pSavedWith; 5552 return 2; 5553 } 5554 }else{ 5555 if( sqlite3WalkSelect(pWalker, pSel) ){ 5556 pParse->pWith = pSavedWith; 5557 return 2; 5558 } 5559 } 5560 pParse->pWith = pWith; 5561 5562 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5563 pEList = pLeft->pEList; 5564 if( pCte->pCols ){ 5565 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5566 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5567 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5568 ); 5569 pParse->pWith = pSavedWith; 5570 return 2; 5571 } 5572 pEList = pCte->pCols; 5573 } 5574 5575 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5576 if( bMayRecursive ){ 5577 if( pSel->selFlags & SF_Recursive ){ 5578 pCte->zCteErr = "multiple recursive references: %s"; 5579 }else{ 5580 pCte->zCteErr = "recursive reference in a subquery: %s"; 5581 } 5582 sqlite3WalkSelect(pWalker, pSel); 5583 } 5584 pCte->zCteErr = 0; 5585 pParse->pWith = pSavedWith; 5586 return 1; /* Success */ 5587 } 5588 return 0; /* No match */ 5589 } 5590 #endif 5591 5592 #ifndef SQLITE_OMIT_CTE 5593 /* 5594 ** If the SELECT passed as the second argument has an associated WITH 5595 ** clause, pop it from the stack stored as part of the Parse object. 5596 ** 5597 ** This function is used as the xSelectCallback2() callback by 5598 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5599 ** names and other FROM clause elements. 5600 */ 5601 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5602 Parse *pParse = pWalker->pParse; 5603 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5604 With *pWith = findRightmost(p)->pWith; 5605 if( pWith!=0 ){ 5606 assert( pParse->pWith==pWith || pParse->nErr ); 5607 pParse->pWith = pWith->pOuter; 5608 } 5609 } 5610 } 5611 #endif 5612 5613 /* 5614 ** The SrcList_item structure passed as the second argument represents a 5615 ** sub-query in the FROM clause of a SELECT statement. This function 5616 ** allocates and populates the SrcList_item.pTab object. If successful, 5617 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5618 ** SQLITE_NOMEM. 5619 */ 5620 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5621 Select *pSel = pFrom->pSelect; 5622 Table *pTab; 5623 5624 assert( pSel ); 5625 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5626 if( pTab==0 ) return SQLITE_NOMEM; 5627 pTab->nTabRef = 1; 5628 if( pFrom->zAlias ){ 5629 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5630 }else{ 5631 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5632 } 5633 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5634 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5635 pTab->iPKey = -1; 5636 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5637 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5638 /* The usual case - do not allow ROWID on a subquery */ 5639 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5640 #else 5641 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5642 #endif 5643 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5644 } 5645 5646 5647 /* 5648 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5649 ** If any of those SrcItem objects have a USING clause containing zName 5650 ** then return true. 5651 ** 5652 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5653 ** contains a USING clause, or if none of the USING clauses contain zName, 5654 ** then return false. 5655 */ 5656 static int inAnyUsingClause( 5657 const char *zName, /* Name we are looking for */ 5658 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5659 int N /* How many SrcItems to check */ 5660 ){ 5661 while( N>0 ){ 5662 N--; 5663 pBase++; 5664 if( pBase->fg.isUsing==0 ) continue; 5665 if( NEVER(pBase->u3.pUsing==0) ) continue; 5666 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5667 } 5668 return 0; 5669 } 5670 5671 5672 /* 5673 ** This routine is a Walker callback for "expanding" a SELECT statement. 5674 ** "Expanding" means to do the following: 5675 ** 5676 ** (1) Make sure VDBE cursor numbers have been assigned to every 5677 ** element of the FROM clause. 5678 ** 5679 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5680 ** defines FROM clause. When views appear in the FROM clause, 5681 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5682 ** that implements the view. A copy is made of the view's SELECT 5683 ** statement so that we can freely modify or delete that statement 5684 ** without worrying about messing up the persistent representation 5685 ** of the view. 5686 ** 5687 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5688 ** on joins and the ON and USING clause of joins. 5689 ** 5690 ** (4) Scan the list of columns in the result set (pEList) looking 5691 ** for instances of the "*" operator or the TABLE.* operator. 5692 ** If found, expand each "*" to be every column in every table 5693 ** and TABLE.* to be every column in TABLE. 5694 ** 5695 */ 5696 static int selectExpander(Walker *pWalker, Select *p){ 5697 Parse *pParse = pWalker->pParse; 5698 int i, j, k, rc; 5699 SrcList *pTabList; 5700 ExprList *pEList; 5701 SrcItem *pFrom; 5702 sqlite3 *db = pParse->db; 5703 Expr *pE, *pRight, *pExpr; 5704 u16 selFlags = p->selFlags; 5705 u32 elistFlags = 0; 5706 5707 p->selFlags |= SF_Expanded; 5708 if( db->mallocFailed ){ 5709 return WRC_Abort; 5710 } 5711 assert( p->pSrc!=0 ); 5712 if( (selFlags & SF_Expanded)!=0 ){ 5713 return WRC_Prune; 5714 } 5715 if( pWalker->eCode ){ 5716 /* Renumber selId because it has been copied from a view */ 5717 p->selId = ++pParse->nSelect; 5718 } 5719 pTabList = p->pSrc; 5720 pEList = p->pEList; 5721 if( pParse->pWith && (p->selFlags & SF_View) ){ 5722 if( p->pWith==0 ){ 5723 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5724 if( p->pWith==0 ){ 5725 return WRC_Abort; 5726 } 5727 } 5728 p->pWith->bView = 1; 5729 } 5730 sqlite3WithPush(pParse, p->pWith, 0); 5731 5732 /* Make sure cursor numbers have been assigned to all entries in 5733 ** the FROM clause of the SELECT statement. 5734 */ 5735 sqlite3SrcListAssignCursors(pParse, pTabList); 5736 5737 /* Look up every table named in the FROM clause of the select. If 5738 ** an entry of the FROM clause is a subquery instead of a table or view, 5739 ** then create a transient table structure to describe the subquery. 5740 */ 5741 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5742 Table *pTab; 5743 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5744 if( pFrom->pTab ) continue; 5745 assert( pFrom->fg.isRecursive==0 ); 5746 if( pFrom->zName==0 ){ 5747 #ifndef SQLITE_OMIT_SUBQUERY 5748 Select *pSel = pFrom->pSelect; 5749 /* A sub-query in the FROM clause of a SELECT */ 5750 assert( pSel!=0 ); 5751 assert( pFrom->pTab==0 ); 5752 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5753 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5754 #endif 5755 #ifndef SQLITE_OMIT_CTE 5756 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5757 if( rc>1 ) return WRC_Abort; 5758 pTab = pFrom->pTab; 5759 assert( pTab!=0 ); 5760 #endif 5761 }else{ 5762 /* An ordinary table or view name in the FROM clause */ 5763 assert( pFrom->pTab==0 ); 5764 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5765 if( pTab==0 ) return WRC_Abort; 5766 if( pTab->nTabRef>=0xffff ){ 5767 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5768 pTab->zName); 5769 pFrom->pTab = 0; 5770 return WRC_Abort; 5771 } 5772 pTab->nTabRef++; 5773 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5774 return WRC_Abort; 5775 } 5776 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5777 if( !IsOrdinaryTable(pTab) ){ 5778 i16 nCol; 5779 u8 eCodeOrig = pWalker->eCode; 5780 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5781 assert( pFrom->pSelect==0 ); 5782 if( IsView(pTab) ){ 5783 if( (db->flags & SQLITE_EnableView)==0 5784 && pTab->pSchema!=db->aDb[1].pSchema 5785 ){ 5786 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5787 pTab->zName); 5788 } 5789 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5790 } 5791 #ifndef SQLITE_OMIT_VIRTUALTABLE 5792 else if( ALWAYS(IsVirtual(pTab)) 5793 && pFrom->fg.fromDDL 5794 && ALWAYS(pTab->u.vtab.p!=0) 5795 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5796 ){ 5797 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5798 pTab->zName); 5799 } 5800 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5801 #endif 5802 nCol = pTab->nCol; 5803 pTab->nCol = -1; 5804 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5805 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5806 pWalker->eCode = eCodeOrig; 5807 pTab->nCol = nCol; 5808 } 5809 #endif 5810 } 5811 5812 /* Locate the index named by the INDEXED BY clause, if any. */ 5813 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5814 return WRC_Abort; 5815 } 5816 } 5817 5818 /* Process NATURAL keywords, and ON and USING clauses of joins. 5819 */ 5820 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5821 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5822 return WRC_Abort; 5823 } 5824 5825 /* For every "*" that occurs in the column list, insert the names of 5826 ** all columns in all tables. And for every TABLE.* insert the names 5827 ** of all columns in TABLE. The parser inserted a special expression 5828 ** with the TK_ASTERISK operator for each "*" that it found in the column 5829 ** list. The following code just has to locate the TK_ASTERISK 5830 ** expressions and expand each one to the list of all columns in 5831 ** all tables. 5832 ** 5833 ** The first loop just checks to see if there are any "*" operators 5834 ** that need expanding. 5835 */ 5836 for(k=0; k<pEList->nExpr; k++){ 5837 pE = pEList->a[k].pExpr; 5838 if( pE->op==TK_ASTERISK ) break; 5839 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5840 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5841 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5842 elistFlags |= pE->flags; 5843 } 5844 if( k<pEList->nExpr ){ 5845 /* 5846 ** If we get here it means the result set contains one or more "*" 5847 ** operators that need to be expanded. Loop through each expression 5848 ** in the result set and expand them one by one. 5849 */ 5850 struct ExprList_item *a = pEList->a; 5851 ExprList *pNew = 0; 5852 int flags = pParse->db->flags; 5853 int longNames = (flags & SQLITE_FullColNames)!=0 5854 && (flags & SQLITE_ShortColNames)==0; 5855 5856 for(k=0; k<pEList->nExpr; k++){ 5857 pE = a[k].pExpr; 5858 elistFlags |= pE->flags; 5859 pRight = pE->pRight; 5860 assert( pE->op!=TK_DOT || pRight!=0 ); 5861 if( pE->op!=TK_ASTERISK 5862 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5863 ){ 5864 /* This particular expression does not need to be expanded. 5865 */ 5866 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5867 if( pNew ){ 5868 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5869 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; 5870 a[k].zEName = 0; 5871 } 5872 a[k].pExpr = 0; 5873 }else{ 5874 /* This expression is a "*" or a "TABLE.*" and needs to be 5875 ** expanded. */ 5876 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5877 char *zTName = 0; /* text of name of TABLE */ 5878 if( pE->op==TK_DOT ){ 5879 assert( pE->pLeft!=0 ); 5880 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5881 zTName = pE->pLeft->u.zToken; 5882 } 5883 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5884 Table *pTab = pFrom->pTab; /* Table for this data source */ 5885 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5886 char *zTabName; /* AS name for this data source */ 5887 const char *zSchemaName = 0; /* Schema name for this data source */ 5888 int iDb; /* Schema index for this data src */ 5889 IdList *pUsing; /* USING clause for pFrom[1] */ 5890 5891 if( (zTabName = pFrom->zAlias)==0 ){ 5892 zTabName = pTab->zName; 5893 } 5894 if( db->mallocFailed ) break; 5895 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5896 if( pFrom->fg.isNestedFrom ){ 5897 assert( pFrom->pSelect!=0 ); 5898 pNestedFrom = pFrom->pSelect->pEList; 5899 assert( pNestedFrom!=0 ); 5900 assert( pNestedFrom->nExpr==pTab->nCol ); 5901 }else{ 5902 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5903 continue; 5904 } 5905 pNestedFrom = 0; 5906 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5907 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5908 } 5909 if( i+1<pTabList->nSrc 5910 && pFrom[1].fg.isUsing 5911 && (selFlags & SF_NestedFrom)!=0 5912 ){ 5913 int ii; 5914 pUsing = pFrom[1].u3.pUsing; 5915 for(ii=0; ii<pUsing->nId; ii++){ 5916 const char *zUName = pUsing->a[ii].zName; 5917 pRight = sqlite3Expr(db, TK_ID, zUName); 5918 pNew = sqlite3ExprListAppend(pParse, pNew, pRight); 5919 if( pNew ){ 5920 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5921 assert( pX->zEName==0 ); 5922 pX->zEName = sqlite3MPrintf(db,"..%s", zUName); 5923 pX->fg.eEName = ENAME_TAB; 5924 pX->fg.bUsingTerm = 1; 5925 } 5926 } 5927 }else{ 5928 pUsing = 0; 5929 } 5930 for(j=0; j<pTab->nCol; j++){ 5931 char *zName = pTab->aCol[j].zCnName; 5932 struct ExprList_item *pX; /* Newly added ExprList term */ 5933 5934 assert( zName ); 5935 if( zTName 5936 && pNestedFrom 5937 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5938 ){ 5939 continue; 5940 } 5941 5942 /* If a column is marked as 'hidden', omit it from the expanded 5943 ** result-set list unless the SELECT has the SF_IncludeHidden 5944 ** bit set. 5945 */ 5946 if( (p->selFlags & SF_IncludeHidden)==0 5947 && IsHiddenColumn(&pTab->aCol[j]) 5948 ){ 5949 continue; 5950 } 5951 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5952 && zTName==0 5953 && (selFlags & (SF_NestedFrom))==0 5954 ){ 5955 continue; 5956 } 5957 tableSeen = 1; 5958 5959 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ 5960 if( pFrom->fg.isUsing 5961 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5962 ){ 5963 /* In a join with a USING clause, omit columns in the 5964 ** using clause from the table on the right. */ 5965 continue; 5966 } 5967 } 5968 pRight = sqlite3Expr(db, TK_ID, zName); 5969 if( (pTabList->nSrc>1 5970 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5971 || (selFlags & SF_NestedFrom)!=0 5972 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5973 ) 5974 ) 5975 || IN_RENAME_OBJECT 5976 ){ 5977 Expr *pLeft; 5978 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5979 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5980 if( IN_RENAME_OBJECT && pE->pLeft ){ 5981 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5982 } 5983 if( zSchemaName ){ 5984 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5985 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5986 } 5987 }else{ 5988 pExpr = pRight; 5989 } 5990 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5991 if( pNew==0 ){ 5992 break; /* OOM */ 5993 } 5994 pX = &pNew->a[pNew->nExpr-1]; 5995 assert( pX->zEName==0 ); 5996 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5997 if( pNestedFrom ){ 5998 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 5999 testcase( pX->zEName==0 ); 6000 }else{ 6001 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 6002 zSchemaName, zTabName, zName); 6003 testcase( pX->zEName==0 ); 6004 } 6005 pX->fg.eEName = ENAME_TAB; 6006 if( (pFrom->fg.isUsing 6007 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) 6008 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) 6009 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 6010 ){ 6011 pX->fg.bNoExpand = 1; 6012 } 6013 }else if( longNames ){ 6014 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 6015 pX->fg.eEName = ENAME_NAME; 6016 }else{ 6017 pX->zEName = sqlite3DbStrDup(db, zName); 6018 pX->fg.eEName = ENAME_NAME; 6019 } 6020 } 6021 } 6022 if( !tableSeen ){ 6023 if( zTName ){ 6024 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 6025 }else{ 6026 sqlite3ErrorMsg(pParse, "no tables specified"); 6027 } 6028 } 6029 } 6030 } 6031 sqlite3ExprListDelete(db, pEList); 6032 p->pEList = pNew; 6033 } 6034 if( p->pEList ){ 6035 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 6036 sqlite3ErrorMsg(pParse, "too many columns in result set"); 6037 return WRC_Abort; 6038 } 6039 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 6040 p->selFlags |= SF_ComplexResult; 6041 } 6042 } 6043 #if TREETRACE_ENABLED 6044 if( sqlite3TreeTrace & 0x100 ){ 6045 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 6046 sqlite3TreeViewSelect(0, p, 0); 6047 } 6048 #endif 6049 return WRC_Continue; 6050 } 6051 6052 #if SQLITE_DEBUG 6053 /* 6054 ** Always assert. This xSelectCallback2 implementation proves that the 6055 ** xSelectCallback2 is never invoked. 6056 */ 6057 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 6058 UNUSED_PARAMETER2(NotUsed, NotUsed2); 6059 assert( 0 ); 6060 } 6061 #endif 6062 /* 6063 ** This routine "expands" a SELECT statement and all of its subqueries. 6064 ** For additional information on what it means to "expand" a SELECT 6065 ** statement, see the comment on the selectExpand worker callback above. 6066 ** 6067 ** Expanding a SELECT statement is the first step in processing a 6068 ** SELECT statement. The SELECT statement must be expanded before 6069 ** name resolution is performed. 6070 ** 6071 ** If anything goes wrong, an error message is written into pParse. 6072 ** The calling function can detect the problem by looking at pParse->nErr 6073 ** and/or pParse->db->mallocFailed. 6074 */ 6075 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 6076 Walker w; 6077 w.xExprCallback = sqlite3ExprWalkNoop; 6078 w.pParse = pParse; 6079 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 6080 w.xSelectCallback = convertCompoundSelectToSubquery; 6081 w.xSelectCallback2 = 0; 6082 sqlite3WalkSelect(&w, pSelect); 6083 } 6084 w.xSelectCallback = selectExpander; 6085 w.xSelectCallback2 = sqlite3SelectPopWith; 6086 w.eCode = 0; 6087 sqlite3WalkSelect(&w, pSelect); 6088 } 6089 6090 6091 #ifndef SQLITE_OMIT_SUBQUERY 6092 /* 6093 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 6094 ** interface. 6095 ** 6096 ** For each FROM-clause subquery, add Column.zType and Column.zColl 6097 ** information to the Table structure that represents the result set 6098 ** of that subquery. 6099 ** 6100 ** The Table structure that represents the result set was constructed 6101 ** by selectExpander() but the type and collation information was omitted 6102 ** at that point because identifiers had not yet been resolved. This 6103 ** routine is called after identifier resolution. 6104 */ 6105 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6106 Parse *pParse; 6107 int i; 6108 SrcList *pTabList; 6109 SrcItem *pFrom; 6110 6111 assert( p->selFlags & SF_Resolved ); 6112 if( p->selFlags & SF_HasTypeInfo ) return; 6113 p->selFlags |= SF_HasTypeInfo; 6114 pParse = pWalker->pParse; 6115 pTabList = p->pSrc; 6116 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6117 Table *pTab = pFrom->pTab; 6118 assert( pTab!=0 ); 6119 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6120 /* A sub-query in the FROM clause of a SELECT */ 6121 Select *pSel = pFrom->pSelect; 6122 if( pSel ){ 6123 while( pSel->pPrior ) pSel = pSel->pPrior; 6124 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6125 SQLITE_AFF_NONE); 6126 } 6127 } 6128 } 6129 } 6130 #endif 6131 6132 6133 /* 6134 ** This routine adds datatype and collating sequence information to 6135 ** the Table structures of all FROM-clause subqueries in a 6136 ** SELECT statement. 6137 ** 6138 ** Use this routine after name resolution. 6139 */ 6140 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6141 #ifndef SQLITE_OMIT_SUBQUERY 6142 Walker w; 6143 w.xSelectCallback = sqlite3SelectWalkNoop; 6144 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6145 w.xExprCallback = sqlite3ExprWalkNoop; 6146 w.pParse = pParse; 6147 sqlite3WalkSelect(&w, pSelect); 6148 #endif 6149 } 6150 6151 6152 /* 6153 ** This routine sets up a SELECT statement for processing. The 6154 ** following is accomplished: 6155 ** 6156 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6157 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6158 ** * ON and USING clauses are shifted into WHERE statements 6159 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6160 ** * Identifiers in expression are matched to tables. 6161 ** 6162 ** This routine acts recursively on all subqueries within the SELECT. 6163 */ 6164 void sqlite3SelectPrep( 6165 Parse *pParse, /* The parser context */ 6166 Select *p, /* The SELECT statement being coded. */ 6167 NameContext *pOuterNC /* Name context for container */ 6168 ){ 6169 assert( p!=0 || pParse->db->mallocFailed ); 6170 assert( pParse->db->pParse==pParse ); 6171 if( pParse->db->mallocFailed ) return; 6172 if( p->selFlags & SF_HasTypeInfo ) return; 6173 sqlite3SelectExpand(pParse, p); 6174 if( pParse->nErr ) return; 6175 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6176 if( pParse->nErr ) return; 6177 sqlite3SelectAddTypeInfo(pParse, p); 6178 } 6179 6180 /* 6181 ** Reset the aggregate accumulator. 6182 ** 6183 ** The aggregate accumulator is a set of memory cells that hold 6184 ** intermediate results while calculating an aggregate. This 6185 ** routine generates code that stores NULLs in all of those memory 6186 ** cells. 6187 */ 6188 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6189 Vdbe *v = pParse->pVdbe; 6190 int i; 6191 struct AggInfo_func *pFunc; 6192 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6193 assert( pParse->db->pParse==pParse ); 6194 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6195 if( nReg==0 ) return; 6196 if( pParse->nErr ) return; 6197 #ifdef SQLITE_DEBUG 6198 /* Verify that all AggInfo registers are within the range specified by 6199 ** AggInfo.mnReg..AggInfo.mxReg */ 6200 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6201 for(i=0; i<pAggInfo->nColumn; i++){ 6202 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6203 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6204 } 6205 for(i=0; i<pAggInfo->nFunc; i++){ 6206 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6207 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6208 } 6209 #endif 6210 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6211 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6212 if( pFunc->iDistinct>=0 ){ 6213 Expr *pE = pFunc->pFExpr; 6214 assert( ExprUseXList(pE) ); 6215 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6216 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6217 "argument"); 6218 pFunc->iDistinct = -1; 6219 }else{ 6220 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6221 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6222 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6223 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6224 pFunc->pFunc->zName)); 6225 } 6226 } 6227 } 6228 } 6229 6230 /* 6231 ** Invoke the OP_AggFinalize opcode for every aggregate function 6232 ** in the AggInfo structure. 6233 */ 6234 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6235 Vdbe *v = pParse->pVdbe; 6236 int i; 6237 struct AggInfo_func *pF; 6238 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6239 ExprList *pList; 6240 assert( ExprUseXList(pF->pFExpr) ); 6241 pList = pF->pFExpr->x.pList; 6242 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6243 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6244 } 6245 } 6246 6247 6248 /* 6249 ** Update the accumulator memory cells for an aggregate based on 6250 ** the current cursor position. 6251 ** 6252 ** If regAcc is non-zero and there are no min() or max() aggregates 6253 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6254 ** registers if register regAcc contains 0. The caller will take care 6255 ** of setting and clearing regAcc. 6256 */ 6257 static void updateAccumulator( 6258 Parse *pParse, 6259 int regAcc, 6260 AggInfo *pAggInfo, 6261 int eDistinctType 6262 ){ 6263 Vdbe *v = pParse->pVdbe; 6264 int i; 6265 int regHit = 0; 6266 int addrHitTest = 0; 6267 struct AggInfo_func *pF; 6268 struct AggInfo_col *pC; 6269 6270 pAggInfo->directMode = 1; 6271 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6272 int nArg; 6273 int addrNext = 0; 6274 int regAgg; 6275 ExprList *pList; 6276 assert( ExprUseXList(pF->pFExpr) ); 6277 assert( !IsWindowFunc(pF->pFExpr) ); 6278 pList = pF->pFExpr->x.pList; 6279 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6280 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6281 if( pAggInfo->nAccumulator 6282 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6283 && regAcc 6284 ){ 6285 /* If regAcc==0, there there exists some min() or max() function 6286 ** without a FILTER clause that will ensure the magnet registers 6287 ** are populated. */ 6288 if( regHit==0 ) regHit = ++pParse->nMem; 6289 /* If this is the first row of the group (regAcc contains 0), clear the 6290 ** "magnet" register regHit so that the accumulator registers 6291 ** are populated if the FILTER clause jumps over the the 6292 ** invocation of min() or max() altogether. Or, if this is not 6293 ** the first row (regAcc contains 1), set the magnet register so that 6294 ** the accumulators are not populated unless the min()/max() is invoked 6295 ** and indicates that they should be. */ 6296 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6297 } 6298 addrNext = sqlite3VdbeMakeLabel(pParse); 6299 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6300 } 6301 if( pList ){ 6302 nArg = pList->nExpr; 6303 regAgg = sqlite3GetTempRange(pParse, nArg); 6304 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6305 }else{ 6306 nArg = 0; 6307 regAgg = 0; 6308 } 6309 if( pF->iDistinct>=0 && pList ){ 6310 if( addrNext==0 ){ 6311 addrNext = sqlite3VdbeMakeLabel(pParse); 6312 } 6313 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6314 pF->iDistinct, addrNext, pList, regAgg); 6315 } 6316 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6317 CollSeq *pColl = 0; 6318 struct ExprList_item *pItem; 6319 int j; 6320 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6321 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6322 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6323 } 6324 if( !pColl ){ 6325 pColl = pParse->db->pDfltColl; 6326 } 6327 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6328 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6329 } 6330 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6331 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6332 sqlite3VdbeChangeP5(v, (u8)nArg); 6333 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6334 if( addrNext ){ 6335 sqlite3VdbeResolveLabel(v, addrNext); 6336 } 6337 } 6338 if( regHit==0 && pAggInfo->nAccumulator ){ 6339 regHit = regAcc; 6340 } 6341 if( regHit ){ 6342 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6343 } 6344 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6345 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6346 } 6347 6348 pAggInfo->directMode = 0; 6349 if( addrHitTest ){ 6350 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6351 } 6352 } 6353 6354 /* 6355 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6356 ** count(*) query ("SELECT count(*) FROM pTab"). 6357 */ 6358 #ifndef SQLITE_OMIT_EXPLAIN 6359 static void explainSimpleCount( 6360 Parse *pParse, /* Parse context */ 6361 Table *pTab, /* Table being queried */ 6362 Index *pIdx /* Index used to optimize scan, or NULL */ 6363 ){ 6364 if( pParse->explain==2 ){ 6365 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6366 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6367 pTab->zName, 6368 bCover ? " USING COVERING INDEX " : "", 6369 bCover ? pIdx->zName : "" 6370 ); 6371 } 6372 } 6373 #else 6374 # define explainSimpleCount(a,b,c) 6375 #endif 6376 6377 /* 6378 ** sqlite3WalkExpr() callback used by havingToWhere(). 6379 ** 6380 ** If the node passed to the callback is a TK_AND node, return 6381 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6382 ** 6383 ** Otherwise, return WRC_Prune. In this case, also check if the 6384 ** sub-expression matches the criteria for being moved to the WHERE 6385 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6386 ** within the HAVING expression with a constant "1". 6387 */ 6388 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6389 if( pExpr->op!=TK_AND ){ 6390 Select *pS = pWalker->u.pSelect; 6391 /* This routine is called before the HAVING clause of the current 6392 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6393 ** here, it indicates that the expression is a correlated reference to a 6394 ** column from an outer aggregate query, or an aggregate function that 6395 ** belongs to an outer query. Do not move the expression to the WHERE 6396 ** clause in this obscure case, as doing so may corrupt the outer Select 6397 ** statements AggInfo structure. */ 6398 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6399 && ExprAlwaysFalse(pExpr)==0 6400 && pExpr->pAggInfo==0 6401 ){ 6402 sqlite3 *db = pWalker->pParse->db; 6403 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6404 if( pNew ){ 6405 Expr *pWhere = pS->pWhere; 6406 SWAP(Expr, *pNew, *pExpr); 6407 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6408 pS->pWhere = pNew; 6409 pWalker->eCode = 1; 6410 } 6411 } 6412 return WRC_Prune; 6413 } 6414 return WRC_Continue; 6415 } 6416 6417 /* 6418 ** Transfer eligible terms from the HAVING clause of a query, which is 6419 ** processed after grouping, to the WHERE clause, which is processed before 6420 ** grouping. For example, the query: 6421 ** 6422 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6423 ** 6424 ** can be rewritten as: 6425 ** 6426 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6427 ** 6428 ** A term of the HAVING expression is eligible for transfer if it consists 6429 ** entirely of constants and expressions that are also GROUP BY terms that 6430 ** use the "BINARY" collation sequence. 6431 */ 6432 static void havingToWhere(Parse *pParse, Select *p){ 6433 Walker sWalker; 6434 memset(&sWalker, 0, sizeof(sWalker)); 6435 sWalker.pParse = pParse; 6436 sWalker.xExprCallback = havingToWhereExprCb; 6437 sWalker.u.pSelect = p; 6438 sqlite3WalkExpr(&sWalker, p->pHaving); 6439 #if TREETRACE_ENABLED 6440 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6441 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6442 sqlite3TreeViewSelect(0, p, 0); 6443 } 6444 #endif 6445 } 6446 6447 /* 6448 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6449 ** If it is, then return the SrcList_item for the prior view. If it is not, 6450 ** then return 0. 6451 */ 6452 static SrcItem *isSelfJoinView( 6453 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6454 SrcItem *pThis /* Search for prior reference to this subquery */ 6455 ){ 6456 SrcItem *pItem; 6457 assert( pThis->pSelect!=0 ); 6458 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6459 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6460 Select *pS1; 6461 if( pItem->pSelect==0 ) continue; 6462 if( pItem->fg.viaCoroutine ) continue; 6463 if( pItem->zName==0 ) continue; 6464 assert( pItem->pTab!=0 ); 6465 assert( pThis->pTab!=0 ); 6466 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6467 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6468 pS1 = pItem->pSelect; 6469 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6470 /* The query flattener left two different CTE tables with identical 6471 ** names in the same FROM clause. */ 6472 continue; 6473 } 6474 if( pItem->pSelect->selFlags & SF_PushDown ){ 6475 /* The view was modified by some other optimization such as 6476 ** pushDownWhereTerms() */ 6477 continue; 6478 } 6479 return pItem; 6480 } 6481 return 0; 6482 } 6483 6484 /* 6485 ** Deallocate a single AggInfo object 6486 */ 6487 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6488 sqlite3DbFree(db, p->aCol); 6489 sqlite3DbFree(db, p->aFunc); 6490 sqlite3DbFreeNN(db, p); 6491 } 6492 6493 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6494 /* 6495 ** Attempt to transform a query of the form 6496 ** 6497 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6498 ** 6499 ** Into this: 6500 ** 6501 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6502 ** 6503 ** The transformation only works if all of the following are true: 6504 ** 6505 ** * The subquery is a UNION ALL of two or more terms 6506 ** * The subquery does not have a LIMIT clause 6507 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6508 ** * The outer query is a simple count(*) with no WHERE clause or other 6509 ** extraneous syntax. 6510 ** 6511 ** Return TRUE if the optimization is undertaken. 6512 */ 6513 static int countOfViewOptimization(Parse *pParse, Select *p){ 6514 Select *pSub, *pPrior; 6515 Expr *pExpr; 6516 Expr *pCount; 6517 sqlite3 *db; 6518 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6519 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6520 if( p->pWhere ) return 0; 6521 if( p->pGroupBy ) return 0; 6522 pExpr = p->pEList->a[0].pExpr; 6523 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6524 assert( ExprUseUToken(pExpr) ); 6525 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6526 assert( ExprUseXList(pExpr) ); 6527 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6528 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6529 pSub = p->pSrc->a[0].pSelect; 6530 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6531 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6532 do{ 6533 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6534 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6535 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6536 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6537 pSub = pSub->pPrior; /* Repeat over compound */ 6538 }while( pSub ); 6539 6540 /* If we reach this point then it is OK to perform the transformation */ 6541 6542 db = pParse->db; 6543 pCount = pExpr; 6544 pExpr = 0; 6545 pSub = p->pSrc->a[0].pSelect; 6546 p->pSrc->a[0].pSelect = 0; 6547 sqlite3SrcListDelete(db, p->pSrc); 6548 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6549 while( pSub ){ 6550 Expr *pTerm; 6551 pPrior = pSub->pPrior; 6552 pSub->pPrior = 0; 6553 pSub->pNext = 0; 6554 pSub->selFlags |= SF_Aggregate; 6555 pSub->selFlags &= ~SF_Compound; 6556 pSub->nSelectRow = 0; 6557 sqlite3ExprListDelete(db, pSub->pEList); 6558 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6559 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6560 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6561 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6562 if( pExpr==0 ){ 6563 pExpr = pTerm; 6564 }else{ 6565 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6566 } 6567 pSub = pPrior; 6568 } 6569 p->pEList->a[0].pExpr = pExpr; 6570 p->selFlags &= ~SF_Aggregate; 6571 6572 #if TREETRACE_ENABLED 6573 if( sqlite3TreeTrace & 0x400 ){ 6574 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6575 sqlite3TreeViewSelect(0, p, 0); 6576 } 6577 #endif 6578 return 1; 6579 } 6580 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6581 6582 /* 6583 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same 6584 ** as pSrcItem but has the same alias as p0, then return true. 6585 ** Otherwise return false. 6586 */ 6587 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ 6588 int i; 6589 for(i=0; i<pSrc->nSrc; i++){ 6590 SrcItem *p1 = &pSrc->a[i]; 6591 if( p1==p0 ) continue; 6592 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6593 return 1; 6594 } 6595 if( p1->pSelect 6596 && (p1->pSelect->selFlags & SF_NestedFrom)!=0 6597 && sameSrcAlias(p0, p1->pSelect->pSrc) 6598 ){ 6599 return 1; 6600 } 6601 } 6602 return 0; 6603 } 6604 6605 /* 6606 ** Generate code for the SELECT statement given in the p argument. 6607 ** 6608 ** The results are returned according to the SelectDest structure. 6609 ** See comments in sqliteInt.h for further information. 6610 ** 6611 ** This routine returns the number of errors. If any errors are 6612 ** encountered, then an appropriate error message is left in 6613 ** pParse->zErrMsg. 6614 ** 6615 ** This routine does NOT free the Select structure passed in. The 6616 ** calling function needs to do that. 6617 */ 6618 int sqlite3Select( 6619 Parse *pParse, /* The parser context */ 6620 Select *p, /* The SELECT statement being coded. */ 6621 SelectDest *pDest /* What to do with the query results */ 6622 ){ 6623 int i, j; /* Loop counters */ 6624 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6625 Vdbe *v; /* The virtual machine under construction */ 6626 int isAgg; /* True for select lists like "count(*)" */ 6627 ExprList *pEList = 0; /* List of columns to extract. */ 6628 SrcList *pTabList; /* List of tables to select from */ 6629 Expr *pWhere; /* The WHERE clause. May be NULL */ 6630 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6631 Expr *pHaving; /* The HAVING clause. May be NULL */ 6632 AggInfo *pAggInfo = 0; /* Aggregate information */ 6633 int rc = 1; /* Value to return from this function */ 6634 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6635 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6636 int iEnd; /* Address of the end of the query */ 6637 sqlite3 *db; /* The database connection */ 6638 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6639 u8 minMaxFlag; /* Flag for min/max queries */ 6640 6641 db = pParse->db; 6642 assert( pParse==db->pParse ); 6643 v = sqlite3GetVdbe(pParse); 6644 if( p==0 || pParse->nErr ){ 6645 return 1; 6646 } 6647 assert( db->mallocFailed==0 ); 6648 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6649 #if TREETRACE_ENABLED 6650 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6651 if( sqlite3TreeTrace & 0x10100 ){ 6652 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6653 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6654 __FILE__, __LINE__); 6655 } 6656 sqlite3ShowSelect(p); 6657 } 6658 #endif 6659 6660 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6664 if( IgnorableDistinct(pDest) ){ 6665 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6666 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6667 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6668 /* All of these destinations are also able to ignore the ORDER BY clause */ 6669 if( p->pOrderBy ){ 6670 #if TREETRACE_ENABLED 6671 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6672 if( sqlite3TreeTrace & 0x100 ){ 6673 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6674 } 6675 #endif 6676 sqlite3ParserAddCleanup(pParse, 6677 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6678 p->pOrderBy); 6679 testcase( pParse->earlyCleanup ); 6680 p->pOrderBy = 0; 6681 } 6682 p->selFlags &= ~SF_Distinct; 6683 p->selFlags |= SF_NoopOrderBy; 6684 } 6685 sqlite3SelectPrep(pParse, p, 0); 6686 if( pParse->nErr ){ 6687 goto select_end; 6688 } 6689 assert( db->mallocFailed==0 ); 6690 assert( p->pEList!=0 ); 6691 #if TREETRACE_ENABLED 6692 if( sqlite3TreeTrace & 0x104 ){ 6693 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6694 sqlite3TreeViewSelect(0, p, 0); 6695 } 6696 #endif 6697 6698 /* If the SF_UFSrcCheck flag is set, then this function is being called 6699 ** as part of populating the temp table for an UPDATE...FROM statement. 6700 ** In this case, it is an error if the target object (pSrc->a[0]) name 6701 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6702 ** 6703 ** Postgres disallows this case too. The reason is that some other 6704 ** systems handle this case differently, and not all the same way, 6705 ** which is just confusing. To avoid this, we follow PG's lead and 6706 ** disallow it altogether. */ 6707 if( p->selFlags & SF_UFSrcCheck ){ 6708 SrcItem *p0 = &p->pSrc->a[0]; 6709 if( sameSrcAlias(p0, p->pSrc) ){ 6710 sqlite3ErrorMsg(pParse, 6711 "target object/alias may not appear in FROM clause: %s", 6712 p0->zAlias ? p0->zAlias : p0->pTab->zName 6713 ); 6714 goto select_end; 6715 } 6716 6717 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6718 ** and leaving this flag set can cause errors if a compound sub-query 6719 ** in p->pSrc is flattened into this query and this function called 6720 ** again as part of compound SELECT processing. */ 6721 p->selFlags &= ~SF_UFSrcCheck; 6722 } 6723 6724 if( pDest->eDest==SRT_Output ){ 6725 sqlite3GenerateColumnNames(pParse, p); 6726 } 6727 6728 #ifndef SQLITE_OMIT_WINDOWFUNC 6729 if( sqlite3WindowRewrite(pParse, p) ){ 6730 assert( pParse->nErr ); 6731 goto select_end; 6732 } 6733 #if TREETRACE_ENABLED 6734 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6735 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6736 sqlite3TreeViewSelect(0, p, 0); 6737 } 6738 #endif 6739 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6740 pTabList = p->pSrc; 6741 isAgg = (p->selFlags & SF_Aggregate)!=0; 6742 memset(&sSort, 0, sizeof(sSort)); 6743 sSort.pOrderBy = p->pOrderBy; 6744 6745 /* Try to do various optimizations (flattening subqueries, and strength 6746 ** reduction of join operators) in the FROM clause up into the main query 6747 */ 6748 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6749 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6750 SrcItem *pItem = &pTabList->a[i]; 6751 Select *pSub = pItem->pSelect; 6752 Table *pTab = pItem->pTab; 6753 6754 /* The expander should have already created transient Table objects 6755 ** even for FROM clause elements such as subqueries that do not correspond 6756 ** to a real table */ 6757 assert( pTab!=0 ); 6758 6759 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6760 ** of the LEFT JOIN used in the WHERE clause. 6761 */ 6762 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6763 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6764 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6765 ){ 6766 SELECTTRACE(0x100,pParse,p, 6767 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6768 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6769 assert( pItem->iCursor>=0 ); 6770 unsetJoinExpr(p->pWhere, pItem->iCursor, 6771 pTabList->a[0].fg.jointype & JT_LTORJ); 6772 } 6773 6774 /* No futher action if this term of the FROM clause is no a subquery */ 6775 if( pSub==0 ) continue; 6776 6777 /* Catch mismatch in the declared columns of a view and the number of 6778 ** columns in the SELECT on the RHS */ 6779 if( pTab->nCol!=pSub->pEList->nExpr ){ 6780 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6781 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6782 goto select_end; 6783 } 6784 6785 /* Do not try to flatten an aggregate subquery. 6786 ** 6787 ** Flattening an aggregate subquery is only possible if the outer query 6788 ** is not a join. But if the outer query is not a join, then the subquery 6789 ** will be implemented as a co-routine and there is no advantage to 6790 ** flattening in that case. 6791 */ 6792 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6793 assert( pSub->pGroupBy==0 ); 6794 6795 /* If a FROM-clause subquery has an ORDER BY clause that is not 6796 ** really doing anything, then delete it now so that it does not 6797 ** interfere with query flattening. See the discussion at 6798 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6799 ** 6800 ** Beware of these cases where the ORDER BY clause may not be safely 6801 ** omitted: 6802 ** 6803 ** (1) There is also a LIMIT clause 6804 ** (2) The subquery was added to help with window-function 6805 ** processing 6806 ** (3) The subquery is in the FROM clause of an UPDATE 6807 ** (4) The outer query uses an aggregate function other than 6808 ** the built-in count(), min(), or max(). 6809 ** (5) The ORDER BY isn't going to accomplish anything because 6810 ** one of: 6811 ** (a) The outer query has a different ORDER BY clause 6812 ** (b) The subquery is part of a join 6813 ** See forum post 062d576715d277c8 6814 */ 6815 if( pSub->pOrderBy!=0 6816 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6817 && pSub->pLimit==0 /* Condition (1) */ 6818 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6819 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6820 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6821 ){ 6822 SELECTTRACE(0x100,pParse,p, 6823 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6824 sqlite3ExprListDelete(db, pSub->pOrderBy); 6825 pSub->pOrderBy = 0; 6826 } 6827 6828 /* If the outer query contains a "complex" result set (that is, 6829 ** if the result set of the outer query uses functions or subqueries) 6830 ** and if the subquery contains an ORDER BY clause and if 6831 ** it will be implemented as a co-routine, then do not flatten. This 6832 ** restriction allows SQL constructs like this: 6833 ** 6834 ** SELECT expensive_function(x) 6835 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6836 ** 6837 ** The expensive_function() is only computed on the 10 rows that 6838 ** are output, rather than every row of the table. 6839 ** 6840 ** The requirement that the outer query have a complex result set 6841 ** means that flattening does occur on simpler SQL constraints without 6842 ** the expensive_function() like: 6843 ** 6844 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6845 */ 6846 if( pSub->pOrderBy!=0 6847 && i==0 6848 && (p->selFlags & SF_ComplexResult)!=0 6849 && (pTabList->nSrc==1 6850 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6851 ){ 6852 continue; 6853 } 6854 6855 if( flattenSubquery(pParse, p, i, isAgg) ){ 6856 if( pParse->nErr ) goto select_end; 6857 /* This subquery can be absorbed into its parent. */ 6858 i = -1; 6859 } 6860 pTabList = p->pSrc; 6861 if( db->mallocFailed ) goto select_end; 6862 if( !IgnorableOrderby(pDest) ){ 6863 sSort.pOrderBy = p->pOrderBy; 6864 } 6865 } 6866 #endif 6867 6868 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6869 /* Handle compound SELECT statements using the separate multiSelect() 6870 ** procedure. 6871 */ 6872 if( p->pPrior ){ 6873 rc = multiSelect(pParse, p, pDest); 6874 #if TREETRACE_ENABLED 6875 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6876 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6877 sqlite3TreeViewSelect(0, p, 0); 6878 } 6879 #endif 6880 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6881 return rc; 6882 } 6883 #endif 6884 6885 /* Do the WHERE-clause constant propagation optimization if this is 6886 ** a join. No need to speed time on this operation for non-join queries 6887 ** as the equivalent optimization will be handled by query planner in 6888 ** sqlite3WhereBegin(). 6889 */ 6890 if( p->pWhere!=0 6891 && p->pWhere->op==TK_AND 6892 && OptimizationEnabled(db, SQLITE_PropagateConst) 6893 && propagateConstants(pParse, p) 6894 ){ 6895 #if TREETRACE_ENABLED 6896 if( sqlite3TreeTrace & 0x100 ){ 6897 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6898 sqlite3TreeViewSelect(0, p, 0); 6899 } 6900 #endif 6901 }else{ 6902 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6903 } 6904 6905 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6906 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6907 && countOfViewOptimization(pParse, p) 6908 ){ 6909 if( db->mallocFailed ) goto select_end; 6910 pEList = p->pEList; 6911 pTabList = p->pSrc; 6912 } 6913 #endif 6914 6915 /* For each term in the FROM clause, do two things: 6916 ** (1) Authorized unreferenced tables 6917 ** (2) Generate code for all sub-queries 6918 */ 6919 for(i=0; i<pTabList->nSrc; i++){ 6920 SrcItem *pItem = &pTabList->a[i]; 6921 SrcItem *pPrior; 6922 SelectDest dest; 6923 Select *pSub; 6924 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6925 const char *zSavedAuthContext; 6926 #endif 6927 6928 /* Issue SQLITE_READ authorizations with a fake column name for any 6929 ** tables that are referenced but from which no values are extracted. 6930 ** Examples of where these kinds of null SQLITE_READ authorizations 6931 ** would occur: 6932 ** 6933 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6934 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6935 ** 6936 ** The fake column name is an empty string. It is possible for a table to 6937 ** have a column named by the empty string, in which case there is no way to 6938 ** distinguish between an unreferenced table and an actual reference to the 6939 ** "" column. The original design was for the fake column name to be a NULL, 6940 ** which would be unambiguous. But legacy authorization callbacks might 6941 ** assume the column name is non-NULL and segfault. The use of an empty 6942 ** string for the fake column name seems safer. 6943 */ 6944 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6945 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6946 } 6947 6948 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6949 /* Generate code for all sub-queries in the FROM clause 6950 */ 6951 pSub = pItem->pSelect; 6952 if( pSub==0 ) continue; 6953 6954 /* The code for a subquery should only be generated once. */ 6955 assert( pItem->addrFillSub==0 ); 6956 6957 /* Increment Parse.nHeight by the height of the largest expression 6958 ** tree referred to by this, the parent select. The child select 6959 ** may contain expression trees of at most 6960 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6961 ** more conservative than necessary, but much easier than enforcing 6962 ** an exact limit. 6963 */ 6964 pParse->nHeight += sqlite3SelectExprHeight(p); 6965 6966 /* Make copies of constant WHERE-clause terms in the outer query down 6967 ** inside the subquery. This can help the subquery to run more efficiently. 6968 */ 6969 if( OptimizationEnabled(db, SQLITE_PushDown) 6970 && (pItem->fg.isCte==0 6971 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6972 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6973 ){ 6974 #if TREETRACE_ENABLED 6975 if( sqlite3TreeTrace & 0x100 ){ 6976 SELECTTRACE(0x100,pParse,p, 6977 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6978 sqlite3TreeViewSelect(0, p, 0); 6979 } 6980 #endif 6981 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6982 }else{ 6983 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6984 } 6985 6986 zSavedAuthContext = pParse->zAuthContext; 6987 pParse->zAuthContext = pItem->zName; 6988 6989 /* Generate code to implement the subquery 6990 ** 6991 ** The subquery is implemented as a co-routine if all of the following are 6992 ** true: 6993 ** 6994 ** (1) the subquery is guaranteed to be the outer loop (so that 6995 ** it does not need to be computed more than once), and 6996 ** (2) the subquery is not a CTE that should be materialized 6997 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 6998 */ 6999 if( i==0 7000 && (pTabList->nSrc==1 7001 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 7002 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 7003 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 7004 ){ 7005 /* Implement a co-routine that will return a single row of the result 7006 ** set on each invocation. 7007 */ 7008 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 7009 7010 pItem->regReturn = ++pParse->nMem; 7011 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 7012 VdbeComment((v, "%!S", pItem)); 7013 pItem->addrFillSub = addrTop; 7014 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 7015 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 7016 sqlite3Select(pParse, pSub, &dest); 7017 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7018 pItem->fg.viaCoroutine = 1; 7019 pItem->regResult = dest.iSdst; 7020 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 7021 sqlite3VdbeJumpHere(v, addrTop-1); 7022 sqlite3ClearTempRegCache(pParse); 7023 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 7024 /* This is a CTE for which materialization code has already been 7025 ** generated. Invoke the subroutine to compute the materialization, 7026 ** the make the pItem->iCursor be a copy of the ephemerial table that 7027 ** holds the result of the materialization. */ 7028 CteUse *pCteUse = pItem->u2.pCteUse; 7029 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 7030 if( pItem->iCursor!=pCteUse->iCur ){ 7031 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 7032 VdbeComment((v, "%!S", pItem)); 7033 } 7034 pSub->nSelectRow = pCteUse->nRowEst; 7035 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 7036 /* This view has already been materialized by a prior entry in 7037 ** this same FROM clause. Reuse it. */ 7038 if( pPrior->addrFillSub ){ 7039 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 7040 } 7041 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 7042 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 7043 }else{ 7044 /* Materialize the view. If the view is not correlated, generate a 7045 ** subroutine to do the materialization so that subsequent uses of 7046 ** the same view can reuse the materialization. */ 7047 int topAddr; 7048 int onceAddr = 0; 7049 7050 pItem->regReturn = ++pParse->nMem; 7051 topAddr = sqlite3VdbeAddOp0(v, OP_Goto); 7052 pItem->addrFillSub = topAddr+1; 7053 pItem->fg.isMaterialized = 1; 7054 if( pItem->fg.isCorrelated==0 ){ 7055 /* If the subquery is not correlated and if we are not inside of 7056 ** a trigger, then we only need to compute the value of the subquery 7057 ** once. */ 7058 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 7059 VdbeComment((v, "materialize %!S", pItem)); 7060 }else{ 7061 VdbeNoopComment((v, "materialize %!S", pItem)); 7062 } 7063 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 7064 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 7065 sqlite3Select(pParse, pSub, &dest); 7066 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7067 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 7068 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); 7069 VdbeComment((v, "end %!S", pItem)); 7070 sqlite3VdbeJumpHere(v, topAddr); 7071 sqlite3ClearTempRegCache(pParse); 7072 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 7073 CteUse *pCteUse = pItem->u2.pCteUse; 7074 pCteUse->addrM9e = pItem->addrFillSub; 7075 pCteUse->regRtn = pItem->regReturn; 7076 pCteUse->iCur = pItem->iCursor; 7077 pCteUse->nRowEst = pSub->nSelectRow; 7078 } 7079 } 7080 if( db->mallocFailed ) goto select_end; 7081 pParse->nHeight -= sqlite3SelectExprHeight(p); 7082 pParse->zAuthContext = zSavedAuthContext; 7083 #endif 7084 } 7085 7086 /* Various elements of the SELECT copied into local variables for 7087 ** convenience */ 7088 pEList = p->pEList; 7089 pWhere = p->pWhere; 7090 pGroupBy = p->pGroupBy; 7091 pHaving = p->pHaving; 7092 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 7093 7094 #if TREETRACE_ENABLED 7095 if( sqlite3TreeTrace & 0x400 ){ 7096 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 7097 sqlite3TreeViewSelect(0, p, 0); 7098 } 7099 #endif 7100 7101 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 7102 ** if the select-list is the same as the ORDER BY list, then this query 7103 ** can be rewritten as a GROUP BY. In other words, this: 7104 ** 7105 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 7106 ** 7107 ** is transformed to: 7108 ** 7109 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 7110 ** 7111 ** The second form is preferred as a single index (or temp-table) may be 7112 ** used for both the ORDER BY and DISTINCT processing. As originally 7113 ** written the query must use a temp-table for at least one of the ORDER 7114 ** BY and DISTINCT, and an index or separate temp-table for the other. 7115 */ 7116 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 7117 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 7118 #ifndef SQLITE_OMIT_WINDOWFUNC 7119 && p->pWin==0 7120 #endif 7121 ){ 7122 p->selFlags &= ~SF_Distinct; 7123 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 7124 p->selFlags |= SF_Aggregate; 7125 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7126 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7127 ** original setting of the SF_Distinct flag, not the current setting */ 7128 assert( sDistinct.isTnct ); 7129 sDistinct.isTnct = 2; 7130 7131 #if TREETRACE_ENABLED 7132 if( sqlite3TreeTrace & 0x400 ){ 7133 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7134 sqlite3TreeViewSelect(0, p, 0); 7135 } 7136 #endif 7137 } 7138 7139 /* If there is an ORDER BY clause, then create an ephemeral index to 7140 ** do the sorting. But this sorting ephemeral index might end up 7141 ** being unused if the data can be extracted in pre-sorted order. 7142 ** If that is the case, then the OP_OpenEphemeral instruction will be 7143 ** changed to an OP_Noop once we figure out that the sorting index is 7144 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7145 ** that change. 7146 */ 7147 if( sSort.pOrderBy ){ 7148 KeyInfo *pKeyInfo; 7149 pKeyInfo = sqlite3KeyInfoFromExprList( 7150 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7151 sSort.iECursor = pParse->nTab++; 7152 sSort.addrSortIndex = 7153 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7154 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7155 (char*)pKeyInfo, P4_KEYINFO 7156 ); 7157 }else{ 7158 sSort.addrSortIndex = -1; 7159 } 7160 7161 /* If the output is destined for a temporary table, open that table. 7162 */ 7163 if( pDest->eDest==SRT_EphemTab ){ 7164 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7165 if( p->selFlags & SF_NestedFrom ){ 7166 /* Delete or NULL-out result columns that will never be used */ 7167 int ii; 7168 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ 7169 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7170 sqlite3DbFree(db, pEList->a[ii].zEName); 7171 pEList->nExpr--; 7172 } 7173 for(ii=0; ii<pEList->nExpr; ii++){ 7174 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7175 } 7176 } 7177 } 7178 7179 /* Set the limiter. 7180 */ 7181 iEnd = sqlite3VdbeMakeLabel(pParse); 7182 if( (p->selFlags & SF_FixedLimit)==0 ){ 7183 p->nSelectRow = 320; /* 4 billion rows */ 7184 } 7185 computeLimitRegisters(pParse, p, iEnd); 7186 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7187 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7188 sSort.sortFlags |= SORTFLAG_UseSorter; 7189 } 7190 7191 /* Open an ephemeral index to use for the distinct set. 7192 */ 7193 if( p->selFlags & SF_Distinct ){ 7194 sDistinct.tabTnct = pParse->nTab++; 7195 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7196 sDistinct.tabTnct, 0, 0, 7197 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7198 P4_KEYINFO); 7199 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7200 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7201 }else{ 7202 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7203 } 7204 7205 if( !isAgg && pGroupBy==0 ){ 7206 /* No aggregate functions and no GROUP BY clause */ 7207 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7208 | (p->selFlags & SF_FixedLimit); 7209 #ifndef SQLITE_OMIT_WINDOWFUNC 7210 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7211 if( pWin ){ 7212 sqlite3WindowCodeInit(pParse, p); 7213 } 7214 #endif 7215 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7216 7217 7218 /* Begin the database scan. */ 7219 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7220 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7221 p->pEList, p, wctrlFlags, p->nSelectRow); 7222 if( pWInfo==0 ) goto select_end; 7223 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7224 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7225 } 7226 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7227 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7228 } 7229 if( sSort.pOrderBy ){ 7230 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7231 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7232 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7233 sSort.pOrderBy = 0; 7234 } 7235 } 7236 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7237 7238 /* If sorting index that was created by a prior OP_OpenEphemeral 7239 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7240 ** into an OP_Noop. 7241 */ 7242 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7243 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7244 } 7245 7246 assert( p->pEList==pEList ); 7247 #ifndef SQLITE_OMIT_WINDOWFUNC 7248 if( pWin ){ 7249 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7250 int iCont = sqlite3VdbeMakeLabel(pParse); 7251 int iBreak = sqlite3VdbeMakeLabel(pParse); 7252 int regGosub = ++pParse->nMem; 7253 7254 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7255 7256 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7257 sqlite3VdbeResolveLabel(v, addrGosub); 7258 VdbeNoopComment((v, "inner-loop subroutine")); 7259 sSort.labelOBLopt = 0; 7260 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7261 sqlite3VdbeResolveLabel(v, iCont); 7262 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7263 VdbeComment((v, "end inner-loop subroutine")); 7264 sqlite3VdbeResolveLabel(v, iBreak); 7265 }else 7266 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7267 { 7268 /* Use the standard inner loop. */ 7269 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7270 sqlite3WhereContinueLabel(pWInfo), 7271 sqlite3WhereBreakLabel(pWInfo)); 7272 7273 /* End the database scan loop. 7274 */ 7275 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7276 sqlite3WhereEnd(pWInfo); 7277 } 7278 }else{ 7279 /* This case when there exist aggregate functions or a GROUP BY clause 7280 ** or both */ 7281 NameContext sNC; /* Name context for processing aggregate information */ 7282 int iAMem; /* First Mem address for storing current GROUP BY */ 7283 int iBMem; /* First Mem address for previous GROUP BY */ 7284 int iUseFlag; /* Mem address holding flag indicating that at least 7285 ** one row of the input to the aggregator has been 7286 ** processed */ 7287 int iAbortFlag; /* Mem address which causes query abort if positive */ 7288 int groupBySort; /* Rows come from source in GROUP BY order */ 7289 int addrEnd; /* End of processing for this SELECT */ 7290 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7291 int sortOut = 0; /* Output register from the sorter */ 7292 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7293 7294 /* Remove any and all aliases between the result set and the 7295 ** GROUP BY clause. 7296 */ 7297 if( pGroupBy ){ 7298 int k; /* Loop counter */ 7299 struct ExprList_item *pItem; /* For looping over expression in a list */ 7300 7301 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7302 pItem->u.x.iAlias = 0; 7303 } 7304 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7305 pItem->u.x.iAlias = 0; 7306 } 7307 assert( 66==sqlite3LogEst(100) ); 7308 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7309 7310 /* If there is both a GROUP BY and an ORDER BY clause and they are 7311 ** identical, then it may be possible to disable the ORDER BY clause 7312 ** on the grounds that the GROUP BY will cause elements to come out 7313 ** in the correct order. It also may not - the GROUP BY might use a 7314 ** database index that causes rows to be grouped together as required 7315 ** but not actually sorted. Either way, record the fact that the 7316 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7317 ** variable. */ 7318 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7319 int ii; 7320 /* The GROUP BY processing doesn't care whether rows are delivered in 7321 ** ASC or DESC order - only that each group is returned contiguously. 7322 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7323 ** ORDER BY to maximize the chances of rows being delivered in an 7324 ** order that makes the ORDER BY redundant. */ 7325 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7326 u8 sortFlags; 7327 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; 7328 pGroupBy->a[ii].fg.sortFlags = sortFlags; 7329 } 7330 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7331 orderByGrp = 1; 7332 } 7333 } 7334 }else{ 7335 assert( 0==sqlite3LogEst(1) ); 7336 p->nSelectRow = 0; 7337 } 7338 7339 /* Create a label to jump to when we want to abort the query */ 7340 addrEnd = sqlite3VdbeMakeLabel(pParse); 7341 7342 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7343 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7344 ** SELECT statement. 7345 */ 7346 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7347 if( pAggInfo ){ 7348 sqlite3ParserAddCleanup(pParse, 7349 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7350 testcase( pParse->earlyCleanup ); 7351 } 7352 if( db->mallocFailed ){ 7353 goto select_end; 7354 } 7355 pAggInfo->selId = p->selId; 7356 memset(&sNC, 0, sizeof(sNC)); 7357 sNC.pParse = pParse; 7358 sNC.pSrcList = pTabList; 7359 sNC.uNC.pAggInfo = pAggInfo; 7360 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7361 pAggInfo->mnReg = pParse->nMem+1; 7362 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7363 pAggInfo->pGroupBy = pGroupBy; 7364 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7365 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7366 if( pHaving ){ 7367 if( pGroupBy ){ 7368 assert( pWhere==p->pWhere ); 7369 assert( pHaving==p->pHaving ); 7370 assert( pGroupBy==p->pGroupBy ); 7371 havingToWhere(pParse, p); 7372 pWhere = p->pWhere; 7373 } 7374 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7375 } 7376 pAggInfo->nAccumulator = pAggInfo->nColumn; 7377 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7378 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7379 }else{ 7380 minMaxFlag = WHERE_ORDERBY_NORMAL; 7381 } 7382 for(i=0; i<pAggInfo->nFunc; i++){ 7383 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7384 assert( ExprUseXList(pExpr) ); 7385 sNC.ncFlags |= NC_InAggFunc; 7386 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7387 #ifndef SQLITE_OMIT_WINDOWFUNC 7388 assert( !IsWindowFunc(pExpr) ); 7389 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7390 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7391 } 7392 #endif 7393 sNC.ncFlags &= ~NC_InAggFunc; 7394 } 7395 pAggInfo->mxReg = pParse->nMem; 7396 if( db->mallocFailed ) goto select_end; 7397 #if TREETRACE_ENABLED 7398 if( sqlite3TreeTrace & 0x400 ){ 7399 int ii; 7400 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7401 sqlite3TreeViewSelect(0, p, 0); 7402 if( minMaxFlag ){ 7403 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7404 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7405 } 7406 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7407 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7408 ii, pAggInfo->aCol[ii].iMem); 7409 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7410 } 7411 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7412 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7413 ii, pAggInfo->aFunc[ii].iMem); 7414 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7415 } 7416 } 7417 #endif 7418 7419 7420 /* Processing for aggregates with GROUP BY is very different and 7421 ** much more complex than aggregates without a GROUP BY. 7422 */ 7423 if( pGroupBy ){ 7424 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7425 int addr1; /* A-vs-B comparision jump */ 7426 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7427 int regOutputRow; /* Return address register for output subroutine */ 7428 int addrSetAbort; /* Set the abort flag and return */ 7429 int addrTopOfLoop; /* Top of the input loop */ 7430 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7431 int addrReset; /* Subroutine for resetting the accumulator */ 7432 int regReset; /* Return address register for reset subroutine */ 7433 ExprList *pDistinct = 0; 7434 u16 distFlag = 0; 7435 int eDist = WHERE_DISTINCT_NOOP; 7436 7437 if( pAggInfo->nFunc==1 7438 && pAggInfo->aFunc[0].iDistinct>=0 7439 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7440 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7441 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7442 ){ 7443 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7444 pExpr = sqlite3ExprDup(db, pExpr, 0); 7445 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7446 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7447 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7448 } 7449 7450 /* If there is a GROUP BY clause we might need a sorting index to 7451 ** implement it. Allocate that sorting index now. If it turns out 7452 ** that we do not need it after all, the OP_SorterOpen instruction 7453 ** will be converted into a Noop. 7454 */ 7455 pAggInfo->sortingIdx = pParse->nTab++; 7456 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7457 0, pAggInfo->nColumn); 7458 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7459 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7460 0, (char*)pKeyInfo, P4_KEYINFO); 7461 7462 /* Initialize memory locations used by GROUP BY aggregate processing 7463 */ 7464 iUseFlag = ++pParse->nMem; 7465 iAbortFlag = ++pParse->nMem; 7466 regOutputRow = ++pParse->nMem; 7467 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7468 regReset = ++pParse->nMem; 7469 addrReset = sqlite3VdbeMakeLabel(pParse); 7470 iAMem = pParse->nMem + 1; 7471 pParse->nMem += pGroupBy->nExpr; 7472 iBMem = pParse->nMem + 1; 7473 pParse->nMem += pGroupBy->nExpr; 7474 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7475 VdbeComment((v, "clear abort flag")); 7476 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7477 7478 /* Begin a loop that will extract all source rows in GROUP BY order. 7479 ** This might involve two separate loops with an OP_Sort in between, or 7480 ** it might be a single loop that uses an index to extract information 7481 ** in the right order to begin with. 7482 */ 7483 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7484 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7485 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7486 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7487 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7488 ); 7489 if( pWInfo==0 ){ 7490 sqlite3ExprListDelete(db, pDistinct); 7491 goto select_end; 7492 } 7493 eDist = sqlite3WhereIsDistinct(pWInfo); 7494 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7495 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7496 /* The optimizer is able to deliver rows in group by order so 7497 ** we do not have to sort. The OP_OpenEphemeral table will be 7498 ** cancelled later because we still need to use the pKeyInfo 7499 */ 7500 groupBySort = 0; 7501 }else{ 7502 /* Rows are coming out in undetermined order. We have to push 7503 ** each row into a sorting index, terminate the first loop, 7504 ** then loop over the sorting index in order to get the output 7505 ** in sorted order 7506 */ 7507 int regBase; 7508 int regRecord; 7509 int nCol; 7510 int nGroupBy; 7511 7512 explainTempTable(pParse, 7513 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7514 "DISTINCT" : "GROUP BY"); 7515 7516 groupBySort = 1; 7517 nGroupBy = pGroupBy->nExpr; 7518 nCol = nGroupBy; 7519 j = nGroupBy; 7520 for(i=0; i<pAggInfo->nColumn; i++){ 7521 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7522 nCol++; 7523 j++; 7524 } 7525 } 7526 regBase = sqlite3GetTempRange(pParse, nCol); 7527 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7528 j = nGroupBy; 7529 for(i=0; i<pAggInfo->nColumn; i++){ 7530 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7531 if( pCol->iSorterColumn>=j ){ 7532 int r1 = j + regBase; 7533 sqlite3ExprCodeGetColumnOfTable(v, 7534 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7535 j++; 7536 } 7537 } 7538 regRecord = sqlite3GetTempReg(pParse); 7539 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7540 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7541 sqlite3ReleaseTempReg(pParse, regRecord); 7542 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7543 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7544 sqlite3WhereEnd(pWInfo); 7545 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7546 sortOut = sqlite3GetTempReg(pParse); 7547 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7548 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7549 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7550 pAggInfo->useSortingIdx = 1; 7551 } 7552 7553 /* If the index or temporary table used by the GROUP BY sort 7554 ** will naturally deliver rows in the order required by the ORDER BY 7555 ** clause, cancel the ephemeral table open coded earlier. 7556 ** 7557 ** This is an optimization - the correct answer should result regardless. 7558 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7559 ** disable this optimization for testing purposes. */ 7560 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7561 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7562 ){ 7563 sSort.pOrderBy = 0; 7564 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7565 } 7566 7567 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7568 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7569 ** Then compare the current GROUP BY terms against the GROUP BY terms 7570 ** from the previous row currently stored in a0, a1, a2... 7571 */ 7572 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7573 if( groupBySort ){ 7574 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7575 sortOut, sortPTab); 7576 } 7577 for(j=0; j<pGroupBy->nExpr; j++){ 7578 if( groupBySort ){ 7579 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7580 }else{ 7581 pAggInfo->directMode = 1; 7582 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7583 } 7584 } 7585 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7586 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7587 addr1 = sqlite3VdbeCurrentAddr(v); 7588 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7589 7590 /* Generate code that runs whenever the GROUP BY changes. 7591 ** Changes in the GROUP BY are detected by the previous code 7592 ** block. If there were no changes, this block is skipped. 7593 ** 7594 ** This code copies current group by terms in b0,b1,b2,... 7595 ** over to a0,a1,a2. It then calls the output subroutine 7596 ** and resets the aggregate accumulator registers in preparation 7597 ** for the next GROUP BY batch. 7598 */ 7599 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7600 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7601 VdbeComment((v, "output one row")); 7602 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7603 VdbeComment((v, "check abort flag")); 7604 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7605 VdbeComment((v, "reset accumulator")); 7606 7607 /* Update the aggregate accumulators based on the content of 7608 ** the current row 7609 */ 7610 sqlite3VdbeJumpHere(v, addr1); 7611 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7612 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7613 VdbeComment((v, "indicate data in accumulator")); 7614 7615 /* End of the loop 7616 */ 7617 if( groupBySort ){ 7618 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7619 VdbeCoverage(v); 7620 }else{ 7621 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7622 sqlite3WhereEnd(pWInfo); 7623 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7624 } 7625 sqlite3ExprListDelete(db, pDistinct); 7626 7627 /* Output the final row of result 7628 */ 7629 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7630 VdbeComment((v, "output final row")); 7631 7632 /* Jump over the subroutines 7633 */ 7634 sqlite3VdbeGoto(v, addrEnd); 7635 7636 /* Generate a subroutine that outputs a single row of the result 7637 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7638 ** is less than or equal to zero, the subroutine is a no-op. If 7639 ** the processing calls for the query to abort, this subroutine 7640 ** increments the iAbortFlag memory location before returning in 7641 ** order to signal the caller to abort. 7642 */ 7643 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7644 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7645 VdbeComment((v, "set abort flag")); 7646 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7647 sqlite3VdbeResolveLabel(v, addrOutputRow); 7648 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7649 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7650 VdbeCoverage(v); 7651 VdbeComment((v, "Groupby result generator entry point")); 7652 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7653 finalizeAggFunctions(pParse, pAggInfo); 7654 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7655 selectInnerLoop(pParse, p, -1, &sSort, 7656 &sDistinct, pDest, 7657 addrOutputRow+1, addrSetAbort); 7658 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7659 VdbeComment((v, "end groupby result generator")); 7660 7661 /* Generate a subroutine that will reset the group-by accumulator 7662 */ 7663 sqlite3VdbeResolveLabel(v, addrReset); 7664 resetAccumulator(pParse, pAggInfo); 7665 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7666 VdbeComment((v, "indicate accumulator empty")); 7667 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7668 7669 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7670 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7671 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7672 } 7673 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7674 else { 7675 Table *pTab; 7676 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7677 /* If isSimpleCount() returns a pointer to a Table structure, then 7678 ** the SQL statement is of the form: 7679 ** 7680 ** SELECT count(*) FROM <tbl> 7681 ** 7682 ** where the Table structure returned represents table <tbl>. 7683 ** 7684 ** This statement is so common that it is optimized specially. The 7685 ** OP_Count instruction is executed either on the intkey table that 7686 ** contains the data for table <tbl> or on one of its indexes. It 7687 ** is better to execute the op on an index, as indexes are almost 7688 ** always spread across less pages than their corresponding tables. 7689 */ 7690 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7691 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7692 Index *pIdx; /* Iterator variable */ 7693 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7694 Index *pBest = 0; /* Best index found so far */ 7695 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7696 7697 sqlite3CodeVerifySchema(pParse, iDb); 7698 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7699 7700 /* Search for the index that has the lowest scan cost. 7701 ** 7702 ** (2011-04-15) Do not do a full scan of an unordered index. 7703 ** 7704 ** (2013-10-03) Do not count the entries in a partial index. 7705 ** 7706 ** In practice the KeyInfo structure will not be used. It is only 7707 ** passed to keep OP_OpenRead happy. 7708 */ 7709 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7710 if( !p->pSrc->a[0].fg.notIndexed ){ 7711 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7712 if( pIdx->bUnordered==0 7713 && pIdx->szIdxRow<pTab->szTabRow 7714 && pIdx->pPartIdxWhere==0 7715 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7716 ){ 7717 pBest = pIdx; 7718 } 7719 } 7720 } 7721 if( pBest ){ 7722 iRoot = pBest->tnum; 7723 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7724 } 7725 7726 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7727 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7728 if( pKeyInfo ){ 7729 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7730 } 7731 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7732 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7733 explainSimpleCount(pParse, pTab, pBest); 7734 }else{ 7735 int regAcc = 0; /* "populate accumulators" flag */ 7736 ExprList *pDistinct = 0; 7737 u16 distFlag = 0; 7738 int eDist; 7739 7740 /* If there are accumulator registers but no min() or max() functions 7741 ** without FILTER clauses, allocate register regAcc. Register regAcc 7742 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7743 ** The code generated by updateAccumulator() uses this to ensure 7744 ** that the accumulator registers are (a) updated only once if 7745 ** there are no min() or max functions or (b) always updated for the 7746 ** first row visited by the aggregate, so that they are updated at 7747 ** least once even if the FILTER clause means the min() or max() 7748 ** function visits zero rows. */ 7749 if( pAggInfo->nAccumulator ){ 7750 for(i=0; i<pAggInfo->nFunc; i++){ 7751 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7752 continue; 7753 } 7754 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7755 break; 7756 } 7757 } 7758 if( i==pAggInfo->nFunc ){ 7759 regAcc = ++pParse->nMem; 7760 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7761 } 7762 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7763 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7764 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7765 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7766 } 7767 7768 /* This case runs if the aggregate has no GROUP BY clause. The 7769 ** processing is much simpler since there is only a single row 7770 ** of output. 7771 */ 7772 assert( p->pGroupBy==0 ); 7773 resetAccumulator(pParse, pAggInfo); 7774 7775 /* If this query is a candidate for the min/max optimization, then 7776 ** minMaxFlag will have been previously set to either 7777 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7778 ** be an appropriate ORDER BY expression for the optimization. 7779 */ 7780 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7781 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7782 7783 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7784 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7785 pDistinct, 0, minMaxFlag|distFlag, 0); 7786 if( pWInfo==0 ){ 7787 goto select_end; 7788 } 7789 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7790 eDist = sqlite3WhereIsDistinct(pWInfo); 7791 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7792 if( eDist!=WHERE_DISTINCT_NOOP ){ 7793 struct AggInfo_func *pF = pAggInfo->aFunc; 7794 if( pF ){ 7795 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7796 } 7797 } 7798 7799 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7800 if( minMaxFlag ){ 7801 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7802 } 7803 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7804 sqlite3WhereEnd(pWInfo); 7805 finalizeAggFunctions(pParse, pAggInfo); 7806 } 7807 7808 sSort.pOrderBy = 0; 7809 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7810 selectInnerLoop(pParse, p, -1, 0, 0, 7811 pDest, addrEnd, addrEnd); 7812 } 7813 sqlite3VdbeResolveLabel(v, addrEnd); 7814 7815 } /* endif aggregate query */ 7816 7817 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7818 explainTempTable(pParse, "DISTINCT"); 7819 } 7820 7821 /* If there is an ORDER BY clause, then we need to sort the results 7822 ** and send them to the callback one by one. 7823 */ 7824 if( sSort.pOrderBy ){ 7825 explainTempTable(pParse, 7826 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7827 assert( p->pEList==pEList ); 7828 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7829 } 7830 7831 /* Jump here to skip this query 7832 */ 7833 sqlite3VdbeResolveLabel(v, iEnd); 7834 7835 /* The SELECT has been coded. If there is an error in the Parse structure, 7836 ** set the return code to 1. Otherwise 0. */ 7837 rc = (pParse->nErr>0); 7838 7839 /* Control jumps to here if an error is encountered above, or upon 7840 ** successful coding of the SELECT. 7841 */ 7842 select_end: 7843 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7844 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7845 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7846 #ifdef SQLITE_DEBUG 7847 if( pAggInfo && !db->mallocFailed ){ 7848 for(i=0; i<pAggInfo->nColumn; i++){ 7849 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7850 assert( pExpr!=0 ); 7851 assert( pExpr->pAggInfo==pAggInfo ); 7852 assert( pExpr->iAgg==i ); 7853 } 7854 for(i=0; i<pAggInfo->nFunc; i++){ 7855 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7856 assert( pExpr!=0 ); 7857 assert( pExpr->pAggInfo==pAggInfo ); 7858 assert( pExpr->iAgg==i ); 7859 } 7860 } 7861 #endif 7862 7863 #if TREETRACE_ENABLED 7864 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7865 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7866 sqlite3TreeViewSelect(0, p, 0); 7867 } 7868 #endif 7869 ExplainQueryPlanPop(pParse); 7870 return rc; 7871 } 7872