xref: /sqlite-3.40.0/src/select.c (revision 06ae6792)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     pNew = &standin;
69     memset(pNew, 0, sizeof(*pNew));
70   }
71   if( pEList==0 ){
72     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
73   }
74   pNew->pEList = pEList;
75   pNew->pSrc = pSrc;
76   pNew->pWhere = pWhere;
77   pNew->pGroupBy = pGroupBy;
78   pNew->pHaving = pHaving;
79   pNew->pOrderBy = pOrderBy;
80   pNew->selFlags = isDistinct ? SF_Distinct : 0;
81   pNew->op = TK_SELECT;
82   pNew->pLimit = pLimit;
83   pNew->pOffset = pOffset;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->addrOpenEphm[0] = -1;
86   pNew->addrOpenEphm[1] = -1;
87   pNew->addrOpenEphm[2] = -1;
88   if( db->mallocFailed ) {
89     clearSelect(db, pNew);
90     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91     pNew = 0;
92   }
93   return pNew;
94 }
95 
96 /*
97 ** Delete the given Select structure and all of its substructures.
98 */
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100   if( p ){
101     clearSelect(db, p);
102     sqlite3DbFree(db, p);
103   }
104 }
105 
106 /*
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
108 ** type of join.  Return an integer constant that expresses that type
109 ** in terms of the following bit values:
110 **
111 **     JT_INNER
112 **     JT_CROSS
113 **     JT_OUTER
114 **     JT_NATURAL
115 **     JT_LEFT
116 **     JT_RIGHT
117 **
118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
119 **
120 ** If an illegal or unsupported join type is seen, then still return
121 ** a join type, but put an error in the pParse structure.
122 */
123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
124   int jointype = 0;
125   Token *apAll[3];
126   Token *p;
127                              /*   0123456789 123456789 123456789 123 */
128   static const char zKeyText[] = "naturaleftouterightfullinnercross";
129   static const struct {
130     u8 i;        /* Beginning of keyword text in zKeyText[] */
131     u8 nChar;    /* Length of the keyword in characters */
132     u8 code;     /* Join type mask */
133   } aKeyword[] = {
134     /* natural */ { 0,  7, JT_NATURAL                },
135     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
136     /* outer   */ { 10, 5, JT_OUTER                  },
137     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
138     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
139     /* inner   */ { 23, 5, JT_INNER                  },
140     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
141   };
142   int i, j;
143   apAll[0] = pA;
144   apAll[1] = pB;
145   apAll[2] = pC;
146   for(i=0; i<3 && apAll[i]; i++){
147     p = apAll[i];
148     for(j=0; j<ArraySize(aKeyword); j++){
149       if( p->n==aKeyword[j].nChar
150           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
151         jointype |= aKeyword[j].code;
152         break;
153       }
154     }
155     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
156     if( j>=ArraySize(aKeyword) ){
157       jointype |= JT_ERROR;
158       break;
159     }
160   }
161   if(
162      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
163      (jointype & JT_ERROR)!=0
164   ){
165     const char *zSp = " ";
166     assert( pB!=0 );
167     if( pC==0 ){ zSp++; }
168     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
169        "%T %T%s%T", pA, pB, zSp, pC);
170     jointype = JT_INNER;
171   }else if( (jointype & JT_OUTER)!=0
172          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
173     sqlite3ErrorMsg(pParse,
174       "RIGHT and FULL OUTER JOINs are not currently supported");
175     jointype = JT_INNER;
176   }
177   return jointype;
178 }
179 
180 /*
181 ** Return the index of a column in a table.  Return -1 if the column
182 ** is not contained in the table.
183 */
184 static int columnIndex(Table *pTab, const char *zCol){
185   int i;
186   for(i=0; i<pTab->nCol; i++){
187     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
188   }
189   return -1;
190 }
191 
192 /*
193 ** Search the first N tables in pSrc, from left to right, looking for a
194 ** table that has a column named zCol.
195 **
196 ** When found, set *piTab and *piCol to the table index and column index
197 ** of the matching column and return TRUE.
198 **
199 ** If not found, return FALSE.
200 */
201 static int tableAndColumnIndex(
202   SrcList *pSrc,       /* Array of tables to search */
203   int N,               /* Number of tables in pSrc->a[] to search */
204   const char *zCol,    /* Name of the column we are looking for */
205   int *piTab,          /* Write index of pSrc->a[] here */
206   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
207 ){
208   int i;               /* For looping over tables in pSrc */
209   int iCol;            /* Index of column matching zCol */
210 
211   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
212   for(i=0; i<N; i++){
213     iCol = columnIndex(pSrc->a[i].pTab, zCol);
214     if( iCol>=0 ){
215       if( piTab ){
216         *piTab = i;
217         *piCol = iCol;
218       }
219       return 1;
220     }
221   }
222   return 0;
223 }
224 
225 /*
226 ** This function is used to add terms implied by JOIN syntax to the
227 ** WHERE clause expression of a SELECT statement. The new term, which
228 ** is ANDed with the existing WHERE clause, is of the form:
229 **
230 **    (tab1.col1 = tab2.col2)
231 **
232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
234 ** column iColRight of tab2.
235 */
236 static void addWhereTerm(
237   Parse *pParse,                  /* Parsing context */
238   SrcList *pSrc,                  /* List of tables in FROM clause */
239   int iLeft,                      /* Index of first table to join in pSrc */
240   int iColLeft,                   /* Index of column in first table */
241   int iRight,                     /* Index of second table in pSrc */
242   int iColRight,                  /* Index of column in second table */
243   int isOuterJoin,                /* True if this is an OUTER join */
244   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
245 ){
246   sqlite3 *db = pParse->db;
247   Expr *pE1;
248   Expr *pE2;
249   Expr *pEq;
250 
251   assert( iLeft<iRight );
252   assert( pSrc->nSrc>iRight );
253   assert( pSrc->a[iLeft].pTab );
254   assert( pSrc->a[iRight].pTab );
255 
256   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
257   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
258 
259   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
260   if( pEq && isOuterJoin ){
261     ExprSetProperty(pEq, EP_FromJoin);
262     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
263     ExprSetIrreducible(pEq);
264     pEq->iRightJoinTable = (i16)pE2->iTable;
265   }
266   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
267 }
268 
269 /*
270 ** Set the EP_FromJoin property on all terms of the given expression.
271 ** And set the Expr.iRightJoinTable to iTable for every term in the
272 ** expression.
273 **
274 ** The EP_FromJoin property is used on terms of an expression to tell
275 ** the LEFT OUTER JOIN processing logic that this term is part of the
276 ** join restriction specified in the ON or USING clause and not a part
277 ** of the more general WHERE clause.  These terms are moved over to the
278 ** WHERE clause during join processing but we need to remember that they
279 ** originated in the ON or USING clause.
280 **
281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
282 ** expression depends on table iRightJoinTable even if that table is not
283 ** explicitly mentioned in the expression.  That information is needed
284 ** for cases like this:
285 **
286 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
287 **
288 ** The where clause needs to defer the handling of the t1.x=5
289 ** term until after the t2 loop of the join.  In that way, a
290 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
291 ** defer the handling of t1.x=5, it will be processed immediately
292 ** after the t1 loop and rows with t1.x!=5 will never appear in
293 ** the output, which is incorrect.
294 */
295 static void setJoinExpr(Expr *p, int iTable){
296   while( p ){
297     ExprSetProperty(p, EP_FromJoin);
298     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
299     ExprSetIrreducible(p);
300     p->iRightJoinTable = (i16)iTable;
301     setJoinExpr(p->pLeft, iTable);
302     p = p->pRight;
303   }
304 }
305 
306 /*
307 ** This routine processes the join information for a SELECT statement.
308 ** ON and USING clauses are converted into extra terms of the WHERE clause.
309 ** NATURAL joins also create extra WHERE clause terms.
310 **
311 ** The terms of a FROM clause are contained in the Select.pSrc structure.
312 ** The left most table is the first entry in Select.pSrc.  The right-most
313 ** table is the last entry.  The join operator is held in the entry to
314 ** the left.  Thus entry 0 contains the join operator for the join between
315 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
316 ** also attached to the left entry.
317 **
318 ** This routine returns the number of errors encountered.
319 */
320 static int sqliteProcessJoin(Parse *pParse, Select *p){
321   SrcList *pSrc;                  /* All tables in the FROM clause */
322   int i, j;                       /* Loop counters */
323   struct SrcList_item *pLeft;     /* Left table being joined */
324   struct SrcList_item *pRight;    /* Right table being joined */
325 
326   pSrc = p->pSrc;
327   pLeft = &pSrc->a[0];
328   pRight = &pLeft[1];
329   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
330     Table *pLeftTab = pLeft->pTab;
331     Table *pRightTab = pRight->pTab;
332     int isOuter;
333 
334     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
335     isOuter = (pRight->jointype & JT_OUTER)!=0;
336 
337     /* When the NATURAL keyword is present, add WHERE clause terms for
338     ** every column that the two tables have in common.
339     */
340     if( pRight->jointype & JT_NATURAL ){
341       if( pRight->pOn || pRight->pUsing ){
342         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
343            "an ON or USING clause", 0);
344         return 1;
345       }
346       for(j=0; j<pRightTab->nCol; j++){
347         char *zName;   /* Name of column in the right table */
348         int iLeft;     /* Matching left table */
349         int iLeftCol;  /* Matching column in the left table */
350 
351         zName = pRightTab->aCol[j].zName;
352         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
353           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
354                        isOuter, &p->pWhere);
355         }
356       }
357     }
358 
359     /* Disallow both ON and USING clauses in the same join
360     */
361     if( pRight->pOn && pRight->pUsing ){
362       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
363         "clauses in the same join");
364       return 1;
365     }
366 
367     /* Add the ON clause to the end of the WHERE clause, connected by
368     ** an AND operator.
369     */
370     if( pRight->pOn ){
371       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
372       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
373       pRight->pOn = 0;
374     }
375 
376     /* Create extra terms on the WHERE clause for each column named
377     ** in the USING clause.  Example: If the two tables to be joined are
378     ** A and B and the USING clause names X, Y, and Z, then add this
379     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
380     ** Report an error if any column mentioned in the USING clause is
381     ** not contained in both tables to be joined.
382     */
383     if( pRight->pUsing ){
384       IdList *pList = pRight->pUsing;
385       for(j=0; j<pList->nId; j++){
386         char *zName;     /* Name of the term in the USING clause */
387         int iLeft;       /* Table on the left with matching column name */
388         int iLeftCol;    /* Column number of matching column on the left */
389         int iRightCol;   /* Column number of matching column on the right */
390 
391         zName = pList->a[j].zName;
392         iRightCol = columnIndex(pRightTab, zName);
393         if( iRightCol<0
394          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
395         ){
396           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
397             "not present in both tables", zName);
398           return 1;
399         }
400         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
401                      isOuter, &p->pWhere);
402       }
403     }
404   }
405   return 0;
406 }
407 
408 /*
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
411 */
412 static void pushOntoSorter(
413   Parse *pParse,         /* Parser context */
414   ExprList *pOrderBy,    /* The ORDER BY clause */
415   Select *pSelect,       /* The whole SELECT statement */
416   int regData            /* Register holding data to be sorted */
417 ){
418   Vdbe *v = pParse->pVdbe;
419   int nExpr = pOrderBy->nExpr;
420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421   int regRecord = sqlite3GetTempReg(pParse);
422   sqlite3ExprCacheClear(pParse);
423   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
424   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
425   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
426   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
427   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
428   sqlite3ReleaseTempReg(pParse, regRecord);
429   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
430   if( pSelect->iLimit ){
431     int addr1, addr2;
432     int iLimit;
433     if( pSelect->iOffset ){
434       iLimit = pSelect->iOffset+1;
435     }else{
436       iLimit = pSelect->iLimit;
437     }
438     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
439     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
440     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
441     sqlite3VdbeJumpHere(v, addr1);
442     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
443     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
444     sqlite3VdbeJumpHere(v, addr2);
445     pSelect->iLimit = 0;
446   }
447 }
448 
449 /*
450 ** Add code to implement the OFFSET
451 */
452 static void codeOffset(
453   Vdbe *v,          /* Generate code into this VM */
454   Select *p,        /* The SELECT statement being coded */
455   int iContinue     /* Jump here to skip the current record */
456 ){
457   if( p->iOffset && iContinue!=0 ){
458     int addr;
459     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
460     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
461     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
462     VdbeComment((v, "skip OFFSET records"));
463     sqlite3VdbeJumpHere(v, addr);
464   }
465 }
466 
467 /*
468 ** Add code that will check to make sure the N registers starting at iMem
469 ** form a distinct entry.  iTab is a sorting index that holds previously
470 ** seen combinations of the N values.  A new entry is made in iTab
471 ** if the current N values are new.
472 **
473 ** A jump to addrRepeat is made and the N+1 values are popped from the
474 ** stack if the top N elements are not distinct.
475 */
476 static void codeDistinct(
477   Parse *pParse,     /* Parsing and code generating context */
478   int iTab,          /* A sorting index used to test for distinctness */
479   int addrRepeat,    /* Jump to here if not distinct */
480   int N,             /* Number of elements */
481   int iMem           /* First element */
482 ){
483   Vdbe *v;
484   int r1;
485 
486   v = pParse->pVdbe;
487   r1 = sqlite3GetTempReg(pParse);
488   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
489   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
490   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
491   sqlite3ReleaseTempReg(pParse, r1);
492 }
493 
494 #ifndef SQLITE_OMIT_SUBQUERY
495 /*
496 ** Generate an error message when a SELECT is used within a subexpression
497 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
498 ** column.  We do this in a subroutine because the error used to occur
499 ** in multiple places.  (The error only occurs in one place now, but we
500 ** retain the subroutine to minimize code disruption.)
501 */
502 static int checkForMultiColumnSelectError(
503   Parse *pParse,       /* Parse context. */
504   SelectDest *pDest,   /* Destination of SELECT results */
505   int nExpr            /* Number of result columns returned by SELECT */
506 ){
507   int eDest = pDest->eDest;
508   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
509     sqlite3ErrorMsg(pParse, "only a single result allowed for "
510        "a SELECT that is part of an expression");
511     return 1;
512   }else{
513     return 0;
514   }
515 }
516 #endif
517 
518 /*
519 ** This routine generates the code for the inside of the inner loop
520 ** of a SELECT.
521 **
522 ** If srcTab and nColumn are both zero, then the pEList expressions
523 ** are evaluated in order to get the data for this row.  If nColumn>0
524 ** then data is pulled from srcTab and pEList is used only to get the
525 ** datatypes for each column.
526 */
527 static void selectInnerLoop(
528   Parse *pParse,          /* The parser context */
529   Select *p,              /* The complete select statement being coded */
530   ExprList *pEList,       /* List of values being extracted */
531   int srcTab,             /* Pull data from this table */
532   int nColumn,            /* Number of columns in the source table */
533   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
534   int distinct,           /* If >=0, make sure results are distinct */
535   SelectDest *pDest,      /* How to dispose of the results */
536   int iContinue,          /* Jump here to continue with next row */
537   int iBreak              /* Jump here to break out of the inner loop */
538 ){
539   Vdbe *v = pParse->pVdbe;
540   int i;
541   int hasDistinct;        /* True if the DISTINCT keyword is present */
542   int regResult;              /* Start of memory holding result set */
543   int eDest = pDest->eDest;   /* How to dispose of results */
544   int iParm = pDest->iParm;   /* First argument to disposal method */
545   int nResultCol;             /* Number of result columns */
546 
547   assert( v );
548   if( NEVER(v==0) ) return;
549   assert( pEList!=0 );
550   hasDistinct = distinct>=0;
551   if( pOrderBy==0 && !hasDistinct ){
552     codeOffset(v, p, iContinue);
553   }
554 
555   /* Pull the requested columns.
556   */
557   if( nColumn>0 ){
558     nResultCol = nColumn;
559   }else{
560     nResultCol = pEList->nExpr;
561   }
562   if( pDest->iMem==0 ){
563     pDest->iMem = pParse->nMem+1;
564     pDest->nMem = nResultCol;
565     pParse->nMem += nResultCol;
566   }else{
567     assert( pDest->nMem==nResultCol );
568   }
569   regResult = pDest->iMem;
570   if( nColumn>0 ){
571     for(i=0; i<nColumn; i++){
572       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
573     }
574   }else if( eDest!=SRT_Exists ){
575     /* If the destination is an EXISTS(...) expression, the actual
576     ** values returned by the SELECT are not required.
577     */
578     sqlite3ExprCacheClear(pParse);
579     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
580   }
581   nColumn = nResultCol;
582 
583   /* If the DISTINCT keyword was present on the SELECT statement
584   ** and this row has been seen before, then do not make this row
585   ** part of the result.
586   */
587   if( hasDistinct ){
588     assert( pEList!=0 );
589     assert( pEList->nExpr==nColumn );
590     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
591     if( pOrderBy==0 ){
592       codeOffset(v, p, iContinue);
593     }
594   }
595 
596   switch( eDest ){
597     /* In this mode, write each query result to the key of the temporary
598     ** table iParm.
599     */
600 #ifndef SQLITE_OMIT_COMPOUND_SELECT
601     case SRT_Union: {
602       int r1;
603       r1 = sqlite3GetTempReg(pParse);
604       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
605       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
606       sqlite3ReleaseTempReg(pParse, r1);
607       break;
608     }
609 
610     /* Construct a record from the query result, but instead of
611     ** saving that record, use it as a key to delete elements from
612     ** the temporary table iParm.
613     */
614     case SRT_Except: {
615       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
616       break;
617     }
618 #endif
619 
620     /* Store the result as data using a unique key.
621     */
622     case SRT_Table:
623     case SRT_EphemTab: {
624       int r1 = sqlite3GetTempReg(pParse);
625       testcase( eDest==SRT_Table );
626       testcase( eDest==SRT_EphemTab );
627       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
628       if( pOrderBy ){
629         pushOntoSorter(pParse, pOrderBy, p, r1);
630       }else{
631         int r2 = sqlite3GetTempReg(pParse);
632         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
633         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
634         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
635         sqlite3ReleaseTempReg(pParse, r2);
636       }
637       sqlite3ReleaseTempReg(pParse, r1);
638       break;
639     }
640 
641 #ifndef SQLITE_OMIT_SUBQUERY
642     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
643     ** then there should be a single item on the stack.  Write this
644     ** item into the set table with bogus data.
645     */
646     case SRT_Set: {
647       assert( nColumn==1 );
648       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
649       if( pOrderBy ){
650         /* At first glance you would think we could optimize out the
651         ** ORDER BY in this case since the order of entries in the set
652         ** does not matter.  But there might be a LIMIT clause, in which
653         ** case the order does matter */
654         pushOntoSorter(pParse, pOrderBy, p, regResult);
655       }else{
656         int r1 = sqlite3GetTempReg(pParse);
657         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
658         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
659         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
660         sqlite3ReleaseTempReg(pParse, r1);
661       }
662       break;
663     }
664 
665     /* If any row exist in the result set, record that fact and abort.
666     */
667     case SRT_Exists: {
668       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
669       /* The LIMIT clause will terminate the loop for us */
670       break;
671     }
672 
673     /* If this is a scalar select that is part of an expression, then
674     ** store the results in the appropriate memory cell and break out
675     ** of the scan loop.
676     */
677     case SRT_Mem: {
678       assert( nColumn==1 );
679       if( pOrderBy ){
680         pushOntoSorter(pParse, pOrderBy, p, regResult);
681       }else{
682         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
683         /* The LIMIT clause will jump out of the loop for us */
684       }
685       break;
686     }
687 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
688 
689     /* Send the data to the callback function or to a subroutine.  In the
690     ** case of a subroutine, the subroutine itself is responsible for
691     ** popping the data from the stack.
692     */
693     case SRT_Coroutine:
694     case SRT_Output: {
695       testcase( eDest==SRT_Coroutine );
696       testcase( eDest==SRT_Output );
697       if( pOrderBy ){
698         int r1 = sqlite3GetTempReg(pParse);
699         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
700         pushOntoSorter(pParse, pOrderBy, p, r1);
701         sqlite3ReleaseTempReg(pParse, r1);
702       }else if( eDest==SRT_Coroutine ){
703         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
704       }else{
705         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
706         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
707       }
708       break;
709     }
710 
711 #if !defined(SQLITE_OMIT_TRIGGER)
712     /* Discard the results.  This is used for SELECT statements inside
713     ** the body of a TRIGGER.  The purpose of such selects is to call
714     ** user-defined functions that have side effects.  We do not care
715     ** about the actual results of the select.
716     */
717     default: {
718       assert( eDest==SRT_Discard );
719       break;
720     }
721 #endif
722   }
723 
724   /* Jump to the end of the loop if the LIMIT is reached.
725   */
726   if( p->iLimit ){
727     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
728                             ** pushOntoSorter() would have cleared p->iLimit */
729     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
730   }
731 }
732 
733 /*
734 ** Given an expression list, generate a KeyInfo structure that records
735 ** the collating sequence for each expression in that expression list.
736 **
737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
738 ** KeyInfo structure is appropriate for initializing a virtual index to
739 ** implement that clause.  If the ExprList is the result set of a SELECT
740 ** then the KeyInfo structure is appropriate for initializing a virtual
741 ** index to implement a DISTINCT test.
742 **
743 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
744 ** function is responsible for seeing that this structure is eventually
745 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
747 */
748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
749   sqlite3 *db = pParse->db;
750   int nExpr;
751   KeyInfo *pInfo;
752   struct ExprList_item *pItem;
753   int i;
754 
755   nExpr = pList->nExpr;
756   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
757   if( pInfo ){
758     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
759     pInfo->nField = (u16)nExpr;
760     pInfo->enc = ENC(db);
761     pInfo->db = db;
762     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
763       CollSeq *pColl;
764       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
765       if( !pColl ){
766         pColl = db->pDfltColl;
767       }
768       pInfo->aColl[i] = pColl;
769       pInfo->aSortOrder[i] = pItem->sortOrder;
770     }
771   }
772   return pInfo;
773 }
774 
775 
776 /*
777 ** If the inner loop was generated using a non-null pOrderBy argument,
778 ** then the results were placed in a sorter.  After the loop is terminated
779 ** we need to run the sorter and output the results.  The following
780 ** routine generates the code needed to do that.
781 */
782 static void generateSortTail(
783   Parse *pParse,    /* Parsing context */
784   Select *p,        /* The SELECT statement */
785   Vdbe *v,          /* Generate code into this VDBE */
786   int nColumn,      /* Number of columns of data */
787   SelectDest *pDest /* Write the sorted results here */
788 ){
789   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
790   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
791   int addr;
792   int iTab;
793   int pseudoTab = 0;
794   ExprList *pOrderBy = p->pOrderBy;
795 
796   int eDest = pDest->eDest;
797   int iParm = pDest->iParm;
798 
799   int regRow;
800   int regRowid;
801 
802   iTab = pOrderBy->iECursor;
803   regRow = sqlite3GetTempReg(pParse);
804   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
805     pseudoTab = pParse->nTab++;
806     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
807     regRowid = 0;
808   }else{
809     regRowid = sqlite3GetTempReg(pParse);
810   }
811   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
812   codeOffset(v, p, addrContinue);
813   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
814   switch( eDest ){
815     case SRT_Table:
816     case SRT_EphemTab: {
817       testcase( eDest==SRT_Table );
818       testcase( eDest==SRT_EphemTab );
819       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
820       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
821       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
822       break;
823     }
824 #ifndef SQLITE_OMIT_SUBQUERY
825     case SRT_Set: {
826       assert( nColumn==1 );
827       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
828       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
829       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
830       break;
831     }
832     case SRT_Mem: {
833       assert( nColumn==1 );
834       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
835       /* The LIMIT clause will terminate the loop for us */
836       break;
837     }
838 #endif
839     default: {
840       int i;
841       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
842       testcase( eDest==SRT_Output );
843       testcase( eDest==SRT_Coroutine );
844       for(i=0; i<nColumn; i++){
845         assert( regRow!=pDest->iMem+i );
846         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
847         if( i==0 ){
848           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
849         }
850       }
851       if( eDest==SRT_Output ){
852         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
853         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
854       }else{
855         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
856       }
857       break;
858     }
859   }
860   sqlite3ReleaseTempReg(pParse, regRow);
861   sqlite3ReleaseTempReg(pParse, regRowid);
862 
863   /* LIMIT has been implemented by the pushOntoSorter() routine.
864   */
865   assert( p->iLimit==0 );
866 
867   /* The bottom of the loop
868   */
869   sqlite3VdbeResolveLabel(v, addrContinue);
870   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
871   sqlite3VdbeResolveLabel(v, addrBreak);
872   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
873     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
874   }
875 }
876 
877 /*
878 ** Return a pointer to a string containing the 'declaration type' of the
879 ** expression pExpr. The string may be treated as static by the caller.
880 **
881 ** The declaration type is the exact datatype definition extracted from the
882 ** original CREATE TABLE statement if the expression is a column. The
883 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
884 ** is considered a column can be complex in the presence of subqueries. The
885 ** result-set expression in all of the following SELECT statements is
886 ** considered a column by this function.
887 **
888 **   SELECT col FROM tbl;
889 **   SELECT (SELECT col FROM tbl;
890 **   SELECT (SELECT col FROM tbl);
891 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
892 **
893 ** The declaration type for any expression other than a column is NULL.
894 */
895 static const char *columnType(
896   NameContext *pNC,
897   Expr *pExpr,
898   const char **pzOriginDb,
899   const char **pzOriginTab,
900   const char **pzOriginCol
901 ){
902   char const *zType = 0;
903   char const *zOriginDb = 0;
904   char const *zOriginTab = 0;
905   char const *zOriginCol = 0;
906   int j;
907   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
908 
909   switch( pExpr->op ){
910     case TK_AGG_COLUMN:
911     case TK_COLUMN: {
912       /* The expression is a column. Locate the table the column is being
913       ** extracted from in NameContext.pSrcList. This table may be real
914       ** database table or a subquery.
915       */
916       Table *pTab = 0;            /* Table structure column is extracted from */
917       Select *pS = 0;             /* Select the column is extracted from */
918       int iCol = pExpr->iColumn;  /* Index of column in pTab */
919       testcase( pExpr->op==TK_AGG_COLUMN );
920       testcase( pExpr->op==TK_COLUMN );
921       while( pNC && !pTab ){
922         SrcList *pTabList = pNC->pSrcList;
923         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
924         if( j<pTabList->nSrc ){
925           pTab = pTabList->a[j].pTab;
926           pS = pTabList->a[j].pSelect;
927         }else{
928           pNC = pNC->pNext;
929         }
930       }
931 
932       if( pTab==0 ){
933         /* At one time, code such as "SELECT new.x" within a trigger would
934         ** cause this condition to run.  Since then, we have restructured how
935         ** trigger code is generated and so this condition is no longer
936         ** possible. However, it can still be true for statements like
937         ** the following:
938         **
939         **   CREATE TABLE t1(col INTEGER);
940         **   SELECT (SELECT t1.col) FROM FROM t1;
941         **
942         ** when columnType() is called on the expression "t1.col" in the
943         ** sub-select. In this case, set the column type to NULL, even
944         ** though it should really be "INTEGER".
945         **
946         ** This is not a problem, as the column type of "t1.col" is never
947         ** used. When columnType() is called on the expression
948         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
949         ** branch below.  */
950         break;
951       }
952 
953       assert( pTab && pExpr->pTab==pTab );
954       if( pS ){
955         /* The "table" is actually a sub-select or a view in the FROM clause
956         ** of the SELECT statement. Return the declaration type and origin
957         ** data for the result-set column of the sub-select.
958         */
959         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
960           /* If iCol is less than zero, then the expression requests the
961           ** rowid of the sub-select or view. This expression is legal (see
962           ** test case misc2.2.2) - it always evaluates to NULL.
963           */
964           NameContext sNC;
965           Expr *p = pS->pEList->a[iCol].pExpr;
966           sNC.pSrcList = pS->pSrc;
967           sNC.pNext = pNC;
968           sNC.pParse = pNC->pParse;
969           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
970         }
971       }else if( ALWAYS(pTab->pSchema) ){
972         /* A real table */
973         assert( !pS );
974         if( iCol<0 ) iCol = pTab->iPKey;
975         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
976         if( iCol<0 ){
977           zType = "INTEGER";
978           zOriginCol = "rowid";
979         }else{
980           zType = pTab->aCol[iCol].zType;
981           zOriginCol = pTab->aCol[iCol].zName;
982         }
983         zOriginTab = pTab->zName;
984         if( pNC->pParse ){
985           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
986           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
987         }
988       }
989       break;
990     }
991 #ifndef SQLITE_OMIT_SUBQUERY
992     case TK_SELECT: {
993       /* The expression is a sub-select. Return the declaration type and
994       ** origin info for the single column in the result set of the SELECT
995       ** statement.
996       */
997       NameContext sNC;
998       Select *pS = pExpr->x.pSelect;
999       Expr *p = pS->pEList->a[0].pExpr;
1000       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1001       sNC.pSrcList = pS->pSrc;
1002       sNC.pNext = pNC;
1003       sNC.pParse = pNC->pParse;
1004       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1005       break;
1006     }
1007 #endif
1008   }
1009 
1010   if( pzOriginDb ){
1011     assert( pzOriginTab && pzOriginCol );
1012     *pzOriginDb = zOriginDb;
1013     *pzOriginTab = zOriginTab;
1014     *pzOriginCol = zOriginCol;
1015   }
1016   return zType;
1017 }
1018 
1019 /*
1020 ** Generate code that will tell the VDBE the declaration types of columns
1021 ** in the result set.
1022 */
1023 static void generateColumnTypes(
1024   Parse *pParse,      /* Parser context */
1025   SrcList *pTabList,  /* List of tables */
1026   ExprList *pEList    /* Expressions defining the result set */
1027 ){
1028 #ifndef SQLITE_OMIT_DECLTYPE
1029   Vdbe *v = pParse->pVdbe;
1030   int i;
1031   NameContext sNC;
1032   sNC.pSrcList = pTabList;
1033   sNC.pParse = pParse;
1034   for(i=0; i<pEList->nExpr; i++){
1035     Expr *p = pEList->a[i].pExpr;
1036     const char *zType;
1037 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1038     const char *zOrigDb = 0;
1039     const char *zOrigTab = 0;
1040     const char *zOrigCol = 0;
1041     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1042 
1043     /* The vdbe must make its own copy of the column-type and other
1044     ** column specific strings, in case the schema is reset before this
1045     ** virtual machine is deleted.
1046     */
1047     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1048     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1049     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1050 #else
1051     zType = columnType(&sNC, p, 0, 0, 0);
1052 #endif
1053     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1054   }
1055 #endif /* SQLITE_OMIT_DECLTYPE */
1056 }
1057 
1058 /*
1059 ** Generate code that will tell the VDBE the names of columns
1060 ** in the result set.  This information is used to provide the
1061 ** azCol[] values in the callback.
1062 */
1063 static void generateColumnNames(
1064   Parse *pParse,      /* Parser context */
1065   SrcList *pTabList,  /* List of tables */
1066   ExprList *pEList    /* Expressions defining the result set */
1067 ){
1068   Vdbe *v = pParse->pVdbe;
1069   int i, j;
1070   sqlite3 *db = pParse->db;
1071   int fullNames, shortNames;
1072 
1073 #ifndef SQLITE_OMIT_EXPLAIN
1074   /* If this is an EXPLAIN, skip this step */
1075   if( pParse->explain ){
1076     return;
1077   }
1078 #endif
1079 
1080   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1081   pParse->colNamesSet = 1;
1082   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1083   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1084   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1085   for(i=0; i<pEList->nExpr; i++){
1086     Expr *p;
1087     p = pEList->a[i].pExpr;
1088     if( NEVER(p==0) ) continue;
1089     if( pEList->a[i].zName ){
1090       char *zName = pEList->a[i].zName;
1091       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1092     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1093       Table *pTab;
1094       char *zCol;
1095       int iCol = p->iColumn;
1096       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1097         if( pTabList->a[j].iCursor==p->iTable ) break;
1098       }
1099       assert( j<pTabList->nSrc );
1100       pTab = pTabList->a[j].pTab;
1101       if( iCol<0 ) iCol = pTab->iPKey;
1102       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1103       if( iCol<0 ){
1104         zCol = "rowid";
1105       }else{
1106         zCol = pTab->aCol[iCol].zName;
1107       }
1108       if( !shortNames && !fullNames ){
1109         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1110             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1111       }else if( fullNames ){
1112         char *zName = 0;
1113         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1114         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1115       }else{
1116         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1117       }
1118     }else{
1119       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1120           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1121     }
1122   }
1123   generateColumnTypes(pParse, pTabList, pEList);
1124 }
1125 
1126 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1127 /*
1128 ** Name of the connection operator, used for error messages.
1129 */
1130 static const char *selectOpName(int id){
1131   char *z;
1132   switch( id ){
1133     case TK_ALL:       z = "UNION ALL";   break;
1134     case TK_INTERSECT: z = "INTERSECT";   break;
1135     case TK_EXCEPT:    z = "EXCEPT";      break;
1136     default:           z = "UNION";       break;
1137   }
1138   return z;
1139 }
1140 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1141 
1142 /*
1143 ** Given a an expression list (which is really the list of expressions
1144 ** that form the result set of a SELECT statement) compute appropriate
1145 ** column names for a table that would hold the expression list.
1146 **
1147 ** All column names will be unique.
1148 **
1149 ** Only the column names are computed.  Column.zType, Column.zColl,
1150 ** and other fields of Column are zeroed.
1151 **
1152 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1153 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1154 */
1155 static int selectColumnsFromExprList(
1156   Parse *pParse,          /* Parsing context */
1157   ExprList *pEList,       /* Expr list from which to derive column names */
1158   int *pnCol,             /* Write the number of columns here */
1159   Column **paCol          /* Write the new column list here */
1160 ){
1161   sqlite3 *db = pParse->db;   /* Database connection */
1162   int i, j;                   /* Loop counters */
1163   int cnt;                    /* Index added to make the name unique */
1164   Column *aCol, *pCol;        /* For looping over result columns */
1165   int nCol;                   /* Number of columns in the result set */
1166   Expr *p;                    /* Expression for a single result column */
1167   char *zName;                /* Column name */
1168   int nName;                  /* Size of name in zName[] */
1169 
1170   *pnCol = nCol = pEList->nExpr;
1171   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1172   if( aCol==0 ) return SQLITE_NOMEM;
1173   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1174     /* Get an appropriate name for the column
1175     */
1176     p = pEList->a[i].pExpr;
1177     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1178                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1179     if( (zName = pEList->a[i].zName)!=0 ){
1180       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1181       zName = sqlite3DbStrDup(db, zName);
1182     }else{
1183       Expr *pColExpr = p;  /* The expression that is the result column name */
1184       Table *pTab;         /* Table associated with this expression */
1185       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1186       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1187         /* For columns use the column name name */
1188         int iCol = pColExpr->iColumn;
1189         pTab = pColExpr->pTab;
1190         if( iCol<0 ) iCol = pTab->iPKey;
1191         zName = sqlite3MPrintf(db, "%s",
1192                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1193       }else if( pColExpr->op==TK_ID ){
1194         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1195         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1196       }else{
1197         /* Use the original text of the column expression as its name */
1198         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1199       }
1200     }
1201     if( db->mallocFailed ){
1202       sqlite3DbFree(db, zName);
1203       break;
1204     }
1205 
1206     /* Make sure the column name is unique.  If the name is not unique,
1207     ** append a integer to the name so that it becomes unique.
1208     */
1209     nName = sqlite3Strlen30(zName);
1210     for(j=cnt=0; j<i; j++){
1211       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1212         char *zNewName;
1213         zName[nName] = 0;
1214         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1215         sqlite3DbFree(db, zName);
1216         zName = zNewName;
1217         j = -1;
1218         if( zName==0 ) break;
1219       }
1220     }
1221     pCol->zName = zName;
1222   }
1223   if( db->mallocFailed ){
1224     for(j=0; j<i; j++){
1225       sqlite3DbFree(db, aCol[j].zName);
1226     }
1227     sqlite3DbFree(db, aCol);
1228     *paCol = 0;
1229     *pnCol = 0;
1230     return SQLITE_NOMEM;
1231   }
1232   return SQLITE_OK;
1233 }
1234 
1235 /*
1236 ** Add type and collation information to a column list based on
1237 ** a SELECT statement.
1238 **
1239 ** The column list presumably came from selectColumnNamesFromExprList().
1240 ** The column list has only names, not types or collations.  This
1241 ** routine goes through and adds the types and collations.
1242 **
1243 ** This routine requires that all identifiers in the SELECT
1244 ** statement be resolved.
1245 */
1246 static void selectAddColumnTypeAndCollation(
1247   Parse *pParse,        /* Parsing contexts */
1248   int nCol,             /* Number of columns */
1249   Column *aCol,         /* List of columns */
1250   Select *pSelect       /* SELECT used to determine types and collations */
1251 ){
1252   sqlite3 *db = pParse->db;
1253   NameContext sNC;
1254   Column *pCol;
1255   CollSeq *pColl;
1256   int i;
1257   Expr *p;
1258   struct ExprList_item *a;
1259 
1260   assert( pSelect!=0 );
1261   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1262   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1263   if( db->mallocFailed ) return;
1264   memset(&sNC, 0, sizeof(sNC));
1265   sNC.pSrcList = pSelect->pSrc;
1266   a = pSelect->pEList->a;
1267   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1268     p = a[i].pExpr;
1269     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1270     pCol->affinity = sqlite3ExprAffinity(p);
1271     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1272     pColl = sqlite3ExprCollSeq(pParse, p);
1273     if( pColl ){
1274       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1275     }
1276   }
1277 }
1278 
1279 /*
1280 ** Given a SELECT statement, generate a Table structure that describes
1281 ** the result set of that SELECT.
1282 */
1283 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1284   Table *pTab;
1285   sqlite3 *db = pParse->db;
1286   int savedFlags;
1287 
1288   savedFlags = db->flags;
1289   db->flags &= ~SQLITE_FullColNames;
1290   db->flags |= SQLITE_ShortColNames;
1291   sqlite3SelectPrep(pParse, pSelect, 0);
1292   if( pParse->nErr ) return 0;
1293   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1294   db->flags = savedFlags;
1295   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1296   if( pTab==0 ){
1297     return 0;
1298   }
1299   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1300   ** is disabled */
1301   assert( db->lookaside.bEnabled==0 );
1302   pTab->nRef = 1;
1303   pTab->zName = 0;
1304   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1305   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1306   pTab->iPKey = -1;
1307   if( db->mallocFailed ){
1308     sqlite3DeleteTable(db, pTab);
1309     return 0;
1310   }
1311   return pTab;
1312 }
1313 
1314 /*
1315 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1316 ** If an error occurs, return NULL and leave a message in pParse.
1317 */
1318 Vdbe *sqlite3GetVdbe(Parse *pParse){
1319   Vdbe *v = pParse->pVdbe;
1320   if( v==0 ){
1321     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1322 #ifndef SQLITE_OMIT_TRACE
1323     if( v ){
1324       sqlite3VdbeAddOp0(v, OP_Trace);
1325     }
1326 #endif
1327   }
1328   return v;
1329 }
1330 
1331 
1332 /*
1333 ** Compute the iLimit and iOffset fields of the SELECT based on the
1334 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1335 ** that appear in the original SQL statement after the LIMIT and OFFSET
1336 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1337 ** are the integer memory register numbers for counters used to compute
1338 ** the limit and offset.  If there is no limit and/or offset, then
1339 ** iLimit and iOffset are negative.
1340 **
1341 ** This routine changes the values of iLimit and iOffset only if
1342 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1343 ** iOffset should have been preset to appropriate default values
1344 ** (usually but not always -1) prior to calling this routine.
1345 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1346 ** redefined.  The UNION ALL operator uses this property to force
1347 ** the reuse of the same limit and offset registers across multiple
1348 ** SELECT statements.
1349 */
1350 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1351   Vdbe *v = 0;
1352   int iLimit = 0;
1353   int iOffset;
1354   int addr1, n;
1355   if( p->iLimit ) return;
1356 
1357   /*
1358   ** "LIMIT -1" always shows all rows.  There is some
1359   ** contraversy about what the correct behavior should be.
1360   ** The current implementation interprets "LIMIT 0" to mean
1361   ** no rows.
1362   */
1363   sqlite3ExprCacheClear(pParse);
1364   assert( p->pOffset==0 || p->pLimit!=0 );
1365   if( p->pLimit ){
1366     p->iLimit = iLimit = ++pParse->nMem;
1367     v = sqlite3GetVdbe(pParse);
1368     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1369     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1370       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1371       VdbeComment((v, "LIMIT counter"));
1372       if( n==0 ){
1373         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1374       }
1375     }else{
1376       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1377       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1378       VdbeComment((v, "LIMIT counter"));
1379       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1380     }
1381     if( p->pOffset ){
1382       p->iOffset = iOffset = ++pParse->nMem;
1383       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1384       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1385       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1386       VdbeComment((v, "OFFSET counter"));
1387       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1388       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1389       sqlite3VdbeJumpHere(v, addr1);
1390       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1391       VdbeComment((v, "LIMIT+OFFSET"));
1392       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1393       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1394       sqlite3VdbeJumpHere(v, addr1);
1395     }
1396   }
1397 }
1398 
1399 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1400 /*
1401 ** Return the appropriate collating sequence for the iCol-th column of
1402 ** the result set for the compound-select statement "p".  Return NULL if
1403 ** the column has no default collating sequence.
1404 **
1405 ** The collating sequence for the compound select is taken from the
1406 ** left-most term of the select that has a collating sequence.
1407 */
1408 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1409   CollSeq *pRet;
1410   if( p->pPrior ){
1411     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1412   }else{
1413     pRet = 0;
1414   }
1415   assert( iCol>=0 );
1416   if( pRet==0 && iCol<p->pEList->nExpr ){
1417     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1418   }
1419   return pRet;
1420 }
1421 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1422 
1423 /* Forward reference */
1424 static int multiSelectOrderBy(
1425   Parse *pParse,        /* Parsing context */
1426   Select *p,            /* The right-most of SELECTs to be coded */
1427   SelectDest *pDest     /* What to do with query results */
1428 );
1429 
1430 
1431 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1432 /*
1433 ** This routine is called to process a compound query form from
1434 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1435 ** INTERSECT
1436 **
1437 ** "p" points to the right-most of the two queries.  the query on the
1438 ** left is p->pPrior.  The left query could also be a compound query
1439 ** in which case this routine will be called recursively.
1440 **
1441 ** The results of the total query are to be written into a destination
1442 ** of type eDest with parameter iParm.
1443 **
1444 ** Example 1:  Consider a three-way compound SQL statement.
1445 **
1446 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1447 **
1448 ** This statement is parsed up as follows:
1449 **
1450 **     SELECT c FROM t3
1451 **      |
1452 **      `----->  SELECT b FROM t2
1453 **                |
1454 **                `------>  SELECT a FROM t1
1455 **
1456 ** The arrows in the diagram above represent the Select.pPrior pointer.
1457 ** So if this routine is called with p equal to the t3 query, then
1458 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1459 **
1460 ** Notice that because of the way SQLite parses compound SELECTs, the
1461 ** individual selects always group from left to right.
1462 */
1463 static int multiSelect(
1464   Parse *pParse,        /* Parsing context */
1465   Select *p,            /* The right-most of SELECTs to be coded */
1466   SelectDest *pDest     /* What to do with query results */
1467 ){
1468   int rc = SQLITE_OK;   /* Success code from a subroutine */
1469   Select *pPrior;       /* Another SELECT immediately to our left */
1470   Vdbe *v;              /* Generate code to this VDBE */
1471   SelectDest dest;      /* Alternative data destination */
1472   Select *pDelete = 0;  /* Chain of simple selects to delete */
1473   sqlite3 *db;          /* Database connection */
1474 
1475   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1476   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1477   */
1478   assert( p && p->pPrior );  /* Calling function guarantees this much */
1479   db = pParse->db;
1480   pPrior = p->pPrior;
1481   assert( pPrior->pRightmost!=pPrior );
1482   assert( pPrior->pRightmost==p->pRightmost );
1483   dest = *pDest;
1484   if( pPrior->pOrderBy ){
1485     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1486       selectOpName(p->op));
1487     rc = 1;
1488     goto multi_select_end;
1489   }
1490   if( pPrior->pLimit ){
1491     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1492       selectOpName(p->op));
1493     rc = 1;
1494     goto multi_select_end;
1495   }
1496 
1497   v = sqlite3GetVdbe(pParse);
1498   assert( v!=0 );  /* The VDBE already created by calling function */
1499 
1500   /* Create the destination temporary table if necessary
1501   */
1502   if( dest.eDest==SRT_EphemTab ){
1503     assert( p->pEList );
1504     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1505     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1506     dest.eDest = SRT_Table;
1507   }
1508 
1509   /* Make sure all SELECTs in the statement have the same number of elements
1510   ** in their result sets.
1511   */
1512   assert( p->pEList && pPrior->pEList );
1513   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1514     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1515       " do not have the same number of result columns", selectOpName(p->op));
1516     rc = 1;
1517     goto multi_select_end;
1518   }
1519 
1520   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1521   */
1522   if( p->pOrderBy ){
1523     return multiSelectOrderBy(pParse, p, pDest);
1524   }
1525 
1526   /* Generate code for the left and right SELECT statements.
1527   */
1528   switch( p->op ){
1529     case TK_ALL: {
1530       int addr = 0;
1531       assert( !pPrior->pLimit );
1532       pPrior->pLimit = p->pLimit;
1533       pPrior->pOffset = p->pOffset;
1534       rc = sqlite3Select(pParse, pPrior, &dest);
1535       p->pLimit = 0;
1536       p->pOffset = 0;
1537       if( rc ){
1538         goto multi_select_end;
1539       }
1540       p->pPrior = 0;
1541       p->iLimit = pPrior->iLimit;
1542       p->iOffset = pPrior->iOffset;
1543       if( p->iLimit ){
1544         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1545         VdbeComment((v, "Jump ahead if LIMIT reached"));
1546       }
1547       rc = sqlite3Select(pParse, p, &dest);
1548       testcase( rc!=SQLITE_OK );
1549       pDelete = p->pPrior;
1550       p->pPrior = pPrior;
1551       if( addr ){
1552         sqlite3VdbeJumpHere(v, addr);
1553       }
1554       break;
1555     }
1556     case TK_EXCEPT:
1557     case TK_UNION: {
1558       int unionTab;    /* Cursor number of the temporary table holding result */
1559       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1560       int priorOp;     /* The SRT_ operation to apply to prior selects */
1561       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1562       int addr;
1563       SelectDest uniondest;
1564 
1565       testcase( p->op==TK_EXCEPT );
1566       testcase( p->op==TK_UNION );
1567       priorOp = SRT_Union;
1568       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1569         /* We can reuse a temporary table generated by a SELECT to our
1570         ** right.
1571         */
1572         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1573                                      ** of a 3-way or more compound */
1574         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1575         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1576         unionTab = dest.iParm;
1577       }else{
1578         /* We will need to create our own temporary table to hold the
1579         ** intermediate results.
1580         */
1581         unionTab = pParse->nTab++;
1582         assert( p->pOrderBy==0 );
1583         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1584         assert( p->addrOpenEphm[0] == -1 );
1585         p->addrOpenEphm[0] = addr;
1586         p->pRightmost->selFlags |= SF_UsesEphemeral;
1587         assert( p->pEList );
1588       }
1589 
1590       /* Code the SELECT statements to our left
1591       */
1592       assert( !pPrior->pOrderBy );
1593       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1594       rc = sqlite3Select(pParse, pPrior, &uniondest);
1595       if( rc ){
1596         goto multi_select_end;
1597       }
1598 
1599       /* Code the current SELECT statement
1600       */
1601       if( p->op==TK_EXCEPT ){
1602         op = SRT_Except;
1603       }else{
1604         assert( p->op==TK_UNION );
1605         op = SRT_Union;
1606       }
1607       p->pPrior = 0;
1608       pLimit = p->pLimit;
1609       p->pLimit = 0;
1610       pOffset = p->pOffset;
1611       p->pOffset = 0;
1612       uniondest.eDest = op;
1613       rc = sqlite3Select(pParse, p, &uniondest);
1614       testcase( rc!=SQLITE_OK );
1615       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1616       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1617       sqlite3ExprListDelete(db, p->pOrderBy);
1618       pDelete = p->pPrior;
1619       p->pPrior = pPrior;
1620       p->pOrderBy = 0;
1621       sqlite3ExprDelete(db, p->pLimit);
1622       p->pLimit = pLimit;
1623       p->pOffset = pOffset;
1624       p->iLimit = 0;
1625       p->iOffset = 0;
1626 
1627       /* Convert the data in the temporary table into whatever form
1628       ** it is that we currently need.
1629       */
1630       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1631       if( dest.eDest!=priorOp ){
1632         int iCont, iBreak, iStart;
1633         assert( p->pEList );
1634         if( dest.eDest==SRT_Output ){
1635           Select *pFirst = p;
1636           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1637           generateColumnNames(pParse, 0, pFirst->pEList);
1638         }
1639         iBreak = sqlite3VdbeMakeLabel(v);
1640         iCont = sqlite3VdbeMakeLabel(v);
1641         computeLimitRegisters(pParse, p, iBreak);
1642         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1643         iStart = sqlite3VdbeCurrentAddr(v);
1644         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1645                         0, -1, &dest, iCont, iBreak);
1646         sqlite3VdbeResolveLabel(v, iCont);
1647         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1648         sqlite3VdbeResolveLabel(v, iBreak);
1649         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1650       }
1651       break;
1652     }
1653     default: assert( p->op==TK_INTERSECT ); {
1654       int tab1, tab2;
1655       int iCont, iBreak, iStart;
1656       Expr *pLimit, *pOffset;
1657       int addr;
1658       SelectDest intersectdest;
1659       int r1;
1660 
1661       /* INTERSECT is different from the others since it requires
1662       ** two temporary tables.  Hence it has its own case.  Begin
1663       ** by allocating the tables we will need.
1664       */
1665       tab1 = pParse->nTab++;
1666       tab2 = pParse->nTab++;
1667       assert( p->pOrderBy==0 );
1668 
1669       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1670       assert( p->addrOpenEphm[0] == -1 );
1671       p->addrOpenEphm[0] = addr;
1672       p->pRightmost->selFlags |= SF_UsesEphemeral;
1673       assert( p->pEList );
1674 
1675       /* Code the SELECTs to our left into temporary table "tab1".
1676       */
1677       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1678       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1679       if( rc ){
1680         goto multi_select_end;
1681       }
1682 
1683       /* Code the current SELECT into temporary table "tab2"
1684       */
1685       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1686       assert( p->addrOpenEphm[1] == -1 );
1687       p->addrOpenEphm[1] = addr;
1688       p->pPrior = 0;
1689       pLimit = p->pLimit;
1690       p->pLimit = 0;
1691       pOffset = p->pOffset;
1692       p->pOffset = 0;
1693       intersectdest.iParm = tab2;
1694       rc = sqlite3Select(pParse, p, &intersectdest);
1695       testcase( rc!=SQLITE_OK );
1696       pDelete = p->pPrior;
1697       p->pPrior = pPrior;
1698       sqlite3ExprDelete(db, p->pLimit);
1699       p->pLimit = pLimit;
1700       p->pOffset = pOffset;
1701 
1702       /* Generate code to take the intersection of the two temporary
1703       ** tables.
1704       */
1705       assert( p->pEList );
1706       if( dest.eDest==SRT_Output ){
1707         Select *pFirst = p;
1708         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1709         generateColumnNames(pParse, 0, pFirst->pEList);
1710       }
1711       iBreak = sqlite3VdbeMakeLabel(v);
1712       iCont = sqlite3VdbeMakeLabel(v);
1713       computeLimitRegisters(pParse, p, iBreak);
1714       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1715       r1 = sqlite3GetTempReg(pParse);
1716       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1717       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1718       sqlite3ReleaseTempReg(pParse, r1);
1719       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1720                       0, -1, &dest, iCont, iBreak);
1721       sqlite3VdbeResolveLabel(v, iCont);
1722       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1723       sqlite3VdbeResolveLabel(v, iBreak);
1724       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1725       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1726       break;
1727     }
1728   }
1729 
1730   /* Compute collating sequences used by
1731   ** temporary tables needed to implement the compound select.
1732   ** Attach the KeyInfo structure to all temporary tables.
1733   **
1734   ** This section is run by the right-most SELECT statement only.
1735   ** SELECT statements to the left always skip this part.  The right-most
1736   ** SELECT might also skip this part if it has no ORDER BY clause and
1737   ** no temp tables are required.
1738   */
1739   if( p->selFlags & SF_UsesEphemeral ){
1740     int i;                        /* Loop counter */
1741     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1742     Select *pLoop;                /* For looping through SELECT statements */
1743     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1744     int nCol;                     /* Number of columns in result set */
1745 
1746     assert( p->pRightmost==p );
1747     nCol = p->pEList->nExpr;
1748     pKeyInfo = sqlite3DbMallocZero(db,
1749                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1750     if( !pKeyInfo ){
1751       rc = SQLITE_NOMEM;
1752       goto multi_select_end;
1753     }
1754 
1755     pKeyInfo->enc = ENC(db);
1756     pKeyInfo->nField = (u16)nCol;
1757 
1758     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1759       *apColl = multiSelectCollSeq(pParse, p, i);
1760       if( 0==*apColl ){
1761         *apColl = db->pDfltColl;
1762       }
1763     }
1764 
1765     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1766       for(i=0; i<2; i++){
1767         int addr = pLoop->addrOpenEphm[i];
1768         if( addr<0 ){
1769           /* If [0] is unused then [1] is also unused.  So we can
1770           ** always safely abort as soon as the first unused slot is found */
1771           assert( pLoop->addrOpenEphm[1]<0 );
1772           break;
1773         }
1774         sqlite3VdbeChangeP2(v, addr, nCol);
1775         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1776         pLoop->addrOpenEphm[i] = -1;
1777       }
1778     }
1779     sqlite3DbFree(db, pKeyInfo);
1780   }
1781 
1782 multi_select_end:
1783   pDest->iMem = dest.iMem;
1784   pDest->nMem = dest.nMem;
1785   sqlite3SelectDelete(db, pDelete);
1786   return rc;
1787 }
1788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1789 
1790 /*
1791 ** Code an output subroutine for a coroutine implementation of a
1792 ** SELECT statment.
1793 **
1794 ** The data to be output is contained in pIn->iMem.  There are
1795 ** pIn->nMem columns to be output.  pDest is where the output should
1796 ** be sent.
1797 **
1798 ** regReturn is the number of the register holding the subroutine
1799 ** return address.
1800 **
1801 ** If regPrev>0 then it is the first register in a vector that
1802 ** records the previous output.  mem[regPrev] is a flag that is false
1803 ** if there has been no previous output.  If regPrev>0 then code is
1804 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1805 ** keys.
1806 **
1807 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1808 ** iBreak.
1809 */
1810 static int generateOutputSubroutine(
1811   Parse *pParse,          /* Parsing context */
1812   Select *p,              /* The SELECT statement */
1813   SelectDest *pIn,        /* Coroutine supplying data */
1814   SelectDest *pDest,      /* Where to send the data */
1815   int regReturn,          /* The return address register */
1816   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1817   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1818   int p4type,             /* The p4 type for pKeyInfo */
1819   int iBreak              /* Jump here if we hit the LIMIT */
1820 ){
1821   Vdbe *v = pParse->pVdbe;
1822   int iContinue;
1823   int addr;
1824 
1825   addr = sqlite3VdbeCurrentAddr(v);
1826   iContinue = sqlite3VdbeMakeLabel(v);
1827 
1828   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1829   */
1830   if( regPrev ){
1831     int j1, j2;
1832     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1833     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1834                               (char*)pKeyInfo, p4type);
1835     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1836     sqlite3VdbeJumpHere(v, j1);
1837     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1838     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1839   }
1840   if( pParse->db->mallocFailed ) return 0;
1841 
1842   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1843   */
1844   codeOffset(v, p, iContinue);
1845 
1846   switch( pDest->eDest ){
1847     /* Store the result as data using a unique key.
1848     */
1849     case SRT_Table:
1850     case SRT_EphemTab: {
1851       int r1 = sqlite3GetTempReg(pParse);
1852       int r2 = sqlite3GetTempReg(pParse);
1853       testcase( pDest->eDest==SRT_Table );
1854       testcase( pDest->eDest==SRT_EphemTab );
1855       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1856       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1857       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1858       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1859       sqlite3ReleaseTempReg(pParse, r2);
1860       sqlite3ReleaseTempReg(pParse, r1);
1861       break;
1862     }
1863 
1864 #ifndef SQLITE_OMIT_SUBQUERY
1865     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1866     ** then there should be a single item on the stack.  Write this
1867     ** item into the set table with bogus data.
1868     */
1869     case SRT_Set: {
1870       int r1;
1871       assert( pIn->nMem==1 );
1872       p->affinity =
1873          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1874       r1 = sqlite3GetTempReg(pParse);
1875       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1876       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1877       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1878       sqlite3ReleaseTempReg(pParse, r1);
1879       break;
1880     }
1881 
1882 #if 0  /* Never occurs on an ORDER BY query */
1883     /* If any row exist in the result set, record that fact and abort.
1884     */
1885     case SRT_Exists: {
1886       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1887       /* The LIMIT clause will terminate the loop for us */
1888       break;
1889     }
1890 #endif
1891 
1892     /* If this is a scalar select that is part of an expression, then
1893     ** store the results in the appropriate memory cell and break out
1894     ** of the scan loop.
1895     */
1896     case SRT_Mem: {
1897       assert( pIn->nMem==1 );
1898       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1899       /* The LIMIT clause will jump out of the loop for us */
1900       break;
1901     }
1902 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1903 
1904     /* The results are stored in a sequence of registers
1905     ** starting at pDest->iMem.  Then the co-routine yields.
1906     */
1907     case SRT_Coroutine: {
1908       if( pDest->iMem==0 ){
1909         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1910         pDest->nMem = pIn->nMem;
1911       }
1912       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1913       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1914       break;
1915     }
1916 
1917     /* If none of the above, then the result destination must be
1918     ** SRT_Output.  This routine is never called with any other
1919     ** destination other than the ones handled above or SRT_Output.
1920     **
1921     ** For SRT_Output, results are stored in a sequence of registers.
1922     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
1923     ** return the next row of result.
1924     */
1925     default: {
1926       assert( pDest->eDest==SRT_Output );
1927       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1928       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1929       break;
1930     }
1931   }
1932 
1933   /* Jump to the end of the loop if the LIMIT is reached.
1934   */
1935   if( p->iLimit ){
1936     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
1937   }
1938 
1939   /* Generate the subroutine return
1940   */
1941   sqlite3VdbeResolveLabel(v, iContinue);
1942   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1943 
1944   return addr;
1945 }
1946 
1947 /*
1948 ** Alternative compound select code generator for cases when there
1949 ** is an ORDER BY clause.
1950 **
1951 ** We assume a query of the following form:
1952 **
1953 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1954 **
1955 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1956 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1957 ** co-routines.  Then run the co-routines in parallel and merge the results
1958 ** into the output.  In addition to the two coroutines (called selectA and
1959 ** selectB) there are 7 subroutines:
1960 **
1961 **    outA:    Move the output of the selectA coroutine into the output
1962 **             of the compound query.
1963 **
1964 **    outB:    Move the output of the selectB coroutine into the output
1965 **             of the compound query.  (Only generated for UNION and
1966 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1967 **             appears only in B.)
1968 **
1969 **    AltB:    Called when there is data from both coroutines and A<B.
1970 **
1971 **    AeqB:    Called when there is data from both coroutines and A==B.
1972 **
1973 **    AgtB:    Called when there is data from both coroutines and A>B.
1974 **
1975 **    EofA:    Called when data is exhausted from selectA.
1976 **
1977 **    EofB:    Called when data is exhausted from selectB.
1978 **
1979 ** The implementation of the latter five subroutines depend on which
1980 ** <operator> is used:
1981 **
1982 **
1983 **             UNION ALL         UNION            EXCEPT          INTERSECT
1984 **          -------------  -----------------  --------------  -----------------
1985 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1986 **
1987 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1988 **
1989 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1990 **
1991 **   EofA:   outB, nextB      outB, nextB          halt             halt
1992 **
1993 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1994 **
1995 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1996 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1997 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1998 ** following nextX causes a jump to the end of the select processing.
1999 **
2000 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2001 ** within the output subroutine.  The regPrev register set holds the previously
2002 ** output value.  A comparison is made against this value and the output
2003 ** is skipped if the next results would be the same as the previous.
2004 **
2005 ** The implementation plan is to implement the two coroutines and seven
2006 ** subroutines first, then put the control logic at the bottom.  Like this:
2007 **
2008 **          goto Init
2009 **     coA: coroutine for left query (A)
2010 **     coB: coroutine for right query (B)
2011 **    outA: output one row of A
2012 **    outB: output one row of B (UNION and UNION ALL only)
2013 **    EofA: ...
2014 **    EofB: ...
2015 **    AltB: ...
2016 **    AeqB: ...
2017 **    AgtB: ...
2018 **    Init: initialize coroutine registers
2019 **          yield coA
2020 **          if eof(A) goto EofA
2021 **          yield coB
2022 **          if eof(B) goto EofB
2023 **    Cmpr: Compare A, B
2024 **          Jump AltB, AeqB, AgtB
2025 **     End: ...
2026 **
2027 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2028 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2029 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2030 ** and AgtB jump to either L2 or to one of EofA or EofB.
2031 */
2032 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2033 static int multiSelectOrderBy(
2034   Parse *pParse,        /* Parsing context */
2035   Select *p,            /* The right-most of SELECTs to be coded */
2036   SelectDest *pDest     /* What to do with query results */
2037 ){
2038   int i, j;             /* Loop counters */
2039   Select *pPrior;       /* Another SELECT immediately to our left */
2040   Vdbe *v;              /* Generate code to this VDBE */
2041   SelectDest destA;     /* Destination for coroutine A */
2042   SelectDest destB;     /* Destination for coroutine B */
2043   int regAddrA;         /* Address register for select-A coroutine */
2044   int regEofA;          /* Flag to indicate when select-A is complete */
2045   int regAddrB;         /* Address register for select-B coroutine */
2046   int regEofB;          /* Flag to indicate when select-B is complete */
2047   int addrSelectA;      /* Address of the select-A coroutine */
2048   int addrSelectB;      /* Address of the select-B coroutine */
2049   int regOutA;          /* Address register for the output-A subroutine */
2050   int regOutB;          /* Address register for the output-B subroutine */
2051   int addrOutA;         /* Address of the output-A subroutine */
2052   int addrOutB = 0;     /* Address of the output-B subroutine */
2053   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2054   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2055   int addrAltB;         /* Address of the A<B subroutine */
2056   int addrAeqB;         /* Address of the A==B subroutine */
2057   int addrAgtB;         /* Address of the A>B subroutine */
2058   int regLimitA;        /* Limit register for select-A */
2059   int regLimitB;        /* Limit register for select-A */
2060   int regPrev;          /* A range of registers to hold previous output */
2061   int savedLimit;       /* Saved value of p->iLimit */
2062   int savedOffset;      /* Saved value of p->iOffset */
2063   int labelCmpr;        /* Label for the start of the merge algorithm */
2064   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2065   int j1;               /* Jump instructions that get retargetted */
2066   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2067   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2068   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2069   sqlite3 *db;          /* Database connection */
2070   ExprList *pOrderBy;   /* The ORDER BY clause */
2071   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2072   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2073 
2074   assert( p->pOrderBy!=0 );
2075   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2076   db = pParse->db;
2077   v = pParse->pVdbe;
2078   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2079   labelEnd = sqlite3VdbeMakeLabel(v);
2080   labelCmpr = sqlite3VdbeMakeLabel(v);
2081 
2082 
2083   /* Patch up the ORDER BY clause
2084   */
2085   op = p->op;
2086   pPrior = p->pPrior;
2087   assert( pPrior->pOrderBy==0 );
2088   pOrderBy = p->pOrderBy;
2089   assert( pOrderBy );
2090   nOrderBy = pOrderBy->nExpr;
2091 
2092   /* For operators other than UNION ALL we have to make sure that
2093   ** the ORDER BY clause covers every term of the result set.  Add
2094   ** terms to the ORDER BY clause as necessary.
2095   */
2096   if( op!=TK_ALL ){
2097     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2098       struct ExprList_item *pItem;
2099       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2100         assert( pItem->iCol>0 );
2101         if( pItem->iCol==i ) break;
2102       }
2103       if( j==nOrderBy ){
2104         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2105         if( pNew==0 ) return SQLITE_NOMEM;
2106         pNew->flags |= EP_IntValue;
2107         pNew->u.iValue = i;
2108         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2109         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2110       }
2111     }
2112   }
2113 
2114   /* Compute the comparison permutation and keyinfo that is used with
2115   ** the permutation used to determine if the next
2116   ** row of results comes from selectA or selectB.  Also add explicit
2117   ** collations to the ORDER BY clause terms so that when the subqueries
2118   ** to the right and the left are evaluated, they use the correct
2119   ** collation.
2120   */
2121   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2122   if( aPermute ){
2123     struct ExprList_item *pItem;
2124     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2125       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2126       aPermute[i] = pItem->iCol - 1;
2127     }
2128     pKeyMerge =
2129       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2130     if( pKeyMerge ){
2131       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2132       pKeyMerge->nField = (u16)nOrderBy;
2133       pKeyMerge->enc = ENC(db);
2134       for(i=0; i<nOrderBy; i++){
2135         CollSeq *pColl;
2136         Expr *pTerm = pOrderBy->a[i].pExpr;
2137         if( pTerm->flags & EP_ExpCollate ){
2138           pColl = pTerm->pColl;
2139         }else{
2140           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2141           pTerm->flags |= EP_ExpCollate;
2142           pTerm->pColl = pColl;
2143         }
2144         pKeyMerge->aColl[i] = pColl;
2145         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2146       }
2147     }
2148   }else{
2149     pKeyMerge = 0;
2150   }
2151 
2152   /* Reattach the ORDER BY clause to the query.
2153   */
2154   p->pOrderBy = pOrderBy;
2155   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2156 
2157   /* Allocate a range of temporary registers and the KeyInfo needed
2158   ** for the logic that removes duplicate result rows when the
2159   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2160   */
2161   if( op==TK_ALL ){
2162     regPrev = 0;
2163   }else{
2164     int nExpr = p->pEList->nExpr;
2165     assert( nOrderBy>=nExpr || db->mallocFailed );
2166     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2167     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2168     pKeyDup = sqlite3DbMallocZero(db,
2169                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2170     if( pKeyDup ){
2171       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2172       pKeyDup->nField = (u16)nExpr;
2173       pKeyDup->enc = ENC(db);
2174       for(i=0; i<nExpr; i++){
2175         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2176         pKeyDup->aSortOrder[i] = 0;
2177       }
2178     }
2179   }
2180 
2181   /* Separate the left and the right query from one another
2182   */
2183   p->pPrior = 0;
2184   pPrior->pRightmost = 0;
2185   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2186   if( pPrior->pPrior==0 ){
2187     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2188   }
2189 
2190   /* Compute the limit registers */
2191   computeLimitRegisters(pParse, p, labelEnd);
2192   if( p->iLimit && op==TK_ALL ){
2193     regLimitA = ++pParse->nMem;
2194     regLimitB = ++pParse->nMem;
2195     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2196                                   regLimitA);
2197     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2198   }else{
2199     regLimitA = regLimitB = 0;
2200   }
2201   sqlite3ExprDelete(db, p->pLimit);
2202   p->pLimit = 0;
2203   sqlite3ExprDelete(db, p->pOffset);
2204   p->pOffset = 0;
2205 
2206   regAddrA = ++pParse->nMem;
2207   regEofA = ++pParse->nMem;
2208   regAddrB = ++pParse->nMem;
2209   regEofB = ++pParse->nMem;
2210   regOutA = ++pParse->nMem;
2211   regOutB = ++pParse->nMem;
2212   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2213   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2214 
2215   /* Jump past the various subroutines and coroutines to the main
2216   ** merge loop
2217   */
2218   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2219   addrSelectA = sqlite3VdbeCurrentAddr(v);
2220 
2221 
2222   /* Generate a coroutine to evaluate the SELECT statement to the
2223   ** left of the compound operator - the "A" select.
2224   */
2225   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2226   pPrior->iLimit = regLimitA;
2227   sqlite3Select(pParse, pPrior, &destA);
2228   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2229   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2230   VdbeNoopComment((v, "End coroutine for left SELECT"));
2231 
2232   /* Generate a coroutine to evaluate the SELECT statement on
2233   ** the right - the "B" select
2234   */
2235   addrSelectB = sqlite3VdbeCurrentAddr(v);
2236   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2237   savedLimit = p->iLimit;
2238   savedOffset = p->iOffset;
2239   p->iLimit = regLimitB;
2240   p->iOffset = 0;
2241   sqlite3Select(pParse, p, &destB);
2242   p->iLimit = savedLimit;
2243   p->iOffset = savedOffset;
2244   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2245   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2246   VdbeNoopComment((v, "End coroutine for right SELECT"));
2247 
2248   /* Generate a subroutine that outputs the current row of the A
2249   ** select as the next output row of the compound select.
2250   */
2251   VdbeNoopComment((v, "Output routine for A"));
2252   addrOutA = generateOutputSubroutine(pParse,
2253                  p, &destA, pDest, regOutA,
2254                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2255 
2256   /* Generate a subroutine that outputs the current row of the B
2257   ** select as the next output row of the compound select.
2258   */
2259   if( op==TK_ALL || op==TK_UNION ){
2260     VdbeNoopComment((v, "Output routine for B"));
2261     addrOutB = generateOutputSubroutine(pParse,
2262                  p, &destB, pDest, regOutB,
2263                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2264   }
2265 
2266   /* Generate a subroutine to run when the results from select A
2267   ** are exhausted and only data in select B remains.
2268   */
2269   VdbeNoopComment((v, "eof-A subroutine"));
2270   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2271     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2272   }else{
2273     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2274     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2275     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2276     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2277   }
2278 
2279   /* Generate a subroutine to run when the results from select B
2280   ** are exhausted and only data in select A remains.
2281   */
2282   if( op==TK_INTERSECT ){
2283     addrEofB = addrEofA;
2284   }else{
2285     VdbeNoopComment((v, "eof-B subroutine"));
2286     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2287     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2288     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2289     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2290   }
2291 
2292   /* Generate code to handle the case of A<B
2293   */
2294   VdbeNoopComment((v, "A-lt-B subroutine"));
2295   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2296   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2297   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2298   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2299 
2300   /* Generate code to handle the case of A==B
2301   */
2302   if( op==TK_ALL ){
2303     addrAeqB = addrAltB;
2304   }else if( op==TK_INTERSECT ){
2305     addrAeqB = addrAltB;
2306     addrAltB++;
2307   }else{
2308     VdbeNoopComment((v, "A-eq-B subroutine"));
2309     addrAeqB =
2310     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2311     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2312     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2313   }
2314 
2315   /* Generate code to handle the case of A>B
2316   */
2317   VdbeNoopComment((v, "A-gt-B subroutine"));
2318   addrAgtB = sqlite3VdbeCurrentAddr(v);
2319   if( op==TK_ALL || op==TK_UNION ){
2320     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2321   }
2322   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2323   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2324   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2325 
2326   /* This code runs once to initialize everything.
2327   */
2328   sqlite3VdbeJumpHere(v, j1);
2329   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2330   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2331   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2332   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2333   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2334   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2335 
2336   /* Implement the main merge loop
2337   */
2338   sqlite3VdbeResolveLabel(v, labelCmpr);
2339   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2340   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2341                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2342   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2343 
2344   /* Release temporary registers
2345   */
2346   if( regPrev ){
2347     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2348   }
2349 
2350   /* Jump to the this point in order to terminate the query.
2351   */
2352   sqlite3VdbeResolveLabel(v, labelEnd);
2353 
2354   /* Set the number of output columns
2355   */
2356   if( pDest->eDest==SRT_Output ){
2357     Select *pFirst = pPrior;
2358     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2359     generateColumnNames(pParse, 0, pFirst->pEList);
2360   }
2361 
2362   /* Reassembly the compound query so that it will be freed correctly
2363   ** by the calling function */
2364   if( p->pPrior ){
2365     sqlite3SelectDelete(db, p->pPrior);
2366   }
2367   p->pPrior = pPrior;
2368 
2369   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2370   **** subqueries ****/
2371   return SQLITE_OK;
2372 }
2373 #endif
2374 
2375 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2376 /* Forward Declarations */
2377 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2378 static void substSelect(sqlite3*, Select *, int, ExprList *);
2379 
2380 /*
2381 ** Scan through the expression pExpr.  Replace every reference to
2382 ** a column in table number iTable with a copy of the iColumn-th
2383 ** entry in pEList.  (But leave references to the ROWID column
2384 ** unchanged.)
2385 **
2386 ** This routine is part of the flattening procedure.  A subquery
2387 ** whose result set is defined by pEList appears as entry in the
2388 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2389 ** FORM clause entry is iTable.  This routine make the necessary
2390 ** changes to pExpr so that it refers directly to the source table
2391 ** of the subquery rather the result set of the subquery.
2392 */
2393 static Expr *substExpr(
2394   sqlite3 *db,        /* Report malloc errors to this connection */
2395   Expr *pExpr,        /* Expr in which substitution occurs */
2396   int iTable,         /* Table to be substituted */
2397   ExprList *pEList    /* Substitute expressions */
2398 ){
2399   if( pExpr==0 ) return 0;
2400   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2401     if( pExpr->iColumn<0 ){
2402       pExpr->op = TK_NULL;
2403     }else{
2404       Expr *pNew;
2405       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2406       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2407       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2408       if( pNew && pExpr->pColl ){
2409         pNew->pColl = pExpr->pColl;
2410       }
2411       sqlite3ExprDelete(db, pExpr);
2412       pExpr = pNew;
2413     }
2414   }else{
2415     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2416     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2417     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2418       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2419     }else{
2420       substExprList(db, pExpr->x.pList, iTable, pEList);
2421     }
2422   }
2423   return pExpr;
2424 }
2425 static void substExprList(
2426   sqlite3 *db,         /* Report malloc errors here */
2427   ExprList *pList,     /* List to scan and in which to make substitutes */
2428   int iTable,          /* Table to be substituted */
2429   ExprList *pEList     /* Substitute values */
2430 ){
2431   int i;
2432   if( pList==0 ) return;
2433   for(i=0; i<pList->nExpr; i++){
2434     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2435   }
2436 }
2437 static void substSelect(
2438   sqlite3 *db,         /* Report malloc errors here */
2439   Select *p,           /* SELECT statement in which to make substitutions */
2440   int iTable,          /* Table to be replaced */
2441   ExprList *pEList     /* Substitute values */
2442 ){
2443   SrcList *pSrc;
2444   struct SrcList_item *pItem;
2445   int i;
2446   if( !p ) return;
2447   substExprList(db, p->pEList, iTable, pEList);
2448   substExprList(db, p->pGroupBy, iTable, pEList);
2449   substExprList(db, p->pOrderBy, iTable, pEList);
2450   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2451   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2452   substSelect(db, p->pPrior, iTable, pEList);
2453   pSrc = p->pSrc;
2454   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2455   if( ALWAYS(pSrc) ){
2456     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2457       substSelect(db, pItem->pSelect, iTable, pEList);
2458     }
2459   }
2460 }
2461 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2462 
2463 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2464 /*
2465 ** This routine attempts to flatten subqueries in order to speed
2466 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2467 ** occurs.
2468 **
2469 ** To understand the concept of flattening, consider the following
2470 ** query:
2471 **
2472 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2473 **
2474 ** The default way of implementing this query is to execute the
2475 ** subquery first and store the results in a temporary table, then
2476 ** run the outer query on that temporary table.  This requires two
2477 ** passes over the data.  Furthermore, because the temporary table
2478 ** has no indices, the WHERE clause on the outer query cannot be
2479 ** optimized.
2480 **
2481 ** This routine attempts to rewrite queries such as the above into
2482 ** a single flat select, like this:
2483 **
2484 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2485 **
2486 ** The code generated for this simpification gives the same result
2487 ** but only has to scan the data once.  And because indices might
2488 ** exist on the table t1, a complete scan of the data might be
2489 ** avoided.
2490 **
2491 ** Flattening is only attempted if all of the following are true:
2492 **
2493 **   (1)  The subquery and the outer query do not both use aggregates.
2494 **
2495 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2496 **
2497 **   (3)  The subquery is not the right operand of a left outer join
2498 **        (Originally ticket #306.  Strengthened by ticket #3300)
2499 **
2500 **   (4)  The subquery is not DISTINCT.
2501 **
2502 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2503 **        sub-queries that were excluded from this optimization. Restriction
2504 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2505 **
2506 **   (6)  The subquery does not use aggregates or the outer query is not
2507 **        DISTINCT.
2508 **
2509 **   (7)  The subquery has a FROM clause.
2510 **
2511 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2512 **
2513 **   (9)  The subquery does not use LIMIT or the outer query does not use
2514 **        aggregates.
2515 **
2516 **  (10)  The subquery does not use aggregates or the outer query does not
2517 **        use LIMIT.
2518 **
2519 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2520 **
2521 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2522 **        a separate restriction deriving from ticket #350.
2523 **
2524 **  (13)  The subquery and outer query do not both use LIMIT.
2525 **
2526 **  (14)  The subquery does not use OFFSET.
2527 **
2528 **  (15)  The outer query is not part of a compound select or the
2529 **        subquery does not have a LIMIT clause.
2530 **        (See ticket #2339 and ticket [02a8e81d44]).
2531 **
2532 **  (16)  The outer query is not an aggregate or the subquery does
2533 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2534 **        until we introduced the group_concat() function.
2535 **
2536 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2537 **        compound clause made up entirely of non-aggregate queries, and
2538 **        the parent query:
2539 **
2540 **          * is not itself part of a compound select,
2541 **          * is not an aggregate or DISTINCT query, and
2542 **          * has no other tables or sub-selects in the FROM clause.
2543 **
2544 **        The parent and sub-query may contain WHERE clauses. Subject to
2545 **        rules (11), (13) and (14), they may also contain ORDER BY,
2546 **        LIMIT and OFFSET clauses.
2547 **
2548 **  (18)  If the sub-query is a compound select, then all terms of the
2549 **        ORDER by clause of the parent must be simple references to
2550 **        columns of the sub-query.
2551 **
2552 **  (19)  The subquery does not use LIMIT or the outer query does not
2553 **        have a WHERE clause.
2554 **
2555 **  (20)  If the sub-query is a compound select, then it must not use
2556 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2557 **        somewhat by saying that the terms of the ORDER BY clause must
2558 **        appear as unmodified result columns in the outer query.  But
2559 **        have other optimizations in mind to deal with that case.
2560 **
2561 ** In this routine, the "p" parameter is a pointer to the outer query.
2562 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2563 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2564 **
2565 ** If flattening is not attempted, this routine is a no-op and returns 0.
2566 ** If flattening is attempted this routine returns 1.
2567 **
2568 ** All of the expression analysis must occur on both the outer query and
2569 ** the subquery before this routine runs.
2570 */
2571 static int flattenSubquery(
2572   Parse *pParse,       /* Parsing context */
2573   Select *p,           /* The parent or outer SELECT statement */
2574   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2575   int isAgg,           /* True if outer SELECT uses aggregate functions */
2576   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2577 ){
2578   const char *zSavedAuthContext = pParse->zAuthContext;
2579   Select *pParent;
2580   Select *pSub;       /* The inner query or "subquery" */
2581   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2582   SrcList *pSrc;      /* The FROM clause of the outer query */
2583   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2584   ExprList *pList;    /* The result set of the outer query */
2585   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2586   int i;              /* Loop counter */
2587   Expr *pWhere;                    /* The WHERE clause */
2588   struct SrcList_item *pSubitem;   /* The subquery */
2589   sqlite3 *db = pParse->db;
2590 
2591   /* Check to see if flattening is permitted.  Return 0 if not.
2592   */
2593   assert( p!=0 );
2594   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2595   if( db->flags & SQLITE_QueryFlattener ) return 0;
2596   pSrc = p->pSrc;
2597   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2598   pSubitem = &pSrc->a[iFrom];
2599   iParent = pSubitem->iCursor;
2600   pSub = pSubitem->pSelect;
2601   assert( pSub!=0 );
2602   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2603   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2604   pSubSrc = pSub->pSrc;
2605   assert( pSubSrc );
2606   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2607   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2608   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2609   ** became arbitrary expressions, we were forced to add restrictions (13)
2610   ** and (14). */
2611   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2612   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2613   if( p->pRightmost && pSub->pLimit ){
2614     return 0;                                            /* Restriction (15) */
2615   }
2616   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2617   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2618   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2619      return 0;         /* Restrictions (8)(9) */
2620   }
2621   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2622      return 0;         /* Restriction (6)  */
2623   }
2624   if( p->pOrderBy && pSub->pOrderBy ){
2625      return 0;                                           /* Restriction (11) */
2626   }
2627   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2628   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2629 
2630   /* OBSOLETE COMMENT 1:
2631   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2632   ** not used as the right operand of an outer join.  Examples of why this
2633   ** is not allowed:
2634   **
2635   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2636   **
2637   ** If we flatten the above, we would get
2638   **
2639   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2640   **
2641   ** which is not at all the same thing.
2642   **
2643   ** OBSOLETE COMMENT 2:
2644   ** Restriction 12:  If the subquery is the right operand of a left outer
2645   ** join, make sure the subquery has no WHERE clause.
2646   ** An examples of why this is not allowed:
2647   **
2648   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2649   **
2650   ** If we flatten the above, we would get
2651   **
2652   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2653   **
2654   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2655   ** effectively converts the OUTER JOIN into an INNER JOIN.
2656   **
2657   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2658   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2659   ** is fraught with danger.  Best to avoid the whole thing.  If the
2660   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2661   */
2662   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2663     return 0;
2664   }
2665 
2666   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2667   ** use only the UNION ALL operator. And none of the simple select queries
2668   ** that make up the compound SELECT are allowed to be aggregate or distinct
2669   ** queries.
2670   */
2671   if( pSub->pPrior ){
2672     if( pSub->pOrderBy ){
2673       return 0;  /* Restriction 20 */
2674     }
2675     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2676       return 0;
2677     }
2678     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2679       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2680       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2681       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2682        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2683        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2684       ){
2685         return 0;
2686       }
2687     }
2688 
2689     /* Restriction 18. */
2690     if( p->pOrderBy ){
2691       int ii;
2692       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2693         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2694       }
2695     }
2696   }
2697 
2698   /***** If we reach this point, flattening is permitted. *****/
2699 
2700   /* Authorize the subquery */
2701   pParse->zAuthContext = pSubitem->zName;
2702   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2703   pParse->zAuthContext = zSavedAuthContext;
2704 
2705   /* If the sub-query is a compound SELECT statement, then (by restrictions
2706   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2707   ** be of the form:
2708   **
2709   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2710   **
2711   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2712   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2713   ** OFFSET clauses and joins them to the left-hand-side of the original
2714   ** using UNION ALL operators. In this case N is the number of simple
2715   ** select statements in the compound sub-query.
2716   **
2717   ** Example:
2718   **
2719   **     SELECT a+1 FROM (
2720   **        SELECT x FROM tab
2721   **        UNION ALL
2722   **        SELECT y FROM tab
2723   **        UNION ALL
2724   **        SELECT abs(z*2) FROM tab2
2725   **     ) WHERE a!=5 ORDER BY 1
2726   **
2727   ** Transformed into:
2728   **
2729   **     SELECT x+1 FROM tab WHERE x+1!=5
2730   **     UNION ALL
2731   **     SELECT y+1 FROM tab WHERE y+1!=5
2732   **     UNION ALL
2733   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2734   **     ORDER BY 1
2735   **
2736   ** We call this the "compound-subquery flattening".
2737   */
2738   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2739     Select *pNew;
2740     ExprList *pOrderBy = p->pOrderBy;
2741     Expr *pLimit = p->pLimit;
2742     Select *pPrior = p->pPrior;
2743     p->pOrderBy = 0;
2744     p->pSrc = 0;
2745     p->pPrior = 0;
2746     p->pLimit = 0;
2747     pNew = sqlite3SelectDup(db, p, 0);
2748     p->pLimit = pLimit;
2749     p->pOrderBy = pOrderBy;
2750     p->pSrc = pSrc;
2751     p->op = TK_ALL;
2752     p->pRightmost = 0;
2753     if( pNew==0 ){
2754       pNew = pPrior;
2755     }else{
2756       pNew->pPrior = pPrior;
2757       pNew->pRightmost = 0;
2758     }
2759     p->pPrior = pNew;
2760     if( db->mallocFailed ) return 1;
2761   }
2762 
2763   /* Begin flattening the iFrom-th entry of the FROM clause
2764   ** in the outer query.
2765   */
2766   pSub = pSub1 = pSubitem->pSelect;
2767 
2768   /* Delete the transient table structure associated with the
2769   ** subquery
2770   */
2771   sqlite3DbFree(db, pSubitem->zDatabase);
2772   sqlite3DbFree(db, pSubitem->zName);
2773   sqlite3DbFree(db, pSubitem->zAlias);
2774   pSubitem->zDatabase = 0;
2775   pSubitem->zName = 0;
2776   pSubitem->zAlias = 0;
2777   pSubitem->pSelect = 0;
2778 
2779   /* Defer deleting the Table object associated with the
2780   ** subquery until code generation is
2781   ** complete, since there may still exist Expr.pTab entries that
2782   ** refer to the subquery even after flattening.  Ticket #3346.
2783   **
2784   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2785   */
2786   if( ALWAYS(pSubitem->pTab!=0) ){
2787     Table *pTabToDel = pSubitem->pTab;
2788     if( pTabToDel->nRef==1 ){
2789       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2790       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2791       pToplevel->pZombieTab = pTabToDel;
2792     }else{
2793       pTabToDel->nRef--;
2794     }
2795     pSubitem->pTab = 0;
2796   }
2797 
2798   /* The following loop runs once for each term in a compound-subquery
2799   ** flattening (as described above).  If we are doing a different kind
2800   ** of flattening - a flattening other than a compound-subquery flattening -
2801   ** then this loop only runs once.
2802   **
2803   ** This loop moves all of the FROM elements of the subquery into the
2804   ** the FROM clause of the outer query.  Before doing this, remember
2805   ** the cursor number for the original outer query FROM element in
2806   ** iParent.  The iParent cursor will never be used.  Subsequent code
2807   ** will scan expressions looking for iParent references and replace
2808   ** those references with expressions that resolve to the subquery FROM
2809   ** elements we are now copying in.
2810   */
2811   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2812     int nSubSrc;
2813     u8 jointype = 0;
2814     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2815     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2816     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2817 
2818     if( pSrc ){
2819       assert( pParent==p );  /* First time through the loop */
2820       jointype = pSubitem->jointype;
2821     }else{
2822       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2823       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2824       if( pSrc==0 ){
2825         assert( db->mallocFailed );
2826         break;
2827       }
2828     }
2829 
2830     /* The subquery uses a single slot of the FROM clause of the outer
2831     ** query.  If the subquery has more than one element in its FROM clause,
2832     ** then expand the outer query to make space for it to hold all elements
2833     ** of the subquery.
2834     **
2835     ** Example:
2836     **
2837     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2838     **
2839     ** The outer query has 3 slots in its FROM clause.  One slot of the
2840     ** outer query (the middle slot) is used by the subquery.  The next
2841     ** block of code will expand the out query to 4 slots.  The middle
2842     ** slot is expanded to two slots in order to make space for the
2843     ** two elements in the FROM clause of the subquery.
2844     */
2845     if( nSubSrc>1 ){
2846       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2847       if( db->mallocFailed ){
2848         break;
2849       }
2850     }
2851 
2852     /* Transfer the FROM clause terms from the subquery into the
2853     ** outer query.
2854     */
2855     for(i=0; i<nSubSrc; i++){
2856       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2857       pSrc->a[i+iFrom] = pSubSrc->a[i];
2858       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2859     }
2860     pSrc->a[iFrom].jointype = jointype;
2861 
2862     /* Now begin substituting subquery result set expressions for
2863     ** references to the iParent in the outer query.
2864     **
2865     ** Example:
2866     **
2867     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2868     **   \                     \_____________ subquery __________/          /
2869     **    \_____________________ outer query ______________________________/
2870     **
2871     ** We look at every expression in the outer query and every place we see
2872     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2873     */
2874     pList = pParent->pEList;
2875     for(i=0; i<pList->nExpr; i++){
2876       if( pList->a[i].zName==0 ){
2877         const char *zSpan = pList->a[i].zSpan;
2878         if( ALWAYS(zSpan) ){
2879           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2880         }
2881       }
2882     }
2883     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2884     if( isAgg ){
2885       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2886       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2887     }
2888     if( pSub->pOrderBy ){
2889       assert( pParent->pOrderBy==0 );
2890       pParent->pOrderBy = pSub->pOrderBy;
2891       pSub->pOrderBy = 0;
2892     }else if( pParent->pOrderBy ){
2893       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2894     }
2895     if( pSub->pWhere ){
2896       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2897     }else{
2898       pWhere = 0;
2899     }
2900     if( subqueryIsAgg ){
2901       assert( pParent->pHaving==0 );
2902       pParent->pHaving = pParent->pWhere;
2903       pParent->pWhere = pWhere;
2904       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2905       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2906                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2907       assert( pParent->pGroupBy==0 );
2908       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2909     }else{
2910       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2911       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2912     }
2913 
2914     /* The flattened query is distinct if either the inner or the
2915     ** outer query is distinct.
2916     */
2917     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2918 
2919     /*
2920     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2921     **
2922     ** One is tempted to try to add a and b to combine the limits.  But this
2923     ** does not work if either limit is negative.
2924     */
2925     if( pSub->pLimit ){
2926       pParent->pLimit = pSub->pLimit;
2927       pSub->pLimit = 0;
2928     }
2929   }
2930 
2931   /* Finially, delete what is left of the subquery and return
2932   ** success.
2933   */
2934   sqlite3SelectDelete(db, pSub1);
2935 
2936   return 1;
2937 }
2938 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2939 
2940 /*
2941 ** Analyze the SELECT statement passed as an argument to see if it
2942 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2943 ** it is, or 0 otherwise. At present, a query is considered to be
2944 ** a min()/max() query if:
2945 **
2946 **   1. There is a single object in the FROM clause.
2947 **
2948 **   2. There is a single expression in the result set, and it is
2949 **      either min(x) or max(x), where x is a column reference.
2950 */
2951 static u8 minMaxQuery(Select *p){
2952   Expr *pExpr;
2953   ExprList *pEList = p->pEList;
2954 
2955   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2956   pExpr = pEList->a[0].pExpr;
2957   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2958   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
2959   pEList = pExpr->x.pList;
2960   if( pEList==0 || pEList->nExpr!=1 ) return 0;
2961   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2962   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2963   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
2964     return WHERE_ORDERBY_MIN;
2965   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
2966     return WHERE_ORDERBY_MAX;
2967   }
2968   return WHERE_ORDERBY_NORMAL;
2969 }
2970 
2971 /*
2972 ** The select statement passed as the first argument is an aggregate query.
2973 ** The second argment is the associated aggregate-info object. This
2974 ** function tests if the SELECT is of the form:
2975 **
2976 **   SELECT count(*) FROM <tbl>
2977 **
2978 ** where table is a database table, not a sub-select or view. If the query
2979 ** does match this pattern, then a pointer to the Table object representing
2980 ** <tbl> is returned. Otherwise, 0 is returned.
2981 */
2982 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2983   Table *pTab;
2984   Expr *pExpr;
2985 
2986   assert( !p->pGroupBy );
2987 
2988   if( p->pWhere || p->pEList->nExpr!=1
2989    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2990   ){
2991     return 0;
2992   }
2993   pTab = p->pSrc->a[0].pTab;
2994   pExpr = p->pEList->a[0].pExpr;
2995   assert( pTab && !pTab->pSelect && pExpr );
2996 
2997   if( IsVirtual(pTab) ) return 0;
2998   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2999   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3000   if( pExpr->flags&EP_Distinct ) return 0;
3001 
3002   return pTab;
3003 }
3004 
3005 /*
3006 ** If the source-list item passed as an argument was augmented with an
3007 ** INDEXED BY clause, then try to locate the specified index. If there
3008 ** was such a clause and the named index cannot be found, return
3009 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3010 ** pFrom->pIndex and return SQLITE_OK.
3011 */
3012 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3013   if( pFrom->pTab && pFrom->zIndex ){
3014     Table *pTab = pFrom->pTab;
3015     char *zIndex = pFrom->zIndex;
3016     Index *pIdx;
3017     for(pIdx=pTab->pIndex;
3018         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3019         pIdx=pIdx->pNext
3020     );
3021     if( !pIdx ){
3022       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3023       pParse->checkSchema = 1;
3024       return SQLITE_ERROR;
3025     }
3026     pFrom->pIndex = pIdx;
3027   }
3028   return SQLITE_OK;
3029 }
3030 
3031 /*
3032 ** This routine is a Walker callback for "expanding" a SELECT statement.
3033 ** "Expanding" means to do the following:
3034 **
3035 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3036 **         element of the FROM clause.
3037 **
3038 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3039 **         defines FROM clause.  When views appear in the FROM clause,
3040 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3041 **         that implements the view.  A copy is made of the view's SELECT
3042 **         statement so that we can freely modify or delete that statement
3043 **         without worrying about messing up the presistent representation
3044 **         of the view.
3045 **
3046 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3047 **         on joins and the ON and USING clause of joins.
3048 **
3049 **    (4)  Scan the list of columns in the result set (pEList) looking
3050 **         for instances of the "*" operator or the TABLE.* operator.
3051 **         If found, expand each "*" to be every column in every table
3052 **         and TABLE.* to be every column in TABLE.
3053 **
3054 */
3055 static int selectExpander(Walker *pWalker, Select *p){
3056   Parse *pParse = pWalker->pParse;
3057   int i, j, k;
3058   SrcList *pTabList;
3059   ExprList *pEList;
3060   struct SrcList_item *pFrom;
3061   sqlite3 *db = pParse->db;
3062 
3063   if( db->mallocFailed  ){
3064     return WRC_Abort;
3065   }
3066   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3067     return WRC_Prune;
3068   }
3069   p->selFlags |= SF_Expanded;
3070   pTabList = p->pSrc;
3071   pEList = p->pEList;
3072 
3073   /* Make sure cursor numbers have been assigned to all entries in
3074   ** the FROM clause of the SELECT statement.
3075   */
3076   sqlite3SrcListAssignCursors(pParse, pTabList);
3077 
3078   /* Look up every table named in the FROM clause of the select.  If
3079   ** an entry of the FROM clause is a subquery instead of a table or view,
3080   ** then create a transient table structure to describe the subquery.
3081   */
3082   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3083     Table *pTab;
3084     if( pFrom->pTab!=0 ){
3085       /* This statement has already been prepared.  There is no need
3086       ** to go further. */
3087       assert( i==0 );
3088       return WRC_Prune;
3089     }
3090     if( pFrom->zName==0 ){
3091 #ifndef SQLITE_OMIT_SUBQUERY
3092       Select *pSel = pFrom->pSelect;
3093       /* A sub-query in the FROM clause of a SELECT */
3094       assert( pSel!=0 );
3095       assert( pFrom->pTab==0 );
3096       sqlite3WalkSelect(pWalker, pSel);
3097       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3098       if( pTab==0 ) return WRC_Abort;
3099       pTab->nRef = 1;
3100       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3101       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3102       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3103       pTab->iPKey = -1;
3104       pTab->tabFlags |= TF_Ephemeral;
3105 #endif
3106     }else{
3107       /* An ordinary table or view name in the FROM clause */
3108       assert( pFrom->pTab==0 );
3109       pFrom->pTab = pTab =
3110         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3111       if( pTab==0 ) return WRC_Abort;
3112       pTab->nRef++;
3113 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3114       if( pTab->pSelect || IsVirtual(pTab) ){
3115         /* We reach here if the named table is a really a view */
3116         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3117         assert( pFrom->pSelect==0 );
3118         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3119         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3120       }
3121 #endif
3122     }
3123 
3124     /* Locate the index named by the INDEXED BY clause, if any. */
3125     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3126       return WRC_Abort;
3127     }
3128   }
3129 
3130   /* Process NATURAL keywords, and ON and USING clauses of joins.
3131   */
3132   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3133     return WRC_Abort;
3134   }
3135 
3136   /* For every "*" that occurs in the column list, insert the names of
3137   ** all columns in all tables.  And for every TABLE.* insert the names
3138   ** of all columns in TABLE.  The parser inserted a special expression
3139   ** with the TK_ALL operator for each "*" that it found in the column list.
3140   ** The following code just has to locate the TK_ALL expressions and expand
3141   ** each one to the list of all columns in all tables.
3142   **
3143   ** The first loop just checks to see if there are any "*" operators
3144   ** that need expanding.
3145   */
3146   for(k=0; k<pEList->nExpr; k++){
3147     Expr *pE = pEList->a[k].pExpr;
3148     if( pE->op==TK_ALL ) break;
3149     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3150     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3151     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3152   }
3153   if( k<pEList->nExpr ){
3154     /*
3155     ** If we get here it means the result set contains one or more "*"
3156     ** operators that need to be expanded.  Loop through each expression
3157     ** in the result set and expand them one by one.
3158     */
3159     struct ExprList_item *a = pEList->a;
3160     ExprList *pNew = 0;
3161     int flags = pParse->db->flags;
3162     int longNames = (flags & SQLITE_FullColNames)!=0
3163                       && (flags & SQLITE_ShortColNames)==0;
3164 
3165     for(k=0; k<pEList->nExpr; k++){
3166       Expr *pE = a[k].pExpr;
3167       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3168       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3169         /* This particular expression does not need to be expanded.
3170         */
3171         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3172         if( pNew ){
3173           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3174           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3175           a[k].zName = 0;
3176           a[k].zSpan = 0;
3177         }
3178         a[k].pExpr = 0;
3179       }else{
3180         /* This expression is a "*" or a "TABLE.*" and needs to be
3181         ** expanded. */
3182         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3183         char *zTName;            /* text of name of TABLE */
3184         if( pE->op==TK_DOT ){
3185           assert( pE->pLeft!=0 );
3186           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3187           zTName = pE->pLeft->u.zToken;
3188         }else{
3189           zTName = 0;
3190         }
3191         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3192           Table *pTab = pFrom->pTab;
3193           char *zTabName = pFrom->zAlias;
3194           if( zTabName==0 ){
3195             zTabName = pTab->zName;
3196           }
3197           if( db->mallocFailed ) break;
3198           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3199             continue;
3200           }
3201           tableSeen = 1;
3202           for(j=0; j<pTab->nCol; j++){
3203             Expr *pExpr, *pRight;
3204             char *zName = pTab->aCol[j].zName;
3205             char *zColname;  /* The computed column name */
3206             char *zToFree;   /* Malloced string that needs to be freed */
3207             Token sColname;  /* Computed column name as a token */
3208 
3209             /* If a column is marked as 'hidden' (currently only possible
3210             ** for virtual tables), do not include it in the expanded
3211             ** result-set list.
3212             */
3213             if( IsHiddenColumn(&pTab->aCol[j]) ){
3214               assert(IsVirtual(pTab));
3215               continue;
3216             }
3217 
3218             if( i>0 && zTName==0 ){
3219               if( (pFrom->jointype & JT_NATURAL)!=0
3220                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3221               ){
3222                 /* In a NATURAL join, omit the join columns from the
3223                 ** table to the right of the join */
3224                 continue;
3225               }
3226               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3227                 /* In a join with a USING clause, omit columns in the
3228                 ** using clause from the table on the right. */
3229                 continue;
3230               }
3231             }
3232             pRight = sqlite3Expr(db, TK_ID, zName);
3233             zColname = zName;
3234             zToFree = 0;
3235             if( longNames || pTabList->nSrc>1 ){
3236               Expr *pLeft;
3237               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3238               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3239               if( longNames ){
3240                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3241                 zToFree = zColname;
3242               }
3243             }else{
3244               pExpr = pRight;
3245             }
3246             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3247             sColname.z = zColname;
3248             sColname.n = sqlite3Strlen30(zColname);
3249             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3250             sqlite3DbFree(db, zToFree);
3251           }
3252         }
3253         if( !tableSeen ){
3254           if( zTName ){
3255             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3256           }else{
3257             sqlite3ErrorMsg(pParse, "no tables specified");
3258           }
3259         }
3260       }
3261     }
3262     sqlite3ExprListDelete(db, pEList);
3263     p->pEList = pNew;
3264   }
3265 #if SQLITE_MAX_COLUMN
3266   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3267     sqlite3ErrorMsg(pParse, "too many columns in result set");
3268   }
3269 #endif
3270   return WRC_Continue;
3271 }
3272 
3273 /*
3274 ** No-op routine for the parse-tree walker.
3275 **
3276 ** When this routine is the Walker.xExprCallback then expression trees
3277 ** are walked without any actions being taken at each node.  Presumably,
3278 ** when this routine is used for Walker.xExprCallback then
3279 ** Walker.xSelectCallback is set to do something useful for every
3280 ** subquery in the parser tree.
3281 */
3282 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3283   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3284   return WRC_Continue;
3285 }
3286 
3287 /*
3288 ** This routine "expands" a SELECT statement and all of its subqueries.
3289 ** For additional information on what it means to "expand" a SELECT
3290 ** statement, see the comment on the selectExpand worker callback above.
3291 **
3292 ** Expanding a SELECT statement is the first step in processing a
3293 ** SELECT statement.  The SELECT statement must be expanded before
3294 ** name resolution is performed.
3295 **
3296 ** If anything goes wrong, an error message is written into pParse.
3297 ** The calling function can detect the problem by looking at pParse->nErr
3298 ** and/or pParse->db->mallocFailed.
3299 */
3300 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3301   Walker w;
3302   w.xSelectCallback = selectExpander;
3303   w.xExprCallback = exprWalkNoop;
3304   w.pParse = pParse;
3305   sqlite3WalkSelect(&w, pSelect);
3306 }
3307 
3308 
3309 #ifndef SQLITE_OMIT_SUBQUERY
3310 /*
3311 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3312 ** interface.
3313 **
3314 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3315 ** information to the Table structure that represents the result set
3316 ** of that subquery.
3317 **
3318 ** The Table structure that represents the result set was constructed
3319 ** by selectExpander() but the type and collation information was omitted
3320 ** at that point because identifiers had not yet been resolved.  This
3321 ** routine is called after identifier resolution.
3322 */
3323 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3324   Parse *pParse;
3325   int i;
3326   SrcList *pTabList;
3327   struct SrcList_item *pFrom;
3328 
3329   assert( p->selFlags & SF_Resolved );
3330   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3331     p->selFlags |= SF_HasTypeInfo;
3332     pParse = pWalker->pParse;
3333     pTabList = p->pSrc;
3334     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3335       Table *pTab = pFrom->pTab;
3336       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3337         /* A sub-query in the FROM clause of a SELECT */
3338         Select *pSel = pFrom->pSelect;
3339         assert( pSel );
3340         while( pSel->pPrior ) pSel = pSel->pPrior;
3341         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3342       }
3343     }
3344   }
3345   return WRC_Continue;
3346 }
3347 #endif
3348 
3349 
3350 /*
3351 ** This routine adds datatype and collating sequence information to
3352 ** the Table structures of all FROM-clause subqueries in a
3353 ** SELECT statement.
3354 **
3355 ** Use this routine after name resolution.
3356 */
3357 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3358 #ifndef SQLITE_OMIT_SUBQUERY
3359   Walker w;
3360   w.xSelectCallback = selectAddSubqueryTypeInfo;
3361   w.xExprCallback = exprWalkNoop;
3362   w.pParse = pParse;
3363   sqlite3WalkSelect(&w, pSelect);
3364 #endif
3365 }
3366 
3367 
3368 /*
3369 ** This routine sets of a SELECT statement for processing.  The
3370 ** following is accomplished:
3371 **
3372 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3373 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3374 **     *  ON and USING clauses are shifted into WHERE statements
3375 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3376 **     *  Identifiers in expression are matched to tables.
3377 **
3378 ** This routine acts recursively on all subqueries within the SELECT.
3379 */
3380 void sqlite3SelectPrep(
3381   Parse *pParse,         /* The parser context */
3382   Select *p,             /* The SELECT statement being coded. */
3383   NameContext *pOuterNC  /* Name context for container */
3384 ){
3385   sqlite3 *db;
3386   if( NEVER(p==0) ) return;
3387   db = pParse->db;
3388   if( p->selFlags & SF_HasTypeInfo ) return;
3389   sqlite3SelectExpand(pParse, p);
3390   if( pParse->nErr || db->mallocFailed ) return;
3391   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3392   if( pParse->nErr || db->mallocFailed ) return;
3393   sqlite3SelectAddTypeInfo(pParse, p);
3394 }
3395 
3396 /*
3397 ** Reset the aggregate accumulator.
3398 **
3399 ** The aggregate accumulator is a set of memory cells that hold
3400 ** intermediate results while calculating an aggregate.  This
3401 ** routine simply stores NULLs in all of those memory cells.
3402 */
3403 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3404   Vdbe *v = pParse->pVdbe;
3405   int i;
3406   struct AggInfo_func *pFunc;
3407   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3408     return;
3409   }
3410   for(i=0; i<pAggInfo->nColumn; i++){
3411     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3412   }
3413   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3414     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3415     if( pFunc->iDistinct>=0 ){
3416       Expr *pE = pFunc->pExpr;
3417       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3418       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3419         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3420            "argument");
3421         pFunc->iDistinct = -1;
3422       }else{
3423         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3424         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3425                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3426       }
3427     }
3428   }
3429 }
3430 
3431 /*
3432 ** Invoke the OP_AggFinalize opcode for every aggregate function
3433 ** in the AggInfo structure.
3434 */
3435 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3436   Vdbe *v = pParse->pVdbe;
3437   int i;
3438   struct AggInfo_func *pF;
3439   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3440     ExprList *pList = pF->pExpr->x.pList;
3441     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3442     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3443                       (void*)pF->pFunc, P4_FUNCDEF);
3444   }
3445 }
3446 
3447 /*
3448 ** Update the accumulator memory cells for an aggregate based on
3449 ** the current cursor position.
3450 */
3451 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3452   Vdbe *v = pParse->pVdbe;
3453   int i;
3454   struct AggInfo_func *pF;
3455   struct AggInfo_col *pC;
3456 
3457   pAggInfo->directMode = 1;
3458   sqlite3ExprCacheClear(pParse);
3459   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3460     int nArg;
3461     int addrNext = 0;
3462     int regAgg;
3463     ExprList *pList = pF->pExpr->x.pList;
3464     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3465     if( pList ){
3466       nArg = pList->nExpr;
3467       regAgg = sqlite3GetTempRange(pParse, nArg);
3468       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3469     }else{
3470       nArg = 0;
3471       regAgg = 0;
3472     }
3473     if( pF->iDistinct>=0 ){
3474       addrNext = sqlite3VdbeMakeLabel(v);
3475       assert( nArg==1 );
3476       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3477     }
3478     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3479       CollSeq *pColl = 0;
3480       struct ExprList_item *pItem;
3481       int j;
3482       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3483       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3484         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3485       }
3486       if( !pColl ){
3487         pColl = pParse->db->pDfltColl;
3488       }
3489       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3490     }
3491     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3492                       (void*)pF->pFunc, P4_FUNCDEF);
3493     sqlite3VdbeChangeP5(v, (u8)nArg);
3494     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3495     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3496     if( addrNext ){
3497       sqlite3VdbeResolveLabel(v, addrNext);
3498       sqlite3ExprCacheClear(pParse);
3499     }
3500   }
3501 
3502   /* Before populating the accumulator registers, clear the column cache.
3503   ** Otherwise, if any of the required column values are already present
3504   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3505   ** to pC->iMem. But by the time the value is used, the original register
3506   ** may have been used, invalidating the underlying buffer holding the
3507   ** text or blob value. See ticket [883034dcb5].
3508   **
3509   ** Another solution would be to change the OP_SCopy used to copy cached
3510   ** values to an OP_Copy.
3511   */
3512   sqlite3ExprCacheClear(pParse);
3513   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3514     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3515   }
3516   pAggInfo->directMode = 0;
3517   sqlite3ExprCacheClear(pParse);
3518 }
3519 
3520 /*
3521 ** Generate code for the SELECT statement given in the p argument.
3522 **
3523 ** The results are distributed in various ways depending on the
3524 ** contents of the SelectDest structure pointed to by argument pDest
3525 ** as follows:
3526 **
3527 **     pDest->eDest    Result
3528 **     ------------    -------------------------------------------
3529 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3530 **                     opcode) for each row in the result set.
3531 **
3532 **     SRT_Mem         Only valid if the result is a single column.
3533 **                     Store the first column of the first result row
3534 **                     in register pDest->iParm then abandon the rest
3535 **                     of the query.  This destination implies "LIMIT 1".
3536 **
3537 **     SRT_Set         The result must be a single column.  Store each
3538 **                     row of result as the key in table pDest->iParm.
3539 **                     Apply the affinity pDest->affinity before storing
3540 **                     results.  Used to implement "IN (SELECT ...)".
3541 **
3542 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3543 **
3544 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3545 **
3546 **     SRT_Table       Store results in temporary table pDest->iParm.
3547 **                     This is like SRT_EphemTab except that the table
3548 **                     is assumed to already be open.
3549 **
3550 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3551 **                     the result there. The cursor is left open after
3552 **                     returning.  This is like SRT_Table except that
3553 **                     this destination uses OP_OpenEphemeral to create
3554 **                     the table first.
3555 **
3556 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3557 **                     results each time it is invoked.  The entry point
3558 **                     of the co-routine is stored in register pDest->iParm.
3559 **
3560 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3561 **                     set is not empty.
3562 **
3563 **     SRT_Discard     Throw the results away.  This is used by SELECT
3564 **                     statements within triggers whose only purpose is
3565 **                     the side-effects of functions.
3566 **
3567 ** This routine returns the number of errors.  If any errors are
3568 ** encountered, then an appropriate error message is left in
3569 ** pParse->zErrMsg.
3570 **
3571 ** This routine does NOT free the Select structure passed in.  The
3572 ** calling function needs to do that.
3573 */
3574 int sqlite3Select(
3575   Parse *pParse,         /* The parser context */
3576   Select *p,             /* The SELECT statement being coded. */
3577   SelectDest *pDest      /* What to do with the query results */
3578 ){
3579   int i, j;              /* Loop counters */
3580   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3581   Vdbe *v;               /* The virtual machine under construction */
3582   int isAgg;             /* True for select lists like "count(*)" */
3583   ExprList *pEList;      /* List of columns to extract. */
3584   SrcList *pTabList;     /* List of tables to select from */
3585   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3586   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3587   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3588   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3589   int isDistinct;        /* True if the DISTINCT keyword is present */
3590   int distinct;          /* Table to use for the distinct set */
3591   int rc = 1;            /* Value to return from this function */
3592   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3593   AggInfo sAggInfo;      /* Information used by aggregate queries */
3594   int iEnd;              /* Address of the end of the query */
3595   sqlite3 *db;           /* The database connection */
3596 
3597   db = pParse->db;
3598   if( p==0 || db->mallocFailed || pParse->nErr ){
3599     return 1;
3600   }
3601   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3602   memset(&sAggInfo, 0, sizeof(sAggInfo));
3603 
3604   if( IgnorableOrderby(pDest) ){
3605     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3606            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3607     /* If ORDER BY makes no difference in the output then neither does
3608     ** DISTINCT so it can be removed too. */
3609     sqlite3ExprListDelete(db, p->pOrderBy);
3610     p->pOrderBy = 0;
3611     p->selFlags &= ~SF_Distinct;
3612   }
3613   sqlite3SelectPrep(pParse, p, 0);
3614   pOrderBy = p->pOrderBy;
3615   pTabList = p->pSrc;
3616   pEList = p->pEList;
3617   if( pParse->nErr || db->mallocFailed ){
3618     goto select_end;
3619   }
3620   isAgg = (p->selFlags & SF_Aggregate)!=0;
3621   assert( pEList!=0 );
3622 
3623   /* Begin generating code.
3624   */
3625   v = sqlite3GetVdbe(pParse);
3626   if( v==0 ) goto select_end;
3627 
3628   /* If writing to memory or generating a set
3629   ** only a single column may be output.
3630   */
3631 #ifndef SQLITE_OMIT_SUBQUERY
3632   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3633     goto select_end;
3634   }
3635 #endif
3636 
3637   /* Generate code for all sub-queries in the FROM clause
3638   */
3639 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3640   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3641     struct SrcList_item *pItem = &pTabList->a[i];
3642     SelectDest dest;
3643     Select *pSub = pItem->pSelect;
3644     int isAggSub;
3645 
3646     if( pSub==0 || pItem->isPopulated ) continue;
3647 
3648     /* Increment Parse.nHeight by the height of the largest expression
3649     ** tree refered to by this, the parent select. The child select
3650     ** may contain expression trees of at most
3651     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3652     ** more conservative than necessary, but much easier than enforcing
3653     ** an exact limit.
3654     */
3655     pParse->nHeight += sqlite3SelectExprHeight(p);
3656 
3657     /* Check to see if the subquery can be absorbed into the parent. */
3658     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3659     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3660       if( isAggSub ){
3661         isAgg = 1;
3662         p->selFlags |= SF_Aggregate;
3663       }
3664       i = -1;
3665     }else{
3666       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3667       assert( pItem->isPopulated==0 );
3668       sqlite3Select(pParse, pSub, &dest);
3669       pItem->isPopulated = 1;
3670     }
3671     if( /*pParse->nErr ||*/ db->mallocFailed ){
3672       goto select_end;
3673     }
3674     pParse->nHeight -= sqlite3SelectExprHeight(p);
3675     pTabList = p->pSrc;
3676     if( !IgnorableOrderby(pDest) ){
3677       pOrderBy = p->pOrderBy;
3678     }
3679   }
3680   pEList = p->pEList;
3681 #endif
3682   pWhere = p->pWhere;
3683   pGroupBy = p->pGroupBy;
3684   pHaving = p->pHaving;
3685   isDistinct = (p->selFlags & SF_Distinct)!=0;
3686 
3687 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3688   /* If there is are a sequence of queries, do the earlier ones first.
3689   */
3690   if( p->pPrior ){
3691     if( p->pRightmost==0 ){
3692       Select *pLoop, *pRight = 0;
3693       int cnt = 0;
3694       int mxSelect;
3695       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3696         pLoop->pRightmost = p;
3697         pLoop->pNext = pRight;
3698         pRight = pLoop;
3699       }
3700       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3701       if( mxSelect && cnt>mxSelect ){
3702         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3703         return 1;
3704       }
3705     }
3706     return multiSelect(pParse, p, pDest);
3707   }
3708 #endif
3709 
3710   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3711   ** GROUP BY might use an index, DISTINCT never does.
3712   */
3713   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3714   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3715     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3716     pGroupBy = p->pGroupBy;
3717     p->selFlags &= ~SF_Distinct;
3718     isDistinct = 0;
3719   }
3720 
3721   /* If there is both a GROUP BY and an ORDER BY clause and they are
3722   ** identical, then disable the ORDER BY clause since the GROUP BY
3723   ** will cause elements to come out in the correct order.  This is
3724   ** an optimization - the correct answer should result regardless.
3725   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3726   ** to disable this optimization for testing purposes.
3727   */
3728   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3729          && (db->flags & SQLITE_GroupByOrder)==0 ){
3730     pOrderBy = 0;
3731   }
3732 
3733   /* If there is an ORDER BY clause, then this sorting
3734   ** index might end up being unused if the data can be
3735   ** extracted in pre-sorted order.  If that is the case, then the
3736   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3737   ** we figure out that the sorting index is not needed.  The addrSortIndex
3738   ** variable is used to facilitate that change.
3739   */
3740   if( pOrderBy ){
3741     KeyInfo *pKeyInfo;
3742     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3743     pOrderBy->iECursor = pParse->nTab++;
3744     p->addrOpenEphm[2] = addrSortIndex =
3745       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3746                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3747                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3748   }else{
3749     addrSortIndex = -1;
3750   }
3751 
3752   /* If the output is destined for a temporary table, open that table.
3753   */
3754   if( pDest->eDest==SRT_EphemTab ){
3755     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3756   }
3757 
3758   /* Set the limiter.
3759   */
3760   iEnd = sqlite3VdbeMakeLabel(v);
3761   computeLimitRegisters(pParse, p, iEnd);
3762 
3763   /* Open a virtual index to use for the distinct set.
3764   */
3765   if( isDistinct ){
3766     KeyInfo *pKeyInfo;
3767     assert( isAgg || pGroupBy );
3768     distinct = pParse->nTab++;
3769     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3770     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3771                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3772     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
3773   }else{
3774     distinct = -1;
3775   }
3776 
3777   /* Aggregate and non-aggregate queries are handled differently */
3778   if( !isAgg && pGroupBy==0 ){
3779     /* This case is for non-aggregate queries
3780     ** Begin the database scan
3781     */
3782     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3783     if( pWInfo==0 ) goto select_end;
3784 
3785     /* If sorting index that was created by a prior OP_OpenEphemeral
3786     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3787     ** into an OP_Noop.
3788     */
3789     if( addrSortIndex>=0 && pOrderBy==0 ){
3790       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3791       p->addrOpenEphm[2] = -1;
3792     }
3793 
3794     /* Use the standard inner loop
3795     */
3796     assert(!isDistinct);
3797     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3798                     pWInfo->iContinue, pWInfo->iBreak);
3799 
3800     /* End the database scan loop.
3801     */
3802     sqlite3WhereEnd(pWInfo);
3803   }else{
3804     /* This is the processing for aggregate queries */
3805     NameContext sNC;    /* Name context for processing aggregate information */
3806     int iAMem;          /* First Mem address for storing current GROUP BY */
3807     int iBMem;          /* First Mem address for previous GROUP BY */
3808     int iUseFlag;       /* Mem address holding flag indicating that at least
3809                         ** one row of the input to the aggregator has been
3810                         ** processed */
3811     int iAbortFlag;     /* Mem address which causes query abort if positive */
3812     int groupBySort;    /* Rows come from source in GROUP BY order */
3813     int addrEnd;        /* End of processing for this SELECT */
3814 
3815     /* Remove any and all aliases between the result set and the
3816     ** GROUP BY clause.
3817     */
3818     if( pGroupBy ){
3819       int k;                        /* Loop counter */
3820       struct ExprList_item *pItem;  /* For looping over expression in a list */
3821 
3822       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3823         pItem->iAlias = 0;
3824       }
3825       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3826         pItem->iAlias = 0;
3827       }
3828     }
3829 
3830 
3831     /* Create a label to jump to when we want to abort the query */
3832     addrEnd = sqlite3VdbeMakeLabel(v);
3833 
3834     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3835     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3836     ** SELECT statement.
3837     */
3838     memset(&sNC, 0, sizeof(sNC));
3839     sNC.pParse = pParse;
3840     sNC.pSrcList = pTabList;
3841     sNC.pAggInfo = &sAggInfo;
3842     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3843     sAggInfo.pGroupBy = pGroupBy;
3844     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3845     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3846     if( pHaving ){
3847       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3848     }
3849     sAggInfo.nAccumulator = sAggInfo.nColumn;
3850     for(i=0; i<sAggInfo.nFunc; i++){
3851       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3852       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3853     }
3854     if( db->mallocFailed ) goto select_end;
3855 
3856     /* Processing for aggregates with GROUP BY is very different and
3857     ** much more complex than aggregates without a GROUP BY.
3858     */
3859     if( pGroupBy ){
3860       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3861       int j1;             /* A-vs-B comparision jump */
3862       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3863       int regOutputRow;   /* Return address register for output subroutine */
3864       int addrSetAbort;   /* Set the abort flag and return */
3865       int addrTopOfLoop;  /* Top of the input loop */
3866       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3867       int addrReset;      /* Subroutine for resetting the accumulator */
3868       int regReset;       /* Return address register for reset subroutine */
3869 
3870       /* If there is a GROUP BY clause we might need a sorting index to
3871       ** implement it.  Allocate that sorting index now.  If it turns out
3872       ** that we do not need it after all, the OpenEphemeral instruction
3873       ** will be converted into a Noop.
3874       */
3875       sAggInfo.sortingIdx = pParse->nTab++;
3876       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3877       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3878           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3879           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3880 
3881       /* Initialize memory locations used by GROUP BY aggregate processing
3882       */
3883       iUseFlag = ++pParse->nMem;
3884       iAbortFlag = ++pParse->nMem;
3885       regOutputRow = ++pParse->nMem;
3886       addrOutputRow = sqlite3VdbeMakeLabel(v);
3887       regReset = ++pParse->nMem;
3888       addrReset = sqlite3VdbeMakeLabel(v);
3889       iAMem = pParse->nMem + 1;
3890       pParse->nMem += pGroupBy->nExpr;
3891       iBMem = pParse->nMem + 1;
3892       pParse->nMem += pGroupBy->nExpr;
3893       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3894       VdbeComment((v, "clear abort flag"));
3895       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3896       VdbeComment((v, "indicate accumulator empty"));
3897 
3898       /* Begin a loop that will extract all source rows in GROUP BY order.
3899       ** This might involve two separate loops with an OP_Sort in between, or
3900       ** it might be a single loop that uses an index to extract information
3901       ** in the right order to begin with.
3902       */
3903       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3904       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3905       if( pWInfo==0 ) goto select_end;
3906       if( pGroupBy==0 ){
3907         /* The optimizer is able to deliver rows in group by order so
3908         ** we do not have to sort.  The OP_OpenEphemeral table will be
3909         ** cancelled later because we still need to use the pKeyInfo
3910         */
3911         pGroupBy = p->pGroupBy;
3912         groupBySort = 0;
3913       }else{
3914         /* Rows are coming out in undetermined order.  We have to push
3915         ** each row into a sorting index, terminate the first loop,
3916         ** then loop over the sorting index in order to get the output
3917         ** in sorted order
3918         */
3919         int regBase;
3920         int regRecord;
3921         int nCol;
3922         int nGroupBy;
3923 
3924         groupBySort = 1;
3925         nGroupBy = pGroupBy->nExpr;
3926         nCol = nGroupBy + 1;
3927         j = nGroupBy+1;
3928         for(i=0; i<sAggInfo.nColumn; i++){
3929           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3930             nCol++;
3931             j++;
3932           }
3933         }
3934         regBase = sqlite3GetTempRange(pParse, nCol);
3935         sqlite3ExprCacheClear(pParse);
3936         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3937         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3938         j = nGroupBy+1;
3939         for(i=0; i<sAggInfo.nColumn; i++){
3940           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3941           if( pCol->iSorterColumn>=j ){
3942             int r1 = j + regBase;
3943             int r2;
3944 
3945             r2 = sqlite3ExprCodeGetColumn(pParse,
3946                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
3947             if( r1!=r2 ){
3948               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3949             }
3950             j++;
3951           }
3952         }
3953         regRecord = sqlite3GetTempReg(pParse);
3954         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3955         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3956         sqlite3ReleaseTempReg(pParse, regRecord);
3957         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3958         sqlite3WhereEnd(pWInfo);
3959         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3960         VdbeComment((v, "GROUP BY sort"));
3961         sAggInfo.useSortingIdx = 1;
3962         sqlite3ExprCacheClear(pParse);
3963       }
3964 
3965       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3966       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3967       ** Then compare the current GROUP BY terms against the GROUP BY terms
3968       ** from the previous row currently stored in a0, a1, a2...
3969       */
3970       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3971       sqlite3ExprCacheClear(pParse);
3972       for(j=0; j<pGroupBy->nExpr; j++){
3973         if( groupBySort ){
3974           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3975         }else{
3976           sAggInfo.directMode = 1;
3977           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3978         }
3979       }
3980       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3981                           (char*)pKeyInfo, P4_KEYINFO);
3982       j1 = sqlite3VdbeCurrentAddr(v);
3983       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3984 
3985       /* Generate code that runs whenever the GROUP BY changes.
3986       ** Changes in the GROUP BY are detected by the previous code
3987       ** block.  If there were no changes, this block is skipped.
3988       **
3989       ** This code copies current group by terms in b0,b1,b2,...
3990       ** over to a0,a1,a2.  It then calls the output subroutine
3991       ** and resets the aggregate accumulator registers in preparation
3992       ** for the next GROUP BY batch.
3993       */
3994       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3995       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3996       VdbeComment((v, "output one row"));
3997       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3998       VdbeComment((v, "check abort flag"));
3999       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4000       VdbeComment((v, "reset accumulator"));
4001 
4002       /* Update the aggregate accumulators based on the content of
4003       ** the current row
4004       */
4005       sqlite3VdbeJumpHere(v, j1);
4006       updateAccumulator(pParse, &sAggInfo);
4007       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4008       VdbeComment((v, "indicate data in accumulator"));
4009 
4010       /* End of the loop
4011       */
4012       if( groupBySort ){
4013         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4014       }else{
4015         sqlite3WhereEnd(pWInfo);
4016         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4017       }
4018 
4019       /* Output the final row of result
4020       */
4021       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4022       VdbeComment((v, "output final row"));
4023 
4024       /* Jump over the subroutines
4025       */
4026       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4027 
4028       /* Generate a subroutine that outputs a single row of the result
4029       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4030       ** is less than or equal to zero, the subroutine is a no-op.  If
4031       ** the processing calls for the query to abort, this subroutine
4032       ** increments the iAbortFlag memory location before returning in
4033       ** order to signal the caller to abort.
4034       */
4035       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4036       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4037       VdbeComment((v, "set abort flag"));
4038       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4039       sqlite3VdbeResolveLabel(v, addrOutputRow);
4040       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4041       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4042       VdbeComment((v, "Groupby result generator entry point"));
4043       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4044       finalizeAggFunctions(pParse, &sAggInfo);
4045       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4046       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4047                       distinct, pDest,
4048                       addrOutputRow+1, addrSetAbort);
4049       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4050       VdbeComment((v, "end groupby result generator"));
4051 
4052       /* Generate a subroutine that will reset the group-by accumulator
4053       */
4054       sqlite3VdbeResolveLabel(v, addrReset);
4055       resetAccumulator(pParse, &sAggInfo);
4056       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4057 
4058     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4059     else {
4060       ExprList *pDel = 0;
4061 #ifndef SQLITE_OMIT_BTREECOUNT
4062       Table *pTab;
4063       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4064         /* If isSimpleCount() returns a pointer to a Table structure, then
4065         ** the SQL statement is of the form:
4066         **
4067         **   SELECT count(*) FROM <tbl>
4068         **
4069         ** where the Table structure returned represents table <tbl>.
4070         **
4071         ** This statement is so common that it is optimized specially. The
4072         ** OP_Count instruction is executed either on the intkey table that
4073         ** contains the data for table <tbl> or on one of its indexes. It
4074         ** is better to execute the op on an index, as indexes are almost
4075         ** always spread across less pages than their corresponding tables.
4076         */
4077         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4078         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4079         Index *pIdx;                         /* Iterator variable */
4080         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4081         Index *pBest = 0;                    /* Best index found so far */
4082         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4083 
4084         sqlite3CodeVerifySchema(pParse, iDb);
4085         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4086 
4087         /* Search for the index that has the least amount of columns. If
4088         ** there is such an index, and it has less columns than the table
4089         ** does, then we can assume that it consumes less space on disk and
4090         ** will therefore be cheaper to scan to determine the query result.
4091         ** In this case set iRoot to the root page number of the index b-tree
4092         ** and pKeyInfo to the KeyInfo structure required to navigate the
4093         ** index.
4094         **
4095         ** In practice the KeyInfo structure will not be used. It is only
4096         ** passed to keep OP_OpenRead happy.
4097         */
4098         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4099           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4100             pBest = pIdx;
4101           }
4102         }
4103         if( pBest && pBest->nColumn<pTab->nCol ){
4104           iRoot = pBest->tnum;
4105           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4106         }
4107 
4108         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4109         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4110         if( pKeyInfo ){
4111           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4112         }
4113         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4114         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4115       }else
4116 #endif /* SQLITE_OMIT_BTREECOUNT */
4117       {
4118         /* Check if the query is of one of the following forms:
4119         **
4120         **   SELECT min(x) FROM ...
4121         **   SELECT max(x) FROM ...
4122         **
4123         ** If it is, then ask the code in where.c to attempt to sort results
4124         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4125         ** If where.c is able to produce results sorted in this order, then
4126         ** add vdbe code to break out of the processing loop after the
4127         ** first iteration (since the first iteration of the loop is
4128         ** guaranteed to operate on the row with the minimum or maximum
4129         ** value of x, the only row required).
4130         **
4131         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4132         ** modify behaviour as follows:
4133         **
4134         **   + If the query is a "SELECT min(x)", then the loop coded by
4135         **     where.c should not iterate over any values with a NULL value
4136         **     for x.
4137         **
4138         **   + The optimizer code in where.c (the thing that decides which
4139         **     index or indices to use) should place a different priority on
4140         **     satisfying the 'ORDER BY' clause than it does in other cases.
4141         **     Refer to code and comments in where.c for details.
4142         */
4143         ExprList *pMinMax = 0;
4144         u8 flag = minMaxQuery(p);
4145         if( flag ){
4146           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4147           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4148           pDel = pMinMax;
4149           if( pMinMax && !db->mallocFailed ){
4150             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4151             pMinMax->a[0].pExpr->op = TK_COLUMN;
4152           }
4153         }
4154 
4155         /* This case runs if the aggregate has no GROUP BY clause.  The
4156         ** processing is much simpler since there is only a single row
4157         ** of output.
4158         */
4159         resetAccumulator(pParse, &sAggInfo);
4160         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4161         if( pWInfo==0 ){
4162           sqlite3ExprListDelete(db, pDel);
4163           goto select_end;
4164         }
4165         updateAccumulator(pParse, &sAggInfo);
4166         if( !pMinMax && flag ){
4167           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4168           VdbeComment((v, "%s() by index",
4169                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4170         }
4171         sqlite3WhereEnd(pWInfo);
4172         finalizeAggFunctions(pParse, &sAggInfo);
4173       }
4174 
4175       pOrderBy = 0;
4176       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4177       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4178                       pDest, addrEnd, addrEnd);
4179       sqlite3ExprListDelete(db, pDel);
4180     }
4181     sqlite3VdbeResolveLabel(v, addrEnd);
4182 
4183   } /* endif aggregate query */
4184 
4185   /* If there is an ORDER BY clause, then we need to sort the results
4186   ** and send them to the callback one by one.
4187   */
4188   if( pOrderBy ){
4189     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4190   }
4191 
4192   /* Jump here to skip this query
4193   */
4194   sqlite3VdbeResolveLabel(v, iEnd);
4195 
4196   /* The SELECT was successfully coded.   Set the return code to 0
4197   ** to indicate no errors.
4198   */
4199   rc = 0;
4200 
4201   /* Control jumps to here if an error is encountered above, or upon
4202   ** successful coding of the SELECT.
4203   */
4204 select_end:
4205 
4206   /* Identify column names if results of the SELECT are to be output.
4207   */
4208   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4209     generateColumnNames(pParse, pTabList, pEList);
4210   }
4211 
4212   sqlite3DbFree(db, sAggInfo.aCol);
4213   sqlite3DbFree(db, sAggInfo.aFunc);
4214   return rc;
4215 }
4216 
4217 #if defined(SQLITE_DEBUG)
4218 /*
4219 *******************************************************************************
4220 ** The following code is used for testing and debugging only.  The code
4221 ** that follows does not appear in normal builds.
4222 **
4223 ** These routines are used to print out the content of all or part of a
4224 ** parse structures such as Select or Expr.  Such printouts are useful
4225 ** for helping to understand what is happening inside the code generator
4226 ** during the execution of complex SELECT statements.
4227 **
4228 ** These routine are not called anywhere from within the normal
4229 ** code base.  Then are intended to be called from within the debugger
4230 ** or from temporary "printf" statements inserted for debugging.
4231 */
4232 void sqlite3PrintExpr(Expr *p){
4233   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4234     sqlite3DebugPrintf("(%s", p->u.zToken);
4235   }else{
4236     sqlite3DebugPrintf("(%d", p->op);
4237   }
4238   if( p->pLeft ){
4239     sqlite3DebugPrintf(" ");
4240     sqlite3PrintExpr(p->pLeft);
4241   }
4242   if( p->pRight ){
4243     sqlite3DebugPrintf(" ");
4244     sqlite3PrintExpr(p->pRight);
4245   }
4246   sqlite3DebugPrintf(")");
4247 }
4248 void sqlite3PrintExprList(ExprList *pList){
4249   int i;
4250   for(i=0; i<pList->nExpr; i++){
4251     sqlite3PrintExpr(pList->a[i].pExpr);
4252     if( i<pList->nExpr-1 ){
4253       sqlite3DebugPrintf(", ");
4254     }
4255   }
4256 }
4257 void sqlite3PrintSelect(Select *p, int indent){
4258   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4259   sqlite3PrintExprList(p->pEList);
4260   sqlite3DebugPrintf("\n");
4261   if( p->pSrc ){
4262     char *zPrefix;
4263     int i;
4264     zPrefix = "FROM";
4265     for(i=0; i<p->pSrc->nSrc; i++){
4266       struct SrcList_item *pItem = &p->pSrc->a[i];
4267       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4268       zPrefix = "";
4269       if( pItem->pSelect ){
4270         sqlite3DebugPrintf("(\n");
4271         sqlite3PrintSelect(pItem->pSelect, indent+10);
4272         sqlite3DebugPrintf("%*s)", indent+8, "");
4273       }else if( pItem->zName ){
4274         sqlite3DebugPrintf("%s", pItem->zName);
4275       }
4276       if( pItem->pTab ){
4277         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4278       }
4279       if( pItem->zAlias ){
4280         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4281       }
4282       if( i<p->pSrc->nSrc-1 ){
4283         sqlite3DebugPrintf(",");
4284       }
4285       sqlite3DebugPrintf("\n");
4286     }
4287   }
4288   if( p->pWhere ){
4289     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4290     sqlite3PrintExpr(p->pWhere);
4291     sqlite3DebugPrintf("\n");
4292   }
4293   if( p->pGroupBy ){
4294     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4295     sqlite3PrintExprList(p->pGroupBy);
4296     sqlite3DebugPrintf("\n");
4297   }
4298   if( p->pHaving ){
4299     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4300     sqlite3PrintExpr(p->pHaving);
4301     sqlite3DebugPrintf("\n");
4302   }
4303   if( p->pOrderBy ){
4304     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4305     sqlite3PrintExprList(p->pOrderBy);
4306     sqlite3DebugPrintf("\n");
4307   }
4308 }
4309 /* End of the structure debug printing code
4310 *****************************************************************************/
4311 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4312