xref: /sqlite-3.40.0/src/select.c (revision 0cb735b9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90       sqlite3WindowListDelete(db, p->pWinDefn);
91     }
92 #endif
93     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94     if( bFree ) sqlite3DbFreeNN(db, p);
95     p = pPrior;
96     bFree = 1;
97   }
98 }
99 
100 /*
101 ** Initialize a SelectDest structure.
102 */
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104   pDest->eDest = (u8)eDest;
105   pDest->iSDParm = iParm;
106   pDest->iSDParm2 = 0;
107   pDest->zAffSdst = 0;
108   pDest->iSdst = 0;
109   pDest->nSdst = 0;
110 }
111 
112 
113 /*
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
116 */
117 Select *sqlite3SelectNew(
118   Parse *pParse,        /* Parsing context */
119   ExprList *pEList,     /* which columns to include in the result */
120   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
121   Expr *pWhere,         /* the WHERE clause */
122   ExprList *pGroupBy,   /* the GROUP BY clause */
123   Expr *pHaving,        /* the HAVING clause */
124   ExprList *pOrderBy,   /* the ORDER BY clause */
125   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
126   Expr *pLimit          /* LIMIT value.  NULL means not used */
127 ){
128   Select *pNew, *pAllocated;
129   Select standin;
130   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131   if( pNew==0 ){
132     assert( pParse->db->mallocFailed );
133     pNew = &standin;
134   }
135   if( pEList==0 ){
136     pEList = sqlite3ExprListAppend(pParse, 0,
137                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
138   }
139   pNew->pEList = pEList;
140   pNew->op = TK_SELECT;
141   pNew->selFlags = selFlags;
142   pNew->iLimit = 0;
143   pNew->iOffset = 0;
144   pNew->selId = ++pParse->nSelect;
145   pNew->addrOpenEphm[0] = -1;
146   pNew->addrOpenEphm[1] = -1;
147   pNew->nSelectRow = 0;
148   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149   pNew->pSrc = pSrc;
150   pNew->pWhere = pWhere;
151   pNew->pGroupBy = pGroupBy;
152   pNew->pHaving = pHaving;
153   pNew->pOrderBy = pOrderBy;
154   pNew->pPrior = 0;
155   pNew->pNext = 0;
156   pNew->pLimit = pLimit;
157   pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159   pNew->pWin = 0;
160   pNew->pWinDefn = 0;
161 #endif
162   if( pParse->db->mallocFailed ) {
163     clearSelect(pParse->db, pNew, pNew!=&standin);
164     pAllocated = 0;
165   }else{
166     assert( pNew->pSrc!=0 || pParse->nErr>0 );
167   }
168   return pAllocated;
169 }
170 
171 
172 /*
173 ** Delete the given Select structure and all of its substructures.
174 */
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
177 }
178 
179 /*
180 ** Return a pointer to the right-most SELECT statement in a compound.
181 */
182 static Select *findRightmost(Select *p){
183   while( p->pNext ) p = p->pNext;
184   return p;
185 }
186 
187 /*
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join.  Return an integer constant that expresses that type
190 ** in terms of the following bit values:
191 **
192 **     JT_INNER
193 **     JT_CROSS
194 **     JT_OUTER
195 **     JT_NATURAL
196 **     JT_LEFT
197 **     JT_RIGHT
198 **
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
200 **
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
203 */
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205   int jointype = 0;
206   Token *apAll[3];
207   Token *p;
208                              /*   0123456789 123456789 123456789 123 */
209   static const char zKeyText[] = "naturaleftouterightfullinnercross";
210   static const struct {
211     u8 i;        /* Beginning of keyword text in zKeyText[] */
212     u8 nChar;    /* Length of the keyword in characters */
213     u8 code;     /* Join type mask */
214   } aKeyword[] = {
215     /* natural */ { 0,  7, JT_NATURAL                },
216     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
217     /* outer   */ { 10, 5, JT_OUTER                  },
218     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
219     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220     /* inner   */ { 23, 5, JT_INNER                  },
221     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
222   };
223   int i, j;
224   apAll[0] = pA;
225   apAll[1] = pB;
226   apAll[2] = pC;
227   for(i=0; i<3 && apAll[i]; i++){
228     p = apAll[i];
229     for(j=0; j<ArraySize(aKeyword); j++){
230       if( p->n==aKeyword[j].nChar
231           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232         jointype |= aKeyword[j].code;
233         break;
234       }
235     }
236     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237     if( j>=ArraySize(aKeyword) ){
238       jointype |= JT_ERROR;
239       break;
240     }
241   }
242   if(
243      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244      (jointype & JT_ERROR)!=0
245   ){
246     const char *zSp = " ";
247     assert( pB!=0 );
248     if( pC==0 ){ zSp++; }
249     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250        "%T %T%s%T", pA, pB, zSp, pC);
251     jointype = JT_INNER;
252   }else if( (jointype & JT_OUTER)!=0
253          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254     sqlite3ErrorMsg(pParse,
255       "RIGHT and FULL OUTER JOINs are not currently supported");
256     jointype = JT_INNER;
257   }
258   return jointype;
259 }
260 
261 /*
262 ** Return the index of a column in a table.  Return -1 if the column
263 ** is not contained in the table.
264 */
265 static int columnIndex(Table *pTab, const char *zCol){
266   int i;
267   u8 h = sqlite3StrIHash(zCol);
268   Column *pCol;
269   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
271   }
272   return -1;
273 }
274 
275 /*
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
278 **
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
281 **
282 ** If not found, return FALSE.
283 */
284 static int tableAndColumnIndex(
285   SrcList *pSrc,       /* Array of tables to search */
286   int N,               /* Number of tables in pSrc->a[] to search */
287   const char *zCol,    /* Name of the column we are looking for */
288   int *piTab,          /* Write index of pSrc->a[] here */
289   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290   int bIgnoreHidden    /* True to ignore hidden columns */
291 ){
292   int i;               /* For looping over tables in pSrc */
293   int iCol;            /* Index of column matching zCol */
294 
295   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
296   for(i=0; i<N; i++){
297     iCol = columnIndex(pSrc->a[i].pTab, zCol);
298     if( iCol>=0
299      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
300     ){
301       if( piTab ){
302         *piTab = i;
303         *piCol = iCol;
304       }
305       return 1;
306     }
307   }
308   return 0;
309 }
310 
311 /*
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
315 **
316 **    (tab1.col1 = tab2.col2)
317 **
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
321 */
322 static void addWhereTerm(
323   Parse *pParse,                  /* Parsing context */
324   SrcList *pSrc,                  /* List of tables in FROM clause */
325   int iLeft,                      /* Index of first table to join in pSrc */
326   int iColLeft,                   /* Index of column in first table */
327   int iRight,                     /* Index of second table in pSrc */
328   int iColRight,                  /* Index of column in second table */
329   int isOuterJoin,                /* True if this is an OUTER join */
330   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
331 ){
332   sqlite3 *db = pParse->db;
333   Expr *pE1;
334   Expr *pE2;
335   Expr *pEq;
336 
337   assert( iLeft<iRight );
338   assert( pSrc->nSrc>iRight );
339   assert( pSrc->a[iLeft].pTab );
340   assert( pSrc->a[iRight].pTab );
341 
342   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
344 
345   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346   if( pEq && isOuterJoin ){
347     ExprSetProperty(pEq, EP_FromJoin);
348     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349     ExprSetVVAProperty(pEq, EP_NoReduce);
350     pEq->iRightJoinTable = pE2->iTable;
351   }
352   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
353 }
354 
355 /*
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
359 **
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause.  These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
366 **
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression.  That information is needed
370 ** for cases like this:
371 **
372 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
373 **
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join.  In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
380 */
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382   while( p ){
383     ExprSetProperty(p, EP_FromJoin);
384     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385     ExprSetVVAProperty(p, EP_NoReduce);
386     p->iRightJoinTable = iTable;
387     if( p->op==TK_FUNCTION && p->x.pList ){
388       int i;
389       for(i=0; i<p->x.pList->nExpr; i++){
390         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
391       }
392     }
393     sqlite3SetJoinExpr(p->pLeft, iTable);
394     p = p->pRight;
395   }
396 }
397 
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
401 **
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
403 */
404 static void unsetJoinExpr(Expr *p, int iTable){
405   while( p ){
406     if( ExprHasProperty(p, EP_FromJoin)
407      && (iTable<0 || p->iRightJoinTable==iTable) ){
408       ExprClearProperty(p, EP_FromJoin);
409     }
410     if( p->op==TK_FUNCTION && p->x.pList ){
411       int i;
412       for(i=0; i<p->x.pList->nExpr; i++){
413         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
414       }
415     }
416     unsetJoinExpr(p->pLeft, iTable);
417     p = p->pRight;
418   }
419 }
420 
421 /*
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
425 **
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc.  The right-most
428 ** table is the last entry.  The join operator is held in the entry to
429 ** the left.  Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
432 **
433 ** This routine returns the number of errors encountered.
434 */
435 static int sqliteProcessJoin(Parse *pParse, Select *p){
436   SrcList *pSrc;                  /* All tables in the FROM clause */
437   int i, j;                       /* Loop counters */
438   struct SrcList_item *pLeft;     /* Left table being joined */
439   struct SrcList_item *pRight;    /* Right table being joined */
440 
441   pSrc = p->pSrc;
442   pLeft = &pSrc->a[0];
443   pRight = &pLeft[1];
444   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
445     Table *pRightTab = pRight->pTab;
446     int isOuter;
447 
448     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
449     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
450 
451     /* When the NATURAL keyword is present, add WHERE clause terms for
452     ** every column that the two tables have in common.
453     */
454     if( pRight->fg.jointype & JT_NATURAL ){
455       if( pRight->pOn || pRight->pUsing ){
456         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
457            "an ON or USING clause", 0);
458         return 1;
459       }
460       for(j=0; j<pRightTab->nCol; j++){
461         char *zName;   /* Name of column in the right table */
462         int iLeft;     /* Matching left table */
463         int iLeftCol;  /* Matching column in the left table */
464 
465         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
466         zName = pRightTab->aCol[j].zName;
467         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
468           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
469                 isOuter, &p->pWhere);
470         }
471       }
472     }
473 
474     /* Disallow both ON and USING clauses in the same join
475     */
476     if( pRight->pOn && pRight->pUsing ){
477       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
478         "clauses in the same join");
479       return 1;
480     }
481 
482     /* Add the ON clause to the end of the WHERE clause, connected by
483     ** an AND operator.
484     */
485     if( pRight->pOn ){
486       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
487       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
488       pRight->pOn = 0;
489     }
490 
491     /* Create extra terms on the WHERE clause for each column named
492     ** in the USING clause.  Example: If the two tables to be joined are
493     ** A and B and the USING clause names X, Y, and Z, then add this
494     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495     ** Report an error if any column mentioned in the USING clause is
496     ** not contained in both tables to be joined.
497     */
498     if( pRight->pUsing ){
499       IdList *pList = pRight->pUsing;
500       for(j=0; j<pList->nId; j++){
501         char *zName;     /* Name of the term in the USING clause */
502         int iLeft;       /* Table on the left with matching column name */
503         int iLeftCol;    /* Column number of matching column on the left */
504         int iRightCol;   /* Column number of matching column on the right */
505 
506         zName = pList->a[j].zName;
507         iRightCol = columnIndex(pRightTab, zName);
508         if( iRightCol<0
509          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
510         ){
511           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
512             "not present in both tables", zName);
513           return 1;
514         }
515         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
516                      isOuter, &p->pWhere);
517       }
518     }
519   }
520   return 0;
521 }
522 
523 /*
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
526 */
527 typedef struct RowLoadInfo RowLoadInfo;
528 struct RowLoadInfo {
529   int regResult;               /* Store results in array of registers here */
530   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532   ExprList *pExtra;            /* Extra columns needed by sorter refs */
533   int regExtraResult;          /* Where to load the extra columns */
534 #endif
535 };
536 
537 /*
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
540 */
541 static void innerLoopLoadRow(
542   Parse *pParse,             /* Statement under construction */
543   Select *pSelect,           /* The query being coded */
544   RowLoadInfo *pInfo         /* Info needed to complete the row load */
545 ){
546   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
547                           0, pInfo->ecelFlags);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   if( pInfo->pExtra ){
550     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
551     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
552   }
553 #endif
554 }
555 
556 /*
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
559 **
560 ** Return the register in which the result is stored.
561 */
562 static int makeSorterRecord(
563   Parse *pParse,
564   SortCtx *pSort,
565   Select *pSelect,
566   int regBase,
567   int nBase
568 ){
569   int nOBSat = pSort->nOBSat;
570   Vdbe *v = pParse->pVdbe;
571   int regOut = ++pParse->nMem;
572   if( pSort->pDeferredRowLoad ){
573     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
574   }
575   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
576   return regOut;
577 }
578 
579 /*
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
582 */
583 static void pushOntoSorter(
584   Parse *pParse,         /* Parser context */
585   SortCtx *pSort,        /* Information about the ORDER BY clause */
586   Select *pSelect,       /* The whole SELECT statement */
587   int regData,           /* First register holding data to be sorted */
588   int regOrigData,       /* First register holding data before packing */
589   int nData,             /* Number of elements in the regData data array */
590   int nPrefixReg         /* No. of reg prior to regData available for use */
591 ){
592   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
593   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
594   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
595   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
596   int regBase;                                     /* Regs for sorter record */
597   int regRecord = 0;                               /* Assembled sorter record */
598   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
599   int op;                            /* Opcode to add sorter record to sorter */
600   int iLimit;                        /* LIMIT counter */
601   int iSkip = 0;                     /* End of the sorter insert loop */
602 
603   assert( bSeq==0 || bSeq==1 );
604 
605   /* Three cases:
606   **   (1) The data to be sorted has already been packed into a Record
607   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
608   **       will be completely unrelated to regOrigData.
609   **   (2) All output columns are included in the sort record.  In that
610   **       case regData==regOrigData.
611   **   (3) Some output columns are omitted from the sort record due to
612   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613   **       SQLITE_ECEL_OMITREF optimization, or due to the
614   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
615   **       regOrigData is 0 to prevent this routine from trying to copy
616   **       values that might not yet exist.
617   */
618   assert( nData==1 || regData==regOrigData || regOrigData==0 );
619 
620   if( nPrefixReg ){
621     assert( nPrefixReg==nExpr+bSeq );
622     regBase = regData - nPrefixReg;
623   }else{
624     regBase = pParse->nMem + 1;
625     pParse->nMem += nBase;
626   }
627   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
628   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
629   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
630   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
631                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
632   if( bSeq ){
633     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
634   }
635   if( nPrefixReg==0 && nData>0 ){
636     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
637   }
638   if( nOBSat>0 ){
639     int regPrevKey;   /* The first nOBSat columns of the previous row */
640     int addrFirst;    /* Address of the OP_IfNot opcode */
641     int addrJmp;      /* Address of the OP_Jump opcode */
642     VdbeOp *pOp;      /* Opcode that opens the sorter */
643     int nKey;         /* Number of sorting key columns, including OP_Sequence */
644     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
645 
646     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
647     regPrevKey = pParse->nMem+1;
648     pParse->nMem += pSort->nOBSat;
649     nKey = nExpr - pSort->nOBSat + bSeq;
650     if( bSeq ){
651       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
652     }else{
653       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
654     }
655     VdbeCoverage(v);
656     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
657     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
658     if( pParse->db->mallocFailed ) return;
659     pOp->p2 = nKey + nData;
660     pKI = pOp->p4.pKeyInfo;
661     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
662     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
663     testcase( pKI->nAllField > pKI->nKeyField+2 );
664     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
665                                            pKI->nAllField-pKI->nKeyField-1);
666     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667     addrJmp = sqlite3VdbeCurrentAddr(v);
668     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
669     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
670     pSort->regReturn = ++pParse->nMem;
671     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
672     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
673     if( iLimit ){
674       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
675       VdbeCoverage(v);
676     }
677     sqlite3VdbeJumpHere(v, addrFirst);
678     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
679     sqlite3VdbeJumpHere(v, addrJmp);
680   }
681   if( iLimit ){
682     /* At this point the values for the new sorter entry are stored
683     ** in an array of registers. They need to be composed into a record
684     ** and inserted into the sorter if either (a) there are currently
685     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686     ** the largest record currently in the sorter. If (b) is true and there
687     ** are already LIMIT+OFFSET items in the sorter, delete the largest
688     ** entry before inserting the new one. This way there are never more
689     ** than LIMIT+OFFSET items in the sorter.
690     **
691     ** If the new record does not need to be inserted into the sorter,
692     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693     ** value is not zero, then it is a label of where to jump.  Otherwise,
694     ** just bypass the row insert logic.  See the header comment on the
695     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
696     */
697     int iCsr = pSort->iECursor;
698     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
699     VdbeCoverage(v);
700     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
701     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
702                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
705   }
706   if( regRecord==0 ){
707     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
708   }
709   if( pSort->sortFlags & SORTFLAG_UseSorter ){
710     op = OP_SorterInsert;
711   }else{
712     op = OP_IdxInsert;
713   }
714   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
715                        regBase+nOBSat, nBase-nOBSat);
716   if( iSkip ){
717     sqlite3VdbeChangeP2(v, iSkip,
718          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
719   }
720 }
721 
722 /*
723 ** Add code to implement the OFFSET
724 */
725 static void codeOffset(
726   Vdbe *v,          /* Generate code into this VM */
727   int iOffset,      /* Register holding the offset counter */
728   int iContinue     /* Jump here to skip the current record */
729 ){
730   if( iOffset>0 ){
731     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
732     VdbeComment((v, "OFFSET"));
733   }
734 }
735 
736 /*
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry.  iTab is a sorting index that holds previously
739 ** seen combinations of the N values.  A new entry is made in iTab
740 ** if the current N values are new.
741 **
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
744 */
745 static void codeDistinct(
746   Parse *pParse,     /* Parsing and code generating context */
747   int iTab,          /* A sorting index used to test for distinctness */
748   int addrRepeat,    /* Jump to here if not distinct */
749   int N,             /* Number of elements */
750   int iMem           /* First element */
751 ){
752   Vdbe *v;
753   int r1;
754 
755   v = pParse->pVdbe;
756   r1 = sqlite3GetTempReg(pParse);
757   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
758   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
759   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
760   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761   sqlite3ReleaseTempReg(pParse, r1);
762 }
763 
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
765 /*
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
771 **
772 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
773 **
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
780 **
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
787 ** sorter records.
788 */
789 static void selectExprDefer(
790   Parse *pParse,                  /* Leave any error here */
791   SortCtx *pSort,                 /* Sorter context */
792   ExprList *pEList,               /* Expressions destined for sorter */
793   ExprList **ppExtra              /* Expressions to append to sorter record */
794 ){
795   int i;
796   int nDefer = 0;
797   ExprList *pExtra = 0;
798   for(i=0; i<pEList->nExpr; i++){
799     struct ExprList_item *pItem = &pEList->a[i];
800     if( pItem->u.x.iOrderByCol==0 ){
801       Expr *pExpr = pItem->pExpr;
802       Table *pTab = pExpr->y.pTab;
803       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
804        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
805       ){
806         int j;
807         for(j=0; j<nDefer; j++){
808           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
809         }
810         if( j==nDefer ){
811           if( nDefer==ArraySize(pSort->aDefer) ){
812             continue;
813           }else{
814             int nKey = 1;
815             int k;
816             Index *pPk = 0;
817             if( !HasRowid(pTab) ){
818               pPk = sqlite3PrimaryKeyIndex(pTab);
819               nKey = pPk->nKeyCol;
820             }
821             for(k=0; k<nKey; k++){
822               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
823               if( pNew ){
824                 pNew->iTable = pExpr->iTable;
825                 pNew->y.pTab = pExpr->y.pTab;
826                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
827                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
828               }
829             }
830             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
831             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
832             pSort->aDefer[nDefer].nKey = nKey;
833             nDefer++;
834           }
835         }
836         pItem->bSorterRef = 1;
837       }
838     }
839   }
840   pSort->nDefer = (u8)nDefer;
841   *ppExtra = pExtra;
842 }
843 #endif
844 
845 /*
846 ** This routine generates the code for the inside of the inner loop
847 ** of a SELECT.
848 **
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row.  If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
853 */
854 static void selectInnerLoop(
855   Parse *pParse,          /* The parser context */
856   Select *p,              /* The complete select statement being coded */
857   int srcTab,             /* Pull data from this table if non-negative */
858   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
859   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
860   SelectDest *pDest,      /* How to dispose of the results */
861   int iContinue,          /* Jump here to continue with next row */
862   int iBreak              /* Jump here to break out of the inner loop */
863 ){
864   Vdbe *v = pParse->pVdbe;
865   int i;
866   int hasDistinct;            /* True if the DISTINCT keyword is present */
867   int eDest = pDest->eDest;   /* How to dispose of results */
868   int iParm = pDest->iSDParm; /* First argument to disposal method */
869   int nResultCol;             /* Number of result columns */
870   int nPrefixReg = 0;         /* Number of extra registers before regResult */
871   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
872 
873   /* Usually, regResult is the first cell in an array of memory cells
874   ** containing the current result row. In this case regOrig is set to the
875   ** same value. However, if the results are being sent to the sorter, the
876   ** values for any expressions that are also part of the sort-key are omitted
877   ** from this array. In this case regOrig is set to zero.  */
878   int regResult;              /* Start of memory holding current results */
879   int regOrig;                /* Start of memory holding full result (or 0) */
880 
881   assert( v );
882   assert( p->pEList!=0 );
883   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
884   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
885   if( pSort==0 && !hasDistinct ){
886     assert( iContinue!=0 );
887     codeOffset(v, p->iOffset, iContinue);
888   }
889 
890   /* Pull the requested columns.
891   */
892   nResultCol = p->pEList->nExpr;
893 
894   if( pDest->iSdst==0 ){
895     if( pSort ){
896       nPrefixReg = pSort->pOrderBy->nExpr;
897       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
898       pParse->nMem += nPrefixReg;
899     }
900     pDest->iSdst = pParse->nMem+1;
901     pParse->nMem += nResultCol;
902   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
903     /* This is an error condition that can result, for example, when a SELECT
904     ** on the right-hand side of an INSERT contains more result columns than
905     ** there are columns in the table on the left.  The error will be caught
906     ** and reported later.  But we need to make sure enough memory is allocated
907     ** to avoid other spurious errors in the meantime. */
908     pParse->nMem += nResultCol;
909   }
910   pDest->nSdst = nResultCol;
911   regOrig = regResult = pDest->iSdst;
912   if( srcTab>=0 ){
913     for(i=0; i<nResultCol; i++){
914       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
915       VdbeComment((v, "%s", p->pEList->a[i].zEName));
916     }
917   }else if( eDest!=SRT_Exists ){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919     ExprList *pExtra = 0;
920 #endif
921     /* If the destination is an EXISTS(...) expression, the actual
922     ** values returned by the SELECT are not required.
923     */
924     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
925     ExprList *pEList;
926     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
927       ecelFlags = SQLITE_ECEL_DUP;
928     }else{
929       ecelFlags = 0;
930     }
931     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
932       /* For each expression in p->pEList that is a copy of an expression in
933       ** the ORDER BY clause (pSort->pOrderBy), set the associated
934       ** iOrderByCol value to one more than the index of the ORDER BY
935       ** expression within the sort-key that pushOntoSorter() will generate.
936       ** This allows the p->pEList field to be omitted from the sorted record,
937       ** saving space and CPU cycles.  */
938       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
939 
940       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
941         int j;
942         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
943           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
944         }
945       }
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
948       if( pExtra && pParse->db->mallocFailed==0 ){
949         /* If there are any extra PK columns to add to the sorter records,
950         ** allocate extra memory cells and adjust the OpenEphemeral
951         ** instruction to account for the larger records. This is only
952         ** required if there are one or more WITHOUT ROWID tables with
953         ** composite primary keys in the SortCtx.aDefer[] array.  */
954         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
955         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
956         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
957         pParse->nMem += pExtra->nExpr;
958       }
959 #endif
960 
961       /* Adjust nResultCol to account for columns that are omitted
962       ** from the sorter by the optimizations in this branch */
963       pEList = p->pEList;
964       for(i=0; i<pEList->nExpr; i++){
965         if( pEList->a[i].u.x.iOrderByCol>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967          || pEList->a[i].bSorterRef
968 #endif
969         ){
970           nResultCol--;
971           regOrig = 0;
972         }
973       }
974 
975       testcase( regOrig );
976       testcase( eDest==SRT_Set );
977       testcase( eDest==SRT_Mem );
978       testcase( eDest==SRT_Coroutine );
979       testcase( eDest==SRT_Output );
980       assert( eDest==SRT_Set || eDest==SRT_Mem
981            || eDest==SRT_Coroutine || eDest==SRT_Output
982            || eDest==SRT_Upfrom );
983     }
984     sRowLoadInfo.regResult = regResult;
985     sRowLoadInfo.ecelFlags = ecelFlags;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987     sRowLoadInfo.pExtra = pExtra;
988     sRowLoadInfo.regExtraResult = regResult + nResultCol;
989     if( pExtra ) nResultCol += pExtra->nExpr;
990 #endif
991     if( p->iLimit
992      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
993      && nPrefixReg>0
994     ){
995       assert( pSort!=0 );
996       assert( hasDistinct==0 );
997       pSort->pDeferredRowLoad = &sRowLoadInfo;
998       regOrig = 0;
999     }else{
1000       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1001     }
1002   }
1003 
1004   /* If the DISTINCT keyword was present on the SELECT statement
1005   ** and this row has been seen before, then do not make this row
1006   ** part of the result.
1007   */
1008   if( hasDistinct ){
1009     switch( pDistinct->eTnctType ){
1010       case WHERE_DISTINCT_ORDERED: {
1011         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1012         int iJump;              /* Jump destination */
1013         int regPrev;            /* Previous row content */
1014 
1015         /* Allocate space for the previous row */
1016         regPrev = pParse->nMem+1;
1017         pParse->nMem += nResultCol;
1018 
1019         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020         ** sets the MEM_Cleared bit on the first register of the
1021         ** previous value.  This will cause the OP_Ne below to always
1022         ** fail on the first iteration of the loop even if the first
1023         ** row is all NULLs.
1024         */
1025         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1026         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1027         pOp->opcode = OP_Null;
1028         pOp->p1 = 1;
1029         pOp->p2 = regPrev;
1030         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1031 
1032         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1033         for(i=0; i<nResultCol; i++){
1034           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1035           if( i<nResultCol-1 ){
1036             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1037             VdbeCoverage(v);
1038           }else{
1039             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1040             VdbeCoverage(v);
1041            }
1042           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1043           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1044         }
1045         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1046         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1047         break;
1048       }
1049 
1050       case WHERE_DISTINCT_UNIQUE: {
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         break;
1053       }
1054 
1055       default: {
1056         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1057         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1058                      regResult);
1059         break;
1060       }
1061     }
1062     if( pSort==0 ){
1063       codeOffset(v, p->iOffset, iContinue);
1064     }
1065   }
1066 
1067   switch( eDest ){
1068     /* In this mode, write each query result to the key of the temporary
1069     ** table iParm.
1070     */
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072     case SRT_Union: {
1073       int r1;
1074       r1 = sqlite3GetTempReg(pParse);
1075       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1076       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1077       sqlite3ReleaseTempReg(pParse, r1);
1078       break;
1079     }
1080 
1081     /* Construct a record from the query result, but instead of
1082     ** saving that record, use it as a key to delete elements from
1083     ** the temporary table iParm.
1084     */
1085     case SRT_Except: {
1086       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1087       break;
1088     }
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1090 
1091     /* Store the result as data using a unique key.
1092     */
1093     case SRT_Fifo:
1094     case SRT_DistFifo:
1095     case SRT_Table:
1096     case SRT_EphemTab: {
1097       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1098       testcase( eDest==SRT_Table );
1099       testcase( eDest==SRT_EphemTab );
1100       testcase( eDest==SRT_Fifo );
1101       testcase( eDest==SRT_DistFifo );
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1103 #ifndef SQLITE_OMIT_CTE
1104       if( eDest==SRT_DistFifo ){
1105         /* If the destination is DistFifo, then cursor (iParm+1) is open
1106         ** on an ephemeral index. If the current row is already present
1107         ** in the index, do not write it to the output. If not, add the
1108         ** current row to the index and proceed with writing it to the
1109         ** output table as well.  */
1110         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1111         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1112         VdbeCoverage(v);
1113         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1114         assert( pSort==0 );
1115       }
1116 #endif
1117       if( pSort ){
1118         assert( regResult==regOrig );
1119         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1120       }else{
1121         int r2 = sqlite3GetTempReg(pParse);
1122         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1123         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1124         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1125         sqlite3ReleaseTempReg(pParse, r2);
1126       }
1127       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1128       break;
1129     }
1130 
1131     case SRT_Upfrom: {
1132       if( pSort ){
1133         pushOntoSorter(
1134             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1135       }else{
1136         int i2 = pDest->iSDParm2;
1137         int r1 = sqlite3GetTempReg(pParse);
1138 
1139         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140         ** might still be trying to return one row, because that is what
1141         ** aggregates do.  Don't record that empty row in the output table. */
1142         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1143 
1144         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1145                           regResult+(i2<0), nResultCol-(i2<0), r1);
1146         if( i2<0 ){
1147           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1148         }else{
1149           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1150         }
1151       }
1152       break;
1153     }
1154 
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157     ** then there should be a single item on the stack.  Write this
1158     ** item into the set table with bogus data.
1159     */
1160     case SRT_Set: {
1161       if( pSort ){
1162         /* At first glance you would think we could optimize out the
1163         ** ORDER BY in this case since the order of entries in the set
1164         ** does not matter.  But there might be a LIMIT clause, in which
1165         ** case the order does matter */
1166         pushOntoSorter(
1167             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1168       }else{
1169         int r1 = sqlite3GetTempReg(pParse);
1170         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1171         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1172             r1, pDest->zAffSdst, nResultCol);
1173         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174         sqlite3ReleaseTempReg(pParse, r1);
1175       }
1176       break;
1177     }
1178 
1179 
1180     /* If any row exist in the result set, record that fact and abort.
1181     */
1182     case SRT_Exists: {
1183       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1184       /* The LIMIT clause will terminate the loop for us */
1185       break;
1186     }
1187 
1188     /* If this is a scalar select that is part of an expression, then
1189     ** store the results in the appropriate memory cell or array of
1190     ** memory cells and break out of the scan loop.
1191     */
1192     case SRT_Mem: {
1193       if( pSort ){
1194         assert( nResultCol<=pDest->nSdst );
1195         pushOntoSorter(
1196             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1197       }else{
1198         assert( nResultCol==pDest->nSdst );
1199         assert( regResult==iParm );
1200         /* The LIMIT clause will jump out of the loop for us */
1201       }
1202       break;
1203     }
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1205 
1206     case SRT_Coroutine:       /* Send data to a co-routine */
1207     case SRT_Output: {        /* Return the results */
1208       testcase( eDest==SRT_Coroutine );
1209       testcase( eDest==SRT_Output );
1210       if( pSort ){
1211         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1212                        nPrefixReg);
1213       }else if( eDest==SRT_Coroutine ){
1214         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1215       }else{
1216         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1217       }
1218       break;
1219     }
1220 
1221 #ifndef SQLITE_OMIT_CTE
1222     /* Write the results into a priority queue that is order according to
1223     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1224     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1225     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226     ** final OP_Sequence column.  The last column is the record as a blob.
1227     */
1228     case SRT_DistQueue:
1229     case SRT_Queue: {
1230       int nKey;
1231       int r1, r2, r3;
1232       int addrTest = 0;
1233       ExprList *pSO;
1234       pSO = pDest->pOrderBy;
1235       assert( pSO );
1236       nKey = pSO->nExpr;
1237       r1 = sqlite3GetTempReg(pParse);
1238       r2 = sqlite3GetTempRange(pParse, nKey+2);
1239       r3 = r2+nKey+1;
1240       if( eDest==SRT_DistQueue ){
1241         /* If the destination is DistQueue, then cursor (iParm+1) is open
1242         ** on a second ephemeral index that holds all values every previously
1243         ** added to the queue. */
1244         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1245                                         regResult, nResultCol);
1246         VdbeCoverage(v);
1247       }
1248       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1249       if( eDest==SRT_DistQueue ){
1250         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1251         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1252       }
1253       for(i=0; i<nKey; i++){
1254         sqlite3VdbeAddOp2(v, OP_SCopy,
1255                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1256                           r2+i);
1257       }
1258       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1259       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1260       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1261       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1262       sqlite3ReleaseTempReg(pParse, r1);
1263       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1264       break;
1265     }
1266 #endif /* SQLITE_OMIT_CTE */
1267 
1268 
1269 
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271     /* Discard the results.  This is used for SELECT statements inside
1272     ** the body of a TRIGGER.  The purpose of such selects is to call
1273     ** user-defined functions that have side effects.  We do not care
1274     ** about the actual results of the select.
1275     */
1276     default: {
1277       assert( eDest==SRT_Discard );
1278       break;
1279     }
1280 #endif
1281   }
1282 
1283   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1284   ** there is a sorter, in which case the sorter has already limited
1285   ** the output for us.
1286   */
1287   if( pSort==0 && p->iLimit ){
1288     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1289   }
1290 }
1291 
1292 /*
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1294 ** X extra columns.
1295 */
1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1297   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1298   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1299   if( p ){
1300     p->aSortFlags = (u8*)&p->aColl[N+X];
1301     p->nKeyField = (u16)N;
1302     p->nAllField = (u16)(N+X);
1303     p->enc = ENC(db);
1304     p->db = db;
1305     p->nRef = 1;
1306     memset(&p[1], 0, nExtra);
1307   }else{
1308     sqlite3OomFault(db);
1309   }
1310   return p;
1311 }
1312 
1313 /*
1314 ** Deallocate a KeyInfo object
1315 */
1316 void sqlite3KeyInfoUnref(KeyInfo *p){
1317   if( p ){
1318     assert( p->nRef>0 );
1319     p->nRef--;
1320     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1321   }
1322 }
1323 
1324 /*
1325 ** Make a new pointer to a KeyInfo object
1326 */
1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1328   if( p ){
1329     assert( p->nRef>0 );
1330     p->nRef++;
1331   }
1332   return p;
1333 }
1334 
1335 #ifdef SQLITE_DEBUG
1336 /*
1337 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1339 **
1340 ** This routine is used only inside of assert() statements.
1341 */
1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1343 #endif /* SQLITE_DEBUG */
1344 
1345 /*
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1348 **
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause.  If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1354 **
1355 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1356 ** function is responsible for seeing that this structure is eventually
1357 ** freed.
1358 */
1359 KeyInfo *sqlite3KeyInfoFromExprList(
1360   Parse *pParse,       /* Parsing context */
1361   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1362   int iStart,          /* Begin with this column of pList */
1363   int nExtra           /* Add this many extra columns to the end */
1364 ){
1365   int nExpr;
1366   KeyInfo *pInfo;
1367   struct ExprList_item *pItem;
1368   sqlite3 *db = pParse->db;
1369   int i;
1370 
1371   nExpr = pList->nExpr;
1372   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1373   if( pInfo ){
1374     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1375     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1376       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1377       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1378     }
1379   }
1380   return pInfo;
1381 }
1382 
1383 /*
1384 ** Name of the connection operator, used for error messages.
1385 */
1386 static const char *selectOpName(int id){
1387   char *z;
1388   switch( id ){
1389     case TK_ALL:       z = "UNION ALL";   break;
1390     case TK_INTERSECT: z = "INTERSECT";   break;
1391     case TK_EXCEPT:    z = "EXCEPT";      break;
1392     default:           z = "UNION";       break;
1393   }
1394   return z;
1395 }
1396 
1397 #ifndef SQLITE_OMIT_EXPLAIN
1398 /*
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1402 **
1403 **   "USE TEMP B-TREE FOR xxx"
1404 **
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1407 */
1408 static void explainTempTable(Parse *pParse, const char *zUsage){
1409   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1410 }
1411 
1412 /*
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1418 */
1419 # define explainSetInteger(a, b) a = b
1420 
1421 #else
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1425 #endif
1426 
1427 
1428 /*
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter.  After the loop is terminated
1431 ** we need to run the sorter and output the results.  The following
1432 ** routine generates the code needed to do that.
1433 */
1434 static void generateSortTail(
1435   Parse *pParse,    /* Parsing context */
1436   Select *p,        /* The SELECT statement */
1437   SortCtx *pSort,   /* Information on the ORDER BY clause */
1438   int nColumn,      /* Number of columns of data */
1439   SelectDest *pDest /* Write the sorted results here */
1440 ){
1441   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1442   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1443   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1444   int addr;                       /* Top of output loop. Jump for Next. */
1445   int addrOnce = 0;
1446   int iTab;
1447   ExprList *pOrderBy = pSort->pOrderBy;
1448   int eDest = pDest->eDest;
1449   int iParm = pDest->iSDParm;
1450   int regRow;
1451   int regRowid;
1452   int iCol;
1453   int nKey;                       /* Number of key columns in sorter record */
1454   int iSortTab;                   /* Sorter cursor to read from */
1455   int i;
1456   int bSeq;                       /* True if sorter record includes seq. no. */
1457   int nRefKey = 0;
1458   struct ExprList_item *aOutEx = p->pEList->a;
1459 
1460   assert( addrBreak<0 );
1461   if( pSort->labelBkOut ){
1462     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1463     sqlite3VdbeGoto(v, addrBreak);
1464     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1465   }
1466 
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468   /* Open any cursors needed for sorter-reference expressions */
1469   for(i=0; i<pSort->nDefer; i++){
1470     Table *pTab = pSort->aDefer[i].pTab;
1471     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1472     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1473     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1474   }
1475 #endif
1476 
1477   iTab = pSort->iECursor;
1478   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1479     regRowid = 0;
1480     regRow = pDest->iSdst;
1481   }else{
1482     regRowid = sqlite3GetTempReg(pParse);
1483     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1484       regRow = sqlite3GetTempReg(pParse);
1485       nColumn = 0;
1486     }else{
1487       regRow = sqlite3GetTempRange(pParse, nColumn);
1488     }
1489   }
1490   nKey = pOrderBy->nExpr - pSort->nOBSat;
1491   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1492     int regSortOut = ++pParse->nMem;
1493     iSortTab = pParse->nTab++;
1494     if( pSort->labelBkOut ){
1495       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1496     }
1497     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1498         nKey+1+nColumn+nRefKey);
1499     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1500     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1501     VdbeCoverage(v);
1502     codeOffset(v, p->iOffset, addrContinue);
1503     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1504     bSeq = 0;
1505   }else{
1506     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1507     codeOffset(v, p->iOffset, addrContinue);
1508     iSortTab = iTab;
1509     bSeq = 1;
1510   }
1511   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513     if( aOutEx[i].bSorterRef ) continue;
1514 #endif
1515     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1516   }
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518   if( pSort->nDefer ){
1519     int iKey = iCol+1;
1520     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1521 
1522     for(i=0; i<pSort->nDefer; i++){
1523       int iCsr = pSort->aDefer[i].iCsr;
1524       Table *pTab = pSort->aDefer[i].pTab;
1525       int nKey = pSort->aDefer[i].nKey;
1526 
1527       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528       if( HasRowid(pTab) ){
1529         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1530         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1531             sqlite3VdbeCurrentAddr(v)+1, regKey);
1532       }else{
1533         int k;
1534         int iJmp;
1535         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1536         for(k=0; k<nKey; k++){
1537           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1538         }
1539         iJmp = sqlite3VdbeCurrentAddr(v);
1540         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1541         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1542         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1543       }
1544     }
1545     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1546   }
1547 #endif
1548   for(i=nColumn-1; i>=0; i--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550     if( aOutEx[i].bSorterRef ){
1551       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1552     }else
1553 #endif
1554     {
1555       int iRead;
1556       if( aOutEx[i].u.x.iOrderByCol ){
1557         iRead = aOutEx[i].u.x.iOrderByCol-1;
1558       }else{
1559         iRead = iCol--;
1560       }
1561       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1562       VdbeComment((v, "%s", aOutEx[i].zEName));
1563     }
1564   }
1565   switch( eDest ){
1566     case SRT_Table:
1567     case SRT_EphemTab: {
1568       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1569       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1570       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1571       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1572       break;
1573     }
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575     case SRT_Set: {
1576       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1577       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1578                         pDest->zAffSdst, nColumn);
1579       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1580       break;
1581     }
1582     case SRT_Mem: {
1583       /* The LIMIT clause will terminate the loop for us */
1584       break;
1585     }
1586 #endif
1587     case SRT_Upfrom: {
1588       int i2 = pDest->iSDParm2;
1589       int r1 = sqlite3GetTempReg(pParse);
1590       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1591       if( i2<0 ){
1592         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1593       }else{
1594         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1595       }
1596       break;
1597     }
1598     default: {
1599       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1600       testcase( eDest==SRT_Output );
1601       testcase( eDest==SRT_Coroutine );
1602       if( eDest==SRT_Output ){
1603         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1604       }else{
1605         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1606       }
1607       break;
1608     }
1609   }
1610   if( regRowid ){
1611     if( eDest==SRT_Set ){
1612       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1613     }else{
1614       sqlite3ReleaseTempReg(pParse, regRow);
1615     }
1616     sqlite3ReleaseTempReg(pParse, regRowid);
1617   }
1618   /* The bottom of the loop
1619   */
1620   sqlite3VdbeResolveLabel(v, addrContinue);
1621   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1622     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1623   }else{
1624     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1625   }
1626   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1627   sqlite3VdbeResolveLabel(v, addrBreak);
1628 }
1629 
1630 /*
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1633 **
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1636 **
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1643 **
1644 **   SELECT col FROM tbl;
1645 **   SELECT (SELECT col FROM tbl;
1646 **   SELECT (SELECT col FROM tbl);
1647 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1648 **
1649 ** The declaration type for any expression other than a column is NULL.
1650 **
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1653 */
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1658 #endif
1659 static const char *columnTypeImpl(
1660   NameContext *pNC,
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1662   Expr *pExpr
1663 #else
1664   Expr *pExpr,
1665   const char **pzOrigDb,
1666   const char **pzOrigTab,
1667   const char **pzOrigCol
1668 #endif
1669 ){
1670   char const *zType = 0;
1671   int j;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673   char const *zOrigDb = 0;
1674   char const *zOrigTab = 0;
1675   char const *zOrigCol = 0;
1676 #endif
1677 
1678   assert( pExpr!=0 );
1679   assert( pNC->pSrcList!=0 );
1680   switch( pExpr->op ){
1681     case TK_COLUMN: {
1682       /* The expression is a column. Locate the table the column is being
1683       ** extracted from in NameContext.pSrcList. This table may be real
1684       ** database table or a subquery.
1685       */
1686       Table *pTab = 0;            /* Table structure column is extracted from */
1687       Select *pS = 0;             /* Select the column is extracted from */
1688       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1689       while( pNC && !pTab ){
1690         SrcList *pTabList = pNC->pSrcList;
1691         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1692         if( j<pTabList->nSrc ){
1693           pTab = pTabList->a[j].pTab;
1694           pS = pTabList->a[j].pSelect;
1695         }else{
1696           pNC = pNC->pNext;
1697         }
1698       }
1699 
1700       if( pTab==0 ){
1701         /* At one time, code such as "SELECT new.x" within a trigger would
1702         ** cause this condition to run.  Since then, we have restructured how
1703         ** trigger code is generated and so this condition is no longer
1704         ** possible. However, it can still be true for statements like
1705         ** the following:
1706         **
1707         **   CREATE TABLE t1(col INTEGER);
1708         **   SELECT (SELECT t1.col) FROM FROM t1;
1709         **
1710         ** when columnType() is called on the expression "t1.col" in the
1711         ** sub-select. In this case, set the column type to NULL, even
1712         ** though it should really be "INTEGER".
1713         **
1714         ** This is not a problem, as the column type of "t1.col" is never
1715         ** used. When columnType() is called on the expression
1716         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1717         ** branch below.  */
1718         break;
1719       }
1720 
1721       assert( pTab && pExpr->y.pTab==pTab );
1722       if( pS ){
1723         /* The "table" is actually a sub-select or a view in the FROM clause
1724         ** of the SELECT statement. Return the declaration type and origin
1725         ** data for the result-set column of the sub-select.
1726         */
1727         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1728           /* If iCol is less than zero, then the expression requests the
1729           ** rowid of the sub-select or view. This expression is legal (see
1730           ** test case misc2.2.2) - it always evaluates to NULL.
1731           */
1732           NameContext sNC;
1733           Expr *p = pS->pEList->a[iCol].pExpr;
1734           sNC.pSrcList = pS->pSrc;
1735           sNC.pNext = pNC;
1736           sNC.pParse = pNC->pParse;
1737           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1738         }
1739       }else{
1740         /* A real table or a CTE table */
1741         assert( !pS );
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743         if( iCol<0 ) iCol = pTab->iPKey;
1744         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745         if( iCol<0 ){
1746           zType = "INTEGER";
1747           zOrigCol = "rowid";
1748         }else{
1749           zOrigCol = pTab->aCol[iCol].zName;
1750           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1751         }
1752         zOrigTab = pTab->zName;
1753         if( pNC->pParse && pTab->pSchema ){
1754           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1755           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1756         }
1757 #else
1758         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1759         if( iCol<0 ){
1760           zType = "INTEGER";
1761         }else{
1762           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1763         }
1764 #endif
1765       }
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case TK_SELECT: {
1770       /* The expression is a sub-select. Return the declaration type and
1771       ** origin info for the single column in the result set of the SELECT
1772       ** statement.
1773       */
1774       NameContext sNC;
1775       Select *pS = pExpr->x.pSelect;
1776       Expr *p = pS->pEList->a[0].pExpr;
1777       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1778       sNC.pSrcList = pS->pSrc;
1779       sNC.pNext = pNC;
1780       sNC.pParse = pNC->pParse;
1781       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1782       break;
1783     }
1784 #endif
1785   }
1786 
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1788   if( pzOrigDb ){
1789     assert( pzOrigTab && pzOrigCol );
1790     *pzOrigDb = zOrigDb;
1791     *pzOrigTab = zOrigTab;
1792     *pzOrigCol = zOrigCol;
1793   }
1794 #endif
1795   return zType;
1796 }
1797 
1798 /*
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1801 */
1802 static void generateColumnTypes(
1803   Parse *pParse,      /* Parser context */
1804   SrcList *pTabList,  /* List of tables */
1805   ExprList *pEList    /* Expressions defining the result set */
1806 ){
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808   Vdbe *v = pParse->pVdbe;
1809   int i;
1810   NameContext sNC;
1811   sNC.pSrcList = pTabList;
1812   sNC.pParse = pParse;
1813   sNC.pNext = 0;
1814   for(i=0; i<pEList->nExpr; i++){
1815     Expr *p = pEList->a[i].pExpr;
1816     const char *zType;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818     const char *zOrigDb = 0;
1819     const char *zOrigTab = 0;
1820     const char *zOrigCol = 0;
1821     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1822 
1823     /* The vdbe must make its own copy of the column-type and other
1824     ** column specific strings, in case the schema is reset before this
1825     ** virtual machine is deleted.
1826     */
1827     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1828     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1829     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1830 #else
1831     zType = columnType(&sNC, p, 0, 0, 0);
1832 #endif
1833     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1834   }
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1836 }
1837 
1838 
1839 /*
1840 ** Compute the column names for a SELECT statement.
1841 **
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee.  However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes.  Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1848 **
1849 ** See Also: sqlite3ColumnsFromExprList()
1850 **
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1853 ** applications should operate this way.  Nevertheless, we need to support the
1854 ** other modes for legacy:
1855 **
1856 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1857 **                              originally appears in the SELECT statement.  In
1858 **                              other words, the zSpan of the result expression.
1859 **
1860 **    short=ON, full=OFF:       (This is the default setting).  If the result
1861 **                              refers directly to a table column, then the
1862 **                              result column name is just the table column
1863 **                              name: COLUMN.  Otherwise use zSpan.
1864 **
1865 **    full=ON, short=ANY:       If the result refers directly to a table column,
1866 **                              then the result column name with the table name
1867 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1868 */
1869 static void generateColumnNames(
1870   Parse *pParse,      /* Parser context */
1871   Select *pSelect     /* Generate column names for this SELECT statement */
1872 ){
1873   Vdbe *v = pParse->pVdbe;
1874   int i;
1875   Table *pTab;
1876   SrcList *pTabList;
1877   ExprList *pEList;
1878   sqlite3 *db = pParse->db;
1879   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1881 
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883   /* If this is an EXPLAIN, skip this step */
1884   if( pParse->explain ){
1885     return;
1886   }
1887 #endif
1888 
1889   if( pParse->colNamesSet ) return;
1890   /* Column names are determined by the left-most term of a compound select */
1891   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1892   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1893   pTabList = pSelect->pSrc;
1894   pEList = pSelect->pEList;
1895   assert( v!=0 );
1896   assert( pTabList!=0 );
1897   pParse->colNamesSet = 1;
1898   fullName = (db->flags & SQLITE_FullColNames)!=0;
1899   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1900   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1901   for(i=0; i<pEList->nExpr; i++){
1902     Expr *p = pEList->a[i].pExpr;
1903 
1904     assert( p!=0 );
1905     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1906     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1907     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1908       /* An AS clause always takes first priority */
1909       char *zName = pEList->a[i].zEName;
1910       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1911     }else if( srcName && p->op==TK_COLUMN ){
1912       char *zCol;
1913       int iCol = p->iColumn;
1914       pTab = p->y.pTab;
1915       assert( pTab!=0 );
1916       if( iCol<0 ) iCol = pTab->iPKey;
1917       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1918       if( iCol<0 ){
1919         zCol = "rowid";
1920       }else{
1921         zCol = pTab->aCol[iCol].zName;
1922       }
1923       if( fullName ){
1924         char *zName = 0;
1925         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1926         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1927       }else{
1928         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1929       }
1930     }else{
1931       const char *z = pEList->a[i].zEName;
1932       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1933       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1934     }
1935   }
1936   generateColumnTypes(pParse, pTabList, pEList);
1937 }
1938 
1939 /*
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1943 **
1944 ** All column names will be unique.
1945 **
1946 ** Only the column names are computed.  Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1948 **
1949 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1951 **
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee.  However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes.  Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1958 **
1959 ** See Also: generateColumnNames()
1960 */
1961 int sqlite3ColumnsFromExprList(
1962   Parse *pParse,          /* Parsing context */
1963   ExprList *pEList,       /* Expr list from which to derive column names */
1964   i16 *pnCol,             /* Write the number of columns here */
1965   Column **paCol          /* Write the new column list here */
1966 ){
1967   sqlite3 *db = pParse->db;   /* Database connection */
1968   int i, j;                   /* Loop counters */
1969   u32 cnt;                    /* Index added to make the name unique */
1970   Column *aCol, *pCol;        /* For looping over result columns */
1971   int nCol;                   /* Number of columns in the result set */
1972   char *zName;                /* Column name */
1973   int nName;                  /* Size of name in zName[] */
1974   Hash ht;                    /* Hash table of column names */
1975   Table *pTab;
1976 
1977   sqlite3HashInit(&ht);
1978   if( pEList ){
1979     nCol = pEList->nExpr;
1980     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1981     testcase( aCol==0 );
1982     if( nCol>32767 ) nCol = 32767;
1983   }else{
1984     nCol = 0;
1985     aCol = 0;
1986   }
1987   assert( nCol==(i16)nCol );
1988   *pnCol = nCol;
1989   *paCol = aCol;
1990 
1991   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1992     /* Get an appropriate name for the column
1993     */
1994     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1995       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1996     }else{
1997       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1998       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
1999         pColExpr = pColExpr->pRight;
2000         assert( pColExpr!=0 );
2001       }
2002       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2003         /* For columns use the column name name */
2004         int iCol = pColExpr->iColumn;
2005         if( iCol<0 ) iCol = pTab->iPKey;
2006         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2007       }else if( pColExpr->op==TK_ID ){
2008         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2009         zName = pColExpr->u.zToken;
2010       }else{
2011         /* Use the original text of the column expression as its name */
2012         zName = pEList->a[i].zEName;
2013       }
2014     }
2015     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2016       zName = sqlite3DbStrDup(db, zName);
2017     }else{
2018       zName = sqlite3MPrintf(db,"column%d",i+1);
2019     }
2020 
2021     /* Make sure the column name is unique.  If the name is not unique,
2022     ** append an integer to the name so that it becomes unique.
2023     */
2024     cnt = 0;
2025     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2026       nName = sqlite3Strlen30(zName);
2027       if( nName>0 ){
2028         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2029         if( zName[j]==':' ) nName = j;
2030       }
2031       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2032       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2033     }
2034     pCol->zName = zName;
2035     pCol->hName = sqlite3StrIHash(zName);
2036     sqlite3ColumnPropertiesFromName(0, pCol);
2037     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2038       sqlite3OomFault(db);
2039     }
2040   }
2041   sqlite3HashClear(&ht);
2042   if( db->mallocFailed ){
2043     for(j=0; j<i; j++){
2044       sqlite3DbFree(db, aCol[j].zName);
2045     }
2046     sqlite3DbFree(db, aCol);
2047     *paCol = 0;
2048     *pnCol = 0;
2049     return SQLITE_NOMEM_BKPT;
2050   }
2051   return SQLITE_OK;
2052 }
2053 
2054 /*
2055 ** Add type and collation information to a column list based on
2056 ** a SELECT statement.
2057 **
2058 ** The column list presumably came from selectColumnNamesFromExprList().
2059 ** The column list has only names, not types or collations.  This
2060 ** routine goes through and adds the types and collations.
2061 **
2062 ** This routine requires that all identifiers in the SELECT
2063 ** statement be resolved.
2064 */
2065 void sqlite3SelectAddColumnTypeAndCollation(
2066   Parse *pParse,        /* Parsing contexts */
2067   Table *pTab,          /* Add column type information to this table */
2068   Select *pSelect,      /* SELECT used to determine types and collations */
2069   char aff              /* Default affinity for columns */
2070 ){
2071   sqlite3 *db = pParse->db;
2072   NameContext sNC;
2073   Column *pCol;
2074   CollSeq *pColl;
2075   int i;
2076   Expr *p;
2077   struct ExprList_item *a;
2078 
2079   assert( pSelect!=0 );
2080   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2081   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2082   if( db->mallocFailed ) return;
2083   memset(&sNC, 0, sizeof(sNC));
2084   sNC.pSrcList = pSelect->pSrc;
2085   a = pSelect->pEList->a;
2086   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2087     const char *zType;
2088     int n, m;
2089     p = a[i].pExpr;
2090     zType = columnType(&sNC, p, 0, 0, 0);
2091     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2092     pCol->affinity = sqlite3ExprAffinity(p);
2093     if( zType ){
2094       m = sqlite3Strlen30(zType);
2095       n = sqlite3Strlen30(pCol->zName);
2096       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2097       if( pCol->zName ){
2098         memcpy(&pCol->zName[n+1], zType, m+1);
2099         pCol->colFlags |= COLFLAG_HASTYPE;
2100       }
2101     }
2102     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2103     pColl = sqlite3ExprCollSeq(pParse, p);
2104     if( pColl && pCol->zColl==0 ){
2105       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2106     }
2107   }
2108   pTab->szTabRow = 1; /* Any non-zero value works */
2109 }
2110 
2111 /*
2112 ** Given a SELECT statement, generate a Table structure that describes
2113 ** the result set of that SELECT.
2114 */
2115 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2116   Table *pTab;
2117   sqlite3 *db = pParse->db;
2118   u64 savedFlags;
2119 
2120   savedFlags = db->flags;
2121   db->flags &= ~(u64)SQLITE_FullColNames;
2122   db->flags |= SQLITE_ShortColNames;
2123   sqlite3SelectPrep(pParse, pSelect, 0);
2124   db->flags = savedFlags;
2125   if( pParse->nErr ) return 0;
2126   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2127   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2128   if( pTab==0 ){
2129     return 0;
2130   }
2131   pTab->nTabRef = 1;
2132   pTab->zName = 0;
2133   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2134   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2135   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2136   pTab->iPKey = -1;
2137   if( db->mallocFailed ){
2138     sqlite3DeleteTable(db, pTab);
2139     return 0;
2140   }
2141   return pTab;
2142 }
2143 
2144 /*
2145 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2146 ** If an error occurs, return NULL and leave a message in pParse.
2147 */
2148 Vdbe *sqlite3GetVdbe(Parse *pParse){
2149   if( pParse->pVdbe ){
2150     return pParse->pVdbe;
2151   }
2152   if( pParse->pToplevel==0
2153    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2154   ){
2155     pParse->okConstFactor = 1;
2156   }
2157   return sqlite3VdbeCreate(pParse);
2158 }
2159 
2160 
2161 /*
2162 ** Compute the iLimit and iOffset fields of the SELECT based on the
2163 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2164 ** that appear in the original SQL statement after the LIMIT and OFFSET
2165 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2166 ** are the integer memory register numbers for counters used to compute
2167 ** the limit and offset.  If there is no limit and/or offset, then
2168 ** iLimit and iOffset are negative.
2169 **
2170 ** This routine changes the values of iLimit and iOffset only if
2171 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2172 ** and iOffset should have been preset to appropriate default values (zero)
2173 ** prior to calling this routine.
2174 **
2175 ** The iOffset register (if it exists) is initialized to the value
2176 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2177 ** iOffset+1 is initialized to LIMIT+OFFSET.
2178 **
2179 ** Only if pLimit->pLeft!=0 do the limit registers get
2180 ** redefined.  The UNION ALL operator uses this property to force
2181 ** the reuse of the same limit and offset registers across multiple
2182 ** SELECT statements.
2183 */
2184 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2185   Vdbe *v = 0;
2186   int iLimit = 0;
2187   int iOffset;
2188   int n;
2189   Expr *pLimit = p->pLimit;
2190 
2191   if( p->iLimit ) return;
2192 
2193   /*
2194   ** "LIMIT -1" always shows all rows.  There is some
2195   ** controversy about what the correct behavior should be.
2196   ** The current implementation interprets "LIMIT 0" to mean
2197   ** no rows.
2198   */
2199   if( pLimit ){
2200     assert( pLimit->op==TK_LIMIT );
2201     assert( pLimit->pLeft!=0 );
2202     p->iLimit = iLimit = ++pParse->nMem;
2203     v = sqlite3GetVdbe(pParse);
2204     assert( v!=0 );
2205     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2206       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2207       VdbeComment((v, "LIMIT counter"));
2208       if( n==0 ){
2209         sqlite3VdbeGoto(v, iBreak);
2210       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2211         p->nSelectRow = sqlite3LogEst((u64)n);
2212         p->selFlags |= SF_FixedLimit;
2213       }
2214     }else{
2215       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2216       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2217       VdbeComment((v, "LIMIT counter"));
2218       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2219     }
2220     if( pLimit->pRight ){
2221       p->iOffset = iOffset = ++pParse->nMem;
2222       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2223       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2224       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2225       VdbeComment((v, "OFFSET counter"));
2226       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2227       VdbeComment((v, "LIMIT+OFFSET"));
2228     }
2229   }
2230 }
2231 
2232 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2233 /*
2234 ** Return the appropriate collating sequence for the iCol-th column of
2235 ** the result set for the compound-select statement "p".  Return NULL if
2236 ** the column has no default collating sequence.
2237 **
2238 ** The collating sequence for the compound select is taken from the
2239 ** left-most term of the select that has a collating sequence.
2240 */
2241 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2242   CollSeq *pRet;
2243   if( p->pPrior ){
2244     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2245   }else{
2246     pRet = 0;
2247   }
2248   assert( iCol>=0 );
2249   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2250   ** have been thrown during name resolution and we would not have gotten
2251   ** this far */
2252   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2253     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2254   }
2255   return pRet;
2256 }
2257 
2258 /*
2259 ** The select statement passed as the second parameter is a compound SELECT
2260 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2261 ** structure suitable for implementing the ORDER BY.
2262 **
2263 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2264 ** function is responsible for ensuring that this structure is eventually
2265 ** freed.
2266 */
2267 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2268   ExprList *pOrderBy = p->pOrderBy;
2269   int nOrderBy = p->pOrderBy->nExpr;
2270   sqlite3 *db = pParse->db;
2271   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2272   if( pRet ){
2273     int i;
2274     for(i=0; i<nOrderBy; i++){
2275       struct ExprList_item *pItem = &pOrderBy->a[i];
2276       Expr *pTerm = pItem->pExpr;
2277       CollSeq *pColl;
2278 
2279       if( pTerm->flags & EP_Collate ){
2280         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2281       }else{
2282         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2283         if( pColl==0 ) pColl = db->pDfltColl;
2284         pOrderBy->a[i].pExpr =
2285           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2286       }
2287       assert( sqlite3KeyInfoIsWriteable(pRet) );
2288       pRet->aColl[i] = pColl;
2289       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2290     }
2291   }
2292 
2293   return pRet;
2294 }
2295 
2296 #ifndef SQLITE_OMIT_CTE
2297 /*
2298 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2299 ** query of the form:
2300 **
2301 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2302 **                         \___________/             \_______________/
2303 **                           p->pPrior                      p
2304 **
2305 **
2306 ** There is exactly one reference to the recursive-table in the FROM clause
2307 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2308 **
2309 ** The setup-query runs once to generate an initial set of rows that go
2310 ** into a Queue table.  Rows are extracted from the Queue table one by
2311 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2312 ** extracted row (now in the iCurrent table) becomes the content of the
2313 ** recursive-table for a recursive-query run.  The output of the recursive-query
2314 ** is added back into the Queue table.  Then another row is extracted from Queue
2315 ** and the iteration continues until the Queue table is empty.
2316 **
2317 ** If the compound query operator is UNION then no duplicate rows are ever
2318 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2319 ** that have ever been inserted into Queue and causes duplicates to be
2320 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2321 **
2322 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2323 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2324 ** an ORDER BY, the Queue table is just a FIFO.
2325 **
2326 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2327 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2328 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2329 ** with a positive value, then the first OFFSET outputs are discarded rather
2330 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2331 ** rows have been skipped.
2332 */
2333 static void generateWithRecursiveQuery(
2334   Parse *pParse,        /* Parsing context */
2335   Select *p,            /* The recursive SELECT to be coded */
2336   SelectDest *pDest     /* What to do with query results */
2337 ){
2338   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2339   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2340   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2341   Select *pSetup = p->pPrior;   /* The setup query */
2342   Select *pFirstRec;            /* Left-most recursive term */
2343   int addrTop;                  /* Top of the loop */
2344   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2345   int iCurrent = 0;             /* The Current table */
2346   int regCurrent;               /* Register holding Current table */
2347   int iQueue;                   /* The Queue table */
2348   int iDistinct = 0;            /* To ensure unique results if UNION */
2349   int eDest = SRT_Fifo;         /* How to write to Queue */
2350   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2351   int i;                        /* Loop counter */
2352   int rc;                       /* Result code */
2353   ExprList *pOrderBy;           /* The ORDER BY clause */
2354   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2355   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2356 
2357 #ifndef SQLITE_OMIT_WINDOWFUNC
2358   if( p->pWin ){
2359     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2360     return;
2361   }
2362 #endif
2363 
2364   /* Obtain authorization to do a recursive query */
2365   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2366 
2367   /* Process the LIMIT and OFFSET clauses, if they exist */
2368   addrBreak = sqlite3VdbeMakeLabel(pParse);
2369   p->nSelectRow = 320;  /* 4 billion rows */
2370   computeLimitRegisters(pParse, p, addrBreak);
2371   pLimit = p->pLimit;
2372   regLimit = p->iLimit;
2373   regOffset = p->iOffset;
2374   p->pLimit = 0;
2375   p->iLimit = p->iOffset = 0;
2376   pOrderBy = p->pOrderBy;
2377 
2378   /* Locate the cursor number of the Current table */
2379   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2380     if( pSrc->a[i].fg.isRecursive ){
2381       iCurrent = pSrc->a[i].iCursor;
2382       break;
2383     }
2384   }
2385 
2386   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2387   ** the Distinct table must be exactly one greater than Queue in order
2388   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2389   iQueue = pParse->nTab++;
2390   if( p->op==TK_UNION ){
2391     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2392     iDistinct = pParse->nTab++;
2393   }else{
2394     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2395   }
2396   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2397 
2398   /* Allocate cursors for Current, Queue, and Distinct. */
2399   regCurrent = ++pParse->nMem;
2400   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2401   if( pOrderBy ){
2402     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2403     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2404                       (char*)pKeyInfo, P4_KEYINFO);
2405     destQueue.pOrderBy = pOrderBy;
2406   }else{
2407     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2408   }
2409   VdbeComment((v, "Queue table"));
2410   if( iDistinct ){
2411     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2412     p->selFlags |= SF_UsesEphemeral;
2413   }
2414 
2415   /* Detach the ORDER BY clause from the compound SELECT */
2416   p->pOrderBy = 0;
2417 
2418   /* Figure out how many elements of the compound SELECT are part of the
2419   ** recursive query.  Make sure no recursive elements use aggregate
2420   ** functions.  Mark the recursive elements as UNION ALL even if they
2421   ** are really UNION because the distinctness will be enforced by the
2422   ** iDistinct table.  pFirstRec is left pointing to the left-most
2423   ** recursive term of the CTE.
2424   */
2425   pFirstRec = p;
2426   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2427     if( pFirstRec->selFlags & SF_Aggregate ){
2428       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2429       goto end_of_recursive_query;
2430     }
2431     pFirstRec->op = TK_ALL;
2432     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2433   }
2434 
2435   /* Store the results of the setup-query in Queue. */
2436   pSetup = pFirstRec->pPrior;
2437   pSetup->pNext = 0;
2438   ExplainQueryPlan((pParse, 1, "SETUP"));
2439   rc = sqlite3Select(pParse, pSetup, &destQueue);
2440   pSetup->pNext = p;
2441   if( rc ) goto end_of_recursive_query;
2442 
2443   /* Find the next row in the Queue and output that row */
2444   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2445 
2446   /* Transfer the next row in Queue over to Current */
2447   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2448   if( pOrderBy ){
2449     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2450   }else{
2451     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2452   }
2453   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2454 
2455   /* Output the single row in Current */
2456   addrCont = sqlite3VdbeMakeLabel(pParse);
2457   codeOffset(v, regOffset, addrCont);
2458   selectInnerLoop(pParse, p, iCurrent,
2459       0, 0, pDest, addrCont, addrBreak);
2460   if( regLimit ){
2461     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2462     VdbeCoverage(v);
2463   }
2464   sqlite3VdbeResolveLabel(v, addrCont);
2465 
2466   /* Execute the recursive SELECT taking the single row in Current as
2467   ** the value for the recursive-table. Store the results in the Queue.
2468   */
2469   pFirstRec->pPrior = 0;
2470   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2471   sqlite3Select(pParse, p, &destQueue);
2472   assert( pFirstRec->pPrior==0 );
2473   pFirstRec->pPrior = pSetup;
2474 
2475   /* Keep running the loop until the Queue is empty */
2476   sqlite3VdbeGoto(v, addrTop);
2477   sqlite3VdbeResolveLabel(v, addrBreak);
2478 
2479 end_of_recursive_query:
2480   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2481   p->pOrderBy = pOrderBy;
2482   p->pLimit = pLimit;
2483   return;
2484 }
2485 #endif /* SQLITE_OMIT_CTE */
2486 
2487 /* Forward references */
2488 static int multiSelectOrderBy(
2489   Parse *pParse,        /* Parsing context */
2490   Select *p,            /* The right-most of SELECTs to be coded */
2491   SelectDest *pDest     /* What to do with query results */
2492 );
2493 
2494 /*
2495 ** Handle the special case of a compound-select that originates from a
2496 ** VALUES clause.  By handling this as a special case, we avoid deep
2497 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2498 ** on a VALUES clause.
2499 **
2500 ** Because the Select object originates from a VALUES clause:
2501 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2502 **   (2) All terms are UNION ALL
2503 **   (3) There is no ORDER BY clause
2504 **
2505 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2506 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2507 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2508 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2509 */
2510 static int multiSelectValues(
2511   Parse *pParse,        /* Parsing context */
2512   Select *p,            /* The right-most of SELECTs to be coded */
2513   SelectDest *pDest     /* What to do with query results */
2514 ){
2515   int nRow = 1;
2516   int rc = 0;
2517   int bShowAll = p->pLimit==0;
2518   assert( p->selFlags & SF_MultiValue );
2519   do{
2520     assert( p->selFlags & SF_Values );
2521     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2522     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2523 #ifndef SQLITE_OMIT_WINDOWFUNC
2524     if( p->pWin ) return -1;
2525 #endif
2526     if( p->pPrior==0 ) break;
2527     assert( p->pPrior->pNext==p );
2528     p = p->pPrior;
2529     nRow += bShowAll;
2530   }while(1);
2531   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2532                     nRow==1 ? "" : "S"));
2533   while( p ){
2534     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2535     if( !bShowAll ) break;
2536     p->nSelectRow = nRow;
2537     p = p->pNext;
2538   }
2539   return rc;
2540 }
2541 
2542 /*
2543 ** Return true if the SELECT statement which is known to be the recursive
2544 ** part of a recursive CTE still has its anchor terms attached.  If the
2545 ** anchor terms have already been removed, then return false.
2546 */
2547 static int hasAnchor(Select *p){
2548   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2549   return p!=0;
2550 }
2551 
2552 /*
2553 ** This routine is called to process a compound query form from
2554 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2555 ** INTERSECT
2556 **
2557 ** "p" points to the right-most of the two queries.  the query on the
2558 ** left is p->pPrior.  The left query could also be a compound query
2559 ** in which case this routine will be called recursively.
2560 **
2561 ** The results of the total query are to be written into a destination
2562 ** of type eDest with parameter iParm.
2563 **
2564 ** Example 1:  Consider a three-way compound SQL statement.
2565 **
2566 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2567 **
2568 ** This statement is parsed up as follows:
2569 **
2570 **     SELECT c FROM t3
2571 **      |
2572 **      `----->  SELECT b FROM t2
2573 **                |
2574 **                `------>  SELECT a FROM t1
2575 **
2576 ** The arrows in the diagram above represent the Select.pPrior pointer.
2577 ** So if this routine is called with p equal to the t3 query, then
2578 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2579 **
2580 ** Notice that because of the way SQLite parses compound SELECTs, the
2581 ** individual selects always group from left to right.
2582 */
2583 static int multiSelect(
2584   Parse *pParse,        /* Parsing context */
2585   Select *p,            /* The right-most of SELECTs to be coded */
2586   SelectDest *pDest     /* What to do with query results */
2587 ){
2588   int rc = SQLITE_OK;   /* Success code from a subroutine */
2589   Select *pPrior;       /* Another SELECT immediately to our left */
2590   Vdbe *v;              /* Generate code to this VDBE */
2591   SelectDest dest;      /* Alternative data destination */
2592   Select *pDelete = 0;  /* Chain of simple selects to delete */
2593   sqlite3 *db;          /* Database connection */
2594 
2595   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2596   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2597   */
2598   assert( p && p->pPrior );  /* Calling function guarantees this much */
2599   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2600   assert( p->selFlags & SF_Compound );
2601   db = pParse->db;
2602   pPrior = p->pPrior;
2603   dest = *pDest;
2604   if( pPrior->pOrderBy || pPrior->pLimit ){
2605     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2606       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2607     rc = 1;
2608     goto multi_select_end;
2609   }
2610 
2611   v = sqlite3GetVdbe(pParse);
2612   assert( v!=0 );  /* The VDBE already created by calling function */
2613 
2614   /* Create the destination temporary table if necessary
2615   */
2616   if( dest.eDest==SRT_EphemTab ){
2617     assert( p->pEList );
2618     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2619     dest.eDest = SRT_Table;
2620   }
2621 
2622   /* Special handling for a compound-select that originates as a VALUES clause.
2623   */
2624   if( p->selFlags & SF_MultiValue ){
2625     rc = multiSelectValues(pParse, p, &dest);
2626     if( rc>=0 ) goto multi_select_end;
2627     rc = SQLITE_OK;
2628   }
2629 
2630   /* Make sure all SELECTs in the statement have the same number of elements
2631   ** in their result sets.
2632   */
2633   assert( p->pEList && pPrior->pEList );
2634   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2635 
2636 #ifndef SQLITE_OMIT_CTE
2637   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2638     generateWithRecursiveQuery(pParse, p, &dest);
2639   }else
2640 #endif
2641 
2642   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2643   */
2644   if( p->pOrderBy ){
2645     return multiSelectOrderBy(pParse, p, pDest);
2646   }else{
2647 
2648 #ifndef SQLITE_OMIT_EXPLAIN
2649     if( pPrior->pPrior==0 ){
2650       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2651       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2652     }
2653 #endif
2654 
2655     /* Generate code for the left and right SELECT statements.
2656     */
2657     switch( p->op ){
2658       case TK_ALL: {
2659         int addr = 0;
2660         int nLimit;
2661         assert( !pPrior->pLimit );
2662         pPrior->iLimit = p->iLimit;
2663         pPrior->iOffset = p->iOffset;
2664         pPrior->pLimit = p->pLimit;
2665         rc = sqlite3Select(pParse, pPrior, &dest);
2666         p->pLimit = 0;
2667         if( rc ){
2668           goto multi_select_end;
2669         }
2670         p->pPrior = 0;
2671         p->iLimit = pPrior->iLimit;
2672         p->iOffset = pPrior->iOffset;
2673         if( p->iLimit ){
2674           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2675           VdbeComment((v, "Jump ahead if LIMIT reached"));
2676           if( p->iOffset ){
2677             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2678                               p->iLimit, p->iOffset+1, p->iOffset);
2679           }
2680         }
2681         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2682         rc = sqlite3Select(pParse, p, &dest);
2683         testcase( rc!=SQLITE_OK );
2684         pDelete = p->pPrior;
2685         p->pPrior = pPrior;
2686         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2687         if( pPrior->pLimit
2688          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2689          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2690         ){
2691           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2692         }
2693         if( addr ){
2694           sqlite3VdbeJumpHere(v, addr);
2695         }
2696         break;
2697       }
2698       case TK_EXCEPT:
2699       case TK_UNION: {
2700         int unionTab;    /* Cursor number of the temp table holding result */
2701         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2702         int priorOp;     /* The SRT_ operation to apply to prior selects */
2703         Expr *pLimit;    /* Saved values of p->nLimit  */
2704         int addr;
2705         SelectDest uniondest;
2706 
2707         testcase( p->op==TK_EXCEPT );
2708         testcase( p->op==TK_UNION );
2709         priorOp = SRT_Union;
2710         if( dest.eDest==priorOp ){
2711           /* We can reuse a temporary table generated by a SELECT to our
2712           ** right.
2713           */
2714           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2715           unionTab = dest.iSDParm;
2716         }else{
2717           /* We will need to create our own temporary table to hold the
2718           ** intermediate results.
2719           */
2720           unionTab = pParse->nTab++;
2721           assert( p->pOrderBy==0 );
2722           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2723           assert( p->addrOpenEphm[0] == -1 );
2724           p->addrOpenEphm[0] = addr;
2725           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2726           assert( p->pEList );
2727         }
2728 
2729 
2730         /* Code the SELECT statements to our left
2731         */
2732         assert( !pPrior->pOrderBy );
2733         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2734         rc = sqlite3Select(pParse, pPrior, &uniondest);
2735         if( rc ){
2736           goto multi_select_end;
2737         }
2738 
2739         /* Code the current SELECT statement
2740         */
2741         if( p->op==TK_EXCEPT ){
2742           op = SRT_Except;
2743         }else{
2744           assert( p->op==TK_UNION );
2745           op = SRT_Union;
2746         }
2747         p->pPrior = 0;
2748         pLimit = p->pLimit;
2749         p->pLimit = 0;
2750         uniondest.eDest = op;
2751         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2752                           selectOpName(p->op)));
2753         rc = sqlite3Select(pParse, p, &uniondest);
2754         testcase( rc!=SQLITE_OK );
2755         assert( p->pOrderBy==0 );
2756         pDelete = p->pPrior;
2757         p->pPrior = pPrior;
2758         p->pOrderBy = 0;
2759         if( p->op==TK_UNION ){
2760           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2761         }
2762         sqlite3ExprDelete(db, p->pLimit);
2763         p->pLimit = pLimit;
2764         p->iLimit = 0;
2765         p->iOffset = 0;
2766 
2767         /* Convert the data in the temporary table into whatever form
2768         ** it is that we currently need.
2769         */
2770         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2771         assert( p->pEList || db->mallocFailed );
2772         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2773           int iCont, iBreak, iStart;
2774           iBreak = sqlite3VdbeMakeLabel(pParse);
2775           iCont = sqlite3VdbeMakeLabel(pParse);
2776           computeLimitRegisters(pParse, p, iBreak);
2777           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2778           iStart = sqlite3VdbeCurrentAddr(v);
2779           selectInnerLoop(pParse, p, unionTab,
2780                           0, 0, &dest, iCont, iBreak);
2781           sqlite3VdbeResolveLabel(v, iCont);
2782           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2783           sqlite3VdbeResolveLabel(v, iBreak);
2784           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2785         }
2786         break;
2787       }
2788       default: assert( p->op==TK_INTERSECT ); {
2789         int tab1, tab2;
2790         int iCont, iBreak, iStart;
2791         Expr *pLimit;
2792         int addr;
2793         SelectDest intersectdest;
2794         int r1;
2795 
2796         /* INTERSECT is different from the others since it requires
2797         ** two temporary tables.  Hence it has its own case.  Begin
2798         ** by allocating the tables we will need.
2799         */
2800         tab1 = pParse->nTab++;
2801         tab2 = pParse->nTab++;
2802         assert( p->pOrderBy==0 );
2803 
2804         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2805         assert( p->addrOpenEphm[0] == -1 );
2806         p->addrOpenEphm[0] = addr;
2807         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2808         assert( p->pEList );
2809 
2810         /* Code the SELECTs to our left into temporary table "tab1".
2811         */
2812         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2813         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2814         if( rc ){
2815           goto multi_select_end;
2816         }
2817 
2818         /* Code the current SELECT into temporary table "tab2"
2819         */
2820         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2821         assert( p->addrOpenEphm[1] == -1 );
2822         p->addrOpenEphm[1] = addr;
2823         p->pPrior = 0;
2824         pLimit = p->pLimit;
2825         p->pLimit = 0;
2826         intersectdest.iSDParm = tab2;
2827         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2828                           selectOpName(p->op)));
2829         rc = sqlite3Select(pParse, p, &intersectdest);
2830         testcase( rc!=SQLITE_OK );
2831         pDelete = p->pPrior;
2832         p->pPrior = pPrior;
2833         if( p->nSelectRow>pPrior->nSelectRow ){
2834           p->nSelectRow = pPrior->nSelectRow;
2835         }
2836         sqlite3ExprDelete(db, p->pLimit);
2837         p->pLimit = pLimit;
2838 
2839         /* Generate code to take the intersection of the two temporary
2840         ** tables.
2841         */
2842         if( rc ) break;
2843         assert( p->pEList );
2844         iBreak = sqlite3VdbeMakeLabel(pParse);
2845         iCont = sqlite3VdbeMakeLabel(pParse);
2846         computeLimitRegisters(pParse, p, iBreak);
2847         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2848         r1 = sqlite3GetTempReg(pParse);
2849         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2850         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2851         VdbeCoverage(v);
2852         sqlite3ReleaseTempReg(pParse, r1);
2853         selectInnerLoop(pParse, p, tab1,
2854                         0, 0, &dest, iCont, iBreak);
2855         sqlite3VdbeResolveLabel(v, iCont);
2856         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2857         sqlite3VdbeResolveLabel(v, iBreak);
2858         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2859         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2860         break;
2861       }
2862     }
2863 
2864   #ifndef SQLITE_OMIT_EXPLAIN
2865     if( p->pNext==0 ){
2866       ExplainQueryPlanPop(pParse);
2867     }
2868   #endif
2869   }
2870   if( pParse->nErr ) goto multi_select_end;
2871 
2872   /* Compute collating sequences used by
2873   ** temporary tables needed to implement the compound select.
2874   ** Attach the KeyInfo structure to all temporary tables.
2875   **
2876   ** This section is run by the right-most SELECT statement only.
2877   ** SELECT statements to the left always skip this part.  The right-most
2878   ** SELECT might also skip this part if it has no ORDER BY clause and
2879   ** no temp tables are required.
2880   */
2881   if( p->selFlags & SF_UsesEphemeral ){
2882     int i;                        /* Loop counter */
2883     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2884     Select *pLoop;                /* For looping through SELECT statements */
2885     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2886     int nCol;                     /* Number of columns in result set */
2887 
2888     assert( p->pNext==0 );
2889     nCol = p->pEList->nExpr;
2890     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2891     if( !pKeyInfo ){
2892       rc = SQLITE_NOMEM_BKPT;
2893       goto multi_select_end;
2894     }
2895     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2896       *apColl = multiSelectCollSeq(pParse, p, i);
2897       if( 0==*apColl ){
2898         *apColl = db->pDfltColl;
2899       }
2900     }
2901 
2902     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2903       for(i=0; i<2; i++){
2904         int addr = pLoop->addrOpenEphm[i];
2905         if( addr<0 ){
2906           /* If [0] is unused then [1] is also unused.  So we can
2907           ** always safely abort as soon as the first unused slot is found */
2908           assert( pLoop->addrOpenEphm[1]<0 );
2909           break;
2910         }
2911         sqlite3VdbeChangeP2(v, addr, nCol);
2912         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2913                             P4_KEYINFO);
2914         pLoop->addrOpenEphm[i] = -1;
2915       }
2916     }
2917     sqlite3KeyInfoUnref(pKeyInfo);
2918   }
2919 
2920 multi_select_end:
2921   pDest->iSdst = dest.iSdst;
2922   pDest->nSdst = dest.nSdst;
2923   sqlite3SelectDelete(db, pDelete);
2924   return rc;
2925 }
2926 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2927 
2928 /*
2929 ** Error message for when two or more terms of a compound select have different
2930 ** size result sets.
2931 */
2932 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2933   if( p->selFlags & SF_Values ){
2934     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2935   }else{
2936     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2937       " do not have the same number of result columns", selectOpName(p->op));
2938   }
2939 }
2940 
2941 /*
2942 ** Code an output subroutine for a coroutine implementation of a
2943 ** SELECT statment.
2944 **
2945 ** The data to be output is contained in pIn->iSdst.  There are
2946 ** pIn->nSdst columns to be output.  pDest is where the output should
2947 ** be sent.
2948 **
2949 ** regReturn is the number of the register holding the subroutine
2950 ** return address.
2951 **
2952 ** If regPrev>0 then it is the first register in a vector that
2953 ** records the previous output.  mem[regPrev] is a flag that is false
2954 ** if there has been no previous output.  If regPrev>0 then code is
2955 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2956 ** keys.
2957 **
2958 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2959 ** iBreak.
2960 */
2961 static int generateOutputSubroutine(
2962   Parse *pParse,          /* Parsing context */
2963   Select *p,              /* The SELECT statement */
2964   SelectDest *pIn,        /* Coroutine supplying data */
2965   SelectDest *pDest,      /* Where to send the data */
2966   int regReturn,          /* The return address register */
2967   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2968   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2969   int iBreak              /* Jump here if we hit the LIMIT */
2970 ){
2971   Vdbe *v = pParse->pVdbe;
2972   int iContinue;
2973   int addr;
2974 
2975   addr = sqlite3VdbeCurrentAddr(v);
2976   iContinue = sqlite3VdbeMakeLabel(pParse);
2977 
2978   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2979   */
2980   if( regPrev ){
2981     int addr1, addr2;
2982     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2983     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2984                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2985     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2986     sqlite3VdbeJumpHere(v, addr1);
2987     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2988     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2989   }
2990   if( pParse->db->mallocFailed ) return 0;
2991 
2992   /* Suppress the first OFFSET entries if there is an OFFSET clause
2993   */
2994   codeOffset(v, p->iOffset, iContinue);
2995 
2996   assert( pDest->eDest!=SRT_Exists );
2997   assert( pDest->eDest!=SRT_Table );
2998   switch( pDest->eDest ){
2999     /* Store the result as data using a unique key.
3000     */
3001     case SRT_EphemTab: {
3002       int r1 = sqlite3GetTempReg(pParse);
3003       int r2 = sqlite3GetTempReg(pParse);
3004       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3005       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3006       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3007       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3008       sqlite3ReleaseTempReg(pParse, r2);
3009       sqlite3ReleaseTempReg(pParse, r1);
3010       break;
3011     }
3012 
3013 #ifndef SQLITE_OMIT_SUBQUERY
3014     /* If we are creating a set for an "expr IN (SELECT ...)".
3015     */
3016     case SRT_Set: {
3017       int r1;
3018       testcase( pIn->nSdst>1 );
3019       r1 = sqlite3GetTempReg(pParse);
3020       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3021           r1, pDest->zAffSdst, pIn->nSdst);
3022       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3023                            pIn->iSdst, pIn->nSdst);
3024       sqlite3ReleaseTempReg(pParse, r1);
3025       break;
3026     }
3027 
3028     /* If this is a scalar select that is part of an expression, then
3029     ** store the results in the appropriate memory cell and break out
3030     ** of the scan loop.  Note that the select might return multiple columns
3031     ** if it is the RHS of a row-value IN operator.
3032     */
3033     case SRT_Mem: {
3034       if( pParse->nErr==0 ){
3035         testcase( pIn->nSdst>1 );
3036         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3037       }
3038       /* The LIMIT clause will jump out of the loop for us */
3039       break;
3040     }
3041 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3042 
3043     /* The results are stored in a sequence of registers
3044     ** starting at pDest->iSdst.  Then the co-routine yields.
3045     */
3046     case SRT_Coroutine: {
3047       if( pDest->iSdst==0 ){
3048         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3049         pDest->nSdst = pIn->nSdst;
3050       }
3051       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3052       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3053       break;
3054     }
3055 
3056     /* If none of the above, then the result destination must be
3057     ** SRT_Output.  This routine is never called with any other
3058     ** destination other than the ones handled above or SRT_Output.
3059     **
3060     ** For SRT_Output, results are stored in a sequence of registers.
3061     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3062     ** return the next row of result.
3063     */
3064     default: {
3065       assert( pDest->eDest==SRT_Output );
3066       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3067       break;
3068     }
3069   }
3070 
3071   /* Jump to the end of the loop if the LIMIT is reached.
3072   */
3073   if( p->iLimit ){
3074     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3075   }
3076 
3077   /* Generate the subroutine return
3078   */
3079   sqlite3VdbeResolveLabel(v, iContinue);
3080   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3081 
3082   return addr;
3083 }
3084 
3085 /*
3086 ** Alternative compound select code generator for cases when there
3087 ** is an ORDER BY clause.
3088 **
3089 ** We assume a query of the following form:
3090 **
3091 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3092 **
3093 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3094 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3095 ** co-routines.  Then run the co-routines in parallel and merge the results
3096 ** into the output.  In addition to the two coroutines (called selectA and
3097 ** selectB) there are 7 subroutines:
3098 **
3099 **    outA:    Move the output of the selectA coroutine into the output
3100 **             of the compound query.
3101 **
3102 **    outB:    Move the output of the selectB coroutine into the output
3103 **             of the compound query.  (Only generated for UNION and
3104 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3105 **             appears only in B.)
3106 **
3107 **    AltB:    Called when there is data from both coroutines and A<B.
3108 **
3109 **    AeqB:    Called when there is data from both coroutines and A==B.
3110 **
3111 **    AgtB:    Called when there is data from both coroutines and A>B.
3112 **
3113 **    EofA:    Called when data is exhausted from selectA.
3114 **
3115 **    EofB:    Called when data is exhausted from selectB.
3116 **
3117 ** The implementation of the latter five subroutines depend on which
3118 ** <operator> is used:
3119 **
3120 **
3121 **             UNION ALL         UNION            EXCEPT          INTERSECT
3122 **          -------------  -----------------  --------------  -----------------
3123 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3124 **
3125 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3126 **
3127 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3128 **
3129 **   EofA:   outB, nextB      outB, nextB          halt             halt
3130 **
3131 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3132 **
3133 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3134 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3135 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3136 ** following nextX causes a jump to the end of the select processing.
3137 **
3138 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3139 ** within the output subroutine.  The regPrev register set holds the previously
3140 ** output value.  A comparison is made against this value and the output
3141 ** is skipped if the next results would be the same as the previous.
3142 **
3143 ** The implementation plan is to implement the two coroutines and seven
3144 ** subroutines first, then put the control logic at the bottom.  Like this:
3145 **
3146 **          goto Init
3147 **     coA: coroutine for left query (A)
3148 **     coB: coroutine for right query (B)
3149 **    outA: output one row of A
3150 **    outB: output one row of B (UNION and UNION ALL only)
3151 **    EofA: ...
3152 **    EofB: ...
3153 **    AltB: ...
3154 **    AeqB: ...
3155 **    AgtB: ...
3156 **    Init: initialize coroutine registers
3157 **          yield coA
3158 **          if eof(A) goto EofA
3159 **          yield coB
3160 **          if eof(B) goto EofB
3161 **    Cmpr: Compare A, B
3162 **          Jump AltB, AeqB, AgtB
3163 **     End: ...
3164 **
3165 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3166 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3167 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3168 ** and AgtB jump to either L2 or to one of EofA or EofB.
3169 */
3170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3171 static int multiSelectOrderBy(
3172   Parse *pParse,        /* Parsing context */
3173   Select *p,            /* The right-most of SELECTs to be coded */
3174   SelectDest *pDest     /* What to do with query results */
3175 ){
3176   int i, j;             /* Loop counters */
3177   Select *pPrior;       /* Another SELECT immediately to our left */
3178   Vdbe *v;              /* Generate code to this VDBE */
3179   SelectDest destA;     /* Destination for coroutine A */
3180   SelectDest destB;     /* Destination for coroutine B */
3181   int regAddrA;         /* Address register for select-A coroutine */
3182   int regAddrB;         /* Address register for select-B coroutine */
3183   int addrSelectA;      /* Address of the select-A coroutine */
3184   int addrSelectB;      /* Address of the select-B coroutine */
3185   int regOutA;          /* Address register for the output-A subroutine */
3186   int regOutB;          /* Address register for the output-B subroutine */
3187   int addrOutA;         /* Address of the output-A subroutine */
3188   int addrOutB = 0;     /* Address of the output-B subroutine */
3189   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3190   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3191   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3192   int addrAltB;         /* Address of the A<B subroutine */
3193   int addrAeqB;         /* Address of the A==B subroutine */
3194   int addrAgtB;         /* Address of the A>B subroutine */
3195   int regLimitA;        /* Limit register for select-A */
3196   int regLimitB;        /* Limit register for select-A */
3197   int regPrev;          /* A range of registers to hold previous output */
3198   int savedLimit;       /* Saved value of p->iLimit */
3199   int savedOffset;      /* Saved value of p->iOffset */
3200   int labelCmpr;        /* Label for the start of the merge algorithm */
3201   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3202   int addr1;            /* Jump instructions that get retargetted */
3203   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3204   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3205   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3206   sqlite3 *db;          /* Database connection */
3207   ExprList *pOrderBy;   /* The ORDER BY clause */
3208   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3209   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3210 
3211   assert( p->pOrderBy!=0 );
3212   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3213   db = pParse->db;
3214   v = pParse->pVdbe;
3215   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3216   labelEnd = sqlite3VdbeMakeLabel(pParse);
3217   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3218 
3219 
3220   /* Patch up the ORDER BY clause
3221   */
3222   op = p->op;
3223   pPrior = p->pPrior;
3224   assert( pPrior->pOrderBy==0 );
3225   pOrderBy = p->pOrderBy;
3226   assert( pOrderBy );
3227   nOrderBy = pOrderBy->nExpr;
3228 
3229   /* For operators other than UNION ALL we have to make sure that
3230   ** the ORDER BY clause covers every term of the result set.  Add
3231   ** terms to the ORDER BY clause as necessary.
3232   */
3233   if( op!=TK_ALL ){
3234     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3235       struct ExprList_item *pItem;
3236       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3237         assert( pItem->u.x.iOrderByCol>0 );
3238         if( pItem->u.x.iOrderByCol==i ) break;
3239       }
3240       if( j==nOrderBy ){
3241         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3242         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3243         pNew->flags |= EP_IntValue;
3244         pNew->u.iValue = i;
3245         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3246         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3247       }
3248     }
3249   }
3250 
3251   /* Compute the comparison permutation and keyinfo that is used with
3252   ** the permutation used to determine if the next
3253   ** row of results comes from selectA or selectB.  Also add explicit
3254   ** collations to the ORDER BY clause terms so that when the subqueries
3255   ** to the right and the left are evaluated, they use the correct
3256   ** collation.
3257   */
3258   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3259   if( aPermute ){
3260     struct ExprList_item *pItem;
3261     aPermute[0] = nOrderBy;
3262     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3263       assert( pItem->u.x.iOrderByCol>0 );
3264       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3265       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3266     }
3267     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3268   }else{
3269     pKeyMerge = 0;
3270   }
3271 
3272   /* Reattach the ORDER BY clause to the query.
3273   */
3274   p->pOrderBy = pOrderBy;
3275   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3276 
3277   /* Allocate a range of temporary registers and the KeyInfo needed
3278   ** for the logic that removes duplicate result rows when the
3279   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3280   */
3281   if( op==TK_ALL ){
3282     regPrev = 0;
3283   }else{
3284     int nExpr = p->pEList->nExpr;
3285     assert( nOrderBy>=nExpr || db->mallocFailed );
3286     regPrev = pParse->nMem+1;
3287     pParse->nMem += nExpr+1;
3288     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3289     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3290     if( pKeyDup ){
3291       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3292       for(i=0; i<nExpr; i++){
3293         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3294         pKeyDup->aSortFlags[i] = 0;
3295       }
3296     }
3297   }
3298 
3299   /* Separate the left and the right query from one another
3300   */
3301   p->pPrior = 0;
3302   pPrior->pNext = 0;
3303   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3304   if( pPrior->pPrior==0 ){
3305     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3306   }
3307 
3308   /* Compute the limit registers */
3309   computeLimitRegisters(pParse, p, labelEnd);
3310   if( p->iLimit && op==TK_ALL ){
3311     regLimitA = ++pParse->nMem;
3312     regLimitB = ++pParse->nMem;
3313     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3314                                   regLimitA);
3315     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3316   }else{
3317     regLimitA = regLimitB = 0;
3318   }
3319   sqlite3ExprDelete(db, p->pLimit);
3320   p->pLimit = 0;
3321 
3322   regAddrA = ++pParse->nMem;
3323   regAddrB = ++pParse->nMem;
3324   regOutA = ++pParse->nMem;
3325   regOutB = ++pParse->nMem;
3326   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3327   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3328 
3329   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3330 
3331   /* Generate a coroutine to evaluate the SELECT statement to the
3332   ** left of the compound operator - the "A" select.
3333   */
3334   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3335   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3336   VdbeComment((v, "left SELECT"));
3337   pPrior->iLimit = regLimitA;
3338   ExplainQueryPlan((pParse, 1, "LEFT"));
3339   sqlite3Select(pParse, pPrior, &destA);
3340   sqlite3VdbeEndCoroutine(v, regAddrA);
3341   sqlite3VdbeJumpHere(v, addr1);
3342 
3343   /* Generate a coroutine to evaluate the SELECT statement on
3344   ** the right - the "B" select
3345   */
3346   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3347   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3348   VdbeComment((v, "right SELECT"));
3349   savedLimit = p->iLimit;
3350   savedOffset = p->iOffset;
3351   p->iLimit = regLimitB;
3352   p->iOffset = 0;
3353   ExplainQueryPlan((pParse, 1, "RIGHT"));
3354   sqlite3Select(pParse, p, &destB);
3355   p->iLimit = savedLimit;
3356   p->iOffset = savedOffset;
3357   sqlite3VdbeEndCoroutine(v, regAddrB);
3358 
3359   /* Generate a subroutine that outputs the current row of the A
3360   ** select as the next output row of the compound select.
3361   */
3362   VdbeNoopComment((v, "Output routine for A"));
3363   addrOutA = generateOutputSubroutine(pParse,
3364                  p, &destA, pDest, regOutA,
3365                  regPrev, pKeyDup, labelEnd);
3366 
3367   /* Generate a subroutine that outputs the current row of the B
3368   ** select as the next output row of the compound select.
3369   */
3370   if( op==TK_ALL || op==TK_UNION ){
3371     VdbeNoopComment((v, "Output routine for B"));
3372     addrOutB = generateOutputSubroutine(pParse,
3373                  p, &destB, pDest, regOutB,
3374                  regPrev, pKeyDup, labelEnd);
3375   }
3376   sqlite3KeyInfoUnref(pKeyDup);
3377 
3378   /* Generate a subroutine to run when the results from select A
3379   ** are exhausted and only data in select B remains.
3380   */
3381   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3382     addrEofA_noB = addrEofA = labelEnd;
3383   }else{
3384     VdbeNoopComment((v, "eof-A subroutine"));
3385     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3386     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3387                                      VdbeCoverage(v);
3388     sqlite3VdbeGoto(v, addrEofA);
3389     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3390   }
3391 
3392   /* Generate a subroutine to run when the results from select B
3393   ** are exhausted and only data in select A remains.
3394   */
3395   if( op==TK_INTERSECT ){
3396     addrEofB = addrEofA;
3397     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3398   }else{
3399     VdbeNoopComment((v, "eof-B subroutine"));
3400     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3401     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3402     sqlite3VdbeGoto(v, addrEofB);
3403   }
3404 
3405   /* Generate code to handle the case of A<B
3406   */
3407   VdbeNoopComment((v, "A-lt-B subroutine"));
3408   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3409   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3410   sqlite3VdbeGoto(v, labelCmpr);
3411 
3412   /* Generate code to handle the case of A==B
3413   */
3414   if( op==TK_ALL ){
3415     addrAeqB = addrAltB;
3416   }else if( op==TK_INTERSECT ){
3417     addrAeqB = addrAltB;
3418     addrAltB++;
3419   }else{
3420     VdbeNoopComment((v, "A-eq-B subroutine"));
3421     addrAeqB =
3422     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3423     sqlite3VdbeGoto(v, labelCmpr);
3424   }
3425 
3426   /* Generate code to handle the case of A>B
3427   */
3428   VdbeNoopComment((v, "A-gt-B subroutine"));
3429   addrAgtB = sqlite3VdbeCurrentAddr(v);
3430   if( op==TK_ALL || op==TK_UNION ){
3431     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3432   }
3433   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3434   sqlite3VdbeGoto(v, labelCmpr);
3435 
3436   /* This code runs once to initialize everything.
3437   */
3438   sqlite3VdbeJumpHere(v, addr1);
3439   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3440   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3441 
3442   /* Implement the main merge loop
3443   */
3444   sqlite3VdbeResolveLabel(v, labelCmpr);
3445   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3446   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3447                          (char*)pKeyMerge, P4_KEYINFO);
3448   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3449   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3450 
3451   /* Jump to the this point in order to terminate the query.
3452   */
3453   sqlite3VdbeResolveLabel(v, labelEnd);
3454 
3455   /* Reassembly the compound query so that it will be freed correctly
3456   ** by the calling function */
3457   if( p->pPrior ){
3458     sqlite3SelectDelete(db, p->pPrior);
3459   }
3460   p->pPrior = pPrior;
3461   pPrior->pNext = p;
3462 
3463   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3464   **** subqueries ****/
3465   ExplainQueryPlanPop(pParse);
3466   return pParse->nErr!=0;
3467 }
3468 #endif
3469 
3470 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3471 
3472 /* An instance of the SubstContext object describes an substitution edit
3473 ** to be performed on a parse tree.
3474 **
3475 ** All references to columns in table iTable are to be replaced by corresponding
3476 ** expressions in pEList.
3477 */
3478 typedef struct SubstContext {
3479   Parse *pParse;            /* The parsing context */
3480   int iTable;               /* Replace references to this table */
3481   int iNewTable;            /* New table number */
3482   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3483   ExprList *pEList;         /* Replacement expressions */
3484 } SubstContext;
3485 
3486 /* Forward Declarations */
3487 static void substExprList(SubstContext*, ExprList*);
3488 static void substSelect(SubstContext*, Select*, int);
3489 
3490 /*
3491 ** Scan through the expression pExpr.  Replace every reference to
3492 ** a column in table number iTable with a copy of the iColumn-th
3493 ** entry in pEList.  (But leave references to the ROWID column
3494 ** unchanged.)
3495 **
3496 ** This routine is part of the flattening procedure.  A subquery
3497 ** whose result set is defined by pEList appears as entry in the
3498 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3499 ** FORM clause entry is iTable.  This routine makes the necessary
3500 ** changes to pExpr so that it refers directly to the source table
3501 ** of the subquery rather the result set of the subquery.
3502 */
3503 static Expr *substExpr(
3504   SubstContext *pSubst,  /* Description of the substitution */
3505   Expr *pExpr            /* Expr in which substitution occurs */
3506 ){
3507   if( pExpr==0 ) return 0;
3508   if( ExprHasProperty(pExpr, EP_FromJoin)
3509    && pExpr->iRightJoinTable==pSubst->iTable
3510   ){
3511     pExpr->iRightJoinTable = pSubst->iNewTable;
3512   }
3513   if( pExpr->op==TK_COLUMN
3514    && pExpr->iTable==pSubst->iTable
3515    && !ExprHasProperty(pExpr, EP_FixedCol)
3516   ){
3517     if( pExpr->iColumn<0 ){
3518       pExpr->op = TK_NULL;
3519     }else{
3520       Expr *pNew;
3521       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3522       Expr ifNullRow;
3523       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3524       assert( pExpr->pRight==0 );
3525       if( sqlite3ExprIsVector(pCopy) ){
3526         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3527       }else{
3528         sqlite3 *db = pSubst->pParse->db;
3529         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3530           memset(&ifNullRow, 0, sizeof(ifNullRow));
3531           ifNullRow.op = TK_IF_NULL_ROW;
3532           ifNullRow.pLeft = pCopy;
3533           ifNullRow.iTable = pSubst->iNewTable;
3534           ifNullRow.flags = EP_IfNullRow;
3535           pCopy = &ifNullRow;
3536         }
3537         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3538         pNew = sqlite3ExprDup(db, pCopy, 0);
3539         if( pNew && pSubst->isLeftJoin ){
3540           ExprSetProperty(pNew, EP_CanBeNull);
3541         }
3542         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3543           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3544         }
3545         sqlite3ExprDelete(db, pExpr);
3546         pExpr = pNew;
3547 
3548         /* Ensure that the expression now has an implicit collation sequence,
3549         ** just as it did when it was a column of a view or sub-query. */
3550         if( pExpr ){
3551           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3552             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3553             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3554                 (pColl ? pColl->zName : "BINARY")
3555             );
3556           }
3557           ExprClearProperty(pExpr, EP_Collate);
3558         }
3559       }
3560     }
3561   }else{
3562     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3563       pExpr->iTable = pSubst->iNewTable;
3564     }
3565     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3566     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3567     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3568       substSelect(pSubst, pExpr->x.pSelect, 1);
3569     }else{
3570       substExprList(pSubst, pExpr->x.pList);
3571     }
3572 #ifndef SQLITE_OMIT_WINDOWFUNC
3573     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3574       Window *pWin = pExpr->y.pWin;
3575       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3576       substExprList(pSubst, pWin->pPartition);
3577       substExprList(pSubst, pWin->pOrderBy);
3578     }
3579 #endif
3580   }
3581   return pExpr;
3582 }
3583 static void substExprList(
3584   SubstContext *pSubst, /* Description of the substitution */
3585   ExprList *pList       /* List to scan and in which to make substitutes */
3586 ){
3587   int i;
3588   if( pList==0 ) return;
3589   for(i=0; i<pList->nExpr; i++){
3590     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3591   }
3592 }
3593 static void substSelect(
3594   SubstContext *pSubst, /* Description of the substitution */
3595   Select *p,            /* SELECT statement in which to make substitutions */
3596   int doPrior           /* Do substitutes on p->pPrior too */
3597 ){
3598   SrcList *pSrc;
3599   struct SrcList_item *pItem;
3600   int i;
3601   if( !p ) return;
3602   do{
3603     substExprList(pSubst, p->pEList);
3604     substExprList(pSubst, p->pGroupBy);
3605     substExprList(pSubst, p->pOrderBy);
3606     p->pHaving = substExpr(pSubst, p->pHaving);
3607     p->pWhere = substExpr(pSubst, p->pWhere);
3608     pSrc = p->pSrc;
3609     assert( pSrc!=0 );
3610     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3611       substSelect(pSubst, pItem->pSelect, 1);
3612       if( pItem->fg.isTabFunc ){
3613         substExprList(pSubst, pItem->u1.pFuncArg);
3614       }
3615     }
3616   }while( doPrior && (p = p->pPrior)!=0 );
3617 }
3618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3619 
3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3621 /*
3622 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3623 ** clause of that SELECT.
3624 **
3625 ** This routine scans the entire SELECT statement and recomputes the
3626 ** pSrcItem->colUsed mask.
3627 */
3628 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3629   struct SrcList_item *pItem;
3630   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3631   pItem = pWalker->u.pSrcItem;
3632   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3633   if( pExpr->iColumn<0 ) return WRC_Continue;
3634   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3635   return WRC_Continue;
3636 }
3637 static void recomputeColumnsUsed(
3638   Select *pSelect,                 /* The complete SELECT statement */
3639   struct SrcList_item *pSrcItem    /* Which FROM clause item to recompute */
3640 ){
3641   Walker w;
3642   if( NEVER(pSrcItem->pTab==0) ) return;
3643   memset(&w, 0, sizeof(w));
3644   w.xExprCallback = recomputeColumnsUsedExpr;
3645   w.xSelectCallback = sqlite3SelectWalkNoop;
3646   w.u.pSrcItem = pSrcItem;
3647   pSrcItem->colUsed = 0;
3648   sqlite3WalkSelect(&w, pSelect);
3649 }
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3651 
3652 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3653 /*
3654 ** Assign new cursor numbers to each of the items in pSrc. For each
3655 ** new cursor number assigned, set an entry in the aCsrMap[] array
3656 ** to map the old cursor number to the new:
3657 **
3658 **     aCsrMap[iOld] = iNew;
3659 **
3660 ** The array is guaranteed by the caller to be large enough for all
3661 ** existing cursor numbers in pSrc.
3662 **
3663 ** If pSrc contains any sub-selects, call this routine recursively
3664 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3665 */
3666 static void srclistRenumberCursors(
3667   Parse *pParse,                  /* Parse context */
3668   int *aCsrMap,                   /* Array to store cursor mappings in */
3669   SrcList *pSrc,                  /* FROM clause to renumber */
3670   int iExcept                     /* FROM clause item to skip */
3671 ){
3672   int i;
3673   struct SrcList_item *pItem;
3674   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3675     if( i!=iExcept ){
3676       Select *p;
3677       pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++;
3678       for(p=pItem->pSelect; p; p=p->pPrior){
3679         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3680       }
3681     }
3682   }
3683 }
3684 
3685 /*
3686 ** Expression walker callback used by renumberCursors() to update
3687 ** Expr objects to match newly assigned cursor numbers.
3688 */
3689 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3690   int *aCsrMap = pWalker->u.aiCol;
3691   if( pExpr->op==TK_COLUMN && aCsrMap[pExpr->iTable] ){
3692     pExpr->iTable = aCsrMap[pExpr->iTable];
3693   }
3694   if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3695     pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3696   }
3697   return WRC_Continue;
3698 }
3699 
3700 /*
3701 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3702 ** of the SELECT statement passed as the second argument, and to each
3703 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3704 ** Except, do not assign a new cursor number to the iExcept'th element in
3705 ** the FROM clause of (*p). Update all expressions and other references
3706 ** to refer to the new cursor numbers.
3707 **
3708 ** Argument aCsrMap is an array that may be used for temporary working
3709 ** space. Two guarantees are made by the caller:
3710 **
3711 **   * the array is larger than the largest cursor number used within the
3712 **     select statement passed as an argument, and
3713 **
3714 **   * the array entries for all cursor numbers that do *not* appear in
3715 **     FROM clauses of the select statement as described above are
3716 **     initialized to zero.
3717 */
3718 static void renumberCursors(
3719   Parse *pParse,                  /* Parse context */
3720   Select *p,                      /* Select to renumber cursors within */
3721   int iExcept,                    /* FROM clause item to skip */
3722   int *aCsrMap                    /* Working space */
3723 ){
3724   Walker w;
3725   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3726   memset(&w, 0, sizeof(w));
3727   w.u.aiCol = aCsrMap;
3728   w.xExprCallback = renumberCursorsCb;
3729   w.xSelectCallback = sqlite3SelectWalkNoop;
3730   sqlite3WalkSelect(&w, p);
3731 }
3732 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3733 
3734 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3735 /*
3736 ** This routine attempts to flatten subqueries as a performance optimization.
3737 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3738 **
3739 ** To understand the concept of flattening, consider the following
3740 ** query:
3741 **
3742 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3743 **
3744 ** The default way of implementing this query is to execute the
3745 ** subquery first and store the results in a temporary table, then
3746 ** run the outer query on that temporary table.  This requires two
3747 ** passes over the data.  Furthermore, because the temporary table
3748 ** has no indices, the WHERE clause on the outer query cannot be
3749 ** optimized.
3750 **
3751 ** This routine attempts to rewrite queries such as the above into
3752 ** a single flat select, like this:
3753 **
3754 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3755 **
3756 ** The code generated for this simplification gives the same result
3757 ** but only has to scan the data once.  And because indices might
3758 ** exist on the table t1, a complete scan of the data might be
3759 ** avoided.
3760 **
3761 ** Flattening is subject to the following constraints:
3762 **
3763 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3764 **        The subquery and the outer query cannot both be aggregates.
3765 **
3766 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3767 **        (2) If the subquery is an aggregate then
3768 **        (2a) the outer query must not be a join and
3769 **        (2b) the outer query must not use subqueries
3770 **             other than the one FROM-clause subquery that is a candidate
3771 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3772 **             from 2015-02-09.)
3773 **
3774 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3775 **        (3a) the subquery may not be a join and
3776 **        (3b) the FROM clause of the subquery may not contain a virtual
3777 **             table and
3778 **        (3c) the outer query may not be an aggregate.
3779 **        (3d) the outer query may not be DISTINCT.
3780 **
3781 **   (4)  The subquery can not be DISTINCT.
3782 **
3783 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3784 **        sub-queries that were excluded from this optimization. Restriction
3785 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3786 **
3787 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3788 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3789 **
3790 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3791 **        A FROM clause, consider adding a FROM clause with the special
3792 **        table sqlite_once that consists of a single row containing a
3793 **        single NULL.
3794 **
3795 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3796 **
3797 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3798 **
3799 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3800 **        accidently carried the comment forward until 2014-09-15.  Original
3801 **        constraint: "If the subquery is aggregate then the outer query
3802 **        may not use LIMIT."
3803 **
3804 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3805 **
3806 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3807 **        a separate restriction deriving from ticket #350.
3808 **
3809 **  (13)  The subquery and outer query may not both use LIMIT.
3810 **
3811 **  (14)  The subquery may not use OFFSET.
3812 **
3813 **  (15)  If the outer query is part of a compound select, then the
3814 **        subquery may not use LIMIT.
3815 **        (See ticket #2339 and ticket [02a8e81d44]).
3816 **
3817 **  (16)  If the outer query is aggregate, then the subquery may not
3818 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3819 **        until we introduced the group_concat() function.
3820 **
3821 **  (17)  If the subquery is a compound select, then
3822 **        (17a) all compound operators must be a UNION ALL, and
3823 **        (17b) no terms within the subquery compound may be aggregate
3824 **              or DISTINCT, and
3825 **        (17c) every term within the subquery compound must have a FROM clause
3826 **        (17d) the outer query may not be
3827 **              (17d1) aggregate, or
3828 **              (17d2) DISTINCT
3829 **        (17e) the subquery may not contain window functions, and
3830 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3831 **
3832 **        The parent and sub-query may contain WHERE clauses. Subject to
3833 **        rules (11), (13) and (14), they may also contain ORDER BY,
3834 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3835 **        operator other than UNION ALL because all the other compound
3836 **        operators have an implied DISTINCT which is disallowed by
3837 **        restriction (4).
3838 **
3839 **        Also, each component of the sub-query must return the same number
3840 **        of result columns. This is actually a requirement for any compound
3841 **        SELECT statement, but all the code here does is make sure that no
3842 **        such (illegal) sub-query is flattened. The caller will detect the
3843 **        syntax error and return a detailed message.
3844 **
3845 **  (18)  If the sub-query is a compound select, then all terms of the
3846 **        ORDER BY clause of the parent must be copies of a term returned
3847 **        by the parent query.
3848 **
3849 **  (19)  If the subquery uses LIMIT then the outer query may not
3850 **        have a WHERE clause.
3851 **
3852 **  (20)  If the sub-query is a compound select, then it must not use
3853 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3854 **        somewhat by saying that the terms of the ORDER BY clause must
3855 **        appear as unmodified result columns in the outer query.  But we
3856 **        have other optimizations in mind to deal with that case.
3857 **
3858 **  (21)  If the subquery uses LIMIT then the outer query may not be
3859 **        DISTINCT.  (See ticket [752e1646fc]).
3860 **
3861 **  (22)  The subquery may not be a recursive CTE.
3862 **
3863 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3864 **        a compound query.  This restriction is because transforming the
3865 **        parent to a compound query confuses the code that handles
3866 **        recursive queries in multiSelect().
3867 **
3868 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3869 **        The subquery may not be an aggregate that uses the built-in min() or
3870 **        or max() functions.  (Without this restriction, a query like:
3871 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3872 **        return the value X for which Y was maximal.)
3873 **
3874 **  (25)  If either the subquery or the parent query contains a window
3875 **        function in the select list or ORDER BY clause, flattening
3876 **        is not attempted.
3877 **
3878 **
3879 ** In this routine, the "p" parameter is a pointer to the outer query.
3880 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3881 ** uses aggregates.
3882 **
3883 ** If flattening is not attempted, this routine is a no-op and returns 0.
3884 ** If flattening is attempted this routine returns 1.
3885 **
3886 ** All of the expression analysis must occur on both the outer query and
3887 ** the subquery before this routine runs.
3888 */
3889 static int flattenSubquery(
3890   Parse *pParse,       /* Parsing context */
3891   Select *p,           /* The parent or outer SELECT statement */
3892   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3893   int isAgg            /* True if outer SELECT uses aggregate functions */
3894 ){
3895   const char *zSavedAuthContext = pParse->zAuthContext;
3896   Select *pParent;    /* Current UNION ALL term of the other query */
3897   Select *pSub;       /* The inner query or "subquery" */
3898   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3899   SrcList *pSrc;      /* The FROM clause of the outer query */
3900   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3901   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3902   int iNewParent = -1;/* Replacement table for iParent */
3903   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3904   int i;              /* Loop counter */
3905   Expr *pWhere;                    /* The WHERE clause */
3906   struct SrcList_item *pSubitem;   /* The subquery */
3907   sqlite3 *db = pParse->db;
3908   Walker w;                        /* Walker to persist agginfo data */
3909   int *aCsrMap = 0;
3910 
3911   /* Check to see if flattening is permitted.  Return 0 if not.
3912   */
3913   assert( p!=0 );
3914   assert( p->pPrior==0 );
3915   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3916   pSrc = p->pSrc;
3917   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3918   pSubitem = &pSrc->a[iFrom];
3919   iParent = pSubitem->iCursor;
3920   pSub = pSubitem->pSelect;
3921   assert( pSub!=0 );
3922 
3923 #ifndef SQLITE_OMIT_WINDOWFUNC
3924   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3925 #endif
3926 
3927   pSubSrc = pSub->pSrc;
3928   assert( pSubSrc );
3929   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3930   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3931   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3932   ** became arbitrary expressions, we were forced to add restrictions (13)
3933   ** and (14). */
3934   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3935   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3936   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3937     return 0;                                            /* Restriction (15) */
3938   }
3939   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3940   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3941   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3942      return 0;         /* Restrictions (8)(9) */
3943   }
3944   if( p->pOrderBy && pSub->pOrderBy ){
3945      return 0;                                           /* Restriction (11) */
3946   }
3947   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3948   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3949   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3950      return 0;         /* Restriction (21) */
3951   }
3952   if( pSub->selFlags & (SF_Recursive) ){
3953     return 0; /* Restrictions (22) */
3954   }
3955 
3956   /*
3957   ** If the subquery is the right operand of a LEFT JOIN, then the
3958   ** subquery may not be a join itself (3a). Example of why this is not
3959   ** allowed:
3960   **
3961   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3962   **
3963   ** If we flatten the above, we would get
3964   **
3965   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3966   **
3967   ** which is not at all the same thing.
3968   **
3969   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3970   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3971   ** aggregates are processed - there is no mechanism to determine if
3972   ** the LEFT JOIN table should be all-NULL.
3973   **
3974   ** See also tickets #306, #350, and #3300.
3975   */
3976   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3977     isLeftJoin = 1;
3978     if( pSubSrc->nSrc>1                   /* (3a) */
3979      || isAgg                             /* (3b) */
3980      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3981      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3982     ){
3983       return 0;
3984     }
3985   }
3986 #ifdef SQLITE_EXTRA_IFNULLROW
3987   else if( iFrom>0 && !isAgg ){
3988     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3989     ** every reference to any result column from subquery in a join, even
3990     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3991     ** opcode. */
3992     isLeftJoin = -1;
3993   }
3994 #endif
3995 
3996   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3997   ** use only the UNION ALL operator. And none of the simple select queries
3998   ** that make up the compound SELECT are allowed to be aggregate or distinct
3999   ** queries.
4000   */
4001   if( pSub->pPrior ){
4002     if( pSub->pOrderBy ){
4003       return 0;  /* Restriction (20) */
4004     }
4005     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4006       return 0; /* (17d1), (17d2), or (17f) */
4007     }
4008     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4009       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4010       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4011       assert( pSub->pSrc!=0 );
4012       assert( (pSub->selFlags & SF_Recursive)==0 );
4013       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4014       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4015        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4016        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4017 #ifndef SQLITE_OMIT_WINDOWFUNC
4018        || pSub1->pWin                                          /* (17e) */
4019 #endif
4020       ){
4021         return 0;
4022       }
4023       testcase( pSub1->pSrc->nSrc>1 );
4024     }
4025 
4026     /* Restriction (18). */
4027     if( p->pOrderBy ){
4028       int ii;
4029       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4030         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4031       }
4032     }
4033 
4034     /* Restriction (23) */
4035     if( (p->selFlags & SF_Recursive) ) return 0;
4036 
4037     if( pSrc->nSrc>1 ){
4038       aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4039     }
4040   }
4041 
4042   /***** If we reach this point, flattening is permitted. *****/
4043   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4044                    pSub->selId, pSub, iFrom));
4045 
4046   /* Authorize the subquery */
4047   pParse->zAuthContext = pSubitem->zName;
4048   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4049   testcase( i==SQLITE_DENY );
4050   pParse->zAuthContext = zSavedAuthContext;
4051 
4052   /* Delete the transient structures associated with thesubquery */
4053   pSub1 = pSubitem->pSelect;
4054   sqlite3DbFree(db, pSubitem->zDatabase);
4055   sqlite3DbFree(db, pSubitem->zName);
4056   sqlite3DbFree(db, pSubitem->zAlias);
4057   pSubitem->zDatabase = 0;
4058   pSubitem->zName = 0;
4059   pSubitem->zAlias = 0;
4060   pSubitem->pSelect = 0;
4061   assert( pSubitem->pOn==0 );
4062 
4063   /* If the sub-query is a compound SELECT statement, then (by restrictions
4064   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4065   ** be of the form:
4066   **
4067   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4068   **
4069   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4070   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4071   ** OFFSET clauses and joins them to the left-hand-side of the original
4072   ** using UNION ALL operators. In this case N is the number of simple
4073   ** select statements in the compound sub-query.
4074   **
4075   ** Example:
4076   **
4077   **     SELECT a+1 FROM (
4078   **        SELECT x FROM tab
4079   **        UNION ALL
4080   **        SELECT y FROM tab
4081   **        UNION ALL
4082   **        SELECT abs(z*2) FROM tab2
4083   **     ) WHERE a!=5 ORDER BY 1
4084   **
4085   ** Transformed into:
4086   **
4087   **     SELECT x+1 FROM tab WHERE x+1!=5
4088   **     UNION ALL
4089   **     SELECT y+1 FROM tab WHERE y+1!=5
4090   **     UNION ALL
4091   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4092   **     ORDER BY 1
4093   **
4094   ** We call this the "compound-subquery flattening".
4095   */
4096   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4097     Select *pNew;
4098     ExprList *pOrderBy = p->pOrderBy;
4099     Expr *pLimit = p->pLimit;
4100     Select *pPrior = p->pPrior;
4101     Table *pItemTab = pSubitem->pTab;
4102     pSubitem->pTab = 0;
4103     p->pOrderBy = 0;
4104     p->pPrior = 0;
4105     p->pLimit = 0;
4106     pNew = sqlite3SelectDup(db, p, 0);
4107     p->pLimit = pLimit;
4108     p->pOrderBy = pOrderBy;
4109     p->op = TK_ALL;
4110     pSubitem->pTab = pItemTab;
4111     if( pNew==0 ){
4112       p->pPrior = pPrior;
4113     }else{
4114       if( aCsrMap && db->mallocFailed==0 ){
4115         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4116       }
4117       pNew->pPrior = pPrior;
4118       if( pPrior ) pPrior->pNext = pNew;
4119       pNew->pNext = p;
4120       p->pPrior = pNew;
4121       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4122                               " creates %u as peer\n",pNew->selId));
4123     }
4124     assert( pSubitem->pSelect==0 );
4125   }
4126   sqlite3DbFree(db, aCsrMap);
4127   if( db->mallocFailed ){
4128     pSubitem->pSelect = pSub1;
4129     return 1;
4130   }
4131 
4132   /* Defer deleting the Table object associated with the
4133   ** subquery until code generation is
4134   ** complete, since there may still exist Expr.pTab entries that
4135   ** refer to the subquery even after flattening.  Ticket #3346.
4136   **
4137   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4138   */
4139   if( ALWAYS(pSubitem->pTab!=0) ){
4140     Table *pTabToDel = pSubitem->pTab;
4141     if( pTabToDel->nTabRef==1 ){
4142       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4143       pTabToDel->pNextZombie = pToplevel->pZombieTab;
4144       pToplevel->pZombieTab = pTabToDel;
4145     }else{
4146       pTabToDel->nTabRef--;
4147     }
4148     pSubitem->pTab = 0;
4149   }
4150 
4151   /* The following loop runs once for each term in a compound-subquery
4152   ** flattening (as described above).  If we are doing a different kind
4153   ** of flattening - a flattening other than a compound-subquery flattening -
4154   ** then this loop only runs once.
4155   **
4156   ** This loop moves all of the FROM elements of the subquery into the
4157   ** the FROM clause of the outer query.  Before doing this, remember
4158   ** the cursor number for the original outer query FROM element in
4159   ** iParent.  The iParent cursor will never be used.  Subsequent code
4160   ** will scan expressions looking for iParent references and replace
4161   ** those references with expressions that resolve to the subquery FROM
4162   ** elements we are now copying in.
4163   */
4164   pSub = pSub1;
4165   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4166     int nSubSrc;
4167     u8 jointype = 0;
4168     assert( pSub!=0 );
4169     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4170     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4171     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4172 
4173     if( pParent==p ){
4174       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4175     }
4176 
4177     /* The subquery uses a single slot of the FROM clause of the outer
4178     ** query.  If the subquery has more than one element in its FROM clause,
4179     ** then expand the outer query to make space for it to hold all elements
4180     ** of the subquery.
4181     **
4182     ** Example:
4183     **
4184     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4185     **
4186     ** The outer query has 3 slots in its FROM clause.  One slot of the
4187     ** outer query (the middle slot) is used by the subquery.  The next
4188     ** block of code will expand the outer query FROM clause to 4 slots.
4189     ** The middle slot is expanded to two slots in order to make space
4190     ** for the two elements in the FROM clause of the subquery.
4191     */
4192     if( nSubSrc>1 ){
4193       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4194       if( pSrc==0 ) break;
4195       pParent->pSrc = pSrc;
4196     }
4197 
4198     /* Transfer the FROM clause terms from the subquery into the
4199     ** outer query.
4200     */
4201     for(i=0; i<nSubSrc; i++){
4202       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4203       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4204       pSrc->a[i+iFrom] = pSubSrc->a[i];
4205       iNewParent = pSubSrc->a[i].iCursor;
4206       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4207     }
4208     pSrc->a[iFrom].fg.jointype = jointype;
4209 
4210     /* Now begin substituting subquery result set expressions for
4211     ** references to the iParent in the outer query.
4212     **
4213     ** Example:
4214     **
4215     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4216     **   \                     \_____________ subquery __________/          /
4217     **    \_____________________ outer query ______________________________/
4218     **
4219     ** We look at every expression in the outer query and every place we see
4220     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4221     */
4222     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4223       /* At this point, any non-zero iOrderByCol values indicate that the
4224       ** ORDER BY column expression is identical to the iOrderByCol'th
4225       ** expression returned by SELECT statement pSub. Since these values
4226       ** do not necessarily correspond to columns in SELECT statement pParent,
4227       ** zero them before transfering the ORDER BY clause.
4228       **
4229       ** Not doing this may cause an error if a subsequent call to this
4230       ** function attempts to flatten a compound sub-query into pParent
4231       ** (the only way this can happen is if the compound sub-query is
4232       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4233       ExprList *pOrderBy = pSub->pOrderBy;
4234       for(i=0; i<pOrderBy->nExpr; i++){
4235         pOrderBy->a[i].u.x.iOrderByCol = 0;
4236       }
4237       assert( pParent->pOrderBy==0 );
4238       pParent->pOrderBy = pOrderBy;
4239       pSub->pOrderBy = 0;
4240     }
4241     pWhere = pSub->pWhere;
4242     pSub->pWhere = 0;
4243     if( isLeftJoin>0 ){
4244       sqlite3SetJoinExpr(pWhere, iNewParent);
4245     }
4246     if( pWhere ){
4247       if( pParent->pWhere ){
4248         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4249       }else{
4250         pParent->pWhere = pWhere;
4251       }
4252     }
4253     if( db->mallocFailed==0 ){
4254       SubstContext x;
4255       x.pParse = pParse;
4256       x.iTable = iParent;
4257       x.iNewTable = iNewParent;
4258       x.isLeftJoin = isLeftJoin;
4259       x.pEList = pSub->pEList;
4260       substSelect(&x, pParent, 0);
4261     }
4262 
4263     /* The flattened query is a compound if either the inner or the
4264     ** outer query is a compound. */
4265     pParent->selFlags |= pSub->selFlags & SF_Compound;
4266     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4267 
4268     /*
4269     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4270     **
4271     ** One is tempted to try to add a and b to combine the limits.  But this
4272     ** does not work if either limit is negative.
4273     */
4274     if( pSub->pLimit ){
4275       pParent->pLimit = pSub->pLimit;
4276       pSub->pLimit = 0;
4277     }
4278 
4279     /* Recompute the SrcList_item.colUsed masks for the flattened
4280     ** tables. */
4281     for(i=0; i<nSubSrc; i++){
4282       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4283     }
4284   }
4285 
4286   /* Finially, delete what is left of the subquery and return
4287   ** success.
4288   */
4289   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4290   sqlite3WalkSelect(&w,pSub1);
4291   sqlite3SelectDelete(db, pSub1);
4292 
4293 #if SELECTTRACE_ENABLED
4294   if( sqlite3SelectTrace & 0x100 ){
4295     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4296     sqlite3TreeViewSelect(0, p, 0);
4297   }
4298 #endif
4299 
4300   return 1;
4301 }
4302 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4303 
4304 /*
4305 ** A structure to keep track of all of the column values that are fixed to
4306 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4307 */
4308 typedef struct WhereConst WhereConst;
4309 struct WhereConst {
4310   Parse *pParse;   /* Parsing context */
4311   int nConst;      /* Number for COLUMN=CONSTANT terms */
4312   int nChng;       /* Number of times a constant is propagated */
4313   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4314 };
4315 
4316 /*
4317 ** Add a new entry to the pConst object.  Except, do not add duplicate
4318 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4319 **
4320 ** The caller guarantees the pColumn is a column and pValue is a constant.
4321 ** This routine has to do some additional checks before completing the
4322 ** insert.
4323 */
4324 static void constInsert(
4325   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4326   Expr *pColumn,       /* The COLUMN part of the constraint */
4327   Expr *pValue,        /* The VALUE part of the constraint */
4328   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4329 ){
4330   int i;
4331   assert( pColumn->op==TK_COLUMN );
4332   assert( sqlite3ExprIsConstant(pValue) );
4333 
4334   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4335   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4336   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4337     return;
4338   }
4339 
4340   /* 2018-10-25 ticket [cf5ed20f]
4341   ** Make sure the same pColumn is not inserted more than once */
4342   for(i=0; i<pConst->nConst; i++){
4343     const Expr *pE2 = pConst->apExpr[i*2];
4344     assert( pE2->op==TK_COLUMN );
4345     if( pE2->iTable==pColumn->iTable
4346      && pE2->iColumn==pColumn->iColumn
4347     ){
4348       return;  /* Already present.  Return without doing anything. */
4349     }
4350   }
4351 
4352   pConst->nConst++;
4353   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4354                          pConst->nConst*2*sizeof(Expr*));
4355   if( pConst->apExpr==0 ){
4356     pConst->nConst = 0;
4357   }else{
4358     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4359     pConst->apExpr[pConst->nConst*2-1] = pValue;
4360   }
4361 }
4362 
4363 /*
4364 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4365 ** is a constant expression and where the term must be true because it
4366 ** is part of the AND-connected terms of the expression.  For each term
4367 ** found, add it to the pConst structure.
4368 */
4369 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4370   Expr *pRight, *pLeft;
4371   if( pExpr==0 ) return;
4372   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4373   if( pExpr->op==TK_AND ){
4374     findConstInWhere(pConst, pExpr->pRight);
4375     findConstInWhere(pConst, pExpr->pLeft);
4376     return;
4377   }
4378   if( pExpr->op!=TK_EQ ) return;
4379   pRight = pExpr->pRight;
4380   pLeft = pExpr->pLeft;
4381   assert( pRight!=0 );
4382   assert( pLeft!=0 );
4383   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4384     constInsert(pConst,pRight,pLeft,pExpr);
4385   }
4386   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4387     constInsert(pConst,pLeft,pRight,pExpr);
4388   }
4389 }
4390 
4391 /*
4392 ** This is a Walker expression callback.  pExpr is a candidate expression
4393 ** to be replaced by a value.  If pExpr is equivalent to one of the
4394 ** columns named in pWalker->u.pConst, then overwrite it with its
4395 ** corresponding value.
4396 */
4397 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4398   int i;
4399   WhereConst *pConst;
4400   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4401   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4402     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4403     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4404     return WRC_Continue;
4405   }
4406   pConst = pWalker->u.pConst;
4407   for(i=0; i<pConst->nConst; i++){
4408     Expr *pColumn = pConst->apExpr[i*2];
4409     if( pColumn==pExpr ) continue;
4410     if( pColumn->iTable!=pExpr->iTable ) continue;
4411     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4412     /* A match is found.  Add the EP_FixedCol property */
4413     pConst->nChng++;
4414     ExprClearProperty(pExpr, EP_Leaf);
4415     ExprSetProperty(pExpr, EP_FixedCol);
4416     assert( pExpr->pLeft==0 );
4417     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4418     break;
4419   }
4420   return WRC_Prune;
4421 }
4422 
4423 /*
4424 ** The WHERE-clause constant propagation optimization.
4425 **
4426 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4427 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4428 ** part of a ON clause from a LEFT JOIN, then throughout the query
4429 ** replace all other occurrences of COLUMN with CONSTANT.
4430 **
4431 ** For example, the query:
4432 **
4433 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4434 **
4435 ** Is transformed into
4436 **
4437 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4438 **
4439 ** Return true if any transformations where made and false if not.
4440 **
4441 ** Implementation note:  Constant propagation is tricky due to affinity
4442 ** and collating sequence interactions.  Consider this example:
4443 **
4444 **    CREATE TABLE t1(a INT,b TEXT);
4445 **    INSERT INTO t1 VALUES(123,'0123');
4446 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4447 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4448 **
4449 ** The two SELECT statements above should return different answers.  b=a
4450 ** is alway true because the comparison uses numeric affinity, but b=123
4451 ** is false because it uses text affinity and '0123' is not the same as '123'.
4452 ** To work around this, the expression tree is not actually changed from
4453 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4454 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4455 ** routines know to generate the constant "123" instead of looking up the
4456 ** column value.  Also, to avoid collation problems, this optimization is
4457 ** only attempted if the "a=123" term uses the default BINARY collation.
4458 */
4459 static int propagateConstants(
4460   Parse *pParse,   /* The parsing context */
4461   Select *p        /* The query in which to propagate constants */
4462 ){
4463   WhereConst x;
4464   Walker w;
4465   int nChng = 0;
4466   x.pParse = pParse;
4467   do{
4468     x.nConst = 0;
4469     x.nChng = 0;
4470     x.apExpr = 0;
4471     findConstInWhere(&x, p->pWhere);
4472     if( x.nConst ){
4473       memset(&w, 0, sizeof(w));
4474       w.pParse = pParse;
4475       w.xExprCallback = propagateConstantExprRewrite;
4476       w.xSelectCallback = sqlite3SelectWalkNoop;
4477       w.xSelectCallback2 = 0;
4478       w.walkerDepth = 0;
4479       w.u.pConst = &x;
4480       sqlite3WalkExpr(&w, p->pWhere);
4481       sqlite3DbFree(x.pParse->db, x.apExpr);
4482       nChng += x.nChng;
4483     }
4484   }while( x.nChng );
4485   return nChng;
4486 }
4487 
4488 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4489 /*
4490 ** Make copies of relevant WHERE clause terms of the outer query into
4491 ** the WHERE clause of subquery.  Example:
4492 **
4493 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4494 **
4495 ** Transformed into:
4496 **
4497 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4498 **     WHERE x=5 AND y=10;
4499 **
4500 ** The hope is that the terms added to the inner query will make it more
4501 ** efficient.
4502 **
4503 ** Do not attempt this optimization if:
4504 **
4505 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4506 **           disallow this optimization for aggregate subqueries, but now
4507 **           it is allowed by putting the extra terms on the HAVING clause.
4508 **           The added HAVING clause is pointless if the subquery lacks
4509 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4510 **           so there does not appear to be any reason to add extra logic
4511 **           to suppress it. **)
4512 **
4513 **   (2) The inner query is the recursive part of a common table expression.
4514 **
4515 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4516 **       clause would change the meaning of the LIMIT).
4517 **
4518 **   (4) The inner query is the right operand of a LEFT JOIN and the
4519 **       expression to be pushed down does not come from the ON clause
4520 **       on that LEFT JOIN.
4521 **
4522 **   (5) The WHERE clause expression originates in the ON or USING clause
4523 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4524 **       left join.  An example:
4525 **
4526 **           SELECT *
4527 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4528 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4529 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4530 **
4531 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4532 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4533 **       then the (1,1,NULL) row would be suppressed.
4534 **
4535 **   (6) The inner query features one or more window-functions (since
4536 **       changes to the WHERE clause of the inner query could change the
4537 **       window over which window functions are calculated).
4538 **
4539 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4540 ** terms are duplicated into the subquery.
4541 */
4542 static int pushDownWhereTerms(
4543   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4544   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4545   Expr *pWhere,         /* The WHERE clause of the outer query */
4546   int iCursor,          /* Cursor number of the subquery */
4547   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4548 ){
4549   Expr *pNew;
4550   int nChng = 0;
4551   Select *pSel;
4552   if( pWhere==0 ) return 0;
4553   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4554 
4555 #ifndef SQLITE_OMIT_WINDOWFUNC
4556   for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4557     if( pSel->pWin ) return 0;    /* restriction (6) */
4558   }
4559 #endif
4560 
4561 #ifdef SQLITE_DEBUG
4562   /* Only the first term of a compound can have a WITH clause.  But make
4563   ** sure no other terms are marked SF_Recursive in case something changes
4564   ** in the future.
4565   */
4566   {
4567     Select *pX;
4568     for(pX=pSubq; pX; pX=pX->pPrior){
4569       assert( (pX->selFlags & (SF_Recursive))==0 );
4570     }
4571   }
4572 #endif
4573 
4574   if( pSubq->pLimit!=0 ){
4575     return 0; /* restriction (3) */
4576   }
4577   while( pWhere->op==TK_AND ){
4578     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4579                                 iCursor, isLeftJoin);
4580     pWhere = pWhere->pLeft;
4581   }
4582   if( isLeftJoin
4583    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4584          || pWhere->iRightJoinTable!=iCursor)
4585   ){
4586     return 0; /* restriction (4) */
4587   }
4588   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4589     return 0; /* restriction (5) */
4590   }
4591   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4592     nChng++;
4593     while( pSubq ){
4594       SubstContext x;
4595       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4596       unsetJoinExpr(pNew, -1);
4597       x.pParse = pParse;
4598       x.iTable = iCursor;
4599       x.iNewTable = iCursor;
4600       x.isLeftJoin = 0;
4601       x.pEList = pSubq->pEList;
4602       pNew = substExpr(&x, pNew);
4603       if( pSubq->selFlags & SF_Aggregate ){
4604         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4605       }else{
4606         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4607       }
4608       pSubq = pSubq->pPrior;
4609     }
4610   }
4611   return nChng;
4612 }
4613 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4614 
4615 /*
4616 ** The pFunc is the only aggregate function in the query.  Check to see
4617 ** if the query is a candidate for the min/max optimization.
4618 **
4619 ** If the query is a candidate for the min/max optimization, then set
4620 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4621 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4622 ** whether pFunc is a min() or max() function.
4623 **
4624 ** If the query is not a candidate for the min/max optimization, return
4625 ** WHERE_ORDERBY_NORMAL (which must be zero).
4626 **
4627 ** This routine must be called after aggregate functions have been
4628 ** located but before their arguments have been subjected to aggregate
4629 ** analysis.
4630 */
4631 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4632   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4633   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4634   const char *zFunc;                    /* Name of aggregate function pFunc */
4635   ExprList *pOrderBy;
4636   u8 sortFlags = 0;
4637 
4638   assert( *ppMinMax==0 );
4639   assert( pFunc->op==TK_AGG_FUNCTION );
4640   assert( !IsWindowFunc(pFunc) );
4641   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4642     return eRet;
4643   }
4644   zFunc = pFunc->u.zToken;
4645   if( sqlite3StrICmp(zFunc, "min")==0 ){
4646     eRet = WHERE_ORDERBY_MIN;
4647     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4648       sortFlags = KEYINFO_ORDER_BIGNULL;
4649     }
4650   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4651     eRet = WHERE_ORDERBY_MAX;
4652     sortFlags = KEYINFO_ORDER_DESC;
4653   }else{
4654     return eRet;
4655   }
4656   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4657   assert( pOrderBy!=0 || db->mallocFailed );
4658   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4659   return eRet;
4660 }
4661 
4662 /*
4663 ** The select statement passed as the first argument is an aggregate query.
4664 ** The second argument is the associated aggregate-info object. This
4665 ** function tests if the SELECT is of the form:
4666 **
4667 **   SELECT count(*) FROM <tbl>
4668 **
4669 ** where table is a database table, not a sub-select or view. If the query
4670 ** does match this pattern, then a pointer to the Table object representing
4671 ** <tbl> is returned. Otherwise, 0 is returned.
4672 */
4673 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4674   Table *pTab;
4675   Expr *pExpr;
4676 
4677   assert( !p->pGroupBy );
4678 
4679   if( p->pWhere || p->pEList->nExpr!=1
4680    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4681   ){
4682     return 0;
4683   }
4684   pTab = p->pSrc->a[0].pTab;
4685   pExpr = p->pEList->a[0].pExpr;
4686   assert( pTab && !pTab->pSelect && pExpr );
4687 
4688   if( IsVirtual(pTab) ) return 0;
4689   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4690   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4691   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4692   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4693 
4694   return pTab;
4695 }
4696 
4697 /*
4698 ** If the source-list item passed as an argument was augmented with an
4699 ** INDEXED BY clause, then try to locate the specified index. If there
4700 ** was such a clause and the named index cannot be found, return
4701 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4702 ** pFrom->pIndex and return SQLITE_OK.
4703 */
4704 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4705   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4706     Table *pTab = pFrom->pTab;
4707     char *zIndexedBy = pFrom->u1.zIndexedBy;
4708     Index *pIdx;
4709     for(pIdx=pTab->pIndex;
4710         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4711         pIdx=pIdx->pNext
4712     );
4713     if( !pIdx ){
4714       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4715       pParse->checkSchema = 1;
4716       return SQLITE_ERROR;
4717     }
4718     pFrom->pIBIndex = pIdx;
4719   }
4720   return SQLITE_OK;
4721 }
4722 /*
4723 ** Detect compound SELECT statements that use an ORDER BY clause with
4724 ** an alternative collating sequence.
4725 **
4726 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4727 **
4728 ** These are rewritten as a subquery:
4729 **
4730 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4731 **     ORDER BY ... COLLATE ...
4732 **
4733 ** This transformation is necessary because the multiSelectOrderBy() routine
4734 ** above that generates the code for a compound SELECT with an ORDER BY clause
4735 ** uses a merge algorithm that requires the same collating sequence on the
4736 ** result columns as on the ORDER BY clause.  See ticket
4737 ** http://www.sqlite.org/src/info/6709574d2a
4738 **
4739 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4740 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4741 ** there are COLLATE terms in the ORDER BY.
4742 */
4743 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4744   int i;
4745   Select *pNew;
4746   Select *pX;
4747   sqlite3 *db;
4748   struct ExprList_item *a;
4749   SrcList *pNewSrc;
4750   Parse *pParse;
4751   Token dummy;
4752 
4753   if( p->pPrior==0 ) return WRC_Continue;
4754   if( p->pOrderBy==0 ) return WRC_Continue;
4755   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4756   if( pX==0 ) return WRC_Continue;
4757   a = p->pOrderBy->a;
4758 #ifndef SQLITE_OMIT_WINDOWFUNC
4759   /* If iOrderByCol is already non-zero, then it has already been matched
4760   ** to a result column of the SELECT statement. This occurs when the
4761   ** SELECT is rewritten for window-functions processing and then passed
4762   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4763   ** by this function is not required in this case. */
4764   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4765 #endif
4766   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4767     if( a[i].pExpr->flags & EP_Collate ) break;
4768   }
4769   if( i<0 ) return WRC_Continue;
4770 
4771   /* If we reach this point, that means the transformation is required. */
4772 
4773   pParse = pWalker->pParse;
4774   db = pParse->db;
4775   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4776   if( pNew==0 ) return WRC_Abort;
4777   memset(&dummy, 0, sizeof(dummy));
4778   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4779   if( pNewSrc==0 ) return WRC_Abort;
4780   *pNew = *p;
4781   p->pSrc = pNewSrc;
4782   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4783   p->op = TK_SELECT;
4784   p->pWhere = 0;
4785   pNew->pGroupBy = 0;
4786   pNew->pHaving = 0;
4787   pNew->pOrderBy = 0;
4788   p->pPrior = 0;
4789   p->pNext = 0;
4790   p->pWith = 0;
4791 #ifndef SQLITE_OMIT_WINDOWFUNC
4792   p->pWinDefn = 0;
4793 #endif
4794   p->selFlags &= ~SF_Compound;
4795   assert( (p->selFlags & SF_Converted)==0 );
4796   p->selFlags |= SF_Converted;
4797   assert( pNew->pPrior!=0 );
4798   pNew->pPrior->pNext = pNew;
4799   pNew->pLimit = 0;
4800   return WRC_Continue;
4801 }
4802 
4803 /*
4804 ** Check to see if the FROM clause term pFrom has table-valued function
4805 ** arguments.  If it does, leave an error message in pParse and return
4806 ** non-zero, since pFrom is not allowed to be a table-valued function.
4807 */
4808 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4809   if( pFrom->fg.isTabFunc ){
4810     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4811     return 1;
4812   }
4813   return 0;
4814 }
4815 
4816 #ifndef SQLITE_OMIT_CTE
4817 /*
4818 ** Argument pWith (which may be NULL) points to a linked list of nested
4819 ** WITH contexts, from inner to outermost. If the table identified by
4820 ** FROM clause element pItem is really a common-table-expression (CTE)
4821 ** then return a pointer to the CTE definition for that table. Otherwise
4822 ** return NULL.
4823 **
4824 ** If a non-NULL value is returned, set *ppContext to point to the With
4825 ** object that the returned CTE belongs to.
4826 */
4827 static struct Cte *searchWith(
4828   With *pWith,                    /* Current innermost WITH clause */
4829   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4830   With **ppContext                /* OUT: WITH clause return value belongs to */
4831 ){
4832   const char *zName;
4833   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4834     With *p;
4835     for(p=pWith; p; p=p->pOuter){
4836       int i;
4837       for(i=0; i<p->nCte; i++){
4838         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4839           *ppContext = p;
4840           return &p->a[i];
4841         }
4842       }
4843     }
4844   }
4845   return 0;
4846 }
4847 
4848 /* The code generator maintains a stack of active WITH clauses
4849 ** with the inner-most WITH clause being at the top of the stack.
4850 **
4851 ** This routine pushes the WITH clause passed as the second argument
4852 ** onto the top of the stack. If argument bFree is true, then this
4853 ** WITH clause will never be popped from the stack. In this case it
4854 ** should be freed along with the Parse object. In other cases, when
4855 ** bFree==0, the With object will be freed along with the SELECT
4856 ** statement with which it is associated.
4857 */
4858 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4859   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4860   if( pWith ){
4861     assert( pParse->pWith!=pWith );
4862     pWith->pOuter = pParse->pWith;
4863     pParse->pWith = pWith;
4864     if( bFree ) pParse->pWithToFree = pWith;
4865   }
4866 }
4867 
4868 /*
4869 ** This function checks if argument pFrom refers to a CTE declared by
4870 ** a WITH clause on the stack currently maintained by the parser. And,
4871 ** if currently processing a CTE expression, if it is a recursive
4872 ** reference to the current CTE.
4873 **
4874 ** If pFrom falls into either of the two categories above, pFrom->pTab
4875 ** and other fields are populated accordingly. The caller should check
4876 ** (pFrom->pTab!=0) to determine whether or not a successful match
4877 ** was found.
4878 **
4879 ** Whether or not a match is found, SQLITE_OK is returned if no error
4880 ** occurs. If an error does occur, an error message is stored in the
4881 ** parser and some error code other than SQLITE_OK returned.
4882 */
4883 static int withExpand(
4884   Walker *pWalker,
4885   struct SrcList_item *pFrom
4886 ){
4887   Parse *pParse = pWalker->pParse;
4888   sqlite3 *db = pParse->db;
4889   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4890   With *pWith;                    /* WITH clause that pCte belongs to */
4891 
4892   assert( pFrom->pTab==0 );
4893   if( pParse->nErr ){
4894     return SQLITE_ERROR;
4895   }
4896 
4897   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4898   if( pCte ){
4899     Table *pTab;
4900     ExprList *pEList;
4901     Select *pSel;
4902     Select *pLeft;                /* Left-most SELECT statement */
4903     Select *pRecTerm;             /* Left-most recursive term */
4904     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4905     With *pSavedWith;             /* Initial value of pParse->pWith */
4906     int iRecTab = -1;             /* Cursor for recursive table */
4907 
4908     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4909     ** recursive reference to CTE pCte. Leave an error in pParse and return
4910     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4911     ** In this case, proceed.  */
4912     if( pCte->zCteErr ){
4913       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4914       return SQLITE_ERROR;
4915     }
4916     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4917 
4918     assert( pFrom->pTab==0 );
4919     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4920     if( pTab==0 ) return WRC_Abort;
4921     pTab->nTabRef = 1;
4922     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4923     pTab->iPKey = -1;
4924     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4925     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4926     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4927     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4928     assert( pFrom->pSelect );
4929 
4930     /* Check if this is a recursive CTE. */
4931     pRecTerm = pSel = pFrom->pSelect;
4932     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4933     while( bMayRecursive && pRecTerm->op==pSel->op ){
4934       int i;
4935       SrcList *pSrc = pRecTerm->pSrc;
4936       assert( pRecTerm->pPrior!=0 );
4937       for(i=0; i<pSrc->nSrc; i++){
4938         struct SrcList_item *pItem = &pSrc->a[i];
4939         if( pItem->zDatabase==0
4940          && pItem->zName!=0
4941          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4942         ){
4943           pItem->pTab = pTab;
4944           pTab->nTabRef++;
4945           pItem->fg.isRecursive = 1;
4946           if( pRecTerm->selFlags & SF_Recursive ){
4947             sqlite3ErrorMsg(pParse,
4948                "multiple references to recursive table: %s", pCte->zName
4949             );
4950             return SQLITE_ERROR;
4951           }
4952           pRecTerm->selFlags |= SF_Recursive;
4953           if( iRecTab<0 ) iRecTab = pParse->nTab++;
4954           pItem->iCursor = iRecTab;
4955         }
4956       }
4957       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
4958       pRecTerm = pRecTerm->pPrior;
4959     }
4960 
4961     pCte->zCteErr = "circular reference: %s";
4962     pSavedWith = pParse->pWith;
4963     pParse->pWith = pWith;
4964     if( pSel->selFlags & SF_Recursive ){
4965       assert( pRecTerm!=0 );
4966       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
4967       assert( pRecTerm->pNext!=0 );
4968       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
4969       assert( pRecTerm->pWith==0 );
4970       pRecTerm->pWith = pSel->pWith;
4971       sqlite3WalkSelect(pWalker, pRecTerm);
4972       pRecTerm->pWith = 0;
4973     }else{
4974       sqlite3WalkSelect(pWalker, pSel);
4975     }
4976     pParse->pWith = pWith;
4977 
4978     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4979     pEList = pLeft->pEList;
4980     if( pCte->pCols ){
4981       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4982         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4983             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4984         );
4985         pParse->pWith = pSavedWith;
4986         return SQLITE_ERROR;
4987       }
4988       pEList = pCte->pCols;
4989     }
4990 
4991     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4992     if( bMayRecursive ){
4993       if( pSel->selFlags & SF_Recursive ){
4994         pCte->zCteErr = "multiple recursive references: %s";
4995       }else{
4996         pCte->zCteErr = "recursive reference in a subquery: %s";
4997       }
4998       sqlite3WalkSelect(pWalker, pSel);
4999     }
5000     pCte->zCteErr = 0;
5001     pParse->pWith = pSavedWith;
5002   }
5003 
5004   return SQLITE_OK;
5005 }
5006 #endif
5007 
5008 #ifndef SQLITE_OMIT_CTE
5009 /*
5010 ** If the SELECT passed as the second argument has an associated WITH
5011 ** clause, pop it from the stack stored as part of the Parse object.
5012 **
5013 ** This function is used as the xSelectCallback2() callback by
5014 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5015 ** names and other FROM clause elements.
5016 */
5017 static void selectPopWith(Walker *pWalker, Select *p){
5018   Parse *pParse = pWalker->pParse;
5019   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5020     With *pWith = findRightmost(p)->pWith;
5021     if( pWith!=0 ){
5022       assert( pParse->pWith==pWith || pParse->nErr );
5023       pParse->pWith = pWith->pOuter;
5024     }
5025   }
5026 }
5027 #else
5028 #define selectPopWith 0
5029 #endif
5030 
5031 /*
5032 ** The SrcList_item structure passed as the second argument represents a
5033 ** sub-query in the FROM clause of a SELECT statement. This function
5034 ** allocates and populates the SrcList_item.pTab object. If successful,
5035 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5036 ** SQLITE_NOMEM.
5037 */
5038 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
5039   Select *pSel = pFrom->pSelect;
5040   Table *pTab;
5041 
5042   assert( pSel );
5043   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5044   if( pTab==0 ) return SQLITE_NOMEM;
5045   pTab->nTabRef = 1;
5046   if( pFrom->zAlias ){
5047     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5048   }else{
5049     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5050   }
5051   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5052   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5053   pTab->iPKey = -1;
5054   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5055   pTab->tabFlags |= TF_Ephemeral;
5056 
5057   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5058 }
5059 
5060 /*
5061 ** This routine is a Walker callback for "expanding" a SELECT statement.
5062 ** "Expanding" means to do the following:
5063 **
5064 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5065 **         element of the FROM clause.
5066 **
5067 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5068 **         defines FROM clause.  When views appear in the FROM clause,
5069 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5070 **         that implements the view.  A copy is made of the view's SELECT
5071 **         statement so that we can freely modify or delete that statement
5072 **         without worrying about messing up the persistent representation
5073 **         of the view.
5074 **
5075 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5076 **         on joins and the ON and USING clause of joins.
5077 **
5078 **    (4)  Scan the list of columns in the result set (pEList) looking
5079 **         for instances of the "*" operator or the TABLE.* operator.
5080 **         If found, expand each "*" to be every column in every table
5081 **         and TABLE.* to be every column in TABLE.
5082 **
5083 */
5084 static int selectExpander(Walker *pWalker, Select *p){
5085   Parse *pParse = pWalker->pParse;
5086   int i, j, k;
5087   SrcList *pTabList;
5088   ExprList *pEList;
5089   struct SrcList_item *pFrom;
5090   sqlite3 *db = pParse->db;
5091   Expr *pE, *pRight, *pExpr;
5092   u16 selFlags = p->selFlags;
5093   u32 elistFlags = 0;
5094 
5095   p->selFlags |= SF_Expanded;
5096   if( db->mallocFailed  ){
5097     return WRC_Abort;
5098   }
5099   assert( p->pSrc!=0 );
5100   if( (selFlags & SF_Expanded)!=0 ){
5101     return WRC_Prune;
5102   }
5103   if( pWalker->eCode ){
5104     /* Renumber selId because it has been copied from a view */
5105     p->selId = ++pParse->nSelect;
5106   }
5107   pTabList = p->pSrc;
5108   pEList = p->pEList;
5109   sqlite3WithPush(pParse, p->pWith, 0);
5110 
5111   /* Make sure cursor numbers have been assigned to all entries in
5112   ** the FROM clause of the SELECT statement.
5113   */
5114   sqlite3SrcListAssignCursors(pParse, pTabList);
5115 
5116   /* Look up every table named in the FROM clause of the select.  If
5117   ** an entry of the FROM clause is a subquery instead of a table or view,
5118   ** then create a transient table structure to describe the subquery.
5119   */
5120   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5121     Table *pTab;
5122     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5123     if( pFrom->pTab ) continue;
5124     assert( pFrom->fg.isRecursive==0 );
5125 #ifndef SQLITE_OMIT_CTE
5126     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
5127     if( pFrom->pTab ) {} else
5128 #endif
5129     if( pFrom->zName==0 ){
5130 #ifndef SQLITE_OMIT_SUBQUERY
5131       Select *pSel = pFrom->pSelect;
5132       /* A sub-query in the FROM clause of a SELECT */
5133       assert( pSel!=0 );
5134       assert( pFrom->pTab==0 );
5135       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5136       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5137 #endif
5138     }else{
5139       /* An ordinary table or view name in the FROM clause */
5140       assert( pFrom->pTab==0 );
5141       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5142       if( pTab==0 ) return WRC_Abort;
5143       if( pTab->nTabRef>=0xffff ){
5144         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5145            pTab->zName);
5146         pFrom->pTab = 0;
5147         return WRC_Abort;
5148       }
5149       pTab->nTabRef++;
5150       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5151         return WRC_Abort;
5152       }
5153 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5154       if( IsVirtual(pTab) || pTab->pSelect ){
5155         i16 nCol;
5156         u8 eCodeOrig = pWalker->eCode;
5157         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5158         assert( pFrom->pSelect==0 );
5159         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5160           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5161             pTab->zName);
5162         }
5163 #ifndef SQLITE_OMIT_VIRTUALTABLE
5164         if( IsVirtual(pTab)
5165          && pFrom->fg.fromDDL
5166          && ALWAYS(pTab->pVTable!=0)
5167          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5168         ){
5169           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5170                                   pTab->zName);
5171         }
5172 #endif
5173         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5174         nCol = pTab->nCol;
5175         pTab->nCol = -1;
5176         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5177         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5178         pWalker->eCode = eCodeOrig;
5179         pTab->nCol = nCol;
5180       }
5181 #endif
5182     }
5183 
5184     /* Locate the index named by the INDEXED BY clause, if any. */
5185     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5186       return WRC_Abort;
5187     }
5188   }
5189 
5190   /* Process NATURAL keywords, and ON and USING clauses of joins.
5191   */
5192   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5193     return WRC_Abort;
5194   }
5195 
5196   /* For every "*" that occurs in the column list, insert the names of
5197   ** all columns in all tables.  And for every TABLE.* insert the names
5198   ** of all columns in TABLE.  The parser inserted a special expression
5199   ** with the TK_ASTERISK operator for each "*" that it found in the column
5200   ** list.  The following code just has to locate the TK_ASTERISK
5201   ** expressions and expand each one to the list of all columns in
5202   ** all tables.
5203   **
5204   ** The first loop just checks to see if there are any "*" operators
5205   ** that need expanding.
5206   */
5207   for(k=0; k<pEList->nExpr; k++){
5208     pE = pEList->a[k].pExpr;
5209     if( pE->op==TK_ASTERISK ) break;
5210     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5211     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5212     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5213     elistFlags |= pE->flags;
5214   }
5215   if( k<pEList->nExpr ){
5216     /*
5217     ** If we get here it means the result set contains one or more "*"
5218     ** operators that need to be expanded.  Loop through each expression
5219     ** in the result set and expand them one by one.
5220     */
5221     struct ExprList_item *a = pEList->a;
5222     ExprList *pNew = 0;
5223     int flags = pParse->db->flags;
5224     int longNames = (flags & SQLITE_FullColNames)!=0
5225                       && (flags & SQLITE_ShortColNames)==0;
5226 
5227     for(k=0; k<pEList->nExpr; k++){
5228       pE = a[k].pExpr;
5229       elistFlags |= pE->flags;
5230       pRight = pE->pRight;
5231       assert( pE->op!=TK_DOT || pRight!=0 );
5232       if( pE->op!=TK_ASTERISK
5233        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5234       ){
5235         /* This particular expression does not need to be expanded.
5236         */
5237         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5238         if( pNew ){
5239           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5240           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5241           a[k].zEName = 0;
5242         }
5243         a[k].pExpr = 0;
5244       }else{
5245         /* This expression is a "*" or a "TABLE.*" and needs to be
5246         ** expanded. */
5247         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5248         char *zTName = 0;       /* text of name of TABLE */
5249         if( pE->op==TK_DOT ){
5250           assert( pE->pLeft!=0 );
5251           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5252           zTName = pE->pLeft->u.zToken;
5253         }
5254         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5255           Table *pTab = pFrom->pTab;
5256           Select *pSub = pFrom->pSelect;
5257           char *zTabName = pFrom->zAlias;
5258           const char *zSchemaName = 0;
5259           int iDb;
5260           if( zTabName==0 ){
5261             zTabName = pTab->zName;
5262           }
5263           if( db->mallocFailed ) break;
5264           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5265             pSub = 0;
5266             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5267               continue;
5268             }
5269             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5270             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5271           }
5272           for(j=0; j<pTab->nCol; j++){
5273             char *zName = pTab->aCol[j].zName;
5274             char *zColname;  /* The computed column name */
5275             char *zToFree;   /* Malloced string that needs to be freed */
5276             Token sColname;  /* Computed column name as a token */
5277 
5278             assert( zName );
5279             if( zTName && pSub
5280              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5281             ){
5282               continue;
5283             }
5284 
5285             /* If a column is marked as 'hidden', omit it from the expanded
5286             ** result-set list unless the SELECT has the SF_IncludeHidden
5287             ** bit set.
5288             */
5289             if( (p->selFlags & SF_IncludeHidden)==0
5290              && IsHiddenColumn(&pTab->aCol[j])
5291             ){
5292               continue;
5293             }
5294             tableSeen = 1;
5295 
5296             if( i>0 && zTName==0 ){
5297               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5298                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5299               ){
5300                 /* In a NATURAL join, omit the join columns from the
5301                 ** table to the right of the join */
5302                 continue;
5303               }
5304               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5305                 /* In a join with a USING clause, omit columns in the
5306                 ** using clause from the table on the right. */
5307                 continue;
5308               }
5309             }
5310             pRight = sqlite3Expr(db, TK_ID, zName);
5311             zColname = zName;
5312             zToFree = 0;
5313             if( longNames || pTabList->nSrc>1 ){
5314               Expr *pLeft;
5315               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5316               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5317               if( zSchemaName ){
5318                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5319                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5320               }
5321               if( longNames ){
5322                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5323                 zToFree = zColname;
5324               }
5325             }else{
5326               pExpr = pRight;
5327             }
5328             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5329             sqlite3TokenInit(&sColname, zColname);
5330             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5331             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5332               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5333               sqlite3DbFree(db, pX->zEName);
5334               if( pSub ){
5335                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5336                 testcase( pX->zEName==0 );
5337               }else{
5338                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5339                                            zSchemaName, zTabName, zColname);
5340                 testcase( pX->zEName==0 );
5341               }
5342               pX->eEName = ENAME_TAB;
5343             }
5344             sqlite3DbFree(db, zToFree);
5345           }
5346         }
5347         if( !tableSeen ){
5348           if( zTName ){
5349             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5350           }else{
5351             sqlite3ErrorMsg(pParse, "no tables specified");
5352           }
5353         }
5354       }
5355     }
5356     sqlite3ExprListDelete(db, pEList);
5357     p->pEList = pNew;
5358   }
5359   if( p->pEList ){
5360     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5361       sqlite3ErrorMsg(pParse, "too many columns in result set");
5362       return WRC_Abort;
5363     }
5364     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5365       p->selFlags |= SF_ComplexResult;
5366     }
5367   }
5368   return WRC_Continue;
5369 }
5370 
5371 #if SQLITE_DEBUG
5372 /*
5373 ** Always assert.  This xSelectCallback2 implementation proves that the
5374 ** xSelectCallback2 is never invoked.
5375 */
5376 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5377   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5378   assert( 0 );
5379 }
5380 #endif
5381 /*
5382 ** This routine "expands" a SELECT statement and all of its subqueries.
5383 ** For additional information on what it means to "expand" a SELECT
5384 ** statement, see the comment on the selectExpand worker callback above.
5385 **
5386 ** Expanding a SELECT statement is the first step in processing a
5387 ** SELECT statement.  The SELECT statement must be expanded before
5388 ** name resolution is performed.
5389 **
5390 ** If anything goes wrong, an error message is written into pParse.
5391 ** The calling function can detect the problem by looking at pParse->nErr
5392 ** and/or pParse->db->mallocFailed.
5393 */
5394 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5395   Walker w;
5396   w.xExprCallback = sqlite3ExprWalkNoop;
5397   w.pParse = pParse;
5398   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5399     w.xSelectCallback = convertCompoundSelectToSubquery;
5400     w.xSelectCallback2 = 0;
5401     sqlite3WalkSelect(&w, pSelect);
5402   }
5403   w.xSelectCallback = selectExpander;
5404   w.xSelectCallback2 = selectPopWith;
5405   w.eCode = 0;
5406   sqlite3WalkSelect(&w, pSelect);
5407 }
5408 
5409 
5410 #ifndef SQLITE_OMIT_SUBQUERY
5411 /*
5412 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5413 ** interface.
5414 **
5415 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5416 ** information to the Table structure that represents the result set
5417 ** of that subquery.
5418 **
5419 ** The Table structure that represents the result set was constructed
5420 ** by selectExpander() but the type and collation information was omitted
5421 ** at that point because identifiers had not yet been resolved.  This
5422 ** routine is called after identifier resolution.
5423 */
5424 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5425   Parse *pParse;
5426   int i;
5427   SrcList *pTabList;
5428   struct SrcList_item *pFrom;
5429 
5430   assert( p->selFlags & SF_Resolved );
5431   if( p->selFlags & SF_HasTypeInfo ) return;
5432   p->selFlags |= SF_HasTypeInfo;
5433   pParse = pWalker->pParse;
5434   pTabList = p->pSrc;
5435   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5436     Table *pTab = pFrom->pTab;
5437     assert( pTab!=0 );
5438     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5439       /* A sub-query in the FROM clause of a SELECT */
5440       Select *pSel = pFrom->pSelect;
5441       if( pSel ){
5442         while( pSel->pPrior ) pSel = pSel->pPrior;
5443         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5444                                                SQLITE_AFF_NONE);
5445       }
5446     }
5447   }
5448 }
5449 #endif
5450 
5451 
5452 /*
5453 ** This routine adds datatype and collating sequence information to
5454 ** the Table structures of all FROM-clause subqueries in a
5455 ** SELECT statement.
5456 **
5457 ** Use this routine after name resolution.
5458 */
5459 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5460 #ifndef SQLITE_OMIT_SUBQUERY
5461   Walker w;
5462   w.xSelectCallback = sqlite3SelectWalkNoop;
5463   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5464   w.xExprCallback = sqlite3ExprWalkNoop;
5465   w.pParse = pParse;
5466   sqlite3WalkSelect(&w, pSelect);
5467 #endif
5468 }
5469 
5470 
5471 /*
5472 ** This routine sets up a SELECT statement for processing.  The
5473 ** following is accomplished:
5474 **
5475 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5476 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5477 **     *  ON and USING clauses are shifted into WHERE statements
5478 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5479 **     *  Identifiers in expression are matched to tables.
5480 **
5481 ** This routine acts recursively on all subqueries within the SELECT.
5482 */
5483 void sqlite3SelectPrep(
5484   Parse *pParse,         /* The parser context */
5485   Select *p,             /* The SELECT statement being coded. */
5486   NameContext *pOuterNC  /* Name context for container */
5487 ){
5488   assert( p!=0 || pParse->db->mallocFailed );
5489   if( pParse->db->mallocFailed ) return;
5490   if( p->selFlags & SF_HasTypeInfo ) return;
5491   sqlite3SelectExpand(pParse, p);
5492   if( pParse->nErr || pParse->db->mallocFailed ) return;
5493   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5494   if( pParse->nErr || pParse->db->mallocFailed ) return;
5495   sqlite3SelectAddTypeInfo(pParse, p);
5496 }
5497 
5498 /*
5499 ** Reset the aggregate accumulator.
5500 **
5501 ** The aggregate accumulator is a set of memory cells that hold
5502 ** intermediate results while calculating an aggregate.  This
5503 ** routine generates code that stores NULLs in all of those memory
5504 ** cells.
5505 */
5506 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5507   Vdbe *v = pParse->pVdbe;
5508   int i;
5509   struct AggInfo_func *pFunc;
5510   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5511   if( nReg==0 ) return;
5512   if( pParse->nErr || pParse->db->mallocFailed ) return;
5513 #ifdef SQLITE_DEBUG
5514   /* Verify that all AggInfo registers are within the range specified by
5515   ** AggInfo.mnReg..AggInfo.mxReg */
5516   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5517   for(i=0; i<pAggInfo->nColumn; i++){
5518     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5519          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5520   }
5521   for(i=0; i<pAggInfo->nFunc; i++){
5522     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5523          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5524   }
5525 #endif
5526   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5527   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5528     if( pFunc->iDistinct>=0 ){
5529       Expr *pE = pFunc->pFExpr;
5530       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5531       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5532         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5533            "argument");
5534         pFunc->iDistinct = -1;
5535       }else{
5536         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5537         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5538                           (char*)pKeyInfo, P4_KEYINFO);
5539       }
5540     }
5541   }
5542 }
5543 
5544 /*
5545 ** Invoke the OP_AggFinalize opcode for every aggregate function
5546 ** in the AggInfo structure.
5547 */
5548 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5549   Vdbe *v = pParse->pVdbe;
5550   int i;
5551   struct AggInfo_func *pF;
5552   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5553     ExprList *pList = pF->pFExpr->x.pList;
5554     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5555     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5556     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5557   }
5558 }
5559 
5560 
5561 /*
5562 ** Update the accumulator memory cells for an aggregate based on
5563 ** the current cursor position.
5564 **
5565 ** If regAcc is non-zero and there are no min() or max() aggregates
5566 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5567 ** registers if register regAcc contains 0. The caller will take care
5568 ** of setting and clearing regAcc.
5569 */
5570 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5571   Vdbe *v = pParse->pVdbe;
5572   int i;
5573   int regHit = 0;
5574   int addrHitTest = 0;
5575   struct AggInfo_func *pF;
5576   struct AggInfo_col *pC;
5577 
5578   pAggInfo->directMode = 1;
5579   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5580     int nArg;
5581     int addrNext = 0;
5582     int regAgg;
5583     ExprList *pList = pF->pFExpr->x.pList;
5584     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5585     assert( !IsWindowFunc(pF->pFExpr) );
5586     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5587       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5588       if( pAggInfo->nAccumulator
5589        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5590        && regAcc
5591       ){
5592         /* If regAcc==0, there there exists some min() or max() function
5593         ** without a FILTER clause that will ensure the magnet registers
5594         ** are populated. */
5595         if( regHit==0 ) regHit = ++pParse->nMem;
5596         /* If this is the first row of the group (regAcc contains 0), clear the
5597         ** "magnet" register regHit so that the accumulator registers
5598         ** are populated if the FILTER clause jumps over the the
5599         ** invocation of min() or max() altogether. Or, if this is not
5600         ** the first row (regAcc contains 1), set the magnet register so that
5601         ** the accumulators are not populated unless the min()/max() is invoked
5602         ** and indicates that they should be.  */
5603         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5604       }
5605       addrNext = sqlite3VdbeMakeLabel(pParse);
5606       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5607     }
5608     if( pList ){
5609       nArg = pList->nExpr;
5610       regAgg = sqlite3GetTempRange(pParse, nArg);
5611       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5612     }else{
5613       nArg = 0;
5614       regAgg = 0;
5615     }
5616     if( pF->iDistinct>=0 ){
5617       if( addrNext==0 ){
5618         addrNext = sqlite3VdbeMakeLabel(pParse);
5619       }
5620       testcase( nArg==0 );  /* Error condition */
5621       testcase( nArg>1 );   /* Also an error */
5622       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5623     }
5624     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5625       CollSeq *pColl = 0;
5626       struct ExprList_item *pItem;
5627       int j;
5628       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5629       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5630         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5631       }
5632       if( !pColl ){
5633         pColl = pParse->db->pDfltColl;
5634       }
5635       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5636       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5637     }
5638     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5639     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5640     sqlite3VdbeChangeP5(v, (u8)nArg);
5641     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5642     if( addrNext ){
5643       sqlite3VdbeResolveLabel(v, addrNext);
5644     }
5645   }
5646   if( regHit==0 && pAggInfo->nAccumulator ){
5647     regHit = regAcc;
5648   }
5649   if( regHit ){
5650     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5651   }
5652   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5653     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5654   }
5655 
5656   pAggInfo->directMode = 0;
5657   if( addrHitTest ){
5658     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5659   }
5660 }
5661 
5662 /*
5663 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5664 ** count(*) query ("SELECT count(*) FROM pTab").
5665 */
5666 #ifndef SQLITE_OMIT_EXPLAIN
5667 static void explainSimpleCount(
5668   Parse *pParse,                  /* Parse context */
5669   Table *pTab,                    /* Table being queried */
5670   Index *pIdx                     /* Index used to optimize scan, or NULL */
5671 ){
5672   if( pParse->explain==2 ){
5673     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5674     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5675         pTab->zName,
5676         bCover ? " USING COVERING INDEX " : "",
5677         bCover ? pIdx->zName : ""
5678     );
5679   }
5680 }
5681 #else
5682 # define explainSimpleCount(a,b,c)
5683 #endif
5684 
5685 /*
5686 ** sqlite3WalkExpr() callback used by havingToWhere().
5687 **
5688 ** If the node passed to the callback is a TK_AND node, return
5689 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5690 **
5691 ** Otherwise, return WRC_Prune. In this case, also check if the
5692 ** sub-expression matches the criteria for being moved to the WHERE
5693 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5694 ** within the HAVING expression with a constant "1".
5695 */
5696 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5697   if( pExpr->op!=TK_AND ){
5698     Select *pS = pWalker->u.pSelect;
5699     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5700      && ExprAlwaysFalse(pExpr)==0
5701     ){
5702       sqlite3 *db = pWalker->pParse->db;
5703       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5704       if( pNew ){
5705         Expr *pWhere = pS->pWhere;
5706         SWAP(Expr, *pNew, *pExpr);
5707         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5708         pS->pWhere = pNew;
5709         pWalker->eCode = 1;
5710       }
5711     }
5712     return WRC_Prune;
5713   }
5714   return WRC_Continue;
5715 }
5716 
5717 /*
5718 ** Transfer eligible terms from the HAVING clause of a query, which is
5719 ** processed after grouping, to the WHERE clause, which is processed before
5720 ** grouping. For example, the query:
5721 **
5722 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5723 **
5724 ** can be rewritten as:
5725 **
5726 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5727 **
5728 ** A term of the HAVING expression is eligible for transfer if it consists
5729 ** entirely of constants and expressions that are also GROUP BY terms that
5730 ** use the "BINARY" collation sequence.
5731 */
5732 static void havingToWhere(Parse *pParse, Select *p){
5733   Walker sWalker;
5734   memset(&sWalker, 0, sizeof(sWalker));
5735   sWalker.pParse = pParse;
5736   sWalker.xExprCallback = havingToWhereExprCb;
5737   sWalker.u.pSelect = p;
5738   sqlite3WalkExpr(&sWalker, p->pHaving);
5739 #if SELECTTRACE_ENABLED
5740   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5741     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5742     sqlite3TreeViewSelect(0, p, 0);
5743   }
5744 #endif
5745 }
5746 
5747 /*
5748 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5749 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5750 ** then return 0.
5751 */
5752 static struct SrcList_item *isSelfJoinView(
5753   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5754   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5755 ){
5756   struct SrcList_item *pItem;
5757   for(pItem = pTabList->a; pItem<pThis; pItem++){
5758     Select *pS1;
5759     if( pItem->pSelect==0 ) continue;
5760     if( pItem->fg.viaCoroutine ) continue;
5761     if( pItem->zName==0 ) continue;
5762     assert( pItem->pTab!=0 );
5763     assert( pThis->pTab!=0 );
5764     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5765     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5766     pS1 = pItem->pSelect;
5767     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5768       /* The query flattener left two different CTE tables with identical
5769       ** names in the same FROM clause. */
5770       continue;
5771     }
5772     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5773      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5774     ){
5775       /* The view was modified by some other optimization such as
5776       ** pushDownWhereTerms() */
5777       continue;
5778     }
5779     return pItem;
5780   }
5781   return 0;
5782 }
5783 
5784 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5785 /*
5786 ** Attempt to transform a query of the form
5787 **
5788 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5789 **
5790 ** Into this:
5791 **
5792 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5793 **
5794 ** The transformation only works if all of the following are true:
5795 **
5796 **   *  The subquery is a UNION ALL of two or more terms
5797 **   *  The subquery does not have a LIMIT clause
5798 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5799 **   *  The outer query is a simple count(*) with no WHERE clause or other
5800 **      extraneous syntax.
5801 **
5802 ** Return TRUE if the optimization is undertaken.
5803 */
5804 static int countOfViewOptimization(Parse *pParse, Select *p){
5805   Select *pSub, *pPrior;
5806   Expr *pExpr;
5807   Expr *pCount;
5808   sqlite3 *db;
5809   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5810   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5811   if( p->pWhere ) return 0;
5812   if( p->pGroupBy ) return 0;
5813   pExpr = p->pEList->a[0].pExpr;
5814   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5815   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5816   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5817   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5818   pSub = p->pSrc->a[0].pSelect;
5819   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5820   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5821   do{
5822     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5823     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5824     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5825     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5826     pSub = pSub->pPrior;                              /* Repeat over compound */
5827   }while( pSub );
5828 
5829   /* If we reach this point then it is OK to perform the transformation */
5830 
5831   db = pParse->db;
5832   pCount = pExpr;
5833   pExpr = 0;
5834   pSub = p->pSrc->a[0].pSelect;
5835   p->pSrc->a[0].pSelect = 0;
5836   sqlite3SrcListDelete(db, p->pSrc);
5837   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5838   while( pSub ){
5839     Expr *pTerm;
5840     pPrior = pSub->pPrior;
5841     pSub->pPrior = 0;
5842     pSub->pNext = 0;
5843     pSub->selFlags |= SF_Aggregate;
5844     pSub->selFlags &= ~SF_Compound;
5845     pSub->nSelectRow = 0;
5846     sqlite3ExprListDelete(db, pSub->pEList);
5847     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5848     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5849     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5850     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5851     if( pExpr==0 ){
5852       pExpr = pTerm;
5853     }else{
5854       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5855     }
5856     pSub = pPrior;
5857   }
5858   p->pEList->a[0].pExpr = pExpr;
5859   p->selFlags &= ~SF_Aggregate;
5860 
5861 #if SELECTTRACE_ENABLED
5862   if( sqlite3SelectTrace & 0x400 ){
5863     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5864     sqlite3TreeViewSelect(0, p, 0);
5865   }
5866 #endif
5867   return 1;
5868 }
5869 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5870 
5871 /*
5872 ** Generate code for the SELECT statement given in the p argument.
5873 **
5874 ** The results are returned according to the SelectDest structure.
5875 ** See comments in sqliteInt.h for further information.
5876 **
5877 ** This routine returns the number of errors.  If any errors are
5878 ** encountered, then an appropriate error message is left in
5879 ** pParse->zErrMsg.
5880 **
5881 ** This routine does NOT free the Select structure passed in.  The
5882 ** calling function needs to do that.
5883 */
5884 int sqlite3Select(
5885   Parse *pParse,         /* The parser context */
5886   Select *p,             /* The SELECT statement being coded. */
5887   SelectDest *pDest      /* What to do with the query results */
5888 ){
5889   int i, j;              /* Loop counters */
5890   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5891   Vdbe *v;               /* The virtual machine under construction */
5892   int isAgg;             /* True for select lists like "count(*)" */
5893   ExprList *pEList = 0;  /* List of columns to extract. */
5894   SrcList *pTabList;     /* List of tables to select from */
5895   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5896   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5897   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5898   AggInfo *pAggInfo = 0; /* Aggregate information */
5899   int rc = 1;            /* Value to return from this function */
5900   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5901   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5902   int iEnd;              /* Address of the end of the query */
5903   sqlite3 *db;           /* The database connection */
5904   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5905   u8 minMaxFlag;                 /* Flag for min/max queries */
5906 
5907   db = pParse->db;
5908   v = sqlite3GetVdbe(pParse);
5909   if( p==0 || db->mallocFailed || pParse->nErr ){
5910     return 1;
5911   }
5912   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5913 #if SELECTTRACE_ENABLED
5914   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5915   if( sqlite3SelectTrace & 0x100 ){
5916     sqlite3TreeViewSelect(0, p, 0);
5917   }
5918 #endif
5919 
5920   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5921   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5922   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5923   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5924   if( IgnorableDistinct(pDest) ){
5925     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
5926            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
5927            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
5928     /* All of these destinations are also able to ignore the ORDER BY clause */
5929     sqlite3ExprListDelete(db, p->pOrderBy);
5930     p->pOrderBy = 0;
5931     p->selFlags &= ~SF_Distinct;
5932     p->selFlags |= SF_NoopOrderBy;
5933   }
5934   sqlite3SelectPrep(pParse, p, 0);
5935   if( pParse->nErr || db->mallocFailed ){
5936     goto select_end;
5937   }
5938   assert( p->pEList!=0 );
5939 #if SELECTTRACE_ENABLED
5940   if( sqlite3SelectTrace & 0x104 ){
5941     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5942     sqlite3TreeViewSelect(0, p, 0);
5943   }
5944 #endif
5945 
5946   /* If the SF_UpdateFrom flag is set, then this function is being called
5947   ** as part of populating the temp table for an UPDATE...FROM statement.
5948   ** In this case, it is an error if the target object (pSrc->a[0]) name
5949   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
5950   if( p->selFlags & SF_UpdateFrom ){
5951     struct SrcList_item *p0 = &p->pSrc->a[0];
5952     for(i=1; i<p->pSrc->nSrc; i++){
5953       struct SrcList_item *p1 = &p->pSrc->a[i];
5954       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
5955         sqlite3ErrorMsg(pParse,
5956             "target object/alias may not appear in FROM clause: %s",
5957             p0->zAlias ? p0->zAlias : p0->pTab->zName
5958         );
5959         goto select_end;
5960       }
5961     }
5962   }
5963 
5964   if( pDest->eDest==SRT_Output ){
5965     generateColumnNames(pParse, p);
5966   }
5967 
5968 #ifndef SQLITE_OMIT_WINDOWFUNC
5969   rc = sqlite3WindowRewrite(pParse, p);
5970   if( rc ){
5971     assert( db->mallocFailed || pParse->nErr>0 );
5972     goto select_end;
5973   }
5974 #if SELECTTRACE_ENABLED
5975   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5976     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5977     sqlite3TreeViewSelect(0, p, 0);
5978   }
5979 #endif
5980 #endif /* SQLITE_OMIT_WINDOWFUNC */
5981   pTabList = p->pSrc;
5982   isAgg = (p->selFlags & SF_Aggregate)!=0;
5983   memset(&sSort, 0, sizeof(sSort));
5984   sSort.pOrderBy = p->pOrderBy;
5985 
5986   /* Try to do various optimizations (flattening subqueries, and strength
5987   ** reduction of join operators) in the FROM clause up into the main query
5988   */
5989 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5990   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5991     struct SrcList_item *pItem = &pTabList->a[i];
5992     Select *pSub = pItem->pSelect;
5993     Table *pTab = pItem->pTab;
5994 
5995     /* The expander should have already created transient Table objects
5996     ** even for FROM clause elements such as subqueries that do not correspond
5997     ** to a real table */
5998     assert( pTab!=0 );
5999 
6000     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6001     ** of the LEFT JOIN used in the WHERE clause.
6002     */
6003     if( (pItem->fg.jointype & JT_LEFT)!=0
6004      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6005      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6006     ){
6007       SELECTTRACE(0x100,pParse,p,
6008                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6009       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6010       unsetJoinExpr(p->pWhere, pItem->iCursor);
6011     }
6012 
6013     /* No futher action if this term of the FROM clause is no a subquery */
6014     if( pSub==0 ) continue;
6015 
6016     /* Catch mismatch in the declared columns of a view and the number of
6017     ** columns in the SELECT on the RHS */
6018     if( pTab->nCol!=pSub->pEList->nExpr ){
6019       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6020                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6021       goto select_end;
6022     }
6023 
6024     /* Do not try to flatten an aggregate subquery.
6025     **
6026     ** Flattening an aggregate subquery is only possible if the outer query
6027     ** is not a join.  But if the outer query is not a join, then the subquery
6028     ** will be implemented as a co-routine and there is no advantage to
6029     ** flattening in that case.
6030     */
6031     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6032     assert( pSub->pGroupBy==0 );
6033 
6034     /* If the outer query contains a "complex" result set (that is,
6035     ** if the result set of the outer query uses functions or subqueries)
6036     ** and if the subquery contains an ORDER BY clause and if
6037     ** it will be implemented as a co-routine, then do not flatten.  This
6038     ** restriction allows SQL constructs like this:
6039     **
6040     **  SELECT expensive_function(x)
6041     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6042     **
6043     ** The expensive_function() is only computed on the 10 rows that
6044     ** are output, rather than every row of the table.
6045     **
6046     ** The requirement that the outer query have a complex result set
6047     ** means that flattening does occur on simpler SQL constraints without
6048     ** the expensive_function() like:
6049     **
6050     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6051     */
6052     if( pSub->pOrderBy!=0
6053      && i==0
6054      && (p->selFlags & SF_ComplexResult)!=0
6055      && (pTabList->nSrc==1
6056          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6057     ){
6058       continue;
6059     }
6060 
6061     if( flattenSubquery(pParse, p, i, isAgg) ){
6062       if( pParse->nErr ) goto select_end;
6063       /* This subquery can be absorbed into its parent. */
6064       i = -1;
6065     }
6066     pTabList = p->pSrc;
6067     if( db->mallocFailed ) goto select_end;
6068     if( !IgnorableOrderby(pDest) ){
6069       sSort.pOrderBy = p->pOrderBy;
6070     }
6071   }
6072 #endif
6073 
6074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6075   /* Handle compound SELECT statements using the separate multiSelect()
6076   ** procedure.
6077   */
6078   if( p->pPrior ){
6079     rc = multiSelect(pParse, p, pDest);
6080 #if SELECTTRACE_ENABLED
6081     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6082     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6083       sqlite3TreeViewSelect(0, p, 0);
6084     }
6085 #endif
6086     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6087     return rc;
6088   }
6089 #endif
6090 
6091   /* Do the WHERE-clause constant propagation optimization if this is
6092   ** a join.  No need to speed time on this operation for non-join queries
6093   ** as the equivalent optimization will be handled by query planner in
6094   ** sqlite3WhereBegin().
6095   */
6096   if( pTabList->nSrc>1
6097    && OptimizationEnabled(db, SQLITE_PropagateConst)
6098    && propagateConstants(pParse, p)
6099   ){
6100 #if SELECTTRACE_ENABLED
6101     if( sqlite3SelectTrace & 0x100 ){
6102       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6103       sqlite3TreeViewSelect(0, p, 0);
6104     }
6105 #endif
6106   }else{
6107     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6108   }
6109 
6110 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6111   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6112    && countOfViewOptimization(pParse, p)
6113   ){
6114     if( db->mallocFailed ) goto select_end;
6115     pEList = p->pEList;
6116     pTabList = p->pSrc;
6117   }
6118 #endif
6119 
6120   /* For each term in the FROM clause, do two things:
6121   ** (1) Authorized unreferenced tables
6122   ** (2) Generate code for all sub-queries
6123   */
6124   for(i=0; i<pTabList->nSrc; i++){
6125     struct SrcList_item *pItem = &pTabList->a[i];
6126     SelectDest dest;
6127     Select *pSub;
6128 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6129     const char *zSavedAuthContext;
6130 #endif
6131 
6132     /* Issue SQLITE_READ authorizations with a fake column name for any
6133     ** tables that are referenced but from which no values are extracted.
6134     ** Examples of where these kinds of null SQLITE_READ authorizations
6135     ** would occur:
6136     **
6137     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6138     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6139     **
6140     ** The fake column name is an empty string.  It is possible for a table to
6141     ** have a column named by the empty string, in which case there is no way to
6142     ** distinguish between an unreferenced table and an actual reference to the
6143     ** "" column. The original design was for the fake column name to be a NULL,
6144     ** which would be unambiguous.  But legacy authorization callbacks might
6145     ** assume the column name is non-NULL and segfault.  The use of an empty
6146     ** string for the fake column name seems safer.
6147     */
6148     if( pItem->colUsed==0 && pItem->zName!=0 ){
6149       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6150     }
6151 
6152 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6153     /* Generate code for all sub-queries in the FROM clause
6154     */
6155     pSub = pItem->pSelect;
6156     if( pSub==0 ) continue;
6157 
6158     /* The code for a subquery should only be generated once, though it is
6159     ** technically harmless for it to be generated multiple times. The
6160     ** following assert() will detect if something changes to cause
6161     ** the same subquery to be coded multiple times, as a signal to the
6162     ** developers to try to optimize the situation.
6163     **
6164     ** Update 2019-07-24:
6165     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6166     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6167     ** coded twice.  So this assert() now becomes a testcase().  It should
6168     ** be very rare, though.
6169     */
6170     testcase( pItem->addrFillSub!=0 );
6171 
6172     /* Increment Parse.nHeight by the height of the largest expression
6173     ** tree referred to by this, the parent select. The child select
6174     ** may contain expression trees of at most
6175     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6176     ** more conservative than necessary, but much easier than enforcing
6177     ** an exact limit.
6178     */
6179     pParse->nHeight += sqlite3SelectExprHeight(p);
6180 
6181     /* Make copies of constant WHERE-clause terms in the outer query down
6182     ** inside the subquery.  This can help the subquery to run more efficiently.
6183     */
6184     if( OptimizationEnabled(db, SQLITE_PushDown)
6185      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6186                            (pItem->fg.jointype & JT_OUTER)!=0)
6187     ){
6188 #if SELECTTRACE_ENABLED
6189       if( sqlite3SelectTrace & 0x100 ){
6190         SELECTTRACE(0x100,pParse,p,
6191             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6192         sqlite3TreeViewSelect(0, p, 0);
6193       }
6194 #endif
6195     }else{
6196       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6197     }
6198 
6199     zSavedAuthContext = pParse->zAuthContext;
6200     pParse->zAuthContext = pItem->zName;
6201 
6202     /* Generate code to implement the subquery
6203     **
6204     ** The subquery is implemented as a co-routine if the subquery is
6205     ** guaranteed to be the outer loop (so that it does not need to be
6206     ** computed more than once)
6207     **
6208     ** TODO: Are there other reasons beside (1) to use a co-routine
6209     ** implementation?
6210     */
6211     if( i==0
6212      && (pTabList->nSrc==1
6213             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6214     ){
6215       /* Implement a co-routine that will return a single row of the result
6216       ** set on each invocation.
6217       */
6218       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6219 
6220       pItem->regReturn = ++pParse->nMem;
6221       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6222       VdbeComment((v, "%s", pItem->pTab->zName));
6223       pItem->addrFillSub = addrTop;
6224       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6225       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6226       sqlite3Select(pParse, pSub, &dest);
6227       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6228       pItem->fg.viaCoroutine = 1;
6229       pItem->regResult = dest.iSdst;
6230       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6231       sqlite3VdbeJumpHere(v, addrTop-1);
6232       sqlite3ClearTempRegCache(pParse);
6233     }else{
6234       /* Generate a subroutine that will fill an ephemeral table with
6235       ** the content of this subquery.  pItem->addrFillSub will point
6236       ** to the address of the generated subroutine.  pItem->regReturn
6237       ** is a register allocated to hold the subroutine return address
6238       */
6239       int topAddr;
6240       int onceAddr = 0;
6241       int retAddr;
6242       struct SrcList_item *pPrior;
6243 
6244       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6245       pItem->regReturn = ++pParse->nMem;
6246       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6247       pItem->addrFillSub = topAddr+1;
6248       if( pItem->fg.isCorrelated==0 ){
6249         /* If the subquery is not correlated and if we are not inside of
6250         ** a trigger, then we only need to compute the value of the subquery
6251         ** once. */
6252         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6253         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6254       }else{
6255         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6256       }
6257       pPrior = isSelfJoinView(pTabList, pItem);
6258       if( pPrior ){
6259         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6260         assert( pPrior->pSelect!=0 );
6261         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6262       }else{
6263         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6264         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6265         sqlite3Select(pParse, pSub, &dest);
6266       }
6267       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6268       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6269       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6270       VdbeComment((v, "end %s", pItem->pTab->zName));
6271       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6272       sqlite3ClearTempRegCache(pParse);
6273     }
6274     if( db->mallocFailed ) goto select_end;
6275     pParse->nHeight -= sqlite3SelectExprHeight(p);
6276     pParse->zAuthContext = zSavedAuthContext;
6277 #endif
6278   }
6279 
6280   /* Various elements of the SELECT copied into local variables for
6281   ** convenience */
6282   pEList = p->pEList;
6283   pWhere = p->pWhere;
6284   pGroupBy = p->pGroupBy;
6285   pHaving = p->pHaving;
6286   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6287 
6288 #if SELECTTRACE_ENABLED
6289   if( sqlite3SelectTrace & 0x400 ){
6290     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6291     sqlite3TreeViewSelect(0, p, 0);
6292   }
6293 #endif
6294 
6295   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6296   ** if the select-list is the same as the ORDER BY list, then this query
6297   ** can be rewritten as a GROUP BY. In other words, this:
6298   **
6299   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6300   **
6301   ** is transformed to:
6302   **
6303   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6304   **
6305   ** The second form is preferred as a single index (or temp-table) may be
6306   ** used for both the ORDER BY and DISTINCT processing. As originally
6307   ** written the query must use a temp-table for at least one of the ORDER
6308   ** BY and DISTINCT, and an index or separate temp-table for the other.
6309   */
6310   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6311    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6312 #ifndef SQLITE_OMIT_WINDOWFUNC
6313    && p->pWin==0
6314 #endif
6315   ){
6316     p->selFlags &= ~SF_Distinct;
6317     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6318     p->selFlags |= SF_Aggregate;
6319     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6320     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6321     ** original setting of the SF_Distinct flag, not the current setting */
6322     assert( sDistinct.isTnct );
6323 
6324 #if SELECTTRACE_ENABLED
6325     if( sqlite3SelectTrace & 0x400 ){
6326       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6327       sqlite3TreeViewSelect(0, p, 0);
6328     }
6329 #endif
6330   }
6331 
6332   /* If there is an ORDER BY clause, then create an ephemeral index to
6333   ** do the sorting.  But this sorting ephemeral index might end up
6334   ** being unused if the data can be extracted in pre-sorted order.
6335   ** If that is the case, then the OP_OpenEphemeral instruction will be
6336   ** changed to an OP_Noop once we figure out that the sorting index is
6337   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6338   ** that change.
6339   */
6340   if( sSort.pOrderBy ){
6341     KeyInfo *pKeyInfo;
6342     pKeyInfo = sqlite3KeyInfoFromExprList(
6343         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6344     sSort.iECursor = pParse->nTab++;
6345     sSort.addrSortIndex =
6346       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6347           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6348           (char*)pKeyInfo, P4_KEYINFO
6349       );
6350   }else{
6351     sSort.addrSortIndex = -1;
6352   }
6353 
6354   /* If the output is destined for a temporary table, open that table.
6355   */
6356   if( pDest->eDest==SRT_EphemTab ){
6357     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6358   }
6359 
6360   /* Set the limiter.
6361   */
6362   iEnd = sqlite3VdbeMakeLabel(pParse);
6363   if( (p->selFlags & SF_FixedLimit)==0 ){
6364     p->nSelectRow = 320;  /* 4 billion rows */
6365   }
6366   computeLimitRegisters(pParse, p, iEnd);
6367   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6368     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6369     sSort.sortFlags |= SORTFLAG_UseSorter;
6370   }
6371 
6372   /* Open an ephemeral index to use for the distinct set.
6373   */
6374   if( p->selFlags & SF_Distinct ){
6375     sDistinct.tabTnct = pParse->nTab++;
6376     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6377                        sDistinct.tabTnct, 0, 0,
6378                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6379                        P4_KEYINFO);
6380     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6381     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6382   }else{
6383     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6384   }
6385 
6386   if( !isAgg && pGroupBy==0 ){
6387     /* No aggregate functions and no GROUP BY clause */
6388     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6389                    | (p->selFlags & SF_FixedLimit);
6390 #ifndef SQLITE_OMIT_WINDOWFUNC
6391     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6392     if( pWin ){
6393       sqlite3WindowCodeInit(pParse, p);
6394     }
6395 #endif
6396     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6397 
6398 
6399     /* Begin the database scan. */
6400     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6401     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6402                                p->pEList, wctrlFlags, p->nSelectRow);
6403     if( pWInfo==0 ) goto select_end;
6404     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6405       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6406     }
6407     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6408       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6409     }
6410     if( sSort.pOrderBy ){
6411       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6412       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6413       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6414         sSort.pOrderBy = 0;
6415       }
6416     }
6417 
6418     /* If sorting index that was created by a prior OP_OpenEphemeral
6419     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6420     ** into an OP_Noop.
6421     */
6422     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6423       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6424     }
6425 
6426     assert( p->pEList==pEList );
6427 #ifndef SQLITE_OMIT_WINDOWFUNC
6428     if( pWin ){
6429       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6430       int iCont = sqlite3VdbeMakeLabel(pParse);
6431       int iBreak = sqlite3VdbeMakeLabel(pParse);
6432       int regGosub = ++pParse->nMem;
6433 
6434       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6435 
6436       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6437       sqlite3VdbeResolveLabel(v, addrGosub);
6438       VdbeNoopComment((v, "inner-loop subroutine"));
6439       sSort.labelOBLopt = 0;
6440       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6441       sqlite3VdbeResolveLabel(v, iCont);
6442       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6443       VdbeComment((v, "end inner-loop subroutine"));
6444       sqlite3VdbeResolveLabel(v, iBreak);
6445     }else
6446 #endif /* SQLITE_OMIT_WINDOWFUNC */
6447     {
6448       /* Use the standard inner loop. */
6449       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6450           sqlite3WhereContinueLabel(pWInfo),
6451           sqlite3WhereBreakLabel(pWInfo));
6452 
6453       /* End the database scan loop.
6454       */
6455       sqlite3WhereEnd(pWInfo);
6456     }
6457   }else{
6458     /* This case when there exist aggregate functions or a GROUP BY clause
6459     ** or both */
6460     NameContext sNC;    /* Name context for processing aggregate information */
6461     int iAMem;          /* First Mem address for storing current GROUP BY */
6462     int iBMem;          /* First Mem address for previous GROUP BY */
6463     int iUseFlag;       /* Mem address holding flag indicating that at least
6464                         ** one row of the input to the aggregator has been
6465                         ** processed */
6466     int iAbortFlag;     /* Mem address which causes query abort if positive */
6467     int groupBySort;    /* Rows come from source in GROUP BY order */
6468     int addrEnd;        /* End of processing for this SELECT */
6469     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6470     int sortOut = 0;    /* Output register from the sorter */
6471     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6472 
6473     /* Remove any and all aliases between the result set and the
6474     ** GROUP BY clause.
6475     */
6476     if( pGroupBy ){
6477       int k;                        /* Loop counter */
6478       struct ExprList_item *pItem;  /* For looping over expression in a list */
6479 
6480       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6481         pItem->u.x.iAlias = 0;
6482       }
6483       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6484         pItem->u.x.iAlias = 0;
6485       }
6486       assert( 66==sqlite3LogEst(100) );
6487       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6488 
6489       /* If there is both a GROUP BY and an ORDER BY clause and they are
6490       ** identical, then it may be possible to disable the ORDER BY clause
6491       ** on the grounds that the GROUP BY will cause elements to come out
6492       ** in the correct order. It also may not - the GROUP BY might use a
6493       ** database index that causes rows to be grouped together as required
6494       ** but not actually sorted. Either way, record the fact that the
6495       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6496       ** variable.  */
6497       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6498         int ii;
6499         /* The GROUP BY processing doesn't care whether rows are delivered in
6500         ** ASC or DESC order - only that each group is returned contiguously.
6501         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6502         ** ORDER BY to maximize the chances of rows being delivered in an
6503         ** order that makes the ORDER BY redundant.  */
6504         for(ii=0; ii<pGroupBy->nExpr; ii++){
6505           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6506           pGroupBy->a[ii].sortFlags = sortFlags;
6507         }
6508         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6509           orderByGrp = 1;
6510         }
6511       }
6512     }else{
6513       assert( 0==sqlite3LogEst(1) );
6514       p->nSelectRow = 0;
6515     }
6516 
6517     /* Create a label to jump to when we want to abort the query */
6518     addrEnd = sqlite3VdbeMakeLabel(pParse);
6519 
6520     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6521     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6522     ** SELECT statement.
6523     */
6524     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6525     if( pAggInfo==0 ){
6526       goto select_end;
6527     }
6528     pAggInfo->pNext = pParse->pAggList;
6529     pParse->pAggList = pAggInfo;
6530     pAggInfo->selId = p->selId;
6531     memset(&sNC, 0, sizeof(sNC));
6532     sNC.pParse = pParse;
6533     sNC.pSrcList = pTabList;
6534     sNC.uNC.pAggInfo = pAggInfo;
6535     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6536     pAggInfo->mnReg = pParse->nMem+1;
6537     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6538     pAggInfo->pGroupBy = pGroupBy;
6539     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6540     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6541     if( pHaving ){
6542       if( pGroupBy ){
6543         assert( pWhere==p->pWhere );
6544         assert( pHaving==p->pHaving );
6545         assert( pGroupBy==p->pGroupBy );
6546         havingToWhere(pParse, p);
6547         pWhere = p->pWhere;
6548       }
6549       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6550     }
6551     pAggInfo->nAccumulator = pAggInfo->nColumn;
6552     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6553       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6554     }else{
6555       minMaxFlag = WHERE_ORDERBY_NORMAL;
6556     }
6557     for(i=0; i<pAggInfo->nFunc; i++){
6558       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6559       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6560       sNC.ncFlags |= NC_InAggFunc;
6561       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6562 #ifndef SQLITE_OMIT_WINDOWFUNC
6563       assert( !IsWindowFunc(pExpr) );
6564       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6565         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6566       }
6567 #endif
6568       sNC.ncFlags &= ~NC_InAggFunc;
6569     }
6570     pAggInfo->mxReg = pParse->nMem;
6571     if( db->mallocFailed ) goto select_end;
6572 #if SELECTTRACE_ENABLED
6573     if( sqlite3SelectTrace & 0x400 ){
6574       int ii;
6575       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6576       sqlite3TreeViewSelect(0, p, 0);
6577       for(ii=0; ii<pAggInfo->nColumn; ii++){
6578         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6579             ii, pAggInfo->aCol[ii].iMem);
6580         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6581       }
6582       for(ii=0; ii<pAggInfo->nFunc; ii++){
6583         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6584             ii, pAggInfo->aFunc[ii].iMem);
6585         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6586       }
6587     }
6588 #endif
6589 
6590 
6591     /* Processing for aggregates with GROUP BY is very different and
6592     ** much more complex than aggregates without a GROUP BY.
6593     */
6594     if( pGroupBy ){
6595       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6596       int addr1;          /* A-vs-B comparision jump */
6597       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6598       int regOutputRow;   /* Return address register for output subroutine */
6599       int addrSetAbort;   /* Set the abort flag and return */
6600       int addrTopOfLoop;  /* Top of the input loop */
6601       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6602       int addrReset;      /* Subroutine for resetting the accumulator */
6603       int regReset;       /* Return address register for reset subroutine */
6604 
6605       /* If there is a GROUP BY clause we might need a sorting index to
6606       ** implement it.  Allocate that sorting index now.  If it turns out
6607       ** that we do not need it after all, the OP_SorterOpen instruction
6608       ** will be converted into a Noop.
6609       */
6610       pAggInfo->sortingIdx = pParse->nTab++;
6611       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6612                                             0, pAggInfo->nColumn);
6613       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6614           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6615           0, (char*)pKeyInfo, P4_KEYINFO);
6616 
6617       /* Initialize memory locations used by GROUP BY aggregate processing
6618       */
6619       iUseFlag = ++pParse->nMem;
6620       iAbortFlag = ++pParse->nMem;
6621       regOutputRow = ++pParse->nMem;
6622       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6623       regReset = ++pParse->nMem;
6624       addrReset = sqlite3VdbeMakeLabel(pParse);
6625       iAMem = pParse->nMem + 1;
6626       pParse->nMem += pGroupBy->nExpr;
6627       iBMem = pParse->nMem + 1;
6628       pParse->nMem += pGroupBy->nExpr;
6629       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6630       VdbeComment((v, "clear abort flag"));
6631       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6632 
6633       /* Begin a loop that will extract all source rows in GROUP BY order.
6634       ** This might involve two separate loops with an OP_Sort in between, or
6635       ** it might be a single loop that uses an index to extract information
6636       ** in the right order to begin with.
6637       */
6638       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6639       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6640       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6641           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6642       );
6643       if( pWInfo==0 ) goto select_end;
6644       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6645         /* The optimizer is able to deliver rows in group by order so
6646         ** we do not have to sort.  The OP_OpenEphemeral table will be
6647         ** cancelled later because we still need to use the pKeyInfo
6648         */
6649         groupBySort = 0;
6650       }else{
6651         /* Rows are coming out in undetermined order.  We have to push
6652         ** each row into a sorting index, terminate the first loop,
6653         ** then loop over the sorting index in order to get the output
6654         ** in sorted order
6655         */
6656         int regBase;
6657         int regRecord;
6658         int nCol;
6659         int nGroupBy;
6660 
6661         explainTempTable(pParse,
6662             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6663                     "DISTINCT" : "GROUP BY");
6664 
6665         groupBySort = 1;
6666         nGroupBy = pGroupBy->nExpr;
6667         nCol = nGroupBy;
6668         j = nGroupBy;
6669         for(i=0; i<pAggInfo->nColumn; i++){
6670           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6671             nCol++;
6672             j++;
6673           }
6674         }
6675         regBase = sqlite3GetTempRange(pParse, nCol);
6676         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6677         j = nGroupBy;
6678         for(i=0; i<pAggInfo->nColumn; i++){
6679           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6680           if( pCol->iSorterColumn>=j ){
6681             int r1 = j + regBase;
6682             sqlite3ExprCodeGetColumnOfTable(v,
6683                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6684             j++;
6685           }
6686         }
6687         regRecord = sqlite3GetTempReg(pParse);
6688         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6689         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6690         sqlite3ReleaseTempReg(pParse, regRecord);
6691         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6692         sqlite3WhereEnd(pWInfo);
6693         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6694         sortOut = sqlite3GetTempReg(pParse);
6695         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6696         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6697         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6698         pAggInfo->useSortingIdx = 1;
6699       }
6700 
6701       /* If the index or temporary table used by the GROUP BY sort
6702       ** will naturally deliver rows in the order required by the ORDER BY
6703       ** clause, cancel the ephemeral table open coded earlier.
6704       **
6705       ** This is an optimization - the correct answer should result regardless.
6706       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6707       ** disable this optimization for testing purposes.  */
6708       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6709        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6710       ){
6711         sSort.pOrderBy = 0;
6712         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6713       }
6714 
6715       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6716       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6717       ** Then compare the current GROUP BY terms against the GROUP BY terms
6718       ** from the previous row currently stored in a0, a1, a2...
6719       */
6720       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6721       if( groupBySort ){
6722         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6723                           sortOut, sortPTab);
6724       }
6725       for(j=0; j<pGroupBy->nExpr; j++){
6726         if( groupBySort ){
6727           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6728         }else{
6729           pAggInfo->directMode = 1;
6730           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6731         }
6732       }
6733       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6734                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6735       addr1 = sqlite3VdbeCurrentAddr(v);
6736       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6737 
6738       /* Generate code that runs whenever the GROUP BY changes.
6739       ** Changes in the GROUP BY are detected by the previous code
6740       ** block.  If there were no changes, this block is skipped.
6741       **
6742       ** This code copies current group by terms in b0,b1,b2,...
6743       ** over to a0,a1,a2.  It then calls the output subroutine
6744       ** and resets the aggregate accumulator registers in preparation
6745       ** for the next GROUP BY batch.
6746       */
6747       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6748       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6749       VdbeComment((v, "output one row"));
6750       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6751       VdbeComment((v, "check abort flag"));
6752       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6753       VdbeComment((v, "reset accumulator"));
6754 
6755       /* Update the aggregate accumulators based on the content of
6756       ** the current row
6757       */
6758       sqlite3VdbeJumpHere(v, addr1);
6759       updateAccumulator(pParse, iUseFlag, pAggInfo);
6760       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6761       VdbeComment((v, "indicate data in accumulator"));
6762 
6763       /* End of the loop
6764       */
6765       if( groupBySort ){
6766         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop);
6767         VdbeCoverage(v);
6768       }else{
6769         sqlite3WhereEnd(pWInfo);
6770         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6771       }
6772 
6773       /* Output the final row of result
6774       */
6775       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6776       VdbeComment((v, "output final row"));
6777 
6778       /* Jump over the subroutines
6779       */
6780       sqlite3VdbeGoto(v, addrEnd);
6781 
6782       /* Generate a subroutine that outputs a single row of the result
6783       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6784       ** is less than or equal to zero, the subroutine is a no-op.  If
6785       ** the processing calls for the query to abort, this subroutine
6786       ** increments the iAbortFlag memory location before returning in
6787       ** order to signal the caller to abort.
6788       */
6789       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6790       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6791       VdbeComment((v, "set abort flag"));
6792       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6793       sqlite3VdbeResolveLabel(v, addrOutputRow);
6794       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6795       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6796       VdbeCoverage(v);
6797       VdbeComment((v, "Groupby result generator entry point"));
6798       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6799       finalizeAggFunctions(pParse, pAggInfo);
6800       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6801       selectInnerLoop(pParse, p, -1, &sSort,
6802                       &sDistinct, pDest,
6803                       addrOutputRow+1, addrSetAbort);
6804       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6805       VdbeComment((v, "end groupby result generator"));
6806 
6807       /* Generate a subroutine that will reset the group-by accumulator
6808       */
6809       sqlite3VdbeResolveLabel(v, addrReset);
6810       resetAccumulator(pParse, pAggInfo);
6811       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6812       VdbeComment((v, "indicate accumulator empty"));
6813       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6814 
6815     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6816     else {
6817       Table *pTab;
6818       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6819         /* If isSimpleCount() returns a pointer to a Table structure, then
6820         ** the SQL statement is of the form:
6821         **
6822         **   SELECT count(*) FROM <tbl>
6823         **
6824         ** where the Table structure returned represents table <tbl>.
6825         **
6826         ** This statement is so common that it is optimized specially. The
6827         ** OP_Count instruction is executed either on the intkey table that
6828         ** contains the data for table <tbl> or on one of its indexes. It
6829         ** is better to execute the op on an index, as indexes are almost
6830         ** always spread across less pages than their corresponding tables.
6831         */
6832         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6833         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6834         Index *pIdx;                         /* Iterator variable */
6835         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6836         Index *pBest = 0;                    /* Best index found so far */
6837         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
6838 
6839         sqlite3CodeVerifySchema(pParse, iDb);
6840         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6841 
6842         /* Search for the index that has the lowest scan cost.
6843         **
6844         ** (2011-04-15) Do not do a full scan of an unordered index.
6845         **
6846         ** (2013-10-03) Do not count the entries in a partial index.
6847         **
6848         ** In practice the KeyInfo structure will not be used. It is only
6849         ** passed to keep OP_OpenRead happy.
6850         */
6851         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6852         if( !p->pSrc->a[0].fg.notIndexed ){
6853           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6854             if( pIdx->bUnordered==0
6855              && pIdx->szIdxRow<pTab->szTabRow
6856              && pIdx->pPartIdxWhere==0
6857              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6858             ){
6859               pBest = pIdx;
6860             }
6861           }
6862         }
6863         if( pBest ){
6864           iRoot = pBest->tnum;
6865           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6866         }
6867 
6868         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6869         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
6870         if( pKeyInfo ){
6871           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6872         }
6873         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
6874         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6875         explainSimpleCount(pParse, pTab, pBest);
6876       }else{
6877         int regAcc = 0;           /* "populate accumulators" flag */
6878         int addrSkip;
6879 
6880         /* If there are accumulator registers but no min() or max() functions
6881         ** without FILTER clauses, allocate register regAcc. Register regAcc
6882         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6883         ** The code generated by updateAccumulator() uses this to ensure
6884         ** that the accumulator registers are (a) updated only once if
6885         ** there are no min() or max functions or (b) always updated for the
6886         ** first row visited by the aggregate, so that they are updated at
6887         ** least once even if the FILTER clause means the min() or max()
6888         ** function visits zero rows.  */
6889         if( pAggInfo->nAccumulator ){
6890           for(i=0; i<pAggInfo->nFunc; i++){
6891             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
6892               continue;
6893             }
6894             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
6895               break;
6896             }
6897           }
6898           if( i==pAggInfo->nFunc ){
6899             regAcc = ++pParse->nMem;
6900             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6901           }
6902         }
6903 
6904         /* This case runs if the aggregate has no GROUP BY clause.  The
6905         ** processing is much simpler since there is only a single row
6906         ** of output.
6907         */
6908         assert( p->pGroupBy==0 );
6909         resetAccumulator(pParse, pAggInfo);
6910 
6911         /* If this query is a candidate for the min/max optimization, then
6912         ** minMaxFlag will have been previously set to either
6913         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6914         ** be an appropriate ORDER BY expression for the optimization.
6915         */
6916         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6917         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6918 
6919         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6920         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6921                                    0, minMaxFlag, 0);
6922         if( pWInfo==0 ){
6923           goto select_end;
6924         }
6925         updateAccumulator(pParse, regAcc, pAggInfo);
6926         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6927         addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6928         if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){
6929           sqlite3VdbeGoto(v, addrSkip);
6930         }
6931         sqlite3WhereEnd(pWInfo);
6932         finalizeAggFunctions(pParse, pAggInfo);
6933       }
6934 
6935       sSort.pOrderBy = 0;
6936       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6937       selectInnerLoop(pParse, p, -1, 0, 0,
6938                       pDest, addrEnd, addrEnd);
6939     }
6940     sqlite3VdbeResolveLabel(v, addrEnd);
6941 
6942   } /* endif aggregate query */
6943 
6944   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6945     explainTempTable(pParse, "DISTINCT");
6946   }
6947 
6948   /* If there is an ORDER BY clause, then we need to sort the results
6949   ** and send them to the callback one by one.
6950   */
6951   if( sSort.pOrderBy ){
6952     explainTempTable(pParse,
6953                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6954     assert( p->pEList==pEList );
6955     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6956   }
6957 
6958   /* Jump here to skip this query
6959   */
6960   sqlite3VdbeResolveLabel(v, iEnd);
6961 
6962   /* The SELECT has been coded. If there is an error in the Parse structure,
6963   ** set the return code to 1. Otherwise 0. */
6964   rc = (pParse->nErr>0);
6965 
6966   /* Control jumps to here if an error is encountered above, or upon
6967   ** successful coding of the SELECT.
6968   */
6969 select_end:
6970   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6971 #ifdef SQLITE_DEBUG
6972   if( pAggInfo && !db->mallocFailed ){
6973     for(i=0; i<pAggInfo->nColumn; i++){
6974       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
6975       assert( pExpr!=0 );
6976       assert( pExpr->pAggInfo==pAggInfo );
6977       assert( pExpr->iAgg==i );
6978     }
6979     for(i=0; i<pAggInfo->nFunc; i++){
6980       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6981       assert( pExpr!=0 );
6982       assert( pExpr->pAggInfo==pAggInfo );
6983       assert( pExpr->iAgg==i );
6984     }
6985   }
6986 #endif
6987 
6988 #if SELECTTRACE_ENABLED
6989   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6990   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6991     sqlite3TreeViewSelect(0, p, 0);
6992   }
6993 #endif
6994   ExplainQueryPlanPop(pParse);
6995   return rc;
6996 }
6997