xref: /sqlite-3.40.0/src/select.c (revision 0e400f4e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 **
208 ** These are the valid join types:
209 **
210 **
211 **      pA       pB       pC               Return Value
212 **     -------  -----    -----             ------------
213 **     CROSS      -        -                 JT_CROSS
214 **     INNER      -        -                 JT_INNER
215 **     LEFT       -        -                 JT_LEFT|JT_OUTER
216 **     LEFT     OUTER      -                 JT_LEFT|JT_OUTER
217 **     RIGHT      -        -                 JT_RIGHT|JT_OUTER
218 **     RIGHT    OUTER      -                 JT_RIGHT|JT_OUTER
219 **     FULL       -        -                 JT_LEFT|JT_RIGHT|JT_OUTER
220 **     FULL     OUTER      -                 JT_LEFT|JT_RIGHT|JT_OUTER
221 **     NATURAL  INNER      -                 JT_NATURAL|JT_INNER
222 **     NATURAL  LEFT       -                 JT_NATURAL|JT_LEFT|JT_OUTER
223 **     NATURAL  LEFT     OUTER               JT_NATURAL|JT_LEFT|JT_OUTER
224 **     NATURAL  RIGHT      -                 JT_NATURAL|JT_RIGHT|JT_OUTER
225 **     NATURAL  RIGHT    OUTER               JT_NATURAL|JT_RIGHT|JT_OUTER
226 **     NATURAL  FULL       -                 JT_NATURAL|JT_LEFT|JT_RIGHT
227 **     NATURAL  FULL     OUTER               JT_NATRUAL|JT_LEFT|JT_RIGHT
228 **
229 ** To preserve historical compatibly, SQLite also accepts a variety
230 ** of other non-standard and in many cases non-sensical join types.
231 ** This routine makes as much sense at it can from the nonsense join
232 ** type and returns a result.  Examples of accepted nonsense join types
233 ** include but are not limited to:
234 **
235 **          INNER CROSS JOIN        ->   same as JOIN
236 **          NATURAL CROSS JOIN      ->   same as NATURAL JOIN
237 **          OUTER LEFT JOIN         ->   same as LEFT JOIN
238 **          LEFT NATURAL JOIN       ->   same as NATURAL LEFT JOIN
239 **          LEFT RIGHT JOIN         ->   same as FULL JOIN
240 **          RIGHT OUTER FULL JOIN   ->   same as FULL JOIN
241 **          CROSS CROSS CROSS JOIN  ->   same as JOIN
242 **
243 ** The only restrictions on the join type name are:
244 **
245 **    *   "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
246 **        or "FULL".
247 **
248 **    *   "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
249 **        or "FULL".
250 **
251 **    *   If "OUTER" is present then there must also be one of
252 **        "LEFT", "RIGHT", or "FULL"
253 */
254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
255   int jointype = 0;
256   Token *apAll[3];
257   Token *p;
258                              /*   0123456789 123456789 123456789 123 */
259   static const char zKeyText[] = "naturaleftouterightfullinnercross";
260   static const struct {
261     u8 i;        /* Beginning of keyword text in zKeyText[] */
262     u8 nChar;    /* Length of the keyword in characters */
263     u8 code;     /* Join type mask */
264   } aKeyword[] = {
265     /* (0) natural */ { 0,  7, JT_NATURAL                },
266     /* (1) left    */ { 6,  4, JT_LEFT|JT_OUTER          },
267     /* (2) outer   */ { 10, 5, JT_OUTER                  },
268     /* (3) right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
269     /* (4) full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
270     /* (5) inner   */ { 23, 5, JT_INNER                  },
271     /* (6) cross   */ { 28, 5, JT_INNER|JT_CROSS         },
272   };
273   int i, j;
274   apAll[0] = pA;
275   apAll[1] = pB;
276   apAll[2] = pC;
277   for(i=0; i<3 && apAll[i]; i++){
278     p = apAll[i];
279     for(j=0; j<ArraySize(aKeyword); j++){
280       if( p->n==aKeyword[j].nChar
281           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
282         jointype |= aKeyword[j].code;
283         break;
284       }
285     }
286     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
287     if( j>=ArraySize(aKeyword) ){
288       jointype |= JT_ERROR;
289       break;
290     }
291   }
292   if(
293      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
294      (jointype & JT_ERROR)!=0 ||
295      (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
296   ){
297     const char *zSp1 = " ";
298     const char *zSp2 = " ";
299     if( pB==0 ){ zSp1++; }
300     if( pC==0 ){ zSp2++; }
301     sqlite3ErrorMsg(pParse, "unknown join type: "
302        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
303     jointype = JT_INNER;
304   }
305   return jointype;
306 }
307 
308 /*
309 ** Return the index of a column in a table.  Return -1 if the column
310 ** is not contained in the table.
311 */
312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
313   int i;
314   u8 h = sqlite3StrIHash(zCol);
315   Column *pCol;
316   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
317     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
318   }
319   return -1;
320 }
321 
322 /*
323 ** Mark a subquery result column as having been used.
324 */
325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
326   assert( pItem!=0 );
327   assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
328   if( pItem->fg.isNestedFrom ){
329     ExprList *pResults;
330     assert( pItem->pSelect!=0 );
331     pResults = pItem->pSelect->pEList;
332     assert( pResults!=0 );
333     assert( iCol>=0 && iCol<pResults->nExpr );
334     pResults->a[iCol].fg.bUsed = 1;
335   }
336 }
337 
338 /*
339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
340 ** table that has a column named zCol.  The search is left-to-right.
341 ** The first match found is returned.
342 **
343 ** When found, set *piTab and *piCol to the table index and column index
344 ** of the matching column and return TRUE.
345 **
346 ** If not found, return FALSE.
347 */
348 static int tableAndColumnIndex(
349   SrcList *pSrc,       /* Array of tables to search */
350   int iStart,          /* First member of pSrc->a[] to check */
351   int iEnd,            /* Last member of pSrc->a[] to check */
352   const char *zCol,    /* Name of the column we are looking for */
353   int *piTab,          /* Write index of pSrc->a[] here */
354   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
355   int bIgnoreHidden    /* Ignore hidden columns */
356 ){
357   int i;               /* For looping over tables in pSrc */
358   int iCol;            /* Index of column matching zCol */
359 
360   assert( iEnd<pSrc->nSrc );
361   assert( iStart>=0 );
362   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
363 
364   for(i=iStart; i<=iEnd; i++){
365     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
366     if( iCol>=0
367      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
368     ){
369       if( piTab ){
370         sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
371         *piTab = i;
372         *piCol = iCol;
373       }
374       return 1;
375     }
376   }
377   return 0;
378 }
379 
380 /*
381 ** Set the EP_OuterON property on all terms of the given expression.
382 ** And set the Expr.w.iJoin to iTable for every term in the
383 ** expression.
384 **
385 ** The EP_OuterON property is used on terms of an expression to tell
386 ** the OUTER JOIN processing logic that this term is part of the
387 ** join restriction specified in the ON or USING clause and not a part
388 ** of the more general WHERE clause.  These terms are moved over to the
389 ** WHERE clause during join processing but we need to remember that they
390 ** originated in the ON or USING clause.
391 **
392 ** The Expr.w.iJoin tells the WHERE clause processing that the
393 ** expression depends on table w.iJoin even if that table is not
394 ** explicitly mentioned in the expression.  That information is needed
395 ** for cases like this:
396 **
397 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
398 **
399 ** The where clause needs to defer the handling of the t1.x=5
400 ** term until after the t2 loop of the join.  In that way, a
401 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
402 ** defer the handling of t1.x=5, it will be processed immediately
403 ** after the t1 loop and rows with t1.x!=5 will never appear in
404 ** the output, which is incorrect.
405 */
406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
407   assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
408   while( p ){
409     ExprSetProperty(p, joinFlag);
410     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
411     ExprSetVVAProperty(p, EP_NoReduce);
412     p->w.iJoin = iTable;
413     if( p->op==TK_FUNCTION ){
414       assert( ExprUseXList(p) );
415       if( p->x.pList ){
416         int i;
417         for(i=0; i<p->x.pList->nExpr; i++){
418           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
419         }
420       }
421     }
422     sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
423     p = p->pRight;
424   }
425 }
426 
427 /* Undo the work of sqlite3SetJoinExpr().  This is used when a LEFT JOIN
428 ** is simplified into an ordinary JOIN, and when an ON expression is
429 ** "pushed down" into the WHERE clause of a subquery.
430 **
431 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
432 ** an ordinary term that omits the EP_OuterON mark.  Or if iTable<0, then
433 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
434 **
435 ** If nullable is true, that means that Expr p might evaluate to NULL even
436 ** if it is a reference to a NOT NULL column.  This can happen, for example,
437 ** if the table that p references is on the left side of a RIGHT JOIN.
438 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
439 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
440 */
441 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
442   while( p ){
443     if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
444       ExprClearProperty(p, EP_OuterON|EP_InnerON);
445       if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
446     }
447     if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
448       ExprClearProperty(p, EP_CanBeNull);
449     }
450     if( p->op==TK_FUNCTION ){
451       assert( ExprUseXList(p) );
452       if( p->x.pList ){
453         int i;
454         for(i=0; i<p->x.pList->nExpr; i++){
455           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
456         }
457       }
458     }
459     unsetJoinExpr(p->pLeft, iTable, nullable);
460     p = p->pRight;
461   }
462 }
463 
464 /*
465 ** This routine processes the join information for a SELECT statement.
466 **
467 **   *  A NATURAL join is converted into a USING join.  After that, we
468 **      do not need to be concerned with NATURAL joins and we only have
469 **      think about USING joins.
470 **
471 **   *  ON and USING clauses result in extra terms being added to the
472 **      WHERE clause to enforce the specified constraints.  The extra
473 **      WHERE clause terms will be tagged with EP_OuterON or
474 **      EP_InnerON so that we know that they originated in ON/USING.
475 **
476 ** The terms of a FROM clause are contained in the Select.pSrc structure.
477 ** The left most table is the first entry in Select.pSrc.  The right-most
478 ** table is the last entry.  The join operator is held in the entry to
479 ** the right.  Thus entry 1 contains the join operator for the join between
480 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
481 ** also attached to the right entry.
482 **
483 ** This routine returns the number of errors encountered.
484 */
485 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
486   SrcList *pSrc;                  /* All tables in the FROM clause */
487   int i, j;                       /* Loop counters */
488   SrcItem *pLeft;                 /* Left table being joined */
489   SrcItem *pRight;                /* Right table being joined */
490 
491   pSrc = p->pSrc;
492   pLeft = &pSrc->a[0];
493   pRight = &pLeft[1];
494   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
495     Table *pRightTab = pRight->pTab;
496     u32 joinType;
497 
498     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
499     joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
500 
501     /* If this is a NATURAL join, synthesize an approprate USING clause
502     ** to specify which columns should be joined.
503     */
504     if( pRight->fg.jointype & JT_NATURAL ){
505       IdList *pUsing = 0;
506       if( pRight->fg.isUsing || pRight->u3.pOn ){
507         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
508            "an ON or USING clause", 0);
509         return 1;
510       }
511       for(j=0; j<pRightTab->nCol; j++){
512         char *zName;   /* Name of column in the right table */
513 
514         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
515         zName = pRightTab->aCol[j].zCnName;
516         if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
517           pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
518           if( pUsing ){
519             assert( pUsing->nId>0 );
520             assert( pUsing->a[pUsing->nId-1].zName==0 );
521             pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
522           }
523         }
524       }
525       if( pUsing ){
526         pRight->fg.isUsing = 1;
527         pRight->fg.isSynthUsing = 1;
528         pRight->u3.pUsing = pUsing;
529       }
530       if( pParse->nErr ) return 1;
531     }
532 
533     /* Create extra terms on the WHERE clause for each column named
534     ** in the USING clause.  Example: If the two tables to be joined are
535     ** A and B and the USING clause names X, Y, and Z, then add this
536     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
537     ** Report an error if any column mentioned in the USING clause is
538     ** not contained in both tables to be joined.
539     */
540     if( pRight->fg.isUsing ){
541       IdList *pList = pRight->u3.pUsing;
542       sqlite3 *db = pParse->db;
543       assert( pList!=0 );
544       for(j=0; j<pList->nId; j++){
545         char *zName;     /* Name of the term in the USING clause */
546         int iLeft;       /* Table on the left with matching column name */
547         int iLeftCol;    /* Column number of matching column on the left */
548         int iRightCol;   /* Column number of matching column on the right */
549         Expr *pE1;       /* Reference to the column on the LEFT of the join */
550         Expr *pE2;       /* Reference to the column on the RIGHT of the join */
551         Expr *pEq;       /* Equality constraint.  pE1 == pE2 */
552 
553         zName = pList->a[j].zName;
554         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
555         if( iRightCol<0
556          || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
557                                 pRight->fg.isSynthUsing)==0
558         ){
559           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
560             "not present in both tables", zName);
561           return 1;
562         }
563         pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
564         sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
565         if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
566           /* This branch runs if the query contains one or more RIGHT or FULL
567           ** JOINs.  If only a single table on the left side of this join
568           ** contains the zName column, then this branch is a no-op.
569           ** But if there are two or more tables on the left side
570           ** of the join, construct a coalesce() function that gathers all
571           ** such tables.  Raise an error if more than one of those references
572           ** to zName is not also within a prior USING clause.
573           **
574           ** We really ought to raise an error if there are two or more
575           ** non-USING references to zName on the left of an INNER or LEFT
576           ** JOIN.  But older versions of SQLite do not do that, so we avoid
577           ** adding a new error so as to not break legacy applications.
578           */
579           ExprList *pFuncArgs = 0;   /* Arguments to the coalesce() */
580           static const Token tkCoalesce = { "coalesce", 8 };
581           while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
582                                      pRight->fg.isSynthUsing)!=0 ){
583             if( pSrc->a[iLeft].fg.isUsing==0
584              || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
585             ){
586               sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
587                               zName);
588               break;
589             }
590             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
591             pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
592             sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
593           }
594           if( pFuncArgs ){
595             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
596             pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
597           }
598         }
599         pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
600         sqlite3SrcItemColumnUsed(pRight, iRightCol);
601         pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
602         assert( pE2!=0 || pEq==0 );
603         if( pEq ){
604           ExprSetProperty(pEq, joinType);
605           assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
606           ExprSetVVAProperty(pEq, EP_NoReduce);
607           pEq->w.iJoin = pE2->iTable;
608         }
609         p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
610       }
611     }
612 
613     /* Add the ON clause to the end of the WHERE clause, connected by
614     ** an AND operator.
615     */
616     else if( pRight->u3.pOn ){
617       sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
618       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
619       pRight->u3.pOn = 0;
620       pRight->fg.isOn = 1;
621     }
622   }
623   return 0;
624 }
625 
626 /*
627 ** An instance of this object holds information (beyond pParse and pSelect)
628 ** needed to load the next result row that is to be added to the sorter.
629 */
630 typedef struct RowLoadInfo RowLoadInfo;
631 struct RowLoadInfo {
632   int regResult;               /* Store results in array of registers here */
633   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
635   ExprList *pExtra;            /* Extra columns needed by sorter refs */
636   int regExtraResult;          /* Where to load the extra columns */
637 #endif
638 };
639 
640 /*
641 ** This routine does the work of loading query data into an array of
642 ** registers so that it can be added to the sorter.
643 */
644 static void innerLoopLoadRow(
645   Parse *pParse,             /* Statement under construction */
646   Select *pSelect,           /* The query being coded */
647   RowLoadInfo *pInfo         /* Info needed to complete the row load */
648 ){
649   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
650                           0, pInfo->ecelFlags);
651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
652   if( pInfo->pExtra ){
653     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
654     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
655   }
656 #endif
657 }
658 
659 /*
660 ** Code the OP_MakeRecord instruction that generates the entry to be
661 ** added into the sorter.
662 **
663 ** Return the register in which the result is stored.
664 */
665 static int makeSorterRecord(
666   Parse *pParse,
667   SortCtx *pSort,
668   Select *pSelect,
669   int regBase,
670   int nBase
671 ){
672   int nOBSat = pSort->nOBSat;
673   Vdbe *v = pParse->pVdbe;
674   int regOut = ++pParse->nMem;
675   if( pSort->pDeferredRowLoad ){
676     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
677   }
678   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
679   return regOut;
680 }
681 
682 /*
683 ** Generate code that will push the record in registers regData
684 ** through regData+nData-1 onto the sorter.
685 */
686 static void pushOntoSorter(
687   Parse *pParse,         /* Parser context */
688   SortCtx *pSort,        /* Information about the ORDER BY clause */
689   Select *pSelect,       /* The whole SELECT statement */
690   int regData,           /* First register holding data to be sorted */
691   int regOrigData,       /* First register holding data before packing */
692   int nData,             /* Number of elements in the regData data array */
693   int nPrefixReg         /* No. of reg prior to regData available for use */
694 ){
695   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
696   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
697   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
698   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
699   int regBase;                                     /* Regs for sorter record */
700   int regRecord = 0;                               /* Assembled sorter record */
701   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
702   int op;                            /* Opcode to add sorter record to sorter */
703   int iLimit;                        /* LIMIT counter */
704   int iSkip = 0;                     /* End of the sorter insert loop */
705 
706   assert( bSeq==0 || bSeq==1 );
707 
708   /* Three cases:
709   **   (1) The data to be sorted has already been packed into a Record
710   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
711   **       will be completely unrelated to regOrigData.
712   **   (2) All output columns are included in the sort record.  In that
713   **       case regData==regOrigData.
714   **   (3) Some output columns are omitted from the sort record due to
715   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
716   **       SQLITE_ECEL_OMITREF optimization, or due to the
717   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
718   **       regOrigData is 0 to prevent this routine from trying to copy
719   **       values that might not yet exist.
720   */
721   assert( nData==1 || regData==regOrigData || regOrigData==0 );
722 
723   if( nPrefixReg ){
724     assert( nPrefixReg==nExpr+bSeq );
725     regBase = regData - nPrefixReg;
726   }else{
727     regBase = pParse->nMem + 1;
728     pParse->nMem += nBase;
729   }
730   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
731   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
732   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
733   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
734                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
735   if( bSeq ){
736     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
737   }
738   if( nPrefixReg==0 && nData>0 ){
739     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
740   }
741   if( nOBSat>0 ){
742     int regPrevKey;   /* The first nOBSat columns of the previous row */
743     int addrFirst;    /* Address of the OP_IfNot opcode */
744     int addrJmp;      /* Address of the OP_Jump opcode */
745     VdbeOp *pOp;      /* Opcode that opens the sorter */
746     int nKey;         /* Number of sorting key columns, including OP_Sequence */
747     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
748 
749     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
750     regPrevKey = pParse->nMem+1;
751     pParse->nMem += pSort->nOBSat;
752     nKey = nExpr - pSort->nOBSat + bSeq;
753     if( bSeq ){
754       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
755     }else{
756       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
757     }
758     VdbeCoverage(v);
759     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
760     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
761     if( pParse->db->mallocFailed ) return;
762     pOp->p2 = nKey + nData;
763     pKI = pOp->p4.pKeyInfo;
764     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
765     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
766     testcase( pKI->nAllField > pKI->nKeyField+2 );
767     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
768                                            pKI->nAllField-pKI->nKeyField-1);
769     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
770     addrJmp = sqlite3VdbeCurrentAddr(v);
771     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
772     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
773     pSort->regReturn = ++pParse->nMem;
774     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
775     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
776     if( iLimit ){
777       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
778       VdbeCoverage(v);
779     }
780     sqlite3VdbeJumpHere(v, addrFirst);
781     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
782     sqlite3VdbeJumpHere(v, addrJmp);
783   }
784   if( iLimit ){
785     /* At this point the values for the new sorter entry are stored
786     ** in an array of registers. They need to be composed into a record
787     ** and inserted into the sorter if either (a) there are currently
788     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
789     ** the largest record currently in the sorter. If (b) is true and there
790     ** are already LIMIT+OFFSET items in the sorter, delete the largest
791     ** entry before inserting the new one. This way there are never more
792     ** than LIMIT+OFFSET items in the sorter.
793     **
794     ** If the new record does not need to be inserted into the sorter,
795     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
796     ** value is not zero, then it is a label of where to jump.  Otherwise,
797     ** just bypass the row insert logic.  See the header comment on the
798     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
799     */
800     int iCsr = pSort->iECursor;
801     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
802     VdbeCoverage(v);
803     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
804     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
805                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
806     VdbeCoverage(v);
807     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
808   }
809   if( regRecord==0 ){
810     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
811   }
812   if( pSort->sortFlags & SORTFLAG_UseSorter ){
813     op = OP_SorterInsert;
814   }else{
815     op = OP_IdxInsert;
816   }
817   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
818                        regBase+nOBSat, nBase-nOBSat);
819   if( iSkip ){
820     sqlite3VdbeChangeP2(v, iSkip,
821          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
822   }
823 }
824 
825 /*
826 ** Add code to implement the OFFSET
827 */
828 static void codeOffset(
829   Vdbe *v,          /* Generate code into this VM */
830   int iOffset,      /* Register holding the offset counter */
831   int iContinue     /* Jump here to skip the current record */
832 ){
833   if( iOffset>0 ){
834     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
835     VdbeComment((v, "OFFSET"));
836   }
837 }
838 
839 /*
840 ** Add code that will check to make sure the array of registers starting at
841 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
842 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
843 ** are available. Which is used depends on the value of parameter eTnctType,
844 ** as follows:
845 **
846 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
847 **     Build an ephemeral table that contains all entries seen before and
848 **     skip entries which have been seen before.
849 **
850 **     Parameter iTab is the cursor number of an ephemeral table that must
851 **     be opened before the VM code generated by this routine is executed.
852 **     The ephemeral cursor table is queried for a record identical to the
853 **     record formed by the current array of registers. If one is found,
854 **     jump to VM address addrRepeat. Otherwise, insert a new record into
855 **     the ephemeral cursor and proceed.
856 **
857 **     The returned value in this case is a copy of parameter iTab.
858 **
859 **   WHERE_DISTINCT_ORDERED:
860 **     In this case rows are being delivered sorted order. The ephermal
861 **     table is not required. Instead, the current set of values
862 **     is compared against previous row. If they match, the new row
863 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
864 **     the VM program proceeds with processing the new row.
865 **
866 **     The returned value in this case is the register number of the first
867 **     in an array of registers used to store the previous result row so that
868 **     it can be compared to the next. The caller must ensure that this
869 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
870 **     will take care of this initialization.)
871 **
872 **   WHERE_DISTINCT_UNIQUE:
873 **     In this case it has already been determined that the rows are distinct.
874 **     No special action is required. The return value is zero.
875 **
876 ** Parameter pEList is the list of expressions used to generated the
877 ** contents of each row. It is used by this routine to determine (a)
878 ** how many elements there are in the array of registers and (b) the
879 ** collation sequences that should be used for the comparisons if
880 ** eTnctType is WHERE_DISTINCT_ORDERED.
881 */
882 static int codeDistinct(
883   Parse *pParse,     /* Parsing and code generating context */
884   int eTnctType,     /* WHERE_DISTINCT_* value */
885   int iTab,          /* A sorting index used to test for distinctness */
886   int addrRepeat,    /* Jump to here if not distinct */
887   ExprList *pEList,  /* Expression for each element */
888   int regElem        /* First element */
889 ){
890   int iRet = 0;
891   int nResultCol = pEList->nExpr;
892   Vdbe *v = pParse->pVdbe;
893 
894   switch( eTnctType ){
895     case WHERE_DISTINCT_ORDERED: {
896       int i;
897       int iJump;              /* Jump destination */
898       int regPrev;            /* Previous row content */
899 
900       /* Allocate space for the previous row */
901       iRet = regPrev = pParse->nMem+1;
902       pParse->nMem += nResultCol;
903 
904       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
905       for(i=0; i<nResultCol; i++){
906         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
907         if( i<nResultCol-1 ){
908           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
909           VdbeCoverage(v);
910         }else{
911           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
912           VdbeCoverage(v);
913          }
914         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
915         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
916       }
917       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
918       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
919       break;
920     }
921 
922     case WHERE_DISTINCT_UNIQUE: {
923       /* nothing to do */
924       break;
925     }
926 
927     default: {
928       int r1 = sqlite3GetTempReg(pParse);
929       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
930       VdbeCoverage(v);
931       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
932       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
933       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
934       sqlite3ReleaseTempReg(pParse, r1);
935       iRet = iTab;
936       break;
937     }
938   }
939 
940   return iRet;
941 }
942 
943 /*
944 ** This routine runs after codeDistinct().  It makes necessary
945 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
946 ** routine made use of.  This processing must be done separately since
947 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
948 ** laid down.
949 **
950 ** WHERE_DISTINCT_NOOP:
951 ** WHERE_DISTINCT_UNORDERED:
952 **
953 **     No adjustments necessary.  This function is a no-op.
954 **
955 ** WHERE_DISTINCT_UNIQUE:
956 **
957 **     The ephemeral table is not needed.  So change the
958 **     OP_OpenEphemeral opcode into an OP_Noop.
959 **
960 ** WHERE_DISTINCT_ORDERED:
961 **
962 **     The ephemeral table is not needed.  But we do need register
963 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
964 **     into an OP_Null on the iVal register.
965 */
966 static void fixDistinctOpenEph(
967   Parse *pParse,     /* Parsing and code generating context */
968   int eTnctType,     /* WHERE_DISTINCT_* value */
969   int iVal,          /* Value returned by codeDistinct() */
970   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
971 ){
972   if( pParse->nErr==0
973    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
974   ){
975     Vdbe *v = pParse->pVdbe;
976     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
977     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
978       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
979     }
980     if( eTnctType==WHERE_DISTINCT_ORDERED ){
981       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
982       ** bit on the first register of the previous value.  This will cause the
983       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
984       ** the loop even if the first row is all NULLs.  */
985       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
986       pOp->opcode = OP_Null;
987       pOp->p1 = 1;
988       pOp->p2 = iVal;
989     }
990   }
991 }
992 
993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
994 /*
995 ** This function is called as part of inner-loop generation for a SELECT
996 ** statement with an ORDER BY that is not optimized by an index. It
997 ** determines the expressions, if any, that the sorter-reference
998 ** optimization should be used for. The sorter-reference optimization
999 ** is used for SELECT queries like:
1000 **
1001 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1002 **
1003 ** If the optimization is used for expression "bigblob", then instead of
1004 ** storing values read from that column in the sorter records, the PK of
1005 ** the row from table t1 is stored instead. Then, as records are extracted from
1006 ** the sorter to return to the user, the required value of bigblob is
1007 ** retrieved directly from table t1. If the values are very large, this
1008 ** can be more efficient than storing them directly in the sorter records.
1009 **
1010 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1011 ** for which the sorter-reference optimization should be enabled.
1012 ** Additionally, the pSort->aDefer[] array is populated with entries
1013 ** for all cursors required to evaluate all selected expressions. Finally.
1014 ** output variable (*ppExtra) is set to an expression list containing
1015 ** expressions for all extra PK values that should be stored in the
1016 ** sorter records.
1017 */
1018 static void selectExprDefer(
1019   Parse *pParse,                  /* Leave any error here */
1020   SortCtx *pSort,                 /* Sorter context */
1021   ExprList *pEList,               /* Expressions destined for sorter */
1022   ExprList **ppExtra              /* Expressions to append to sorter record */
1023 ){
1024   int i;
1025   int nDefer = 0;
1026   ExprList *pExtra = 0;
1027   for(i=0; i<pEList->nExpr; i++){
1028     struct ExprList_item *pItem = &pEList->a[i];
1029     if( pItem->u.x.iOrderByCol==0 ){
1030       Expr *pExpr = pItem->pExpr;
1031       Table *pTab;
1032       if( pExpr->op==TK_COLUMN
1033        && pExpr->iColumn>=0
1034        && ALWAYS( ExprUseYTab(pExpr) )
1035        && (pTab = pExpr->y.pTab)!=0
1036        && IsOrdinaryTable(pTab)
1037        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1038       ){
1039         int j;
1040         for(j=0; j<nDefer; j++){
1041           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1042         }
1043         if( j==nDefer ){
1044           if( nDefer==ArraySize(pSort->aDefer) ){
1045             continue;
1046           }else{
1047             int nKey = 1;
1048             int k;
1049             Index *pPk = 0;
1050             if( !HasRowid(pTab) ){
1051               pPk = sqlite3PrimaryKeyIndex(pTab);
1052               nKey = pPk->nKeyCol;
1053             }
1054             for(k=0; k<nKey; k++){
1055               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1056               if( pNew ){
1057                 pNew->iTable = pExpr->iTable;
1058                 assert( ExprUseYTab(pNew) );
1059                 pNew->y.pTab = pExpr->y.pTab;
1060                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1061                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1062               }
1063             }
1064             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1065             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1066             pSort->aDefer[nDefer].nKey = nKey;
1067             nDefer++;
1068           }
1069         }
1070         pItem->fg.bSorterRef = 1;
1071       }
1072     }
1073   }
1074   pSort->nDefer = (u8)nDefer;
1075   *ppExtra = pExtra;
1076 }
1077 #endif
1078 
1079 /*
1080 ** This routine generates the code for the inside of the inner loop
1081 ** of a SELECT.
1082 **
1083 ** If srcTab is negative, then the p->pEList expressions
1084 ** are evaluated in order to get the data for this row.  If srcTab is
1085 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1086 ** to get the number of columns and the collation sequence for each column.
1087 */
1088 static void selectInnerLoop(
1089   Parse *pParse,          /* The parser context */
1090   Select *p,              /* The complete select statement being coded */
1091   int srcTab,             /* Pull data from this table if non-negative */
1092   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1093   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1094   SelectDest *pDest,      /* How to dispose of the results */
1095   int iContinue,          /* Jump here to continue with next row */
1096   int iBreak              /* Jump here to break out of the inner loop */
1097 ){
1098   Vdbe *v = pParse->pVdbe;
1099   int i;
1100   int hasDistinct;            /* True if the DISTINCT keyword is present */
1101   int eDest = pDest->eDest;   /* How to dispose of results */
1102   int iParm = pDest->iSDParm; /* First argument to disposal method */
1103   int nResultCol;             /* Number of result columns */
1104   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1105   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1106 
1107   /* Usually, regResult is the first cell in an array of memory cells
1108   ** containing the current result row. In this case regOrig is set to the
1109   ** same value. However, if the results are being sent to the sorter, the
1110   ** values for any expressions that are also part of the sort-key are omitted
1111   ** from this array. In this case regOrig is set to zero.  */
1112   int regResult;              /* Start of memory holding current results */
1113   int regOrig;                /* Start of memory holding full result (or 0) */
1114 
1115   assert( v );
1116   assert( p->pEList!=0 );
1117   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1118   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1119   if( pSort==0 && !hasDistinct ){
1120     assert( iContinue!=0 );
1121     codeOffset(v, p->iOffset, iContinue);
1122   }
1123 
1124   /* Pull the requested columns.
1125   */
1126   nResultCol = p->pEList->nExpr;
1127 
1128   if( pDest->iSdst==0 ){
1129     if( pSort ){
1130       nPrefixReg = pSort->pOrderBy->nExpr;
1131       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1132       pParse->nMem += nPrefixReg;
1133     }
1134     pDest->iSdst = pParse->nMem+1;
1135     pParse->nMem += nResultCol;
1136   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1137     /* This is an error condition that can result, for example, when a SELECT
1138     ** on the right-hand side of an INSERT contains more result columns than
1139     ** there are columns in the table on the left.  The error will be caught
1140     ** and reported later.  But we need to make sure enough memory is allocated
1141     ** to avoid other spurious errors in the meantime. */
1142     pParse->nMem += nResultCol;
1143   }
1144   pDest->nSdst = nResultCol;
1145   regOrig = regResult = pDest->iSdst;
1146   if( srcTab>=0 ){
1147     for(i=0; i<nResultCol; i++){
1148       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1149       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1150     }
1151   }else if( eDest!=SRT_Exists ){
1152 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1153     ExprList *pExtra = 0;
1154 #endif
1155     /* If the destination is an EXISTS(...) expression, the actual
1156     ** values returned by the SELECT are not required.
1157     */
1158     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1159     ExprList *pEList;
1160     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1161       ecelFlags = SQLITE_ECEL_DUP;
1162     }else{
1163       ecelFlags = 0;
1164     }
1165     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1166       /* For each expression in p->pEList that is a copy of an expression in
1167       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1168       ** iOrderByCol value to one more than the index of the ORDER BY
1169       ** expression within the sort-key that pushOntoSorter() will generate.
1170       ** This allows the p->pEList field to be omitted from the sorted record,
1171       ** saving space and CPU cycles.  */
1172       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1173 
1174       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1175         int j;
1176         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1177           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1178         }
1179       }
1180 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1181       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1182       if( pExtra && pParse->db->mallocFailed==0 ){
1183         /* If there are any extra PK columns to add to the sorter records,
1184         ** allocate extra memory cells and adjust the OpenEphemeral
1185         ** instruction to account for the larger records. This is only
1186         ** required if there are one or more WITHOUT ROWID tables with
1187         ** composite primary keys in the SortCtx.aDefer[] array.  */
1188         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1189         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1190         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1191         pParse->nMem += pExtra->nExpr;
1192       }
1193 #endif
1194 
1195       /* Adjust nResultCol to account for columns that are omitted
1196       ** from the sorter by the optimizations in this branch */
1197       pEList = p->pEList;
1198       for(i=0; i<pEList->nExpr; i++){
1199         if( pEList->a[i].u.x.iOrderByCol>0
1200 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1201          || pEList->a[i].fg.bSorterRef
1202 #endif
1203         ){
1204           nResultCol--;
1205           regOrig = 0;
1206         }
1207       }
1208 
1209       testcase( regOrig );
1210       testcase( eDest==SRT_Set );
1211       testcase( eDest==SRT_Mem );
1212       testcase( eDest==SRT_Coroutine );
1213       testcase( eDest==SRT_Output );
1214       assert( eDest==SRT_Set || eDest==SRT_Mem
1215            || eDest==SRT_Coroutine || eDest==SRT_Output
1216            || eDest==SRT_Upfrom );
1217     }
1218     sRowLoadInfo.regResult = regResult;
1219     sRowLoadInfo.ecelFlags = ecelFlags;
1220 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1221     sRowLoadInfo.pExtra = pExtra;
1222     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1223     if( pExtra ) nResultCol += pExtra->nExpr;
1224 #endif
1225     if( p->iLimit
1226      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1227      && nPrefixReg>0
1228     ){
1229       assert( pSort!=0 );
1230       assert( hasDistinct==0 );
1231       pSort->pDeferredRowLoad = &sRowLoadInfo;
1232       regOrig = 0;
1233     }else{
1234       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1235     }
1236   }
1237 
1238   /* If the DISTINCT keyword was present on the SELECT statement
1239   ** and this row has been seen before, then do not make this row
1240   ** part of the result.
1241   */
1242   if( hasDistinct ){
1243     int eType = pDistinct->eTnctType;
1244     int iTab = pDistinct->tabTnct;
1245     assert( nResultCol==p->pEList->nExpr );
1246     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1247     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1248     if( pSort==0 ){
1249       codeOffset(v, p->iOffset, iContinue);
1250     }
1251   }
1252 
1253   switch( eDest ){
1254     /* In this mode, write each query result to the key of the temporary
1255     ** table iParm.
1256     */
1257 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1258     case SRT_Union: {
1259       int r1;
1260       r1 = sqlite3GetTempReg(pParse);
1261       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1262       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1263       sqlite3ReleaseTempReg(pParse, r1);
1264       break;
1265     }
1266 
1267     /* Construct a record from the query result, but instead of
1268     ** saving that record, use it as a key to delete elements from
1269     ** the temporary table iParm.
1270     */
1271     case SRT_Except: {
1272       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1273       break;
1274     }
1275 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1276 
1277     /* Store the result as data using a unique key.
1278     */
1279     case SRT_Fifo:
1280     case SRT_DistFifo:
1281     case SRT_Table:
1282     case SRT_EphemTab: {
1283       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1284       testcase( eDest==SRT_Table );
1285       testcase( eDest==SRT_EphemTab );
1286       testcase( eDest==SRT_Fifo );
1287       testcase( eDest==SRT_DistFifo );
1288       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1289 #ifndef SQLITE_OMIT_CTE
1290       if( eDest==SRT_DistFifo ){
1291         /* If the destination is DistFifo, then cursor (iParm+1) is open
1292         ** on an ephemeral index. If the current row is already present
1293         ** in the index, do not write it to the output. If not, add the
1294         ** current row to the index and proceed with writing it to the
1295         ** output table as well.  */
1296         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1297         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1298         VdbeCoverage(v);
1299         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1300         assert( pSort==0 );
1301       }
1302 #endif
1303       if( pSort ){
1304         assert( regResult==regOrig );
1305         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1306       }else{
1307         int r2 = sqlite3GetTempReg(pParse);
1308         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1309         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1310         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1311         sqlite3ReleaseTempReg(pParse, r2);
1312       }
1313       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1314       break;
1315     }
1316 
1317     case SRT_Upfrom: {
1318       if( pSort ){
1319         pushOntoSorter(
1320             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1321       }else{
1322         int i2 = pDest->iSDParm2;
1323         int r1 = sqlite3GetTempReg(pParse);
1324 
1325         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1326         ** might still be trying to return one row, because that is what
1327         ** aggregates do.  Don't record that empty row in the output table. */
1328         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1329 
1330         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1331                           regResult+(i2<0), nResultCol-(i2<0), r1);
1332         if( i2<0 ){
1333           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1334         }else{
1335           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1336         }
1337       }
1338       break;
1339     }
1340 
1341 #ifndef SQLITE_OMIT_SUBQUERY
1342     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1343     ** then there should be a single item on the stack.  Write this
1344     ** item into the set table with bogus data.
1345     */
1346     case SRT_Set: {
1347       if( pSort ){
1348         /* At first glance you would think we could optimize out the
1349         ** ORDER BY in this case since the order of entries in the set
1350         ** does not matter.  But there might be a LIMIT clause, in which
1351         ** case the order does matter */
1352         pushOntoSorter(
1353             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1354       }else{
1355         int r1 = sqlite3GetTempReg(pParse);
1356         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1357         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1358             r1, pDest->zAffSdst, nResultCol);
1359         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1360         sqlite3ReleaseTempReg(pParse, r1);
1361       }
1362       break;
1363     }
1364 
1365 
1366     /* If any row exist in the result set, record that fact and abort.
1367     */
1368     case SRT_Exists: {
1369       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1370       /* The LIMIT clause will terminate the loop for us */
1371       break;
1372     }
1373 
1374     /* If this is a scalar select that is part of an expression, then
1375     ** store the results in the appropriate memory cell or array of
1376     ** memory cells and break out of the scan loop.
1377     */
1378     case SRT_Mem: {
1379       if( pSort ){
1380         assert( nResultCol<=pDest->nSdst );
1381         pushOntoSorter(
1382             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1383       }else{
1384         assert( nResultCol==pDest->nSdst );
1385         assert( regResult==iParm );
1386         /* The LIMIT clause will jump out of the loop for us */
1387       }
1388       break;
1389     }
1390 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1391 
1392     case SRT_Coroutine:       /* Send data to a co-routine */
1393     case SRT_Output: {        /* Return the results */
1394       testcase( eDest==SRT_Coroutine );
1395       testcase( eDest==SRT_Output );
1396       if( pSort ){
1397         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1398                        nPrefixReg);
1399       }else if( eDest==SRT_Coroutine ){
1400         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1401       }else{
1402         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1403       }
1404       break;
1405     }
1406 
1407 #ifndef SQLITE_OMIT_CTE
1408     /* Write the results into a priority queue that is order according to
1409     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1410     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1411     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1412     ** final OP_Sequence column.  The last column is the record as a blob.
1413     */
1414     case SRT_DistQueue:
1415     case SRT_Queue: {
1416       int nKey;
1417       int r1, r2, r3;
1418       int addrTest = 0;
1419       ExprList *pSO;
1420       pSO = pDest->pOrderBy;
1421       assert( pSO );
1422       nKey = pSO->nExpr;
1423       r1 = sqlite3GetTempReg(pParse);
1424       r2 = sqlite3GetTempRange(pParse, nKey+2);
1425       r3 = r2+nKey+1;
1426       if( eDest==SRT_DistQueue ){
1427         /* If the destination is DistQueue, then cursor (iParm+1) is open
1428         ** on a second ephemeral index that holds all values every previously
1429         ** added to the queue. */
1430         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1431                                         regResult, nResultCol);
1432         VdbeCoverage(v);
1433       }
1434       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1435       if( eDest==SRT_DistQueue ){
1436         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1437         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1438       }
1439       for(i=0; i<nKey; i++){
1440         sqlite3VdbeAddOp2(v, OP_SCopy,
1441                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1442                           r2+i);
1443       }
1444       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1445       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1446       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1447       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1448       sqlite3ReleaseTempReg(pParse, r1);
1449       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1450       break;
1451     }
1452 #endif /* SQLITE_OMIT_CTE */
1453 
1454 
1455 
1456 #if !defined(SQLITE_OMIT_TRIGGER)
1457     /* Discard the results.  This is used for SELECT statements inside
1458     ** the body of a TRIGGER.  The purpose of such selects is to call
1459     ** user-defined functions that have side effects.  We do not care
1460     ** about the actual results of the select.
1461     */
1462     default: {
1463       assert( eDest==SRT_Discard );
1464       break;
1465     }
1466 #endif
1467   }
1468 
1469   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1470   ** there is a sorter, in which case the sorter has already limited
1471   ** the output for us.
1472   */
1473   if( pSort==0 && p->iLimit ){
1474     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1475   }
1476 }
1477 
1478 /*
1479 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1480 ** X extra columns.
1481 */
1482 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1483   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1484   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1485   if( p ){
1486     p->aSortFlags = (u8*)&p->aColl[N+X];
1487     p->nKeyField = (u16)N;
1488     p->nAllField = (u16)(N+X);
1489     p->enc = ENC(db);
1490     p->db = db;
1491     p->nRef = 1;
1492     memset(&p[1], 0, nExtra);
1493   }else{
1494     return (KeyInfo*)sqlite3OomFault(db);
1495   }
1496   return p;
1497 }
1498 
1499 /*
1500 ** Deallocate a KeyInfo object
1501 */
1502 void sqlite3KeyInfoUnref(KeyInfo *p){
1503   if( p ){
1504     assert( p->nRef>0 );
1505     p->nRef--;
1506     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1507   }
1508 }
1509 
1510 /*
1511 ** Make a new pointer to a KeyInfo object
1512 */
1513 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1514   if( p ){
1515     assert( p->nRef>0 );
1516     p->nRef++;
1517   }
1518   return p;
1519 }
1520 
1521 #ifdef SQLITE_DEBUG
1522 /*
1523 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1524 ** can only be changed if this is just a single reference to the object.
1525 **
1526 ** This routine is used only inside of assert() statements.
1527 */
1528 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1529 #endif /* SQLITE_DEBUG */
1530 
1531 /*
1532 ** Given an expression list, generate a KeyInfo structure that records
1533 ** the collating sequence for each expression in that expression list.
1534 **
1535 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1536 ** KeyInfo structure is appropriate for initializing a virtual index to
1537 ** implement that clause.  If the ExprList is the result set of a SELECT
1538 ** then the KeyInfo structure is appropriate for initializing a virtual
1539 ** index to implement a DISTINCT test.
1540 **
1541 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1542 ** function is responsible for seeing that this structure is eventually
1543 ** freed.
1544 */
1545 KeyInfo *sqlite3KeyInfoFromExprList(
1546   Parse *pParse,       /* Parsing context */
1547   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1548   int iStart,          /* Begin with this column of pList */
1549   int nExtra           /* Add this many extra columns to the end */
1550 ){
1551   int nExpr;
1552   KeyInfo *pInfo;
1553   struct ExprList_item *pItem;
1554   sqlite3 *db = pParse->db;
1555   int i;
1556 
1557   nExpr = pList->nExpr;
1558   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1559   if( pInfo ){
1560     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1561     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1562       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1563       pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1564     }
1565   }
1566   return pInfo;
1567 }
1568 
1569 /*
1570 ** Name of the connection operator, used for error messages.
1571 */
1572 const char *sqlite3SelectOpName(int id){
1573   char *z;
1574   switch( id ){
1575     case TK_ALL:       z = "UNION ALL";   break;
1576     case TK_INTERSECT: z = "INTERSECT";   break;
1577     case TK_EXCEPT:    z = "EXCEPT";      break;
1578     default:           z = "UNION";       break;
1579   }
1580   return z;
1581 }
1582 
1583 #ifndef SQLITE_OMIT_EXPLAIN
1584 /*
1585 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1586 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1587 ** where the caption is of the form:
1588 **
1589 **   "USE TEMP B-TREE FOR xxx"
1590 **
1591 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1592 ** is determined by the zUsage argument.
1593 */
1594 static void explainTempTable(Parse *pParse, const char *zUsage){
1595   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1596 }
1597 
1598 /*
1599 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1600 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1601 ** in sqlite3Select() to assign values to structure member variables that
1602 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1603 ** code with #ifndef directives.
1604 */
1605 # define explainSetInteger(a, b) a = b
1606 
1607 #else
1608 /* No-op versions of the explainXXX() functions and macros. */
1609 # define explainTempTable(y,z)
1610 # define explainSetInteger(y,z)
1611 #endif
1612 
1613 
1614 /*
1615 ** If the inner loop was generated using a non-null pOrderBy argument,
1616 ** then the results were placed in a sorter.  After the loop is terminated
1617 ** we need to run the sorter and output the results.  The following
1618 ** routine generates the code needed to do that.
1619 */
1620 static void generateSortTail(
1621   Parse *pParse,    /* Parsing context */
1622   Select *p,        /* The SELECT statement */
1623   SortCtx *pSort,   /* Information on the ORDER BY clause */
1624   int nColumn,      /* Number of columns of data */
1625   SelectDest *pDest /* Write the sorted results here */
1626 ){
1627   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1628   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1629   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1630   int addr;                       /* Top of output loop. Jump for Next. */
1631   int addrOnce = 0;
1632   int iTab;
1633   ExprList *pOrderBy = pSort->pOrderBy;
1634   int eDest = pDest->eDest;
1635   int iParm = pDest->iSDParm;
1636   int regRow;
1637   int regRowid;
1638   int iCol;
1639   int nKey;                       /* Number of key columns in sorter record */
1640   int iSortTab;                   /* Sorter cursor to read from */
1641   int i;
1642   int bSeq;                       /* True if sorter record includes seq. no. */
1643   int nRefKey = 0;
1644   struct ExprList_item *aOutEx = p->pEList->a;
1645 
1646   assert( addrBreak<0 );
1647   if( pSort->labelBkOut ){
1648     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1649     sqlite3VdbeGoto(v, addrBreak);
1650     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1651   }
1652 
1653 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1654   /* Open any cursors needed for sorter-reference expressions */
1655   for(i=0; i<pSort->nDefer; i++){
1656     Table *pTab = pSort->aDefer[i].pTab;
1657     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1658     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1659     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1660   }
1661 #endif
1662 
1663   iTab = pSort->iECursor;
1664   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1665     if( eDest==SRT_Mem && p->iOffset ){
1666       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1667     }
1668     regRowid = 0;
1669     regRow = pDest->iSdst;
1670   }else{
1671     regRowid = sqlite3GetTempReg(pParse);
1672     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1673       regRow = sqlite3GetTempReg(pParse);
1674       nColumn = 0;
1675     }else{
1676       regRow = sqlite3GetTempRange(pParse, nColumn);
1677     }
1678   }
1679   nKey = pOrderBy->nExpr - pSort->nOBSat;
1680   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1681     int regSortOut = ++pParse->nMem;
1682     iSortTab = pParse->nTab++;
1683     if( pSort->labelBkOut ){
1684       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1685     }
1686     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1687         nKey+1+nColumn+nRefKey);
1688     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1689     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1690     VdbeCoverage(v);
1691     codeOffset(v, p->iOffset, addrContinue);
1692     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1693     bSeq = 0;
1694   }else{
1695     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1696     codeOffset(v, p->iOffset, addrContinue);
1697     iSortTab = iTab;
1698     bSeq = 1;
1699   }
1700   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1701 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1702     if( aOutEx[i].fg.bSorterRef ) continue;
1703 #endif
1704     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1705   }
1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1707   if( pSort->nDefer ){
1708     int iKey = iCol+1;
1709     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1710 
1711     for(i=0; i<pSort->nDefer; i++){
1712       int iCsr = pSort->aDefer[i].iCsr;
1713       Table *pTab = pSort->aDefer[i].pTab;
1714       int nKey = pSort->aDefer[i].nKey;
1715 
1716       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1717       if( HasRowid(pTab) ){
1718         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1719         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1720             sqlite3VdbeCurrentAddr(v)+1, regKey);
1721       }else{
1722         int k;
1723         int iJmp;
1724         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1725         for(k=0; k<nKey; k++){
1726           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1727         }
1728         iJmp = sqlite3VdbeCurrentAddr(v);
1729         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1730         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1731         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1732       }
1733     }
1734     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1735   }
1736 #endif
1737   for(i=nColumn-1; i>=0; i--){
1738 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1739     if( aOutEx[i].fg.bSorterRef ){
1740       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1741     }else
1742 #endif
1743     {
1744       int iRead;
1745       if( aOutEx[i].u.x.iOrderByCol ){
1746         iRead = aOutEx[i].u.x.iOrderByCol-1;
1747       }else{
1748         iRead = iCol--;
1749       }
1750       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1751       VdbeComment((v, "%s", aOutEx[i].zEName));
1752     }
1753   }
1754   switch( eDest ){
1755     case SRT_Table:
1756     case SRT_EphemTab: {
1757       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1758       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1759       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1760       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1761       break;
1762     }
1763 #ifndef SQLITE_OMIT_SUBQUERY
1764     case SRT_Set: {
1765       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1766       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1767                         pDest->zAffSdst, nColumn);
1768       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1769       break;
1770     }
1771     case SRT_Mem: {
1772       /* The LIMIT clause will terminate the loop for us */
1773       break;
1774     }
1775 #endif
1776     case SRT_Upfrom: {
1777       int i2 = pDest->iSDParm2;
1778       int r1 = sqlite3GetTempReg(pParse);
1779       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1780       if( i2<0 ){
1781         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1782       }else{
1783         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1784       }
1785       break;
1786     }
1787     default: {
1788       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1789       testcase( eDest==SRT_Output );
1790       testcase( eDest==SRT_Coroutine );
1791       if( eDest==SRT_Output ){
1792         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1793       }else{
1794         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1795       }
1796       break;
1797     }
1798   }
1799   if( regRowid ){
1800     if( eDest==SRT_Set ){
1801       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1802     }else{
1803       sqlite3ReleaseTempReg(pParse, regRow);
1804     }
1805     sqlite3ReleaseTempReg(pParse, regRowid);
1806   }
1807   /* The bottom of the loop
1808   */
1809   sqlite3VdbeResolveLabel(v, addrContinue);
1810   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1811     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1812   }else{
1813     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1814   }
1815   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1816   sqlite3VdbeResolveLabel(v, addrBreak);
1817 }
1818 
1819 /*
1820 ** Return a pointer to a string containing the 'declaration type' of the
1821 ** expression pExpr. The string may be treated as static by the caller.
1822 **
1823 ** The declaration type is the exact datatype definition extracted from the
1824 ** original CREATE TABLE statement if the expression is a column. The
1825 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1826 ** is considered a column can be complex in the presence of subqueries. The
1827 ** result-set expression in all of the following SELECT statements is
1828 ** considered a column by this function.
1829 **
1830 **   SELECT col FROM tbl;
1831 **   SELECT (SELECT col FROM tbl;
1832 **   SELECT (SELECT col FROM tbl);
1833 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1834 **
1835 ** The declaration type for any expression other than a column is NULL.
1836 **
1837 ** This routine has either 3 or 6 parameters depending on whether or not
1838 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1839 */
1840 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1841 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1842 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1843 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1844 #endif
1845 static const char *columnTypeImpl(
1846   NameContext *pNC,
1847 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1848   Expr *pExpr
1849 #else
1850   Expr *pExpr,
1851   const char **pzOrigDb,
1852   const char **pzOrigTab,
1853   const char **pzOrigCol
1854 #endif
1855 ){
1856   char const *zType = 0;
1857   int j;
1858 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1859   char const *zOrigDb = 0;
1860   char const *zOrigTab = 0;
1861   char const *zOrigCol = 0;
1862 #endif
1863 
1864   assert( pExpr!=0 );
1865   assert( pNC->pSrcList!=0 );
1866   switch( pExpr->op ){
1867     case TK_COLUMN: {
1868       /* The expression is a column. Locate the table the column is being
1869       ** extracted from in NameContext.pSrcList. This table may be real
1870       ** database table or a subquery.
1871       */
1872       Table *pTab = 0;            /* Table structure column is extracted from */
1873       Select *pS = 0;             /* Select the column is extracted from */
1874       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1875       while( pNC && !pTab ){
1876         SrcList *pTabList = pNC->pSrcList;
1877         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1878         if( j<pTabList->nSrc ){
1879           pTab = pTabList->a[j].pTab;
1880           pS = pTabList->a[j].pSelect;
1881         }else{
1882           pNC = pNC->pNext;
1883         }
1884       }
1885 
1886       if( pTab==0 ){
1887         /* At one time, code such as "SELECT new.x" within a trigger would
1888         ** cause this condition to run.  Since then, we have restructured how
1889         ** trigger code is generated and so this condition is no longer
1890         ** possible. However, it can still be true for statements like
1891         ** the following:
1892         **
1893         **   CREATE TABLE t1(col INTEGER);
1894         **   SELECT (SELECT t1.col) FROM FROM t1;
1895         **
1896         ** when columnType() is called on the expression "t1.col" in the
1897         ** sub-select. In this case, set the column type to NULL, even
1898         ** though it should really be "INTEGER".
1899         **
1900         ** This is not a problem, as the column type of "t1.col" is never
1901         ** used. When columnType() is called on the expression
1902         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1903         ** branch below.  */
1904         break;
1905       }
1906 
1907       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1908       if( pS ){
1909         /* The "table" is actually a sub-select or a view in the FROM clause
1910         ** of the SELECT statement. Return the declaration type and origin
1911         ** data for the result-set column of the sub-select.
1912         */
1913         if( iCol<pS->pEList->nExpr
1914 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1915          && iCol>=0
1916 #else
1917          && ALWAYS(iCol>=0)
1918 #endif
1919         ){
1920           /* If iCol is less than zero, then the expression requests the
1921           ** rowid of the sub-select or view. This expression is legal (see
1922           ** test case misc2.2.2) - it always evaluates to NULL.
1923           */
1924           NameContext sNC;
1925           Expr *p = pS->pEList->a[iCol].pExpr;
1926           sNC.pSrcList = pS->pSrc;
1927           sNC.pNext = pNC;
1928           sNC.pParse = pNC->pParse;
1929           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1930         }
1931       }else{
1932         /* A real table or a CTE table */
1933         assert( !pS );
1934 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1935         if( iCol<0 ) iCol = pTab->iPKey;
1936         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1937         if( iCol<0 ){
1938           zType = "INTEGER";
1939           zOrigCol = "rowid";
1940         }else{
1941           zOrigCol = pTab->aCol[iCol].zCnName;
1942           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1943         }
1944         zOrigTab = pTab->zName;
1945         if( pNC->pParse && pTab->pSchema ){
1946           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1947           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1948         }
1949 #else
1950         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1951         if( iCol<0 ){
1952           zType = "INTEGER";
1953         }else{
1954           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1955         }
1956 #endif
1957       }
1958       break;
1959     }
1960 #ifndef SQLITE_OMIT_SUBQUERY
1961     case TK_SELECT: {
1962       /* The expression is a sub-select. Return the declaration type and
1963       ** origin info for the single column in the result set of the SELECT
1964       ** statement.
1965       */
1966       NameContext sNC;
1967       Select *pS;
1968       Expr *p;
1969       assert( ExprUseXSelect(pExpr) );
1970       pS = pExpr->x.pSelect;
1971       p = pS->pEList->a[0].pExpr;
1972       sNC.pSrcList = pS->pSrc;
1973       sNC.pNext = pNC;
1974       sNC.pParse = pNC->pParse;
1975       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1976       break;
1977     }
1978 #endif
1979   }
1980 
1981 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1982   if( pzOrigDb ){
1983     assert( pzOrigTab && pzOrigCol );
1984     *pzOrigDb = zOrigDb;
1985     *pzOrigTab = zOrigTab;
1986     *pzOrigCol = zOrigCol;
1987   }
1988 #endif
1989   return zType;
1990 }
1991 
1992 /*
1993 ** Generate code that will tell the VDBE the declaration types of columns
1994 ** in the result set.
1995 */
1996 static void generateColumnTypes(
1997   Parse *pParse,      /* Parser context */
1998   SrcList *pTabList,  /* List of tables */
1999   ExprList *pEList    /* Expressions defining the result set */
2000 ){
2001 #ifndef SQLITE_OMIT_DECLTYPE
2002   Vdbe *v = pParse->pVdbe;
2003   int i;
2004   NameContext sNC;
2005   sNC.pSrcList = pTabList;
2006   sNC.pParse = pParse;
2007   sNC.pNext = 0;
2008   for(i=0; i<pEList->nExpr; i++){
2009     Expr *p = pEList->a[i].pExpr;
2010     const char *zType;
2011 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2012     const char *zOrigDb = 0;
2013     const char *zOrigTab = 0;
2014     const char *zOrigCol = 0;
2015     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2016 
2017     /* The vdbe must make its own copy of the column-type and other
2018     ** column specific strings, in case the schema is reset before this
2019     ** virtual machine is deleted.
2020     */
2021     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2022     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2023     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2024 #else
2025     zType = columnType(&sNC, p, 0, 0, 0);
2026 #endif
2027     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2028   }
2029 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2030 }
2031 
2032 
2033 /*
2034 ** Compute the column names for a SELECT statement.
2035 **
2036 ** The only guarantee that SQLite makes about column names is that if the
2037 ** column has an AS clause assigning it a name, that will be the name used.
2038 ** That is the only documented guarantee.  However, countless applications
2039 ** developed over the years have made baseless assumptions about column names
2040 ** and will break if those assumptions changes.  Hence, use extreme caution
2041 ** when modifying this routine to avoid breaking legacy.
2042 **
2043 ** See Also: sqlite3ColumnsFromExprList()
2044 **
2045 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2046 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
2047 ** applications should operate this way.  Nevertheless, we need to support the
2048 ** other modes for legacy:
2049 **
2050 **    short=OFF, full=OFF:      Column name is the text of the expression has it
2051 **                              originally appears in the SELECT statement.  In
2052 **                              other words, the zSpan of the result expression.
2053 **
2054 **    short=ON, full=OFF:       (This is the default setting).  If the result
2055 **                              refers directly to a table column, then the
2056 **                              result column name is just the table column
2057 **                              name: COLUMN.  Otherwise use zSpan.
2058 **
2059 **    full=ON, short=ANY:       If the result refers directly to a table column,
2060 **                              then the result column name with the table name
2061 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
2062 */
2063 void sqlite3GenerateColumnNames(
2064   Parse *pParse,      /* Parser context */
2065   Select *pSelect     /* Generate column names for this SELECT statement */
2066 ){
2067   Vdbe *v = pParse->pVdbe;
2068   int i;
2069   Table *pTab;
2070   SrcList *pTabList;
2071   ExprList *pEList;
2072   sqlite3 *db = pParse->db;
2073   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
2074   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2075 
2076 #ifndef SQLITE_OMIT_EXPLAIN
2077   /* If this is an EXPLAIN, skip this step */
2078   if( pParse->explain ){
2079     return;
2080   }
2081 #endif
2082 
2083   if( pParse->colNamesSet ) return;
2084   /* Column names are determined by the left-most term of a compound select */
2085   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2086   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2087   pTabList = pSelect->pSrc;
2088   pEList = pSelect->pEList;
2089   assert( v!=0 );
2090   assert( pTabList!=0 );
2091   pParse->colNamesSet = 1;
2092   fullName = (db->flags & SQLITE_FullColNames)!=0;
2093   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2094   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2095   for(i=0; i<pEList->nExpr; i++){
2096     Expr *p = pEList->a[i].pExpr;
2097 
2098     assert( p!=0 );
2099     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2100     assert( p->op!=TK_COLUMN
2101         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2102     if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2103       /* An AS clause always takes first priority */
2104       char *zName = pEList->a[i].zEName;
2105       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2106     }else if( srcName && p->op==TK_COLUMN ){
2107       char *zCol;
2108       int iCol = p->iColumn;
2109       pTab = p->y.pTab;
2110       assert( pTab!=0 );
2111       if( iCol<0 ) iCol = pTab->iPKey;
2112       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2113       if( iCol<0 ){
2114         zCol = "rowid";
2115       }else{
2116         zCol = pTab->aCol[iCol].zCnName;
2117       }
2118       if( fullName ){
2119         char *zName = 0;
2120         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2121         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2122       }else{
2123         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2124       }
2125     }else{
2126       const char *z = pEList->a[i].zEName;
2127       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2128       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2129     }
2130   }
2131   generateColumnTypes(pParse, pTabList, pEList);
2132 }
2133 
2134 /*
2135 ** Given an expression list (which is really the list of expressions
2136 ** that form the result set of a SELECT statement) compute appropriate
2137 ** column names for a table that would hold the expression list.
2138 **
2139 ** All column names will be unique.
2140 **
2141 ** Only the column names are computed.  Column.zType, Column.zColl,
2142 ** and other fields of Column are zeroed.
2143 **
2144 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2146 **
2147 ** The only guarantee that SQLite makes about column names is that if the
2148 ** column has an AS clause assigning it a name, that will be the name used.
2149 ** That is the only documented guarantee.  However, countless applications
2150 ** developed over the years have made baseless assumptions about column names
2151 ** and will break if those assumptions changes.  Hence, use extreme caution
2152 ** when modifying this routine to avoid breaking legacy.
2153 **
2154 ** See Also: sqlite3GenerateColumnNames()
2155 */
2156 int sqlite3ColumnsFromExprList(
2157   Parse *pParse,          /* Parsing context */
2158   ExprList *pEList,       /* Expr list from which to derive column names */
2159   i16 *pnCol,             /* Write the number of columns here */
2160   Column **paCol          /* Write the new column list here */
2161 ){
2162   sqlite3 *db = pParse->db;   /* Database connection */
2163   int i, j;                   /* Loop counters */
2164   u32 cnt;                    /* Index added to make the name unique */
2165   Column *aCol, *pCol;        /* For looping over result columns */
2166   int nCol;                   /* Number of columns in the result set */
2167   char *zName;                /* Column name */
2168   int nName;                  /* Size of name in zName[] */
2169   Hash ht;                    /* Hash table of column names */
2170   Table *pTab;
2171 
2172   sqlite3HashInit(&ht);
2173   if( pEList ){
2174     nCol = pEList->nExpr;
2175     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2176     testcase( aCol==0 );
2177     if( NEVER(nCol>32767) ) nCol = 32767;
2178   }else{
2179     nCol = 0;
2180     aCol = 0;
2181   }
2182   assert( nCol==(i16)nCol );
2183   *pnCol = nCol;
2184   *paCol = aCol;
2185 
2186   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2187     struct ExprList_item *pX = &pEList->a[i];
2188     struct ExprList_item *pCollide;
2189     /* Get an appropriate name for the column
2190     */
2191     if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2192       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2193     }else{
2194       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2195       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2196         pColExpr = pColExpr->pRight;
2197         assert( pColExpr!=0 );
2198       }
2199       if( pColExpr->op==TK_COLUMN
2200        && ALWAYS( ExprUseYTab(pColExpr) )
2201        && ALWAYS( pColExpr->y.pTab!=0 )
2202       ){
2203         /* For columns use the column name name */
2204         int iCol = pColExpr->iColumn;
2205         pTab = pColExpr->y.pTab;
2206         if( iCol<0 ) iCol = pTab->iPKey;
2207         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2208       }else if( pColExpr->op==TK_ID ){
2209         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2210         zName = pColExpr->u.zToken;
2211       }else{
2212         /* Use the original text of the column expression as its name */
2213         assert( zName==pX->zEName );  /* pointer comparison intended */
2214       }
2215     }
2216     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2217       zName = sqlite3DbStrDup(db, zName);
2218     }else{
2219       zName = sqlite3MPrintf(db,"column%d",i+1);
2220     }
2221 
2222     /* Make sure the column name is unique.  If the name is not unique,
2223     ** append an integer to the name so that it becomes unique.
2224     */
2225     cnt = 0;
2226     while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2227       if( pCollide->fg.bUsingTerm ){
2228         pCol->colFlags |= COLFLAG_NOEXPAND;
2229       }
2230       nName = sqlite3Strlen30(zName);
2231       if( nName>0 ){
2232         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2233         if( zName[j]==':' ) nName = j;
2234       }
2235       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2236       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2237     }
2238     pCol->zCnName = zName;
2239     pCol->hName = sqlite3StrIHash(zName);
2240     if( pX->fg.bNoExpand ){
2241       pCol->colFlags |= COLFLAG_NOEXPAND;
2242     }
2243     sqlite3ColumnPropertiesFromName(0, pCol);
2244     if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2245       sqlite3OomFault(db);
2246     }
2247   }
2248   sqlite3HashClear(&ht);
2249   if( db->mallocFailed ){
2250     for(j=0; j<i; j++){
2251       sqlite3DbFree(db, aCol[j].zCnName);
2252     }
2253     sqlite3DbFree(db, aCol);
2254     *paCol = 0;
2255     *pnCol = 0;
2256     return SQLITE_NOMEM_BKPT;
2257   }
2258   return SQLITE_OK;
2259 }
2260 
2261 /*
2262 ** Add type and collation information to a column list based on
2263 ** a SELECT statement.
2264 **
2265 ** The column list presumably came from selectColumnNamesFromExprList().
2266 ** The column list has only names, not types or collations.  This
2267 ** routine goes through and adds the types and collations.
2268 **
2269 ** This routine requires that all identifiers in the SELECT
2270 ** statement be resolved.
2271 */
2272 void sqlite3SelectAddColumnTypeAndCollation(
2273   Parse *pParse,        /* Parsing contexts */
2274   Table *pTab,          /* Add column type information to this table */
2275   Select *pSelect,      /* SELECT used to determine types and collations */
2276   char aff              /* Default affinity for columns */
2277 ){
2278   sqlite3 *db = pParse->db;
2279   NameContext sNC;
2280   Column *pCol;
2281   CollSeq *pColl;
2282   int i;
2283   Expr *p;
2284   struct ExprList_item *a;
2285 
2286   assert( pSelect!=0 );
2287   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2288   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2289   if( db->mallocFailed ) return;
2290   memset(&sNC, 0, sizeof(sNC));
2291   sNC.pSrcList = pSelect->pSrc;
2292   a = pSelect->pEList->a;
2293   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2294     const char *zType;
2295     i64 n, m;
2296     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2297     p = a[i].pExpr;
2298     zType = columnType(&sNC, p, 0, 0, 0);
2299     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2300     pCol->affinity = sqlite3ExprAffinity(p);
2301     if( zType ){
2302       m = sqlite3Strlen30(zType);
2303       n = sqlite3Strlen30(pCol->zCnName);
2304       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2305       if( pCol->zCnName ){
2306         memcpy(&pCol->zCnName[n+1], zType, m+1);
2307         pCol->colFlags |= COLFLAG_HASTYPE;
2308       }else{
2309         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2310         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2311       }
2312     }
2313     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2314     pColl = sqlite3ExprCollSeq(pParse, p);
2315     if( pColl ){
2316       assert( pTab->pIndex==0 );
2317       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2318     }
2319   }
2320   pTab->szTabRow = 1; /* Any non-zero value works */
2321 }
2322 
2323 /*
2324 ** Given a SELECT statement, generate a Table structure that describes
2325 ** the result set of that SELECT.
2326 */
2327 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2328   Table *pTab;
2329   sqlite3 *db = pParse->db;
2330   u64 savedFlags;
2331 
2332   savedFlags = db->flags;
2333   db->flags &= ~(u64)SQLITE_FullColNames;
2334   db->flags |= SQLITE_ShortColNames;
2335   sqlite3SelectPrep(pParse, pSelect, 0);
2336   db->flags = savedFlags;
2337   if( pParse->nErr ) return 0;
2338   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2339   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2340   if( pTab==0 ){
2341     return 0;
2342   }
2343   pTab->nTabRef = 1;
2344   pTab->zName = 0;
2345   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2346   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2347   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2348   pTab->iPKey = -1;
2349   if( db->mallocFailed ){
2350     sqlite3DeleteTable(db, pTab);
2351     return 0;
2352   }
2353   return pTab;
2354 }
2355 
2356 /*
2357 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2358 ** If an error occurs, return NULL and leave a message in pParse.
2359 */
2360 Vdbe *sqlite3GetVdbe(Parse *pParse){
2361   if( pParse->pVdbe ){
2362     return pParse->pVdbe;
2363   }
2364   if( pParse->pToplevel==0
2365    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2366   ){
2367     pParse->okConstFactor = 1;
2368   }
2369   return sqlite3VdbeCreate(pParse);
2370 }
2371 
2372 
2373 /*
2374 ** Compute the iLimit and iOffset fields of the SELECT based on the
2375 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2376 ** that appear in the original SQL statement after the LIMIT and OFFSET
2377 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2378 ** are the integer memory register numbers for counters used to compute
2379 ** the limit and offset.  If there is no limit and/or offset, then
2380 ** iLimit and iOffset are negative.
2381 **
2382 ** This routine changes the values of iLimit and iOffset only if
2383 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2384 ** and iOffset should have been preset to appropriate default values (zero)
2385 ** prior to calling this routine.
2386 **
2387 ** The iOffset register (if it exists) is initialized to the value
2388 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2389 ** iOffset+1 is initialized to LIMIT+OFFSET.
2390 **
2391 ** Only if pLimit->pLeft!=0 do the limit registers get
2392 ** redefined.  The UNION ALL operator uses this property to force
2393 ** the reuse of the same limit and offset registers across multiple
2394 ** SELECT statements.
2395 */
2396 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2397   Vdbe *v = 0;
2398   int iLimit = 0;
2399   int iOffset;
2400   int n;
2401   Expr *pLimit = p->pLimit;
2402 
2403   if( p->iLimit ) return;
2404 
2405   /*
2406   ** "LIMIT -1" always shows all rows.  There is some
2407   ** controversy about what the correct behavior should be.
2408   ** The current implementation interprets "LIMIT 0" to mean
2409   ** no rows.
2410   */
2411   if( pLimit ){
2412     assert( pLimit->op==TK_LIMIT );
2413     assert( pLimit->pLeft!=0 );
2414     p->iLimit = iLimit = ++pParse->nMem;
2415     v = sqlite3GetVdbe(pParse);
2416     assert( v!=0 );
2417     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2418       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2419       VdbeComment((v, "LIMIT counter"));
2420       if( n==0 ){
2421         sqlite3VdbeGoto(v, iBreak);
2422       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2423         p->nSelectRow = sqlite3LogEst((u64)n);
2424         p->selFlags |= SF_FixedLimit;
2425       }
2426     }else{
2427       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2428       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2429       VdbeComment((v, "LIMIT counter"));
2430       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2431     }
2432     if( pLimit->pRight ){
2433       p->iOffset = iOffset = ++pParse->nMem;
2434       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2435       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2436       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2437       VdbeComment((v, "OFFSET counter"));
2438       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2439       VdbeComment((v, "LIMIT+OFFSET"));
2440     }
2441   }
2442 }
2443 
2444 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2445 /*
2446 ** Return the appropriate collating sequence for the iCol-th column of
2447 ** the result set for the compound-select statement "p".  Return NULL if
2448 ** the column has no default collating sequence.
2449 **
2450 ** The collating sequence for the compound select is taken from the
2451 ** left-most term of the select that has a collating sequence.
2452 */
2453 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2454   CollSeq *pRet;
2455   if( p->pPrior ){
2456     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2457   }else{
2458     pRet = 0;
2459   }
2460   assert( iCol>=0 );
2461   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2462   ** have been thrown during name resolution and we would not have gotten
2463   ** this far */
2464   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2465     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2466   }
2467   return pRet;
2468 }
2469 
2470 /*
2471 ** The select statement passed as the second parameter is a compound SELECT
2472 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2473 ** structure suitable for implementing the ORDER BY.
2474 **
2475 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2476 ** function is responsible for ensuring that this structure is eventually
2477 ** freed.
2478 */
2479 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2480   ExprList *pOrderBy = p->pOrderBy;
2481   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2482   sqlite3 *db = pParse->db;
2483   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2484   if( pRet ){
2485     int i;
2486     for(i=0; i<nOrderBy; i++){
2487       struct ExprList_item *pItem = &pOrderBy->a[i];
2488       Expr *pTerm = pItem->pExpr;
2489       CollSeq *pColl;
2490 
2491       if( pTerm->flags & EP_Collate ){
2492         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2493       }else{
2494         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2495         if( pColl==0 ) pColl = db->pDfltColl;
2496         pOrderBy->a[i].pExpr =
2497           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2498       }
2499       assert( sqlite3KeyInfoIsWriteable(pRet) );
2500       pRet->aColl[i] = pColl;
2501       pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2502     }
2503   }
2504 
2505   return pRet;
2506 }
2507 
2508 #ifndef SQLITE_OMIT_CTE
2509 /*
2510 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2511 ** query of the form:
2512 **
2513 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2514 **                         \___________/             \_______________/
2515 **                           p->pPrior                      p
2516 **
2517 **
2518 ** There is exactly one reference to the recursive-table in the FROM clause
2519 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2520 **
2521 ** The setup-query runs once to generate an initial set of rows that go
2522 ** into a Queue table.  Rows are extracted from the Queue table one by
2523 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2524 ** extracted row (now in the iCurrent table) becomes the content of the
2525 ** recursive-table for a recursive-query run.  The output of the recursive-query
2526 ** is added back into the Queue table.  Then another row is extracted from Queue
2527 ** and the iteration continues until the Queue table is empty.
2528 **
2529 ** If the compound query operator is UNION then no duplicate rows are ever
2530 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2531 ** that have ever been inserted into Queue and causes duplicates to be
2532 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2533 **
2534 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2535 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2536 ** an ORDER BY, the Queue table is just a FIFO.
2537 **
2538 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2539 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2540 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2541 ** with a positive value, then the first OFFSET outputs are discarded rather
2542 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2543 ** rows have been skipped.
2544 */
2545 static void generateWithRecursiveQuery(
2546   Parse *pParse,        /* Parsing context */
2547   Select *p,            /* The recursive SELECT to be coded */
2548   SelectDest *pDest     /* What to do with query results */
2549 ){
2550   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2551   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2552   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2553   Select *pSetup;               /* The setup query */
2554   Select *pFirstRec;            /* Left-most recursive term */
2555   int addrTop;                  /* Top of the loop */
2556   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2557   int iCurrent = 0;             /* The Current table */
2558   int regCurrent;               /* Register holding Current table */
2559   int iQueue;                   /* The Queue table */
2560   int iDistinct = 0;            /* To ensure unique results if UNION */
2561   int eDest = SRT_Fifo;         /* How to write to Queue */
2562   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2563   int i;                        /* Loop counter */
2564   int rc;                       /* Result code */
2565   ExprList *pOrderBy;           /* The ORDER BY clause */
2566   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2567   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2568 
2569 #ifndef SQLITE_OMIT_WINDOWFUNC
2570   if( p->pWin ){
2571     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2572     return;
2573   }
2574 #endif
2575 
2576   /* Obtain authorization to do a recursive query */
2577   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2578 
2579   /* Process the LIMIT and OFFSET clauses, if they exist */
2580   addrBreak = sqlite3VdbeMakeLabel(pParse);
2581   p->nSelectRow = 320;  /* 4 billion rows */
2582   computeLimitRegisters(pParse, p, addrBreak);
2583   pLimit = p->pLimit;
2584   regLimit = p->iLimit;
2585   regOffset = p->iOffset;
2586   p->pLimit = 0;
2587   p->iLimit = p->iOffset = 0;
2588   pOrderBy = p->pOrderBy;
2589 
2590   /* Locate the cursor number of the Current table */
2591   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2592     if( pSrc->a[i].fg.isRecursive ){
2593       iCurrent = pSrc->a[i].iCursor;
2594       break;
2595     }
2596   }
2597 
2598   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2599   ** the Distinct table must be exactly one greater than Queue in order
2600   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2601   iQueue = pParse->nTab++;
2602   if( p->op==TK_UNION ){
2603     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2604     iDistinct = pParse->nTab++;
2605   }else{
2606     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2607   }
2608   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2609 
2610   /* Allocate cursors for Current, Queue, and Distinct. */
2611   regCurrent = ++pParse->nMem;
2612   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2613   if( pOrderBy ){
2614     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2615     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2616                       (char*)pKeyInfo, P4_KEYINFO);
2617     destQueue.pOrderBy = pOrderBy;
2618   }else{
2619     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2620   }
2621   VdbeComment((v, "Queue table"));
2622   if( iDistinct ){
2623     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2624     p->selFlags |= SF_UsesEphemeral;
2625   }
2626 
2627   /* Detach the ORDER BY clause from the compound SELECT */
2628   p->pOrderBy = 0;
2629 
2630   /* Figure out how many elements of the compound SELECT are part of the
2631   ** recursive query.  Make sure no recursive elements use aggregate
2632   ** functions.  Mark the recursive elements as UNION ALL even if they
2633   ** are really UNION because the distinctness will be enforced by the
2634   ** iDistinct table.  pFirstRec is left pointing to the left-most
2635   ** recursive term of the CTE.
2636   */
2637   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2638     if( pFirstRec->selFlags & SF_Aggregate ){
2639       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2640       goto end_of_recursive_query;
2641     }
2642     pFirstRec->op = TK_ALL;
2643     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2644   }
2645 
2646   /* Store the results of the setup-query in Queue. */
2647   pSetup = pFirstRec->pPrior;
2648   pSetup->pNext = 0;
2649   ExplainQueryPlan((pParse, 1, "SETUP"));
2650   rc = sqlite3Select(pParse, pSetup, &destQueue);
2651   pSetup->pNext = p;
2652   if( rc ) goto end_of_recursive_query;
2653 
2654   /* Find the next row in the Queue and output that row */
2655   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2656 
2657   /* Transfer the next row in Queue over to Current */
2658   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2659   if( pOrderBy ){
2660     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2661   }else{
2662     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2663   }
2664   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2665 
2666   /* Output the single row in Current */
2667   addrCont = sqlite3VdbeMakeLabel(pParse);
2668   codeOffset(v, regOffset, addrCont);
2669   selectInnerLoop(pParse, p, iCurrent,
2670       0, 0, pDest, addrCont, addrBreak);
2671   if( regLimit ){
2672     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2673     VdbeCoverage(v);
2674   }
2675   sqlite3VdbeResolveLabel(v, addrCont);
2676 
2677   /* Execute the recursive SELECT taking the single row in Current as
2678   ** the value for the recursive-table. Store the results in the Queue.
2679   */
2680   pFirstRec->pPrior = 0;
2681   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2682   sqlite3Select(pParse, p, &destQueue);
2683   assert( pFirstRec->pPrior==0 );
2684   pFirstRec->pPrior = pSetup;
2685 
2686   /* Keep running the loop until the Queue is empty */
2687   sqlite3VdbeGoto(v, addrTop);
2688   sqlite3VdbeResolveLabel(v, addrBreak);
2689 
2690 end_of_recursive_query:
2691   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2692   p->pOrderBy = pOrderBy;
2693   p->pLimit = pLimit;
2694   return;
2695 }
2696 #endif /* SQLITE_OMIT_CTE */
2697 
2698 /* Forward references */
2699 static int multiSelectOrderBy(
2700   Parse *pParse,        /* Parsing context */
2701   Select *p,            /* The right-most of SELECTs to be coded */
2702   SelectDest *pDest     /* What to do with query results */
2703 );
2704 
2705 /*
2706 ** Handle the special case of a compound-select that originates from a
2707 ** VALUES clause.  By handling this as a special case, we avoid deep
2708 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2709 ** on a VALUES clause.
2710 **
2711 ** Because the Select object originates from a VALUES clause:
2712 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2713 **   (2) All terms are UNION ALL
2714 **   (3) There is no ORDER BY clause
2715 **
2716 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2717 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2718 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2719 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2720 */
2721 static int multiSelectValues(
2722   Parse *pParse,        /* Parsing context */
2723   Select *p,            /* The right-most of SELECTs to be coded */
2724   SelectDest *pDest     /* What to do with query results */
2725 ){
2726   int nRow = 1;
2727   int rc = 0;
2728   int bShowAll = p->pLimit==0;
2729   assert( p->selFlags & SF_MultiValue );
2730   do{
2731     assert( p->selFlags & SF_Values );
2732     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2733     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2734 #ifndef SQLITE_OMIT_WINDOWFUNC
2735     if( p->pWin ) return -1;
2736 #endif
2737     if( p->pPrior==0 ) break;
2738     assert( p->pPrior->pNext==p );
2739     p = p->pPrior;
2740     nRow += bShowAll;
2741   }while(1);
2742   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2743                     nRow==1 ? "" : "S"));
2744   while( p ){
2745     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2746     if( !bShowAll ) break;
2747     p->nSelectRow = nRow;
2748     p = p->pNext;
2749   }
2750   return rc;
2751 }
2752 
2753 /*
2754 ** Return true if the SELECT statement which is known to be the recursive
2755 ** part of a recursive CTE still has its anchor terms attached.  If the
2756 ** anchor terms have already been removed, then return false.
2757 */
2758 static int hasAnchor(Select *p){
2759   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2760   return p!=0;
2761 }
2762 
2763 /*
2764 ** This routine is called to process a compound query form from
2765 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2766 ** INTERSECT
2767 **
2768 ** "p" points to the right-most of the two queries.  the query on the
2769 ** left is p->pPrior.  The left query could also be a compound query
2770 ** in which case this routine will be called recursively.
2771 **
2772 ** The results of the total query are to be written into a destination
2773 ** of type eDest with parameter iParm.
2774 **
2775 ** Example 1:  Consider a three-way compound SQL statement.
2776 **
2777 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2778 **
2779 ** This statement is parsed up as follows:
2780 **
2781 **     SELECT c FROM t3
2782 **      |
2783 **      `----->  SELECT b FROM t2
2784 **                |
2785 **                `------>  SELECT a FROM t1
2786 **
2787 ** The arrows in the diagram above represent the Select.pPrior pointer.
2788 ** So if this routine is called with p equal to the t3 query, then
2789 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2790 **
2791 ** Notice that because of the way SQLite parses compound SELECTs, the
2792 ** individual selects always group from left to right.
2793 */
2794 static int multiSelect(
2795   Parse *pParse,        /* Parsing context */
2796   Select *p,            /* The right-most of SELECTs to be coded */
2797   SelectDest *pDest     /* What to do with query results */
2798 ){
2799   int rc = SQLITE_OK;   /* Success code from a subroutine */
2800   Select *pPrior;       /* Another SELECT immediately to our left */
2801   Vdbe *v;              /* Generate code to this VDBE */
2802   SelectDest dest;      /* Alternative data destination */
2803   Select *pDelete = 0;  /* Chain of simple selects to delete */
2804   sqlite3 *db;          /* Database connection */
2805 
2806   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2807   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2808   */
2809   assert( p && p->pPrior );  /* Calling function guarantees this much */
2810   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2811   assert( p->selFlags & SF_Compound );
2812   db = pParse->db;
2813   pPrior = p->pPrior;
2814   dest = *pDest;
2815   assert( pPrior->pOrderBy==0 );
2816   assert( pPrior->pLimit==0 );
2817 
2818   v = sqlite3GetVdbe(pParse);
2819   assert( v!=0 );  /* The VDBE already created by calling function */
2820 
2821   /* Create the destination temporary table if necessary
2822   */
2823   if( dest.eDest==SRT_EphemTab ){
2824     assert( p->pEList );
2825     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2826     dest.eDest = SRT_Table;
2827   }
2828 
2829   /* Special handling for a compound-select that originates as a VALUES clause.
2830   */
2831   if( p->selFlags & SF_MultiValue ){
2832     rc = multiSelectValues(pParse, p, &dest);
2833     if( rc>=0 ) goto multi_select_end;
2834     rc = SQLITE_OK;
2835   }
2836 
2837   /* Make sure all SELECTs in the statement have the same number of elements
2838   ** in their result sets.
2839   */
2840   assert( p->pEList && pPrior->pEList );
2841   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2842 
2843 #ifndef SQLITE_OMIT_CTE
2844   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2845     generateWithRecursiveQuery(pParse, p, &dest);
2846   }else
2847 #endif
2848 
2849   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2850   */
2851   if( p->pOrderBy ){
2852     return multiSelectOrderBy(pParse, p, pDest);
2853   }else{
2854 
2855 #ifndef SQLITE_OMIT_EXPLAIN
2856     if( pPrior->pPrior==0 ){
2857       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2858       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2859     }
2860 #endif
2861 
2862     /* Generate code for the left and right SELECT statements.
2863     */
2864     switch( p->op ){
2865       case TK_ALL: {
2866         int addr = 0;
2867         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2868         assert( !pPrior->pLimit );
2869         pPrior->iLimit = p->iLimit;
2870         pPrior->iOffset = p->iOffset;
2871         pPrior->pLimit = p->pLimit;
2872         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2873         rc = sqlite3Select(pParse, pPrior, &dest);
2874         pPrior->pLimit = 0;
2875         if( rc ){
2876           goto multi_select_end;
2877         }
2878         p->pPrior = 0;
2879         p->iLimit = pPrior->iLimit;
2880         p->iOffset = pPrior->iOffset;
2881         if( p->iLimit ){
2882           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2883           VdbeComment((v, "Jump ahead if LIMIT reached"));
2884           if( p->iOffset ){
2885             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2886                               p->iLimit, p->iOffset+1, p->iOffset);
2887           }
2888         }
2889         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2890         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2891         rc = sqlite3Select(pParse, p, &dest);
2892         testcase( rc!=SQLITE_OK );
2893         pDelete = p->pPrior;
2894         p->pPrior = pPrior;
2895         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2896         if( p->pLimit
2897          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2898          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2899         ){
2900           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2901         }
2902         if( addr ){
2903           sqlite3VdbeJumpHere(v, addr);
2904         }
2905         break;
2906       }
2907       case TK_EXCEPT:
2908       case TK_UNION: {
2909         int unionTab;    /* Cursor number of the temp table holding result */
2910         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2911         int priorOp;     /* The SRT_ operation to apply to prior selects */
2912         Expr *pLimit;    /* Saved values of p->nLimit  */
2913         int addr;
2914         SelectDest uniondest;
2915 
2916         testcase( p->op==TK_EXCEPT );
2917         testcase( p->op==TK_UNION );
2918         priorOp = SRT_Union;
2919         if( dest.eDest==priorOp ){
2920           /* We can reuse a temporary table generated by a SELECT to our
2921           ** right.
2922           */
2923           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2924           unionTab = dest.iSDParm;
2925         }else{
2926           /* We will need to create our own temporary table to hold the
2927           ** intermediate results.
2928           */
2929           unionTab = pParse->nTab++;
2930           assert( p->pOrderBy==0 );
2931           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2932           assert( p->addrOpenEphm[0] == -1 );
2933           p->addrOpenEphm[0] = addr;
2934           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2935           assert( p->pEList );
2936         }
2937 
2938 
2939         /* Code the SELECT statements to our left
2940         */
2941         assert( !pPrior->pOrderBy );
2942         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2943         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2944         rc = sqlite3Select(pParse, pPrior, &uniondest);
2945         if( rc ){
2946           goto multi_select_end;
2947         }
2948 
2949         /* Code the current SELECT statement
2950         */
2951         if( p->op==TK_EXCEPT ){
2952           op = SRT_Except;
2953         }else{
2954           assert( p->op==TK_UNION );
2955           op = SRT_Union;
2956         }
2957         p->pPrior = 0;
2958         pLimit = p->pLimit;
2959         p->pLimit = 0;
2960         uniondest.eDest = op;
2961         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2962                           sqlite3SelectOpName(p->op)));
2963         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2964         rc = sqlite3Select(pParse, p, &uniondest);
2965         testcase( rc!=SQLITE_OK );
2966         assert( p->pOrderBy==0 );
2967         pDelete = p->pPrior;
2968         p->pPrior = pPrior;
2969         p->pOrderBy = 0;
2970         if( p->op==TK_UNION ){
2971           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2972         }
2973         sqlite3ExprDelete(db, p->pLimit);
2974         p->pLimit = pLimit;
2975         p->iLimit = 0;
2976         p->iOffset = 0;
2977 
2978         /* Convert the data in the temporary table into whatever form
2979         ** it is that we currently need.
2980         */
2981         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2982         assert( p->pEList || db->mallocFailed );
2983         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2984           int iCont, iBreak, iStart;
2985           iBreak = sqlite3VdbeMakeLabel(pParse);
2986           iCont = sqlite3VdbeMakeLabel(pParse);
2987           computeLimitRegisters(pParse, p, iBreak);
2988           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2989           iStart = sqlite3VdbeCurrentAddr(v);
2990           selectInnerLoop(pParse, p, unionTab,
2991                           0, 0, &dest, iCont, iBreak);
2992           sqlite3VdbeResolveLabel(v, iCont);
2993           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2994           sqlite3VdbeResolveLabel(v, iBreak);
2995           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2996         }
2997         break;
2998       }
2999       default: assert( p->op==TK_INTERSECT ); {
3000         int tab1, tab2;
3001         int iCont, iBreak, iStart;
3002         Expr *pLimit;
3003         int addr;
3004         SelectDest intersectdest;
3005         int r1;
3006 
3007         /* INTERSECT is different from the others since it requires
3008         ** two temporary tables.  Hence it has its own case.  Begin
3009         ** by allocating the tables we will need.
3010         */
3011         tab1 = pParse->nTab++;
3012         tab2 = pParse->nTab++;
3013         assert( p->pOrderBy==0 );
3014 
3015         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3016         assert( p->addrOpenEphm[0] == -1 );
3017         p->addrOpenEphm[0] = addr;
3018         findRightmost(p)->selFlags |= SF_UsesEphemeral;
3019         assert( p->pEList );
3020 
3021         /* Code the SELECTs to our left into temporary table "tab1".
3022         */
3023         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3024         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
3025         rc = sqlite3Select(pParse, pPrior, &intersectdest);
3026         if( rc ){
3027           goto multi_select_end;
3028         }
3029 
3030         /* Code the current SELECT into temporary table "tab2"
3031         */
3032         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3033         assert( p->addrOpenEphm[1] == -1 );
3034         p->addrOpenEphm[1] = addr;
3035         p->pPrior = 0;
3036         pLimit = p->pLimit;
3037         p->pLimit = 0;
3038         intersectdest.iSDParm = tab2;
3039         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3040                           sqlite3SelectOpName(p->op)));
3041         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
3042         rc = sqlite3Select(pParse, p, &intersectdest);
3043         testcase( rc!=SQLITE_OK );
3044         pDelete = p->pPrior;
3045         p->pPrior = pPrior;
3046         if( p->nSelectRow>pPrior->nSelectRow ){
3047           p->nSelectRow = pPrior->nSelectRow;
3048         }
3049         sqlite3ExprDelete(db, p->pLimit);
3050         p->pLimit = pLimit;
3051 
3052         /* Generate code to take the intersection of the two temporary
3053         ** tables.
3054         */
3055         if( rc ) break;
3056         assert( p->pEList );
3057         iBreak = sqlite3VdbeMakeLabel(pParse);
3058         iCont = sqlite3VdbeMakeLabel(pParse);
3059         computeLimitRegisters(pParse, p, iBreak);
3060         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3061         r1 = sqlite3GetTempReg(pParse);
3062         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3063         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3064         VdbeCoverage(v);
3065         sqlite3ReleaseTempReg(pParse, r1);
3066         selectInnerLoop(pParse, p, tab1,
3067                         0, 0, &dest, iCont, iBreak);
3068         sqlite3VdbeResolveLabel(v, iCont);
3069         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3070         sqlite3VdbeResolveLabel(v, iBreak);
3071         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3072         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3073         break;
3074       }
3075     }
3076 
3077   #ifndef SQLITE_OMIT_EXPLAIN
3078     if( p->pNext==0 ){
3079       ExplainQueryPlanPop(pParse);
3080     }
3081   #endif
3082   }
3083   if( pParse->nErr ) goto multi_select_end;
3084 
3085   /* Compute collating sequences used by
3086   ** temporary tables needed to implement the compound select.
3087   ** Attach the KeyInfo structure to all temporary tables.
3088   **
3089   ** This section is run by the right-most SELECT statement only.
3090   ** SELECT statements to the left always skip this part.  The right-most
3091   ** SELECT might also skip this part if it has no ORDER BY clause and
3092   ** no temp tables are required.
3093   */
3094   if( p->selFlags & SF_UsesEphemeral ){
3095     int i;                        /* Loop counter */
3096     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3097     Select *pLoop;                /* For looping through SELECT statements */
3098     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3099     int nCol;                     /* Number of columns in result set */
3100 
3101     assert( p->pNext==0 );
3102     assert( p->pEList!=0 );
3103     nCol = p->pEList->nExpr;
3104     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3105     if( !pKeyInfo ){
3106       rc = SQLITE_NOMEM_BKPT;
3107       goto multi_select_end;
3108     }
3109     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3110       *apColl = multiSelectCollSeq(pParse, p, i);
3111       if( 0==*apColl ){
3112         *apColl = db->pDfltColl;
3113       }
3114     }
3115 
3116     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3117       for(i=0; i<2; i++){
3118         int addr = pLoop->addrOpenEphm[i];
3119         if( addr<0 ){
3120           /* If [0] is unused then [1] is also unused.  So we can
3121           ** always safely abort as soon as the first unused slot is found */
3122           assert( pLoop->addrOpenEphm[1]<0 );
3123           break;
3124         }
3125         sqlite3VdbeChangeP2(v, addr, nCol);
3126         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3127                             P4_KEYINFO);
3128         pLoop->addrOpenEphm[i] = -1;
3129       }
3130     }
3131     sqlite3KeyInfoUnref(pKeyInfo);
3132   }
3133 
3134 multi_select_end:
3135   pDest->iSdst = dest.iSdst;
3136   pDest->nSdst = dest.nSdst;
3137   if( pDelete ){
3138     sqlite3ParserAddCleanup(pParse,
3139         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3140         pDelete);
3141   }
3142   return rc;
3143 }
3144 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3145 
3146 /*
3147 ** Error message for when two or more terms of a compound select have different
3148 ** size result sets.
3149 */
3150 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3151   if( p->selFlags & SF_Values ){
3152     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3153   }else{
3154     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3155       " do not have the same number of result columns",
3156       sqlite3SelectOpName(p->op));
3157   }
3158 }
3159 
3160 /*
3161 ** Code an output subroutine for a coroutine implementation of a
3162 ** SELECT statment.
3163 **
3164 ** The data to be output is contained in pIn->iSdst.  There are
3165 ** pIn->nSdst columns to be output.  pDest is where the output should
3166 ** be sent.
3167 **
3168 ** regReturn is the number of the register holding the subroutine
3169 ** return address.
3170 **
3171 ** If regPrev>0 then it is the first register in a vector that
3172 ** records the previous output.  mem[regPrev] is a flag that is false
3173 ** if there has been no previous output.  If regPrev>0 then code is
3174 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3175 ** keys.
3176 **
3177 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3178 ** iBreak.
3179 */
3180 static int generateOutputSubroutine(
3181   Parse *pParse,          /* Parsing context */
3182   Select *p,              /* The SELECT statement */
3183   SelectDest *pIn,        /* Coroutine supplying data */
3184   SelectDest *pDest,      /* Where to send the data */
3185   int regReturn,          /* The return address register */
3186   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3187   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3188   int iBreak              /* Jump here if we hit the LIMIT */
3189 ){
3190   Vdbe *v = pParse->pVdbe;
3191   int iContinue;
3192   int addr;
3193 
3194   addr = sqlite3VdbeCurrentAddr(v);
3195   iContinue = sqlite3VdbeMakeLabel(pParse);
3196 
3197   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3198   */
3199   if( regPrev ){
3200     int addr1, addr2;
3201     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3202     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3203                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3204     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3205     sqlite3VdbeJumpHere(v, addr1);
3206     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3207     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3208   }
3209   if( pParse->db->mallocFailed ) return 0;
3210 
3211   /* Suppress the first OFFSET entries if there is an OFFSET clause
3212   */
3213   codeOffset(v, p->iOffset, iContinue);
3214 
3215   assert( pDest->eDest!=SRT_Exists );
3216   assert( pDest->eDest!=SRT_Table );
3217   switch( pDest->eDest ){
3218     /* Store the result as data using a unique key.
3219     */
3220     case SRT_EphemTab: {
3221       int r1 = sqlite3GetTempReg(pParse);
3222       int r2 = sqlite3GetTempReg(pParse);
3223       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3224       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3225       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3226       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3227       sqlite3ReleaseTempReg(pParse, r2);
3228       sqlite3ReleaseTempReg(pParse, r1);
3229       break;
3230     }
3231 
3232 #ifndef SQLITE_OMIT_SUBQUERY
3233     /* If we are creating a set for an "expr IN (SELECT ...)".
3234     */
3235     case SRT_Set: {
3236       int r1;
3237       testcase( pIn->nSdst>1 );
3238       r1 = sqlite3GetTempReg(pParse);
3239       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3240           r1, pDest->zAffSdst, pIn->nSdst);
3241       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3242                            pIn->iSdst, pIn->nSdst);
3243       sqlite3ReleaseTempReg(pParse, r1);
3244       break;
3245     }
3246 
3247     /* If this is a scalar select that is part of an expression, then
3248     ** store the results in the appropriate memory cell and break out
3249     ** of the scan loop.  Note that the select might return multiple columns
3250     ** if it is the RHS of a row-value IN operator.
3251     */
3252     case SRT_Mem: {
3253       testcase( pIn->nSdst>1 );
3254       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3255       /* The LIMIT clause will jump out of the loop for us */
3256       break;
3257     }
3258 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3259 
3260     /* The results are stored in a sequence of registers
3261     ** starting at pDest->iSdst.  Then the co-routine yields.
3262     */
3263     case SRT_Coroutine: {
3264       if( pDest->iSdst==0 ){
3265         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3266         pDest->nSdst = pIn->nSdst;
3267       }
3268       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3269       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3270       break;
3271     }
3272 
3273     /* If none of the above, then the result destination must be
3274     ** SRT_Output.  This routine is never called with any other
3275     ** destination other than the ones handled above or SRT_Output.
3276     **
3277     ** For SRT_Output, results are stored in a sequence of registers.
3278     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3279     ** return the next row of result.
3280     */
3281     default: {
3282       assert( pDest->eDest==SRT_Output );
3283       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3284       break;
3285     }
3286   }
3287 
3288   /* Jump to the end of the loop if the LIMIT is reached.
3289   */
3290   if( p->iLimit ){
3291     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3292   }
3293 
3294   /* Generate the subroutine return
3295   */
3296   sqlite3VdbeResolveLabel(v, iContinue);
3297   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3298 
3299   return addr;
3300 }
3301 
3302 /*
3303 ** Alternative compound select code generator for cases when there
3304 ** is an ORDER BY clause.
3305 **
3306 ** We assume a query of the following form:
3307 **
3308 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3309 **
3310 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3311 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3312 ** co-routines.  Then run the co-routines in parallel and merge the results
3313 ** into the output.  In addition to the two coroutines (called selectA and
3314 ** selectB) there are 7 subroutines:
3315 **
3316 **    outA:    Move the output of the selectA coroutine into the output
3317 **             of the compound query.
3318 **
3319 **    outB:    Move the output of the selectB coroutine into the output
3320 **             of the compound query.  (Only generated for UNION and
3321 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3322 **             appears only in B.)
3323 **
3324 **    AltB:    Called when there is data from both coroutines and A<B.
3325 **
3326 **    AeqB:    Called when there is data from both coroutines and A==B.
3327 **
3328 **    AgtB:    Called when there is data from both coroutines and A>B.
3329 **
3330 **    EofA:    Called when data is exhausted from selectA.
3331 **
3332 **    EofB:    Called when data is exhausted from selectB.
3333 **
3334 ** The implementation of the latter five subroutines depend on which
3335 ** <operator> is used:
3336 **
3337 **
3338 **             UNION ALL         UNION            EXCEPT          INTERSECT
3339 **          -------------  -----------------  --------------  -----------------
3340 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3341 **
3342 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3343 **
3344 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3345 **
3346 **   EofA:   outB, nextB      outB, nextB          halt             halt
3347 **
3348 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3349 **
3350 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3351 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3352 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3353 ** following nextX causes a jump to the end of the select processing.
3354 **
3355 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3356 ** within the output subroutine.  The regPrev register set holds the previously
3357 ** output value.  A comparison is made against this value and the output
3358 ** is skipped if the next results would be the same as the previous.
3359 **
3360 ** The implementation plan is to implement the two coroutines and seven
3361 ** subroutines first, then put the control logic at the bottom.  Like this:
3362 **
3363 **          goto Init
3364 **     coA: coroutine for left query (A)
3365 **     coB: coroutine for right query (B)
3366 **    outA: output one row of A
3367 **    outB: output one row of B (UNION and UNION ALL only)
3368 **    EofA: ...
3369 **    EofB: ...
3370 **    AltB: ...
3371 **    AeqB: ...
3372 **    AgtB: ...
3373 **    Init: initialize coroutine registers
3374 **          yield coA
3375 **          if eof(A) goto EofA
3376 **          yield coB
3377 **          if eof(B) goto EofB
3378 **    Cmpr: Compare A, B
3379 **          Jump AltB, AeqB, AgtB
3380 **     End: ...
3381 **
3382 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3383 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3384 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3385 ** and AgtB jump to either L2 or to one of EofA or EofB.
3386 */
3387 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3388 static int multiSelectOrderBy(
3389   Parse *pParse,        /* Parsing context */
3390   Select *p,            /* The right-most of SELECTs to be coded */
3391   SelectDest *pDest     /* What to do with query results */
3392 ){
3393   int i, j;             /* Loop counters */
3394   Select *pPrior;       /* Another SELECT immediately to our left */
3395   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3396   int nSelect;          /* Number of SELECT statements in the compound */
3397   Vdbe *v;              /* Generate code to this VDBE */
3398   SelectDest destA;     /* Destination for coroutine A */
3399   SelectDest destB;     /* Destination for coroutine B */
3400   int regAddrA;         /* Address register for select-A coroutine */
3401   int regAddrB;         /* Address register for select-B coroutine */
3402   int addrSelectA;      /* Address of the select-A coroutine */
3403   int addrSelectB;      /* Address of the select-B coroutine */
3404   int regOutA;          /* Address register for the output-A subroutine */
3405   int regOutB;          /* Address register for the output-B subroutine */
3406   int addrOutA;         /* Address of the output-A subroutine */
3407   int addrOutB = 0;     /* Address of the output-B subroutine */
3408   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3409   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3410   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3411   int addrAltB;         /* Address of the A<B subroutine */
3412   int addrAeqB;         /* Address of the A==B subroutine */
3413   int addrAgtB;         /* Address of the A>B subroutine */
3414   int regLimitA;        /* Limit register for select-A */
3415   int regLimitB;        /* Limit register for select-A */
3416   int regPrev;          /* A range of registers to hold previous output */
3417   int savedLimit;       /* Saved value of p->iLimit */
3418   int savedOffset;      /* Saved value of p->iOffset */
3419   int labelCmpr;        /* Label for the start of the merge algorithm */
3420   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3421   int addr1;            /* Jump instructions that get retargetted */
3422   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3423   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3424   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3425   sqlite3 *db;          /* Database connection */
3426   ExprList *pOrderBy;   /* The ORDER BY clause */
3427   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3428   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3429 
3430   assert( p->pOrderBy!=0 );
3431   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3432   db = pParse->db;
3433   v = pParse->pVdbe;
3434   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3435   labelEnd = sqlite3VdbeMakeLabel(pParse);
3436   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3437 
3438 
3439   /* Patch up the ORDER BY clause
3440   */
3441   op = p->op;
3442   assert( p->pPrior->pOrderBy==0 );
3443   pOrderBy = p->pOrderBy;
3444   assert( pOrderBy );
3445   nOrderBy = pOrderBy->nExpr;
3446 
3447   /* For operators other than UNION ALL we have to make sure that
3448   ** the ORDER BY clause covers every term of the result set.  Add
3449   ** terms to the ORDER BY clause as necessary.
3450   */
3451   if( op!=TK_ALL ){
3452     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3453       struct ExprList_item *pItem;
3454       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3455         assert( pItem!=0 );
3456         assert( pItem->u.x.iOrderByCol>0 );
3457         if( pItem->u.x.iOrderByCol==i ) break;
3458       }
3459       if( j==nOrderBy ){
3460         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3461         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3462         pNew->flags |= EP_IntValue;
3463         pNew->u.iValue = i;
3464         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3465         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3466       }
3467     }
3468   }
3469 
3470   /* Compute the comparison permutation and keyinfo that is used with
3471   ** the permutation used to determine if the next
3472   ** row of results comes from selectA or selectB.  Also add explicit
3473   ** collations to the ORDER BY clause terms so that when the subqueries
3474   ** to the right and the left are evaluated, they use the correct
3475   ** collation.
3476   */
3477   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3478   if( aPermute ){
3479     struct ExprList_item *pItem;
3480     aPermute[0] = nOrderBy;
3481     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3482       assert( pItem!=0 );
3483       assert( pItem->u.x.iOrderByCol>0 );
3484       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3485       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3486     }
3487     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3488   }else{
3489     pKeyMerge = 0;
3490   }
3491 
3492   /* Allocate a range of temporary registers and the KeyInfo needed
3493   ** for the logic that removes duplicate result rows when the
3494   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3495   */
3496   if( op==TK_ALL ){
3497     regPrev = 0;
3498   }else{
3499     int nExpr = p->pEList->nExpr;
3500     assert( nOrderBy>=nExpr || db->mallocFailed );
3501     regPrev = pParse->nMem+1;
3502     pParse->nMem += nExpr+1;
3503     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3504     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3505     if( pKeyDup ){
3506       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3507       for(i=0; i<nExpr; i++){
3508         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3509         pKeyDup->aSortFlags[i] = 0;
3510       }
3511     }
3512   }
3513 
3514   /* Separate the left and the right query from one another
3515   */
3516   nSelect = 1;
3517   if( (op==TK_ALL || op==TK_UNION)
3518    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3519   ){
3520     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3521       nSelect++;
3522       assert( pSplit->pPrior->pNext==pSplit );
3523     }
3524   }
3525   if( nSelect<=3 ){
3526     pSplit = p;
3527   }else{
3528     pSplit = p;
3529     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3530   }
3531   pPrior = pSplit->pPrior;
3532   assert( pPrior!=0 );
3533   pSplit->pPrior = 0;
3534   pPrior->pNext = 0;
3535   assert( p->pOrderBy == pOrderBy );
3536   assert( pOrderBy!=0 || db->mallocFailed );
3537   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3538   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3539   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3540 
3541   /* Compute the limit registers */
3542   computeLimitRegisters(pParse, p, labelEnd);
3543   if( p->iLimit && op==TK_ALL ){
3544     regLimitA = ++pParse->nMem;
3545     regLimitB = ++pParse->nMem;
3546     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3547                                   regLimitA);
3548     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3549   }else{
3550     regLimitA = regLimitB = 0;
3551   }
3552   sqlite3ExprDelete(db, p->pLimit);
3553   p->pLimit = 0;
3554 
3555   regAddrA = ++pParse->nMem;
3556   regAddrB = ++pParse->nMem;
3557   regOutA = ++pParse->nMem;
3558   regOutB = ++pParse->nMem;
3559   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3560   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3561 
3562   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3563 
3564   /* Generate a coroutine to evaluate the SELECT statement to the
3565   ** left of the compound operator - the "A" select.
3566   */
3567   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3568   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3569   VdbeComment((v, "left SELECT"));
3570   pPrior->iLimit = regLimitA;
3571   ExplainQueryPlan((pParse, 1, "LEFT"));
3572   sqlite3Select(pParse, pPrior, &destA);
3573   sqlite3VdbeEndCoroutine(v, regAddrA);
3574   sqlite3VdbeJumpHere(v, addr1);
3575 
3576   /* Generate a coroutine to evaluate the SELECT statement on
3577   ** the right - the "B" select
3578   */
3579   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3580   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3581   VdbeComment((v, "right SELECT"));
3582   savedLimit = p->iLimit;
3583   savedOffset = p->iOffset;
3584   p->iLimit = regLimitB;
3585   p->iOffset = 0;
3586   ExplainQueryPlan((pParse, 1, "RIGHT"));
3587   sqlite3Select(pParse, p, &destB);
3588   p->iLimit = savedLimit;
3589   p->iOffset = savedOffset;
3590   sqlite3VdbeEndCoroutine(v, regAddrB);
3591 
3592   /* Generate a subroutine that outputs the current row of the A
3593   ** select as the next output row of the compound select.
3594   */
3595   VdbeNoopComment((v, "Output routine for A"));
3596   addrOutA = generateOutputSubroutine(pParse,
3597                  p, &destA, pDest, regOutA,
3598                  regPrev, pKeyDup, labelEnd);
3599 
3600   /* Generate a subroutine that outputs the current row of the B
3601   ** select as the next output row of the compound select.
3602   */
3603   if( op==TK_ALL || op==TK_UNION ){
3604     VdbeNoopComment((v, "Output routine for B"));
3605     addrOutB = generateOutputSubroutine(pParse,
3606                  p, &destB, pDest, regOutB,
3607                  regPrev, pKeyDup, labelEnd);
3608   }
3609   sqlite3KeyInfoUnref(pKeyDup);
3610 
3611   /* Generate a subroutine to run when the results from select A
3612   ** are exhausted and only data in select B remains.
3613   */
3614   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3615     addrEofA_noB = addrEofA = labelEnd;
3616   }else{
3617     VdbeNoopComment((v, "eof-A subroutine"));
3618     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3619     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3620                                      VdbeCoverage(v);
3621     sqlite3VdbeGoto(v, addrEofA);
3622     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3623   }
3624 
3625   /* Generate a subroutine to run when the results from select B
3626   ** are exhausted and only data in select A remains.
3627   */
3628   if( op==TK_INTERSECT ){
3629     addrEofB = addrEofA;
3630     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3631   }else{
3632     VdbeNoopComment((v, "eof-B subroutine"));
3633     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3634     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3635     sqlite3VdbeGoto(v, addrEofB);
3636   }
3637 
3638   /* Generate code to handle the case of A<B
3639   */
3640   VdbeNoopComment((v, "A-lt-B subroutine"));
3641   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3642   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3643   sqlite3VdbeGoto(v, labelCmpr);
3644 
3645   /* Generate code to handle the case of A==B
3646   */
3647   if( op==TK_ALL ){
3648     addrAeqB = addrAltB;
3649   }else if( op==TK_INTERSECT ){
3650     addrAeqB = addrAltB;
3651     addrAltB++;
3652   }else{
3653     VdbeNoopComment((v, "A-eq-B subroutine"));
3654     addrAeqB =
3655     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3656     sqlite3VdbeGoto(v, labelCmpr);
3657   }
3658 
3659   /* Generate code to handle the case of A>B
3660   */
3661   VdbeNoopComment((v, "A-gt-B subroutine"));
3662   addrAgtB = sqlite3VdbeCurrentAddr(v);
3663   if( op==TK_ALL || op==TK_UNION ){
3664     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3665   }
3666   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3667   sqlite3VdbeGoto(v, labelCmpr);
3668 
3669   /* This code runs once to initialize everything.
3670   */
3671   sqlite3VdbeJumpHere(v, addr1);
3672   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3673   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3674 
3675   /* Implement the main merge loop
3676   */
3677   sqlite3VdbeResolveLabel(v, labelCmpr);
3678   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3679   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3680                          (char*)pKeyMerge, P4_KEYINFO);
3681   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3682   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3683 
3684   /* Jump to the this point in order to terminate the query.
3685   */
3686   sqlite3VdbeResolveLabel(v, labelEnd);
3687 
3688   /* Reassembly the compound query so that it will be freed correctly
3689   ** by the calling function */
3690   if( pSplit->pPrior ){
3691     sqlite3SelectDelete(db, pSplit->pPrior);
3692   }
3693   pSplit->pPrior = pPrior;
3694   pPrior->pNext = pSplit;
3695   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3696   pPrior->pOrderBy = 0;
3697 
3698   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3699   **** subqueries ****/
3700   ExplainQueryPlanPop(pParse);
3701   return pParse->nErr!=0;
3702 }
3703 #endif
3704 
3705 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3706 
3707 /* An instance of the SubstContext object describes an substitution edit
3708 ** to be performed on a parse tree.
3709 **
3710 ** All references to columns in table iTable are to be replaced by corresponding
3711 ** expressions in pEList.
3712 **
3713 ** ## About "isOuterJoin":
3714 **
3715 ** The isOuterJoin column indicates that the replacement will occur into a
3716 ** position in the parent that NULL-able due to an OUTER JOIN.  Either the
3717 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3718 ** the left operands of a RIGHT JOIN.  In either case, we need to potentially
3719 ** bypass the substituted expression with OP_IfNullRow.
3720 **
3721 ** Suppose the original expression integer constant.  Even though the table
3722 ** has the nullRow flag set, because the expression is an integer constant,
3723 ** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
3724 ** that checks to see if the nullRow flag is set on the table.  If the nullRow
3725 ** flag is set, then the value in the register is set to NULL and the original
3726 ** expression is bypassed.  If the nullRow flag is not set, then the original
3727 ** expression runs to populate the register.
3728 **
3729 ** Example where this is needed:
3730 **
3731 **      CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3732 **      CREATE TABLE t2(x INT UNIQUE);
3733 **
3734 **      SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3735 **
3736 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3737 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3738 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3739 ** when processing a non-matched row of the left.
3740 */
3741 typedef struct SubstContext {
3742   Parse *pParse;            /* The parsing context */
3743   int iTable;               /* Replace references to this table */
3744   int iNewTable;            /* New table number */
3745   int isOuterJoin;          /* Add TK_IF_NULL_ROW opcodes on each replacement */
3746   ExprList *pEList;         /* Replacement expressions */
3747 } SubstContext;
3748 
3749 /* Forward Declarations */
3750 static void substExprList(SubstContext*, ExprList*);
3751 static void substSelect(SubstContext*, Select*, int);
3752 
3753 /*
3754 ** Scan through the expression pExpr.  Replace every reference to
3755 ** a column in table number iTable with a copy of the iColumn-th
3756 ** entry in pEList.  (But leave references to the ROWID column
3757 ** unchanged.)
3758 **
3759 ** This routine is part of the flattening procedure.  A subquery
3760 ** whose result set is defined by pEList appears as entry in the
3761 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3762 ** FORM clause entry is iTable.  This routine makes the necessary
3763 ** changes to pExpr so that it refers directly to the source table
3764 ** of the subquery rather the result set of the subquery.
3765 */
3766 static Expr *substExpr(
3767   SubstContext *pSubst,  /* Description of the substitution */
3768   Expr *pExpr            /* Expr in which substitution occurs */
3769 ){
3770   if( pExpr==0 ) return 0;
3771   if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3772    && pExpr->w.iJoin==pSubst->iTable
3773   ){
3774     testcase( ExprHasProperty(pExpr, EP_InnerON) );
3775     pExpr->w.iJoin = pSubst->iNewTable;
3776   }
3777   if( pExpr->op==TK_COLUMN
3778    && pExpr->iTable==pSubst->iTable
3779    && !ExprHasProperty(pExpr, EP_FixedCol)
3780   ){
3781 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3782     if( pExpr->iColumn<0 ){
3783       pExpr->op = TK_NULL;
3784     }else
3785 #endif
3786     {
3787       Expr *pNew;
3788       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3789       Expr ifNullRow;
3790       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3791       assert( pExpr->pRight==0 );
3792       if( sqlite3ExprIsVector(pCopy) ){
3793         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3794       }else{
3795         sqlite3 *db = pSubst->pParse->db;
3796         if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
3797           memset(&ifNullRow, 0, sizeof(ifNullRow));
3798           ifNullRow.op = TK_IF_NULL_ROW;
3799           ifNullRow.pLeft = pCopy;
3800           ifNullRow.iTable = pSubst->iNewTable;
3801           ifNullRow.flags = EP_IfNullRow;
3802           pCopy = &ifNullRow;
3803         }
3804         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3805         pNew = sqlite3ExprDup(db, pCopy, 0);
3806         if( db->mallocFailed ){
3807           sqlite3ExprDelete(db, pNew);
3808           return pExpr;
3809         }
3810         if( pSubst->isOuterJoin ){
3811           ExprSetProperty(pNew, EP_CanBeNull);
3812         }
3813         if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3814           sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3815                              pExpr->flags & (EP_OuterON|EP_InnerON));
3816         }
3817         sqlite3ExprDelete(db, pExpr);
3818         pExpr = pNew;
3819         if( pExpr->op==TK_TRUEFALSE ){
3820           pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3821           pExpr->op = TK_INTEGER;
3822           ExprSetProperty(pExpr, EP_IntValue);
3823         }
3824 
3825         /* Ensure that the expression now has an implicit collation sequence,
3826         ** just as it did when it was a column of a view or sub-query. */
3827         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3828           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3829           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3830               (pColl ? pColl->zName : "BINARY")
3831           );
3832         }
3833         ExprClearProperty(pExpr, EP_Collate);
3834       }
3835     }
3836   }else{
3837     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3838       pExpr->iTable = pSubst->iNewTable;
3839     }
3840     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3841     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3842     if( ExprUseXSelect(pExpr) ){
3843       substSelect(pSubst, pExpr->x.pSelect, 1);
3844     }else{
3845       substExprList(pSubst, pExpr->x.pList);
3846     }
3847 #ifndef SQLITE_OMIT_WINDOWFUNC
3848     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3849       Window *pWin = pExpr->y.pWin;
3850       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3851       substExprList(pSubst, pWin->pPartition);
3852       substExprList(pSubst, pWin->pOrderBy);
3853     }
3854 #endif
3855   }
3856   return pExpr;
3857 }
3858 static void substExprList(
3859   SubstContext *pSubst, /* Description of the substitution */
3860   ExprList *pList       /* List to scan and in which to make substitutes */
3861 ){
3862   int i;
3863   if( pList==0 ) return;
3864   for(i=0; i<pList->nExpr; i++){
3865     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3866   }
3867 }
3868 static void substSelect(
3869   SubstContext *pSubst, /* Description of the substitution */
3870   Select *p,            /* SELECT statement in which to make substitutions */
3871   int doPrior           /* Do substitutes on p->pPrior too */
3872 ){
3873   SrcList *pSrc;
3874   SrcItem *pItem;
3875   int i;
3876   if( !p ) return;
3877   do{
3878     substExprList(pSubst, p->pEList);
3879     substExprList(pSubst, p->pGroupBy);
3880     substExprList(pSubst, p->pOrderBy);
3881     p->pHaving = substExpr(pSubst, p->pHaving);
3882     p->pWhere = substExpr(pSubst, p->pWhere);
3883     pSrc = p->pSrc;
3884     assert( pSrc!=0 );
3885     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3886       substSelect(pSubst, pItem->pSelect, 1);
3887       if( pItem->fg.isTabFunc ){
3888         substExprList(pSubst, pItem->u1.pFuncArg);
3889       }
3890     }
3891   }while( doPrior && (p = p->pPrior)!=0 );
3892 }
3893 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3894 
3895 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3896 /*
3897 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3898 ** clause of that SELECT.
3899 **
3900 ** This routine scans the entire SELECT statement and recomputes the
3901 ** pSrcItem->colUsed mask.
3902 */
3903 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3904   SrcItem *pItem;
3905   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3906   pItem = pWalker->u.pSrcItem;
3907   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3908   if( pExpr->iColumn<0 ) return WRC_Continue;
3909   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3910   return WRC_Continue;
3911 }
3912 static void recomputeColumnsUsed(
3913   Select *pSelect,                 /* The complete SELECT statement */
3914   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3915 ){
3916   Walker w;
3917   if( NEVER(pSrcItem->pTab==0) ) return;
3918   memset(&w, 0, sizeof(w));
3919   w.xExprCallback = recomputeColumnsUsedExpr;
3920   w.xSelectCallback = sqlite3SelectWalkNoop;
3921   w.u.pSrcItem = pSrcItem;
3922   pSrcItem->colUsed = 0;
3923   sqlite3WalkSelect(&w, pSelect);
3924 }
3925 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3926 
3927 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3928 /*
3929 ** Assign new cursor numbers to each of the items in pSrc. For each
3930 ** new cursor number assigned, set an entry in the aCsrMap[] array
3931 ** to map the old cursor number to the new:
3932 **
3933 **     aCsrMap[iOld+1] = iNew;
3934 **
3935 ** The array is guaranteed by the caller to be large enough for all
3936 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3937 **
3938 ** If pSrc contains any sub-selects, call this routine recursively
3939 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3940 */
3941 static void srclistRenumberCursors(
3942   Parse *pParse,                  /* Parse context */
3943   int *aCsrMap,                   /* Array to store cursor mappings in */
3944   SrcList *pSrc,                  /* FROM clause to renumber */
3945   int iExcept                     /* FROM clause item to skip */
3946 ){
3947   int i;
3948   SrcItem *pItem;
3949   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3950     if( i!=iExcept ){
3951       Select *p;
3952       assert( pItem->iCursor < aCsrMap[0] );
3953       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3954         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3955       }
3956       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3957       for(p=pItem->pSelect; p; p=p->pPrior){
3958         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3959       }
3960     }
3961   }
3962 }
3963 
3964 /*
3965 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3966 */
3967 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3968   int *aCsrMap = pWalker->u.aiCol;
3969   int iCsr = *piCursor;
3970   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3971     *piCursor = aCsrMap[iCsr+1];
3972   }
3973 }
3974 
3975 /*
3976 ** Expression walker callback used by renumberCursors() to update
3977 ** Expr objects to match newly assigned cursor numbers.
3978 */
3979 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3980   int op = pExpr->op;
3981   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3982     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3983   }
3984   if( ExprHasProperty(pExpr, EP_OuterON) ){
3985     renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
3986   }
3987   return WRC_Continue;
3988 }
3989 
3990 /*
3991 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3992 ** of the SELECT statement passed as the second argument, and to each
3993 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3994 ** Except, do not assign a new cursor number to the iExcept'th element in
3995 ** the FROM clause of (*p). Update all expressions and other references
3996 ** to refer to the new cursor numbers.
3997 **
3998 ** Argument aCsrMap is an array that may be used for temporary working
3999 ** space. Two guarantees are made by the caller:
4000 **
4001 **   * the array is larger than the largest cursor number used within the
4002 **     select statement passed as an argument, and
4003 **
4004 **   * the array entries for all cursor numbers that do *not* appear in
4005 **     FROM clauses of the select statement as described above are
4006 **     initialized to zero.
4007 */
4008 static void renumberCursors(
4009   Parse *pParse,                  /* Parse context */
4010   Select *p,                      /* Select to renumber cursors within */
4011   int iExcept,                    /* FROM clause item to skip */
4012   int *aCsrMap                    /* Working space */
4013 ){
4014   Walker w;
4015   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4016   memset(&w, 0, sizeof(w));
4017   w.u.aiCol = aCsrMap;
4018   w.xExprCallback = renumberCursorsCb;
4019   w.xSelectCallback = sqlite3SelectWalkNoop;
4020   sqlite3WalkSelect(&w, p);
4021 }
4022 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4023 
4024 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4025 /*
4026 ** This routine attempts to flatten subqueries as a performance optimization.
4027 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4028 **
4029 ** To understand the concept of flattening, consider the following
4030 ** query:
4031 **
4032 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4033 **
4034 ** The default way of implementing this query is to execute the
4035 ** subquery first and store the results in a temporary table, then
4036 ** run the outer query on that temporary table.  This requires two
4037 ** passes over the data.  Furthermore, because the temporary table
4038 ** has no indices, the WHERE clause on the outer query cannot be
4039 ** optimized.
4040 **
4041 ** This routine attempts to rewrite queries such as the above into
4042 ** a single flat select, like this:
4043 **
4044 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4045 **
4046 ** The code generated for this simplification gives the same result
4047 ** but only has to scan the data once.  And because indices might
4048 ** exist on the table t1, a complete scan of the data might be
4049 ** avoided.
4050 **
4051 ** Flattening is subject to the following constraints:
4052 **
4053 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4054 **        The subquery and the outer query cannot both be aggregates.
4055 **
4056 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4057 **        (2) If the subquery is an aggregate then
4058 **        (2a) the outer query must not be a join and
4059 **        (2b) the outer query must not use subqueries
4060 **             other than the one FROM-clause subquery that is a candidate
4061 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
4062 **             from 2015-02-09.)
4063 **
4064 **   (3)  If the subquery is the right operand of a LEFT JOIN then
4065 **        (3a) the subquery may not be a join and
4066 **        (3b) the FROM clause of the subquery may not contain a virtual
4067 **             table and
4068 **        (3c) The outer query may not have a GROUP BY.  (This limitation is
4069 **             due to how TK_IF_NULL_ROW works.  FIX ME!)
4070 **        (3d) the outer query may not be DISTINCT.
4071 **        See also (26) for restrictions on RIGHT JOIN.
4072 **
4073 **   (4)  The subquery can not be DISTINCT.
4074 **
4075 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
4076 **        sub-queries that were excluded from this optimization. Restriction
4077 **        (4) has since been expanded to exclude all DISTINCT subqueries.
4078 **
4079 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4080 **        If the subquery is aggregate, the outer query may not be DISTINCT.
4081 **
4082 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
4083 **        A FROM clause, consider adding a FROM clause with the special
4084 **        table sqlite_once that consists of a single row containing a
4085 **        single NULL.
4086 **
4087 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
4088 **
4089 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
4090 **
4091 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
4092 **        accidently carried the comment forward until 2014-09-15.  Original
4093 **        constraint: "If the subquery is aggregate then the outer query
4094 **        may not use LIMIT."
4095 **
4096 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
4097 **
4098 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
4099 **        a separate restriction deriving from ticket #350.
4100 **
4101 **  (13)  The subquery and outer query may not both use LIMIT.
4102 **
4103 **  (14)  The subquery may not use OFFSET.
4104 **
4105 **  (15)  If the outer query is part of a compound select, then the
4106 **        subquery may not use LIMIT.
4107 **        (See ticket #2339 and ticket [02a8e81d44]).
4108 **
4109 **  (16)  If the outer query is aggregate, then the subquery may not
4110 **        use ORDER BY.  (Ticket #2942)  This used to not matter
4111 **        until we introduced the group_concat() function.
4112 **
4113 **  (17)  If the subquery is a compound select, then
4114 **        (17a) all compound operators must be a UNION ALL, and
4115 **        (17b) no terms within the subquery compound may be aggregate
4116 **              or DISTINCT, and
4117 **        (17c) every term within the subquery compound must have a FROM clause
4118 **        (17d) the outer query may not be
4119 **              (17d1) aggregate, or
4120 **              (17d2) DISTINCT
4121 **        (17e) the subquery may not contain window functions, and
4122 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
4123 **
4124 **        The parent and sub-query may contain WHERE clauses. Subject to
4125 **        rules (11), (13) and (14), they may also contain ORDER BY,
4126 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
4127 **        operator other than UNION ALL because all the other compound
4128 **        operators have an implied DISTINCT which is disallowed by
4129 **        restriction (4).
4130 **
4131 **        Also, each component of the sub-query must return the same number
4132 **        of result columns. This is actually a requirement for any compound
4133 **        SELECT statement, but all the code here does is make sure that no
4134 **        such (illegal) sub-query is flattened. The caller will detect the
4135 **        syntax error and return a detailed message.
4136 **
4137 **  (18)  If the sub-query is a compound select, then all terms of the
4138 **        ORDER BY clause of the parent must be copies of a term returned
4139 **        by the parent query.
4140 **
4141 **  (19)  If the subquery uses LIMIT then the outer query may not
4142 **        have a WHERE clause.
4143 **
4144 **  (20)  If the sub-query is a compound select, then it must not use
4145 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4146 **        somewhat by saying that the terms of the ORDER BY clause must
4147 **        appear as unmodified result columns in the outer query.  But we
4148 **        have other optimizations in mind to deal with that case.
4149 **
4150 **  (21)  If the subquery uses LIMIT then the outer query may not be
4151 **        DISTINCT.  (See ticket [752e1646fc]).
4152 **
4153 **  (22)  The subquery may not be a recursive CTE.
4154 **
4155 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4156 **        a compound query.  This restriction is because transforming the
4157 **        parent to a compound query confuses the code that handles
4158 **        recursive queries in multiSelect().
4159 **
4160 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4161 **        The subquery may not be an aggregate that uses the built-in min() or
4162 **        or max() functions.  (Without this restriction, a query like:
4163 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4164 **        return the value X for which Y was maximal.)
4165 **
4166 **  (25)  If either the subquery or the parent query contains a window
4167 **        function in the select list or ORDER BY clause, flattening
4168 **        is not attempted.
4169 **
4170 **  (26)  The subquery may not be the right operand of a RIGHT JOIN.
4171 **        See also (3) for restrictions on LEFT JOIN.
4172 **
4173 **  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
4174 **        is the first element of the parent query.
4175 **
4176 **  (28)  The subquery is not a MATERIALIZED CTE.
4177 **
4178 **  (29)  Either the subquery is not the right-hand operand of a join with an
4179 **        ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
4180 **        the right-most table within the FROM clause of the subquery
4181 **        is not part of an outer join.
4182 **
4183 **
4184 ** In this routine, the "p" parameter is a pointer to the outer query.
4185 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4186 ** uses aggregates.
4187 **
4188 ** If flattening is not attempted, this routine is a no-op and returns 0.
4189 ** If flattening is attempted this routine returns 1.
4190 **
4191 ** All of the expression analysis must occur on both the outer query and
4192 ** the subquery before this routine runs.
4193 */
4194 static int flattenSubquery(
4195   Parse *pParse,       /* Parsing context */
4196   Select *p,           /* The parent or outer SELECT statement */
4197   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4198   int isAgg            /* True if outer SELECT uses aggregate functions */
4199 ){
4200   const char *zSavedAuthContext = pParse->zAuthContext;
4201   Select *pParent;    /* Current UNION ALL term of the other query */
4202   Select *pSub;       /* The inner query or "subquery" */
4203   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4204   SrcList *pSrc;      /* The FROM clause of the outer query */
4205   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4206   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4207   int iNewParent = -1;/* Replacement table for iParent */
4208   int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4209   int i;              /* Loop counter */
4210   Expr *pWhere;                    /* The WHERE clause */
4211   SrcItem *pSubitem;               /* The subquery */
4212   sqlite3 *db = pParse->db;
4213   Walker w;                        /* Walker to persist agginfo data */
4214   int *aCsrMap = 0;
4215 
4216   /* Check to see if flattening is permitted.  Return 0 if not.
4217   */
4218   assert( p!=0 );
4219   assert( p->pPrior==0 );
4220   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4221   pSrc = p->pSrc;
4222   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4223   pSubitem = &pSrc->a[iFrom];
4224   iParent = pSubitem->iCursor;
4225   pSub = pSubitem->pSelect;
4226   assert( pSub!=0 );
4227 
4228 #ifndef SQLITE_OMIT_WINDOWFUNC
4229   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4230 #endif
4231 
4232   pSubSrc = pSub->pSrc;
4233   assert( pSubSrc );
4234   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4235   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4236   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4237   ** became arbitrary expressions, we were forced to add restrictions (13)
4238   ** and (14). */
4239   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4240   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4241   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4242     return 0;                                            /* Restriction (15) */
4243   }
4244   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4245   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4246   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4247      return 0;         /* Restrictions (8)(9) */
4248   }
4249   if( p->pOrderBy && pSub->pOrderBy ){
4250      return 0;                                           /* Restriction (11) */
4251   }
4252   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4253   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4254   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4255      return 0;         /* Restriction (21) */
4256   }
4257   if( pSub->selFlags & (SF_Recursive) ){
4258     return 0; /* Restrictions (22) */
4259   }
4260 
4261   /*
4262   ** If the subquery is the right operand of a LEFT JOIN, then the
4263   ** subquery may not be a join itself (3a). Example of why this is not
4264   ** allowed:
4265   **
4266   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4267   **
4268   ** If we flatten the above, we would get
4269   **
4270   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4271   **
4272   ** which is not at all the same thing.
4273   **
4274   ** See also tickets #306, #350, and #3300.
4275   */
4276   if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4277     if( pSubSrc->nSrc>1                        /* (3a) */
4278      || IsVirtual(pSubSrc->a[0].pTab)          /* (3b) */
4279      || (p->selFlags & SF_Distinct)!=0         /* (3d) */
4280      || (p->pGroupBy!=0)                       /* (3c) */
4281      || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
4282     ){
4283       return 0;
4284     }
4285     isOuterJoin = 1;
4286   }
4287 #ifdef SQLITE_EXTRA_IFNULLROW
4288   else if( iFrom>0 && !isAgg ){
4289     /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for
4290     ** every reference to any result column from subquery in a join, even
4291     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4292     ** opcode. */
4293     isOuterJoin = -1;
4294   }
4295 #endif
4296 
4297   assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
4298   if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4299     return 0;   /* Restriction (27) */
4300   }
4301   if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4302     return 0;       /* (28) */
4303   }
4304 
4305   /* Restriction (29):
4306   **
4307   ** We do not want two constraints on the same term of the flattened
4308   ** query where one constraint has EP_InnerON and the other is EP_OuterON.
4309   ** To prevent this, one or the other of the following conditions must be
4310   ** false:
4311   **
4312   **   (29a)  The right-most entry in the FROM clause of the subquery
4313   **          must not be part of an outer join.
4314   **
4315   **   (29b)  The subquery itself must not be the right operand of a
4316   **          NATURAL join or a join that as an ON or USING clause.
4317   **
4318   ** These conditions are sufficient to keep an EP_OuterON from being
4319   ** flattened into an EP_InnerON.  Restrictions (3a) and (27) prevent
4320   ** an EP_InnerON from being flattened into an EP_OuterON.
4321   */
4322   if( pSubSrc->nSrc>=2
4323    && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
4324   ){
4325     if( (pSubitem->fg.jointype & JT_NATURAL)!=0
4326      || pSubitem->fg.isUsing
4327      || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
4328      || pSubitem->fg.isOn
4329     ){
4330       return 0;
4331     }
4332   }
4333 
4334   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4335   ** use only the UNION ALL operator. And none of the simple select queries
4336   ** that make up the compound SELECT are allowed to be aggregate or distinct
4337   ** queries.
4338   */
4339   if( pSub->pPrior ){
4340     if( pSub->pOrderBy ){
4341       return 0;  /* Restriction (20) */
4342     }
4343     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4344       return 0; /* (17d1), (17d2), or (17f) */
4345     }
4346     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4347       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4348       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4349       assert( pSub->pSrc!=0 );
4350       assert( (pSub->selFlags & SF_Recursive)==0 );
4351       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4352       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4353        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4354        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4355 #ifndef SQLITE_OMIT_WINDOWFUNC
4356        || pSub1->pWin                                          /* (17e) */
4357 #endif
4358       ){
4359         return 0;
4360       }
4361       testcase( pSub1->pSrc->nSrc>1 );
4362     }
4363 
4364     /* Restriction (18). */
4365     if( p->pOrderBy ){
4366       int ii;
4367       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4368         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4369       }
4370     }
4371 
4372     /* Restriction (23) */
4373     if( (p->selFlags & SF_Recursive) ) return 0;
4374 
4375     if( pSrc->nSrc>1 ){
4376       if( pParse->nSelect>500 ) return 0;
4377       if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4378       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4379       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4380     }
4381   }
4382 
4383   /***** If we reach this point, flattening is permitted. *****/
4384   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4385                    pSub->selId, pSub, iFrom));
4386 
4387   /* Authorize the subquery */
4388   pParse->zAuthContext = pSubitem->zName;
4389   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4390   testcase( i==SQLITE_DENY );
4391   pParse->zAuthContext = zSavedAuthContext;
4392 
4393   /* Delete the transient structures associated with thesubquery */
4394   pSub1 = pSubitem->pSelect;
4395   sqlite3DbFree(db, pSubitem->zDatabase);
4396   sqlite3DbFree(db, pSubitem->zName);
4397   sqlite3DbFree(db, pSubitem->zAlias);
4398   pSubitem->zDatabase = 0;
4399   pSubitem->zName = 0;
4400   pSubitem->zAlias = 0;
4401   pSubitem->pSelect = 0;
4402   assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4403 
4404   /* If the sub-query is a compound SELECT statement, then (by restrictions
4405   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4406   ** be of the form:
4407   **
4408   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4409   **
4410   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4411   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4412   ** OFFSET clauses and joins them to the left-hand-side of the original
4413   ** using UNION ALL operators. In this case N is the number of simple
4414   ** select statements in the compound sub-query.
4415   **
4416   ** Example:
4417   **
4418   **     SELECT a+1 FROM (
4419   **        SELECT x FROM tab
4420   **        UNION ALL
4421   **        SELECT y FROM tab
4422   **        UNION ALL
4423   **        SELECT abs(z*2) FROM tab2
4424   **     ) WHERE a!=5 ORDER BY 1
4425   **
4426   ** Transformed into:
4427   **
4428   **     SELECT x+1 FROM tab WHERE x+1!=5
4429   **     UNION ALL
4430   **     SELECT y+1 FROM tab WHERE y+1!=5
4431   **     UNION ALL
4432   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4433   **     ORDER BY 1
4434   **
4435   ** We call this the "compound-subquery flattening".
4436   */
4437   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4438     Select *pNew;
4439     ExprList *pOrderBy = p->pOrderBy;
4440     Expr *pLimit = p->pLimit;
4441     Select *pPrior = p->pPrior;
4442     Table *pItemTab = pSubitem->pTab;
4443     pSubitem->pTab = 0;
4444     p->pOrderBy = 0;
4445     p->pPrior = 0;
4446     p->pLimit = 0;
4447     pNew = sqlite3SelectDup(db, p, 0);
4448     p->pLimit = pLimit;
4449     p->pOrderBy = pOrderBy;
4450     p->op = TK_ALL;
4451     pSubitem->pTab = pItemTab;
4452     if( pNew==0 ){
4453       p->pPrior = pPrior;
4454     }else{
4455       pNew->selId = ++pParse->nSelect;
4456       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4457         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4458       }
4459       pNew->pPrior = pPrior;
4460       if( pPrior ) pPrior->pNext = pNew;
4461       pNew->pNext = p;
4462       p->pPrior = pNew;
4463       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4464                               " creates %u as peer\n",pNew->selId));
4465     }
4466     assert( pSubitem->pSelect==0 );
4467   }
4468   sqlite3DbFree(db, aCsrMap);
4469   if( db->mallocFailed ){
4470     pSubitem->pSelect = pSub1;
4471     return 1;
4472   }
4473 
4474   /* Defer deleting the Table object associated with the
4475   ** subquery until code generation is
4476   ** complete, since there may still exist Expr.pTab entries that
4477   ** refer to the subquery even after flattening.  Ticket #3346.
4478   **
4479   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4480   */
4481   if( ALWAYS(pSubitem->pTab!=0) ){
4482     Table *pTabToDel = pSubitem->pTab;
4483     if( pTabToDel->nTabRef==1 ){
4484       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4485       sqlite3ParserAddCleanup(pToplevel,
4486          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4487          pTabToDel);
4488       testcase( pToplevel->earlyCleanup );
4489     }else{
4490       pTabToDel->nTabRef--;
4491     }
4492     pSubitem->pTab = 0;
4493   }
4494 
4495   /* The following loop runs once for each term in a compound-subquery
4496   ** flattening (as described above).  If we are doing a different kind
4497   ** of flattening - a flattening other than a compound-subquery flattening -
4498   ** then this loop only runs once.
4499   **
4500   ** This loop moves all of the FROM elements of the subquery into the
4501   ** the FROM clause of the outer query.  Before doing this, remember
4502   ** the cursor number for the original outer query FROM element in
4503   ** iParent.  The iParent cursor will never be used.  Subsequent code
4504   ** will scan expressions looking for iParent references and replace
4505   ** those references with expressions that resolve to the subquery FROM
4506   ** elements we are now copying in.
4507   */
4508   pSub = pSub1;
4509   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4510     int nSubSrc;
4511     u8 jointype = 0;
4512     u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4513     assert( pSub!=0 );
4514     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4515     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4516     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4517 
4518     if( pParent==p ){
4519       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4520     }
4521 
4522     /* The subquery uses a single slot of the FROM clause of the outer
4523     ** query.  If the subquery has more than one element in its FROM clause,
4524     ** then expand the outer query to make space for it to hold all elements
4525     ** of the subquery.
4526     **
4527     ** Example:
4528     **
4529     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4530     **
4531     ** The outer query has 3 slots in its FROM clause.  One slot of the
4532     ** outer query (the middle slot) is used by the subquery.  The next
4533     ** block of code will expand the outer query FROM clause to 4 slots.
4534     ** The middle slot is expanded to two slots in order to make space
4535     ** for the two elements in the FROM clause of the subquery.
4536     */
4537     if( nSubSrc>1 ){
4538       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4539       if( pSrc==0 ) break;
4540       pParent->pSrc = pSrc;
4541     }
4542 
4543     /* Transfer the FROM clause terms from the subquery into the
4544     ** outer query.
4545     */
4546     for(i=0; i<nSubSrc; i++){
4547       SrcItem *pItem = &pSrc->a[i+iFrom];
4548       if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4549       assert( pItem->fg.isTabFunc==0 );
4550       *pItem = pSubSrc->a[i];
4551       pItem->fg.jointype |= ltorj;
4552       iNewParent = pSubSrc->a[i].iCursor;
4553       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4554     }
4555     pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4556     pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4557 
4558     /* Now begin substituting subquery result set expressions for
4559     ** references to the iParent in the outer query.
4560     **
4561     ** Example:
4562     **
4563     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4564     **   \                     \_____________ subquery __________/          /
4565     **    \_____________________ outer query ______________________________/
4566     **
4567     ** We look at every expression in the outer query and every place we see
4568     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4569     */
4570     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4571       /* At this point, any non-zero iOrderByCol values indicate that the
4572       ** ORDER BY column expression is identical to the iOrderByCol'th
4573       ** expression returned by SELECT statement pSub. Since these values
4574       ** do not necessarily correspond to columns in SELECT statement pParent,
4575       ** zero them before transfering the ORDER BY clause.
4576       **
4577       ** Not doing this may cause an error if a subsequent call to this
4578       ** function attempts to flatten a compound sub-query into pParent
4579       ** (the only way this can happen is if the compound sub-query is
4580       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4581       ExprList *pOrderBy = pSub->pOrderBy;
4582       for(i=0; i<pOrderBy->nExpr; i++){
4583         pOrderBy->a[i].u.x.iOrderByCol = 0;
4584       }
4585       assert( pParent->pOrderBy==0 );
4586       pParent->pOrderBy = pOrderBy;
4587       pSub->pOrderBy = 0;
4588     }
4589     pWhere = pSub->pWhere;
4590     pSub->pWhere = 0;
4591     if( isOuterJoin>0 ){
4592       sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4593     }
4594     if( pWhere ){
4595       if( pParent->pWhere ){
4596         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4597       }else{
4598         pParent->pWhere = pWhere;
4599       }
4600     }
4601     if( db->mallocFailed==0 ){
4602       SubstContext x;
4603       x.pParse = pParse;
4604       x.iTable = iParent;
4605       x.iNewTable = iNewParent;
4606       x.isOuterJoin = isOuterJoin;
4607       x.pEList = pSub->pEList;
4608       substSelect(&x, pParent, 0);
4609     }
4610 
4611     /* The flattened query is a compound if either the inner or the
4612     ** outer query is a compound. */
4613     pParent->selFlags |= pSub->selFlags & SF_Compound;
4614     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4615 
4616     /*
4617     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4618     **
4619     ** One is tempted to try to add a and b to combine the limits.  But this
4620     ** does not work if either limit is negative.
4621     */
4622     if( pSub->pLimit ){
4623       pParent->pLimit = pSub->pLimit;
4624       pSub->pLimit = 0;
4625     }
4626 
4627     /* Recompute the SrcList_item.colUsed masks for the flattened
4628     ** tables. */
4629     for(i=0; i<nSubSrc; i++){
4630       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4631     }
4632   }
4633 
4634   /* Finially, delete what is left of the subquery and return
4635   ** success.
4636   */
4637   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4638   sqlite3WalkSelect(&w,pSub1);
4639   sqlite3SelectDelete(db, pSub1);
4640 
4641 #if TREETRACE_ENABLED
4642   if( sqlite3TreeTrace & 0x100 ){
4643     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4644     sqlite3TreeViewSelect(0, p, 0);
4645   }
4646 #endif
4647 
4648   return 1;
4649 }
4650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4651 
4652 /*
4653 ** A structure to keep track of all of the column values that are fixed to
4654 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4655 */
4656 typedef struct WhereConst WhereConst;
4657 struct WhereConst {
4658   Parse *pParse;   /* Parsing context */
4659   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4660   int nConst;      /* Number for COLUMN=CONSTANT terms */
4661   int nChng;       /* Number of times a constant is propagated */
4662   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4663   u32 mExcludeOn;  /* Which ON expressions to exclude from considertion.
4664                    ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4665   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4666 };
4667 
4668 /*
4669 ** Add a new entry to the pConst object.  Except, do not add duplicate
4670 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4671 **
4672 ** The caller guarantees the pColumn is a column and pValue is a constant.
4673 ** This routine has to do some additional checks before completing the
4674 ** insert.
4675 */
4676 static void constInsert(
4677   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4678   Expr *pColumn,       /* The COLUMN part of the constraint */
4679   Expr *pValue,        /* The VALUE part of the constraint */
4680   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4681 ){
4682   int i;
4683   assert( pColumn->op==TK_COLUMN );
4684   assert( sqlite3ExprIsConstant(pValue) );
4685 
4686   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4687   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4688   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4689     return;
4690   }
4691 
4692   /* 2018-10-25 ticket [cf5ed20f]
4693   ** Make sure the same pColumn is not inserted more than once */
4694   for(i=0; i<pConst->nConst; i++){
4695     const Expr *pE2 = pConst->apExpr[i*2];
4696     assert( pE2->op==TK_COLUMN );
4697     if( pE2->iTable==pColumn->iTable
4698      && pE2->iColumn==pColumn->iColumn
4699     ){
4700       return;  /* Already present.  Return without doing anything. */
4701     }
4702   }
4703   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4704     pConst->bHasAffBlob = 1;
4705   }
4706 
4707   pConst->nConst++;
4708   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4709                          pConst->nConst*2*sizeof(Expr*));
4710   if( pConst->apExpr==0 ){
4711     pConst->nConst = 0;
4712   }else{
4713     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4714     pConst->apExpr[pConst->nConst*2-1] = pValue;
4715   }
4716 }
4717 
4718 /*
4719 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4720 ** is a constant expression and where the term must be true because it
4721 ** is part of the AND-connected terms of the expression.  For each term
4722 ** found, add it to the pConst structure.
4723 */
4724 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4725   Expr *pRight, *pLeft;
4726   if( NEVER(pExpr==0) ) return;
4727   if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4728     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4729     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4730     return;
4731   }
4732   if( pExpr->op==TK_AND ){
4733     findConstInWhere(pConst, pExpr->pRight);
4734     findConstInWhere(pConst, pExpr->pLeft);
4735     return;
4736   }
4737   if( pExpr->op!=TK_EQ ) return;
4738   pRight = pExpr->pRight;
4739   pLeft = pExpr->pLeft;
4740   assert( pRight!=0 );
4741   assert( pLeft!=0 );
4742   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4743     constInsert(pConst,pRight,pLeft,pExpr);
4744   }
4745   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4746     constInsert(pConst,pLeft,pRight,pExpr);
4747   }
4748 }
4749 
4750 /*
4751 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4752 **
4753 ** Argument pExpr is a candidate expression to be replaced by a value. If
4754 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4755 ** then overwrite it with the corresponding value. Except, do not do so
4756 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4757 ** is SQLITE_AFF_BLOB.
4758 */
4759 static int propagateConstantExprRewriteOne(
4760   WhereConst *pConst,
4761   Expr *pExpr,
4762   int bIgnoreAffBlob
4763 ){
4764   int i;
4765   if( pConst->pOomFault[0] ) return WRC_Prune;
4766   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4767   if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4768     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4769     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4770     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4771     return WRC_Continue;
4772   }
4773   for(i=0; i<pConst->nConst; i++){
4774     Expr *pColumn = pConst->apExpr[i*2];
4775     if( pColumn==pExpr ) continue;
4776     if( pColumn->iTable!=pExpr->iTable ) continue;
4777     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4778     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4779       break;
4780     }
4781     /* A match is found.  Add the EP_FixedCol property */
4782     pConst->nChng++;
4783     ExprClearProperty(pExpr, EP_Leaf);
4784     ExprSetProperty(pExpr, EP_FixedCol);
4785     assert( pExpr->pLeft==0 );
4786     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4787     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4788     break;
4789   }
4790   return WRC_Prune;
4791 }
4792 
4793 /*
4794 ** This is a Walker expression callback. pExpr is a node from the WHERE
4795 ** clause of a SELECT statement. This function examines pExpr to see if
4796 ** any substitutions based on the contents of pWalker->u.pConst should
4797 ** be made to pExpr or its immediate children.
4798 **
4799 ** A substitution is made if:
4800 **
4801 **   + pExpr is a column with an affinity other than BLOB that matches
4802 **     one of the columns in pWalker->u.pConst, or
4803 **
4804 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4805 **     uses an affinity other than TEXT and one of its immediate
4806 **     children is a column that matches one of the columns in
4807 **     pWalker->u.pConst.
4808 */
4809 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4810   WhereConst *pConst = pWalker->u.pConst;
4811   assert( TK_GT==TK_EQ+1 );
4812   assert( TK_LE==TK_EQ+2 );
4813   assert( TK_LT==TK_EQ+3 );
4814   assert( TK_GE==TK_EQ+4 );
4815   if( pConst->bHasAffBlob ){
4816     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4817      || pExpr->op==TK_IS
4818     ){
4819       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4820       if( pConst->pOomFault[0] ) return WRC_Prune;
4821       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4822         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4823       }
4824     }
4825   }
4826   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4827 }
4828 
4829 /*
4830 ** The WHERE-clause constant propagation optimization.
4831 **
4832 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4833 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4834 ** part of a ON clause from a LEFT JOIN, then throughout the query
4835 ** replace all other occurrences of COLUMN with CONSTANT.
4836 **
4837 ** For example, the query:
4838 **
4839 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4840 **
4841 ** Is transformed into
4842 **
4843 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4844 **
4845 ** Return true if any transformations where made and false if not.
4846 **
4847 ** Implementation note:  Constant propagation is tricky due to affinity
4848 ** and collating sequence interactions.  Consider this example:
4849 **
4850 **    CREATE TABLE t1(a INT,b TEXT);
4851 **    INSERT INTO t1 VALUES(123,'0123');
4852 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4853 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4854 **
4855 ** The two SELECT statements above should return different answers.  b=a
4856 ** is alway true because the comparison uses numeric affinity, but b=123
4857 ** is false because it uses text affinity and '0123' is not the same as '123'.
4858 ** To work around this, the expression tree is not actually changed from
4859 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4860 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4861 ** routines know to generate the constant "123" instead of looking up the
4862 ** column value.  Also, to avoid collation problems, this optimization is
4863 ** only attempted if the "a=123" term uses the default BINARY collation.
4864 **
4865 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4866 **
4867 **    CREATE TABLE t1(x);
4868 **    INSERT INTO t1 VALUES(10.0);
4869 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4870 **
4871 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4872 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4873 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4874 ** resulting in a false positive.  To avoid this, constant propagation for
4875 ** columns with BLOB affinity is only allowed if the constant is used with
4876 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4877 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4878 ** for details.
4879 */
4880 static int propagateConstants(
4881   Parse *pParse,   /* The parsing context */
4882   Select *p        /* The query in which to propagate constants */
4883 ){
4884   WhereConst x;
4885   Walker w;
4886   int nChng = 0;
4887   x.pParse = pParse;
4888   x.pOomFault = &pParse->db->mallocFailed;
4889   do{
4890     x.nConst = 0;
4891     x.nChng = 0;
4892     x.apExpr = 0;
4893     x.bHasAffBlob = 0;
4894     if( ALWAYS(p->pSrc!=0)
4895      && p->pSrc->nSrc>0
4896      && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4897     ){
4898       /* Do not propagate constants on any ON clause if there is a
4899       ** RIGHT JOIN anywhere in the query */
4900       x.mExcludeOn = EP_InnerON | EP_OuterON;
4901     }else{
4902       /* Do not propagate constants through the ON clause of a LEFT JOIN */
4903       x.mExcludeOn = EP_OuterON;
4904     }
4905     findConstInWhere(&x, p->pWhere);
4906     if( x.nConst ){
4907       memset(&w, 0, sizeof(w));
4908       w.pParse = pParse;
4909       w.xExprCallback = propagateConstantExprRewrite;
4910       w.xSelectCallback = sqlite3SelectWalkNoop;
4911       w.xSelectCallback2 = 0;
4912       w.walkerDepth = 0;
4913       w.u.pConst = &x;
4914       sqlite3WalkExpr(&w, p->pWhere);
4915       sqlite3DbFree(x.pParse->db, x.apExpr);
4916       nChng += x.nChng;
4917     }
4918   }while( x.nChng );
4919   return nChng;
4920 }
4921 
4922 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4923 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4924 /*
4925 ** This function is called to determine whether or not it is safe to
4926 ** push WHERE clause expression pExpr down to FROM clause sub-query
4927 ** pSubq, which contains at least one window function. Return 1
4928 ** if it is safe and the expression should be pushed down, or 0
4929 ** otherwise.
4930 **
4931 ** It is only safe to push the expression down if it consists only
4932 ** of constants and copies of expressions that appear in the PARTITION
4933 ** BY clause of all window function used by the sub-query. It is safe
4934 ** to filter out entire partitions, but not rows within partitions, as
4935 ** this may change the results of the window functions.
4936 **
4937 ** At the time this function is called it is guaranteed that
4938 **
4939 **   * the sub-query uses only one distinct window frame, and
4940 **   * that the window frame has a PARTITION BY clase.
4941 */
4942 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4943   assert( pSubq->pWin->pPartition );
4944   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4945   assert( pSubq->pPrior==0 );
4946   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4947 }
4948 # endif /* SQLITE_OMIT_WINDOWFUNC */
4949 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4950 
4951 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4952 /*
4953 ** Make copies of relevant WHERE clause terms of the outer query into
4954 ** the WHERE clause of subquery.  Example:
4955 **
4956 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4957 **
4958 ** Transformed into:
4959 **
4960 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4961 **     WHERE x=5 AND y=10;
4962 **
4963 ** The hope is that the terms added to the inner query will make it more
4964 ** efficient.
4965 **
4966 ** Do not attempt this optimization if:
4967 **
4968 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4969 **           disallow this optimization for aggregate subqueries, but now
4970 **           it is allowed by putting the extra terms on the HAVING clause.
4971 **           The added HAVING clause is pointless if the subquery lacks
4972 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4973 **           so there does not appear to be any reason to add extra logic
4974 **           to suppress it. **)
4975 **
4976 **   (2) The inner query is the recursive part of a common table expression.
4977 **
4978 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4979 **       clause would change the meaning of the LIMIT).
4980 **
4981 **   (4) The inner query is the right operand of a LEFT JOIN and the
4982 **       expression to be pushed down does not come from the ON clause
4983 **       on that LEFT JOIN.
4984 **
4985 **   (5) The WHERE clause expression originates in the ON or USING clause
4986 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4987 **       left join.  An example:
4988 **
4989 **           SELECT *
4990 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4991 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4992 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4993 **
4994 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4995 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4996 **       then the (1,1,NULL) row would be suppressed.
4997 **
4998 **   (6) Window functions make things tricky as changes to the WHERE clause
4999 **       of the inner query could change the window over which window
5000 **       functions are calculated. Therefore, do not attempt the optimization
5001 **       if:
5002 **
5003 **     (6a) The inner query uses multiple incompatible window partitions.
5004 **
5005 **     (6b) The inner query is a compound and uses window-functions.
5006 **
5007 **     (6c) The WHERE clause does not consist entirely of constants and
5008 **          copies of expressions found in the PARTITION BY clause of
5009 **          all window-functions used by the sub-query. It is safe to
5010 **          filter out entire partitions, as this does not change the
5011 **          window over which any window-function is calculated.
5012 **
5013 **   (7) The inner query is a Common Table Expression (CTE) that should
5014 **       be materialized.  (This restriction is implemented in the calling
5015 **       routine.)
5016 **
5017 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5018 ** terms are duplicated into the subquery.
5019 */
5020 static int pushDownWhereTerms(
5021   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
5022   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
5023   Expr *pWhere,         /* The WHERE clause of the outer query */
5024   SrcItem *pSrc         /* The subquery term of the outer FROM clause */
5025 ){
5026   Expr *pNew;
5027   int nChng = 0;
5028   if( pWhere==0 ) return 0;
5029   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5030   if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5031 
5032 #ifndef SQLITE_OMIT_WINDOWFUNC
5033   if( pSubq->pPrior ){
5034     Select *pSel;
5035     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5036       if( pSel->pWin ) return 0;    /* restriction (6b) */
5037     }
5038   }else{
5039     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5040   }
5041 #endif
5042 
5043 #ifdef SQLITE_DEBUG
5044   /* Only the first term of a compound can have a WITH clause.  But make
5045   ** sure no other terms are marked SF_Recursive in case something changes
5046   ** in the future.
5047   */
5048   {
5049     Select *pX;
5050     for(pX=pSubq; pX; pX=pX->pPrior){
5051       assert( (pX->selFlags & (SF_Recursive))==0 );
5052     }
5053   }
5054 #endif
5055 
5056   if( pSubq->pLimit!=0 ){
5057     return 0; /* restriction (3) */
5058   }
5059   while( pWhere->op==TK_AND ){
5060     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5061     pWhere = pWhere->pLeft;
5062   }
5063 
5064 #if 0  /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5065   if( isLeftJoin
5066    && (ExprHasProperty(pWhere,EP_OuterON)==0
5067          || pWhere->w.iJoin!=iCursor)
5068   ){
5069     return 0; /* restriction (4) */
5070   }
5071   if( ExprHasProperty(pWhere,EP_OuterON)
5072    && pWhere->w.iJoin!=iCursor
5073   ){
5074     return 0; /* restriction (5) */
5075   }
5076 #endif
5077 
5078   if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5079     nChng++;
5080     pSubq->selFlags |= SF_PushDown;
5081     while( pSubq ){
5082       SubstContext x;
5083       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5084       unsetJoinExpr(pNew, -1, 1);
5085       x.pParse = pParse;
5086       x.iTable = pSrc->iCursor;
5087       x.iNewTable = pSrc->iCursor;
5088       x.isOuterJoin = 0;
5089       x.pEList = pSubq->pEList;
5090       pNew = substExpr(&x, pNew);
5091 #ifndef SQLITE_OMIT_WINDOWFUNC
5092       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5093         /* Restriction 6c has prevented push-down in this case */
5094         sqlite3ExprDelete(pParse->db, pNew);
5095         nChng--;
5096         break;
5097       }
5098 #endif
5099       if( pSubq->selFlags & SF_Aggregate ){
5100         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5101       }else{
5102         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5103       }
5104       pSubq = pSubq->pPrior;
5105     }
5106   }
5107   return nChng;
5108 }
5109 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5110 
5111 /*
5112 ** The pFunc is the only aggregate function in the query.  Check to see
5113 ** if the query is a candidate for the min/max optimization.
5114 **
5115 ** If the query is a candidate for the min/max optimization, then set
5116 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5117 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5118 ** whether pFunc is a min() or max() function.
5119 **
5120 ** If the query is not a candidate for the min/max optimization, return
5121 ** WHERE_ORDERBY_NORMAL (which must be zero).
5122 **
5123 ** This routine must be called after aggregate functions have been
5124 ** located but before their arguments have been subjected to aggregate
5125 ** analysis.
5126 */
5127 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5128   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
5129   ExprList *pEList;                     /* Arguments to agg function */
5130   const char *zFunc;                    /* Name of aggregate function pFunc */
5131   ExprList *pOrderBy;
5132   u8 sortFlags = 0;
5133 
5134   assert( *ppMinMax==0 );
5135   assert( pFunc->op==TK_AGG_FUNCTION );
5136   assert( !IsWindowFunc(pFunc) );
5137   assert( ExprUseXList(pFunc) );
5138   pEList = pFunc->x.pList;
5139   if( pEList==0
5140    || pEList->nExpr!=1
5141    || ExprHasProperty(pFunc, EP_WinFunc)
5142    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5143   ){
5144     return eRet;
5145   }
5146   assert( !ExprHasProperty(pFunc, EP_IntValue) );
5147   zFunc = pFunc->u.zToken;
5148   if( sqlite3StrICmp(zFunc, "min")==0 ){
5149     eRet = WHERE_ORDERBY_MIN;
5150     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5151       sortFlags = KEYINFO_ORDER_BIGNULL;
5152     }
5153   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5154     eRet = WHERE_ORDERBY_MAX;
5155     sortFlags = KEYINFO_ORDER_DESC;
5156   }else{
5157     return eRet;
5158   }
5159   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5160   assert( pOrderBy!=0 || db->mallocFailed );
5161   if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5162   return eRet;
5163 }
5164 
5165 /*
5166 ** The select statement passed as the first argument is an aggregate query.
5167 ** The second argument is the associated aggregate-info object. This
5168 ** function tests if the SELECT is of the form:
5169 **
5170 **   SELECT count(*) FROM <tbl>
5171 **
5172 ** where table is a database table, not a sub-select or view. If the query
5173 ** does match this pattern, then a pointer to the Table object representing
5174 ** <tbl> is returned. Otherwise, NULL is returned.
5175 **
5176 ** This routine checks to see if it is safe to use the count optimization.
5177 ** A correct answer is still obtained (though perhaps more slowly) if
5178 ** this routine returns NULL when it could have returned a table pointer.
5179 ** But returning the pointer when NULL should have been returned can
5180 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
5181 */
5182 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5183   Table *pTab;
5184   Expr *pExpr;
5185 
5186   assert( !p->pGroupBy );
5187 
5188   if( p->pWhere
5189    || p->pEList->nExpr!=1
5190    || p->pSrc->nSrc!=1
5191    || p->pSrc->a[0].pSelect
5192    || pAggInfo->nFunc!=1
5193    || p->pHaving
5194   ){
5195     return 0;
5196   }
5197   pTab = p->pSrc->a[0].pTab;
5198   assert( pTab!=0 );
5199   assert( !IsView(pTab) );
5200   if( !IsOrdinaryTable(pTab) ) return 0;
5201   pExpr = p->pEList->a[0].pExpr;
5202   assert( pExpr!=0 );
5203   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5204   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5205   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5206   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5207   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5208   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5209   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5210 
5211   return pTab;
5212 }
5213 
5214 /*
5215 ** If the source-list item passed as an argument was augmented with an
5216 ** INDEXED BY clause, then try to locate the specified index. If there
5217 ** was such a clause and the named index cannot be found, return
5218 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5219 ** pFrom->pIndex and return SQLITE_OK.
5220 */
5221 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5222   Table *pTab = pFrom->pTab;
5223   char *zIndexedBy = pFrom->u1.zIndexedBy;
5224   Index *pIdx;
5225   assert( pTab!=0 );
5226   assert( pFrom->fg.isIndexedBy!=0 );
5227 
5228   for(pIdx=pTab->pIndex;
5229       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5230       pIdx=pIdx->pNext
5231   );
5232   if( !pIdx ){
5233     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5234     pParse->checkSchema = 1;
5235     return SQLITE_ERROR;
5236   }
5237   assert( pFrom->fg.isCte==0 );
5238   pFrom->u2.pIBIndex = pIdx;
5239   return SQLITE_OK;
5240 }
5241 
5242 /*
5243 ** Detect compound SELECT statements that use an ORDER BY clause with
5244 ** an alternative collating sequence.
5245 **
5246 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5247 **
5248 ** These are rewritten as a subquery:
5249 **
5250 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5251 **     ORDER BY ... COLLATE ...
5252 **
5253 ** This transformation is necessary because the multiSelectOrderBy() routine
5254 ** above that generates the code for a compound SELECT with an ORDER BY clause
5255 ** uses a merge algorithm that requires the same collating sequence on the
5256 ** result columns as on the ORDER BY clause.  See ticket
5257 ** http://www.sqlite.org/src/info/6709574d2a
5258 **
5259 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5260 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5261 ** there are COLLATE terms in the ORDER BY.
5262 */
5263 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5264   int i;
5265   Select *pNew;
5266   Select *pX;
5267   sqlite3 *db;
5268   struct ExprList_item *a;
5269   SrcList *pNewSrc;
5270   Parse *pParse;
5271   Token dummy;
5272 
5273   if( p->pPrior==0 ) return WRC_Continue;
5274   if( p->pOrderBy==0 ) return WRC_Continue;
5275   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5276   if( pX==0 ) return WRC_Continue;
5277   a = p->pOrderBy->a;
5278 #ifndef SQLITE_OMIT_WINDOWFUNC
5279   /* If iOrderByCol is already non-zero, then it has already been matched
5280   ** to a result column of the SELECT statement. This occurs when the
5281   ** SELECT is rewritten for window-functions processing and then passed
5282   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5283   ** by this function is not required in this case. */
5284   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5285 #endif
5286   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5287     if( a[i].pExpr->flags & EP_Collate ) break;
5288   }
5289   if( i<0 ) return WRC_Continue;
5290 
5291   /* If we reach this point, that means the transformation is required. */
5292 
5293   pParse = pWalker->pParse;
5294   db = pParse->db;
5295   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5296   if( pNew==0 ) return WRC_Abort;
5297   memset(&dummy, 0, sizeof(dummy));
5298   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5299   if( pNewSrc==0 ) return WRC_Abort;
5300   *pNew = *p;
5301   p->pSrc = pNewSrc;
5302   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5303   p->op = TK_SELECT;
5304   p->pWhere = 0;
5305   pNew->pGroupBy = 0;
5306   pNew->pHaving = 0;
5307   pNew->pOrderBy = 0;
5308   p->pPrior = 0;
5309   p->pNext = 0;
5310   p->pWith = 0;
5311 #ifndef SQLITE_OMIT_WINDOWFUNC
5312   p->pWinDefn = 0;
5313 #endif
5314   p->selFlags &= ~SF_Compound;
5315   assert( (p->selFlags & SF_Converted)==0 );
5316   p->selFlags |= SF_Converted;
5317   assert( pNew->pPrior!=0 );
5318   pNew->pPrior->pNext = pNew;
5319   pNew->pLimit = 0;
5320   return WRC_Continue;
5321 }
5322 
5323 /*
5324 ** Check to see if the FROM clause term pFrom has table-valued function
5325 ** arguments.  If it does, leave an error message in pParse and return
5326 ** non-zero, since pFrom is not allowed to be a table-valued function.
5327 */
5328 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5329   if( pFrom->fg.isTabFunc ){
5330     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5331     return 1;
5332   }
5333   return 0;
5334 }
5335 
5336 #ifndef SQLITE_OMIT_CTE
5337 /*
5338 ** Argument pWith (which may be NULL) points to a linked list of nested
5339 ** WITH contexts, from inner to outermost. If the table identified by
5340 ** FROM clause element pItem is really a common-table-expression (CTE)
5341 ** then return a pointer to the CTE definition for that table. Otherwise
5342 ** return NULL.
5343 **
5344 ** If a non-NULL value is returned, set *ppContext to point to the With
5345 ** object that the returned CTE belongs to.
5346 */
5347 static struct Cte *searchWith(
5348   With *pWith,                    /* Current innermost WITH clause */
5349   SrcItem *pItem,                 /* FROM clause element to resolve */
5350   With **ppContext                /* OUT: WITH clause return value belongs to */
5351 ){
5352   const char *zName = pItem->zName;
5353   With *p;
5354   assert( pItem->zDatabase==0 );
5355   assert( zName!=0 );
5356   for(p=pWith; p; p=p->pOuter){
5357     int i;
5358     for(i=0; i<p->nCte; i++){
5359       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5360         *ppContext = p;
5361         return &p->a[i];
5362       }
5363     }
5364     if( p->bView ) break;
5365   }
5366   return 0;
5367 }
5368 
5369 /* The code generator maintains a stack of active WITH clauses
5370 ** with the inner-most WITH clause being at the top of the stack.
5371 **
5372 ** This routine pushes the WITH clause passed as the second argument
5373 ** onto the top of the stack. If argument bFree is true, then this
5374 ** WITH clause will never be popped from the stack but should instead
5375 ** be freed along with the Parse object. In other cases, when
5376 ** bFree==0, the With object will be freed along with the SELECT
5377 ** statement with which it is associated.
5378 **
5379 ** This routine returns a copy of pWith.  Or, if bFree is true and
5380 ** the pWith object is destroyed immediately due to an OOM condition,
5381 ** then this routine return NULL.
5382 **
5383 ** If bFree is true, do not continue to use the pWith pointer after
5384 ** calling this routine,  Instead, use only the return value.
5385 */
5386 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5387   if( pWith ){
5388     if( bFree ){
5389       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5390                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5391                       pWith);
5392       if( pWith==0 ) return 0;
5393     }
5394     if( pParse->nErr==0 ){
5395       assert( pParse->pWith!=pWith );
5396       pWith->pOuter = pParse->pWith;
5397       pParse->pWith = pWith;
5398     }
5399   }
5400   return pWith;
5401 }
5402 
5403 /*
5404 ** This function checks if argument pFrom refers to a CTE declared by
5405 ** a WITH clause on the stack currently maintained by the parser (on the
5406 ** pParse->pWith linked list).  And if currently processing a CTE
5407 ** CTE expression, through routine checks to see if the reference is
5408 ** a recursive reference to the CTE.
5409 **
5410 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5411 ** and other fields are populated accordingly.
5412 **
5413 ** Return 0 if no match is found.
5414 ** Return 1 if a match is found.
5415 ** Return 2 if an error condition is detected.
5416 */
5417 static int resolveFromTermToCte(
5418   Parse *pParse,                  /* The parsing context */
5419   Walker *pWalker,                /* Current tree walker */
5420   SrcItem *pFrom                  /* The FROM clause term to check */
5421 ){
5422   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5423   With *pWith;             /* The matching WITH */
5424 
5425   assert( pFrom->pTab==0 );
5426   if( pParse->pWith==0 ){
5427     /* There are no WITH clauses in the stack.  No match is possible */
5428     return 0;
5429   }
5430   if( pParse->nErr ){
5431     /* Prior errors might have left pParse->pWith in a goofy state, so
5432     ** go no further. */
5433     return 0;
5434   }
5435   if( pFrom->zDatabase!=0 ){
5436     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5437     ** it cannot possibly be a CTE reference. */
5438     return 0;
5439   }
5440   if( pFrom->fg.notCte ){
5441     /* The FROM term is specifically excluded from matching a CTE.
5442     **   (1)  It is part of a trigger that used to have zDatabase but had
5443     **        zDatabase removed by sqlite3FixTriggerStep().
5444     **   (2)  This is the first term in the FROM clause of an UPDATE.
5445     */
5446     return 0;
5447   }
5448   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5449   if( pCte ){
5450     sqlite3 *db = pParse->db;
5451     Table *pTab;
5452     ExprList *pEList;
5453     Select *pSel;
5454     Select *pLeft;                /* Left-most SELECT statement */
5455     Select *pRecTerm;             /* Left-most recursive term */
5456     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5457     With *pSavedWith;             /* Initial value of pParse->pWith */
5458     int iRecTab = -1;             /* Cursor for recursive table */
5459     CteUse *pCteUse;
5460 
5461     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5462     ** recursive reference to CTE pCte. Leave an error in pParse and return
5463     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5464     ** In this case, proceed.  */
5465     if( pCte->zCteErr ){
5466       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5467       return 2;
5468     }
5469     if( cannotBeFunction(pParse, pFrom) ) return 2;
5470 
5471     assert( pFrom->pTab==0 );
5472     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5473     if( pTab==0 ) return 2;
5474     pCteUse = pCte->pUse;
5475     if( pCteUse==0 ){
5476       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5477       if( pCteUse==0
5478        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5479       ){
5480         sqlite3DbFree(db, pTab);
5481         return 2;
5482       }
5483       pCteUse->eM10d = pCte->eM10d;
5484     }
5485     pFrom->pTab = pTab;
5486     pTab->nTabRef = 1;
5487     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5488     pTab->iPKey = -1;
5489     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5490     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5491     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5492     if( db->mallocFailed ) return 2;
5493     pFrom->pSelect->selFlags |= SF_CopyCte;
5494     assert( pFrom->pSelect );
5495     if( pFrom->fg.isIndexedBy ){
5496       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5497       return 2;
5498     }
5499     pFrom->fg.isCte = 1;
5500     pFrom->u2.pCteUse = pCteUse;
5501     pCteUse->nUse++;
5502     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5503       pCteUse->eM10d = M10d_Yes;
5504     }
5505 
5506     /* Check if this is a recursive CTE. */
5507     pRecTerm = pSel = pFrom->pSelect;
5508     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5509     while( bMayRecursive && pRecTerm->op==pSel->op ){
5510       int i;
5511       SrcList *pSrc = pRecTerm->pSrc;
5512       assert( pRecTerm->pPrior!=0 );
5513       for(i=0; i<pSrc->nSrc; i++){
5514         SrcItem *pItem = &pSrc->a[i];
5515         if( pItem->zDatabase==0
5516          && pItem->zName!=0
5517          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5518         ){
5519           pItem->pTab = pTab;
5520           pTab->nTabRef++;
5521           pItem->fg.isRecursive = 1;
5522           if( pRecTerm->selFlags & SF_Recursive ){
5523             sqlite3ErrorMsg(pParse,
5524                "multiple references to recursive table: %s", pCte->zName
5525             );
5526             return 2;
5527           }
5528           pRecTerm->selFlags |= SF_Recursive;
5529           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5530           pItem->iCursor = iRecTab;
5531         }
5532       }
5533       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5534       pRecTerm = pRecTerm->pPrior;
5535     }
5536 
5537     pCte->zCteErr = "circular reference: %s";
5538     pSavedWith = pParse->pWith;
5539     pParse->pWith = pWith;
5540     if( pSel->selFlags & SF_Recursive ){
5541       int rc;
5542       assert( pRecTerm!=0 );
5543       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5544       assert( pRecTerm->pNext!=0 );
5545       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5546       assert( pRecTerm->pWith==0 );
5547       pRecTerm->pWith = pSel->pWith;
5548       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5549       pRecTerm->pWith = 0;
5550       if( rc ){
5551         pParse->pWith = pSavedWith;
5552         return 2;
5553       }
5554     }else{
5555       if( sqlite3WalkSelect(pWalker, pSel) ){
5556         pParse->pWith = pSavedWith;
5557         return 2;
5558       }
5559     }
5560     pParse->pWith = pWith;
5561 
5562     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5563     pEList = pLeft->pEList;
5564     if( pCte->pCols ){
5565       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5566         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5567             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5568         );
5569         pParse->pWith = pSavedWith;
5570         return 2;
5571       }
5572       pEList = pCte->pCols;
5573     }
5574 
5575     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5576     if( bMayRecursive ){
5577       if( pSel->selFlags & SF_Recursive ){
5578         pCte->zCteErr = "multiple recursive references: %s";
5579       }else{
5580         pCte->zCteErr = "recursive reference in a subquery: %s";
5581       }
5582       sqlite3WalkSelect(pWalker, pSel);
5583     }
5584     pCte->zCteErr = 0;
5585     pParse->pWith = pSavedWith;
5586     return 1;  /* Success */
5587   }
5588   return 0;  /* No match */
5589 }
5590 #endif
5591 
5592 #ifndef SQLITE_OMIT_CTE
5593 /*
5594 ** If the SELECT passed as the second argument has an associated WITH
5595 ** clause, pop it from the stack stored as part of the Parse object.
5596 **
5597 ** This function is used as the xSelectCallback2() callback by
5598 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5599 ** names and other FROM clause elements.
5600 */
5601 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5602   Parse *pParse = pWalker->pParse;
5603   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5604     With *pWith = findRightmost(p)->pWith;
5605     if( pWith!=0 ){
5606       assert( pParse->pWith==pWith || pParse->nErr );
5607       pParse->pWith = pWith->pOuter;
5608     }
5609   }
5610 }
5611 #endif
5612 
5613 /*
5614 ** The SrcList_item structure passed as the second argument represents a
5615 ** sub-query in the FROM clause of a SELECT statement. This function
5616 ** allocates and populates the SrcList_item.pTab object. If successful,
5617 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5618 ** SQLITE_NOMEM.
5619 */
5620 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5621   Select *pSel = pFrom->pSelect;
5622   Table *pTab;
5623 
5624   assert( pSel );
5625   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5626   if( pTab==0 ) return SQLITE_NOMEM;
5627   pTab->nTabRef = 1;
5628   if( pFrom->zAlias ){
5629     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5630   }else{
5631     pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5632   }
5633   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5634   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5635   pTab->iPKey = -1;
5636   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5637 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5638   /* The usual case - do not allow ROWID on a subquery */
5639   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5640 #else
5641   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5642 #endif
5643   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5644 }
5645 
5646 
5647 /*
5648 ** Check the N SrcItem objects to the right of pBase.  (N might be zero!)
5649 ** If any of those SrcItem objects have a USING clause containing zName
5650 ** then return true.
5651 **
5652 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5653 ** contains a USING clause, or if none of the USING clauses contain zName,
5654 ** then return false.
5655 */
5656 static int inAnyUsingClause(
5657   const char *zName, /* Name we are looking for */
5658   SrcItem *pBase,    /* The base SrcItem.  Looking at pBase[1] and following */
5659   int N              /* How many SrcItems to check */
5660 ){
5661   while( N>0 ){
5662     N--;
5663     pBase++;
5664     if( pBase->fg.isUsing==0 ) continue;
5665     if( NEVER(pBase->u3.pUsing==0) ) continue;
5666     if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5667   }
5668   return 0;
5669 }
5670 
5671 
5672 /*
5673 ** This routine is a Walker callback for "expanding" a SELECT statement.
5674 ** "Expanding" means to do the following:
5675 **
5676 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5677 **         element of the FROM clause.
5678 **
5679 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5680 **         defines FROM clause.  When views appear in the FROM clause,
5681 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5682 **         that implements the view.  A copy is made of the view's SELECT
5683 **         statement so that we can freely modify or delete that statement
5684 **         without worrying about messing up the persistent representation
5685 **         of the view.
5686 **
5687 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5688 **         on joins and the ON and USING clause of joins.
5689 **
5690 **    (4)  Scan the list of columns in the result set (pEList) looking
5691 **         for instances of the "*" operator or the TABLE.* operator.
5692 **         If found, expand each "*" to be every column in every table
5693 **         and TABLE.* to be every column in TABLE.
5694 **
5695 */
5696 static int selectExpander(Walker *pWalker, Select *p){
5697   Parse *pParse = pWalker->pParse;
5698   int i, j, k, rc;
5699   SrcList *pTabList;
5700   ExprList *pEList;
5701   SrcItem *pFrom;
5702   sqlite3 *db = pParse->db;
5703   Expr *pE, *pRight, *pExpr;
5704   u16 selFlags = p->selFlags;
5705   u32 elistFlags = 0;
5706 
5707   p->selFlags |= SF_Expanded;
5708   if( db->mallocFailed  ){
5709     return WRC_Abort;
5710   }
5711   assert( p->pSrc!=0 );
5712   if( (selFlags & SF_Expanded)!=0 ){
5713     return WRC_Prune;
5714   }
5715   if( pWalker->eCode ){
5716     /* Renumber selId because it has been copied from a view */
5717     p->selId = ++pParse->nSelect;
5718   }
5719   pTabList = p->pSrc;
5720   pEList = p->pEList;
5721   if( pParse->pWith && (p->selFlags & SF_View) ){
5722     if( p->pWith==0 ){
5723       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5724       if( p->pWith==0 ){
5725         return WRC_Abort;
5726       }
5727     }
5728     p->pWith->bView = 1;
5729   }
5730   sqlite3WithPush(pParse, p->pWith, 0);
5731 
5732   /* Make sure cursor numbers have been assigned to all entries in
5733   ** the FROM clause of the SELECT statement.
5734   */
5735   sqlite3SrcListAssignCursors(pParse, pTabList);
5736 
5737   /* Look up every table named in the FROM clause of the select.  If
5738   ** an entry of the FROM clause is a subquery instead of a table or view,
5739   ** then create a transient table structure to describe the subquery.
5740   */
5741   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5742     Table *pTab;
5743     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5744     if( pFrom->pTab ) continue;
5745     assert( pFrom->fg.isRecursive==0 );
5746     if( pFrom->zName==0 ){
5747 #ifndef SQLITE_OMIT_SUBQUERY
5748       Select *pSel = pFrom->pSelect;
5749       /* A sub-query in the FROM clause of a SELECT */
5750       assert( pSel!=0 );
5751       assert( pFrom->pTab==0 );
5752       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5753       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5754 #endif
5755 #ifndef SQLITE_OMIT_CTE
5756     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5757       if( rc>1 ) return WRC_Abort;
5758       pTab = pFrom->pTab;
5759       assert( pTab!=0 );
5760 #endif
5761     }else{
5762       /* An ordinary table or view name in the FROM clause */
5763       assert( pFrom->pTab==0 );
5764       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5765       if( pTab==0 ) return WRC_Abort;
5766       if( pTab->nTabRef>=0xffff ){
5767         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5768            pTab->zName);
5769         pFrom->pTab = 0;
5770         return WRC_Abort;
5771       }
5772       pTab->nTabRef++;
5773       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5774         return WRC_Abort;
5775       }
5776 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5777       if( !IsOrdinaryTable(pTab) ){
5778         i16 nCol;
5779         u8 eCodeOrig = pWalker->eCode;
5780         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5781         assert( pFrom->pSelect==0 );
5782         if( IsView(pTab) ){
5783           if( (db->flags & SQLITE_EnableView)==0
5784            && pTab->pSchema!=db->aDb[1].pSchema
5785           ){
5786             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5787               pTab->zName);
5788           }
5789           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5790         }
5791 #ifndef SQLITE_OMIT_VIRTUALTABLE
5792         else if( ALWAYS(IsVirtual(pTab))
5793          && pFrom->fg.fromDDL
5794          && ALWAYS(pTab->u.vtab.p!=0)
5795          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5796         ){
5797           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5798                                   pTab->zName);
5799         }
5800         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5801 #endif
5802         nCol = pTab->nCol;
5803         pTab->nCol = -1;
5804         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5805         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5806         pWalker->eCode = eCodeOrig;
5807         pTab->nCol = nCol;
5808       }
5809 #endif
5810     }
5811 
5812     /* Locate the index named by the INDEXED BY clause, if any. */
5813     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5814       return WRC_Abort;
5815     }
5816   }
5817 
5818   /* Process NATURAL keywords, and ON and USING clauses of joins.
5819   */
5820   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5821   if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5822     return WRC_Abort;
5823   }
5824 
5825   /* For every "*" that occurs in the column list, insert the names of
5826   ** all columns in all tables.  And for every TABLE.* insert the names
5827   ** of all columns in TABLE.  The parser inserted a special expression
5828   ** with the TK_ASTERISK operator for each "*" that it found in the column
5829   ** list.  The following code just has to locate the TK_ASTERISK
5830   ** expressions and expand each one to the list of all columns in
5831   ** all tables.
5832   **
5833   ** The first loop just checks to see if there are any "*" operators
5834   ** that need expanding.
5835   */
5836   for(k=0; k<pEList->nExpr; k++){
5837     pE = pEList->a[k].pExpr;
5838     if( pE->op==TK_ASTERISK ) break;
5839     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5840     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5841     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5842     elistFlags |= pE->flags;
5843   }
5844   if( k<pEList->nExpr ){
5845     /*
5846     ** If we get here it means the result set contains one or more "*"
5847     ** operators that need to be expanded.  Loop through each expression
5848     ** in the result set and expand them one by one.
5849     */
5850     struct ExprList_item *a = pEList->a;
5851     ExprList *pNew = 0;
5852     int flags = pParse->db->flags;
5853     int longNames = (flags & SQLITE_FullColNames)!=0
5854                       && (flags & SQLITE_ShortColNames)==0;
5855 
5856     for(k=0; k<pEList->nExpr; k++){
5857       pE = a[k].pExpr;
5858       elistFlags |= pE->flags;
5859       pRight = pE->pRight;
5860       assert( pE->op!=TK_DOT || pRight!=0 );
5861       if( pE->op!=TK_ASTERISK
5862        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5863       ){
5864         /* This particular expression does not need to be expanded.
5865         */
5866         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5867         if( pNew ){
5868           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5869           pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5870           a[k].zEName = 0;
5871         }
5872         a[k].pExpr = 0;
5873       }else{
5874         /* This expression is a "*" or a "TABLE.*" and needs to be
5875         ** expanded. */
5876         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5877         char *zTName = 0;       /* text of name of TABLE */
5878         if( pE->op==TK_DOT ){
5879           assert( pE->pLeft!=0 );
5880           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5881           zTName = pE->pLeft->u.zToken;
5882         }
5883         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5884           Table *pTab = pFrom->pTab;   /* Table for this data source */
5885           ExprList *pNestedFrom;       /* Result-set of a nested FROM clause */
5886           char *zTabName;              /* AS name for this data source */
5887           const char *zSchemaName = 0; /* Schema name for this data source */
5888           int iDb;                     /* Schema index for this data src */
5889           IdList *pUsing;              /* USING clause for pFrom[1] */
5890 
5891           if( (zTabName = pFrom->zAlias)==0 ){
5892             zTabName = pTab->zName;
5893           }
5894           if( db->mallocFailed ) break;
5895           assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
5896           if( pFrom->fg.isNestedFrom ){
5897             assert( pFrom->pSelect!=0 );
5898             pNestedFrom = pFrom->pSelect->pEList;
5899             assert( pNestedFrom!=0 );
5900             assert( pNestedFrom->nExpr==pTab->nCol );
5901           }else{
5902             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5903               continue;
5904             }
5905             pNestedFrom = 0;
5906             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5907             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5908           }
5909           if( i+1<pTabList->nSrc
5910            && pFrom[1].fg.isUsing
5911            && (selFlags & SF_NestedFrom)!=0
5912           ){
5913             int ii;
5914             pUsing = pFrom[1].u3.pUsing;
5915             for(ii=0; ii<pUsing->nId; ii++){
5916               const char *zUName = pUsing->a[ii].zName;
5917               pRight = sqlite3Expr(db, TK_ID, zUName);
5918               pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
5919               if( pNew ){
5920                 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5921                 assert( pX->zEName==0 );
5922                 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
5923                 pX->fg.eEName = ENAME_TAB;
5924                 pX->fg.bUsingTerm = 1;
5925               }
5926             }
5927           }else{
5928             pUsing = 0;
5929           }
5930           for(j=0; j<pTab->nCol; j++){
5931             char *zName = pTab->aCol[j].zCnName;
5932             struct ExprList_item *pX; /* Newly added ExprList term */
5933 
5934             assert( zName );
5935             if( zTName
5936              && pNestedFrom
5937              && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
5938             ){
5939               continue;
5940             }
5941 
5942             /* If a column is marked as 'hidden', omit it from the expanded
5943             ** result-set list unless the SELECT has the SF_IncludeHidden
5944             ** bit set.
5945             */
5946             if( (p->selFlags & SF_IncludeHidden)==0
5947              && IsHiddenColumn(&pTab->aCol[j])
5948             ){
5949               continue;
5950             }
5951             if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
5952              && zTName==0
5953              && (selFlags & (SF_NestedFrom))==0
5954             ){
5955               continue;
5956             }
5957             tableSeen = 1;
5958 
5959             if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
5960               if( pFrom->fg.isUsing
5961                && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5962               ){
5963                 /* In a join with a USING clause, omit columns in the
5964                 ** using clause from the table on the right. */
5965                 continue;
5966               }
5967             }
5968             pRight = sqlite3Expr(db, TK_ID, zName);
5969             if( (pTabList->nSrc>1
5970                  && (  (pFrom->fg.jointype & JT_LTORJ)==0
5971                      || (selFlags & SF_NestedFrom)!=0
5972                      || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
5973                     )
5974                 )
5975              || IN_RENAME_OBJECT
5976             ){
5977               Expr *pLeft;
5978               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5979               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5980               if( IN_RENAME_OBJECT && pE->pLeft ){
5981                 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
5982               }
5983               if( zSchemaName ){
5984                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5985                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5986               }
5987             }else{
5988               pExpr = pRight;
5989             }
5990             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5991             if( pNew==0 ){
5992               break;  /* OOM */
5993             }
5994             pX = &pNew->a[pNew->nExpr-1];
5995             assert( pX->zEName==0 );
5996             if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5997               if( pNestedFrom ){
5998                 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
5999                 testcase( pX->zEName==0 );
6000               }else{
6001                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6002                                            zSchemaName, zTabName, zName);
6003                 testcase( pX->zEName==0 );
6004               }
6005               pX->fg.eEName = ENAME_TAB;
6006               if( (pFrom->fg.isUsing
6007                    && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6008                || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6009                || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6010               ){
6011                 pX->fg.bNoExpand = 1;
6012               }
6013             }else if( longNames ){
6014               pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6015               pX->fg.eEName = ENAME_NAME;
6016             }else{
6017               pX->zEName = sqlite3DbStrDup(db, zName);
6018               pX->fg.eEName = ENAME_NAME;
6019             }
6020           }
6021         }
6022         if( !tableSeen ){
6023           if( zTName ){
6024             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6025           }else{
6026             sqlite3ErrorMsg(pParse, "no tables specified");
6027           }
6028         }
6029       }
6030     }
6031     sqlite3ExprListDelete(db, pEList);
6032     p->pEList = pNew;
6033   }
6034   if( p->pEList ){
6035     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6036       sqlite3ErrorMsg(pParse, "too many columns in result set");
6037       return WRC_Abort;
6038     }
6039     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6040       p->selFlags |= SF_ComplexResult;
6041     }
6042   }
6043 #if TREETRACE_ENABLED
6044   if( sqlite3TreeTrace & 0x100 ){
6045     SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
6046     sqlite3TreeViewSelect(0, p, 0);
6047   }
6048 #endif
6049   return WRC_Continue;
6050 }
6051 
6052 #if SQLITE_DEBUG
6053 /*
6054 ** Always assert.  This xSelectCallback2 implementation proves that the
6055 ** xSelectCallback2 is never invoked.
6056 */
6057 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6058   UNUSED_PARAMETER2(NotUsed, NotUsed2);
6059   assert( 0 );
6060 }
6061 #endif
6062 /*
6063 ** This routine "expands" a SELECT statement and all of its subqueries.
6064 ** For additional information on what it means to "expand" a SELECT
6065 ** statement, see the comment on the selectExpand worker callback above.
6066 **
6067 ** Expanding a SELECT statement is the first step in processing a
6068 ** SELECT statement.  The SELECT statement must be expanded before
6069 ** name resolution is performed.
6070 **
6071 ** If anything goes wrong, an error message is written into pParse.
6072 ** The calling function can detect the problem by looking at pParse->nErr
6073 ** and/or pParse->db->mallocFailed.
6074 */
6075 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6076   Walker w;
6077   w.xExprCallback = sqlite3ExprWalkNoop;
6078   w.pParse = pParse;
6079   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6080     w.xSelectCallback = convertCompoundSelectToSubquery;
6081     w.xSelectCallback2 = 0;
6082     sqlite3WalkSelect(&w, pSelect);
6083   }
6084   w.xSelectCallback = selectExpander;
6085   w.xSelectCallback2 = sqlite3SelectPopWith;
6086   w.eCode = 0;
6087   sqlite3WalkSelect(&w, pSelect);
6088 }
6089 
6090 
6091 #ifndef SQLITE_OMIT_SUBQUERY
6092 /*
6093 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6094 ** interface.
6095 **
6096 ** For each FROM-clause subquery, add Column.zType and Column.zColl
6097 ** information to the Table structure that represents the result set
6098 ** of that subquery.
6099 **
6100 ** The Table structure that represents the result set was constructed
6101 ** by selectExpander() but the type and collation information was omitted
6102 ** at that point because identifiers had not yet been resolved.  This
6103 ** routine is called after identifier resolution.
6104 */
6105 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6106   Parse *pParse;
6107   int i;
6108   SrcList *pTabList;
6109   SrcItem *pFrom;
6110 
6111   assert( p->selFlags & SF_Resolved );
6112   if( p->selFlags & SF_HasTypeInfo ) return;
6113   p->selFlags |= SF_HasTypeInfo;
6114   pParse = pWalker->pParse;
6115   pTabList = p->pSrc;
6116   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6117     Table *pTab = pFrom->pTab;
6118     assert( pTab!=0 );
6119     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6120       /* A sub-query in the FROM clause of a SELECT */
6121       Select *pSel = pFrom->pSelect;
6122       if( pSel ){
6123         while( pSel->pPrior ) pSel = pSel->pPrior;
6124         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
6125                                                SQLITE_AFF_NONE);
6126       }
6127     }
6128   }
6129 }
6130 #endif
6131 
6132 
6133 /*
6134 ** This routine adds datatype and collating sequence information to
6135 ** the Table structures of all FROM-clause subqueries in a
6136 ** SELECT statement.
6137 **
6138 ** Use this routine after name resolution.
6139 */
6140 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6141 #ifndef SQLITE_OMIT_SUBQUERY
6142   Walker w;
6143   w.xSelectCallback = sqlite3SelectWalkNoop;
6144   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6145   w.xExprCallback = sqlite3ExprWalkNoop;
6146   w.pParse = pParse;
6147   sqlite3WalkSelect(&w, pSelect);
6148 #endif
6149 }
6150 
6151 
6152 /*
6153 ** This routine sets up a SELECT statement for processing.  The
6154 ** following is accomplished:
6155 **
6156 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
6157 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
6158 **     *  ON and USING clauses are shifted into WHERE statements
6159 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
6160 **     *  Identifiers in expression are matched to tables.
6161 **
6162 ** This routine acts recursively on all subqueries within the SELECT.
6163 */
6164 void sqlite3SelectPrep(
6165   Parse *pParse,         /* The parser context */
6166   Select *p,             /* The SELECT statement being coded. */
6167   NameContext *pOuterNC  /* Name context for container */
6168 ){
6169   assert( p!=0 || pParse->db->mallocFailed );
6170   assert( pParse->db->pParse==pParse );
6171   if( pParse->db->mallocFailed ) return;
6172   if( p->selFlags & SF_HasTypeInfo ) return;
6173   sqlite3SelectExpand(pParse, p);
6174   if( pParse->nErr ) return;
6175   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6176   if( pParse->nErr ) return;
6177   sqlite3SelectAddTypeInfo(pParse, p);
6178 }
6179 
6180 /*
6181 ** Reset the aggregate accumulator.
6182 **
6183 ** The aggregate accumulator is a set of memory cells that hold
6184 ** intermediate results while calculating an aggregate.  This
6185 ** routine generates code that stores NULLs in all of those memory
6186 ** cells.
6187 */
6188 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6189   Vdbe *v = pParse->pVdbe;
6190   int i;
6191   struct AggInfo_func *pFunc;
6192   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6193   assert( pParse->db->pParse==pParse );
6194   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6195   if( nReg==0 ) return;
6196   if( pParse->nErr ) return;
6197 #ifdef SQLITE_DEBUG
6198   /* Verify that all AggInfo registers are within the range specified by
6199   ** AggInfo.mnReg..AggInfo.mxReg */
6200   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
6201   for(i=0; i<pAggInfo->nColumn; i++){
6202     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
6203          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
6204   }
6205   for(i=0; i<pAggInfo->nFunc; i++){
6206     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
6207          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
6208   }
6209 #endif
6210   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
6211   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6212     if( pFunc->iDistinct>=0 ){
6213       Expr *pE = pFunc->pFExpr;
6214       assert( ExprUseXList(pE) );
6215       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6216         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6217            "argument");
6218         pFunc->iDistinct = -1;
6219       }else{
6220         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6221         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6222             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6223         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6224                           pFunc->pFunc->zName));
6225       }
6226     }
6227   }
6228 }
6229 
6230 /*
6231 ** Invoke the OP_AggFinalize opcode for every aggregate function
6232 ** in the AggInfo structure.
6233 */
6234 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6235   Vdbe *v = pParse->pVdbe;
6236   int i;
6237   struct AggInfo_func *pF;
6238   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6239     ExprList *pList;
6240     assert( ExprUseXList(pF->pFExpr) );
6241     pList = pF->pFExpr->x.pList;
6242     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6243     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6244   }
6245 }
6246 
6247 
6248 /*
6249 ** Update the accumulator memory cells for an aggregate based on
6250 ** the current cursor position.
6251 **
6252 ** If regAcc is non-zero and there are no min() or max() aggregates
6253 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6254 ** registers if register regAcc contains 0. The caller will take care
6255 ** of setting and clearing regAcc.
6256 */
6257 static void updateAccumulator(
6258   Parse *pParse,
6259   int regAcc,
6260   AggInfo *pAggInfo,
6261   int eDistinctType
6262 ){
6263   Vdbe *v = pParse->pVdbe;
6264   int i;
6265   int regHit = 0;
6266   int addrHitTest = 0;
6267   struct AggInfo_func *pF;
6268   struct AggInfo_col *pC;
6269 
6270   pAggInfo->directMode = 1;
6271   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6272     int nArg;
6273     int addrNext = 0;
6274     int regAgg;
6275     ExprList *pList;
6276     assert( ExprUseXList(pF->pFExpr) );
6277     assert( !IsWindowFunc(pF->pFExpr) );
6278     pList = pF->pFExpr->x.pList;
6279     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6280       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6281       if( pAggInfo->nAccumulator
6282        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6283        && regAcc
6284       ){
6285         /* If regAcc==0, there there exists some min() or max() function
6286         ** without a FILTER clause that will ensure the magnet registers
6287         ** are populated. */
6288         if( regHit==0 ) regHit = ++pParse->nMem;
6289         /* If this is the first row of the group (regAcc contains 0), clear the
6290         ** "magnet" register regHit so that the accumulator registers
6291         ** are populated if the FILTER clause jumps over the the
6292         ** invocation of min() or max() altogether. Or, if this is not
6293         ** the first row (regAcc contains 1), set the magnet register so that
6294         ** the accumulators are not populated unless the min()/max() is invoked
6295         ** and indicates that they should be.  */
6296         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6297       }
6298       addrNext = sqlite3VdbeMakeLabel(pParse);
6299       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6300     }
6301     if( pList ){
6302       nArg = pList->nExpr;
6303       regAgg = sqlite3GetTempRange(pParse, nArg);
6304       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6305     }else{
6306       nArg = 0;
6307       regAgg = 0;
6308     }
6309     if( pF->iDistinct>=0 && pList ){
6310       if( addrNext==0 ){
6311         addrNext = sqlite3VdbeMakeLabel(pParse);
6312       }
6313       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6314           pF->iDistinct, addrNext, pList, regAgg);
6315     }
6316     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6317       CollSeq *pColl = 0;
6318       struct ExprList_item *pItem;
6319       int j;
6320       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6321       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6322         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6323       }
6324       if( !pColl ){
6325         pColl = pParse->db->pDfltColl;
6326       }
6327       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6328       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6329     }
6330     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6331     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6332     sqlite3VdbeChangeP5(v, (u8)nArg);
6333     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6334     if( addrNext ){
6335       sqlite3VdbeResolveLabel(v, addrNext);
6336     }
6337   }
6338   if( regHit==0 && pAggInfo->nAccumulator ){
6339     regHit = regAcc;
6340   }
6341   if( regHit ){
6342     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6343   }
6344   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6345     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6346   }
6347 
6348   pAggInfo->directMode = 0;
6349   if( addrHitTest ){
6350     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6351   }
6352 }
6353 
6354 /*
6355 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6356 ** count(*) query ("SELECT count(*) FROM pTab").
6357 */
6358 #ifndef SQLITE_OMIT_EXPLAIN
6359 static void explainSimpleCount(
6360   Parse *pParse,                  /* Parse context */
6361   Table *pTab,                    /* Table being queried */
6362   Index *pIdx                     /* Index used to optimize scan, or NULL */
6363 ){
6364   if( pParse->explain==2 ){
6365     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6366     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6367         pTab->zName,
6368         bCover ? " USING COVERING INDEX " : "",
6369         bCover ? pIdx->zName : ""
6370     );
6371   }
6372 }
6373 #else
6374 # define explainSimpleCount(a,b,c)
6375 #endif
6376 
6377 /*
6378 ** sqlite3WalkExpr() callback used by havingToWhere().
6379 **
6380 ** If the node passed to the callback is a TK_AND node, return
6381 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6382 **
6383 ** Otherwise, return WRC_Prune. In this case, also check if the
6384 ** sub-expression matches the criteria for being moved to the WHERE
6385 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6386 ** within the HAVING expression with a constant "1".
6387 */
6388 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6389   if( pExpr->op!=TK_AND ){
6390     Select *pS = pWalker->u.pSelect;
6391     /* This routine is called before the HAVING clause of the current
6392     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6393     ** here, it indicates that the expression is a correlated reference to a
6394     ** column from an outer aggregate query, or an aggregate function that
6395     ** belongs to an outer query. Do not move the expression to the WHERE
6396     ** clause in this obscure case, as doing so may corrupt the outer Select
6397     ** statements AggInfo structure.  */
6398     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6399      && ExprAlwaysFalse(pExpr)==0
6400      && pExpr->pAggInfo==0
6401     ){
6402       sqlite3 *db = pWalker->pParse->db;
6403       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6404       if( pNew ){
6405         Expr *pWhere = pS->pWhere;
6406         SWAP(Expr, *pNew, *pExpr);
6407         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6408         pS->pWhere = pNew;
6409         pWalker->eCode = 1;
6410       }
6411     }
6412     return WRC_Prune;
6413   }
6414   return WRC_Continue;
6415 }
6416 
6417 /*
6418 ** Transfer eligible terms from the HAVING clause of a query, which is
6419 ** processed after grouping, to the WHERE clause, which is processed before
6420 ** grouping. For example, the query:
6421 **
6422 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6423 **
6424 ** can be rewritten as:
6425 **
6426 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6427 **
6428 ** A term of the HAVING expression is eligible for transfer if it consists
6429 ** entirely of constants and expressions that are also GROUP BY terms that
6430 ** use the "BINARY" collation sequence.
6431 */
6432 static void havingToWhere(Parse *pParse, Select *p){
6433   Walker sWalker;
6434   memset(&sWalker, 0, sizeof(sWalker));
6435   sWalker.pParse = pParse;
6436   sWalker.xExprCallback = havingToWhereExprCb;
6437   sWalker.u.pSelect = p;
6438   sqlite3WalkExpr(&sWalker, p->pHaving);
6439 #if TREETRACE_ENABLED
6440   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6441     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6442     sqlite3TreeViewSelect(0, p, 0);
6443   }
6444 #endif
6445 }
6446 
6447 /*
6448 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6449 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6450 ** then return 0.
6451 */
6452 static SrcItem *isSelfJoinView(
6453   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6454   SrcItem *pThis               /* Search for prior reference to this subquery */
6455 ){
6456   SrcItem *pItem;
6457   assert( pThis->pSelect!=0 );
6458   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6459   for(pItem = pTabList->a; pItem<pThis; pItem++){
6460     Select *pS1;
6461     if( pItem->pSelect==0 ) continue;
6462     if( pItem->fg.viaCoroutine ) continue;
6463     if( pItem->zName==0 ) continue;
6464     assert( pItem->pTab!=0 );
6465     assert( pThis->pTab!=0 );
6466     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6467     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6468     pS1 = pItem->pSelect;
6469     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6470       /* The query flattener left two different CTE tables with identical
6471       ** names in the same FROM clause. */
6472       continue;
6473     }
6474     if( pItem->pSelect->selFlags & SF_PushDown ){
6475       /* The view was modified by some other optimization such as
6476       ** pushDownWhereTerms() */
6477       continue;
6478     }
6479     return pItem;
6480   }
6481   return 0;
6482 }
6483 
6484 /*
6485 ** Deallocate a single AggInfo object
6486 */
6487 static void agginfoFree(sqlite3 *db, AggInfo *p){
6488   sqlite3DbFree(db, p->aCol);
6489   sqlite3DbFree(db, p->aFunc);
6490   sqlite3DbFreeNN(db, p);
6491 }
6492 
6493 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6494 /*
6495 ** Attempt to transform a query of the form
6496 **
6497 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6498 **
6499 ** Into this:
6500 **
6501 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6502 **
6503 ** The transformation only works if all of the following are true:
6504 **
6505 **   *  The subquery is a UNION ALL of two or more terms
6506 **   *  The subquery does not have a LIMIT clause
6507 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6508 **   *  The outer query is a simple count(*) with no WHERE clause or other
6509 **      extraneous syntax.
6510 **
6511 ** Return TRUE if the optimization is undertaken.
6512 */
6513 static int countOfViewOptimization(Parse *pParse, Select *p){
6514   Select *pSub, *pPrior;
6515   Expr *pExpr;
6516   Expr *pCount;
6517   sqlite3 *db;
6518   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6519   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6520   if( p->pWhere ) return 0;
6521   if( p->pGroupBy ) return 0;
6522   pExpr = p->pEList->a[0].pExpr;
6523   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6524   assert( ExprUseUToken(pExpr) );
6525   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6526   assert( ExprUseXList(pExpr) );
6527   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6528   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6529   pSub = p->pSrc->a[0].pSelect;
6530   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6531   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6532   do{
6533     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6534     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6535     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6536     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6537     pSub = pSub->pPrior;                              /* Repeat over compound */
6538   }while( pSub );
6539 
6540   /* If we reach this point then it is OK to perform the transformation */
6541 
6542   db = pParse->db;
6543   pCount = pExpr;
6544   pExpr = 0;
6545   pSub = p->pSrc->a[0].pSelect;
6546   p->pSrc->a[0].pSelect = 0;
6547   sqlite3SrcListDelete(db, p->pSrc);
6548   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6549   while( pSub ){
6550     Expr *pTerm;
6551     pPrior = pSub->pPrior;
6552     pSub->pPrior = 0;
6553     pSub->pNext = 0;
6554     pSub->selFlags |= SF_Aggregate;
6555     pSub->selFlags &= ~SF_Compound;
6556     pSub->nSelectRow = 0;
6557     sqlite3ExprListDelete(db, pSub->pEList);
6558     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6559     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6560     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6561     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6562     if( pExpr==0 ){
6563       pExpr = pTerm;
6564     }else{
6565       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6566     }
6567     pSub = pPrior;
6568   }
6569   p->pEList->a[0].pExpr = pExpr;
6570   p->selFlags &= ~SF_Aggregate;
6571 
6572 #if TREETRACE_ENABLED
6573   if( sqlite3TreeTrace & 0x400 ){
6574     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6575     sqlite3TreeViewSelect(0, p, 0);
6576   }
6577 #endif
6578   return 1;
6579 }
6580 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6581 
6582 /*
6583 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6584 ** as pSrcItem but has the same alias as p0, then return true.
6585 ** Otherwise return false.
6586 */
6587 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6588   int i;
6589   for(i=0; i<pSrc->nSrc; i++){
6590     SrcItem *p1 = &pSrc->a[i];
6591     if( p1==p0 ) continue;
6592     if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6593       return 1;
6594     }
6595     if( p1->pSelect
6596      && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6597      && sameSrcAlias(p0, p1->pSelect->pSrc)
6598     ){
6599       return 1;
6600     }
6601   }
6602   return 0;
6603 }
6604 
6605 /*
6606 ** Generate code for the SELECT statement given in the p argument.
6607 **
6608 ** The results are returned according to the SelectDest structure.
6609 ** See comments in sqliteInt.h for further information.
6610 **
6611 ** This routine returns the number of errors.  If any errors are
6612 ** encountered, then an appropriate error message is left in
6613 ** pParse->zErrMsg.
6614 **
6615 ** This routine does NOT free the Select structure passed in.  The
6616 ** calling function needs to do that.
6617 */
6618 int sqlite3Select(
6619   Parse *pParse,         /* The parser context */
6620   Select *p,             /* The SELECT statement being coded. */
6621   SelectDest *pDest      /* What to do with the query results */
6622 ){
6623   int i, j;              /* Loop counters */
6624   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6625   Vdbe *v;               /* The virtual machine under construction */
6626   int isAgg;             /* True for select lists like "count(*)" */
6627   ExprList *pEList = 0;  /* List of columns to extract. */
6628   SrcList *pTabList;     /* List of tables to select from */
6629   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6630   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6631   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6632   AggInfo *pAggInfo = 0; /* Aggregate information */
6633   int rc = 1;            /* Value to return from this function */
6634   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6635   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6636   int iEnd;              /* Address of the end of the query */
6637   sqlite3 *db;           /* The database connection */
6638   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6639   u8 minMaxFlag;                 /* Flag for min/max queries */
6640 
6641   db = pParse->db;
6642   assert( pParse==db->pParse );
6643   v = sqlite3GetVdbe(pParse);
6644   if( p==0 || pParse->nErr ){
6645     return 1;
6646   }
6647   assert( db->mallocFailed==0 );
6648   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6649 #if TREETRACE_ENABLED
6650   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6651   if( sqlite3TreeTrace & 0x10100 ){
6652     if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6653       sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6654                            __FILE__, __LINE__);
6655     }
6656     sqlite3ShowSelect(p);
6657   }
6658 #endif
6659 
6660   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6661   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6662   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6663   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6664   if( IgnorableDistinct(pDest) ){
6665     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6666            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6667            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6668     /* All of these destinations are also able to ignore the ORDER BY clause */
6669     if( p->pOrderBy ){
6670 #if TREETRACE_ENABLED
6671       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6672       if( sqlite3TreeTrace & 0x100 ){
6673         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6674       }
6675 #endif
6676       sqlite3ParserAddCleanup(pParse,
6677         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6678         p->pOrderBy);
6679       testcase( pParse->earlyCleanup );
6680       p->pOrderBy = 0;
6681     }
6682     p->selFlags &= ~SF_Distinct;
6683     p->selFlags |= SF_NoopOrderBy;
6684   }
6685   sqlite3SelectPrep(pParse, p, 0);
6686   if( pParse->nErr ){
6687     goto select_end;
6688   }
6689   assert( db->mallocFailed==0 );
6690   assert( p->pEList!=0 );
6691 #if TREETRACE_ENABLED
6692   if( sqlite3TreeTrace & 0x104 ){
6693     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6694     sqlite3TreeViewSelect(0, p, 0);
6695   }
6696 #endif
6697 
6698   /* If the SF_UFSrcCheck flag is set, then this function is being called
6699   ** as part of populating the temp table for an UPDATE...FROM statement.
6700   ** In this case, it is an error if the target object (pSrc->a[0]) name
6701   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6702   **
6703   ** Postgres disallows this case too. The reason is that some other
6704   ** systems handle this case differently, and not all the same way,
6705   ** which is just confusing. To avoid this, we follow PG's lead and
6706   ** disallow it altogether.  */
6707   if( p->selFlags & SF_UFSrcCheck ){
6708     SrcItem *p0 = &p->pSrc->a[0];
6709     if( sameSrcAlias(p0, p->pSrc) ){
6710       sqlite3ErrorMsg(pParse,
6711           "target object/alias may not appear in FROM clause: %s",
6712           p0->zAlias ? p0->zAlias : p0->pTab->zName
6713       );
6714       goto select_end;
6715     }
6716 
6717     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6718     ** and leaving this flag set can cause errors if a compound sub-query
6719     ** in p->pSrc is flattened into this query and this function called
6720     ** again as part of compound SELECT processing.  */
6721     p->selFlags &= ~SF_UFSrcCheck;
6722   }
6723 
6724   if( pDest->eDest==SRT_Output ){
6725     sqlite3GenerateColumnNames(pParse, p);
6726   }
6727 
6728 #ifndef SQLITE_OMIT_WINDOWFUNC
6729   if( sqlite3WindowRewrite(pParse, p) ){
6730     assert( pParse->nErr );
6731     goto select_end;
6732   }
6733 #if TREETRACE_ENABLED
6734   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6735     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6736     sqlite3TreeViewSelect(0, p, 0);
6737   }
6738 #endif
6739 #endif /* SQLITE_OMIT_WINDOWFUNC */
6740   pTabList = p->pSrc;
6741   isAgg = (p->selFlags & SF_Aggregate)!=0;
6742   memset(&sSort, 0, sizeof(sSort));
6743   sSort.pOrderBy = p->pOrderBy;
6744 
6745   /* Try to do various optimizations (flattening subqueries, and strength
6746   ** reduction of join operators) in the FROM clause up into the main query
6747   */
6748 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6749   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6750     SrcItem *pItem = &pTabList->a[i];
6751     Select *pSub = pItem->pSelect;
6752     Table *pTab = pItem->pTab;
6753 
6754     /* The expander should have already created transient Table objects
6755     ** even for FROM clause elements such as subqueries that do not correspond
6756     ** to a real table */
6757     assert( pTab!=0 );
6758 
6759     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6760     ** of the LEFT JOIN used in the WHERE clause.
6761     */
6762     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
6763      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6764      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6765     ){
6766       SELECTTRACE(0x100,pParse,p,
6767                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6768       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6769       assert( pItem->iCursor>=0 );
6770       unsetJoinExpr(p->pWhere, pItem->iCursor,
6771                     pTabList->a[0].fg.jointype & JT_LTORJ);
6772     }
6773 
6774     /* No futher action if this term of the FROM clause is no a subquery */
6775     if( pSub==0 ) continue;
6776 
6777     /* Catch mismatch in the declared columns of a view and the number of
6778     ** columns in the SELECT on the RHS */
6779     if( pTab->nCol!=pSub->pEList->nExpr ){
6780       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6781                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6782       goto select_end;
6783     }
6784 
6785     /* Do not try to flatten an aggregate subquery.
6786     **
6787     ** Flattening an aggregate subquery is only possible if the outer query
6788     ** is not a join.  But if the outer query is not a join, then the subquery
6789     ** will be implemented as a co-routine and there is no advantage to
6790     ** flattening in that case.
6791     */
6792     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6793     assert( pSub->pGroupBy==0 );
6794 
6795     /* If a FROM-clause subquery has an ORDER BY clause that is not
6796     ** really doing anything, then delete it now so that it does not
6797     ** interfere with query flattening.  See the discussion at
6798     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6799     **
6800     ** Beware of these cases where the ORDER BY clause may not be safely
6801     ** omitted:
6802     **
6803     **    (1)   There is also a LIMIT clause
6804     **    (2)   The subquery was added to help with window-function
6805     **          processing
6806     **    (3)   The subquery is in the FROM clause of an UPDATE
6807     **    (4)   The outer query uses an aggregate function other than
6808     **          the built-in count(), min(), or max().
6809     **    (5)   The ORDER BY isn't going to accomplish anything because
6810     **          one of:
6811     **            (a)  The outer query has a different ORDER BY clause
6812     **            (b)  The subquery is part of a join
6813     **          See forum post 062d576715d277c8
6814     */
6815     if( pSub->pOrderBy!=0
6816      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6817      && pSub->pLimit==0                           /* Condition (1) */
6818      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6819      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6820      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6821     ){
6822       SELECTTRACE(0x100,pParse,p,
6823                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6824       sqlite3ExprListDelete(db, pSub->pOrderBy);
6825       pSub->pOrderBy = 0;
6826     }
6827 
6828     /* If the outer query contains a "complex" result set (that is,
6829     ** if the result set of the outer query uses functions or subqueries)
6830     ** and if the subquery contains an ORDER BY clause and if
6831     ** it will be implemented as a co-routine, then do not flatten.  This
6832     ** restriction allows SQL constructs like this:
6833     **
6834     **  SELECT expensive_function(x)
6835     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6836     **
6837     ** The expensive_function() is only computed on the 10 rows that
6838     ** are output, rather than every row of the table.
6839     **
6840     ** The requirement that the outer query have a complex result set
6841     ** means that flattening does occur on simpler SQL constraints without
6842     ** the expensive_function() like:
6843     **
6844     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6845     */
6846     if( pSub->pOrderBy!=0
6847      && i==0
6848      && (p->selFlags & SF_ComplexResult)!=0
6849      && (pTabList->nSrc==1
6850          || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6851     ){
6852       continue;
6853     }
6854 
6855     if( flattenSubquery(pParse, p, i, isAgg) ){
6856       if( pParse->nErr ) goto select_end;
6857       /* This subquery can be absorbed into its parent. */
6858       i = -1;
6859     }
6860     pTabList = p->pSrc;
6861     if( db->mallocFailed ) goto select_end;
6862     if( !IgnorableOrderby(pDest) ){
6863       sSort.pOrderBy = p->pOrderBy;
6864     }
6865   }
6866 #endif
6867 
6868 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6869   /* Handle compound SELECT statements using the separate multiSelect()
6870   ** procedure.
6871   */
6872   if( p->pPrior ){
6873     rc = multiSelect(pParse, p, pDest);
6874 #if TREETRACE_ENABLED
6875     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6876     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6877       sqlite3TreeViewSelect(0, p, 0);
6878     }
6879 #endif
6880     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6881     return rc;
6882   }
6883 #endif
6884 
6885   /* Do the WHERE-clause constant propagation optimization if this is
6886   ** a join.  No need to speed time on this operation for non-join queries
6887   ** as the equivalent optimization will be handled by query planner in
6888   ** sqlite3WhereBegin().
6889   */
6890   if( p->pWhere!=0
6891    && p->pWhere->op==TK_AND
6892    && OptimizationEnabled(db, SQLITE_PropagateConst)
6893    && propagateConstants(pParse, p)
6894   ){
6895 #if TREETRACE_ENABLED
6896     if( sqlite3TreeTrace & 0x100 ){
6897       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6898       sqlite3TreeViewSelect(0, p, 0);
6899     }
6900 #endif
6901   }else{
6902     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6903   }
6904 
6905 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6906   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6907    && countOfViewOptimization(pParse, p)
6908   ){
6909     if( db->mallocFailed ) goto select_end;
6910     pEList = p->pEList;
6911     pTabList = p->pSrc;
6912   }
6913 #endif
6914 
6915   /* For each term in the FROM clause, do two things:
6916   ** (1) Authorized unreferenced tables
6917   ** (2) Generate code for all sub-queries
6918   */
6919   for(i=0; i<pTabList->nSrc; i++){
6920     SrcItem *pItem = &pTabList->a[i];
6921     SrcItem *pPrior;
6922     SelectDest dest;
6923     Select *pSub;
6924 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6925     const char *zSavedAuthContext;
6926 #endif
6927 
6928     /* Issue SQLITE_READ authorizations with a fake column name for any
6929     ** tables that are referenced but from which no values are extracted.
6930     ** Examples of where these kinds of null SQLITE_READ authorizations
6931     ** would occur:
6932     **
6933     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6934     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6935     **
6936     ** The fake column name is an empty string.  It is possible for a table to
6937     ** have a column named by the empty string, in which case there is no way to
6938     ** distinguish between an unreferenced table and an actual reference to the
6939     ** "" column. The original design was for the fake column name to be a NULL,
6940     ** which would be unambiguous.  But legacy authorization callbacks might
6941     ** assume the column name is non-NULL and segfault.  The use of an empty
6942     ** string for the fake column name seems safer.
6943     */
6944     if( pItem->colUsed==0 && pItem->zName!=0 ){
6945       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6946     }
6947 
6948 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6949     /* Generate code for all sub-queries in the FROM clause
6950     */
6951     pSub = pItem->pSelect;
6952     if( pSub==0 ) continue;
6953 
6954     /* The code for a subquery should only be generated once. */
6955     assert( pItem->addrFillSub==0 );
6956 
6957     /* Increment Parse.nHeight by the height of the largest expression
6958     ** tree referred to by this, the parent select. The child select
6959     ** may contain expression trees of at most
6960     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6961     ** more conservative than necessary, but much easier than enforcing
6962     ** an exact limit.
6963     */
6964     pParse->nHeight += sqlite3SelectExprHeight(p);
6965 
6966     /* Make copies of constant WHERE-clause terms in the outer query down
6967     ** inside the subquery.  This can help the subquery to run more efficiently.
6968     */
6969     if( OptimizationEnabled(db, SQLITE_PushDown)
6970      && (pItem->fg.isCte==0
6971          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6972      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
6973     ){
6974 #if TREETRACE_ENABLED
6975       if( sqlite3TreeTrace & 0x100 ){
6976         SELECTTRACE(0x100,pParse,p,
6977             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6978         sqlite3TreeViewSelect(0, p, 0);
6979       }
6980 #endif
6981       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6982     }else{
6983       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6984     }
6985 
6986     zSavedAuthContext = pParse->zAuthContext;
6987     pParse->zAuthContext = pItem->zName;
6988 
6989     /* Generate code to implement the subquery
6990     **
6991     ** The subquery is implemented as a co-routine if all of the following are
6992     ** true:
6993     **
6994     **    (1)  the subquery is guaranteed to be the outer loop (so that
6995     **         it does not need to be computed more than once), and
6996     **    (2)  the subquery is not a CTE that should be materialized
6997     **    (3)  the subquery is not part of a left operand for a RIGHT JOIN
6998     */
6999     if( i==0
7000      && (pTabList->nSrc==1
7001             || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)  /* (1) */
7002      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)   /* (2) */
7003      && (pTabList->a[0].fg.jointype & JT_LTORJ)==0                   /* (3) */
7004     ){
7005       /* Implement a co-routine that will return a single row of the result
7006       ** set on each invocation.
7007       */
7008       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7009 
7010       pItem->regReturn = ++pParse->nMem;
7011       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7012       VdbeComment((v, "%!S", pItem));
7013       pItem->addrFillSub = addrTop;
7014       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7015       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7016       sqlite3Select(pParse, pSub, &dest);
7017       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7018       pItem->fg.viaCoroutine = 1;
7019       pItem->regResult = dest.iSdst;
7020       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7021       sqlite3VdbeJumpHere(v, addrTop-1);
7022       sqlite3ClearTempRegCache(pParse);
7023     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7024       /* This is a CTE for which materialization code has already been
7025       ** generated.  Invoke the subroutine to compute the materialization,
7026       ** the make the pItem->iCursor be a copy of the ephemerial table that
7027       ** holds the result of the materialization. */
7028       CteUse *pCteUse = pItem->u2.pCteUse;
7029       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7030       if( pItem->iCursor!=pCteUse->iCur ){
7031         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7032         VdbeComment((v, "%!S", pItem));
7033       }
7034       pSub->nSelectRow = pCteUse->nRowEst;
7035     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
7036       /* This view has already been materialized by a prior entry in
7037       ** this same FROM clause.  Reuse it. */
7038       if( pPrior->addrFillSub ){
7039         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7040       }
7041       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7042       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7043     }else{
7044       /* Materialize the view.  If the view is not correlated, generate a
7045       ** subroutine to do the materialization so that subsequent uses of
7046       ** the same view can reuse the materialization. */
7047       int topAddr;
7048       int onceAddr = 0;
7049 
7050       pItem->regReturn = ++pParse->nMem;
7051       topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7052       pItem->addrFillSub = topAddr+1;
7053       pItem->fg.isMaterialized = 1;
7054       if( pItem->fg.isCorrelated==0 ){
7055         /* If the subquery is not correlated and if we are not inside of
7056         ** a trigger, then we only need to compute the value of the subquery
7057         ** once. */
7058         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7059         VdbeComment((v, "materialize %!S", pItem));
7060       }else{
7061         VdbeNoopComment((v, "materialize %!S", pItem));
7062       }
7063       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7064       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
7065       sqlite3Select(pParse, pSub, &dest);
7066       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7067       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7068       sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7069       VdbeComment((v, "end %!S", pItem));
7070       sqlite3VdbeJumpHere(v, topAddr);
7071       sqlite3ClearTempRegCache(pParse);
7072       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7073         CteUse *pCteUse = pItem->u2.pCteUse;
7074         pCteUse->addrM9e = pItem->addrFillSub;
7075         pCteUse->regRtn = pItem->regReturn;
7076         pCteUse->iCur = pItem->iCursor;
7077         pCteUse->nRowEst = pSub->nSelectRow;
7078       }
7079     }
7080     if( db->mallocFailed ) goto select_end;
7081     pParse->nHeight -= sqlite3SelectExprHeight(p);
7082     pParse->zAuthContext = zSavedAuthContext;
7083 #endif
7084   }
7085 
7086   /* Various elements of the SELECT copied into local variables for
7087   ** convenience */
7088   pEList = p->pEList;
7089   pWhere = p->pWhere;
7090   pGroupBy = p->pGroupBy;
7091   pHaving = p->pHaving;
7092   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7093 
7094 #if TREETRACE_ENABLED
7095   if( sqlite3TreeTrace & 0x400 ){
7096     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
7097     sqlite3TreeViewSelect(0, p, 0);
7098   }
7099 #endif
7100 
7101   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7102   ** if the select-list is the same as the ORDER BY list, then this query
7103   ** can be rewritten as a GROUP BY. In other words, this:
7104   **
7105   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
7106   **
7107   ** is transformed to:
7108   **
7109   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7110   **
7111   ** The second form is preferred as a single index (or temp-table) may be
7112   ** used for both the ORDER BY and DISTINCT processing. As originally
7113   ** written the query must use a temp-table for at least one of the ORDER
7114   ** BY and DISTINCT, and an index or separate temp-table for the other.
7115   */
7116   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7117    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7118 #ifndef SQLITE_OMIT_WINDOWFUNC
7119    && p->pWin==0
7120 #endif
7121   ){
7122     p->selFlags &= ~SF_Distinct;
7123     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7124     p->selFlags |= SF_Aggregate;
7125     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7126     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
7127     ** original setting of the SF_Distinct flag, not the current setting */
7128     assert( sDistinct.isTnct );
7129     sDistinct.isTnct = 2;
7130 
7131 #if TREETRACE_ENABLED
7132     if( sqlite3TreeTrace & 0x400 ){
7133       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7134       sqlite3TreeViewSelect(0, p, 0);
7135     }
7136 #endif
7137   }
7138 
7139   /* If there is an ORDER BY clause, then create an ephemeral index to
7140   ** do the sorting.  But this sorting ephemeral index might end up
7141   ** being unused if the data can be extracted in pre-sorted order.
7142   ** If that is the case, then the OP_OpenEphemeral instruction will be
7143   ** changed to an OP_Noop once we figure out that the sorting index is
7144   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
7145   ** that change.
7146   */
7147   if( sSort.pOrderBy ){
7148     KeyInfo *pKeyInfo;
7149     pKeyInfo = sqlite3KeyInfoFromExprList(
7150         pParse, sSort.pOrderBy, 0, pEList->nExpr);
7151     sSort.iECursor = pParse->nTab++;
7152     sSort.addrSortIndex =
7153       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7154           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7155           (char*)pKeyInfo, P4_KEYINFO
7156       );
7157   }else{
7158     sSort.addrSortIndex = -1;
7159   }
7160 
7161   /* If the output is destined for a temporary table, open that table.
7162   */
7163   if( pDest->eDest==SRT_EphemTab ){
7164     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7165     if( p->selFlags & SF_NestedFrom ){
7166       /* Delete or NULL-out result columns that will never be used */
7167       int ii;
7168       for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7169         sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7170         sqlite3DbFree(db, pEList->a[ii].zEName);
7171         pEList->nExpr--;
7172       }
7173       for(ii=0; ii<pEList->nExpr; ii++){
7174         if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7175       }
7176     }
7177   }
7178 
7179   /* Set the limiter.
7180   */
7181   iEnd = sqlite3VdbeMakeLabel(pParse);
7182   if( (p->selFlags & SF_FixedLimit)==0 ){
7183     p->nSelectRow = 320;  /* 4 billion rows */
7184   }
7185   computeLimitRegisters(pParse, p, iEnd);
7186   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7187     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7188     sSort.sortFlags |= SORTFLAG_UseSorter;
7189   }
7190 
7191   /* Open an ephemeral index to use for the distinct set.
7192   */
7193   if( p->selFlags & SF_Distinct ){
7194     sDistinct.tabTnct = pParse->nTab++;
7195     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7196                        sDistinct.tabTnct, 0, 0,
7197                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7198                        P4_KEYINFO);
7199     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7200     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7201   }else{
7202     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7203   }
7204 
7205   if( !isAgg && pGroupBy==0 ){
7206     /* No aggregate functions and no GROUP BY clause */
7207     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7208                    | (p->selFlags & SF_FixedLimit);
7209 #ifndef SQLITE_OMIT_WINDOWFUNC
7210     Window *pWin = p->pWin;      /* Main window object (or NULL) */
7211     if( pWin ){
7212       sqlite3WindowCodeInit(pParse, p);
7213     }
7214 #endif
7215     assert( WHERE_USE_LIMIT==SF_FixedLimit );
7216 
7217 
7218     /* Begin the database scan. */
7219     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7220     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7221                                p->pEList, p, wctrlFlags, p->nSelectRow);
7222     if( pWInfo==0 ) goto select_end;
7223     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7224       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7225     }
7226     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7227       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7228     }
7229     if( sSort.pOrderBy ){
7230       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7231       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7232       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7233         sSort.pOrderBy = 0;
7234       }
7235     }
7236     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7237 
7238     /* If sorting index that was created by a prior OP_OpenEphemeral
7239     ** instruction ended up not being needed, then change the OP_OpenEphemeral
7240     ** into an OP_Noop.
7241     */
7242     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7243       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7244     }
7245 
7246     assert( p->pEList==pEList );
7247 #ifndef SQLITE_OMIT_WINDOWFUNC
7248     if( pWin ){
7249       int addrGosub = sqlite3VdbeMakeLabel(pParse);
7250       int iCont = sqlite3VdbeMakeLabel(pParse);
7251       int iBreak = sqlite3VdbeMakeLabel(pParse);
7252       int regGosub = ++pParse->nMem;
7253 
7254       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7255 
7256       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7257       sqlite3VdbeResolveLabel(v, addrGosub);
7258       VdbeNoopComment((v, "inner-loop subroutine"));
7259       sSort.labelOBLopt = 0;
7260       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7261       sqlite3VdbeResolveLabel(v, iCont);
7262       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7263       VdbeComment((v, "end inner-loop subroutine"));
7264       sqlite3VdbeResolveLabel(v, iBreak);
7265     }else
7266 #endif /* SQLITE_OMIT_WINDOWFUNC */
7267     {
7268       /* Use the standard inner loop. */
7269       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7270           sqlite3WhereContinueLabel(pWInfo),
7271           sqlite3WhereBreakLabel(pWInfo));
7272 
7273       /* End the database scan loop.
7274       */
7275       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7276       sqlite3WhereEnd(pWInfo);
7277     }
7278   }else{
7279     /* This case when there exist aggregate functions or a GROUP BY clause
7280     ** or both */
7281     NameContext sNC;    /* Name context for processing aggregate information */
7282     int iAMem;          /* First Mem address for storing current GROUP BY */
7283     int iBMem;          /* First Mem address for previous GROUP BY */
7284     int iUseFlag;       /* Mem address holding flag indicating that at least
7285                         ** one row of the input to the aggregator has been
7286                         ** processed */
7287     int iAbortFlag;     /* Mem address which causes query abort if positive */
7288     int groupBySort;    /* Rows come from source in GROUP BY order */
7289     int addrEnd;        /* End of processing for this SELECT */
7290     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
7291     int sortOut = 0;    /* Output register from the sorter */
7292     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7293 
7294     /* Remove any and all aliases between the result set and the
7295     ** GROUP BY clause.
7296     */
7297     if( pGroupBy ){
7298       int k;                        /* Loop counter */
7299       struct ExprList_item *pItem;  /* For looping over expression in a list */
7300 
7301       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7302         pItem->u.x.iAlias = 0;
7303       }
7304       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7305         pItem->u.x.iAlias = 0;
7306       }
7307       assert( 66==sqlite3LogEst(100) );
7308       if( p->nSelectRow>66 ) p->nSelectRow = 66;
7309 
7310       /* If there is both a GROUP BY and an ORDER BY clause and they are
7311       ** identical, then it may be possible to disable the ORDER BY clause
7312       ** on the grounds that the GROUP BY will cause elements to come out
7313       ** in the correct order. It also may not - the GROUP BY might use a
7314       ** database index that causes rows to be grouped together as required
7315       ** but not actually sorted. Either way, record the fact that the
7316       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7317       ** variable.  */
7318       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7319         int ii;
7320         /* The GROUP BY processing doesn't care whether rows are delivered in
7321         ** ASC or DESC order - only that each group is returned contiguously.
7322         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7323         ** ORDER BY to maximize the chances of rows being delivered in an
7324         ** order that makes the ORDER BY redundant.  */
7325         for(ii=0; ii<pGroupBy->nExpr; ii++){
7326           u8 sortFlags;
7327           sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7328           pGroupBy->a[ii].fg.sortFlags = sortFlags;
7329         }
7330         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7331           orderByGrp = 1;
7332         }
7333       }
7334     }else{
7335       assert( 0==sqlite3LogEst(1) );
7336       p->nSelectRow = 0;
7337     }
7338 
7339     /* Create a label to jump to when we want to abort the query */
7340     addrEnd = sqlite3VdbeMakeLabel(pParse);
7341 
7342     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7343     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7344     ** SELECT statement.
7345     */
7346     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7347     if( pAggInfo ){
7348       sqlite3ParserAddCleanup(pParse,
7349           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7350       testcase( pParse->earlyCleanup );
7351     }
7352     if( db->mallocFailed ){
7353       goto select_end;
7354     }
7355     pAggInfo->selId = p->selId;
7356     memset(&sNC, 0, sizeof(sNC));
7357     sNC.pParse = pParse;
7358     sNC.pSrcList = pTabList;
7359     sNC.uNC.pAggInfo = pAggInfo;
7360     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7361     pAggInfo->mnReg = pParse->nMem+1;
7362     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7363     pAggInfo->pGroupBy = pGroupBy;
7364     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7365     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7366     if( pHaving ){
7367       if( pGroupBy ){
7368         assert( pWhere==p->pWhere );
7369         assert( pHaving==p->pHaving );
7370         assert( pGroupBy==p->pGroupBy );
7371         havingToWhere(pParse, p);
7372         pWhere = p->pWhere;
7373       }
7374       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7375     }
7376     pAggInfo->nAccumulator = pAggInfo->nColumn;
7377     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7378       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7379     }else{
7380       minMaxFlag = WHERE_ORDERBY_NORMAL;
7381     }
7382     for(i=0; i<pAggInfo->nFunc; i++){
7383       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7384       assert( ExprUseXList(pExpr) );
7385       sNC.ncFlags |= NC_InAggFunc;
7386       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7387 #ifndef SQLITE_OMIT_WINDOWFUNC
7388       assert( !IsWindowFunc(pExpr) );
7389       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7390         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7391       }
7392 #endif
7393       sNC.ncFlags &= ~NC_InAggFunc;
7394     }
7395     pAggInfo->mxReg = pParse->nMem;
7396     if( db->mallocFailed ) goto select_end;
7397 #if TREETRACE_ENABLED
7398     if( sqlite3TreeTrace & 0x400 ){
7399       int ii;
7400       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7401       sqlite3TreeViewSelect(0, p, 0);
7402       if( minMaxFlag ){
7403         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7404         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7405       }
7406       for(ii=0; ii<pAggInfo->nColumn; ii++){
7407         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7408             ii, pAggInfo->aCol[ii].iMem);
7409         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7410       }
7411       for(ii=0; ii<pAggInfo->nFunc; ii++){
7412         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7413             ii, pAggInfo->aFunc[ii].iMem);
7414         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7415       }
7416     }
7417 #endif
7418 
7419 
7420     /* Processing for aggregates with GROUP BY is very different and
7421     ** much more complex than aggregates without a GROUP BY.
7422     */
7423     if( pGroupBy ){
7424       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7425       int addr1;          /* A-vs-B comparision jump */
7426       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7427       int regOutputRow;   /* Return address register for output subroutine */
7428       int addrSetAbort;   /* Set the abort flag and return */
7429       int addrTopOfLoop;  /* Top of the input loop */
7430       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7431       int addrReset;      /* Subroutine for resetting the accumulator */
7432       int regReset;       /* Return address register for reset subroutine */
7433       ExprList *pDistinct = 0;
7434       u16 distFlag = 0;
7435       int eDist = WHERE_DISTINCT_NOOP;
7436 
7437       if( pAggInfo->nFunc==1
7438        && pAggInfo->aFunc[0].iDistinct>=0
7439        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7440        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7441        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7442       ){
7443         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7444         pExpr = sqlite3ExprDup(db, pExpr, 0);
7445         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7446         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7447         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7448       }
7449 
7450       /* If there is a GROUP BY clause we might need a sorting index to
7451       ** implement it.  Allocate that sorting index now.  If it turns out
7452       ** that we do not need it after all, the OP_SorterOpen instruction
7453       ** will be converted into a Noop.
7454       */
7455       pAggInfo->sortingIdx = pParse->nTab++;
7456       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7457                                             0, pAggInfo->nColumn);
7458       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7459           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7460           0, (char*)pKeyInfo, P4_KEYINFO);
7461 
7462       /* Initialize memory locations used by GROUP BY aggregate processing
7463       */
7464       iUseFlag = ++pParse->nMem;
7465       iAbortFlag = ++pParse->nMem;
7466       regOutputRow = ++pParse->nMem;
7467       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7468       regReset = ++pParse->nMem;
7469       addrReset = sqlite3VdbeMakeLabel(pParse);
7470       iAMem = pParse->nMem + 1;
7471       pParse->nMem += pGroupBy->nExpr;
7472       iBMem = pParse->nMem + 1;
7473       pParse->nMem += pGroupBy->nExpr;
7474       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7475       VdbeComment((v, "clear abort flag"));
7476       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7477 
7478       /* Begin a loop that will extract all source rows in GROUP BY order.
7479       ** This might involve two separate loops with an OP_Sort in between, or
7480       ** it might be a single loop that uses an index to extract information
7481       ** in the right order to begin with.
7482       */
7483       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7484       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7485       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7486           0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7487           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7488       );
7489       if( pWInfo==0 ){
7490         sqlite3ExprListDelete(db, pDistinct);
7491         goto select_end;
7492       }
7493       eDist = sqlite3WhereIsDistinct(pWInfo);
7494       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7495       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7496         /* The optimizer is able to deliver rows in group by order so
7497         ** we do not have to sort.  The OP_OpenEphemeral table will be
7498         ** cancelled later because we still need to use the pKeyInfo
7499         */
7500         groupBySort = 0;
7501       }else{
7502         /* Rows are coming out in undetermined order.  We have to push
7503         ** each row into a sorting index, terminate the first loop,
7504         ** then loop over the sorting index in order to get the output
7505         ** in sorted order
7506         */
7507         int regBase;
7508         int regRecord;
7509         int nCol;
7510         int nGroupBy;
7511 
7512         explainTempTable(pParse,
7513             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7514                     "DISTINCT" : "GROUP BY");
7515 
7516         groupBySort = 1;
7517         nGroupBy = pGroupBy->nExpr;
7518         nCol = nGroupBy;
7519         j = nGroupBy;
7520         for(i=0; i<pAggInfo->nColumn; i++){
7521           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7522             nCol++;
7523             j++;
7524           }
7525         }
7526         regBase = sqlite3GetTempRange(pParse, nCol);
7527         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7528         j = nGroupBy;
7529         for(i=0; i<pAggInfo->nColumn; i++){
7530           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7531           if( pCol->iSorterColumn>=j ){
7532             int r1 = j + regBase;
7533             sqlite3ExprCodeGetColumnOfTable(v,
7534                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7535             j++;
7536           }
7537         }
7538         regRecord = sqlite3GetTempReg(pParse);
7539         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7540         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7541         sqlite3ReleaseTempReg(pParse, regRecord);
7542         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7543         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7544         sqlite3WhereEnd(pWInfo);
7545         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7546         sortOut = sqlite3GetTempReg(pParse);
7547         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7548         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7549         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7550         pAggInfo->useSortingIdx = 1;
7551       }
7552 
7553       /* If the index or temporary table used by the GROUP BY sort
7554       ** will naturally deliver rows in the order required by the ORDER BY
7555       ** clause, cancel the ephemeral table open coded earlier.
7556       **
7557       ** This is an optimization - the correct answer should result regardless.
7558       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7559       ** disable this optimization for testing purposes.  */
7560       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7561        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7562       ){
7563         sSort.pOrderBy = 0;
7564         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7565       }
7566 
7567       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7568       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7569       ** Then compare the current GROUP BY terms against the GROUP BY terms
7570       ** from the previous row currently stored in a0, a1, a2...
7571       */
7572       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7573       if( groupBySort ){
7574         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7575                           sortOut, sortPTab);
7576       }
7577       for(j=0; j<pGroupBy->nExpr; j++){
7578         if( groupBySort ){
7579           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7580         }else{
7581           pAggInfo->directMode = 1;
7582           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7583         }
7584       }
7585       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7586                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7587       addr1 = sqlite3VdbeCurrentAddr(v);
7588       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7589 
7590       /* Generate code that runs whenever the GROUP BY changes.
7591       ** Changes in the GROUP BY are detected by the previous code
7592       ** block.  If there were no changes, this block is skipped.
7593       **
7594       ** This code copies current group by terms in b0,b1,b2,...
7595       ** over to a0,a1,a2.  It then calls the output subroutine
7596       ** and resets the aggregate accumulator registers in preparation
7597       ** for the next GROUP BY batch.
7598       */
7599       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7600       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7601       VdbeComment((v, "output one row"));
7602       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7603       VdbeComment((v, "check abort flag"));
7604       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7605       VdbeComment((v, "reset accumulator"));
7606 
7607       /* Update the aggregate accumulators based on the content of
7608       ** the current row
7609       */
7610       sqlite3VdbeJumpHere(v, addr1);
7611       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7612       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7613       VdbeComment((v, "indicate data in accumulator"));
7614 
7615       /* End of the loop
7616       */
7617       if( groupBySort ){
7618         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7619         VdbeCoverage(v);
7620       }else{
7621         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7622         sqlite3WhereEnd(pWInfo);
7623         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7624       }
7625       sqlite3ExprListDelete(db, pDistinct);
7626 
7627       /* Output the final row of result
7628       */
7629       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7630       VdbeComment((v, "output final row"));
7631 
7632       /* Jump over the subroutines
7633       */
7634       sqlite3VdbeGoto(v, addrEnd);
7635 
7636       /* Generate a subroutine that outputs a single row of the result
7637       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7638       ** is less than or equal to zero, the subroutine is a no-op.  If
7639       ** the processing calls for the query to abort, this subroutine
7640       ** increments the iAbortFlag memory location before returning in
7641       ** order to signal the caller to abort.
7642       */
7643       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7644       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7645       VdbeComment((v, "set abort flag"));
7646       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7647       sqlite3VdbeResolveLabel(v, addrOutputRow);
7648       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7649       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7650       VdbeCoverage(v);
7651       VdbeComment((v, "Groupby result generator entry point"));
7652       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7653       finalizeAggFunctions(pParse, pAggInfo);
7654       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7655       selectInnerLoop(pParse, p, -1, &sSort,
7656                       &sDistinct, pDest,
7657                       addrOutputRow+1, addrSetAbort);
7658       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7659       VdbeComment((v, "end groupby result generator"));
7660 
7661       /* Generate a subroutine that will reset the group-by accumulator
7662       */
7663       sqlite3VdbeResolveLabel(v, addrReset);
7664       resetAccumulator(pParse, pAggInfo);
7665       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7666       VdbeComment((v, "indicate accumulator empty"));
7667       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7668 
7669       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7670         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7671         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7672       }
7673     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7674     else {
7675       Table *pTab;
7676       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7677         /* If isSimpleCount() returns a pointer to a Table structure, then
7678         ** the SQL statement is of the form:
7679         **
7680         **   SELECT count(*) FROM <tbl>
7681         **
7682         ** where the Table structure returned represents table <tbl>.
7683         **
7684         ** This statement is so common that it is optimized specially. The
7685         ** OP_Count instruction is executed either on the intkey table that
7686         ** contains the data for table <tbl> or on one of its indexes. It
7687         ** is better to execute the op on an index, as indexes are almost
7688         ** always spread across less pages than their corresponding tables.
7689         */
7690         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7691         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7692         Index *pIdx;                         /* Iterator variable */
7693         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7694         Index *pBest = 0;                    /* Best index found so far */
7695         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7696 
7697         sqlite3CodeVerifySchema(pParse, iDb);
7698         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7699 
7700         /* Search for the index that has the lowest scan cost.
7701         **
7702         ** (2011-04-15) Do not do a full scan of an unordered index.
7703         **
7704         ** (2013-10-03) Do not count the entries in a partial index.
7705         **
7706         ** In practice the KeyInfo structure will not be used. It is only
7707         ** passed to keep OP_OpenRead happy.
7708         */
7709         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7710         if( !p->pSrc->a[0].fg.notIndexed ){
7711           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7712             if( pIdx->bUnordered==0
7713              && pIdx->szIdxRow<pTab->szTabRow
7714              && pIdx->pPartIdxWhere==0
7715              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7716             ){
7717               pBest = pIdx;
7718             }
7719           }
7720         }
7721         if( pBest ){
7722           iRoot = pBest->tnum;
7723           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7724         }
7725 
7726         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7727         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7728         if( pKeyInfo ){
7729           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7730         }
7731         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7732         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7733         explainSimpleCount(pParse, pTab, pBest);
7734       }else{
7735         int regAcc = 0;           /* "populate accumulators" flag */
7736         ExprList *pDistinct = 0;
7737         u16 distFlag = 0;
7738         int eDist;
7739 
7740         /* If there are accumulator registers but no min() or max() functions
7741         ** without FILTER clauses, allocate register regAcc. Register regAcc
7742         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7743         ** The code generated by updateAccumulator() uses this to ensure
7744         ** that the accumulator registers are (a) updated only once if
7745         ** there are no min() or max functions or (b) always updated for the
7746         ** first row visited by the aggregate, so that they are updated at
7747         ** least once even if the FILTER clause means the min() or max()
7748         ** function visits zero rows.  */
7749         if( pAggInfo->nAccumulator ){
7750           for(i=0; i<pAggInfo->nFunc; i++){
7751             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7752               continue;
7753             }
7754             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7755               break;
7756             }
7757           }
7758           if( i==pAggInfo->nFunc ){
7759             regAcc = ++pParse->nMem;
7760             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7761           }
7762         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7763           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7764           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7765           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7766         }
7767 
7768         /* This case runs if the aggregate has no GROUP BY clause.  The
7769         ** processing is much simpler since there is only a single row
7770         ** of output.
7771         */
7772         assert( p->pGroupBy==0 );
7773         resetAccumulator(pParse, pAggInfo);
7774 
7775         /* If this query is a candidate for the min/max optimization, then
7776         ** minMaxFlag will have been previously set to either
7777         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7778         ** be an appropriate ORDER BY expression for the optimization.
7779         */
7780         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7781         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7782 
7783         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7784         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7785                                    pDistinct, 0, minMaxFlag|distFlag, 0);
7786         if( pWInfo==0 ){
7787           goto select_end;
7788         }
7789         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7790         eDist = sqlite3WhereIsDistinct(pWInfo);
7791         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7792         if( eDist!=WHERE_DISTINCT_NOOP ){
7793           struct AggInfo_func *pF = pAggInfo->aFunc;
7794           if( pF ){
7795             fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7796           }
7797         }
7798 
7799         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7800         if( minMaxFlag ){
7801           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7802         }
7803         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7804         sqlite3WhereEnd(pWInfo);
7805         finalizeAggFunctions(pParse, pAggInfo);
7806       }
7807 
7808       sSort.pOrderBy = 0;
7809       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7810       selectInnerLoop(pParse, p, -1, 0, 0,
7811                       pDest, addrEnd, addrEnd);
7812     }
7813     sqlite3VdbeResolveLabel(v, addrEnd);
7814 
7815   } /* endif aggregate query */
7816 
7817   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7818     explainTempTable(pParse, "DISTINCT");
7819   }
7820 
7821   /* If there is an ORDER BY clause, then we need to sort the results
7822   ** and send them to the callback one by one.
7823   */
7824   if( sSort.pOrderBy ){
7825     explainTempTable(pParse,
7826                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7827     assert( p->pEList==pEList );
7828     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7829   }
7830 
7831   /* Jump here to skip this query
7832   */
7833   sqlite3VdbeResolveLabel(v, iEnd);
7834 
7835   /* The SELECT has been coded. If there is an error in the Parse structure,
7836   ** set the return code to 1. Otherwise 0. */
7837   rc = (pParse->nErr>0);
7838 
7839   /* Control jumps to here if an error is encountered above, or upon
7840   ** successful coding of the SELECT.
7841   */
7842 select_end:
7843   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7844   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7845   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7846 #ifdef SQLITE_DEBUG
7847   if( pAggInfo && !db->mallocFailed ){
7848     for(i=0; i<pAggInfo->nColumn; i++){
7849       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7850       assert( pExpr!=0 );
7851       assert( pExpr->pAggInfo==pAggInfo );
7852       assert( pExpr->iAgg==i );
7853     }
7854     for(i=0; i<pAggInfo->nFunc; i++){
7855       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7856       assert( pExpr!=0 );
7857       assert( pExpr->pAggInfo==pAggInfo );
7858       assert( pExpr->iAgg==i );
7859     }
7860   }
7861 #endif
7862 
7863 #if TREETRACE_ENABLED
7864   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7865   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7866     sqlite3TreeViewSelect(0, p, 0);
7867   }
7868 #endif
7869   ExplainQueryPlanPop(pParse);
7870   return rc;
7871 }
7872