1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself depending on the value of bFree 88 ** 89 ** If bFree==1, call sqlite3DbFree() on the p object. 90 ** If bFree==0, Leave the first Select object unfreed 91 */ 92 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 93 while( p ){ 94 Select *pPrior = p->pPrior; 95 sqlite3ExprListDelete(db, p->pEList); 96 sqlite3SrcListDelete(db, p->pSrc); 97 sqlite3ExprDelete(db, p->pWhere); 98 sqlite3ExprListDelete(db, p->pGroupBy); 99 sqlite3ExprDelete(db, p->pHaving); 100 sqlite3ExprListDelete(db, p->pOrderBy); 101 sqlite3ExprDelete(db, p->pLimit); 102 #ifndef SQLITE_OMIT_WINDOWFUNC 103 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 104 sqlite3WindowListDelete(db, p->pWinDefn); 105 } 106 #endif 107 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 108 if( bFree ) sqlite3DbFreeNN(db, p); 109 p = pPrior; 110 bFree = 1; 111 } 112 } 113 114 /* 115 ** Initialize a SelectDest structure. 116 */ 117 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 118 pDest->eDest = (u8)eDest; 119 pDest->iSDParm = iParm; 120 pDest->zAffSdst = 0; 121 pDest->iSdst = 0; 122 pDest->nSdst = 0; 123 } 124 125 126 /* 127 ** Allocate a new Select structure and return a pointer to that 128 ** structure. 129 */ 130 Select *sqlite3SelectNew( 131 Parse *pParse, /* Parsing context */ 132 ExprList *pEList, /* which columns to include in the result */ 133 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 134 Expr *pWhere, /* the WHERE clause */ 135 ExprList *pGroupBy, /* the GROUP BY clause */ 136 Expr *pHaving, /* the HAVING clause */ 137 ExprList *pOrderBy, /* the ORDER BY clause */ 138 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 139 Expr *pLimit /* LIMIT value. NULL means not used */ 140 ){ 141 Select *pNew; 142 Select standin; 143 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 144 if( pNew==0 ){ 145 assert( pParse->db->mallocFailed ); 146 pNew = &standin; 147 } 148 if( pEList==0 ){ 149 pEList = sqlite3ExprListAppend(pParse, 0, 150 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 151 } 152 pNew->pEList = pEList; 153 pNew->op = TK_SELECT; 154 pNew->selFlags = selFlags; 155 pNew->iLimit = 0; 156 pNew->iOffset = 0; 157 pNew->selId = ++pParse->nSelect; 158 pNew->addrOpenEphm[0] = -1; 159 pNew->addrOpenEphm[1] = -1; 160 pNew->nSelectRow = 0; 161 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 162 pNew->pSrc = pSrc; 163 pNew->pWhere = pWhere; 164 pNew->pGroupBy = pGroupBy; 165 pNew->pHaving = pHaving; 166 pNew->pOrderBy = pOrderBy; 167 pNew->pPrior = 0; 168 pNew->pNext = 0; 169 pNew->pLimit = pLimit; 170 pNew->pWith = 0; 171 #ifndef SQLITE_OMIT_WINDOWFUNC 172 pNew->pWin = 0; 173 pNew->pWinDefn = 0; 174 #endif 175 if( pParse->db->mallocFailed ) { 176 clearSelect(pParse->db, pNew, pNew!=&standin); 177 pNew = 0; 178 }else{ 179 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 180 } 181 assert( pNew!=&standin ); 182 return pNew; 183 } 184 185 186 /* 187 ** Delete the given Select structure and all of its substructures. 188 */ 189 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 190 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 191 } 192 193 /* 194 ** Delete all the substructure for p, but keep p allocated. Redefine 195 ** p to be a single SELECT where every column of the result set has a 196 ** value of NULL. 197 */ 198 void sqlite3SelectReset(Parse *pParse, Select *p){ 199 if( ALWAYS(p) ){ 200 clearSelect(pParse->db, p, 0); 201 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 202 p->pEList = sqlite3ExprListAppend(pParse, 0, 203 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 204 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList)); 205 } 206 } 207 208 /* 209 ** Return a pointer to the right-most SELECT statement in a compound. 210 */ 211 static Select *findRightmost(Select *p){ 212 while( p->pNext ) p = p->pNext; 213 return p; 214 } 215 216 /* 217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 218 ** type of join. Return an integer constant that expresses that type 219 ** in terms of the following bit values: 220 ** 221 ** JT_INNER 222 ** JT_CROSS 223 ** JT_OUTER 224 ** JT_NATURAL 225 ** JT_LEFT 226 ** JT_RIGHT 227 ** 228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 229 ** 230 ** If an illegal or unsupported join type is seen, then still return 231 ** a join type, but put an error in the pParse structure. 232 */ 233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 234 int jointype = 0; 235 Token *apAll[3]; 236 Token *p; 237 /* 0123456789 123456789 123456789 123 */ 238 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 239 static const struct { 240 u8 i; /* Beginning of keyword text in zKeyText[] */ 241 u8 nChar; /* Length of the keyword in characters */ 242 u8 code; /* Join type mask */ 243 } aKeyword[] = { 244 /* natural */ { 0, 7, JT_NATURAL }, 245 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 246 /* outer */ { 10, 5, JT_OUTER }, 247 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 248 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 249 /* inner */ { 23, 5, JT_INNER }, 250 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 251 }; 252 int i, j; 253 apAll[0] = pA; 254 apAll[1] = pB; 255 apAll[2] = pC; 256 for(i=0; i<3 && apAll[i]; i++){ 257 p = apAll[i]; 258 for(j=0; j<ArraySize(aKeyword); j++){ 259 if( p->n==aKeyword[j].nChar 260 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 261 jointype |= aKeyword[j].code; 262 break; 263 } 264 } 265 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 266 if( j>=ArraySize(aKeyword) ){ 267 jointype |= JT_ERROR; 268 break; 269 } 270 } 271 if( 272 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 273 (jointype & JT_ERROR)!=0 274 ){ 275 const char *zSp = " "; 276 assert( pB!=0 ); 277 if( pC==0 ){ zSp++; } 278 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 279 "%T %T%s%T", pA, pB, zSp, pC); 280 jointype = JT_INNER; 281 }else if( (jointype & JT_OUTER)!=0 282 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 283 sqlite3ErrorMsg(pParse, 284 "RIGHT and FULL OUTER JOINs are not currently supported"); 285 jointype = JT_INNER; 286 } 287 return jointype; 288 } 289 290 /* 291 ** Return the index of a column in a table. Return -1 if the column 292 ** is not contained in the table. 293 */ 294 static int columnIndex(Table *pTab, const char *zCol){ 295 int i; 296 for(i=0; i<pTab->nCol; i++){ 297 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 298 } 299 return -1; 300 } 301 302 /* 303 ** Search the first N tables in pSrc, from left to right, looking for a 304 ** table that has a column named zCol. 305 ** 306 ** When found, set *piTab and *piCol to the table index and column index 307 ** of the matching column and return TRUE. 308 ** 309 ** If not found, return FALSE. 310 */ 311 static int tableAndColumnIndex( 312 SrcList *pSrc, /* Array of tables to search */ 313 int N, /* Number of tables in pSrc->a[] to search */ 314 const char *zCol, /* Name of the column we are looking for */ 315 int *piTab, /* Write index of pSrc->a[] here */ 316 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 317 int bIgnoreHidden /* True to ignore hidden columns */ 318 ){ 319 int i; /* For looping over tables in pSrc */ 320 int iCol; /* Index of column matching zCol */ 321 322 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 323 for(i=0; i<N; i++){ 324 iCol = columnIndex(pSrc->a[i].pTab, zCol); 325 if( iCol>=0 326 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 327 ){ 328 if( piTab ){ 329 *piTab = i; 330 *piCol = iCol; 331 } 332 return 1; 333 } 334 } 335 return 0; 336 } 337 338 /* 339 ** This function is used to add terms implied by JOIN syntax to the 340 ** WHERE clause expression of a SELECT statement. The new term, which 341 ** is ANDed with the existing WHERE clause, is of the form: 342 ** 343 ** (tab1.col1 = tab2.col2) 344 ** 345 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 346 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 347 ** column iColRight of tab2. 348 */ 349 static void addWhereTerm( 350 Parse *pParse, /* Parsing context */ 351 SrcList *pSrc, /* List of tables in FROM clause */ 352 int iLeft, /* Index of first table to join in pSrc */ 353 int iColLeft, /* Index of column in first table */ 354 int iRight, /* Index of second table in pSrc */ 355 int iColRight, /* Index of column in second table */ 356 int isOuterJoin, /* True if this is an OUTER join */ 357 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 358 ){ 359 sqlite3 *db = pParse->db; 360 Expr *pE1; 361 Expr *pE2; 362 Expr *pEq; 363 364 assert( iLeft<iRight ); 365 assert( pSrc->nSrc>iRight ); 366 assert( pSrc->a[iLeft].pTab ); 367 assert( pSrc->a[iRight].pTab ); 368 369 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 370 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 371 372 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 373 if( pEq && isOuterJoin ){ 374 ExprSetProperty(pEq, EP_FromJoin); 375 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(pEq, EP_NoReduce); 377 pEq->iRightJoinTable = (i16)pE2->iTable; 378 } 379 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 380 } 381 382 /* 383 ** Set the EP_FromJoin property on all terms of the given expression. 384 ** And set the Expr.iRightJoinTable to iTable for every term in the 385 ** expression. 386 ** 387 ** The EP_FromJoin property is used on terms of an expression to tell 388 ** the LEFT OUTER JOIN processing logic that this term is part of the 389 ** join restriction specified in the ON or USING clause and not a part 390 ** of the more general WHERE clause. These terms are moved over to the 391 ** WHERE clause during join processing but we need to remember that they 392 ** originated in the ON or USING clause. 393 ** 394 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 395 ** expression depends on table iRightJoinTable even if that table is not 396 ** explicitly mentioned in the expression. That information is needed 397 ** for cases like this: 398 ** 399 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 400 ** 401 ** The where clause needs to defer the handling of the t1.x=5 402 ** term until after the t2 loop of the join. In that way, a 403 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 404 ** defer the handling of t1.x=5, it will be processed immediately 405 ** after the t1 loop and rows with t1.x!=5 will never appear in 406 ** the output, which is incorrect. 407 */ 408 void sqlite3SetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 ExprSetProperty(p, EP_FromJoin); 411 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 412 ExprSetVVAProperty(p, EP_NoReduce); 413 p->iRightJoinTable = (i16)iTable; 414 if( p->op==TK_FUNCTION && p->x.pList ){ 415 int i; 416 for(i=0; i<p->x.pList->nExpr; i++){ 417 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 418 } 419 } 420 sqlite3SetJoinExpr(p->pLeft, iTable); 421 p = p->pRight; 422 } 423 } 424 425 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 426 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 427 ** an ordinary term that omits the EP_FromJoin mark. 428 ** 429 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 430 */ 431 static void unsetJoinExpr(Expr *p, int iTable){ 432 while( p ){ 433 if( ExprHasProperty(p, EP_FromJoin) 434 && (iTable<0 || p->iRightJoinTable==iTable) ){ 435 ExprClearProperty(p, EP_FromJoin); 436 } 437 if( p->op==TK_FUNCTION && p->x.pList ){ 438 int i; 439 for(i=0; i<p->x.pList->nExpr; i++){ 440 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 441 } 442 } 443 unsetJoinExpr(p->pLeft, iTable); 444 p = p->pRight; 445 } 446 } 447 448 /* 449 ** This routine processes the join information for a SELECT statement. 450 ** ON and USING clauses are converted into extra terms of the WHERE clause. 451 ** NATURAL joins also create extra WHERE clause terms. 452 ** 453 ** The terms of a FROM clause are contained in the Select.pSrc structure. 454 ** The left most table is the first entry in Select.pSrc. The right-most 455 ** table is the last entry. The join operator is held in the entry to 456 ** the left. Thus entry 0 contains the join operator for the join between 457 ** entries 0 and 1. Any ON or USING clauses associated with the join are 458 ** also attached to the left entry. 459 ** 460 ** This routine returns the number of errors encountered. 461 */ 462 static int sqliteProcessJoin(Parse *pParse, Select *p){ 463 SrcList *pSrc; /* All tables in the FROM clause */ 464 int i, j; /* Loop counters */ 465 struct SrcList_item *pLeft; /* Left table being joined */ 466 struct SrcList_item *pRight; /* Right table being joined */ 467 468 pSrc = p->pSrc; 469 pLeft = &pSrc->a[0]; 470 pRight = &pLeft[1]; 471 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 472 Table *pRightTab = pRight->pTab; 473 int isOuter; 474 475 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 476 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 477 478 /* When the NATURAL keyword is present, add WHERE clause terms for 479 ** every column that the two tables have in common. 480 */ 481 if( pRight->fg.jointype & JT_NATURAL ){ 482 if( pRight->pOn || pRight->pUsing ){ 483 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 484 "an ON or USING clause", 0); 485 return 1; 486 } 487 for(j=0; j<pRightTab->nCol; j++){ 488 char *zName; /* Name of column in the right table */ 489 int iLeft; /* Matching left table */ 490 int iLeftCol; /* Matching column in the left table */ 491 492 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 493 zName = pRightTab->aCol[j].zName; 494 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 495 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 496 isOuter, &p->pWhere); 497 } 498 } 499 } 500 501 /* Disallow both ON and USING clauses in the same join 502 */ 503 if( pRight->pOn && pRight->pUsing ){ 504 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 505 "clauses in the same join"); 506 return 1; 507 } 508 509 /* Add the ON clause to the end of the WHERE clause, connected by 510 ** an AND operator. 511 */ 512 if( pRight->pOn ){ 513 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 514 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 515 pRight->pOn = 0; 516 } 517 518 /* Create extra terms on the WHERE clause for each column named 519 ** in the USING clause. Example: If the two tables to be joined are 520 ** A and B and the USING clause names X, Y, and Z, then add this 521 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 522 ** Report an error if any column mentioned in the USING clause is 523 ** not contained in both tables to be joined. 524 */ 525 if( pRight->pUsing ){ 526 IdList *pList = pRight->pUsing; 527 for(j=0; j<pList->nId; j++){ 528 char *zName; /* Name of the term in the USING clause */ 529 int iLeft; /* Table on the left with matching column name */ 530 int iLeftCol; /* Column number of matching column on the left */ 531 int iRightCol; /* Column number of matching column on the right */ 532 533 zName = pList->a[j].zName; 534 iRightCol = columnIndex(pRightTab, zName); 535 if( iRightCol<0 536 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 537 ){ 538 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 539 "not present in both tables", zName); 540 return 1; 541 } 542 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 543 isOuter, &p->pWhere); 544 } 545 } 546 } 547 return 0; 548 } 549 550 /* 551 ** An instance of this object holds information (beyond pParse and pSelect) 552 ** needed to load the next result row that is to be added to the sorter. 553 */ 554 typedef struct RowLoadInfo RowLoadInfo; 555 struct RowLoadInfo { 556 int regResult; /* Store results in array of registers here */ 557 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 559 ExprList *pExtra; /* Extra columns needed by sorter refs */ 560 int regExtraResult; /* Where to load the extra columns */ 561 #endif 562 }; 563 564 /* 565 ** This routine does the work of loading query data into an array of 566 ** registers so that it can be added to the sorter. 567 */ 568 static void innerLoopLoadRow( 569 Parse *pParse, /* Statement under construction */ 570 Select *pSelect, /* The query being coded */ 571 RowLoadInfo *pInfo /* Info needed to complete the row load */ 572 ){ 573 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 574 0, pInfo->ecelFlags); 575 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 576 if( pInfo->pExtra ){ 577 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 578 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 579 } 580 #endif 581 } 582 583 /* 584 ** Code the OP_MakeRecord instruction that generates the entry to be 585 ** added into the sorter. 586 ** 587 ** Return the register in which the result is stored. 588 */ 589 static int makeSorterRecord( 590 Parse *pParse, 591 SortCtx *pSort, 592 Select *pSelect, 593 int regBase, 594 int nBase 595 ){ 596 int nOBSat = pSort->nOBSat; 597 Vdbe *v = pParse->pVdbe; 598 int regOut = ++pParse->nMem; 599 if( pSort->pDeferredRowLoad ){ 600 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 601 } 602 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 603 return regOut; 604 } 605 606 /* 607 ** Generate code that will push the record in registers regData 608 ** through regData+nData-1 onto the sorter. 609 */ 610 static void pushOntoSorter( 611 Parse *pParse, /* Parser context */ 612 SortCtx *pSort, /* Information about the ORDER BY clause */ 613 Select *pSelect, /* The whole SELECT statement */ 614 int regData, /* First register holding data to be sorted */ 615 int regOrigData, /* First register holding data before packing */ 616 int nData, /* Number of elements in the regData data array */ 617 int nPrefixReg /* No. of reg prior to regData available for use */ 618 ){ 619 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 620 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 621 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 622 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 623 int regBase; /* Regs for sorter record */ 624 int regRecord = 0; /* Assembled sorter record */ 625 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 626 int op; /* Opcode to add sorter record to sorter */ 627 int iLimit; /* LIMIT counter */ 628 int iSkip = 0; /* End of the sorter insert loop */ 629 630 assert( bSeq==0 || bSeq==1 ); 631 632 /* Three cases: 633 ** (1) The data to be sorted has already been packed into a Record 634 ** by a prior OP_MakeRecord. In this case nData==1 and regData 635 ** will be completely unrelated to regOrigData. 636 ** (2) All output columns are included in the sort record. In that 637 ** case regData==regOrigData. 638 ** (3) Some output columns are omitted from the sort record due to 639 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 640 ** SQLITE_ECEL_OMITREF optimization, or due to the 641 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 642 ** regOrigData is 0 to prevent this routine from trying to copy 643 ** values that might not yet exist. 644 */ 645 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 646 647 if( nPrefixReg ){ 648 assert( nPrefixReg==nExpr+bSeq ); 649 regBase = regData - nPrefixReg; 650 }else{ 651 regBase = pParse->nMem + 1; 652 pParse->nMem += nBase; 653 } 654 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 655 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 656 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 657 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 658 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 659 if( bSeq ){ 660 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 661 } 662 if( nPrefixReg==0 && nData>0 ){ 663 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 664 } 665 if( nOBSat>0 ){ 666 int regPrevKey; /* The first nOBSat columns of the previous row */ 667 int addrFirst; /* Address of the OP_IfNot opcode */ 668 int addrJmp; /* Address of the OP_Jump opcode */ 669 VdbeOp *pOp; /* Opcode that opens the sorter */ 670 int nKey; /* Number of sorting key columns, including OP_Sequence */ 671 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 672 673 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 674 regPrevKey = pParse->nMem+1; 675 pParse->nMem += pSort->nOBSat; 676 nKey = nExpr - pSort->nOBSat + bSeq; 677 if( bSeq ){ 678 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 679 }else{ 680 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 681 } 682 VdbeCoverage(v); 683 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 684 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 685 if( pParse->db->mallocFailed ) return; 686 pOp->p2 = nKey + nData; 687 pKI = pOp->p4.pKeyInfo; 688 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 689 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 690 testcase( pKI->nAllField > pKI->nKeyField+2 ); 691 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 692 pKI->nAllField-pKI->nKeyField-1); 693 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 694 addrJmp = sqlite3VdbeCurrentAddr(v); 695 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 696 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 697 pSort->regReturn = ++pParse->nMem; 698 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 699 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 700 if( iLimit ){ 701 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 702 VdbeCoverage(v); 703 } 704 sqlite3VdbeJumpHere(v, addrFirst); 705 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 706 sqlite3VdbeJumpHere(v, addrJmp); 707 } 708 if( iLimit ){ 709 /* At this point the values for the new sorter entry are stored 710 ** in an array of registers. They need to be composed into a record 711 ** and inserted into the sorter if either (a) there are currently 712 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 713 ** the largest record currently in the sorter. If (b) is true and there 714 ** are already LIMIT+OFFSET items in the sorter, delete the largest 715 ** entry before inserting the new one. This way there are never more 716 ** than LIMIT+OFFSET items in the sorter. 717 ** 718 ** If the new record does not need to be inserted into the sorter, 719 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 720 ** value is not zero, then it is a label of where to jump. Otherwise, 721 ** just bypass the row insert logic. See the header comment on the 722 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 723 */ 724 int iCsr = pSort->iECursor; 725 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 726 VdbeCoverage(v); 727 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 728 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 729 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 730 VdbeCoverage(v); 731 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 732 } 733 if( regRecord==0 ){ 734 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 735 } 736 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 737 op = OP_SorterInsert; 738 }else{ 739 op = OP_IdxInsert; 740 } 741 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 742 regBase+nOBSat, nBase-nOBSat); 743 if( iSkip ){ 744 sqlite3VdbeChangeP2(v, iSkip, 745 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 746 } 747 } 748 749 /* 750 ** Add code to implement the OFFSET 751 */ 752 static void codeOffset( 753 Vdbe *v, /* Generate code into this VM */ 754 int iOffset, /* Register holding the offset counter */ 755 int iContinue /* Jump here to skip the current record */ 756 ){ 757 if( iOffset>0 ){ 758 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 759 VdbeComment((v, "OFFSET")); 760 } 761 } 762 763 /* 764 ** Add code that will check to make sure the N registers starting at iMem 765 ** form a distinct entry. iTab is a sorting index that holds previously 766 ** seen combinations of the N values. A new entry is made in iTab 767 ** if the current N values are new. 768 ** 769 ** A jump to addrRepeat is made and the N+1 values are popped from the 770 ** stack if the top N elements are not distinct. 771 */ 772 static void codeDistinct( 773 Parse *pParse, /* Parsing and code generating context */ 774 int iTab, /* A sorting index used to test for distinctness */ 775 int addrRepeat, /* Jump to here if not distinct */ 776 int N, /* Number of elements */ 777 int iMem /* First element */ 778 ){ 779 Vdbe *v; 780 int r1; 781 782 v = pParse->pVdbe; 783 r1 = sqlite3GetTempReg(pParse); 784 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 785 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 786 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 787 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 788 sqlite3ReleaseTempReg(pParse, r1); 789 } 790 791 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 792 /* 793 ** This function is called as part of inner-loop generation for a SELECT 794 ** statement with an ORDER BY that is not optimized by an index. It 795 ** determines the expressions, if any, that the sorter-reference 796 ** optimization should be used for. The sorter-reference optimization 797 ** is used for SELECT queries like: 798 ** 799 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 800 ** 801 ** If the optimization is used for expression "bigblob", then instead of 802 ** storing values read from that column in the sorter records, the PK of 803 ** the row from table t1 is stored instead. Then, as records are extracted from 804 ** the sorter to return to the user, the required value of bigblob is 805 ** retrieved directly from table t1. If the values are very large, this 806 ** can be more efficient than storing them directly in the sorter records. 807 ** 808 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 809 ** for which the sorter-reference optimization should be enabled. 810 ** Additionally, the pSort->aDefer[] array is populated with entries 811 ** for all cursors required to evaluate all selected expressions. Finally. 812 ** output variable (*ppExtra) is set to an expression list containing 813 ** expressions for all extra PK values that should be stored in the 814 ** sorter records. 815 */ 816 static void selectExprDefer( 817 Parse *pParse, /* Leave any error here */ 818 SortCtx *pSort, /* Sorter context */ 819 ExprList *pEList, /* Expressions destined for sorter */ 820 ExprList **ppExtra /* Expressions to append to sorter record */ 821 ){ 822 int i; 823 int nDefer = 0; 824 ExprList *pExtra = 0; 825 for(i=0; i<pEList->nExpr; i++){ 826 struct ExprList_item *pItem = &pEList->a[i]; 827 if( pItem->u.x.iOrderByCol==0 ){ 828 Expr *pExpr = pItem->pExpr; 829 Table *pTab = pExpr->y.pTab; 830 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 831 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 832 ){ 833 int j; 834 for(j=0; j<nDefer; j++){ 835 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 836 } 837 if( j==nDefer ){ 838 if( nDefer==ArraySize(pSort->aDefer) ){ 839 continue; 840 }else{ 841 int nKey = 1; 842 int k; 843 Index *pPk = 0; 844 if( !HasRowid(pTab) ){ 845 pPk = sqlite3PrimaryKeyIndex(pTab); 846 nKey = pPk->nKeyCol; 847 } 848 for(k=0; k<nKey; k++){ 849 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 850 if( pNew ){ 851 pNew->iTable = pExpr->iTable; 852 pNew->y.pTab = pExpr->y.pTab; 853 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 854 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 855 } 856 } 857 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 858 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 859 pSort->aDefer[nDefer].nKey = nKey; 860 nDefer++; 861 } 862 } 863 pItem->bSorterRef = 1; 864 } 865 } 866 } 867 pSort->nDefer = (u8)nDefer; 868 *ppExtra = pExtra; 869 } 870 #endif 871 872 /* 873 ** This routine generates the code for the inside of the inner loop 874 ** of a SELECT. 875 ** 876 ** If srcTab is negative, then the p->pEList expressions 877 ** are evaluated in order to get the data for this row. If srcTab is 878 ** zero or more, then data is pulled from srcTab and p->pEList is used only 879 ** to get the number of columns and the collation sequence for each column. 880 */ 881 static void selectInnerLoop( 882 Parse *pParse, /* The parser context */ 883 Select *p, /* The complete select statement being coded */ 884 int srcTab, /* Pull data from this table if non-negative */ 885 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 886 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 887 SelectDest *pDest, /* How to dispose of the results */ 888 int iContinue, /* Jump here to continue with next row */ 889 int iBreak /* Jump here to break out of the inner loop */ 890 ){ 891 Vdbe *v = pParse->pVdbe; 892 int i; 893 int hasDistinct; /* True if the DISTINCT keyword is present */ 894 int eDest = pDest->eDest; /* How to dispose of results */ 895 int iParm = pDest->iSDParm; /* First argument to disposal method */ 896 int nResultCol; /* Number of result columns */ 897 int nPrefixReg = 0; /* Number of extra registers before regResult */ 898 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 899 900 /* Usually, regResult is the first cell in an array of memory cells 901 ** containing the current result row. In this case regOrig is set to the 902 ** same value. However, if the results are being sent to the sorter, the 903 ** values for any expressions that are also part of the sort-key are omitted 904 ** from this array. In this case regOrig is set to zero. */ 905 int regResult; /* Start of memory holding current results */ 906 int regOrig; /* Start of memory holding full result (or 0) */ 907 908 assert( v ); 909 assert( p->pEList!=0 ); 910 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 911 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 912 if( pSort==0 && !hasDistinct ){ 913 assert( iContinue!=0 ); 914 codeOffset(v, p->iOffset, iContinue); 915 } 916 917 /* Pull the requested columns. 918 */ 919 nResultCol = p->pEList->nExpr; 920 921 if( pDest->iSdst==0 ){ 922 if( pSort ){ 923 nPrefixReg = pSort->pOrderBy->nExpr; 924 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 925 pParse->nMem += nPrefixReg; 926 } 927 pDest->iSdst = pParse->nMem+1; 928 pParse->nMem += nResultCol; 929 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 930 /* This is an error condition that can result, for example, when a SELECT 931 ** on the right-hand side of an INSERT contains more result columns than 932 ** there are columns in the table on the left. The error will be caught 933 ** and reported later. But we need to make sure enough memory is allocated 934 ** to avoid other spurious errors in the meantime. */ 935 pParse->nMem += nResultCol; 936 } 937 pDest->nSdst = nResultCol; 938 regOrig = regResult = pDest->iSdst; 939 if( srcTab>=0 ){ 940 for(i=0; i<nResultCol; i++){ 941 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 942 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 943 } 944 }else if( eDest!=SRT_Exists ){ 945 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 946 ExprList *pExtra = 0; 947 #endif 948 /* If the destination is an EXISTS(...) expression, the actual 949 ** values returned by the SELECT are not required. 950 */ 951 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 952 ExprList *pEList; 953 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 954 ecelFlags = SQLITE_ECEL_DUP; 955 }else{ 956 ecelFlags = 0; 957 } 958 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 959 /* For each expression in p->pEList that is a copy of an expression in 960 ** the ORDER BY clause (pSort->pOrderBy), set the associated 961 ** iOrderByCol value to one more than the index of the ORDER BY 962 ** expression within the sort-key that pushOntoSorter() will generate. 963 ** This allows the p->pEList field to be omitted from the sorted record, 964 ** saving space and CPU cycles. */ 965 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 966 967 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 968 int j; 969 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 970 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 971 } 972 } 973 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 974 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 975 if( pExtra && pParse->db->mallocFailed==0 ){ 976 /* If there are any extra PK columns to add to the sorter records, 977 ** allocate extra memory cells and adjust the OpenEphemeral 978 ** instruction to account for the larger records. This is only 979 ** required if there are one or more WITHOUT ROWID tables with 980 ** composite primary keys in the SortCtx.aDefer[] array. */ 981 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 982 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 983 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 984 pParse->nMem += pExtra->nExpr; 985 } 986 #endif 987 988 /* Adjust nResultCol to account for columns that are omitted 989 ** from the sorter by the optimizations in this branch */ 990 pEList = p->pEList; 991 for(i=0; i<pEList->nExpr; i++){ 992 if( pEList->a[i].u.x.iOrderByCol>0 993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 994 || pEList->a[i].bSorterRef 995 #endif 996 ){ 997 nResultCol--; 998 regOrig = 0; 999 } 1000 } 1001 1002 testcase( regOrig ); 1003 testcase( eDest==SRT_Set ); 1004 testcase( eDest==SRT_Mem ); 1005 testcase( eDest==SRT_Coroutine ); 1006 testcase( eDest==SRT_Output ); 1007 assert( eDest==SRT_Set || eDest==SRT_Mem 1008 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1009 } 1010 sRowLoadInfo.regResult = regResult; 1011 sRowLoadInfo.ecelFlags = ecelFlags; 1012 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1013 sRowLoadInfo.pExtra = pExtra; 1014 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1015 if( pExtra ) nResultCol += pExtra->nExpr; 1016 #endif 1017 if( p->iLimit 1018 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1019 && nPrefixReg>0 1020 ){ 1021 assert( pSort!=0 ); 1022 assert( hasDistinct==0 ); 1023 pSort->pDeferredRowLoad = &sRowLoadInfo; 1024 regOrig = 0; 1025 }else{ 1026 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1027 } 1028 } 1029 1030 /* If the DISTINCT keyword was present on the SELECT statement 1031 ** and this row has been seen before, then do not make this row 1032 ** part of the result. 1033 */ 1034 if( hasDistinct ){ 1035 switch( pDistinct->eTnctType ){ 1036 case WHERE_DISTINCT_ORDERED: { 1037 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1038 int iJump; /* Jump destination */ 1039 int regPrev; /* Previous row content */ 1040 1041 /* Allocate space for the previous row */ 1042 regPrev = pParse->nMem+1; 1043 pParse->nMem += nResultCol; 1044 1045 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1046 ** sets the MEM_Cleared bit on the first register of the 1047 ** previous value. This will cause the OP_Ne below to always 1048 ** fail on the first iteration of the loop even if the first 1049 ** row is all NULLs. 1050 */ 1051 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1052 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1053 pOp->opcode = OP_Null; 1054 pOp->p1 = 1; 1055 pOp->p2 = regPrev; 1056 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1057 1058 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1059 for(i=0; i<nResultCol; i++){ 1060 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1061 if( i<nResultCol-1 ){ 1062 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1063 VdbeCoverage(v); 1064 }else{ 1065 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1066 VdbeCoverage(v); 1067 } 1068 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1069 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1070 } 1071 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1072 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1073 break; 1074 } 1075 1076 case WHERE_DISTINCT_UNIQUE: { 1077 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1078 break; 1079 } 1080 1081 default: { 1082 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1083 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1084 regResult); 1085 break; 1086 } 1087 } 1088 if( pSort==0 ){ 1089 codeOffset(v, p->iOffset, iContinue); 1090 } 1091 } 1092 1093 switch( eDest ){ 1094 /* In this mode, write each query result to the key of the temporary 1095 ** table iParm. 1096 */ 1097 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1098 case SRT_Union: { 1099 int r1; 1100 r1 = sqlite3GetTempReg(pParse); 1101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1102 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1103 sqlite3ReleaseTempReg(pParse, r1); 1104 break; 1105 } 1106 1107 /* Construct a record from the query result, but instead of 1108 ** saving that record, use it as a key to delete elements from 1109 ** the temporary table iParm. 1110 */ 1111 case SRT_Except: { 1112 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1113 break; 1114 } 1115 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1116 1117 /* Store the result as data using a unique key. 1118 */ 1119 case SRT_Fifo: 1120 case SRT_DistFifo: 1121 case SRT_Table: 1122 case SRT_EphemTab: { 1123 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1124 testcase( eDest==SRT_Table ); 1125 testcase( eDest==SRT_EphemTab ); 1126 testcase( eDest==SRT_Fifo ); 1127 testcase( eDest==SRT_DistFifo ); 1128 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1129 #ifndef SQLITE_OMIT_CTE 1130 if( eDest==SRT_DistFifo ){ 1131 /* If the destination is DistFifo, then cursor (iParm+1) is open 1132 ** on an ephemeral index. If the current row is already present 1133 ** in the index, do not write it to the output. If not, add the 1134 ** current row to the index and proceed with writing it to the 1135 ** output table as well. */ 1136 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1137 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1138 VdbeCoverage(v); 1139 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1140 assert( pSort==0 ); 1141 } 1142 #endif 1143 if( pSort ){ 1144 assert( regResult==regOrig ); 1145 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1146 }else{ 1147 int r2 = sqlite3GetTempReg(pParse); 1148 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1149 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1150 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1151 sqlite3ReleaseTempReg(pParse, r2); 1152 } 1153 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1154 break; 1155 } 1156 1157 #ifndef SQLITE_OMIT_SUBQUERY 1158 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1159 ** then there should be a single item on the stack. Write this 1160 ** item into the set table with bogus data. 1161 */ 1162 case SRT_Set: { 1163 if( pSort ){ 1164 /* At first glance you would think we could optimize out the 1165 ** ORDER BY in this case since the order of entries in the set 1166 ** does not matter. But there might be a LIMIT clause, in which 1167 ** case the order does matter */ 1168 pushOntoSorter( 1169 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1170 }else{ 1171 int r1 = sqlite3GetTempReg(pParse); 1172 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1173 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1174 r1, pDest->zAffSdst, nResultCol); 1175 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1176 sqlite3ReleaseTempReg(pParse, r1); 1177 } 1178 break; 1179 } 1180 1181 /* If any row exist in the result set, record that fact and abort. 1182 */ 1183 case SRT_Exists: { 1184 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1185 /* The LIMIT clause will terminate the loop for us */ 1186 break; 1187 } 1188 1189 /* If this is a scalar select that is part of an expression, then 1190 ** store the results in the appropriate memory cell or array of 1191 ** memory cells and break out of the scan loop. 1192 */ 1193 case SRT_Mem: { 1194 if( pSort ){ 1195 assert( nResultCol<=pDest->nSdst ); 1196 pushOntoSorter( 1197 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1198 }else{ 1199 assert( nResultCol==pDest->nSdst ); 1200 assert( regResult==iParm ); 1201 /* The LIMIT clause will jump out of the loop for us */ 1202 } 1203 break; 1204 } 1205 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1206 1207 case SRT_Coroutine: /* Send data to a co-routine */ 1208 case SRT_Output: { /* Return the results */ 1209 testcase( eDest==SRT_Coroutine ); 1210 testcase( eDest==SRT_Output ); 1211 if( pSort ){ 1212 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1213 nPrefixReg); 1214 }else if( eDest==SRT_Coroutine ){ 1215 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1216 }else{ 1217 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1218 } 1219 break; 1220 } 1221 1222 #ifndef SQLITE_OMIT_CTE 1223 /* Write the results into a priority queue that is order according to 1224 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1225 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1226 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1227 ** final OP_Sequence column. The last column is the record as a blob. 1228 */ 1229 case SRT_DistQueue: 1230 case SRT_Queue: { 1231 int nKey; 1232 int r1, r2, r3; 1233 int addrTest = 0; 1234 ExprList *pSO; 1235 pSO = pDest->pOrderBy; 1236 assert( pSO ); 1237 nKey = pSO->nExpr; 1238 r1 = sqlite3GetTempReg(pParse); 1239 r2 = sqlite3GetTempRange(pParse, nKey+2); 1240 r3 = r2+nKey+1; 1241 if( eDest==SRT_DistQueue ){ 1242 /* If the destination is DistQueue, then cursor (iParm+1) is open 1243 ** on a second ephemeral index that holds all values every previously 1244 ** added to the queue. */ 1245 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1246 regResult, nResultCol); 1247 VdbeCoverage(v); 1248 } 1249 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1250 if( eDest==SRT_DistQueue ){ 1251 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1252 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1253 } 1254 for(i=0; i<nKey; i++){ 1255 sqlite3VdbeAddOp2(v, OP_SCopy, 1256 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1257 r2+i); 1258 } 1259 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1260 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1261 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1262 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1263 sqlite3ReleaseTempReg(pParse, r1); 1264 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1265 break; 1266 } 1267 #endif /* SQLITE_OMIT_CTE */ 1268 1269 1270 1271 #if !defined(SQLITE_OMIT_TRIGGER) 1272 /* Discard the results. This is used for SELECT statements inside 1273 ** the body of a TRIGGER. The purpose of such selects is to call 1274 ** user-defined functions that have side effects. We do not care 1275 ** about the actual results of the select. 1276 */ 1277 default: { 1278 assert( eDest==SRT_Discard ); 1279 break; 1280 } 1281 #endif 1282 } 1283 1284 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1285 ** there is a sorter, in which case the sorter has already limited 1286 ** the output for us. 1287 */ 1288 if( pSort==0 && p->iLimit ){ 1289 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1290 } 1291 } 1292 1293 /* 1294 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1295 ** X extra columns. 1296 */ 1297 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1298 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1299 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1300 if( p ){ 1301 p->aSortFlags = (u8*)&p->aColl[N+X]; 1302 p->nKeyField = (u16)N; 1303 p->nAllField = (u16)(N+X); 1304 p->enc = ENC(db); 1305 p->db = db; 1306 p->nRef = 1; 1307 memset(&p[1], 0, nExtra); 1308 }else{ 1309 sqlite3OomFault(db); 1310 } 1311 return p; 1312 } 1313 1314 /* 1315 ** Deallocate a KeyInfo object 1316 */ 1317 void sqlite3KeyInfoUnref(KeyInfo *p){ 1318 if( p ){ 1319 assert( p->nRef>0 ); 1320 p->nRef--; 1321 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1322 } 1323 } 1324 1325 /* 1326 ** Make a new pointer to a KeyInfo object 1327 */ 1328 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1329 if( p ){ 1330 assert( p->nRef>0 ); 1331 p->nRef++; 1332 } 1333 return p; 1334 } 1335 1336 #ifdef SQLITE_DEBUG 1337 /* 1338 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1339 ** can only be changed if this is just a single reference to the object. 1340 ** 1341 ** This routine is used only inside of assert() statements. 1342 */ 1343 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1344 #endif /* SQLITE_DEBUG */ 1345 1346 /* 1347 ** Given an expression list, generate a KeyInfo structure that records 1348 ** the collating sequence for each expression in that expression list. 1349 ** 1350 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1351 ** KeyInfo structure is appropriate for initializing a virtual index to 1352 ** implement that clause. If the ExprList is the result set of a SELECT 1353 ** then the KeyInfo structure is appropriate for initializing a virtual 1354 ** index to implement a DISTINCT test. 1355 ** 1356 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1357 ** function is responsible for seeing that this structure is eventually 1358 ** freed. 1359 */ 1360 KeyInfo *sqlite3KeyInfoFromExprList( 1361 Parse *pParse, /* Parsing context */ 1362 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1363 int iStart, /* Begin with this column of pList */ 1364 int nExtra /* Add this many extra columns to the end */ 1365 ){ 1366 int nExpr; 1367 KeyInfo *pInfo; 1368 struct ExprList_item *pItem; 1369 sqlite3 *db = pParse->db; 1370 int i; 1371 1372 nExpr = pList->nExpr; 1373 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1374 if( pInfo ){ 1375 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1376 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1377 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1378 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1379 } 1380 } 1381 return pInfo; 1382 } 1383 1384 /* 1385 ** Name of the connection operator, used for error messages. 1386 */ 1387 static const char *selectOpName(int id){ 1388 char *z; 1389 switch( id ){ 1390 case TK_ALL: z = "UNION ALL"; break; 1391 case TK_INTERSECT: z = "INTERSECT"; break; 1392 case TK_EXCEPT: z = "EXCEPT"; break; 1393 default: z = "UNION"; break; 1394 } 1395 return z; 1396 } 1397 1398 #ifndef SQLITE_OMIT_EXPLAIN 1399 /* 1400 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1401 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1402 ** where the caption is of the form: 1403 ** 1404 ** "USE TEMP B-TREE FOR xxx" 1405 ** 1406 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1407 ** is determined by the zUsage argument. 1408 */ 1409 static void explainTempTable(Parse *pParse, const char *zUsage){ 1410 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1411 } 1412 1413 /* 1414 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1415 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1416 ** in sqlite3Select() to assign values to structure member variables that 1417 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1418 ** code with #ifndef directives. 1419 */ 1420 # define explainSetInteger(a, b) a = b 1421 1422 #else 1423 /* No-op versions of the explainXXX() functions and macros. */ 1424 # define explainTempTable(y,z) 1425 # define explainSetInteger(y,z) 1426 #endif 1427 1428 1429 /* 1430 ** If the inner loop was generated using a non-null pOrderBy argument, 1431 ** then the results were placed in a sorter. After the loop is terminated 1432 ** we need to run the sorter and output the results. The following 1433 ** routine generates the code needed to do that. 1434 */ 1435 static void generateSortTail( 1436 Parse *pParse, /* Parsing context */ 1437 Select *p, /* The SELECT statement */ 1438 SortCtx *pSort, /* Information on the ORDER BY clause */ 1439 int nColumn, /* Number of columns of data */ 1440 SelectDest *pDest /* Write the sorted results here */ 1441 ){ 1442 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1443 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1444 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1445 int addr; /* Top of output loop. Jump for Next. */ 1446 int addrOnce = 0; 1447 int iTab; 1448 ExprList *pOrderBy = pSort->pOrderBy; 1449 int eDest = pDest->eDest; 1450 int iParm = pDest->iSDParm; 1451 int regRow; 1452 int regRowid; 1453 int iCol; 1454 int nKey; /* Number of key columns in sorter record */ 1455 int iSortTab; /* Sorter cursor to read from */ 1456 int i; 1457 int bSeq; /* True if sorter record includes seq. no. */ 1458 int nRefKey = 0; 1459 struct ExprList_item *aOutEx = p->pEList->a; 1460 1461 assert( addrBreak<0 ); 1462 if( pSort->labelBkOut ){ 1463 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1464 sqlite3VdbeGoto(v, addrBreak); 1465 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1466 } 1467 1468 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1469 /* Open any cursors needed for sorter-reference expressions */ 1470 for(i=0; i<pSort->nDefer; i++){ 1471 Table *pTab = pSort->aDefer[i].pTab; 1472 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1473 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1474 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1475 } 1476 #endif 1477 1478 iTab = pSort->iECursor; 1479 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1480 regRowid = 0; 1481 regRow = pDest->iSdst; 1482 }else{ 1483 regRowid = sqlite3GetTempReg(pParse); 1484 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1485 regRow = sqlite3GetTempReg(pParse); 1486 nColumn = 0; 1487 }else{ 1488 regRow = sqlite3GetTempRange(pParse, nColumn); 1489 } 1490 } 1491 nKey = pOrderBy->nExpr - pSort->nOBSat; 1492 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1493 int regSortOut = ++pParse->nMem; 1494 iSortTab = pParse->nTab++; 1495 if( pSort->labelBkOut ){ 1496 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1497 } 1498 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1499 nKey+1+nColumn+nRefKey); 1500 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1501 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1502 VdbeCoverage(v); 1503 codeOffset(v, p->iOffset, addrContinue); 1504 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1505 bSeq = 0; 1506 }else{ 1507 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1508 codeOffset(v, p->iOffset, addrContinue); 1509 iSortTab = iTab; 1510 bSeq = 1; 1511 } 1512 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1513 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1514 if( aOutEx[i].bSorterRef ) continue; 1515 #endif 1516 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1517 } 1518 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1519 if( pSort->nDefer ){ 1520 int iKey = iCol+1; 1521 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1522 1523 for(i=0; i<pSort->nDefer; i++){ 1524 int iCsr = pSort->aDefer[i].iCsr; 1525 Table *pTab = pSort->aDefer[i].pTab; 1526 int nKey = pSort->aDefer[i].nKey; 1527 1528 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1529 if( HasRowid(pTab) ){ 1530 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1531 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1532 sqlite3VdbeCurrentAddr(v)+1, regKey); 1533 }else{ 1534 int k; 1535 int iJmp; 1536 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1537 for(k=0; k<nKey; k++){ 1538 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1539 } 1540 iJmp = sqlite3VdbeCurrentAddr(v); 1541 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1542 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1543 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1544 } 1545 } 1546 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1547 } 1548 #endif 1549 for(i=nColumn-1; i>=0; i--){ 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 if( aOutEx[i].bSorterRef ){ 1552 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1553 }else 1554 #endif 1555 { 1556 int iRead; 1557 if( aOutEx[i].u.x.iOrderByCol ){ 1558 iRead = aOutEx[i].u.x.iOrderByCol-1; 1559 }else{ 1560 iRead = iCol--; 1561 } 1562 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1563 VdbeComment((v, "%s", aOutEx[i].zEName)); 1564 } 1565 } 1566 switch( eDest ){ 1567 case SRT_Table: 1568 case SRT_EphemTab: { 1569 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1570 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1571 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1572 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1573 break; 1574 } 1575 #ifndef SQLITE_OMIT_SUBQUERY 1576 case SRT_Set: { 1577 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1578 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1579 pDest->zAffSdst, nColumn); 1580 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1581 break; 1582 } 1583 case SRT_Mem: { 1584 /* The LIMIT clause will terminate the loop for us */ 1585 break; 1586 } 1587 #endif 1588 default: { 1589 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1590 testcase( eDest==SRT_Output ); 1591 testcase( eDest==SRT_Coroutine ); 1592 if( eDest==SRT_Output ){ 1593 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1594 }else{ 1595 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1596 } 1597 break; 1598 } 1599 } 1600 if( regRowid ){ 1601 if( eDest==SRT_Set ){ 1602 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1603 }else{ 1604 sqlite3ReleaseTempReg(pParse, regRow); 1605 } 1606 sqlite3ReleaseTempReg(pParse, regRowid); 1607 } 1608 /* The bottom of the loop 1609 */ 1610 sqlite3VdbeResolveLabel(v, addrContinue); 1611 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1612 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1613 }else{ 1614 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1615 } 1616 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1617 sqlite3VdbeResolveLabel(v, addrBreak); 1618 } 1619 1620 /* 1621 ** Return a pointer to a string containing the 'declaration type' of the 1622 ** expression pExpr. The string may be treated as static by the caller. 1623 ** 1624 ** Also try to estimate the size of the returned value and return that 1625 ** result in *pEstWidth. 1626 ** 1627 ** The declaration type is the exact datatype definition extracted from the 1628 ** original CREATE TABLE statement if the expression is a column. The 1629 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1630 ** is considered a column can be complex in the presence of subqueries. The 1631 ** result-set expression in all of the following SELECT statements is 1632 ** considered a column by this function. 1633 ** 1634 ** SELECT col FROM tbl; 1635 ** SELECT (SELECT col FROM tbl; 1636 ** SELECT (SELECT col FROM tbl); 1637 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1638 ** 1639 ** The declaration type for any expression other than a column is NULL. 1640 ** 1641 ** This routine has either 3 or 6 parameters depending on whether or not 1642 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1643 */ 1644 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1645 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1646 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1647 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1648 #endif 1649 static const char *columnTypeImpl( 1650 NameContext *pNC, 1651 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1652 Expr *pExpr 1653 #else 1654 Expr *pExpr, 1655 const char **pzOrigDb, 1656 const char **pzOrigTab, 1657 const char **pzOrigCol 1658 #endif 1659 ){ 1660 char const *zType = 0; 1661 int j; 1662 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1663 char const *zOrigDb = 0; 1664 char const *zOrigTab = 0; 1665 char const *zOrigCol = 0; 1666 #endif 1667 1668 assert( pExpr!=0 ); 1669 assert( pNC->pSrcList!=0 ); 1670 switch( pExpr->op ){ 1671 case TK_COLUMN: { 1672 /* The expression is a column. Locate the table the column is being 1673 ** extracted from in NameContext.pSrcList. This table may be real 1674 ** database table or a subquery. 1675 */ 1676 Table *pTab = 0; /* Table structure column is extracted from */ 1677 Select *pS = 0; /* Select the column is extracted from */ 1678 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1679 while( pNC && !pTab ){ 1680 SrcList *pTabList = pNC->pSrcList; 1681 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1682 if( j<pTabList->nSrc ){ 1683 pTab = pTabList->a[j].pTab; 1684 pS = pTabList->a[j].pSelect; 1685 }else{ 1686 pNC = pNC->pNext; 1687 } 1688 } 1689 1690 if( pTab==0 ){ 1691 /* At one time, code such as "SELECT new.x" within a trigger would 1692 ** cause this condition to run. Since then, we have restructured how 1693 ** trigger code is generated and so this condition is no longer 1694 ** possible. However, it can still be true for statements like 1695 ** the following: 1696 ** 1697 ** CREATE TABLE t1(col INTEGER); 1698 ** SELECT (SELECT t1.col) FROM FROM t1; 1699 ** 1700 ** when columnType() is called on the expression "t1.col" in the 1701 ** sub-select. In this case, set the column type to NULL, even 1702 ** though it should really be "INTEGER". 1703 ** 1704 ** This is not a problem, as the column type of "t1.col" is never 1705 ** used. When columnType() is called on the expression 1706 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1707 ** branch below. */ 1708 break; 1709 } 1710 1711 assert( pTab && pExpr->y.pTab==pTab ); 1712 if( pS ){ 1713 /* The "table" is actually a sub-select or a view in the FROM clause 1714 ** of the SELECT statement. Return the declaration type and origin 1715 ** data for the result-set column of the sub-select. 1716 */ 1717 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1718 /* If iCol is less than zero, then the expression requests the 1719 ** rowid of the sub-select or view. This expression is legal (see 1720 ** test case misc2.2.2) - it always evaluates to NULL. 1721 */ 1722 NameContext sNC; 1723 Expr *p = pS->pEList->a[iCol].pExpr; 1724 sNC.pSrcList = pS->pSrc; 1725 sNC.pNext = pNC; 1726 sNC.pParse = pNC->pParse; 1727 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1728 } 1729 }else{ 1730 /* A real table or a CTE table */ 1731 assert( !pS ); 1732 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1733 if( iCol<0 ) iCol = pTab->iPKey; 1734 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1735 if( iCol<0 ){ 1736 zType = "INTEGER"; 1737 zOrigCol = "rowid"; 1738 }else{ 1739 zOrigCol = pTab->aCol[iCol].zName; 1740 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1741 } 1742 zOrigTab = pTab->zName; 1743 if( pNC->pParse && pTab->pSchema ){ 1744 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1745 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1746 } 1747 #else 1748 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1749 if( iCol<0 ){ 1750 zType = "INTEGER"; 1751 }else{ 1752 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1753 } 1754 #endif 1755 } 1756 break; 1757 } 1758 #ifndef SQLITE_OMIT_SUBQUERY 1759 case TK_SELECT: { 1760 /* The expression is a sub-select. Return the declaration type and 1761 ** origin info for the single column in the result set of the SELECT 1762 ** statement. 1763 */ 1764 NameContext sNC; 1765 Select *pS = pExpr->x.pSelect; 1766 Expr *p = pS->pEList->a[0].pExpr; 1767 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1768 sNC.pSrcList = pS->pSrc; 1769 sNC.pNext = pNC; 1770 sNC.pParse = pNC->pParse; 1771 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1772 break; 1773 } 1774 #endif 1775 } 1776 1777 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1778 if( pzOrigDb ){ 1779 assert( pzOrigTab && pzOrigCol ); 1780 *pzOrigDb = zOrigDb; 1781 *pzOrigTab = zOrigTab; 1782 *pzOrigCol = zOrigCol; 1783 } 1784 #endif 1785 return zType; 1786 } 1787 1788 /* 1789 ** Generate code that will tell the VDBE the declaration types of columns 1790 ** in the result set. 1791 */ 1792 static void generateColumnTypes( 1793 Parse *pParse, /* Parser context */ 1794 SrcList *pTabList, /* List of tables */ 1795 ExprList *pEList /* Expressions defining the result set */ 1796 ){ 1797 #ifndef SQLITE_OMIT_DECLTYPE 1798 Vdbe *v = pParse->pVdbe; 1799 int i; 1800 NameContext sNC; 1801 sNC.pSrcList = pTabList; 1802 sNC.pParse = pParse; 1803 sNC.pNext = 0; 1804 for(i=0; i<pEList->nExpr; i++){ 1805 Expr *p = pEList->a[i].pExpr; 1806 const char *zType; 1807 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1808 const char *zOrigDb = 0; 1809 const char *zOrigTab = 0; 1810 const char *zOrigCol = 0; 1811 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1812 1813 /* The vdbe must make its own copy of the column-type and other 1814 ** column specific strings, in case the schema is reset before this 1815 ** virtual machine is deleted. 1816 */ 1817 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1818 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1819 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1820 #else 1821 zType = columnType(&sNC, p, 0, 0, 0); 1822 #endif 1823 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1824 } 1825 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1826 } 1827 1828 1829 /* 1830 ** Compute the column names for a SELECT statement. 1831 ** 1832 ** The only guarantee that SQLite makes about column names is that if the 1833 ** column has an AS clause assigning it a name, that will be the name used. 1834 ** That is the only documented guarantee. However, countless applications 1835 ** developed over the years have made baseless assumptions about column names 1836 ** and will break if those assumptions changes. Hence, use extreme caution 1837 ** when modifying this routine to avoid breaking legacy. 1838 ** 1839 ** See Also: sqlite3ColumnsFromExprList() 1840 ** 1841 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1842 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1843 ** applications should operate this way. Nevertheless, we need to support the 1844 ** other modes for legacy: 1845 ** 1846 ** short=OFF, full=OFF: Column name is the text of the expression has it 1847 ** originally appears in the SELECT statement. In 1848 ** other words, the zSpan of the result expression. 1849 ** 1850 ** short=ON, full=OFF: (This is the default setting). If the result 1851 ** refers directly to a table column, then the 1852 ** result column name is just the table column 1853 ** name: COLUMN. Otherwise use zSpan. 1854 ** 1855 ** full=ON, short=ANY: If the result refers directly to a table column, 1856 ** then the result column name with the table name 1857 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1858 */ 1859 static void generateColumnNames( 1860 Parse *pParse, /* Parser context */ 1861 Select *pSelect /* Generate column names for this SELECT statement */ 1862 ){ 1863 Vdbe *v = pParse->pVdbe; 1864 int i; 1865 Table *pTab; 1866 SrcList *pTabList; 1867 ExprList *pEList; 1868 sqlite3 *db = pParse->db; 1869 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1870 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1871 1872 #ifndef SQLITE_OMIT_EXPLAIN 1873 /* If this is an EXPLAIN, skip this step */ 1874 if( pParse->explain ){ 1875 return; 1876 } 1877 #endif 1878 1879 if( pParse->colNamesSet ) return; 1880 /* Column names are determined by the left-most term of a compound select */ 1881 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1882 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1883 pTabList = pSelect->pSrc; 1884 pEList = pSelect->pEList; 1885 assert( v!=0 ); 1886 assert( pTabList!=0 ); 1887 pParse->colNamesSet = 1; 1888 fullName = (db->flags & SQLITE_FullColNames)!=0; 1889 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1890 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1891 for(i=0; i<pEList->nExpr; i++){ 1892 Expr *p = pEList->a[i].pExpr; 1893 1894 assert( p!=0 ); 1895 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1896 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1897 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1898 /* An AS clause always takes first priority */ 1899 char *zName = pEList->a[i].zEName; 1900 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1901 }else if( srcName && p->op==TK_COLUMN ){ 1902 char *zCol; 1903 int iCol = p->iColumn; 1904 pTab = p->y.pTab; 1905 assert( pTab!=0 ); 1906 if( iCol<0 ) iCol = pTab->iPKey; 1907 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1908 if( iCol<0 ){ 1909 zCol = "rowid"; 1910 }else{ 1911 zCol = pTab->aCol[iCol].zName; 1912 } 1913 if( fullName ){ 1914 char *zName = 0; 1915 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1916 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1917 }else{ 1918 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1919 } 1920 }else{ 1921 const char *z = pEList->a[i].zEName; 1922 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1923 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1924 } 1925 } 1926 generateColumnTypes(pParse, pTabList, pEList); 1927 } 1928 1929 /* 1930 ** Given an expression list (which is really the list of expressions 1931 ** that form the result set of a SELECT statement) compute appropriate 1932 ** column names for a table that would hold the expression list. 1933 ** 1934 ** All column names will be unique. 1935 ** 1936 ** Only the column names are computed. Column.zType, Column.zColl, 1937 ** and other fields of Column are zeroed. 1938 ** 1939 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1940 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1941 ** 1942 ** The only guarantee that SQLite makes about column names is that if the 1943 ** column has an AS clause assigning it a name, that will be the name used. 1944 ** That is the only documented guarantee. However, countless applications 1945 ** developed over the years have made baseless assumptions about column names 1946 ** and will break if those assumptions changes. Hence, use extreme caution 1947 ** when modifying this routine to avoid breaking legacy. 1948 ** 1949 ** See Also: generateColumnNames() 1950 */ 1951 int sqlite3ColumnsFromExprList( 1952 Parse *pParse, /* Parsing context */ 1953 ExprList *pEList, /* Expr list from which to derive column names */ 1954 i16 *pnCol, /* Write the number of columns here */ 1955 Column **paCol /* Write the new column list here */ 1956 ){ 1957 sqlite3 *db = pParse->db; /* Database connection */ 1958 int i, j; /* Loop counters */ 1959 u32 cnt; /* Index added to make the name unique */ 1960 Column *aCol, *pCol; /* For looping over result columns */ 1961 int nCol; /* Number of columns in the result set */ 1962 char *zName; /* Column name */ 1963 int nName; /* Size of name in zName[] */ 1964 Hash ht; /* Hash table of column names */ 1965 1966 sqlite3HashInit(&ht); 1967 if( pEList ){ 1968 nCol = pEList->nExpr; 1969 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1970 testcase( aCol==0 ); 1971 if( nCol>32767 ) nCol = 32767; 1972 }else{ 1973 nCol = 0; 1974 aCol = 0; 1975 } 1976 assert( nCol==(i16)nCol ); 1977 *pnCol = nCol; 1978 *paCol = aCol; 1979 1980 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1981 /* Get an appropriate name for the column 1982 */ 1983 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1984 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1985 }else{ 1986 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1987 while( pColExpr->op==TK_DOT ){ 1988 pColExpr = pColExpr->pRight; 1989 assert( pColExpr!=0 ); 1990 } 1991 if( pColExpr->op==TK_COLUMN ){ 1992 /* For columns use the column name name */ 1993 int iCol = pColExpr->iColumn; 1994 Table *pTab = pColExpr->y.pTab; 1995 assert( pTab!=0 ); 1996 if( iCol<0 ) iCol = pTab->iPKey; 1997 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1998 }else if( pColExpr->op==TK_ID ){ 1999 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2000 zName = pColExpr->u.zToken; 2001 }else{ 2002 /* Use the original text of the column expression as its name */ 2003 zName = pEList->a[i].zEName; 2004 } 2005 } 2006 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2007 zName = sqlite3DbStrDup(db, zName); 2008 }else{ 2009 zName = sqlite3MPrintf(db,"column%d",i+1); 2010 } 2011 2012 /* Make sure the column name is unique. If the name is not unique, 2013 ** append an integer to the name so that it becomes unique. 2014 */ 2015 cnt = 0; 2016 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2017 nName = sqlite3Strlen30(zName); 2018 if( nName>0 ){ 2019 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2020 if( zName[j]==':' ) nName = j; 2021 } 2022 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2023 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2024 } 2025 pCol->zName = zName; 2026 sqlite3ColumnPropertiesFromName(0, pCol); 2027 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2028 sqlite3OomFault(db); 2029 } 2030 } 2031 sqlite3HashClear(&ht); 2032 if( db->mallocFailed ){ 2033 for(j=0; j<i; j++){ 2034 sqlite3DbFree(db, aCol[j].zName); 2035 } 2036 sqlite3DbFree(db, aCol); 2037 *paCol = 0; 2038 *pnCol = 0; 2039 return SQLITE_NOMEM_BKPT; 2040 } 2041 return SQLITE_OK; 2042 } 2043 2044 /* 2045 ** Add type and collation information to a column list based on 2046 ** a SELECT statement. 2047 ** 2048 ** The column list presumably came from selectColumnNamesFromExprList(). 2049 ** The column list has only names, not types or collations. This 2050 ** routine goes through and adds the types and collations. 2051 ** 2052 ** This routine requires that all identifiers in the SELECT 2053 ** statement be resolved. 2054 */ 2055 void sqlite3SelectAddColumnTypeAndCollation( 2056 Parse *pParse, /* Parsing contexts */ 2057 Table *pTab, /* Add column type information to this table */ 2058 Select *pSelect, /* SELECT used to determine types and collations */ 2059 char aff /* Default affinity for columns */ 2060 ){ 2061 sqlite3 *db = pParse->db; 2062 NameContext sNC; 2063 Column *pCol; 2064 CollSeq *pColl; 2065 int i; 2066 Expr *p; 2067 struct ExprList_item *a; 2068 2069 assert( pSelect!=0 ); 2070 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2071 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2072 if( db->mallocFailed ) return; 2073 memset(&sNC, 0, sizeof(sNC)); 2074 sNC.pSrcList = pSelect->pSrc; 2075 a = pSelect->pEList->a; 2076 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2077 const char *zType; 2078 int n, m; 2079 p = a[i].pExpr; 2080 zType = columnType(&sNC, p, 0, 0, 0); 2081 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2082 pCol->affinity = sqlite3ExprAffinity(p); 2083 if( zType ){ 2084 m = sqlite3Strlen30(zType); 2085 n = sqlite3Strlen30(pCol->zName); 2086 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2087 if( pCol->zName ){ 2088 memcpy(&pCol->zName[n+1], zType, m+1); 2089 pCol->colFlags |= COLFLAG_HASTYPE; 2090 } 2091 } 2092 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2093 pColl = sqlite3ExprCollSeq(pParse, p); 2094 if( pColl && pCol->zColl==0 ){ 2095 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2096 } 2097 } 2098 pTab->szTabRow = 1; /* Any non-zero value works */ 2099 } 2100 2101 /* 2102 ** Given a SELECT statement, generate a Table structure that describes 2103 ** the result set of that SELECT. 2104 */ 2105 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2106 Table *pTab; 2107 sqlite3 *db = pParse->db; 2108 u64 savedFlags; 2109 2110 savedFlags = db->flags; 2111 db->flags &= ~(u64)SQLITE_FullColNames; 2112 db->flags |= SQLITE_ShortColNames; 2113 sqlite3SelectPrep(pParse, pSelect, 0); 2114 db->flags = savedFlags; 2115 if( pParse->nErr ) return 0; 2116 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2117 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2118 if( pTab==0 ){ 2119 return 0; 2120 } 2121 pTab->nTabRef = 1; 2122 pTab->zName = 0; 2123 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2124 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2125 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2126 pTab->iPKey = -1; 2127 if( db->mallocFailed ){ 2128 sqlite3DeleteTable(db, pTab); 2129 return 0; 2130 } 2131 return pTab; 2132 } 2133 2134 /* 2135 ** Get a VDBE for the given parser context. Create a new one if necessary. 2136 ** If an error occurs, return NULL and leave a message in pParse. 2137 */ 2138 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2139 if( pParse->pVdbe ){ 2140 return pParse->pVdbe; 2141 } 2142 if( pParse->pToplevel==0 2143 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2144 ){ 2145 pParse->okConstFactor = 1; 2146 } 2147 return sqlite3VdbeCreate(pParse); 2148 } 2149 2150 2151 /* 2152 ** Compute the iLimit and iOffset fields of the SELECT based on the 2153 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2154 ** that appear in the original SQL statement after the LIMIT and OFFSET 2155 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2156 ** are the integer memory register numbers for counters used to compute 2157 ** the limit and offset. If there is no limit and/or offset, then 2158 ** iLimit and iOffset are negative. 2159 ** 2160 ** This routine changes the values of iLimit and iOffset only if 2161 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2162 ** and iOffset should have been preset to appropriate default values (zero) 2163 ** prior to calling this routine. 2164 ** 2165 ** The iOffset register (if it exists) is initialized to the value 2166 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2167 ** iOffset+1 is initialized to LIMIT+OFFSET. 2168 ** 2169 ** Only if pLimit->pLeft!=0 do the limit registers get 2170 ** redefined. The UNION ALL operator uses this property to force 2171 ** the reuse of the same limit and offset registers across multiple 2172 ** SELECT statements. 2173 */ 2174 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2175 Vdbe *v = 0; 2176 int iLimit = 0; 2177 int iOffset; 2178 int n; 2179 Expr *pLimit = p->pLimit; 2180 2181 if( p->iLimit ) return; 2182 2183 /* 2184 ** "LIMIT -1" always shows all rows. There is some 2185 ** controversy about what the correct behavior should be. 2186 ** The current implementation interprets "LIMIT 0" to mean 2187 ** no rows. 2188 */ 2189 if( pLimit ){ 2190 assert( pLimit->op==TK_LIMIT ); 2191 assert( pLimit->pLeft!=0 ); 2192 p->iLimit = iLimit = ++pParse->nMem; 2193 v = sqlite3GetVdbe(pParse); 2194 assert( v!=0 ); 2195 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2196 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2197 VdbeComment((v, "LIMIT counter")); 2198 if( n==0 ){ 2199 sqlite3VdbeGoto(v, iBreak); 2200 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2201 p->nSelectRow = sqlite3LogEst((u64)n); 2202 p->selFlags |= SF_FixedLimit; 2203 } 2204 }else{ 2205 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2206 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2207 VdbeComment((v, "LIMIT counter")); 2208 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2209 } 2210 if( pLimit->pRight ){ 2211 p->iOffset = iOffset = ++pParse->nMem; 2212 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2213 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2214 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2215 VdbeComment((v, "OFFSET counter")); 2216 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2217 VdbeComment((v, "LIMIT+OFFSET")); 2218 } 2219 } 2220 } 2221 2222 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2223 /* 2224 ** Return the appropriate collating sequence for the iCol-th column of 2225 ** the result set for the compound-select statement "p". Return NULL if 2226 ** the column has no default collating sequence. 2227 ** 2228 ** The collating sequence for the compound select is taken from the 2229 ** left-most term of the select that has a collating sequence. 2230 */ 2231 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2232 CollSeq *pRet; 2233 if( p->pPrior ){ 2234 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2235 }else{ 2236 pRet = 0; 2237 } 2238 assert( iCol>=0 ); 2239 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2240 ** have been thrown during name resolution and we would not have gotten 2241 ** this far */ 2242 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2243 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2244 } 2245 return pRet; 2246 } 2247 2248 /* 2249 ** The select statement passed as the second parameter is a compound SELECT 2250 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2251 ** structure suitable for implementing the ORDER BY. 2252 ** 2253 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2254 ** function is responsible for ensuring that this structure is eventually 2255 ** freed. 2256 */ 2257 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2258 ExprList *pOrderBy = p->pOrderBy; 2259 int nOrderBy = p->pOrderBy->nExpr; 2260 sqlite3 *db = pParse->db; 2261 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2262 if( pRet ){ 2263 int i; 2264 for(i=0; i<nOrderBy; i++){ 2265 struct ExprList_item *pItem = &pOrderBy->a[i]; 2266 Expr *pTerm = pItem->pExpr; 2267 CollSeq *pColl; 2268 2269 if( pTerm->flags & EP_Collate ){ 2270 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2271 }else{ 2272 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2273 if( pColl==0 ) pColl = db->pDfltColl; 2274 pOrderBy->a[i].pExpr = 2275 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2276 } 2277 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2278 pRet->aColl[i] = pColl; 2279 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2280 } 2281 } 2282 2283 return pRet; 2284 } 2285 2286 #ifndef SQLITE_OMIT_CTE 2287 /* 2288 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2289 ** query of the form: 2290 ** 2291 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2292 ** \___________/ \_______________/ 2293 ** p->pPrior p 2294 ** 2295 ** 2296 ** There is exactly one reference to the recursive-table in the FROM clause 2297 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2298 ** 2299 ** The setup-query runs once to generate an initial set of rows that go 2300 ** into a Queue table. Rows are extracted from the Queue table one by 2301 ** one. Each row extracted from Queue is output to pDest. Then the single 2302 ** extracted row (now in the iCurrent table) becomes the content of the 2303 ** recursive-table for a recursive-query run. The output of the recursive-query 2304 ** is added back into the Queue table. Then another row is extracted from Queue 2305 ** and the iteration continues until the Queue table is empty. 2306 ** 2307 ** If the compound query operator is UNION then no duplicate rows are ever 2308 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2309 ** that have ever been inserted into Queue and causes duplicates to be 2310 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2311 ** 2312 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2313 ** ORDER BY order and the first entry is extracted for each cycle. Without 2314 ** an ORDER BY, the Queue table is just a FIFO. 2315 ** 2316 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2317 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2318 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2319 ** with a positive value, then the first OFFSET outputs are discarded rather 2320 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2321 ** rows have been skipped. 2322 */ 2323 static void generateWithRecursiveQuery( 2324 Parse *pParse, /* Parsing context */ 2325 Select *p, /* The recursive SELECT to be coded */ 2326 SelectDest *pDest /* What to do with query results */ 2327 ){ 2328 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2329 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2330 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2331 Select *pSetup = p->pPrior; /* The setup query */ 2332 int addrTop; /* Top of the loop */ 2333 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2334 int iCurrent = 0; /* The Current table */ 2335 int regCurrent; /* Register holding Current table */ 2336 int iQueue; /* The Queue table */ 2337 int iDistinct = 0; /* To ensure unique results if UNION */ 2338 int eDest = SRT_Fifo; /* How to write to Queue */ 2339 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2340 int i; /* Loop counter */ 2341 int rc; /* Result code */ 2342 ExprList *pOrderBy; /* The ORDER BY clause */ 2343 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2344 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2345 2346 #ifndef SQLITE_OMIT_WINDOWFUNC 2347 if( p->pWin ){ 2348 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2349 return; 2350 } 2351 #endif 2352 2353 /* Obtain authorization to do a recursive query */ 2354 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2355 2356 /* Process the LIMIT and OFFSET clauses, if they exist */ 2357 addrBreak = sqlite3VdbeMakeLabel(pParse); 2358 p->nSelectRow = 320; /* 4 billion rows */ 2359 computeLimitRegisters(pParse, p, addrBreak); 2360 pLimit = p->pLimit; 2361 regLimit = p->iLimit; 2362 regOffset = p->iOffset; 2363 p->pLimit = 0; 2364 p->iLimit = p->iOffset = 0; 2365 pOrderBy = p->pOrderBy; 2366 2367 /* Locate the cursor number of the Current table */ 2368 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2369 if( pSrc->a[i].fg.isRecursive ){ 2370 iCurrent = pSrc->a[i].iCursor; 2371 break; 2372 } 2373 } 2374 2375 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2376 ** the Distinct table must be exactly one greater than Queue in order 2377 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2378 iQueue = pParse->nTab++; 2379 if( p->op==TK_UNION ){ 2380 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2381 iDistinct = pParse->nTab++; 2382 }else{ 2383 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2384 } 2385 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2386 2387 /* Allocate cursors for Current, Queue, and Distinct. */ 2388 regCurrent = ++pParse->nMem; 2389 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2390 if( pOrderBy ){ 2391 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2392 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2393 (char*)pKeyInfo, P4_KEYINFO); 2394 destQueue.pOrderBy = pOrderBy; 2395 }else{ 2396 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2397 } 2398 VdbeComment((v, "Queue table")); 2399 if( iDistinct ){ 2400 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2401 p->selFlags |= SF_UsesEphemeral; 2402 } 2403 2404 /* Detach the ORDER BY clause from the compound SELECT */ 2405 p->pOrderBy = 0; 2406 2407 /* Store the results of the setup-query in Queue. */ 2408 pSetup->pNext = 0; 2409 ExplainQueryPlan((pParse, 1, "SETUP")); 2410 rc = sqlite3Select(pParse, pSetup, &destQueue); 2411 pSetup->pNext = p; 2412 if( rc ) goto end_of_recursive_query; 2413 2414 /* Find the next row in the Queue and output that row */ 2415 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2416 2417 /* Transfer the next row in Queue over to Current */ 2418 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2419 if( pOrderBy ){ 2420 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2421 }else{ 2422 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2423 } 2424 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2425 2426 /* Output the single row in Current */ 2427 addrCont = sqlite3VdbeMakeLabel(pParse); 2428 codeOffset(v, regOffset, addrCont); 2429 selectInnerLoop(pParse, p, iCurrent, 2430 0, 0, pDest, addrCont, addrBreak); 2431 if( regLimit ){ 2432 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2433 VdbeCoverage(v); 2434 } 2435 sqlite3VdbeResolveLabel(v, addrCont); 2436 2437 /* Execute the recursive SELECT taking the single row in Current as 2438 ** the value for the recursive-table. Store the results in the Queue. 2439 */ 2440 if( p->selFlags & SF_Aggregate ){ 2441 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2442 }else{ 2443 p->pPrior = 0; 2444 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2445 sqlite3Select(pParse, p, &destQueue); 2446 assert( p->pPrior==0 ); 2447 p->pPrior = pSetup; 2448 } 2449 2450 /* Keep running the loop until the Queue is empty */ 2451 sqlite3VdbeGoto(v, addrTop); 2452 sqlite3VdbeResolveLabel(v, addrBreak); 2453 2454 end_of_recursive_query: 2455 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2456 p->pOrderBy = pOrderBy; 2457 p->pLimit = pLimit; 2458 return; 2459 } 2460 #endif /* SQLITE_OMIT_CTE */ 2461 2462 /* Forward references */ 2463 static int multiSelectOrderBy( 2464 Parse *pParse, /* Parsing context */ 2465 Select *p, /* The right-most of SELECTs to be coded */ 2466 SelectDest *pDest /* What to do with query results */ 2467 ); 2468 2469 /* 2470 ** Handle the special case of a compound-select that originates from a 2471 ** VALUES clause. By handling this as a special case, we avoid deep 2472 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2473 ** on a VALUES clause. 2474 ** 2475 ** Because the Select object originates from a VALUES clause: 2476 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2477 ** (2) All terms are UNION ALL 2478 ** (3) There is no ORDER BY clause 2479 ** 2480 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2481 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2482 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2483 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2484 */ 2485 static int multiSelectValues( 2486 Parse *pParse, /* Parsing context */ 2487 Select *p, /* The right-most of SELECTs to be coded */ 2488 SelectDest *pDest /* What to do with query results */ 2489 ){ 2490 int nRow = 1; 2491 int rc = 0; 2492 int bShowAll = p->pLimit==0; 2493 assert( p->selFlags & SF_MultiValue ); 2494 do{ 2495 assert( p->selFlags & SF_Values ); 2496 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2497 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2498 #ifndef SQLITE_OMIT_WINDOWFUNC 2499 if( p->pWin ) return -1; 2500 #endif 2501 if( p->pPrior==0 ) break; 2502 assert( p->pPrior->pNext==p ); 2503 p = p->pPrior; 2504 nRow += bShowAll; 2505 }while(1); 2506 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2507 nRow==1 ? "" : "S")); 2508 while( p ){ 2509 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2510 if( !bShowAll ) break; 2511 p->nSelectRow = nRow; 2512 p = p->pNext; 2513 } 2514 return rc; 2515 } 2516 2517 /* 2518 ** This routine is called to process a compound query form from 2519 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2520 ** INTERSECT 2521 ** 2522 ** "p" points to the right-most of the two queries. the query on the 2523 ** left is p->pPrior. The left query could also be a compound query 2524 ** in which case this routine will be called recursively. 2525 ** 2526 ** The results of the total query are to be written into a destination 2527 ** of type eDest with parameter iParm. 2528 ** 2529 ** Example 1: Consider a three-way compound SQL statement. 2530 ** 2531 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2532 ** 2533 ** This statement is parsed up as follows: 2534 ** 2535 ** SELECT c FROM t3 2536 ** | 2537 ** `-----> SELECT b FROM t2 2538 ** | 2539 ** `------> SELECT a FROM t1 2540 ** 2541 ** The arrows in the diagram above represent the Select.pPrior pointer. 2542 ** So if this routine is called with p equal to the t3 query, then 2543 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2544 ** 2545 ** Notice that because of the way SQLite parses compound SELECTs, the 2546 ** individual selects always group from left to right. 2547 */ 2548 static int multiSelect( 2549 Parse *pParse, /* Parsing context */ 2550 Select *p, /* The right-most of SELECTs to be coded */ 2551 SelectDest *pDest /* What to do with query results */ 2552 ){ 2553 int rc = SQLITE_OK; /* Success code from a subroutine */ 2554 Select *pPrior; /* Another SELECT immediately to our left */ 2555 Vdbe *v; /* Generate code to this VDBE */ 2556 SelectDest dest; /* Alternative data destination */ 2557 Select *pDelete = 0; /* Chain of simple selects to delete */ 2558 sqlite3 *db; /* Database connection */ 2559 2560 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2561 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2562 */ 2563 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2564 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2565 assert( p->selFlags & SF_Compound ); 2566 db = pParse->db; 2567 pPrior = p->pPrior; 2568 dest = *pDest; 2569 if( pPrior->pOrderBy || pPrior->pLimit ){ 2570 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2571 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2572 rc = 1; 2573 goto multi_select_end; 2574 } 2575 2576 v = sqlite3GetVdbe(pParse); 2577 assert( v!=0 ); /* The VDBE already created by calling function */ 2578 2579 /* Create the destination temporary table if necessary 2580 */ 2581 if( dest.eDest==SRT_EphemTab ){ 2582 assert( p->pEList ); 2583 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2584 dest.eDest = SRT_Table; 2585 } 2586 2587 /* Special handling for a compound-select that originates as a VALUES clause. 2588 */ 2589 if( p->selFlags & SF_MultiValue ){ 2590 rc = multiSelectValues(pParse, p, &dest); 2591 if( rc>=0 ) goto multi_select_end; 2592 rc = SQLITE_OK; 2593 } 2594 2595 /* Make sure all SELECTs in the statement have the same number of elements 2596 ** in their result sets. 2597 */ 2598 assert( p->pEList && pPrior->pEList ); 2599 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2600 2601 #ifndef SQLITE_OMIT_CTE 2602 if( p->selFlags & SF_Recursive ){ 2603 generateWithRecursiveQuery(pParse, p, &dest); 2604 }else 2605 #endif 2606 2607 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2608 */ 2609 if( p->pOrderBy ){ 2610 return multiSelectOrderBy(pParse, p, pDest); 2611 }else{ 2612 2613 #ifndef SQLITE_OMIT_EXPLAIN 2614 if( pPrior->pPrior==0 ){ 2615 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2616 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2617 } 2618 #endif 2619 2620 /* Generate code for the left and right SELECT statements. 2621 */ 2622 switch( p->op ){ 2623 case TK_ALL: { 2624 int addr = 0; 2625 int nLimit; 2626 assert( !pPrior->pLimit ); 2627 pPrior->iLimit = p->iLimit; 2628 pPrior->iOffset = p->iOffset; 2629 pPrior->pLimit = p->pLimit; 2630 rc = sqlite3Select(pParse, pPrior, &dest); 2631 p->pLimit = 0; 2632 if( rc ){ 2633 goto multi_select_end; 2634 } 2635 p->pPrior = 0; 2636 p->iLimit = pPrior->iLimit; 2637 p->iOffset = pPrior->iOffset; 2638 if( p->iLimit ){ 2639 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2640 VdbeComment((v, "Jump ahead if LIMIT reached")); 2641 if( p->iOffset ){ 2642 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2643 p->iLimit, p->iOffset+1, p->iOffset); 2644 } 2645 } 2646 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2647 rc = sqlite3Select(pParse, p, &dest); 2648 testcase( rc!=SQLITE_OK ); 2649 pDelete = p->pPrior; 2650 p->pPrior = pPrior; 2651 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2652 if( pPrior->pLimit 2653 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2654 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2655 ){ 2656 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2657 } 2658 if( addr ){ 2659 sqlite3VdbeJumpHere(v, addr); 2660 } 2661 break; 2662 } 2663 case TK_EXCEPT: 2664 case TK_UNION: { 2665 int unionTab; /* Cursor number of the temp table holding result */ 2666 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2667 int priorOp; /* The SRT_ operation to apply to prior selects */ 2668 Expr *pLimit; /* Saved values of p->nLimit */ 2669 int addr; 2670 SelectDest uniondest; 2671 2672 testcase( p->op==TK_EXCEPT ); 2673 testcase( p->op==TK_UNION ); 2674 priorOp = SRT_Union; 2675 if( dest.eDest==priorOp ){ 2676 /* We can reuse a temporary table generated by a SELECT to our 2677 ** right. 2678 */ 2679 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2680 unionTab = dest.iSDParm; 2681 }else{ 2682 /* We will need to create our own temporary table to hold the 2683 ** intermediate results. 2684 */ 2685 unionTab = pParse->nTab++; 2686 assert( p->pOrderBy==0 ); 2687 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2688 assert( p->addrOpenEphm[0] == -1 ); 2689 p->addrOpenEphm[0] = addr; 2690 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2691 assert( p->pEList ); 2692 } 2693 2694 /* Code the SELECT statements to our left 2695 */ 2696 assert( !pPrior->pOrderBy ); 2697 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2698 rc = sqlite3Select(pParse, pPrior, &uniondest); 2699 if( rc ){ 2700 goto multi_select_end; 2701 } 2702 2703 /* Code the current SELECT statement 2704 */ 2705 if( p->op==TK_EXCEPT ){ 2706 op = SRT_Except; 2707 }else{ 2708 assert( p->op==TK_UNION ); 2709 op = SRT_Union; 2710 } 2711 p->pPrior = 0; 2712 pLimit = p->pLimit; 2713 p->pLimit = 0; 2714 uniondest.eDest = op; 2715 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2716 selectOpName(p->op))); 2717 rc = sqlite3Select(pParse, p, &uniondest); 2718 testcase( rc!=SQLITE_OK ); 2719 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2720 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2721 sqlite3ExprListDelete(db, p->pOrderBy); 2722 pDelete = p->pPrior; 2723 p->pPrior = pPrior; 2724 p->pOrderBy = 0; 2725 if( p->op==TK_UNION ){ 2726 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2727 } 2728 sqlite3ExprDelete(db, p->pLimit); 2729 p->pLimit = pLimit; 2730 p->iLimit = 0; 2731 p->iOffset = 0; 2732 2733 /* Convert the data in the temporary table into whatever form 2734 ** it is that we currently need. 2735 */ 2736 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2737 assert( p->pEList || db->mallocFailed ); 2738 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2739 int iCont, iBreak, iStart; 2740 iBreak = sqlite3VdbeMakeLabel(pParse); 2741 iCont = sqlite3VdbeMakeLabel(pParse); 2742 computeLimitRegisters(pParse, p, iBreak); 2743 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2744 iStart = sqlite3VdbeCurrentAddr(v); 2745 selectInnerLoop(pParse, p, unionTab, 2746 0, 0, &dest, iCont, iBreak); 2747 sqlite3VdbeResolveLabel(v, iCont); 2748 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2749 sqlite3VdbeResolveLabel(v, iBreak); 2750 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2751 } 2752 break; 2753 } 2754 default: assert( p->op==TK_INTERSECT ); { 2755 int tab1, tab2; 2756 int iCont, iBreak, iStart; 2757 Expr *pLimit; 2758 int addr; 2759 SelectDest intersectdest; 2760 int r1; 2761 2762 /* INTERSECT is different from the others since it requires 2763 ** two temporary tables. Hence it has its own case. Begin 2764 ** by allocating the tables we will need. 2765 */ 2766 tab1 = pParse->nTab++; 2767 tab2 = pParse->nTab++; 2768 assert( p->pOrderBy==0 ); 2769 2770 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2771 assert( p->addrOpenEphm[0] == -1 ); 2772 p->addrOpenEphm[0] = addr; 2773 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2774 assert( p->pEList ); 2775 2776 /* Code the SELECTs to our left into temporary table "tab1". 2777 */ 2778 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2779 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2780 if( rc ){ 2781 goto multi_select_end; 2782 } 2783 2784 /* Code the current SELECT into temporary table "tab2" 2785 */ 2786 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2787 assert( p->addrOpenEphm[1] == -1 ); 2788 p->addrOpenEphm[1] = addr; 2789 p->pPrior = 0; 2790 pLimit = p->pLimit; 2791 p->pLimit = 0; 2792 intersectdest.iSDParm = tab2; 2793 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2794 selectOpName(p->op))); 2795 rc = sqlite3Select(pParse, p, &intersectdest); 2796 testcase( rc!=SQLITE_OK ); 2797 pDelete = p->pPrior; 2798 p->pPrior = pPrior; 2799 if( p->nSelectRow>pPrior->nSelectRow ){ 2800 p->nSelectRow = pPrior->nSelectRow; 2801 } 2802 sqlite3ExprDelete(db, p->pLimit); 2803 p->pLimit = pLimit; 2804 2805 /* Generate code to take the intersection of the two temporary 2806 ** tables. 2807 */ 2808 if( rc ) break; 2809 assert( p->pEList ); 2810 iBreak = sqlite3VdbeMakeLabel(pParse); 2811 iCont = sqlite3VdbeMakeLabel(pParse); 2812 computeLimitRegisters(pParse, p, iBreak); 2813 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2814 r1 = sqlite3GetTempReg(pParse); 2815 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2816 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2817 VdbeCoverage(v); 2818 sqlite3ReleaseTempReg(pParse, r1); 2819 selectInnerLoop(pParse, p, tab1, 2820 0, 0, &dest, iCont, iBreak); 2821 sqlite3VdbeResolveLabel(v, iCont); 2822 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2823 sqlite3VdbeResolveLabel(v, iBreak); 2824 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2825 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2826 break; 2827 } 2828 } 2829 2830 #ifndef SQLITE_OMIT_EXPLAIN 2831 if( p->pNext==0 ){ 2832 ExplainQueryPlanPop(pParse); 2833 } 2834 #endif 2835 } 2836 if( pParse->nErr ) goto multi_select_end; 2837 2838 /* Compute collating sequences used by 2839 ** temporary tables needed to implement the compound select. 2840 ** Attach the KeyInfo structure to all temporary tables. 2841 ** 2842 ** This section is run by the right-most SELECT statement only. 2843 ** SELECT statements to the left always skip this part. The right-most 2844 ** SELECT might also skip this part if it has no ORDER BY clause and 2845 ** no temp tables are required. 2846 */ 2847 if( p->selFlags & SF_UsesEphemeral ){ 2848 int i; /* Loop counter */ 2849 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2850 Select *pLoop; /* For looping through SELECT statements */ 2851 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2852 int nCol; /* Number of columns in result set */ 2853 2854 assert( p->pNext==0 ); 2855 nCol = p->pEList->nExpr; 2856 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2857 if( !pKeyInfo ){ 2858 rc = SQLITE_NOMEM_BKPT; 2859 goto multi_select_end; 2860 } 2861 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2862 *apColl = multiSelectCollSeq(pParse, p, i); 2863 if( 0==*apColl ){ 2864 *apColl = db->pDfltColl; 2865 } 2866 } 2867 2868 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2869 for(i=0; i<2; i++){ 2870 int addr = pLoop->addrOpenEphm[i]; 2871 if( addr<0 ){ 2872 /* If [0] is unused then [1] is also unused. So we can 2873 ** always safely abort as soon as the first unused slot is found */ 2874 assert( pLoop->addrOpenEphm[1]<0 ); 2875 break; 2876 } 2877 sqlite3VdbeChangeP2(v, addr, nCol); 2878 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2879 P4_KEYINFO); 2880 pLoop->addrOpenEphm[i] = -1; 2881 } 2882 } 2883 sqlite3KeyInfoUnref(pKeyInfo); 2884 } 2885 2886 multi_select_end: 2887 pDest->iSdst = dest.iSdst; 2888 pDest->nSdst = dest.nSdst; 2889 sqlite3SelectDelete(db, pDelete); 2890 return rc; 2891 } 2892 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2893 2894 /* 2895 ** Error message for when two or more terms of a compound select have different 2896 ** size result sets. 2897 */ 2898 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2899 if( p->selFlags & SF_Values ){ 2900 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2901 }else{ 2902 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2903 " do not have the same number of result columns", selectOpName(p->op)); 2904 } 2905 } 2906 2907 /* 2908 ** Code an output subroutine for a coroutine implementation of a 2909 ** SELECT statment. 2910 ** 2911 ** The data to be output is contained in pIn->iSdst. There are 2912 ** pIn->nSdst columns to be output. pDest is where the output should 2913 ** be sent. 2914 ** 2915 ** regReturn is the number of the register holding the subroutine 2916 ** return address. 2917 ** 2918 ** If regPrev>0 then it is the first register in a vector that 2919 ** records the previous output. mem[regPrev] is a flag that is false 2920 ** if there has been no previous output. If regPrev>0 then code is 2921 ** generated to suppress duplicates. pKeyInfo is used for comparing 2922 ** keys. 2923 ** 2924 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2925 ** iBreak. 2926 */ 2927 static int generateOutputSubroutine( 2928 Parse *pParse, /* Parsing context */ 2929 Select *p, /* The SELECT statement */ 2930 SelectDest *pIn, /* Coroutine supplying data */ 2931 SelectDest *pDest, /* Where to send the data */ 2932 int regReturn, /* The return address register */ 2933 int regPrev, /* Previous result register. No uniqueness if 0 */ 2934 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2935 int iBreak /* Jump here if we hit the LIMIT */ 2936 ){ 2937 Vdbe *v = pParse->pVdbe; 2938 int iContinue; 2939 int addr; 2940 2941 addr = sqlite3VdbeCurrentAddr(v); 2942 iContinue = sqlite3VdbeMakeLabel(pParse); 2943 2944 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2945 */ 2946 if( regPrev ){ 2947 int addr1, addr2; 2948 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2949 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2950 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2951 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2952 sqlite3VdbeJumpHere(v, addr1); 2953 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2954 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2955 } 2956 if( pParse->db->mallocFailed ) return 0; 2957 2958 /* Suppress the first OFFSET entries if there is an OFFSET clause 2959 */ 2960 codeOffset(v, p->iOffset, iContinue); 2961 2962 assert( pDest->eDest!=SRT_Exists ); 2963 assert( pDest->eDest!=SRT_Table ); 2964 switch( pDest->eDest ){ 2965 /* Store the result as data using a unique key. 2966 */ 2967 case SRT_EphemTab: { 2968 int r1 = sqlite3GetTempReg(pParse); 2969 int r2 = sqlite3GetTempReg(pParse); 2970 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2971 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2972 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2973 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2974 sqlite3ReleaseTempReg(pParse, r2); 2975 sqlite3ReleaseTempReg(pParse, r1); 2976 break; 2977 } 2978 2979 #ifndef SQLITE_OMIT_SUBQUERY 2980 /* If we are creating a set for an "expr IN (SELECT ...)". 2981 */ 2982 case SRT_Set: { 2983 int r1; 2984 testcase( pIn->nSdst>1 ); 2985 r1 = sqlite3GetTempReg(pParse); 2986 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2987 r1, pDest->zAffSdst, pIn->nSdst); 2988 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2989 pIn->iSdst, pIn->nSdst); 2990 sqlite3ReleaseTempReg(pParse, r1); 2991 break; 2992 } 2993 2994 /* If this is a scalar select that is part of an expression, then 2995 ** store the results in the appropriate memory cell and break out 2996 ** of the scan loop. Note that the select might return multiple columns 2997 ** if it is the RHS of a row-value IN operator. 2998 */ 2999 case SRT_Mem: { 3000 if( pParse->nErr==0 ){ 3001 testcase( pIn->nSdst>1 ); 3002 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3003 } 3004 /* The LIMIT clause will jump out of the loop for us */ 3005 break; 3006 } 3007 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3008 3009 /* The results are stored in a sequence of registers 3010 ** starting at pDest->iSdst. Then the co-routine yields. 3011 */ 3012 case SRT_Coroutine: { 3013 if( pDest->iSdst==0 ){ 3014 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3015 pDest->nSdst = pIn->nSdst; 3016 } 3017 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3018 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3019 break; 3020 } 3021 3022 /* If none of the above, then the result destination must be 3023 ** SRT_Output. This routine is never called with any other 3024 ** destination other than the ones handled above or SRT_Output. 3025 ** 3026 ** For SRT_Output, results are stored in a sequence of registers. 3027 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3028 ** return the next row of result. 3029 */ 3030 default: { 3031 assert( pDest->eDest==SRT_Output ); 3032 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3033 break; 3034 } 3035 } 3036 3037 /* Jump to the end of the loop if the LIMIT is reached. 3038 */ 3039 if( p->iLimit ){ 3040 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3041 } 3042 3043 /* Generate the subroutine return 3044 */ 3045 sqlite3VdbeResolveLabel(v, iContinue); 3046 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3047 3048 return addr; 3049 } 3050 3051 /* 3052 ** Alternative compound select code generator for cases when there 3053 ** is an ORDER BY clause. 3054 ** 3055 ** We assume a query of the following form: 3056 ** 3057 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3058 ** 3059 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3060 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3061 ** co-routines. Then run the co-routines in parallel and merge the results 3062 ** into the output. In addition to the two coroutines (called selectA and 3063 ** selectB) there are 7 subroutines: 3064 ** 3065 ** outA: Move the output of the selectA coroutine into the output 3066 ** of the compound query. 3067 ** 3068 ** outB: Move the output of the selectB coroutine into the output 3069 ** of the compound query. (Only generated for UNION and 3070 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3071 ** appears only in B.) 3072 ** 3073 ** AltB: Called when there is data from both coroutines and A<B. 3074 ** 3075 ** AeqB: Called when there is data from both coroutines and A==B. 3076 ** 3077 ** AgtB: Called when there is data from both coroutines and A>B. 3078 ** 3079 ** EofA: Called when data is exhausted from selectA. 3080 ** 3081 ** EofB: Called when data is exhausted from selectB. 3082 ** 3083 ** The implementation of the latter five subroutines depend on which 3084 ** <operator> is used: 3085 ** 3086 ** 3087 ** UNION ALL UNION EXCEPT INTERSECT 3088 ** ------------- ----------------- -------------- ----------------- 3089 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3090 ** 3091 ** AeqB: outA, nextA nextA nextA outA, nextA 3092 ** 3093 ** AgtB: outB, nextB outB, nextB nextB nextB 3094 ** 3095 ** EofA: outB, nextB outB, nextB halt halt 3096 ** 3097 ** EofB: outA, nextA outA, nextA outA, nextA halt 3098 ** 3099 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3100 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3101 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3102 ** following nextX causes a jump to the end of the select processing. 3103 ** 3104 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3105 ** within the output subroutine. The regPrev register set holds the previously 3106 ** output value. A comparison is made against this value and the output 3107 ** is skipped if the next results would be the same as the previous. 3108 ** 3109 ** The implementation plan is to implement the two coroutines and seven 3110 ** subroutines first, then put the control logic at the bottom. Like this: 3111 ** 3112 ** goto Init 3113 ** coA: coroutine for left query (A) 3114 ** coB: coroutine for right query (B) 3115 ** outA: output one row of A 3116 ** outB: output one row of B (UNION and UNION ALL only) 3117 ** EofA: ... 3118 ** EofB: ... 3119 ** AltB: ... 3120 ** AeqB: ... 3121 ** AgtB: ... 3122 ** Init: initialize coroutine registers 3123 ** yield coA 3124 ** if eof(A) goto EofA 3125 ** yield coB 3126 ** if eof(B) goto EofB 3127 ** Cmpr: Compare A, B 3128 ** Jump AltB, AeqB, AgtB 3129 ** End: ... 3130 ** 3131 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3132 ** actually called using Gosub and they do not Return. EofA and EofB loop 3133 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3134 ** and AgtB jump to either L2 or to one of EofA or EofB. 3135 */ 3136 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3137 static int multiSelectOrderBy( 3138 Parse *pParse, /* Parsing context */ 3139 Select *p, /* The right-most of SELECTs to be coded */ 3140 SelectDest *pDest /* What to do with query results */ 3141 ){ 3142 int i, j; /* Loop counters */ 3143 Select *pPrior; /* Another SELECT immediately to our left */ 3144 Vdbe *v; /* Generate code to this VDBE */ 3145 SelectDest destA; /* Destination for coroutine A */ 3146 SelectDest destB; /* Destination for coroutine B */ 3147 int regAddrA; /* Address register for select-A coroutine */ 3148 int regAddrB; /* Address register for select-B coroutine */ 3149 int addrSelectA; /* Address of the select-A coroutine */ 3150 int addrSelectB; /* Address of the select-B coroutine */ 3151 int regOutA; /* Address register for the output-A subroutine */ 3152 int regOutB; /* Address register for the output-B subroutine */ 3153 int addrOutA; /* Address of the output-A subroutine */ 3154 int addrOutB = 0; /* Address of the output-B subroutine */ 3155 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3156 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3157 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3158 int addrAltB; /* Address of the A<B subroutine */ 3159 int addrAeqB; /* Address of the A==B subroutine */ 3160 int addrAgtB; /* Address of the A>B subroutine */ 3161 int regLimitA; /* Limit register for select-A */ 3162 int regLimitB; /* Limit register for select-A */ 3163 int regPrev; /* A range of registers to hold previous output */ 3164 int savedLimit; /* Saved value of p->iLimit */ 3165 int savedOffset; /* Saved value of p->iOffset */ 3166 int labelCmpr; /* Label for the start of the merge algorithm */ 3167 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3168 int addr1; /* Jump instructions that get retargetted */ 3169 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3170 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3171 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3172 sqlite3 *db; /* Database connection */ 3173 ExprList *pOrderBy; /* The ORDER BY clause */ 3174 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3175 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3176 3177 assert( p->pOrderBy!=0 ); 3178 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3179 db = pParse->db; 3180 v = pParse->pVdbe; 3181 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3182 labelEnd = sqlite3VdbeMakeLabel(pParse); 3183 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3184 3185 3186 /* Patch up the ORDER BY clause 3187 */ 3188 op = p->op; 3189 pPrior = p->pPrior; 3190 assert( pPrior->pOrderBy==0 ); 3191 pOrderBy = p->pOrderBy; 3192 assert( pOrderBy ); 3193 nOrderBy = pOrderBy->nExpr; 3194 3195 /* For operators other than UNION ALL we have to make sure that 3196 ** the ORDER BY clause covers every term of the result set. Add 3197 ** terms to the ORDER BY clause as necessary. 3198 */ 3199 if( op!=TK_ALL ){ 3200 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3201 struct ExprList_item *pItem; 3202 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3203 assert( pItem->u.x.iOrderByCol>0 ); 3204 if( pItem->u.x.iOrderByCol==i ) break; 3205 } 3206 if( j==nOrderBy ){ 3207 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3208 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3209 pNew->flags |= EP_IntValue; 3210 pNew->u.iValue = i; 3211 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3212 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3213 } 3214 } 3215 } 3216 3217 /* Compute the comparison permutation and keyinfo that is used with 3218 ** the permutation used to determine if the next 3219 ** row of results comes from selectA or selectB. Also add explicit 3220 ** collations to the ORDER BY clause terms so that when the subqueries 3221 ** to the right and the left are evaluated, they use the correct 3222 ** collation. 3223 */ 3224 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3225 if( aPermute ){ 3226 struct ExprList_item *pItem; 3227 aPermute[0] = nOrderBy; 3228 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3229 assert( pItem->u.x.iOrderByCol>0 ); 3230 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3231 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3232 } 3233 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3234 }else{ 3235 pKeyMerge = 0; 3236 } 3237 3238 /* Reattach the ORDER BY clause to the query. 3239 */ 3240 p->pOrderBy = pOrderBy; 3241 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3242 3243 /* Allocate a range of temporary registers and the KeyInfo needed 3244 ** for the logic that removes duplicate result rows when the 3245 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3246 */ 3247 if( op==TK_ALL ){ 3248 regPrev = 0; 3249 }else{ 3250 int nExpr = p->pEList->nExpr; 3251 assert( nOrderBy>=nExpr || db->mallocFailed ); 3252 regPrev = pParse->nMem+1; 3253 pParse->nMem += nExpr+1; 3254 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3255 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3256 if( pKeyDup ){ 3257 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3258 for(i=0; i<nExpr; i++){ 3259 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3260 pKeyDup->aSortFlags[i] = 0; 3261 } 3262 } 3263 } 3264 3265 /* Separate the left and the right query from one another 3266 */ 3267 p->pPrior = 0; 3268 pPrior->pNext = 0; 3269 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3270 if( pPrior->pPrior==0 ){ 3271 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3272 } 3273 3274 /* Compute the limit registers */ 3275 computeLimitRegisters(pParse, p, labelEnd); 3276 if( p->iLimit && op==TK_ALL ){ 3277 regLimitA = ++pParse->nMem; 3278 regLimitB = ++pParse->nMem; 3279 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3280 regLimitA); 3281 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3282 }else{ 3283 regLimitA = regLimitB = 0; 3284 } 3285 sqlite3ExprDelete(db, p->pLimit); 3286 p->pLimit = 0; 3287 3288 regAddrA = ++pParse->nMem; 3289 regAddrB = ++pParse->nMem; 3290 regOutA = ++pParse->nMem; 3291 regOutB = ++pParse->nMem; 3292 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3293 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3294 3295 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3296 3297 /* Generate a coroutine to evaluate the SELECT statement to the 3298 ** left of the compound operator - the "A" select. 3299 */ 3300 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3301 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3302 VdbeComment((v, "left SELECT")); 3303 pPrior->iLimit = regLimitA; 3304 ExplainQueryPlan((pParse, 1, "LEFT")); 3305 sqlite3Select(pParse, pPrior, &destA); 3306 sqlite3VdbeEndCoroutine(v, regAddrA); 3307 sqlite3VdbeJumpHere(v, addr1); 3308 3309 /* Generate a coroutine to evaluate the SELECT statement on 3310 ** the right - the "B" select 3311 */ 3312 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3313 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3314 VdbeComment((v, "right SELECT")); 3315 savedLimit = p->iLimit; 3316 savedOffset = p->iOffset; 3317 p->iLimit = regLimitB; 3318 p->iOffset = 0; 3319 ExplainQueryPlan((pParse, 1, "RIGHT")); 3320 sqlite3Select(pParse, p, &destB); 3321 p->iLimit = savedLimit; 3322 p->iOffset = savedOffset; 3323 sqlite3VdbeEndCoroutine(v, regAddrB); 3324 3325 /* Generate a subroutine that outputs the current row of the A 3326 ** select as the next output row of the compound select. 3327 */ 3328 VdbeNoopComment((v, "Output routine for A")); 3329 addrOutA = generateOutputSubroutine(pParse, 3330 p, &destA, pDest, regOutA, 3331 regPrev, pKeyDup, labelEnd); 3332 3333 /* Generate a subroutine that outputs the current row of the B 3334 ** select as the next output row of the compound select. 3335 */ 3336 if( op==TK_ALL || op==TK_UNION ){ 3337 VdbeNoopComment((v, "Output routine for B")); 3338 addrOutB = generateOutputSubroutine(pParse, 3339 p, &destB, pDest, regOutB, 3340 regPrev, pKeyDup, labelEnd); 3341 } 3342 sqlite3KeyInfoUnref(pKeyDup); 3343 3344 /* Generate a subroutine to run when the results from select A 3345 ** are exhausted and only data in select B remains. 3346 */ 3347 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3348 addrEofA_noB = addrEofA = labelEnd; 3349 }else{ 3350 VdbeNoopComment((v, "eof-A subroutine")); 3351 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3352 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3353 VdbeCoverage(v); 3354 sqlite3VdbeGoto(v, addrEofA); 3355 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3356 } 3357 3358 /* Generate a subroutine to run when the results from select B 3359 ** are exhausted and only data in select A remains. 3360 */ 3361 if( op==TK_INTERSECT ){ 3362 addrEofB = addrEofA; 3363 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3364 }else{ 3365 VdbeNoopComment((v, "eof-B subroutine")); 3366 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3367 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3368 sqlite3VdbeGoto(v, addrEofB); 3369 } 3370 3371 /* Generate code to handle the case of A<B 3372 */ 3373 VdbeNoopComment((v, "A-lt-B subroutine")); 3374 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3375 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3376 sqlite3VdbeGoto(v, labelCmpr); 3377 3378 /* Generate code to handle the case of A==B 3379 */ 3380 if( op==TK_ALL ){ 3381 addrAeqB = addrAltB; 3382 }else if( op==TK_INTERSECT ){ 3383 addrAeqB = addrAltB; 3384 addrAltB++; 3385 }else{ 3386 VdbeNoopComment((v, "A-eq-B subroutine")); 3387 addrAeqB = 3388 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3389 sqlite3VdbeGoto(v, labelCmpr); 3390 } 3391 3392 /* Generate code to handle the case of A>B 3393 */ 3394 VdbeNoopComment((v, "A-gt-B subroutine")); 3395 addrAgtB = sqlite3VdbeCurrentAddr(v); 3396 if( op==TK_ALL || op==TK_UNION ){ 3397 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3398 } 3399 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3400 sqlite3VdbeGoto(v, labelCmpr); 3401 3402 /* This code runs once to initialize everything. 3403 */ 3404 sqlite3VdbeJumpHere(v, addr1); 3405 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3406 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3407 3408 /* Implement the main merge loop 3409 */ 3410 sqlite3VdbeResolveLabel(v, labelCmpr); 3411 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3412 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3413 (char*)pKeyMerge, P4_KEYINFO); 3414 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3415 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3416 3417 /* Jump to the this point in order to terminate the query. 3418 */ 3419 sqlite3VdbeResolveLabel(v, labelEnd); 3420 3421 /* Reassembly the compound query so that it will be freed correctly 3422 ** by the calling function */ 3423 if( p->pPrior ){ 3424 sqlite3SelectDelete(db, p->pPrior); 3425 } 3426 p->pPrior = pPrior; 3427 pPrior->pNext = p; 3428 3429 /*** TBD: Insert subroutine calls to close cursors on incomplete 3430 **** subqueries ****/ 3431 ExplainQueryPlanPop(pParse); 3432 return pParse->nErr!=0; 3433 } 3434 #endif 3435 3436 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3437 3438 /* An instance of the SubstContext object describes an substitution edit 3439 ** to be performed on a parse tree. 3440 ** 3441 ** All references to columns in table iTable are to be replaced by corresponding 3442 ** expressions in pEList. 3443 */ 3444 typedef struct SubstContext { 3445 Parse *pParse; /* The parsing context */ 3446 int iTable; /* Replace references to this table */ 3447 int iNewTable; /* New table number */ 3448 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3449 ExprList *pEList; /* Replacement expressions */ 3450 } SubstContext; 3451 3452 /* Forward Declarations */ 3453 static void substExprList(SubstContext*, ExprList*); 3454 static void substSelect(SubstContext*, Select*, int); 3455 3456 /* 3457 ** Scan through the expression pExpr. Replace every reference to 3458 ** a column in table number iTable with a copy of the iColumn-th 3459 ** entry in pEList. (But leave references to the ROWID column 3460 ** unchanged.) 3461 ** 3462 ** This routine is part of the flattening procedure. A subquery 3463 ** whose result set is defined by pEList appears as entry in the 3464 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3465 ** FORM clause entry is iTable. This routine makes the necessary 3466 ** changes to pExpr so that it refers directly to the source table 3467 ** of the subquery rather the result set of the subquery. 3468 */ 3469 static Expr *substExpr( 3470 SubstContext *pSubst, /* Description of the substitution */ 3471 Expr *pExpr /* Expr in which substitution occurs */ 3472 ){ 3473 if( pExpr==0 ) return 0; 3474 if( ExprHasProperty(pExpr, EP_FromJoin) 3475 && pExpr->iRightJoinTable==pSubst->iTable 3476 ){ 3477 pExpr->iRightJoinTable = pSubst->iNewTable; 3478 } 3479 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3480 if( pExpr->iColumn<0 ){ 3481 pExpr->op = TK_NULL; 3482 }else{ 3483 Expr *pNew; 3484 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3485 Expr ifNullRow; 3486 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3487 assert( pExpr->pRight==0 ); 3488 if( sqlite3ExprIsVector(pCopy) ){ 3489 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3490 }else{ 3491 sqlite3 *db = pSubst->pParse->db; 3492 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3493 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3494 ifNullRow.op = TK_IF_NULL_ROW; 3495 ifNullRow.pLeft = pCopy; 3496 ifNullRow.iTable = pSubst->iNewTable; 3497 pCopy = &ifNullRow; 3498 } 3499 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3500 pNew = sqlite3ExprDup(db, pCopy, 0); 3501 if( pNew && pSubst->isLeftJoin ){ 3502 ExprSetProperty(pNew, EP_CanBeNull); 3503 } 3504 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3505 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3506 ExprSetProperty(pNew, EP_FromJoin); 3507 } 3508 sqlite3ExprDelete(db, pExpr); 3509 pExpr = pNew; 3510 3511 /* Ensure that the expression now has an implicit collation sequence, 3512 ** just as it did when it was a column of a view or sub-query. */ 3513 if( pExpr ){ 3514 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3515 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3516 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3517 (pColl ? pColl->zName : "BINARY") 3518 ); 3519 } 3520 ExprClearProperty(pExpr, EP_Collate); 3521 } 3522 } 3523 } 3524 }else{ 3525 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3526 pExpr->iTable = pSubst->iNewTable; 3527 } 3528 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3529 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3530 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3531 substSelect(pSubst, pExpr->x.pSelect, 1); 3532 }else{ 3533 substExprList(pSubst, pExpr->x.pList); 3534 } 3535 #ifndef SQLITE_OMIT_WINDOWFUNC 3536 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3537 Window *pWin = pExpr->y.pWin; 3538 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3539 substExprList(pSubst, pWin->pPartition); 3540 substExprList(pSubst, pWin->pOrderBy); 3541 } 3542 #endif 3543 } 3544 return pExpr; 3545 } 3546 static void substExprList( 3547 SubstContext *pSubst, /* Description of the substitution */ 3548 ExprList *pList /* List to scan and in which to make substitutes */ 3549 ){ 3550 int i; 3551 if( pList==0 ) return; 3552 for(i=0; i<pList->nExpr; i++){ 3553 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3554 } 3555 } 3556 static void substSelect( 3557 SubstContext *pSubst, /* Description of the substitution */ 3558 Select *p, /* SELECT statement in which to make substitutions */ 3559 int doPrior /* Do substitutes on p->pPrior too */ 3560 ){ 3561 SrcList *pSrc; 3562 struct SrcList_item *pItem; 3563 int i; 3564 if( !p ) return; 3565 do{ 3566 substExprList(pSubst, p->pEList); 3567 substExprList(pSubst, p->pGroupBy); 3568 substExprList(pSubst, p->pOrderBy); 3569 p->pHaving = substExpr(pSubst, p->pHaving); 3570 p->pWhere = substExpr(pSubst, p->pWhere); 3571 pSrc = p->pSrc; 3572 assert( pSrc!=0 ); 3573 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3574 substSelect(pSubst, pItem->pSelect, 1); 3575 if( pItem->fg.isTabFunc ){ 3576 substExprList(pSubst, pItem->u1.pFuncArg); 3577 } 3578 } 3579 }while( doPrior && (p = p->pPrior)!=0 ); 3580 } 3581 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3582 3583 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3584 /* 3585 ** This routine attempts to flatten subqueries as a performance optimization. 3586 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3587 ** 3588 ** To understand the concept of flattening, consider the following 3589 ** query: 3590 ** 3591 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3592 ** 3593 ** The default way of implementing this query is to execute the 3594 ** subquery first and store the results in a temporary table, then 3595 ** run the outer query on that temporary table. This requires two 3596 ** passes over the data. Furthermore, because the temporary table 3597 ** has no indices, the WHERE clause on the outer query cannot be 3598 ** optimized. 3599 ** 3600 ** This routine attempts to rewrite queries such as the above into 3601 ** a single flat select, like this: 3602 ** 3603 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3604 ** 3605 ** The code generated for this simplification gives the same result 3606 ** but only has to scan the data once. And because indices might 3607 ** exist on the table t1, a complete scan of the data might be 3608 ** avoided. 3609 ** 3610 ** Flattening is subject to the following constraints: 3611 ** 3612 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3613 ** The subquery and the outer query cannot both be aggregates. 3614 ** 3615 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3616 ** (2) If the subquery is an aggregate then 3617 ** (2a) the outer query must not be a join and 3618 ** (2b) the outer query must not use subqueries 3619 ** other than the one FROM-clause subquery that is a candidate 3620 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3621 ** from 2015-02-09.) 3622 ** 3623 ** (3) If the subquery is the right operand of a LEFT JOIN then 3624 ** (3a) the subquery may not be a join and 3625 ** (3b) the FROM clause of the subquery may not contain a virtual 3626 ** table and 3627 ** (3c) the outer query may not be an aggregate. 3628 ** (3d) the outer query may not be DISTINCT. 3629 ** 3630 ** (4) The subquery can not be DISTINCT. 3631 ** 3632 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3633 ** sub-queries that were excluded from this optimization. Restriction 3634 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3635 ** 3636 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3637 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3638 ** 3639 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3640 ** A FROM clause, consider adding a FROM clause with the special 3641 ** table sqlite_once that consists of a single row containing a 3642 ** single NULL. 3643 ** 3644 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3645 ** 3646 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3647 ** 3648 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3649 ** accidently carried the comment forward until 2014-09-15. Original 3650 ** constraint: "If the subquery is aggregate then the outer query 3651 ** may not use LIMIT." 3652 ** 3653 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3654 ** 3655 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3656 ** a separate restriction deriving from ticket #350. 3657 ** 3658 ** (13) The subquery and outer query may not both use LIMIT. 3659 ** 3660 ** (14) The subquery may not use OFFSET. 3661 ** 3662 ** (15) If the outer query is part of a compound select, then the 3663 ** subquery may not use LIMIT. 3664 ** (See ticket #2339 and ticket [02a8e81d44]). 3665 ** 3666 ** (16) If the outer query is aggregate, then the subquery may not 3667 ** use ORDER BY. (Ticket #2942) This used to not matter 3668 ** until we introduced the group_concat() function. 3669 ** 3670 ** (17) If the subquery is a compound select, then 3671 ** (17a) all compound operators must be a UNION ALL, and 3672 ** (17b) no terms within the subquery compound may be aggregate 3673 ** or DISTINCT, and 3674 ** (17c) every term within the subquery compound must have a FROM clause 3675 ** (17d) the outer query may not be 3676 ** (17d1) aggregate, or 3677 ** (17d2) DISTINCT, or 3678 ** (17d3) a join. 3679 ** (17e) the subquery may not contain window functions 3680 ** 3681 ** The parent and sub-query may contain WHERE clauses. Subject to 3682 ** rules (11), (13) and (14), they may also contain ORDER BY, 3683 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3684 ** operator other than UNION ALL because all the other compound 3685 ** operators have an implied DISTINCT which is disallowed by 3686 ** restriction (4). 3687 ** 3688 ** Also, each component of the sub-query must return the same number 3689 ** of result columns. This is actually a requirement for any compound 3690 ** SELECT statement, but all the code here does is make sure that no 3691 ** such (illegal) sub-query is flattened. The caller will detect the 3692 ** syntax error and return a detailed message. 3693 ** 3694 ** (18) If the sub-query is a compound select, then all terms of the 3695 ** ORDER BY clause of the parent must be simple references to 3696 ** columns of the sub-query. 3697 ** 3698 ** (19) If the subquery uses LIMIT then the outer query may not 3699 ** have a WHERE clause. 3700 ** 3701 ** (20) If the sub-query is a compound select, then it must not use 3702 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3703 ** somewhat by saying that the terms of the ORDER BY clause must 3704 ** appear as unmodified result columns in the outer query. But we 3705 ** have other optimizations in mind to deal with that case. 3706 ** 3707 ** (21) If the subquery uses LIMIT then the outer query may not be 3708 ** DISTINCT. (See ticket [752e1646fc]). 3709 ** 3710 ** (22) The subquery may not be a recursive CTE. 3711 ** 3712 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3713 ** a recursive CTE, then the sub-query may not be a compound query. 3714 ** This restriction is because transforming the 3715 ** parent to a compound query confuses the code that handles 3716 ** recursive queries in multiSelect(). 3717 ** 3718 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3719 ** The subquery may not be an aggregate that uses the built-in min() or 3720 ** or max() functions. (Without this restriction, a query like: 3721 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3722 ** return the value X for which Y was maximal.) 3723 ** 3724 ** (25) If either the subquery or the parent query contains a window 3725 ** function in the select list or ORDER BY clause, flattening 3726 ** is not attempted. 3727 ** 3728 ** 3729 ** In this routine, the "p" parameter is a pointer to the outer query. 3730 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3731 ** uses aggregates. 3732 ** 3733 ** If flattening is not attempted, this routine is a no-op and returns 0. 3734 ** If flattening is attempted this routine returns 1. 3735 ** 3736 ** All of the expression analysis must occur on both the outer query and 3737 ** the subquery before this routine runs. 3738 */ 3739 static int flattenSubquery( 3740 Parse *pParse, /* Parsing context */ 3741 Select *p, /* The parent or outer SELECT statement */ 3742 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3743 int isAgg /* True if outer SELECT uses aggregate functions */ 3744 ){ 3745 const char *zSavedAuthContext = pParse->zAuthContext; 3746 Select *pParent; /* Current UNION ALL term of the other query */ 3747 Select *pSub; /* The inner query or "subquery" */ 3748 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3749 SrcList *pSrc; /* The FROM clause of the outer query */ 3750 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3751 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3752 int iNewParent = -1;/* Replacement table for iParent */ 3753 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3754 int i; /* Loop counter */ 3755 Expr *pWhere; /* The WHERE clause */ 3756 struct SrcList_item *pSubitem; /* The subquery */ 3757 sqlite3 *db = pParse->db; 3758 3759 /* Check to see if flattening is permitted. Return 0 if not. 3760 */ 3761 assert( p!=0 ); 3762 assert( p->pPrior==0 ); 3763 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3764 pSrc = p->pSrc; 3765 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3766 pSubitem = &pSrc->a[iFrom]; 3767 iParent = pSubitem->iCursor; 3768 pSub = pSubitem->pSelect; 3769 assert( pSub!=0 ); 3770 3771 #ifndef SQLITE_OMIT_WINDOWFUNC 3772 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3773 #endif 3774 3775 pSubSrc = pSub->pSrc; 3776 assert( pSubSrc ); 3777 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3778 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3779 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3780 ** became arbitrary expressions, we were forced to add restrictions (13) 3781 ** and (14). */ 3782 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3783 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3784 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3785 return 0; /* Restriction (15) */ 3786 } 3787 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3788 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3789 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3790 return 0; /* Restrictions (8)(9) */ 3791 } 3792 if( p->pOrderBy && pSub->pOrderBy ){ 3793 return 0; /* Restriction (11) */ 3794 } 3795 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3796 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3797 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3798 return 0; /* Restriction (21) */ 3799 } 3800 if( pSub->selFlags & (SF_Recursive) ){ 3801 return 0; /* Restrictions (22) */ 3802 } 3803 3804 /* 3805 ** If the subquery is the right operand of a LEFT JOIN, then the 3806 ** subquery may not be a join itself (3a). Example of why this is not 3807 ** allowed: 3808 ** 3809 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3810 ** 3811 ** If we flatten the above, we would get 3812 ** 3813 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3814 ** 3815 ** which is not at all the same thing. 3816 ** 3817 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3818 ** query cannot be an aggregate. (3c) This is an artifact of the way 3819 ** aggregates are processed - there is no mechanism to determine if 3820 ** the LEFT JOIN table should be all-NULL. 3821 ** 3822 ** See also tickets #306, #350, and #3300. 3823 */ 3824 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3825 isLeftJoin = 1; 3826 if( pSubSrc->nSrc>1 /* (3a) */ 3827 || isAgg /* (3b) */ 3828 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3829 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3830 ){ 3831 return 0; 3832 } 3833 } 3834 #ifdef SQLITE_EXTRA_IFNULLROW 3835 else if( iFrom>0 && !isAgg ){ 3836 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3837 ** every reference to any result column from subquery in a join, even 3838 ** though they are not necessary. This will stress-test the OP_IfNullRow 3839 ** opcode. */ 3840 isLeftJoin = -1; 3841 } 3842 #endif 3843 3844 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3845 ** use only the UNION ALL operator. And none of the simple select queries 3846 ** that make up the compound SELECT are allowed to be aggregate or distinct 3847 ** queries. 3848 */ 3849 if( pSub->pPrior ){ 3850 if( pSub->pOrderBy ){ 3851 return 0; /* Restriction (20) */ 3852 } 3853 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3854 return 0; /* (17d1), (17d2), or (17d3) */ 3855 } 3856 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3857 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3858 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3859 assert( pSub->pSrc!=0 ); 3860 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3861 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3862 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3863 || pSub1->pSrc->nSrc<1 /* (17c) */ 3864 #ifndef SQLITE_OMIT_WINDOWFUNC 3865 || pSub1->pWin /* (17e) */ 3866 #endif 3867 ){ 3868 return 0; 3869 } 3870 testcase( pSub1->pSrc->nSrc>1 ); 3871 } 3872 3873 /* Restriction (18). */ 3874 if( p->pOrderBy ){ 3875 int ii; 3876 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3877 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3878 } 3879 } 3880 } 3881 3882 /* Ex-restriction (23): 3883 ** The only way that the recursive part of a CTE can contain a compound 3884 ** subquery is for the subquery to be one term of a join. But if the 3885 ** subquery is a join, then the flattening has already been stopped by 3886 ** restriction (17d3) 3887 */ 3888 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3889 3890 /***** If we reach this point, flattening is permitted. *****/ 3891 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3892 pSub->selId, pSub, iFrom)); 3893 3894 /* Authorize the subquery */ 3895 pParse->zAuthContext = pSubitem->zName; 3896 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3897 testcase( i==SQLITE_DENY ); 3898 pParse->zAuthContext = zSavedAuthContext; 3899 3900 /* If the sub-query is a compound SELECT statement, then (by restrictions 3901 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3902 ** be of the form: 3903 ** 3904 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3905 ** 3906 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3907 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3908 ** OFFSET clauses and joins them to the left-hand-side of the original 3909 ** using UNION ALL operators. In this case N is the number of simple 3910 ** select statements in the compound sub-query. 3911 ** 3912 ** Example: 3913 ** 3914 ** SELECT a+1 FROM ( 3915 ** SELECT x FROM tab 3916 ** UNION ALL 3917 ** SELECT y FROM tab 3918 ** UNION ALL 3919 ** SELECT abs(z*2) FROM tab2 3920 ** ) WHERE a!=5 ORDER BY 1 3921 ** 3922 ** Transformed into: 3923 ** 3924 ** SELECT x+1 FROM tab WHERE x+1!=5 3925 ** UNION ALL 3926 ** SELECT y+1 FROM tab WHERE y+1!=5 3927 ** UNION ALL 3928 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3929 ** ORDER BY 1 3930 ** 3931 ** We call this the "compound-subquery flattening". 3932 */ 3933 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3934 Select *pNew; 3935 ExprList *pOrderBy = p->pOrderBy; 3936 Expr *pLimit = p->pLimit; 3937 Select *pPrior = p->pPrior; 3938 p->pOrderBy = 0; 3939 p->pSrc = 0; 3940 p->pPrior = 0; 3941 p->pLimit = 0; 3942 pNew = sqlite3SelectDup(db, p, 0); 3943 p->pLimit = pLimit; 3944 p->pOrderBy = pOrderBy; 3945 p->pSrc = pSrc; 3946 p->op = TK_ALL; 3947 if( pNew==0 ){ 3948 p->pPrior = pPrior; 3949 }else{ 3950 pNew->pPrior = pPrior; 3951 if( pPrior ) pPrior->pNext = pNew; 3952 pNew->pNext = p; 3953 p->pPrior = pNew; 3954 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3955 " creates %u as peer\n",pNew->selId)); 3956 } 3957 if( db->mallocFailed ) return 1; 3958 } 3959 3960 /* Begin flattening the iFrom-th entry of the FROM clause 3961 ** in the outer query. 3962 */ 3963 pSub = pSub1 = pSubitem->pSelect; 3964 3965 /* Delete the transient table structure associated with the 3966 ** subquery 3967 */ 3968 sqlite3DbFree(db, pSubitem->zDatabase); 3969 sqlite3DbFree(db, pSubitem->zName); 3970 sqlite3DbFree(db, pSubitem->zAlias); 3971 pSubitem->zDatabase = 0; 3972 pSubitem->zName = 0; 3973 pSubitem->zAlias = 0; 3974 pSubitem->pSelect = 0; 3975 3976 /* Defer deleting the Table object associated with the 3977 ** subquery until code generation is 3978 ** complete, since there may still exist Expr.pTab entries that 3979 ** refer to the subquery even after flattening. Ticket #3346. 3980 ** 3981 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3982 */ 3983 if( ALWAYS(pSubitem->pTab!=0) ){ 3984 Table *pTabToDel = pSubitem->pTab; 3985 if( pTabToDel->nTabRef==1 ){ 3986 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3987 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3988 pToplevel->pZombieTab = pTabToDel; 3989 }else{ 3990 pTabToDel->nTabRef--; 3991 } 3992 pSubitem->pTab = 0; 3993 } 3994 3995 /* The following loop runs once for each term in a compound-subquery 3996 ** flattening (as described above). If we are doing a different kind 3997 ** of flattening - a flattening other than a compound-subquery flattening - 3998 ** then this loop only runs once. 3999 ** 4000 ** This loop moves all of the FROM elements of the subquery into the 4001 ** the FROM clause of the outer query. Before doing this, remember 4002 ** the cursor number for the original outer query FROM element in 4003 ** iParent. The iParent cursor will never be used. Subsequent code 4004 ** will scan expressions looking for iParent references and replace 4005 ** those references with expressions that resolve to the subquery FROM 4006 ** elements we are now copying in. 4007 */ 4008 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4009 int nSubSrc; 4010 u8 jointype = 0; 4011 assert( pSub!=0 ); 4012 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4013 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4014 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4015 4016 if( pSrc ){ 4017 assert( pParent==p ); /* First time through the loop */ 4018 jointype = pSubitem->fg.jointype; 4019 }else{ 4020 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4021 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4022 if( pSrc==0 ) break; 4023 pParent->pSrc = pSrc; 4024 } 4025 4026 /* The subquery uses a single slot of the FROM clause of the outer 4027 ** query. If the subquery has more than one element in its FROM clause, 4028 ** then expand the outer query to make space for it to hold all elements 4029 ** of the subquery. 4030 ** 4031 ** Example: 4032 ** 4033 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4034 ** 4035 ** The outer query has 3 slots in its FROM clause. One slot of the 4036 ** outer query (the middle slot) is used by the subquery. The next 4037 ** block of code will expand the outer query FROM clause to 4 slots. 4038 ** The middle slot is expanded to two slots in order to make space 4039 ** for the two elements in the FROM clause of the subquery. 4040 */ 4041 if( nSubSrc>1 ){ 4042 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4043 if( pSrc==0 ) break; 4044 pParent->pSrc = pSrc; 4045 } 4046 4047 /* Transfer the FROM clause terms from the subquery into the 4048 ** outer query. 4049 */ 4050 for(i=0; i<nSubSrc; i++){ 4051 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4052 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4053 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4054 iNewParent = pSubSrc->a[i].iCursor; 4055 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4056 } 4057 pSrc->a[iFrom].fg.jointype = jointype; 4058 4059 /* Now begin substituting subquery result set expressions for 4060 ** references to the iParent in the outer query. 4061 ** 4062 ** Example: 4063 ** 4064 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4065 ** \ \_____________ subquery __________/ / 4066 ** \_____________________ outer query ______________________________/ 4067 ** 4068 ** We look at every expression in the outer query and every place we see 4069 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4070 */ 4071 if( pSub->pOrderBy ){ 4072 /* At this point, any non-zero iOrderByCol values indicate that the 4073 ** ORDER BY column expression is identical to the iOrderByCol'th 4074 ** expression returned by SELECT statement pSub. Since these values 4075 ** do not necessarily correspond to columns in SELECT statement pParent, 4076 ** zero them before transfering the ORDER BY clause. 4077 ** 4078 ** Not doing this may cause an error if a subsequent call to this 4079 ** function attempts to flatten a compound sub-query into pParent 4080 ** (the only way this can happen is if the compound sub-query is 4081 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4082 ExprList *pOrderBy = pSub->pOrderBy; 4083 for(i=0; i<pOrderBy->nExpr; i++){ 4084 pOrderBy->a[i].u.x.iOrderByCol = 0; 4085 } 4086 assert( pParent->pOrderBy==0 ); 4087 pParent->pOrderBy = pOrderBy; 4088 pSub->pOrderBy = 0; 4089 } 4090 pWhere = pSub->pWhere; 4091 pSub->pWhere = 0; 4092 if( isLeftJoin>0 ){ 4093 sqlite3SetJoinExpr(pWhere, iNewParent); 4094 } 4095 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4096 if( db->mallocFailed==0 ){ 4097 SubstContext x; 4098 x.pParse = pParse; 4099 x.iTable = iParent; 4100 x.iNewTable = iNewParent; 4101 x.isLeftJoin = isLeftJoin; 4102 x.pEList = pSub->pEList; 4103 substSelect(&x, pParent, 0); 4104 } 4105 4106 /* The flattened query is a compound if either the inner or the 4107 ** outer query is a compound. */ 4108 pParent->selFlags |= pSub->selFlags & SF_Compound; 4109 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4110 4111 /* 4112 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4113 ** 4114 ** One is tempted to try to add a and b to combine the limits. But this 4115 ** does not work if either limit is negative. 4116 */ 4117 if( pSub->pLimit ){ 4118 pParent->pLimit = pSub->pLimit; 4119 pSub->pLimit = 0; 4120 } 4121 } 4122 4123 /* Finially, delete what is left of the subquery and return 4124 ** success. 4125 */ 4126 sqlite3SelectDelete(db, pSub1); 4127 4128 #if SELECTTRACE_ENABLED 4129 if( sqlite3SelectTrace & 0x100 ){ 4130 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4131 sqlite3TreeViewSelect(0, p, 0); 4132 } 4133 #endif 4134 4135 return 1; 4136 } 4137 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4138 4139 /* 4140 ** A structure to keep track of all of the column values that are fixed to 4141 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4142 */ 4143 typedef struct WhereConst WhereConst; 4144 struct WhereConst { 4145 Parse *pParse; /* Parsing context */ 4146 int nConst; /* Number for COLUMN=CONSTANT terms */ 4147 int nChng; /* Number of times a constant is propagated */ 4148 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4149 }; 4150 4151 /* 4152 ** Add a new entry to the pConst object. Except, do not add duplicate 4153 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4154 ** 4155 ** The caller guarantees the pColumn is a column and pValue is a constant. 4156 ** This routine has to do some additional checks before completing the 4157 ** insert. 4158 */ 4159 static void constInsert( 4160 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4161 Expr *pColumn, /* The COLUMN part of the constraint */ 4162 Expr *pValue, /* The VALUE part of the constraint */ 4163 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4164 ){ 4165 int i; 4166 assert( pColumn->op==TK_COLUMN ); 4167 assert( sqlite3ExprIsConstant(pValue) ); 4168 4169 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4170 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4171 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4172 return; 4173 } 4174 4175 /* 2018-10-25 ticket [cf5ed20f] 4176 ** Make sure the same pColumn is not inserted more than once */ 4177 for(i=0; i<pConst->nConst; i++){ 4178 const Expr *pE2 = pConst->apExpr[i*2]; 4179 assert( pE2->op==TK_COLUMN ); 4180 if( pE2->iTable==pColumn->iTable 4181 && pE2->iColumn==pColumn->iColumn 4182 ){ 4183 return; /* Already present. Return without doing anything. */ 4184 } 4185 } 4186 4187 pConst->nConst++; 4188 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4189 pConst->nConst*2*sizeof(Expr*)); 4190 if( pConst->apExpr==0 ){ 4191 pConst->nConst = 0; 4192 }else{ 4193 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4194 pConst->apExpr[pConst->nConst*2-1] = pValue; 4195 } 4196 } 4197 4198 /* 4199 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4200 ** is a constant expression and where the term must be true because it 4201 ** is part of the AND-connected terms of the expression. For each term 4202 ** found, add it to the pConst structure. 4203 */ 4204 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4205 Expr *pRight, *pLeft; 4206 if( pExpr==0 ) return; 4207 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4208 if( pExpr->op==TK_AND ){ 4209 findConstInWhere(pConst, pExpr->pRight); 4210 findConstInWhere(pConst, pExpr->pLeft); 4211 return; 4212 } 4213 if( pExpr->op!=TK_EQ ) return; 4214 pRight = pExpr->pRight; 4215 pLeft = pExpr->pLeft; 4216 assert( pRight!=0 ); 4217 assert( pLeft!=0 ); 4218 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4219 constInsert(pConst,pRight,pLeft,pExpr); 4220 } 4221 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4222 constInsert(pConst,pLeft,pRight,pExpr); 4223 } 4224 } 4225 4226 /* 4227 ** This is a Walker expression callback. pExpr is a candidate expression 4228 ** to be replaced by a value. If pExpr is equivalent to one of the 4229 ** columns named in pWalker->u.pConst, then overwrite it with its 4230 ** corresponding value. 4231 */ 4232 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4233 int i; 4234 WhereConst *pConst; 4235 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4236 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4237 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4238 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4239 return WRC_Continue; 4240 } 4241 pConst = pWalker->u.pConst; 4242 for(i=0; i<pConst->nConst; i++){ 4243 Expr *pColumn = pConst->apExpr[i*2]; 4244 if( pColumn==pExpr ) continue; 4245 if( pColumn->iTable!=pExpr->iTable ) continue; 4246 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4247 /* A match is found. Add the EP_FixedCol property */ 4248 pConst->nChng++; 4249 ExprClearProperty(pExpr, EP_Leaf); 4250 ExprSetProperty(pExpr, EP_FixedCol); 4251 assert( pExpr->pLeft==0 ); 4252 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4253 break; 4254 } 4255 return WRC_Prune; 4256 } 4257 4258 /* 4259 ** The WHERE-clause constant propagation optimization. 4260 ** 4261 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4262 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4263 ** part of a ON clause from a LEFT JOIN, then throughout the query 4264 ** replace all other occurrences of COLUMN with CONSTANT. 4265 ** 4266 ** For example, the query: 4267 ** 4268 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4269 ** 4270 ** Is transformed into 4271 ** 4272 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4273 ** 4274 ** Return true if any transformations where made and false if not. 4275 ** 4276 ** Implementation note: Constant propagation is tricky due to affinity 4277 ** and collating sequence interactions. Consider this example: 4278 ** 4279 ** CREATE TABLE t1(a INT,b TEXT); 4280 ** INSERT INTO t1 VALUES(123,'0123'); 4281 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4282 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4283 ** 4284 ** The two SELECT statements above should return different answers. b=a 4285 ** is alway true because the comparison uses numeric affinity, but b=123 4286 ** is false because it uses text affinity and '0123' is not the same as '123'. 4287 ** To work around this, the expression tree is not actually changed from 4288 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4289 ** and the "123" value is hung off of the pLeft pointer. Code generator 4290 ** routines know to generate the constant "123" instead of looking up the 4291 ** column value. Also, to avoid collation problems, this optimization is 4292 ** only attempted if the "a=123" term uses the default BINARY collation. 4293 */ 4294 static int propagateConstants( 4295 Parse *pParse, /* The parsing context */ 4296 Select *p /* The query in which to propagate constants */ 4297 ){ 4298 WhereConst x; 4299 Walker w; 4300 int nChng = 0; 4301 x.pParse = pParse; 4302 do{ 4303 x.nConst = 0; 4304 x.nChng = 0; 4305 x.apExpr = 0; 4306 findConstInWhere(&x, p->pWhere); 4307 if( x.nConst ){ 4308 memset(&w, 0, sizeof(w)); 4309 w.pParse = pParse; 4310 w.xExprCallback = propagateConstantExprRewrite; 4311 w.xSelectCallback = sqlite3SelectWalkNoop; 4312 w.xSelectCallback2 = 0; 4313 w.walkerDepth = 0; 4314 w.u.pConst = &x; 4315 sqlite3WalkExpr(&w, p->pWhere); 4316 sqlite3DbFree(x.pParse->db, x.apExpr); 4317 nChng += x.nChng; 4318 } 4319 }while( x.nChng ); 4320 return nChng; 4321 } 4322 4323 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4324 /* 4325 ** Make copies of relevant WHERE clause terms of the outer query into 4326 ** the WHERE clause of subquery. Example: 4327 ** 4328 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4329 ** 4330 ** Transformed into: 4331 ** 4332 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4333 ** WHERE x=5 AND y=10; 4334 ** 4335 ** The hope is that the terms added to the inner query will make it more 4336 ** efficient. 4337 ** 4338 ** Do not attempt this optimization if: 4339 ** 4340 ** (1) (** This restriction was removed on 2017-09-29. We used to 4341 ** disallow this optimization for aggregate subqueries, but now 4342 ** it is allowed by putting the extra terms on the HAVING clause. 4343 ** The added HAVING clause is pointless if the subquery lacks 4344 ** a GROUP BY clause. But such a HAVING clause is also harmless 4345 ** so there does not appear to be any reason to add extra logic 4346 ** to suppress it. **) 4347 ** 4348 ** (2) The inner query is the recursive part of a common table expression. 4349 ** 4350 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4351 ** clause would change the meaning of the LIMIT). 4352 ** 4353 ** (4) The inner query is the right operand of a LEFT JOIN and the 4354 ** expression to be pushed down does not come from the ON clause 4355 ** on that LEFT JOIN. 4356 ** 4357 ** (5) The WHERE clause expression originates in the ON or USING clause 4358 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4359 ** left join. An example: 4360 ** 4361 ** SELECT * 4362 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4363 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4364 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4365 ** 4366 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4367 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4368 ** then the (1,1,NULL) row would be suppressed. 4369 ** 4370 ** (6) The inner query features one or more window-functions (since 4371 ** changes to the WHERE clause of the inner query could change the 4372 ** window over which window functions are calculated). 4373 ** 4374 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4375 ** terms are duplicated into the subquery. 4376 */ 4377 static int pushDownWhereTerms( 4378 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4379 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4380 Expr *pWhere, /* The WHERE clause of the outer query */ 4381 int iCursor, /* Cursor number of the subquery */ 4382 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4383 ){ 4384 Expr *pNew; 4385 int nChng = 0; 4386 if( pWhere==0 ) return 0; 4387 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4388 4389 #ifndef SQLITE_OMIT_WINDOWFUNC 4390 if( pSubq->pWin ) return 0; /* restriction (6) */ 4391 #endif 4392 4393 #ifdef SQLITE_DEBUG 4394 /* Only the first term of a compound can have a WITH clause. But make 4395 ** sure no other terms are marked SF_Recursive in case something changes 4396 ** in the future. 4397 */ 4398 { 4399 Select *pX; 4400 for(pX=pSubq; pX; pX=pX->pPrior){ 4401 assert( (pX->selFlags & (SF_Recursive))==0 ); 4402 } 4403 } 4404 #endif 4405 4406 if( pSubq->pLimit!=0 ){ 4407 return 0; /* restriction (3) */ 4408 } 4409 while( pWhere->op==TK_AND ){ 4410 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4411 iCursor, isLeftJoin); 4412 pWhere = pWhere->pLeft; 4413 } 4414 if( isLeftJoin 4415 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4416 || pWhere->iRightJoinTable!=iCursor) 4417 ){ 4418 return 0; /* restriction (4) */ 4419 } 4420 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4421 return 0; /* restriction (5) */ 4422 } 4423 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4424 nChng++; 4425 while( pSubq ){ 4426 SubstContext x; 4427 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4428 unsetJoinExpr(pNew, -1); 4429 x.pParse = pParse; 4430 x.iTable = iCursor; 4431 x.iNewTable = iCursor; 4432 x.isLeftJoin = 0; 4433 x.pEList = pSubq->pEList; 4434 pNew = substExpr(&x, pNew); 4435 if( pSubq->selFlags & SF_Aggregate ){ 4436 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4437 }else{ 4438 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4439 } 4440 pSubq = pSubq->pPrior; 4441 } 4442 } 4443 return nChng; 4444 } 4445 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4446 4447 /* 4448 ** The pFunc is the only aggregate function in the query. Check to see 4449 ** if the query is a candidate for the min/max optimization. 4450 ** 4451 ** If the query is a candidate for the min/max optimization, then set 4452 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4453 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4454 ** whether pFunc is a min() or max() function. 4455 ** 4456 ** If the query is not a candidate for the min/max optimization, return 4457 ** WHERE_ORDERBY_NORMAL (which must be zero). 4458 ** 4459 ** This routine must be called after aggregate functions have been 4460 ** located but before their arguments have been subjected to aggregate 4461 ** analysis. 4462 */ 4463 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4464 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4465 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4466 const char *zFunc; /* Name of aggregate function pFunc */ 4467 ExprList *pOrderBy; 4468 u8 sortFlags = 0; 4469 4470 assert( *ppMinMax==0 ); 4471 assert( pFunc->op==TK_AGG_FUNCTION ); 4472 assert( !IsWindowFunc(pFunc) ); 4473 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4474 return eRet; 4475 } 4476 zFunc = pFunc->u.zToken; 4477 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4478 eRet = WHERE_ORDERBY_MIN; 4479 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4480 sortFlags = KEYINFO_ORDER_BIGNULL; 4481 } 4482 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4483 eRet = WHERE_ORDERBY_MAX; 4484 sortFlags = KEYINFO_ORDER_DESC; 4485 }else{ 4486 return eRet; 4487 } 4488 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4489 assert( pOrderBy!=0 || db->mallocFailed ); 4490 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4491 return eRet; 4492 } 4493 4494 /* 4495 ** The select statement passed as the first argument is an aggregate query. 4496 ** The second argument is the associated aggregate-info object. This 4497 ** function tests if the SELECT is of the form: 4498 ** 4499 ** SELECT count(*) FROM <tbl> 4500 ** 4501 ** where table is a database table, not a sub-select or view. If the query 4502 ** does match this pattern, then a pointer to the Table object representing 4503 ** <tbl> is returned. Otherwise, 0 is returned. 4504 */ 4505 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4506 Table *pTab; 4507 Expr *pExpr; 4508 4509 assert( !p->pGroupBy ); 4510 4511 if( p->pWhere || p->pEList->nExpr!=1 4512 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4513 ){ 4514 return 0; 4515 } 4516 pTab = p->pSrc->a[0].pTab; 4517 pExpr = p->pEList->a[0].pExpr; 4518 assert( pTab && !pTab->pSelect && pExpr ); 4519 4520 if( IsVirtual(pTab) ) return 0; 4521 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4522 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4523 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4524 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4525 4526 return pTab; 4527 } 4528 4529 /* 4530 ** If the source-list item passed as an argument was augmented with an 4531 ** INDEXED BY clause, then try to locate the specified index. If there 4532 ** was such a clause and the named index cannot be found, return 4533 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4534 ** pFrom->pIndex and return SQLITE_OK. 4535 */ 4536 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4537 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4538 Table *pTab = pFrom->pTab; 4539 char *zIndexedBy = pFrom->u1.zIndexedBy; 4540 Index *pIdx; 4541 for(pIdx=pTab->pIndex; 4542 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4543 pIdx=pIdx->pNext 4544 ); 4545 if( !pIdx ){ 4546 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4547 pParse->checkSchema = 1; 4548 return SQLITE_ERROR; 4549 } 4550 pFrom->pIBIndex = pIdx; 4551 } 4552 return SQLITE_OK; 4553 } 4554 /* 4555 ** Detect compound SELECT statements that use an ORDER BY clause with 4556 ** an alternative collating sequence. 4557 ** 4558 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4559 ** 4560 ** These are rewritten as a subquery: 4561 ** 4562 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4563 ** ORDER BY ... COLLATE ... 4564 ** 4565 ** This transformation is necessary because the multiSelectOrderBy() routine 4566 ** above that generates the code for a compound SELECT with an ORDER BY clause 4567 ** uses a merge algorithm that requires the same collating sequence on the 4568 ** result columns as on the ORDER BY clause. See ticket 4569 ** http://www.sqlite.org/src/info/6709574d2a 4570 ** 4571 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4572 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4573 ** there are COLLATE terms in the ORDER BY. 4574 */ 4575 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4576 int i; 4577 Select *pNew; 4578 Select *pX; 4579 sqlite3 *db; 4580 struct ExprList_item *a; 4581 SrcList *pNewSrc; 4582 Parse *pParse; 4583 Token dummy; 4584 4585 if( p->pPrior==0 ) return WRC_Continue; 4586 if( p->pOrderBy==0 ) return WRC_Continue; 4587 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4588 if( pX==0 ) return WRC_Continue; 4589 a = p->pOrderBy->a; 4590 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4591 if( a[i].pExpr->flags & EP_Collate ) break; 4592 } 4593 if( i<0 ) return WRC_Continue; 4594 4595 /* If we reach this point, that means the transformation is required. */ 4596 4597 pParse = pWalker->pParse; 4598 db = pParse->db; 4599 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4600 if( pNew==0 ) return WRC_Abort; 4601 memset(&dummy, 0, sizeof(dummy)); 4602 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4603 if( pNewSrc==0 ) return WRC_Abort; 4604 *pNew = *p; 4605 p->pSrc = pNewSrc; 4606 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4607 p->op = TK_SELECT; 4608 p->pWhere = 0; 4609 pNew->pGroupBy = 0; 4610 pNew->pHaving = 0; 4611 pNew->pOrderBy = 0; 4612 p->pPrior = 0; 4613 p->pNext = 0; 4614 p->pWith = 0; 4615 #ifndef SQLITE_OMIT_WINDOWFUNC 4616 p->pWinDefn = 0; 4617 #endif 4618 p->selFlags &= ~SF_Compound; 4619 assert( (p->selFlags & SF_Converted)==0 ); 4620 p->selFlags |= SF_Converted; 4621 assert( pNew->pPrior!=0 ); 4622 pNew->pPrior->pNext = pNew; 4623 pNew->pLimit = 0; 4624 return WRC_Continue; 4625 } 4626 4627 /* 4628 ** Check to see if the FROM clause term pFrom has table-valued function 4629 ** arguments. If it does, leave an error message in pParse and return 4630 ** non-zero, since pFrom is not allowed to be a table-valued function. 4631 */ 4632 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4633 if( pFrom->fg.isTabFunc ){ 4634 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4635 return 1; 4636 } 4637 return 0; 4638 } 4639 4640 #ifndef SQLITE_OMIT_CTE 4641 /* 4642 ** Argument pWith (which may be NULL) points to a linked list of nested 4643 ** WITH contexts, from inner to outermost. If the table identified by 4644 ** FROM clause element pItem is really a common-table-expression (CTE) 4645 ** then return a pointer to the CTE definition for that table. Otherwise 4646 ** return NULL. 4647 ** 4648 ** If a non-NULL value is returned, set *ppContext to point to the With 4649 ** object that the returned CTE belongs to. 4650 */ 4651 static struct Cte *searchWith( 4652 With *pWith, /* Current innermost WITH clause */ 4653 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4654 With **ppContext /* OUT: WITH clause return value belongs to */ 4655 ){ 4656 const char *zName; 4657 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4658 With *p; 4659 for(p=pWith; p; p=p->pOuter){ 4660 int i; 4661 for(i=0; i<p->nCte; i++){ 4662 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4663 *ppContext = p; 4664 return &p->a[i]; 4665 } 4666 } 4667 } 4668 } 4669 return 0; 4670 } 4671 4672 /* The code generator maintains a stack of active WITH clauses 4673 ** with the inner-most WITH clause being at the top of the stack. 4674 ** 4675 ** This routine pushes the WITH clause passed as the second argument 4676 ** onto the top of the stack. If argument bFree is true, then this 4677 ** WITH clause will never be popped from the stack. In this case it 4678 ** should be freed along with the Parse object. In other cases, when 4679 ** bFree==0, the With object will be freed along with the SELECT 4680 ** statement with which it is associated. 4681 */ 4682 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4683 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4684 if( pWith ){ 4685 assert( pParse->pWith!=pWith ); 4686 pWith->pOuter = pParse->pWith; 4687 pParse->pWith = pWith; 4688 if( bFree ) pParse->pWithToFree = pWith; 4689 } 4690 } 4691 4692 /* 4693 ** This function checks if argument pFrom refers to a CTE declared by 4694 ** a WITH clause on the stack currently maintained by the parser. And, 4695 ** if currently processing a CTE expression, if it is a recursive 4696 ** reference to the current CTE. 4697 ** 4698 ** If pFrom falls into either of the two categories above, pFrom->pTab 4699 ** and other fields are populated accordingly. The caller should check 4700 ** (pFrom->pTab!=0) to determine whether or not a successful match 4701 ** was found. 4702 ** 4703 ** Whether or not a match is found, SQLITE_OK is returned if no error 4704 ** occurs. If an error does occur, an error message is stored in the 4705 ** parser and some error code other than SQLITE_OK returned. 4706 */ 4707 static int withExpand( 4708 Walker *pWalker, 4709 struct SrcList_item *pFrom 4710 ){ 4711 Parse *pParse = pWalker->pParse; 4712 sqlite3 *db = pParse->db; 4713 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4714 With *pWith; /* WITH clause that pCte belongs to */ 4715 4716 assert( pFrom->pTab==0 ); 4717 if( pParse->nErr ){ 4718 return SQLITE_ERROR; 4719 } 4720 4721 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4722 if( pCte ){ 4723 Table *pTab; 4724 ExprList *pEList; 4725 Select *pSel; 4726 Select *pLeft; /* Left-most SELECT statement */ 4727 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4728 With *pSavedWith; /* Initial value of pParse->pWith */ 4729 4730 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4731 ** recursive reference to CTE pCte. Leave an error in pParse and return 4732 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4733 ** In this case, proceed. */ 4734 if( pCte->zCteErr ){ 4735 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4736 return SQLITE_ERROR; 4737 } 4738 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4739 4740 assert( pFrom->pTab==0 ); 4741 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4742 if( pTab==0 ) return WRC_Abort; 4743 pTab->nTabRef = 1; 4744 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4745 pTab->iPKey = -1; 4746 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4747 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4748 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4749 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4750 assert( pFrom->pSelect ); 4751 4752 /* Check if this is a recursive CTE. */ 4753 pSel = pFrom->pSelect; 4754 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4755 if( bMayRecursive ){ 4756 int i; 4757 SrcList *pSrc = pFrom->pSelect->pSrc; 4758 for(i=0; i<pSrc->nSrc; i++){ 4759 struct SrcList_item *pItem = &pSrc->a[i]; 4760 if( pItem->zDatabase==0 4761 && pItem->zName!=0 4762 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4763 ){ 4764 pItem->pTab = pTab; 4765 pItem->fg.isRecursive = 1; 4766 pTab->nTabRef++; 4767 pSel->selFlags |= SF_Recursive; 4768 } 4769 } 4770 } 4771 4772 /* Only one recursive reference is permitted. */ 4773 if( pTab->nTabRef>2 ){ 4774 sqlite3ErrorMsg( 4775 pParse, "multiple references to recursive table: %s", pCte->zName 4776 ); 4777 return SQLITE_ERROR; 4778 } 4779 assert( pTab->nTabRef==1 || 4780 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4781 4782 pCte->zCteErr = "circular reference: %s"; 4783 pSavedWith = pParse->pWith; 4784 pParse->pWith = pWith; 4785 if( bMayRecursive ){ 4786 Select *pPrior = pSel->pPrior; 4787 assert( pPrior->pWith==0 ); 4788 pPrior->pWith = pSel->pWith; 4789 sqlite3WalkSelect(pWalker, pPrior); 4790 pPrior->pWith = 0; 4791 }else{ 4792 sqlite3WalkSelect(pWalker, pSel); 4793 } 4794 pParse->pWith = pWith; 4795 4796 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4797 pEList = pLeft->pEList; 4798 if( pCte->pCols ){ 4799 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4800 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4801 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4802 ); 4803 pParse->pWith = pSavedWith; 4804 return SQLITE_ERROR; 4805 } 4806 pEList = pCte->pCols; 4807 } 4808 4809 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4810 if( bMayRecursive ){ 4811 if( pSel->selFlags & SF_Recursive ){ 4812 pCte->zCteErr = "multiple recursive references: %s"; 4813 }else{ 4814 pCte->zCteErr = "recursive reference in a subquery: %s"; 4815 } 4816 sqlite3WalkSelect(pWalker, pSel); 4817 } 4818 pCte->zCteErr = 0; 4819 pParse->pWith = pSavedWith; 4820 } 4821 4822 return SQLITE_OK; 4823 } 4824 #endif 4825 4826 #ifndef SQLITE_OMIT_CTE 4827 /* 4828 ** If the SELECT passed as the second argument has an associated WITH 4829 ** clause, pop it from the stack stored as part of the Parse object. 4830 ** 4831 ** This function is used as the xSelectCallback2() callback by 4832 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4833 ** names and other FROM clause elements. 4834 */ 4835 static void selectPopWith(Walker *pWalker, Select *p){ 4836 Parse *pParse = pWalker->pParse; 4837 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4838 With *pWith = findRightmost(p)->pWith; 4839 if( pWith!=0 ){ 4840 assert( pParse->pWith==pWith || pParse->nErr ); 4841 pParse->pWith = pWith->pOuter; 4842 } 4843 } 4844 } 4845 #else 4846 #define selectPopWith 0 4847 #endif 4848 4849 /* 4850 ** The SrcList_item structure passed as the second argument represents a 4851 ** sub-query in the FROM clause of a SELECT statement. This function 4852 ** allocates and populates the SrcList_item.pTab object. If successful, 4853 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4854 ** SQLITE_NOMEM. 4855 */ 4856 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4857 Select *pSel = pFrom->pSelect; 4858 Table *pTab; 4859 4860 assert( pSel ); 4861 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4862 if( pTab==0 ) return SQLITE_NOMEM; 4863 pTab->nTabRef = 1; 4864 if( pFrom->zAlias ){ 4865 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4866 }else{ 4867 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4868 } 4869 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4870 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4871 pTab->iPKey = -1; 4872 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4873 pTab->tabFlags |= TF_Ephemeral; 4874 4875 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4876 } 4877 4878 /* 4879 ** This routine is a Walker callback for "expanding" a SELECT statement. 4880 ** "Expanding" means to do the following: 4881 ** 4882 ** (1) Make sure VDBE cursor numbers have been assigned to every 4883 ** element of the FROM clause. 4884 ** 4885 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4886 ** defines FROM clause. When views appear in the FROM clause, 4887 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4888 ** that implements the view. A copy is made of the view's SELECT 4889 ** statement so that we can freely modify or delete that statement 4890 ** without worrying about messing up the persistent representation 4891 ** of the view. 4892 ** 4893 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4894 ** on joins and the ON and USING clause of joins. 4895 ** 4896 ** (4) Scan the list of columns in the result set (pEList) looking 4897 ** for instances of the "*" operator or the TABLE.* operator. 4898 ** If found, expand each "*" to be every column in every table 4899 ** and TABLE.* to be every column in TABLE. 4900 ** 4901 */ 4902 static int selectExpander(Walker *pWalker, Select *p){ 4903 Parse *pParse = pWalker->pParse; 4904 int i, j, k; 4905 SrcList *pTabList; 4906 ExprList *pEList; 4907 struct SrcList_item *pFrom; 4908 sqlite3 *db = pParse->db; 4909 Expr *pE, *pRight, *pExpr; 4910 u16 selFlags = p->selFlags; 4911 u32 elistFlags = 0; 4912 4913 p->selFlags |= SF_Expanded; 4914 if( db->mallocFailed ){ 4915 return WRC_Abort; 4916 } 4917 assert( p->pSrc!=0 ); 4918 if( (selFlags & SF_Expanded)!=0 ){ 4919 return WRC_Prune; 4920 } 4921 if( pWalker->eCode ){ 4922 /* Renumber selId because it has been copied from a view */ 4923 p->selId = ++pParse->nSelect; 4924 } 4925 pTabList = p->pSrc; 4926 pEList = p->pEList; 4927 sqlite3WithPush(pParse, p->pWith, 0); 4928 4929 /* Make sure cursor numbers have been assigned to all entries in 4930 ** the FROM clause of the SELECT statement. 4931 */ 4932 sqlite3SrcListAssignCursors(pParse, pTabList); 4933 4934 /* Look up every table named in the FROM clause of the select. If 4935 ** an entry of the FROM clause is a subquery instead of a table or view, 4936 ** then create a transient table structure to describe the subquery. 4937 */ 4938 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4939 Table *pTab; 4940 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4941 if( pFrom->fg.isRecursive ) continue; 4942 assert( pFrom->pTab==0 ); 4943 #ifndef SQLITE_OMIT_CTE 4944 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4945 if( pFrom->pTab ) {} else 4946 #endif 4947 if( pFrom->zName==0 ){ 4948 #ifndef SQLITE_OMIT_SUBQUERY 4949 Select *pSel = pFrom->pSelect; 4950 /* A sub-query in the FROM clause of a SELECT */ 4951 assert( pSel!=0 ); 4952 assert( pFrom->pTab==0 ); 4953 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4954 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4955 #endif 4956 }else{ 4957 /* An ordinary table or view name in the FROM clause */ 4958 assert( pFrom->pTab==0 ); 4959 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4960 if( pTab==0 ) return WRC_Abort; 4961 if( pTab->nTabRef>=0xffff ){ 4962 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4963 pTab->zName); 4964 pFrom->pTab = 0; 4965 return WRC_Abort; 4966 } 4967 pTab->nTabRef++; 4968 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4969 return WRC_Abort; 4970 } 4971 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 4972 if( IsVirtual(pTab) || pTab->pSelect ){ 4973 i16 nCol; 4974 u8 eCodeOrig = pWalker->eCode; 4975 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4976 assert( pFrom->pSelect==0 ); 4977 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 4978 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 4979 pTab->zName); 4980 } 4981 #ifndef SQLITE_OMIT_VIRTUALTABLE 4982 if( IsVirtual(pTab) 4983 && pFrom->fg.fromDDL 4984 && ALWAYS(pTab->pVTable!=0) 4985 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 4986 ){ 4987 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 4988 pTab->zName); 4989 } 4990 #endif 4991 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4992 nCol = pTab->nCol; 4993 pTab->nCol = -1; 4994 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4995 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4996 pWalker->eCode = eCodeOrig; 4997 pTab->nCol = nCol; 4998 } 4999 #endif 5000 } 5001 5002 /* Locate the index named by the INDEXED BY clause, if any. */ 5003 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5004 return WRC_Abort; 5005 } 5006 } 5007 5008 /* Process NATURAL keywords, and ON and USING clauses of joins. 5009 */ 5010 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5011 return WRC_Abort; 5012 } 5013 5014 /* For every "*" that occurs in the column list, insert the names of 5015 ** all columns in all tables. And for every TABLE.* insert the names 5016 ** of all columns in TABLE. The parser inserted a special expression 5017 ** with the TK_ASTERISK operator for each "*" that it found in the column 5018 ** list. The following code just has to locate the TK_ASTERISK 5019 ** expressions and expand each one to the list of all columns in 5020 ** all tables. 5021 ** 5022 ** The first loop just checks to see if there are any "*" operators 5023 ** that need expanding. 5024 */ 5025 for(k=0; k<pEList->nExpr; k++){ 5026 pE = pEList->a[k].pExpr; 5027 if( pE->op==TK_ASTERISK ) break; 5028 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5029 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5030 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5031 elistFlags |= pE->flags; 5032 } 5033 if( k<pEList->nExpr ){ 5034 /* 5035 ** If we get here it means the result set contains one or more "*" 5036 ** operators that need to be expanded. Loop through each expression 5037 ** in the result set and expand them one by one. 5038 */ 5039 struct ExprList_item *a = pEList->a; 5040 ExprList *pNew = 0; 5041 int flags = pParse->db->flags; 5042 int longNames = (flags & SQLITE_FullColNames)!=0 5043 && (flags & SQLITE_ShortColNames)==0; 5044 5045 for(k=0; k<pEList->nExpr; k++){ 5046 pE = a[k].pExpr; 5047 elistFlags |= pE->flags; 5048 pRight = pE->pRight; 5049 assert( pE->op!=TK_DOT || pRight!=0 ); 5050 if( pE->op!=TK_ASTERISK 5051 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5052 ){ 5053 /* This particular expression does not need to be expanded. 5054 */ 5055 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5056 if( pNew ){ 5057 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5058 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5059 a[k].zEName = 0; 5060 } 5061 a[k].pExpr = 0; 5062 }else{ 5063 /* This expression is a "*" or a "TABLE.*" and needs to be 5064 ** expanded. */ 5065 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5066 char *zTName = 0; /* text of name of TABLE */ 5067 if( pE->op==TK_DOT ){ 5068 assert( pE->pLeft!=0 ); 5069 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5070 zTName = pE->pLeft->u.zToken; 5071 } 5072 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5073 Table *pTab = pFrom->pTab; 5074 Select *pSub = pFrom->pSelect; 5075 char *zTabName = pFrom->zAlias; 5076 const char *zSchemaName = 0; 5077 int iDb; 5078 if( zTabName==0 ){ 5079 zTabName = pTab->zName; 5080 } 5081 if( db->mallocFailed ) break; 5082 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5083 pSub = 0; 5084 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5085 continue; 5086 } 5087 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5088 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5089 } 5090 for(j=0; j<pTab->nCol; j++){ 5091 char *zName = pTab->aCol[j].zName; 5092 char *zColname; /* The computed column name */ 5093 char *zToFree; /* Malloced string that needs to be freed */ 5094 Token sColname; /* Computed column name as a token */ 5095 5096 assert( zName ); 5097 if( zTName && pSub 5098 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5099 ){ 5100 continue; 5101 } 5102 5103 /* If a column is marked as 'hidden', omit it from the expanded 5104 ** result-set list unless the SELECT has the SF_IncludeHidden 5105 ** bit set. 5106 */ 5107 if( (p->selFlags & SF_IncludeHidden)==0 5108 && IsHiddenColumn(&pTab->aCol[j]) 5109 ){ 5110 continue; 5111 } 5112 tableSeen = 1; 5113 5114 if( i>0 && zTName==0 ){ 5115 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5116 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5117 ){ 5118 /* In a NATURAL join, omit the join columns from the 5119 ** table to the right of the join */ 5120 continue; 5121 } 5122 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5123 /* In a join with a USING clause, omit columns in the 5124 ** using clause from the table on the right. */ 5125 continue; 5126 } 5127 } 5128 pRight = sqlite3Expr(db, TK_ID, zName); 5129 zColname = zName; 5130 zToFree = 0; 5131 if( longNames || pTabList->nSrc>1 ){ 5132 Expr *pLeft; 5133 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5134 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5135 if( zSchemaName ){ 5136 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5137 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5138 } 5139 if( longNames ){ 5140 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5141 zToFree = zColname; 5142 } 5143 }else{ 5144 pExpr = pRight; 5145 } 5146 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5147 sqlite3TokenInit(&sColname, zColname); 5148 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5149 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5150 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5151 sqlite3DbFree(db, pX->zEName); 5152 if( pSub ){ 5153 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5154 testcase( pX->zEName==0 ); 5155 }else{ 5156 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5157 zSchemaName, zTabName, zColname); 5158 testcase( pX->zEName==0 ); 5159 } 5160 pX->eEName = ENAME_TAB; 5161 } 5162 sqlite3DbFree(db, zToFree); 5163 } 5164 } 5165 if( !tableSeen ){ 5166 if( zTName ){ 5167 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5168 }else{ 5169 sqlite3ErrorMsg(pParse, "no tables specified"); 5170 } 5171 } 5172 } 5173 } 5174 sqlite3ExprListDelete(db, pEList); 5175 p->pEList = pNew; 5176 } 5177 if( p->pEList ){ 5178 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5179 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5180 return WRC_Abort; 5181 } 5182 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5183 p->selFlags |= SF_ComplexResult; 5184 } 5185 } 5186 return WRC_Continue; 5187 } 5188 5189 /* 5190 ** No-op routine for the parse-tree walker. 5191 ** 5192 ** When this routine is the Walker.xExprCallback then expression trees 5193 ** are walked without any actions being taken at each node. Presumably, 5194 ** when this routine is used for Walker.xExprCallback then 5195 ** Walker.xSelectCallback is set to do something useful for every 5196 ** subquery in the parser tree. 5197 */ 5198 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5199 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5200 return WRC_Continue; 5201 } 5202 5203 /* 5204 ** No-op routine for the parse-tree walker for SELECT statements. 5205 ** subquery in the parser tree. 5206 */ 5207 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5208 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5209 return WRC_Continue; 5210 } 5211 5212 #if SQLITE_DEBUG 5213 /* 5214 ** Always assert. This xSelectCallback2 implementation proves that the 5215 ** xSelectCallback2 is never invoked. 5216 */ 5217 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5218 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5219 assert( 0 ); 5220 } 5221 #endif 5222 /* 5223 ** This routine "expands" a SELECT statement and all of its subqueries. 5224 ** For additional information on what it means to "expand" a SELECT 5225 ** statement, see the comment on the selectExpand worker callback above. 5226 ** 5227 ** Expanding a SELECT statement is the first step in processing a 5228 ** SELECT statement. The SELECT statement must be expanded before 5229 ** name resolution is performed. 5230 ** 5231 ** If anything goes wrong, an error message is written into pParse. 5232 ** The calling function can detect the problem by looking at pParse->nErr 5233 ** and/or pParse->db->mallocFailed. 5234 */ 5235 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5236 Walker w; 5237 w.xExprCallback = sqlite3ExprWalkNoop; 5238 w.pParse = pParse; 5239 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5240 w.xSelectCallback = convertCompoundSelectToSubquery; 5241 w.xSelectCallback2 = 0; 5242 sqlite3WalkSelect(&w, pSelect); 5243 } 5244 w.xSelectCallback = selectExpander; 5245 w.xSelectCallback2 = selectPopWith; 5246 w.eCode = 0; 5247 sqlite3WalkSelect(&w, pSelect); 5248 } 5249 5250 5251 #ifndef SQLITE_OMIT_SUBQUERY 5252 /* 5253 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5254 ** interface. 5255 ** 5256 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5257 ** information to the Table structure that represents the result set 5258 ** of that subquery. 5259 ** 5260 ** The Table structure that represents the result set was constructed 5261 ** by selectExpander() but the type and collation information was omitted 5262 ** at that point because identifiers had not yet been resolved. This 5263 ** routine is called after identifier resolution. 5264 */ 5265 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5266 Parse *pParse; 5267 int i; 5268 SrcList *pTabList; 5269 struct SrcList_item *pFrom; 5270 5271 assert( p->selFlags & SF_Resolved ); 5272 if( p->selFlags & SF_HasTypeInfo ) return; 5273 p->selFlags |= SF_HasTypeInfo; 5274 pParse = pWalker->pParse; 5275 pTabList = p->pSrc; 5276 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5277 Table *pTab = pFrom->pTab; 5278 assert( pTab!=0 ); 5279 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5280 /* A sub-query in the FROM clause of a SELECT */ 5281 Select *pSel = pFrom->pSelect; 5282 if( pSel ){ 5283 while( pSel->pPrior ) pSel = pSel->pPrior; 5284 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5285 SQLITE_AFF_NONE); 5286 } 5287 } 5288 } 5289 } 5290 #endif 5291 5292 5293 /* 5294 ** This routine adds datatype and collating sequence information to 5295 ** the Table structures of all FROM-clause subqueries in a 5296 ** SELECT statement. 5297 ** 5298 ** Use this routine after name resolution. 5299 */ 5300 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5301 #ifndef SQLITE_OMIT_SUBQUERY 5302 Walker w; 5303 w.xSelectCallback = sqlite3SelectWalkNoop; 5304 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5305 w.xExprCallback = sqlite3ExprWalkNoop; 5306 w.pParse = pParse; 5307 sqlite3WalkSelect(&w, pSelect); 5308 #endif 5309 } 5310 5311 5312 /* 5313 ** This routine sets up a SELECT statement for processing. The 5314 ** following is accomplished: 5315 ** 5316 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5317 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5318 ** * ON and USING clauses are shifted into WHERE statements 5319 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5320 ** * Identifiers in expression are matched to tables. 5321 ** 5322 ** This routine acts recursively on all subqueries within the SELECT. 5323 */ 5324 void sqlite3SelectPrep( 5325 Parse *pParse, /* The parser context */ 5326 Select *p, /* The SELECT statement being coded. */ 5327 NameContext *pOuterNC /* Name context for container */ 5328 ){ 5329 assert( p!=0 || pParse->db->mallocFailed ); 5330 if( pParse->db->mallocFailed ) return; 5331 if( p->selFlags & SF_HasTypeInfo ) return; 5332 sqlite3SelectExpand(pParse, p); 5333 if( pParse->nErr || pParse->db->mallocFailed ) return; 5334 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5335 if( pParse->nErr || pParse->db->mallocFailed ) return; 5336 sqlite3SelectAddTypeInfo(pParse, p); 5337 } 5338 5339 /* 5340 ** Reset the aggregate accumulator. 5341 ** 5342 ** The aggregate accumulator is a set of memory cells that hold 5343 ** intermediate results while calculating an aggregate. This 5344 ** routine generates code that stores NULLs in all of those memory 5345 ** cells. 5346 */ 5347 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5348 Vdbe *v = pParse->pVdbe; 5349 int i; 5350 struct AggInfo_func *pFunc; 5351 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5352 if( nReg==0 ) return; 5353 #ifdef SQLITE_DEBUG 5354 /* Verify that all AggInfo registers are within the range specified by 5355 ** AggInfo.mnReg..AggInfo.mxReg */ 5356 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5357 for(i=0; i<pAggInfo->nColumn; i++){ 5358 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5359 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5360 } 5361 for(i=0; i<pAggInfo->nFunc; i++){ 5362 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5363 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5364 } 5365 #endif 5366 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5367 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5368 if( pFunc->iDistinct>=0 ){ 5369 Expr *pE = pFunc->pExpr; 5370 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5371 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5372 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5373 "argument"); 5374 pFunc->iDistinct = -1; 5375 }else{ 5376 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5377 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5378 (char*)pKeyInfo, P4_KEYINFO); 5379 } 5380 } 5381 } 5382 } 5383 5384 /* 5385 ** Invoke the OP_AggFinalize opcode for every aggregate function 5386 ** in the AggInfo structure. 5387 */ 5388 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5389 Vdbe *v = pParse->pVdbe; 5390 int i; 5391 struct AggInfo_func *pF; 5392 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5393 ExprList *pList = pF->pExpr->x.pList; 5394 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5395 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5396 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5397 } 5398 } 5399 5400 5401 /* 5402 ** Update the accumulator memory cells for an aggregate based on 5403 ** the current cursor position. 5404 ** 5405 ** If regAcc is non-zero and there are no min() or max() aggregates 5406 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5407 ** registers if register regAcc contains 0. The caller will take care 5408 ** of setting and clearing regAcc. 5409 */ 5410 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5411 Vdbe *v = pParse->pVdbe; 5412 int i; 5413 int regHit = 0; 5414 int addrHitTest = 0; 5415 struct AggInfo_func *pF; 5416 struct AggInfo_col *pC; 5417 5418 pAggInfo->directMode = 1; 5419 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5420 int nArg; 5421 int addrNext = 0; 5422 int regAgg; 5423 ExprList *pList = pF->pExpr->x.pList; 5424 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5425 assert( !IsWindowFunc(pF->pExpr) ); 5426 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5427 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5428 if( pAggInfo->nAccumulator 5429 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5430 ){ 5431 if( regHit==0 ) regHit = ++pParse->nMem; 5432 /* If this is the first row of the group (regAcc==0), clear the 5433 ** "magnet" register regHit so that the accumulator registers 5434 ** are populated if the FILTER clause jumps over the the 5435 ** invocation of min() or max() altogether. Or, if this is not 5436 ** the first row (regAcc==1), set the magnet register so that the 5437 ** accumulators are not populated unless the min()/max() is invoked and 5438 ** indicates that they should be. */ 5439 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5440 } 5441 addrNext = sqlite3VdbeMakeLabel(pParse); 5442 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5443 } 5444 if( pList ){ 5445 nArg = pList->nExpr; 5446 regAgg = sqlite3GetTempRange(pParse, nArg); 5447 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5448 }else{ 5449 nArg = 0; 5450 regAgg = 0; 5451 } 5452 if( pF->iDistinct>=0 ){ 5453 if( addrNext==0 ){ 5454 addrNext = sqlite3VdbeMakeLabel(pParse); 5455 } 5456 testcase( nArg==0 ); /* Error condition */ 5457 testcase( nArg>1 ); /* Also an error */ 5458 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5459 } 5460 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5461 CollSeq *pColl = 0; 5462 struct ExprList_item *pItem; 5463 int j; 5464 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5465 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5466 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5467 } 5468 if( !pColl ){ 5469 pColl = pParse->db->pDfltColl; 5470 } 5471 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5472 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5473 } 5474 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5475 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5476 sqlite3VdbeChangeP5(v, (u8)nArg); 5477 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5478 if( addrNext ){ 5479 sqlite3VdbeResolveLabel(v, addrNext); 5480 } 5481 } 5482 if( regHit==0 && pAggInfo->nAccumulator ){ 5483 regHit = regAcc; 5484 } 5485 if( regHit ){ 5486 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5487 } 5488 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5489 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5490 } 5491 5492 pAggInfo->directMode = 0; 5493 if( addrHitTest ){ 5494 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5495 } 5496 } 5497 5498 /* 5499 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5500 ** count(*) query ("SELECT count(*) FROM pTab"). 5501 */ 5502 #ifndef SQLITE_OMIT_EXPLAIN 5503 static void explainSimpleCount( 5504 Parse *pParse, /* Parse context */ 5505 Table *pTab, /* Table being queried */ 5506 Index *pIdx /* Index used to optimize scan, or NULL */ 5507 ){ 5508 if( pParse->explain==2 ){ 5509 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5510 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5511 pTab->zName, 5512 bCover ? " USING COVERING INDEX " : "", 5513 bCover ? pIdx->zName : "" 5514 ); 5515 } 5516 } 5517 #else 5518 # define explainSimpleCount(a,b,c) 5519 #endif 5520 5521 /* 5522 ** sqlite3WalkExpr() callback used by havingToWhere(). 5523 ** 5524 ** If the node passed to the callback is a TK_AND node, return 5525 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5526 ** 5527 ** Otherwise, return WRC_Prune. In this case, also check if the 5528 ** sub-expression matches the criteria for being moved to the WHERE 5529 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5530 ** within the HAVING expression with a constant "1". 5531 */ 5532 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5533 if( pExpr->op!=TK_AND ){ 5534 Select *pS = pWalker->u.pSelect; 5535 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5536 sqlite3 *db = pWalker->pParse->db; 5537 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5538 if( pNew ){ 5539 Expr *pWhere = pS->pWhere; 5540 SWAP(Expr, *pNew, *pExpr); 5541 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5542 pS->pWhere = pNew; 5543 pWalker->eCode = 1; 5544 } 5545 } 5546 return WRC_Prune; 5547 } 5548 return WRC_Continue; 5549 } 5550 5551 /* 5552 ** Transfer eligible terms from the HAVING clause of a query, which is 5553 ** processed after grouping, to the WHERE clause, which is processed before 5554 ** grouping. For example, the query: 5555 ** 5556 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5557 ** 5558 ** can be rewritten as: 5559 ** 5560 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5561 ** 5562 ** A term of the HAVING expression is eligible for transfer if it consists 5563 ** entirely of constants and expressions that are also GROUP BY terms that 5564 ** use the "BINARY" collation sequence. 5565 */ 5566 static void havingToWhere(Parse *pParse, Select *p){ 5567 Walker sWalker; 5568 memset(&sWalker, 0, sizeof(sWalker)); 5569 sWalker.pParse = pParse; 5570 sWalker.xExprCallback = havingToWhereExprCb; 5571 sWalker.u.pSelect = p; 5572 sqlite3WalkExpr(&sWalker, p->pHaving); 5573 #if SELECTTRACE_ENABLED 5574 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5575 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5576 sqlite3TreeViewSelect(0, p, 0); 5577 } 5578 #endif 5579 } 5580 5581 /* 5582 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5583 ** If it is, then return the SrcList_item for the prior view. If it is not, 5584 ** then return 0. 5585 */ 5586 static struct SrcList_item *isSelfJoinView( 5587 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5588 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5589 ){ 5590 struct SrcList_item *pItem; 5591 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5592 Select *pS1; 5593 if( pItem->pSelect==0 ) continue; 5594 if( pItem->fg.viaCoroutine ) continue; 5595 if( pItem->zName==0 ) continue; 5596 assert( pItem->pTab!=0 ); 5597 assert( pThis->pTab!=0 ); 5598 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5599 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5600 pS1 = pItem->pSelect; 5601 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5602 /* The query flattener left two different CTE tables with identical 5603 ** names in the same FROM clause. */ 5604 continue; 5605 } 5606 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5607 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5608 ){ 5609 /* The view was modified by some other optimization such as 5610 ** pushDownWhereTerms() */ 5611 continue; 5612 } 5613 return pItem; 5614 } 5615 return 0; 5616 } 5617 5618 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5619 /* 5620 ** Attempt to transform a query of the form 5621 ** 5622 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5623 ** 5624 ** Into this: 5625 ** 5626 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5627 ** 5628 ** The transformation only works if all of the following are true: 5629 ** 5630 ** * The subquery is a UNION ALL of two or more terms 5631 ** * The subquery does not have a LIMIT clause 5632 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5633 ** * The outer query is a simple count(*) with no WHERE clause or other 5634 ** extraneous syntax. 5635 ** 5636 ** Return TRUE if the optimization is undertaken. 5637 */ 5638 static int countOfViewOptimization(Parse *pParse, Select *p){ 5639 Select *pSub, *pPrior; 5640 Expr *pExpr; 5641 Expr *pCount; 5642 sqlite3 *db; 5643 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5644 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5645 if( p->pWhere ) return 0; 5646 if( p->pGroupBy ) return 0; 5647 pExpr = p->pEList->a[0].pExpr; 5648 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5649 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5650 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5651 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5652 pSub = p->pSrc->a[0].pSelect; 5653 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5654 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5655 do{ 5656 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5657 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5658 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5659 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5660 pSub = pSub->pPrior; /* Repeat over compound */ 5661 }while( pSub ); 5662 5663 /* If we reach this point then it is OK to perform the transformation */ 5664 5665 db = pParse->db; 5666 pCount = pExpr; 5667 pExpr = 0; 5668 pSub = p->pSrc->a[0].pSelect; 5669 p->pSrc->a[0].pSelect = 0; 5670 sqlite3SrcListDelete(db, p->pSrc); 5671 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5672 while( pSub ){ 5673 Expr *pTerm; 5674 pPrior = pSub->pPrior; 5675 pSub->pPrior = 0; 5676 pSub->pNext = 0; 5677 pSub->selFlags |= SF_Aggregate; 5678 pSub->selFlags &= ~SF_Compound; 5679 pSub->nSelectRow = 0; 5680 sqlite3ExprListDelete(db, pSub->pEList); 5681 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5682 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5683 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5684 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5685 if( pExpr==0 ){ 5686 pExpr = pTerm; 5687 }else{ 5688 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5689 } 5690 pSub = pPrior; 5691 } 5692 p->pEList->a[0].pExpr = pExpr; 5693 p->selFlags &= ~SF_Aggregate; 5694 5695 #if SELECTTRACE_ENABLED 5696 if( sqlite3SelectTrace & 0x400 ){ 5697 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5698 sqlite3TreeViewSelect(0, p, 0); 5699 } 5700 #endif 5701 return 1; 5702 } 5703 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5704 5705 /* 5706 ** Generate code for the SELECT statement given in the p argument. 5707 ** 5708 ** The results are returned according to the SelectDest structure. 5709 ** See comments in sqliteInt.h for further information. 5710 ** 5711 ** This routine returns the number of errors. If any errors are 5712 ** encountered, then an appropriate error message is left in 5713 ** pParse->zErrMsg. 5714 ** 5715 ** This routine does NOT free the Select structure passed in. The 5716 ** calling function needs to do that. 5717 */ 5718 int sqlite3Select( 5719 Parse *pParse, /* The parser context */ 5720 Select *p, /* The SELECT statement being coded. */ 5721 SelectDest *pDest /* What to do with the query results */ 5722 ){ 5723 int i, j; /* Loop counters */ 5724 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5725 Vdbe *v; /* The virtual machine under construction */ 5726 int isAgg; /* True for select lists like "count(*)" */ 5727 ExprList *pEList = 0; /* List of columns to extract. */ 5728 SrcList *pTabList; /* List of tables to select from */ 5729 Expr *pWhere; /* The WHERE clause. May be NULL */ 5730 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5731 Expr *pHaving; /* The HAVING clause. May be NULL */ 5732 int rc = 1; /* Value to return from this function */ 5733 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5734 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5735 AggInfo sAggInfo; /* Information used by aggregate queries */ 5736 int iEnd; /* Address of the end of the query */ 5737 sqlite3 *db; /* The database connection */ 5738 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5739 u8 minMaxFlag; /* Flag for min/max queries */ 5740 5741 db = pParse->db; 5742 v = sqlite3GetVdbe(pParse); 5743 if( p==0 || db->mallocFailed || pParse->nErr ){ 5744 return 1; 5745 } 5746 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5747 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5748 #if SELECTTRACE_ENABLED 5749 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5750 if( sqlite3SelectTrace & 0x100 ){ 5751 sqlite3TreeViewSelect(0, p, 0); 5752 } 5753 #endif 5754 5755 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5756 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5757 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5758 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5759 if( IgnorableOrderby(pDest) ){ 5760 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5761 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5762 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5763 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5764 /* If ORDER BY makes no difference in the output then neither does 5765 ** DISTINCT so it can be removed too. */ 5766 sqlite3ExprListDelete(db, p->pOrderBy); 5767 p->pOrderBy = 0; 5768 p->selFlags &= ~SF_Distinct; 5769 } 5770 sqlite3SelectPrep(pParse, p, 0); 5771 if( pParse->nErr || db->mallocFailed ){ 5772 goto select_end; 5773 } 5774 assert( p->pEList!=0 ); 5775 #if SELECTTRACE_ENABLED 5776 if( sqlite3SelectTrace & 0x104 ){ 5777 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5778 sqlite3TreeViewSelect(0, p, 0); 5779 } 5780 #endif 5781 5782 if( pDest->eDest==SRT_Output ){ 5783 generateColumnNames(pParse, p); 5784 } 5785 5786 #ifndef SQLITE_OMIT_WINDOWFUNC 5787 rc = sqlite3WindowRewrite(pParse, p); 5788 if( rc ){ 5789 assert( db->mallocFailed || pParse->nErr>0 ); 5790 goto select_end; 5791 } 5792 #if SELECTTRACE_ENABLED 5793 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5794 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5795 sqlite3TreeViewSelect(0, p, 0); 5796 } 5797 #endif 5798 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5799 pTabList = p->pSrc; 5800 isAgg = (p->selFlags & SF_Aggregate)!=0; 5801 memset(&sSort, 0, sizeof(sSort)); 5802 sSort.pOrderBy = p->pOrderBy; 5803 5804 /* Try to various optimizations (flattening subqueries, and strength 5805 ** reduction of join operators) in the FROM clause up into the main query 5806 */ 5807 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5808 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5809 struct SrcList_item *pItem = &pTabList->a[i]; 5810 Select *pSub = pItem->pSelect; 5811 Table *pTab = pItem->pTab; 5812 5813 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5814 ** of the LEFT JOIN used in the WHERE clause. 5815 */ 5816 if( (pItem->fg.jointype & JT_LEFT)!=0 5817 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5818 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5819 ){ 5820 SELECTTRACE(0x100,pParse,p, 5821 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5822 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5823 unsetJoinExpr(p->pWhere, pItem->iCursor); 5824 } 5825 5826 /* No futher action if this term of the FROM clause is no a subquery */ 5827 if( pSub==0 ) continue; 5828 5829 /* Catch mismatch in the declared columns of a view and the number of 5830 ** columns in the SELECT on the RHS */ 5831 if( pTab->nCol!=pSub->pEList->nExpr ){ 5832 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5833 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5834 goto select_end; 5835 } 5836 5837 /* Do not try to flatten an aggregate subquery. 5838 ** 5839 ** Flattening an aggregate subquery is only possible if the outer query 5840 ** is not a join. But if the outer query is not a join, then the subquery 5841 ** will be implemented as a co-routine and there is no advantage to 5842 ** flattening in that case. 5843 */ 5844 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5845 assert( pSub->pGroupBy==0 ); 5846 5847 /* If the outer query contains a "complex" result set (that is, 5848 ** if the result set of the outer query uses functions or subqueries) 5849 ** and if the subquery contains an ORDER BY clause and if 5850 ** it will be implemented as a co-routine, then do not flatten. This 5851 ** restriction allows SQL constructs like this: 5852 ** 5853 ** SELECT expensive_function(x) 5854 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5855 ** 5856 ** The expensive_function() is only computed on the 10 rows that 5857 ** are output, rather than every row of the table. 5858 ** 5859 ** The requirement that the outer query have a complex result set 5860 ** means that flattening does occur on simpler SQL constraints without 5861 ** the expensive_function() like: 5862 ** 5863 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5864 */ 5865 if( pSub->pOrderBy!=0 5866 && i==0 5867 && (p->selFlags & SF_ComplexResult)!=0 5868 && (pTabList->nSrc==1 5869 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5870 ){ 5871 continue; 5872 } 5873 5874 if( flattenSubquery(pParse, p, i, isAgg) ){ 5875 if( pParse->nErr ) goto select_end; 5876 /* This subquery can be absorbed into its parent. */ 5877 i = -1; 5878 } 5879 pTabList = p->pSrc; 5880 if( db->mallocFailed ) goto select_end; 5881 if( !IgnorableOrderby(pDest) ){ 5882 sSort.pOrderBy = p->pOrderBy; 5883 } 5884 } 5885 #endif 5886 5887 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5888 /* Handle compound SELECT statements using the separate multiSelect() 5889 ** procedure. 5890 */ 5891 if( p->pPrior ){ 5892 rc = multiSelect(pParse, p, pDest); 5893 #if SELECTTRACE_ENABLED 5894 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5895 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5896 sqlite3TreeViewSelect(0, p, 0); 5897 } 5898 #endif 5899 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5900 return rc; 5901 } 5902 #endif 5903 5904 /* Do the WHERE-clause constant propagation optimization if this is 5905 ** a join. No need to speed time on this operation for non-join queries 5906 ** as the equivalent optimization will be handled by query planner in 5907 ** sqlite3WhereBegin(). 5908 */ 5909 if( pTabList->nSrc>1 5910 && OptimizationEnabled(db, SQLITE_PropagateConst) 5911 && propagateConstants(pParse, p) 5912 ){ 5913 #if SELECTTRACE_ENABLED 5914 if( sqlite3SelectTrace & 0x100 ){ 5915 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5916 sqlite3TreeViewSelect(0, p, 0); 5917 } 5918 #endif 5919 }else{ 5920 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5921 } 5922 5923 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5924 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5925 && countOfViewOptimization(pParse, p) 5926 ){ 5927 if( db->mallocFailed ) goto select_end; 5928 pEList = p->pEList; 5929 pTabList = p->pSrc; 5930 } 5931 #endif 5932 5933 /* For each term in the FROM clause, do two things: 5934 ** (1) Authorized unreferenced tables 5935 ** (2) Generate code for all sub-queries 5936 */ 5937 for(i=0; i<pTabList->nSrc; i++){ 5938 struct SrcList_item *pItem = &pTabList->a[i]; 5939 SelectDest dest; 5940 Select *pSub; 5941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5942 const char *zSavedAuthContext; 5943 #endif 5944 5945 /* Issue SQLITE_READ authorizations with a fake column name for any 5946 ** tables that are referenced but from which no values are extracted. 5947 ** Examples of where these kinds of null SQLITE_READ authorizations 5948 ** would occur: 5949 ** 5950 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5951 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5952 ** 5953 ** The fake column name is an empty string. It is possible for a table to 5954 ** have a column named by the empty string, in which case there is no way to 5955 ** distinguish between an unreferenced table and an actual reference to the 5956 ** "" column. The original design was for the fake column name to be a NULL, 5957 ** which would be unambiguous. But legacy authorization callbacks might 5958 ** assume the column name is non-NULL and segfault. The use of an empty 5959 ** string for the fake column name seems safer. 5960 */ 5961 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5962 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5963 } 5964 5965 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5966 /* Generate code for all sub-queries in the FROM clause 5967 */ 5968 pSub = pItem->pSelect; 5969 if( pSub==0 ) continue; 5970 5971 /* The code for a subquery should only be generated once, though it is 5972 ** technically harmless for it to be generated multiple times. The 5973 ** following assert() will detect if something changes to cause 5974 ** the same subquery to be coded multiple times, as a signal to the 5975 ** developers to try to optimize the situation. 5976 ** 5977 ** Update 2019-07-24: 5978 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5979 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5980 ** coded twice. So this assert() now becomes a testcase(). It should 5981 ** be very rare, though. 5982 */ 5983 testcase( pItem->addrFillSub!=0 ); 5984 5985 /* Increment Parse.nHeight by the height of the largest expression 5986 ** tree referred to by this, the parent select. The child select 5987 ** may contain expression trees of at most 5988 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5989 ** more conservative than necessary, but much easier than enforcing 5990 ** an exact limit. 5991 */ 5992 pParse->nHeight += sqlite3SelectExprHeight(p); 5993 5994 /* Make copies of constant WHERE-clause terms in the outer query down 5995 ** inside the subquery. This can help the subquery to run more efficiently. 5996 */ 5997 if( OptimizationEnabled(db, SQLITE_PushDown) 5998 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5999 (pItem->fg.jointype & JT_OUTER)!=0) 6000 ){ 6001 #if SELECTTRACE_ENABLED 6002 if( sqlite3SelectTrace & 0x100 ){ 6003 SELECTTRACE(0x100,pParse,p, 6004 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6005 sqlite3TreeViewSelect(0, p, 0); 6006 } 6007 #endif 6008 }else{ 6009 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6010 } 6011 6012 zSavedAuthContext = pParse->zAuthContext; 6013 pParse->zAuthContext = pItem->zName; 6014 6015 /* Generate code to implement the subquery 6016 ** 6017 ** The subquery is implemented as a co-routine if the subquery is 6018 ** guaranteed to be the outer loop (so that it does not need to be 6019 ** computed more than once) 6020 ** 6021 ** TODO: Are there other reasons beside (1) to use a co-routine 6022 ** implementation? 6023 */ 6024 if( i==0 6025 && (pTabList->nSrc==1 6026 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6027 ){ 6028 /* Implement a co-routine that will return a single row of the result 6029 ** set on each invocation. 6030 */ 6031 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6032 6033 pItem->regReturn = ++pParse->nMem; 6034 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6035 VdbeComment((v, "%s", pItem->pTab->zName)); 6036 pItem->addrFillSub = addrTop; 6037 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6038 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6039 sqlite3Select(pParse, pSub, &dest); 6040 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6041 pItem->fg.viaCoroutine = 1; 6042 pItem->regResult = dest.iSdst; 6043 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6044 sqlite3VdbeJumpHere(v, addrTop-1); 6045 sqlite3ClearTempRegCache(pParse); 6046 }else{ 6047 /* Generate a subroutine that will fill an ephemeral table with 6048 ** the content of this subquery. pItem->addrFillSub will point 6049 ** to the address of the generated subroutine. pItem->regReturn 6050 ** is a register allocated to hold the subroutine return address 6051 */ 6052 int topAddr; 6053 int onceAddr = 0; 6054 int retAddr; 6055 struct SrcList_item *pPrior; 6056 6057 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6058 pItem->regReturn = ++pParse->nMem; 6059 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6060 pItem->addrFillSub = topAddr+1; 6061 if( pItem->fg.isCorrelated==0 ){ 6062 /* If the subquery is not correlated and if we are not inside of 6063 ** a trigger, then we only need to compute the value of the subquery 6064 ** once. */ 6065 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6066 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6067 }else{ 6068 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6069 } 6070 pPrior = isSelfJoinView(pTabList, pItem); 6071 if( pPrior ){ 6072 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6073 assert( pPrior->pSelect!=0 ); 6074 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6075 }else{ 6076 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6077 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6078 sqlite3Select(pParse, pSub, &dest); 6079 } 6080 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6081 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6082 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6083 VdbeComment((v, "end %s", pItem->pTab->zName)); 6084 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6085 sqlite3ClearTempRegCache(pParse); 6086 } 6087 if( db->mallocFailed ) goto select_end; 6088 pParse->nHeight -= sqlite3SelectExprHeight(p); 6089 pParse->zAuthContext = zSavedAuthContext; 6090 #endif 6091 } 6092 6093 /* Various elements of the SELECT copied into local variables for 6094 ** convenience */ 6095 pEList = p->pEList; 6096 pWhere = p->pWhere; 6097 pGroupBy = p->pGroupBy; 6098 pHaving = p->pHaving; 6099 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6100 6101 #if SELECTTRACE_ENABLED 6102 if( sqlite3SelectTrace & 0x400 ){ 6103 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6104 sqlite3TreeViewSelect(0, p, 0); 6105 } 6106 #endif 6107 6108 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6109 ** if the select-list is the same as the ORDER BY list, then this query 6110 ** can be rewritten as a GROUP BY. In other words, this: 6111 ** 6112 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6113 ** 6114 ** is transformed to: 6115 ** 6116 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6117 ** 6118 ** The second form is preferred as a single index (or temp-table) may be 6119 ** used for both the ORDER BY and DISTINCT processing. As originally 6120 ** written the query must use a temp-table for at least one of the ORDER 6121 ** BY and DISTINCT, and an index or separate temp-table for the other. 6122 */ 6123 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6124 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6125 #ifndef SQLITE_OMIT_WINDOWFUNC 6126 && p->pWin==0 6127 #endif 6128 ){ 6129 p->selFlags &= ~SF_Distinct; 6130 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6131 p->selFlags |= SF_Aggregate; 6132 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6133 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6134 ** original setting of the SF_Distinct flag, not the current setting */ 6135 assert( sDistinct.isTnct ); 6136 6137 #if SELECTTRACE_ENABLED 6138 if( sqlite3SelectTrace & 0x400 ){ 6139 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6140 sqlite3TreeViewSelect(0, p, 0); 6141 } 6142 #endif 6143 } 6144 6145 /* If there is an ORDER BY clause, then create an ephemeral index to 6146 ** do the sorting. But this sorting ephemeral index might end up 6147 ** being unused if the data can be extracted in pre-sorted order. 6148 ** If that is the case, then the OP_OpenEphemeral instruction will be 6149 ** changed to an OP_Noop once we figure out that the sorting index is 6150 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6151 ** that change. 6152 */ 6153 if( sSort.pOrderBy ){ 6154 KeyInfo *pKeyInfo; 6155 pKeyInfo = sqlite3KeyInfoFromExprList( 6156 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6157 sSort.iECursor = pParse->nTab++; 6158 sSort.addrSortIndex = 6159 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6160 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6161 (char*)pKeyInfo, P4_KEYINFO 6162 ); 6163 }else{ 6164 sSort.addrSortIndex = -1; 6165 } 6166 6167 /* If the output is destined for a temporary table, open that table. 6168 */ 6169 if( pDest->eDest==SRT_EphemTab ){ 6170 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6171 } 6172 6173 /* Set the limiter. 6174 */ 6175 iEnd = sqlite3VdbeMakeLabel(pParse); 6176 if( (p->selFlags & SF_FixedLimit)==0 ){ 6177 p->nSelectRow = 320; /* 4 billion rows */ 6178 } 6179 computeLimitRegisters(pParse, p, iEnd); 6180 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6181 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6182 sSort.sortFlags |= SORTFLAG_UseSorter; 6183 } 6184 6185 /* Open an ephemeral index to use for the distinct set. 6186 */ 6187 if( p->selFlags & SF_Distinct ){ 6188 sDistinct.tabTnct = pParse->nTab++; 6189 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6190 sDistinct.tabTnct, 0, 0, 6191 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6192 P4_KEYINFO); 6193 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6194 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6195 }else{ 6196 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6197 } 6198 6199 if( !isAgg && pGroupBy==0 ){ 6200 /* No aggregate functions and no GROUP BY clause */ 6201 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6202 | (p->selFlags & SF_FixedLimit); 6203 #ifndef SQLITE_OMIT_WINDOWFUNC 6204 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6205 if( pWin ){ 6206 sqlite3WindowCodeInit(pParse, p); 6207 } 6208 #endif 6209 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6210 6211 6212 /* Begin the database scan. */ 6213 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6214 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6215 p->pEList, wctrlFlags, p->nSelectRow); 6216 if( pWInfo==0 ) goto select_end; 6217 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6218 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6219 } 6220 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6221 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6222 } 6223 if( sSort.pOrderBy ){ 6224 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6225 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6226 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6227 sSort.pOrderBy = 0; 6228 } 6229 } 6230 6231 /* If sorting index that was created by a prior OP_OpenEphemeral 6232 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6233 ** into an OP_Noop. 6234 */ 6235 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6236 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6237 } 6238 6239 assert( p->pEList==pEList ); 6240 #ifndef SQLITE_OMIT_WINDOWFUNC 6241 if( pWin ){ 6242 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6243 int iCont = sqlite3VdbeMakeLabel(pParse); 6244 int iBreak = sqlite3VdbeMakeLabel(pParse); 6245 int regGosub = ++pParse->nMem; 6246 6247 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6248 6249 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6250 sqlite3VdbeResolveLabel(v, addrGosub); 6251 VdbeNoopComment((v, "inner-loop subroutine")); 6252 sSort.labelOBLopt = 0; 6253 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6254 sqlite3VdbeResolveLabel(v, iCont); 6255 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6256 VdbeComment((v, "end inner-loop subroutine")); 6257 sqlite3VdbeResolveLabel(v, iBreak); 6258 }else 6259 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6260 { 6261 /* Use the standard inner loop. */ 6262 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6263 sqlite3WhereContinueLabel(pWInfo), 6264 sqlite3WhereBreakLabel(pWInfo)); 6265 6266 /* End the database scan loop. 6267 */ 6268 sqlite3WhereEnd(pWInfo); 6269 } 6270 }else{ 6271 /* This case when there exist aggregate functions or a GROUP BY clause 6272 ** or both */ 6273 NameContext sNC; /* Name context for processing aggregate information */ 6274 int iAMem; /* First Mem address for storing current GROUP BY */ 6275 int iBMem; /* First Mem address for previous GROUP BY */ 6276 int iUseFlag; /* Mem address holding flag indicating that at least 6277 ** one row of the input to the aggregator has been 6278 ** processed */ 6279 int iAbortFlag; /* Mem address which causes query abort if positive */ 6280 int groupBySort; /* Rows come from source in GROUP BY order */ 6281 int addrEnd; /* End of processing for this SELECT */ 6282 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6283 int sortOut = 0; /* Output register from the sorter */ 6284 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6285 6286 /* Remove any and all aliases between the result set and the 6287 ** GROUP BY clause. 6288 */ 6289 if( pGroupBy ){ 6290 int k; /* Loop counter */ 6291 struct ExprList_item *pItem; /* For looping over expression in a list */ 6292 6293 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6294 pItem->u.x.iAlias = 0; 6295 } 6296 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6297 pItem->u.x.iAlias = 0; 6298 } 6299 assert( 66==sqlite3LogEst(100) ); 6300 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6301 6302 /* If there is both a GROUP BY and an ORDER BY clause and they are 6303 ** identical, then it may be possible to disable the ORDER BY clause 6304 ** on the grounds that the GROUP BY will cause elements to come out 6305 ** in the correct order. It also may not - the GROUP BY might use a 6306 ** database index that causes rows to be grouped together as required 6307 ** but not actually sorted. Either way, record the fact that the 6308 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6309 ** variable. */ 6310 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6311 int ii; 6312 /* The GROUP BY processing doesn't care whether rows are delivered in 6313 ** ASC or DESC order - only that each group is returned contiguously. 6314 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6315 ** ORDER BY to maximize the chances of rows being delivered in an 6316 ** order that makes the ORDER BY redundant. */ 6317 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6318 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6319 pGroupBy->a[ii].sortFlags = sortFlags; 6320 } 6321 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6322 orderByGrp = 1; 6323 } 6324 } 6325 }else{ 6326 assert( 0==sqlite3LogEst(1) ); 6327 p->nSelectRow = 0; 6328 } 6329 6330 /* Create a label to jump to when we want to abort the query */ 6331 addrEnd = sqlite3VdbeMakeLabel(pParse); 6332 6333 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6334 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6335 ** SELECT statement. 6336 */ 6337 memset(&sNC, 0, sizeof(sNC)); 6338 sNC.pParse = pParse; 6339 sNC.pSrcList = pTabList; 6340 sNC.uNC.pAggInfo = &sAggInfo; 6341 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6342 sAggInfo.mnReg = pParse->nMem+1; 6343 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6344 sAggInfo.pGroupBy = pGroupBy; 6345 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6346 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6347 if( pHaving ){ 6348 if( pGroupBy ){ 6349 assert( pWhere==p->pWhere ); 6350 assert( pHaving==p->pHaving ); 6351 assert( pGroupBy==p->pGroupBy ); 6352 havingToWhere(pParse, p); 6353 pWhere = p->pWhere; 6354 } 6355 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6356 } 6357 sAggInfo.nAccumulator = sAggInfo.nColumn; 6358 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6359 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6360 }else{ 6361 minMaxFlag = WHERE_ORDERBY_NORMAL; 6362 } 6363 for(i=0; i<sAggInfo.nFunc; i++){ 6364 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6365 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6366 sNC.ncFlags |= NC_InAggFunc; 6367 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6368 #ifndef SQLITE_OMIT_WINDOWFUNC 6369 assert( !IsWindowFunc(pExpr) ); 6370 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6371 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6372 } 6373 #endif 6374 sNC.ncFlags &= ~NC_InAggFunc; 6375 } 6376 sAggInfo.mxReg = pParse->nMem; 6377 if( db->mallocFailed ) goto select_end; 6378 #if SELECTTRACE_ENABLED 6379 if( sqlite3SelectTrace & 0x400 ){ 6380 int ii; 6381 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6382 sqlite3TreeViewSelect(0, p, 0); 6383 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6384 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6385 ii, sAggInfo.aCol[ii].iMem); 6386 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6387 } 6388 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6389 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6390 ii, sAggInfo.aFunc[ii].iMem); 6391 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6392 } 6393 } 6394 #endif 6395 6396 6397 /* Processing for aggregates with GROUP BY is very different and 6398 ** much more complex than aggregates without a GROUP BY. 6399 */ 6400 if( pGroupBy ){ 6401 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6402 int addr1; /* A-vs-B comparision jump */ 6403 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6404 int regOutputRow; /* Return address register for output subroutine */ 6405 int addrSetAbort; /* Set the abort flag and return */ 6406 int addrTopOfLoop; /* Top of the input loop */ 6407 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6408 int addrReset; /* Subroutine for resetting the accumulator */ 6409 int regReset; /* Return address register for reset subroutine */ 6410 6411 /* If there is a GROUP BY clause we might need a sorting index to 6412 ** implement it. Allocate that sorting index now. If it turns out 6413 ** that we do not need it after all, the OP_SorterOpen instruction 6414 ** will be converted into a Noop. 6415 */ 6416 sAggInfo.sortingIdx = pParse->nTab++; 6417 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6418 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6419 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6420 0, (char*)pKeyInfo, P4_KEYINFO); 6421 6422 /* Initialize memory locations used by GROUP BY aggregate processing 6423 */ 6424 iUseFlag = ++pParse->nMem; 6425 iAbortFlag = ++pParse->nMem; 6426 regOutputRow = ++pParse->nMem; 6427 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6428 regReset = ++pParse->nMem; 6429 addrReset = sqlite3VdbeMakeLabel(pParse); 6430 iAMem = pParse->nMem + 1; 6431 pParse->nMem += pGroupBy->nExpr; 6432 iBMem = pParse->nMem + 1; 6433 pParse->nMem += pGroupBy->nExpr; 6434 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6435 VdbeComment((v, "clear abort flag")); 6436 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6437 6438 /* Begin a loop that will extract all source rows in GROUP BY order. 6439 ** This might involve two separate loops with an OP_Sort in between, or 6440 ** it might be a single loop that uses an index to extract information 6441 ** in the right order to begin with. 6442 */ 6443 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6444 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6445 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6446 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6447 ); 6448 if( pWInfo==0 ) goto select_end; 6449 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6450 /* The optimizer is able to deliver rows in group by order so 6451 ** we do not have to sort. The OP_OpenEphemeral table will be 6452 ** cancelled later because we still need to use the pKeyInfo 6453 */ 6454 groupBySort = 0; 6455 }else{ 6456 /* Rows are coming out in undetermined order. We have to push 6457 ** each row into a sorting index, terminate the first loop, 6458 ** then loop over the sorting index in order to get the output 6459 ** in sorted order 6460 */ 6461 int regBase; 6462 int regRecord; 6463 int nCol; 6464 int nGroupBy; 6465 6466 explainTempTable(pParse, 6467 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6468 "DISTINCT" : "GROUP BY"); 6469 6470 groupBySort = 1; 6471 nGroupBy = pGroupBy->nExpr; 6472 nCol = nGroupBy; 6473 j = nGroupBy; 6474 for(i=0; i<sAggInfo.nColumn; i++){ 6475 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6476 nCol++; 6477 j++; 6478 } 6479 } 6480 regBase = sqlite3GetTempRange(pParse, nCol); 6481 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6482 j = nGroupBy; 6483 for(i=0; i<sAggInfo.nColumn; i++){ 6484 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6485 if( pCol->iSorterColumn>=j ){ 6486 int r1 = j + regBase; 6487 sqlite3ExprCodeGetColumnOfTable(v, 6488 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6489 j++; 6490 } 6491 } 6492 regRecord = sqlite3GetTempReg(pParse); 6493 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6494 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6495 sqlite3ReleaseTempReg(pParse, regRecord); 6496 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6497 sqlite3WhereEnd(pWInfo); 6498 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6499 sortOut = sqlite3GetTempReg(pParse); 6500 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6501 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6502 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6503 sAggInfo.useSortingIdx = 1; 6504 } 6505 6506 /* If the index or temporary table used by the GROUP BY sort 6507 ** will naturally deliver rows in the order required by the ORDER BY 6508 ** clause, cancel the ephemeral table open coded earlier. 6509 ** 6510 ** This is an optimization - the correct answer should result regardless. 6511 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6512 ** disable this optimization for testing purposes. */ 6513 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6514 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6515 ){ 6516 sSort.pOrderBy = 0; 6517 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6518 } 6519 6520 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6521 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6522 ** Then compare the current GROUP BY terms against the GROUP BY terms 6523 ** from the previous row currently stored in a0, a1, a2... 6524 */ 6525 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6526 if( groupBySort ){ 6527 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6528 sortOut, sortPTab); 6529 } 6530 for(j=0; j<pGroupBy->nExpr; j++){ 6531 if( groupBySort ){ 6532 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6533 }else{ 6534 sAggInfo.directMode = 1; 6535 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6536 } 6537 } 6538 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6539 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6540 addr1 = sqlite3VdbeCurrentAddr(v); 6541 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6542 6543 /* Generate code that runs whenever the GROUP BY changes. 6544 ** Changes in the GROUP BY are detected by the previous code 6545 ** block. If there were no changes, this block is skipped. 6546 ** 6547 ** This code copies current group by terms in b0,b1,b2,... 6548 ** over to a0,a1,a2. It then calls the output subroutine 6549 ** and resets the aggregate accumulator registers in preparation 6550 ** for the next GROUP BY batch. 6551 */ 6552 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6553 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6554 VdbeComment((v, "output one row")); 6555 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6556 VdbeComment((v, "check abort flag")); 6557 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6558 VdbeComment((v, "reset accumulator")); 6559 6560 /* Update the aggregate accumulators based on the content of 6561 ** the current row 6562 */ 6563 sqlite3VdbeJumpHere(v, addr1); 6564 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6565 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6566 VdbeComment((v, "indicate data in accumulator")); 6567 6568 /* End of the loop 6569 */ 6570 if( groupBySort ){ 6571 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6572 VdbeCoverage(v); 6573 }else{ 6574 sqlite3WhereEnd(pWInfo); 6575 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6576 } 6577 6578 /* Output the final row of result 6579 */ 6580 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6581 VdbeComment((v, "output final row")); 6582 6583 /* Jump over the subroutines 6584 */ 6585 sqlite3VdbeGoto(v, addrEnd); 6586 6587 /* Generate a subroutine that outputs a single row of the result 6588 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6589 ** is less than or equal to zero, the subroutine is a no-op. If 6590 ** the processing calls for the query to abort, this subroutine 6591 ** increments the iAbortFlag memory location before returning in 6592 ** order to signal the caller to abort. 6593 */ 6594 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6595 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6596 VdbeComment((v, "set abort flag")); 6597 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6598 sqlite3VdbeResolveLabel(v, addrOutputRow); 6599 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6600 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6601 VdbeCoverage(v); 6602 VdbeComment((v, "Groupby result generator entry point")); 6603 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6604 finalizeAggFunctions(pParse, &sAggInfo); 6605 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6606 selectInnerLoop(pParse, p, -1, &sSort, 6607 &sDistinct, pDest, 6608 addrOutputRow+1, addrSetAbort); 6609 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6610 VdbeComment((v, "end groupby result generator")); 6611 6612 /* Generate a subroutine that will reset the group-by accumulator 6613 */ 6614 sqlite3VdbeResolveLabel(v, addrReset); 6615 resetAccumulator(pParse, &sAggInfo); 6616 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6617 VdbeComment((v, "indicate accumulator empty")); 6618 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6619 6620 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6621 else { 6622 #ifndef SQLITE_OMIT_BTREECOUNT 6623 Table *pTab; 6624 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6625 /* If isSimpleCount() returns a pointer to a Table structure, then 6626 ** the SQL statement is of the form: 6627 ** 6628 ** SELECT count(*) FROM <tbl> 6629 ** 6630 ** where the Table structure returned represents table <tbl>. 6631 ** 6632 ** This statement is so common that it is optimized specially. The 6633 ** OP_Count instruction is executed either on the intkey table that 6634 ** contains the data for table <tbl> or on one of its indexes. It 6635 ** is better to execute the op on an index, as indexes are almost 6636 ** always spread across less pages than their corresponding tables. 6637 */ 6638 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6639 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6640 Index *pIdx; /* Iterator variable */ 6641 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6642 Index *pBest = 0; /* Best index found so far */ 6643 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6644 6645 sqlite3CodeVerifySchema(pParse, iDb); 6646 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6647 6648 /* Search for the index that has the lowest scan cost. 6649 ** 6650 ** (2011-04-15) Do not do a full scan of an unordered index. 6651 ** 6652 ** (2013-10-03) Do not count the entries in a partial index. 6653 ** 6654 ** In practice the KeyInfo structure will not be used. It is only 6655 ** passed to keep OP_OpenRead happy. 6656 */ 6657 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6658 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6659 if( pIdx->bUnordered==0 6660 && pIdx->szIdxRow<pTab->szTabRow 6661 && pIdx->pPartIdxWhere==0 6662 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6663 ){ 6664 pBest = pIdx; 6665 } 6666 } 6667 if( pBest ){ 6668 iRoot = pBest->tnum; 6669 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6670 } 6671 6672 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6673 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6674 if( pKeyInfo ){ 6675 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6676 } 6677 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6678 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6679 explainSimpleCount(pParse, pTab, pBest); 6680 }else 6681 #endif /* SQLITE_OMIT_BTREECOUNT */ 6682 { 6683 int regAcc = 0; /* "populate accumulators" flag */ 6684 6685 /* If there are accumulator registers but no min() or max() functions 6686 ** without FILTER clauses, allocate register regAcc. Register regAcc 6687 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6688 ** The code generated by updateAccumulator() uses this to ensure 6689 ** that the accumulator registers are (a) updated only once if 6690 ** there are no min() or max functions or (b) always updated for the 6691 ** first row visited by the aggregate, so that they are updated at 6692 ** least once even if the FILTER clause means the min() or max() 6693 ** function visits zero rows. */ 6694 if( sAggInfo.nAccumulator ){ 6695 for(i=0; i<sAggInfo.nFunc; i++){ 6696 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6697 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6698 } 6699 if( i==sAggInfo.nFunc ){ 6700 regAcc = ++pParse->nMem; 6701 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6702 } 6703 } 6704 6705 /* This case runs if the aggregate has no GROUP BY clause. The 6706 ** processing is much simpler since there is only a single row 6707 ** of output. 6708 */ 6709 assert( p->pGroupBy==0 ); 6710 resetAccumulator(pParse, &sAggInfo); 6711 6712 /* If this query is a candidate for the min/max optimization, then 6713 ** minMaxFlag will have been previously set to either 6714 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6715 ** be an appropriate ORDER BY expression for the optimization. 6716 */ 6717 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6718 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6719 6720 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6721 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6722 0, minMaxFlag, 0); 6723 if( pWInfo==0 ){ 6724 goto select_end; 6725 } 6726 updateAccumulator(pParse, regAcc, &sAggInfo); 6727 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6728 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6729 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6730 VdbeComment((v, "%s() by index", 6731 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6732 } 6733 sqlite3WhereEnd(pWInfo); 6734 finalizeAggFunctions(pParse, &sAggInfo); 6735 } 6736 6737 sSort.pOrderBy = 0; 6738 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6739 selectInnerLoop(pParse, p, -1, 0, 0, 6740 pDest, addrEnd, addrEnd); 6741 } 6742 sqlite3VdbeResolveLabel(v, addrEnd); 6743 6744 } /* endif aggregate query */ 6745 6746 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6747 explainTempTable(pParse, "DISTINCT"); 6748 } 6749 6750 /* If there is an ORDER BY clause, then we need to sort the results 6751 ** and send them to the callback one by one. 6752 */ 6753 if( sSort.pOrderBy ){ 6754 explainTempTable(pParse, 6755 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6756 assert( p->pEList==pEList ); 6757 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6758 } 6759 6760 /* Jump here to skip this query 6761 */ 6762 sqlite3VdbeResolveLabel(v, iEnd); 6763 6764 /* The SELECT has been coded. If there is an error in the Parse structure, 6765 ** set the return code to 1. Otherwise 0. */ 6766 rc = (pParse->nErr>0); 6767 6768 /* Control jumps to here if an error is encountered above, or upon 6769 ** successful coding of the SELECT. 6770 */ 6771 select_end: 6772 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6773 sqlite3DbFree(db, sAggInfo.aCol); 6774 sqlite3DbFree(db, sAggInfo.aFunc); 6775 #if SELECTTRACE_ENABLED 6776 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6777 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6778 sqlite3TreeViewSelect(0, p, 0); 6779 } 6780 #endif 6781 ExplainQueryPlanPop(pParse); 6782 return rc; 6783 } 6784