xref: /sqlite-3.40.0/src/select.c (revision 00bd55e1)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself depending on the value of bFree
88 **
89 ** If bFree==1, call sqlite3DbFree() on the p object.
90 ** If bFree==0, Leave the first Select object unfreed
91 */
92 static void clearSelect(sqlite3 *db, Select *p, int bFree){
93   while( p ){
94     Select *pPrior = p->pPrior;
95     sqlite3ExprListDelete(db, p->pEList);
96     sqlite3SrcListDelete(db, p->pSrc);
97     sqlite3ExprDelete(db, p->pWhere);
98     sqlite3ExprListDelete(db, p->pGroupBy);
99     sqlite3ExprDelete(db, p->pHaving);
100     sqlite3ExprListDelete(db, p->pOrderBy);
101     sqlite3ExprDelete(db, p->pLimit);
102 #ifndef SQLITE_OMIT_WINDOWFUNC
103     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
104       sqlite3WindowListDelete(db, p->pWinDefn);
105     }
106 #endif
107     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
108     if( bFree ) sqlite3DbFreeNN(db, p);
109     p = pPrior;
110     bFree = 1;
111   }
112 }
113 
114 /*
115 ** Initialize a SelectDest structure.
116 */
117 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
118   pDest->eDest = (u8)eDest;
119   pDest->iSDParm = iParm;
120   pDest->zAffSdst = 0;
121   pDest->iSdst = 0;
122   pDest->nSdst = 0;
123 }
124 
125 
126 /*
127 ** Allocate a new Select structure and return a pointer to that
128 ** structure.
129 */
130 Select *sqlite3SelectNew(
131   Parse *pParse,        /* Parsing context */
132   ExprList *pEList,     /* which columns to include in the result */
133   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
134   Expr *pWhere,         /* the WHERE clause */
135   ExprList *pGroupBy,   /* the GROUP BY clause */
136   Expr *pHaving,        /* the HAVING clause */
137   ExprList *pOrderBy,   /* the ORDER BY clause */
138   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
139   Expr *pLimit          /* LIMIT value.  NULL means not used */
140 ){
141   Select *pNew;
142   Select standin;
143   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
144   if( pNew==0 ){
145     assert( pParse->db->mallocFailed );
146     pNew = &standin;
147   }
148   if( pEList==0 ){
149     pEList = sqlite3ExprListAppend(pParse, 0,
150                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
151   }
152   pNew->pEList = pEList;
153   pNew->op = TK_SELECT;
154   pNew->selFlags = selFlags;
155   pNew->iLimit = 0;
156   pNew->iOffset = 0;
157   pNew->selId = ++pParse->nSelect;
158   pNew->addrOpenEphm[0] = -1;
159   pNew->addrOpenEphm[1] = -1;
160   pNew->nSelectRow = 0;
161   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
162   pNew->pSrc = pSrc;
163   pNew->pWhere = pWhere;
164   pNew->pGroupBy = pGroupBy;
165   pNew->pHaving = pHaving;
166   pNew->pOrderBy = pOrderBy;
167   pNew->pPrior = 0;
168   pNew->pNext = 0;
169   pNew->pLimit = pLimit;
170   pNew->pWith = 0;
171 #ifndef SQLITE_OMIT_WINDOWFUNC
172   pNew->pWin = 0;
173   pNew->pWinDefn = 0;
174 #endif
175   if( pParse->db->mallocFailed ) {
176     clearSelect(pParse->db, pNew, pNew!=&standin);
177     pNew = 0;
178   }else{
179     assert( pNew->pSrc!=0 || pParse->nErr>0 );
180   }
181   assert( pNew!=&standin );
182   return pNew;
183 }
184 
185 
186 /*
187 ** Delete the given Select structure and all of its substructures.
188 */
189 void sqlite3SelectDelete(sqlite3 *db, Select *p){
190   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
191 }
192 
193 /*
194 ** Delete all the substructure for p, but keep p allocated.  Redefine
195 ** p to be a single SELECT where every column of the result set has a
196 ** value of NULL.
197 */
198 void sqlite3SelectReset(Parse *pParse, Select *p){
199   if( ALWAYS(p) ){
200     clearSelect(pParse->db, p, 0);
201     memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
202     p->pEList = sqlite3ExprListAppend(pParse, 0,
203                      sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
204     p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList));
205   }
206 }
207 
208 /*
209 ** Return a pointer to the right-most SELECT statement in a compound.
210 */
211 static Select *findRightmost(Select *p){
212   while( p->pNext ) p = p->pNext;
213   return p;
214 }
215 
216 /*
217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
218 ** type of join.  Return an integer constant that expresses that type
219 ** in terms of the following bit values:
220 **
221 **     JT_INNER
222 **     JT_CROSS
223 **     JT_OUTER
224 **     JT_NATURAL
225 **     JT_LEFT
226 **     JT_RIGHT
227 **
228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
229 **
230 ** If an illegal or unsupported join type is seen, then still return
231 ** a join type, but put an error in the pParse structure.
232 */
233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
234   int jointype = 0;
235   Token *apAll[3];
236   Token *p;
237                              /*   0123456789 123456789 123456789 123 */
238   static const char zKeyText[] = "naturaleftouterightfullinnercross";
239   static const struct {
240     u8 i;        /* Beginning of keyword text in zKeyText[] */
241     u8 nChar;    /* Length of the keyword in characters */
242     u8 code;     /* Join type mask */
243   } aKeyword[] = {
244     /* natural */ { 0,  7, JT_NATURAL                },
245     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
246     /* outer   */ { 10, 5, JT_OUTER                  },
247     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
248     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
249     /* inner   */ { 23, 5, JT_INNER                  },
250     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
251   };
252   int i, j;
253   apAll[0] = pA;
254   apAll[1] = pB;
255   apAll[2] = pC;
256   for(i=0; i<3 && apAll[i]; i++){
257     p = apAll[i];
258     for(j=0; j<ArraySize(aKeyword); j++){
259       if( p->n==aKeyword[j].nChar
260           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
261         jointype |= aKeyword[j].code;
262         break;
263       }
264     }
265     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
266     if( j>=ArraySize(aKeyword) ){
267       jointype |= JT_ERROR;
268       break;
269     }
270   }
271   if(
272      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
273      (jointype & JT_ERROR)!=0
274   ){
275     const char *zSp = " ";
276     assert( pB!=0 );
277     if( pC==0 ){ zSp++; }
278     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
279        "%T %T%s%T", pA, pB, zSp, pC);
280     jointype = JT_INNER;
281   }else if( (jointype & JT_OUTER)!=0
282          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
283     sqlite3ErrorMsg(pParse,
284       "RIGHT and FULL OUTER JOINs are not currently supported");
285     jointype = JT_INNER;
286   }
287   return jointype;
288 }
289 
290 /*
291 ** Return the index of a column in a table.  Return -1 if the column
292 ** is not contained in the table.
293 */
294 static int columnIndex(Table *pTab, const char *zCol){
295   int i;
296   for(i=0; i<pTab->nCol; i++){
297     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
298   }
299   return -1;
300 }
301 
302 /*
303 ** Search the first N tables in pSrc, from left to right, looking for a
304 ** table that has a column named zCol.
305 **
306 ** When found, set *piTab and *piCol to the table index and column index
307 ** of the matching column and return TRUE.
308 **
309 ** If not found, return FALSE.
310 */
311 static int tableAndColumnIndex(
312   SrcList *pSrc,       /* Array of tables to search */
313   int N,               /* Number of tables in pSrc->a[] to search */
314   const char *zCol,    /* Name of the column we are looking for */
315   int *piTab,          /* Write index of pSrc->a[] here */
316   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
317   int bIgnoreHidden    /* True to ignore hidden columns */
318 ){
319   int i;               /* For looping over tables in pSrc */
320   int iCol;            /* Index of column matching zCol */
321 
322   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
323   for(i=0; i<N; i++){
324     iCol = columnIndex(pSrc->a[i].pTab, zCol);
325     if( iCol>=0
326      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
327     ){
328       if( piTab ){
329         *piTab = i;
330         *piCol = iCol;
331       }
332       return 1;
333     }
334   }
335   return 0;
336 }
337 
338 /*
339 ** This function is used to add terms implied by JOIN syntax to the
340 ** WHERE clause expression of a SELECT statement. The new term, which
341 ** is ANDed with the existing WHERE clause, is of the form:
342 **
343 **    (tab1.col1 = tab2.col2)
344 **
345 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
346 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
347 ** column iColRight of tab2.
348 */
349 static void addWhereTerm(
350   Parse *pParse,                  /* Parsing context */
351   SrcList *pSrc,                  /* List of tables in FROM clause */
352   int iLeft,                      /* Index of first table to join in pSrc */
353   int iColLeft,                   /* Index of column in first table */
354   int iRight,                     /* Index of second table in pSrc */
355   int iColRight,                  /* Index of column in second table */
356   int isOuterJoin,                /* True if this is an OUTER join */
357   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
358 ){
359   sqlite3 *db = pParse->db;
360   Expr *pE1;
361   Expr *pE2;
362   Expr *pEq;
363 
364   assert( iLeft<iRight );
365   assert( pSrc->nSrc>iRight );
366   assert( pSrc->a[iLeft].pTab );
367   assert( pSrc->a[iRight].pTab );
368 
369   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
370   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
371 
372   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
373   if( pEq && isOuterJoin ){
374     ExprSetProperty(pEq, EP_FromJoin);
375     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(pEq, EP_NoReduce);
377     pEq->iRightJoinTable = (i16)pE2->iTable;
378   }
379   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
380 }
381 
382 /*
383 ** Set the EP_FromJoin property on all terms of the given expression.
384 ** And set the Expr.iRightJoinTable to iTable for every term in the
385 ** expression.
386 **
387 ** The EP_FromJoin property is used on terms of an expression to tell
388 ** the LEFT OUTER JOIN processing logic that this term is part of the
389 ** join restriction specified in the ON or USING clause and not a part
390 ** of the more general WHERE clause.  These terms are moved over to the
391 ** WHERE clause during join processing but we need to remember that they
392 ** originated in the ON or USING clause.
393 **
394 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
395 ** expression depends on table iRightJoinTable even if that table is not
396 ** explicitly mentioned in the expression.  That information is needed
397 ** for cases like this:
398 **
399 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
400 **
401 ** The where clause needs to defer the handling of the t1.x=5
402 ** term until after the t2 loop of the join.  In that way, a
403 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
404 ** defer the handling of t1.x=5, it will be processed immediately
405 ** after the t1 loop and rows with t1.x!=5 will never appear in
406 ** the output, which is incorrect.
407 */
408 void sqlite3SetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     ExprSetProperty(p, EP_FromJoin);
411     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
412     ExprSetVVAProperty(p, EP_NoReduce);
413     p->iRightJoinTable = (i16)iTable;
414     if( p->op==TK_FUNCTION && p->x.pList ){
415       int i;
416       for(i=0; i<p->x.pList->nExpr; i++){
417         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
418       }
419     }
420     sqlite3SetJoinExpr(p->pLeft, iTable);
421     p = p->pRight;
422   }
423 }
424 
425 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
426 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
427 ** an ordinary term that omits the EP_FromJoin mark.
428 **
429 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
430 */
431 static void unsetJoinExpr(Expr *p, int iTable){
432   while( p ){
433     if( ExprHasProperty(p, EP_FromJoin)
434      && (iTable<0 || p->iRightJoinTable==iTable) ){
435       ExprClearProperty(p, EP_FromJoin);
436     }
437     if( p->op==TK_FUNCTION && p->x.pList ){
438       int i;
439       for(i=0; i<p->x.pList->nExpr; i++){
440         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
441       }
442     }
443     unsetJoinExpr(p->pLeft, iTable);
444     p = p->pRight;
445   }
446 }
447 
448 /*
449 ** This routine processes the join information for a SELECT statement.
450 ** ON and USING clauses are converted into extra terms of the WHERE clause.
451 ** NATURAL joins also create extra WHERE clause terms.
452 **
453 ** The terms of a FROM clause are contained in the Select.pSrc structure.
454 ** The left most table is the first entry in Select.pSrc.  The right-most
455 ** table is the last entry.  The join operator is held in the entry to
456 ** the left.  Thus entry 0 contains the join operator for the join between
457 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
458 ** also attached to the left entry.
459 **
460 ** This routine returns the number of errors encountered.
461 */
462 static int sqliteProcessJoin(Parse *pParse, Select *p){
463   SrcList *pSrc;                  /* All tables in the FROM clause */
464   int i, j;                       /* Loop counters */
465   struct SrcList_item *pLeft;     /* Left table being joined */
466   struct SrcList_item *pRight;    /* Right table being joined */
467 
468   pSrc = p->pSrc;
469   pLeft = &pSrc->a[0];
470   pRight = &pLeft[1];
471   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
472     Table *pRightTab = pRight->pTab;
473     int isOuter;
474 
475     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
476     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
477 
478     /* When the NATURAL keyword is present, add WHERE clause terms for
479     ** every column that the two tables have in common.
480     */
481     if( pRight->fg.jointype & JT_NATURAL ){
482       if( pRight->pOn || pRight->pUsing ){
483         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
484            "an ON or USING clause", 0);
485         return 1;
486       }
487       for(j=0; j<pRightTab->nCol; j++){
488         char *zName;   /* Name of column in the right table */
489         int iLeft;     /* Matching left table */
490         int iLeftCol;  /* Matching column in the left table */
491 
492         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
493         zName = pRightTab->aCol[j].zName;
494         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
495           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
496                 isOuter, &p->pWhere);
497         }
498       }
499     }
500 
501     /* Disallow both ON and USING clauses in the same join
502     */
503     if( pRight->pOn && pRight->pUsing ){
504       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
505         "clauses in the same join");
506       return 1;
507     }
508 
509     /* Add the ON clause to the end of the WHERE clause, connected by
510     ** an AND operator.
511     */
512     if( pRight->pOn ){
513       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
514       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
515       pRight->pOn = 0;
516     }
517 
518     /* Create extra terms on the WHERE clause for each column named
519     ** in the USING clause.  Example: If the two tables to be joined are
520     ** A and B and the USING clause names X, Y, and Z, then add this
521     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
522     ** Report an error if any column mentioned in the USING clause is
523     ** not contained in both tables to be joined.
524     */
525     if( pRight->pUsing ){
526       IdList *pList = pRight->pUsing;
527       for(j=0; j<pList->nId; j++){
528         char *zName;     /* Name of the term in the USING clause */
529         int iLeft;       /* Table on the left with matching column name */
530         int iLeftCol;    /* Column number of matching column on the left */
531         int iRightCol;   /* Column number of matching column on the right */
532 
533         zName = pList->a[j].zName;
534         iRightCol = columnIndex(pRightTab, zName);
535         if( iRightCol<0
536          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
537         ){
538           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
539             "not present in both tables", zName);
540           return 1;
541         }
542         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
543                      isOuter, &p->pWhere);
544       }
545     }
546   }
547   return 0;
548 }
549 
550 /*
551 ** An instance of this object holds information (beyond pParse and pSelect)
552 ** needed to load the next result row that is to be added to the sorter.
553 */
554 typedef struct RowLoadInfo RowLoadInfo;
555 struct RowLoadInfo {
556   int regResult;               /* Store results in array of registers here */
557   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
559   ExprList *pExtra;            /* Extra columns needed by sorter refs */
560   int regExtraResult;          /* Where to load the extra columns */
561 #endif
562 };
563 
564 /*
565 ** This routine does the work of loading query data into an array of
566 ** registers so that it can be added to the sorter.
567 */
568 static void innerLoopLoadRow(
569   Parse *pParse,             /* Statement under construction */
570   Select *pSelect,           /* The query being coded */
571   RowLoadInfo *pInfo         /* Info needed to complete the row load */
572 ){
573   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
574                           0, pInfo->ecelFlags);
575 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
576   if( pInfo->pExtra ){
577     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
578     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
579   }
580 #endif
581 }
582 
583 /*
584 ** Code the OP_MakeRecord instruction that generates the entry to be
585 ** added into the sorter.
586 **
587 ** Return the register in which the result is stored.
588 */
589 static int makeSorterRecord(
590   Parse *pParse,
591   SortCtx *pSort,
592   Select *pSelect,
593   int regBase,
594   int nBase
595 ){
596   int nOBSat = pSort->nOBSat;
597   Vdbe *v = pParse->pVdbe;
598   int regOut = ++pParse->nMem;
599   if( pSort->pDeferredRowLoad ){
600     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
601   }
602   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
603   return regOut;
604 }
605 
606 /*
607 ** Generate code that will push the record in registers regData
608 ** through regData+nData-1 onto the sorter.
609 */
610 static void pushOntoSorter(
611   Parse *pParse,         /* Parser context */
612   SortCtx *pSort,        /* Information about the ORDER BY clause */
613   Select *pSelect,       /* The whole SELECT statement */
614   int regData,           /* First register holding data to be sorted */
615   int regOrigData,       /* First register holding data before packing */
616   int nData,             /* Number of elements in the regData data array */
617   int nPrefixReg         /* No. of reg prior to regData available for use */
618 ){
619   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
620   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
621   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
622   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
623   int regBase;                                     /* Regs for sorter record */
624   int regRecord = 0;                               /* Assembled sorter record */
625   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
626   int op;                            /* Opcode to add sorter record to sorter */
627   int iLimit;                        /* LIMIT counter */
628   int iSkip = 0;                     /* End of the sorter insert loop */
629 
630   assert( bSeq==0 || bSeq==1 );
631 
632   /* Three cases:
633   **   (1) The data to be sorted has already been packed into a Record
634   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
635   **       will be completely unrelated to regOrigData.
636   **   (2) All output columns are included in the sort record.  In that
637   **       case regData==regOrigData.
638   **   (3) Some output columns are omitted from the sort record due to
639   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
640   **       SQLITE_ECEL_OMITREF optimization, or due to the
641   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
642   **       regOrigData is 0 to prevent this routine from trying to copy
643   **       values that might not yet exist.
644   */
645   assert( nData==1 || regData==regOrigData || regOrigData==0 );
646 
647   if( nPrefixReg ){
648     assert( nPrefixReg==nExpr+bSeq );
649     regBase = regData - nPrefixReg;
650   }else{
651     regBase = pParse->nMem + 1;
652     pParse->nMem += nBase;
653   }
654   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
655   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
656   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
657   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
658                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
659   if( bSeq ){
660     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
661   }
662   if( nPrefixReg==0 && nData>0 ){
663     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
664   }
665   if( nOBSat>0 ){
666     int regPrevKey;   /* The first nOBSat columns of the previous row */
667     int addrFirst;    /* Address of the OP_IfNot opcode */
668     int addrJmp;      /* Address of the OP_Jump opcode */
669     VdbeOp *pOp;      /* Opcode that opens the sorter */
670     int nKey;         /* Number of sorting key columns, including OP_Sequence */
671     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
672 
673     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
674     regPrevKey = pParse->nMem+1;
675     pParse->nMem += pSort->nOBSat;
676     nKey = nExpr - pSort->nOBSat + bSeq;
677     if( bSeq ){
678       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
679     }else{
680       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
681     }
682     VdbeCoverage(v);
683     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
684     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
685     if( pParse->db->mallocFailed ) return;
686     pOp->p2 = nKey + nData;
687     pKI = pOp->p4.pKeyInfo;
688     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
689     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
690     testcase( pKI->nAllField > pKI->nKeyField+2 );
691     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
692                                            pKI->nAllField-pKI->nKeyField-1);
693     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
694     addrJmp = sqlite3VdbeCurrentAddr(v);
695     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
696     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
697     pSort->regReturn = ++pParse->nMem;
698     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
699     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
700     if( iLimit ){
701       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
702       VdbeCoverage(v);
703     }
704     sqlite3VdbeJumpHere(v, addrFirst);
705     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
706     sqlite3VdbeJumpHere(v, addrJmp);
707   }
708   if( iLimit ){
709     /* At this point the values for the new sorter entry are stored
710     ** in an array of registers. They need to be composed into a record
711     ** and inserted into the sorter if either (a) there are currently
712     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
713     ** the largest record currently in the sorter. If (b) is true and there
714     ** are already LIMIT+OFFSET items in the sorter, delete the largest
715     ** entry before inserting the new one. This way there are never more
716     ** than LIMIT+OFFSET items in the sorter.
717     **
718     ** If the new record does not need to be inserted into the sorter,
719     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
720     ** value is not zero, then it is a label of where to jump.  Otherwise,
721     ** just bypass the row insert logic.  See the header comment on the
722     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
723     */
724     int iCsr = pSort->iECursor;
725     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
726     VdbeCoverage(v);
727     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
728     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
729                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
730     VdbeCoverage(v);
731     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
732   }
733   if( regRecord==0 ){
734     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
735   }
736   if( pSort->sortFlags & SORTFLAG_UseSorter ){
737     op = OP_SorterInsert;
738   }else{
739     op = OP_IdxInsert;
740   }
741   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
742                        regBase+nOBSat, nBase-nOBSat);
743   if( iSkip ){
744     sqlite3VdbeChangeP2(v, iSkip,
745          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
746   }
747 }
748 
749 /*
750 ** Add code to implement the OFFSET
751 */
752 static void codeOffset(
753   Vdbe *v,          /* Generate code into this VM */
754   int iOffset,      /* Register holding the offset counter */
755   int iContinue     /* Jump here to skip the current record */
756 ){
757   if( iOffset>0 ){
758     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
759     VdbeComment((v, "OFFSET"));
760   }
761 }
762 
763 /*
764 ** Add code that will check to make sure the N registers starting at iMem
765 ** form a distinct entry.  iTab is a sorting index that holds previously
766 ** seen combinations of the N values.  A new entry is made in iTab
767 ** if the current N values are new.
768 **
769 ** A jump to addrRepeat is made and the N+1 values are popped from the
770 ** stack if the top N elements are not distinct.
771 */
772 static void codeDistinct(
773   Parse *pParse,     /* Parsing and code generating context */
774   int iTab,          /* A sorting index used to test for distinctness */
775   int addrRepeat,    /* Jump to here if not distinct */
776   int N,             /* Number of elements */
777   int iMem           /* First element */
778 ){
779   Vdbe *v;
780   int r1;
781 
782   v = pParse->pVdbe;
783   r1 = sqlite3GetTempReg(pParse);
784   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
785   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
786   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
787   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
788   sqlite3ReleaseTempReg(pParse, r1);
789 }
790 
791 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
792 /*
793 ** This function is called as part of inner-loop generation for a SELECT
794 ** statement with an ORDER BY that is not optimized by an index. It
795 ** determines the expressions, if any, that the sorter-reference
796 ** optimization should be used for. The sorter-reference optimization
797 ** is used for SELECT queries like:
798 **
799 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
800 **
801 ** If the optimization is used for expression "bigblob", then instead of
802 ** storing values read from that column in the sorter records, the PK of
803 ** the row from table t1 is stored instead. Then, as records are extracted from
804 ** the sorter to return to the user, the required value of bigblob is
805 ** retrieved directly from table t1. If the values are very large, this
806 ** can be more efficient than storing them directly in the sorter records.
807 **
808 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
809 ** for which the sorter-reference optimization should be enabled.
810 ** Additionally, the pSort->aDefer[] array is populated with entries
811 ** for all cursors required to evaluate all selected expressions. Finally.
812 ** output variable (*ppExtra) is set to an expression list containing
813 ** expressions for all extra PK values that should be stored in the
814 ** sorter records.
815 */
816 static void selectExprDefer(
817   Parse *pParse,                  /* Leave any error here */
818   SortCtx *pSort,                 /* Sorter context */
819   ExprList *pEList,               /* Expressions destined for sorter */
820   ExprList **ppExtra              /* Expressions to append to sorter record */
821 ){
822   int i;
823   int nDefer = 0;
824   ExprList *pExtra = 0;
825   for(i=0; i<pEList->nExpr; i++){
826     struct ExprList_item *pItem = &pEList->a[i];
827     if( pItem->u.x.iOrderByCol==0 ){
828       Expr *pExpr = pItem->pExpr;
829       Table *pTab = pExpr->y.pTab;
830       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
831        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
832       ){
833         int j;
834         for(j=0; j<nDefer; j++){
835           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
836         }
837         if( j==nDefer ){
838           if( nDefer==ArraySize(pSort->aDefer) ){
839             continue;
840           }else{
841             int nKey = 1;
842             int k;
843             Index *pPk = 0;
844             if( !HasRowid(pTab) ){
845               pPk = sqlite3PrimaryKeyIndex(pTab);
846               nKey = pPk->nKeyCol;
847             }
848             for(k=0; k<nKey; k++){
849               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
850               if( pNew ){
851                 pNew->iTable = pExpr->iTable;
852                 pNew->y.pTab = pExpr->y.pTab;
853                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
854                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
855               }
856             }
857             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
858             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
859             pSort->aDefer[nDefer].nKey = nKey;
860             nDefer++;
861           }
862         }
863         pItem->bSorterRef = 1;
864       }
865     }
866   }
867   pSort->nDefer = (u8)nDefer;
868   *ppExtra = pExtra;
869 }
870 #endif
871 
872 /*
873 ** This routine generates the code for the inside of the inner loop
874 ** of a SELECT.
875 **
876 ** If srcTab is negative, then the p->pEList expressions
877 ** are evaluated in order to get the data for this row.  If srcTab is
878 ** zero or more, then data is pulled from srcTab and p->pEList is used only
879 ** to get the number of columns and the collation sequence for each column.
880 */
881 static void selectInnerLoop(
882   Parse *pParse,          /* The parser context */
883   Select *p,              /* The complete select statement being coded */
884   int srcTab,             /* Pull data from this table if non-negative */
885   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
886   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
887   SelectDest *pDest,      /* How to dispose of the results */
888   int iContinue,          /* Jump here to continue with next row */
889   int iBreak              /* Jump here to break out of the inner loop */
890 ){
891   Vdbe *v = pParse->pVdbe;
892   int i;
893   int hasDistinct;            /* True if the DISTINCT keyword is present */
894   int eDest = pDest->eDest;   /* How to dispose of results */
895   int iParm = pDest->iSDParm; /* First argument to disposal method */
896   int nResultCol;             /* Number of result columns */
897   int nPrefixReg = 0;         /* Number of extra registers before regResult */
898   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
899 
900   /* Usually, regResult is the first cell in an array of memory cells
901   ** containing the current result row. In this case regOrig is set to the
902   ** same value. However, if the results are being sent to the sorter, the
903   ** values for any expressions that are also part of the sort-key are omitted
904   ** from this array. In this case regOrig is set to zero.  */
905   int regResult;              /* Start of memory holding current results */
906   int regOrig;                /* Start of memory holding full result (or 0) */
907 
908   assert( v );
909   assert( p->pEList!=0 );
910   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
911   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
912   if( pSort==0 && !hasDistinct ){
913     assert( iContinue!=0 );
914     codeOffset(v, p->iOffset, iContinue);
915   }
916 
917   /* Pull the requested columns.
918   */
919   nResultCol = p->pEList->nExpr;
920 
921   if( pDest->iSdst==0 ){
922     if( pSort ){
923       nPrefixReg = pSort->pOrderBy->nExpr;
924       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
925       pParse->nMem += nPrefixReg;
926     }
927     pDest->iSdst = pParse->nMem+1;
928     pParse->nMem += nResultCol;
929   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
930     /* This is an error condition that can result, for example, when a SELECT
931     ** on the right-hand side of an INSERT contains more result columns than
932     ** there are columns in the table on the left.  The error will be caught
933     ** and reported later.  But we need to make sure enough memory is allocated
934     ** to avoid other spurious errors in the meantime. */
935     pParse->nMem += nResultCol;
936   }
937   pDest->nSdst = nResultCol;
938   regOrig = regResult = pDest->iSdst;
939   if( srcTab>=0 ){
940     for(i=0; i<nResultCol; i++){
941       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
942       VdbeComment((v, "%s", p->pEList->a[i].zEName));
943     }
944   }else if( eDest!=SRT_Exists ){
945 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
946     ExprList *pExtra = 0;
947 #endif
948     /* If the destination is an EXISTS(...) expression, the actual
949     ** values returned by the SELECT are not required.
950     */
951     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
952     ExprList *pEList;
953     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
954       ecelFlags = SQLITE_ECEL_DUP;
955     }else{
956       ecelFlags = 0;
957     }
958     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
959       /* For each expression in p->pEList that is a copy of an expression in
960       ** the ORDER BY clause (pSort->pOrderBy), set the associated
961       ** iOrderByCol value to one more than the index of the ORDER BY
962       ** expression within the sort-key that pushOntoSorter() will generate.
963       ** This allows the p->pEList field to be omitted from the sorted record,
964       ** saving space and CPU cycles.  */
965       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
966 
967       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
968         int j;
969         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
970           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
971         }
972       }
973 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
974       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
975       if( pExtra && pParse->db->mallocFailed==0 ){
976         /* If there are any extra PK columns to add to the sorter records,
977         ** allocate extra memory cells and adjust the OpenEphemeral
978         ** instruction to account for the larger records. This is only
979         ** required if there are one or more WITHOUT ROWID tables with
980         ** composite primary keys in the SortCtx.aDefer[] array.  */
981         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
982         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
983         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
984         pParse->nMem += pExtra->nExpr;
985       }
986 #endif
987 
988       /* Adjust nResultCol to account for columns that are omitted
989       ** from the sorter by the optimizations in this branch */
990       pEList = p->pEList;
991       for(i=0; i<pEList->nExpr; i++){
992         if( pEList->a[i].u.x.iOrderByCol>0
993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
994          || pEList->a[i].bSorterRef
995 #endif
996         ){
997           nResultCol--;
998           regOrig = 0;
999         }
1000       }
1001 
1002       testcase( regOrig );
1003       testcase( eDest==SRT_Set );
1004       testcase( eDest==SRT_Mem );
1005       testcase( eDest==SRT_Coroutine );
1006       testcase( eDest==SRT_Output );
1007       assert( eDest==SRT_Set || eDest==SRT_Mem
1008            || eDest==SRT_Coroutine || eDest==SRT_Output );
1009     }
1010     sRowLoadInfo.regResult = regResult;
1011     sRowLoadInfo.ecelFlags = ecelFlags;
1012 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1013     sRowLoadInfo.pExtra = pExtra;
1014     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1015     if( pExtra ) nResultCol += pExtra->nExpr;
1016 #endif
1017     if( p->iLimit
1018      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1019      && nPrefixReg>0
1020     ){
1021       assert( pSort!=0 );
1022       assert( hasDistinct==0 );
1023       pSort->pDeferredRowLoad = &sRowLoadInfo;
1024       regOrig = 0;
1025     }else{
1026       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1027     }
1028   }
1029 
1030   /* If the DISTINCT keyword was present on the SELECT statement
1031   ** and this row has been seen before, then do not make this row
1032   ** part of the result.
1033   */
1034   if( hasDistinct ){
1035     switch( pDistinct->eTnctType ){
1036       case WHERE_DISTINCT_ORDERED: {
1037         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1038         int iJump;              /* Jump destination */
1039         int regPrev;            /* Previous row content */
1040 
1041         /* Allocate space for the previous row */
1042         regPrev = pParse->nMem+1;
1043         pParse->nMem += nResultCol;
1044 
1045         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1046         ** sets the MEM_Cleared bit on the first register of the
1047         ** previous value.  This will cause the OP_Ne below to always
1048         ** fail on the first iteration of the loop even if the first
1049         ** row is all NULLs.
1050         */
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1053         pOp->opcode = OP_Null;
1054         pOp->p1 = 1;
1055         pOp->p2 = regPrev;
1056         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1057 
1058         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1059         for(i=0; i<nResultCol; i++){
1060           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1061           if( i<nResultCol-1 ){
1062             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1063             VdbeCoverage(v);
1064           }else{
1065             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1066             VdbeCoverage(v);
1067            }
1068           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1069           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1070         }
1071         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1072         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1073         break;
1074       }
1075 
1076       case WHERE_DISTINCT_UNIQUE: {
1077         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1078         break;
1079       }
1080 
1081       default: {
1082         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1083         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1084                      regResult);
1085         break;
1086       }
1087     }
1088     if( pSort==0 ){
1089       codeOffset(v, p->iOffset, iContinue);
1090     }
1091   }
1092 
1093   switch( eDest ){
1094     /* In this mode, write each query result to the key of the temporary
1095     ** table iParm.
1096     */
1097 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1098     case SRT_Union: {
1099       int r1;
1100       r1 = sqlite3GetTempReg(pParse);
1101       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1102       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1103       sqlite3ReleaseTempReg(pParse, r1);
1104       break;
1105     }
1106 
1107     /* Construct a record from the query result, but instead of
1108     ** saving that record, use it as a key to delete elements from
1109     ** the temporary table iParm.
1110     */
1111     case SRT_Except: {
1112       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1113       break;
1114     }
1115 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1116 
1117     /* Store the result as data using a unique key.
1118     */
1119     case SRT_Fifo:
1120     case SRT_DistFifo:
1121     case SRT_Table:
1122     case SRT_EphemTab: {
1123       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1124       testcase( eDest==SRT_Table );
1125       testcase( eDest==SRT_EphemTab );
1126       testcase( eDest==SRT_Fifo );
1127       testcase( eDest==SRT_DistFifo );
1128       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1129 #ifndef SQLITE_OMIT_CTE
1130       if( eDest==SRT_DistFifo ){
1131         /* If the destination is DistFifo, then cursor (iParm+1) is open
1132         ** on an ephemeral index. If the current row is already present
1133         ** in the index, do not write it to the output. If not, add the
1134         ** current row to the index and proceed with writing it to the
1135         ** output table as well.  */
1136         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1137         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1138         VdbeCoverage(v);
1139         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1140         assert( pSort==0 );
1141       }
1142 #endif
1143       if( pSort ){
1144         assert( regResult==regOrig );
1145         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1146       }else{
1147         int r2 = sqlite3GetTempReg(pParse);
1148         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1149         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1150         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1151         sqlite3ReleaseTempReg(pParse, r2);
1152       }
1153       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1154       break;
1155     }
1156 
1157 #ifndef SQLITE_OMIT_SUBQUERY
1158     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1159     ** then there should be a single item on the stack.  Write this
1160     ** item into the set table with bogus data.
1161     */
1162     case SRT_Set: {
1163       if( pSort ){
1164         /* At first glance you would think we could optimize out the
1165         ** ORDER BY in this case since the order of entries in the set
1166         ** does not matter.  But there might be a LIMIT clause, in which
1167         ** case the order does matter */
1168         pushOntoSorter(
1169             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1170       }else{
1171         int r1 = sqlite3GetTempReg(pParse);
1172         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1173         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1174             r1, pDest->zAffSdst, nResultCol);
1175         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1176         sqlite3ReleaseTempReg(pParse, r1);
1177       }
1178       break;
1179     }
1180 
1181     /* If any row exist in the result set, record that fact and abort.
1182     */
1183     case SRT_Exists: {
1184       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1185       /* The LIMIT clause will terminate the loop for us */
1186       break;
1187     }
1188 
1189     /* If this is a scalar select that is part of an expression, then
1190     ** store the results in the appropriate memory cell or array of
1191     ** memory cells and break out of the scan loop.
1192     */
1193     case SRT_Mem: {
1194       if( pSort ){
1195         assert( nResultCol<=pDest->nSdst );
1196         pushOntoSorter(
1197             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1198       }else{
1199         assert( nResultCol==pDest->nSdst );
1200         assert( regResult==iParm );
1201         /* The LIMIT clause will jump out of the loop for us */
1202       }
1203       break;
1204     }
1205 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1206 
1207     case SRT_Coroutine:       /* Send data to a co-routine */
1208     case SRT_Output: {        /* Return the results */
1209       testcase( eDest==SRT_Coroutine );
1210       testcase( eDest==SRT_Output );
1211       if( pSort ){
1212         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1213                        nPrefixReg);
1214       }else if( eDest==SRT_Coroutine ){
1215         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1216       }else{
1217         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1218       }
1219       break;
1220     }
1221 
1222 #ifndef SQLITE_OMIT_CTE
1223     /* Write the results into a priority queue that is order according to
1224     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1225     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1226     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1227     ** final OP_Sequence column.  The last column is the record as a blob.
1228     */
1229     case SRT_DistQueue:
1230     case SRT_Queue: {
1231       int nKey;
1232       int r1, r2, r3;
1233       int addrTest = 0;
1234       ExprList *pSO;
1235       pSO = pDest->pOrderBy;
1236       assert( pSO );
1237       nKey = pSO->nExpr;
1238       r1 = sqlite3GetTempReg(pParse);
1239       r2 = sqlite3GetTempRange(pParse, nKey+2);
1240       r3 = r2+nKey+1;
1241       if( eDest==SRT_DistQueue ){
1242         /* If the destination is DistQueue, then cursor (iParm+1) is open
1243         ** on a second ephemeral index that holds all values every previously
1244         ** added to the queue. */
1245         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1246                                         regResult, nResultCol);
1247         VdbeCoverage(v);
1248       }
1249       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1250       if( eDest==SRT_DistQueue ){
1251         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1252         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1253       }
1254       for(i=0; i<nKey; i++){
1255         sqlite3VdbeAddOp2(v, OP_SCopy,
1256                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1257                           r2+i);
1258       }
1259       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1260       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1261       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1262       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1263       sqlite3ReleaseTempReg(pParse, r1);
1264       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1265       break;
1266     }
1267 #endif /* SQLITE_OMIT_CTE */
1268 
1269 
1270 
1271 #if !defined(SQLITE_OMIT_TRIGGER)
1272     /* Discard the results.  This is used for SELECT statements inside
1273     ** the body of a TRIGGER.  The purpose of such selects is to call
1274     ** user-defined functions that have side effects.  We do not care
1275     ** about the actual results of the select.
1276     */
1277     default: {
1278       assert( eDest==SRT_Discard );
1279       break;
1280     }
1281 #endif
1282   }
1283 
1284   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1285   ** there is a sorter, in which case the sorter has already limited
1286   ** the output for us.
1287   */
1288   if( pSort==0 && p->iLimit ){
1289     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1290   }
1291 }
1292 
1293 /*
1294 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1295 ** X extra columns.
1296 */
1297 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1298   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1299   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1300   if( p ){
1301     p->aSortFlags = (u8*)&p->aColl[N+X];
1302     p->nKeyField = (u16)N;
1303     p->nAllField = (u16)(N+X);
1304     p->enc = ENC(db);
1305     p->db = db;
1306     p->nRef = 1;
1307     memset(&p[1], 0, nExtra);
1308   }else{
1309     sqlite3OomFault(db);
1310   }
1311   return p;
1312 }
1313 
1314 /*
1315 ** Deallocate a KeyInfo object
1316 */
1317 void sqlite3KeyInfoUnref(KeyInfo *p){
1318   if( p ){
1319     assert( p->nRef>0 );
1320     p->nRef--;
1321     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1322   }
1323 }
1324 
1325 /*
1326 ** Make a new pointer to a KeyInfo object
1327 */
1328 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1329   if( p ){
1330     assert( p->nRef>0 );
1331     p->nRef++;
1332   }
1333   return p;
1334 }
1335 
1336 #ifdef SQLITE_DEBUG
1337 /*
1338 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1339 ** can only be changed if this is just a single reference to the object.
1340 **
1341 ** This routine is used only inside of assert() statements.
1342 */
1343 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1344 #endif /* SQLITE_DEBUG */
1345 
1346 /*
1347 ** Given an expression list, generate a KeyInfo structure that records
1348 ** the collating sequence for each expression in that expression list.
1349 **
1350 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1351 ** KeyInfo structure is appropriate for initializing a virtual index to
1352 ** implement that clause.  If the ExprList is the result set of a SELECT
1353 ** then the KeyInfo structure is appropriate for initializing a virtual
1354 ** index to implement a DISTINCT test.
1355 **
1356 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1357 ** function is responsible for seeing that this structure is eventually
1358 ** freed.
1359 */
1360 KeyInfo *sqlite3KeyInfoFromExprList(
1361   Parse *pParse,       /* Parsing context */
1362   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1363   int iStart,          /* Begin with this column of pList */
1364   int nExtra           /* Add this many extra columns to the end */
1365 ){
1366   int nExpr;
1367   KeyInfo *pInfo;
1368   struct ExprList_item *pItem;
1369   sqlite3 *db = pParse->db;
1370   int i;
1371 
1372   nExpr = pList->nExpr;
1373   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1374   if( pInfo ){
1375     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1376     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1377       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1378       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1379     }
1380   }
1381   return pInfo;
1382 }
1383 
1384 /*
1385 ** Name of the connection operator, used for error messages.
1386 */
1387 static const char *selectOpName(int id){
1388   char *z;
1389   switch( id ){
1390     case TK_ALL:       z = "UNION ALL";   break;
1391     case TK_INTERSECT: z = "INTERSECT";   break;
1392     case TK_EXCEPT:    z = "EXCEPT";      break;
1393     default:           z = "UNION";       break;
1394   }
1395   return z;
1396 }
1397 
1398 #ifndef SQLITE_OMIT_EXPLAIN
1399 /*
1400 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1401 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1402 ** where the caption is of the form:
1403 **
1404 **   "USE TEMP B-TREE FOR xxx"
1405 **
1406 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1407 ** is determined by the zUsage argument.
1408 */
1409 static void explainTempTable(Parse *pParse, const char *zUsage){
1410   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1411 }
1412 
1413 /*
1414 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1415 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1416 ** in sqlite3Select() to assign values to structure member variables that
1417 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1418 ** code with #ifndef directives.
1419 */
1420 # define explainSetInteger(a, b) a = b
1421 
1422 #else
1423 /* No-op versions of the explainXXX() functions and macros. */
1424 # define explainTempTable(y,z)
1425 # define explainSetInteger(y,z)
1426 #endif
1427 
1428 
1429 /*
1430 ** If the inner loop was generated using a non-null pOrderBy argument,
1431 ** then the results were placed in a sorter.  After the loop is terminated
1432 ** we need to run the sorter and output the results.  The following
1433 ** routine generates the code needed to do that.
1434 */
1435 static void generateSortTail(
1436   Parse *pParse,    /* Parsing context */
1437   Select *p,        /* The SELECT statement */
1438   SortCtx *pSort,   /* Information on the ORDER BY clause */
1439   int nColumn,      /* Number of columns of data */
1440   SelectDest *pDest /* Write the sorted results here */
1441 ){
1442   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1443   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1444   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1445   int addr;                       /* Top of output loop. Jump for Next. */
1446   int addrOnce = 0;
1447   int iTab;
1448   ExprList *pOrderBy = pSort->pOrderBy;
1449   int eDest = pDest->eDest;
1450   int iParm = pDest->iSDParm;
1451   int regRow;
1452   int regRowid;
1453   int iCol;
1454   int nKey;                       /* Number of key columns in sorter record */
1455   int iSortTab;                   /* Sorter cursor to read from */
1456   int i;
1457   int bSeq;                       /* True if sorter record includes seq. no. */
1458   int nRefKey = 0;
1459   struct ExprList_item *aOutEx = p->pEList->a;
1460 
1461   assert( addrBreak<0 );
1462   if( pSort->labelBkOut ){
1463     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1464     sqlite3VdbeGoto(v, addrBreak);
1465     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1466   }
1467 
1468 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1469   /* Open any cursors needed for sorter-reference expressions */
1470   for(i=0; i<pSort->nDefer; i++){
1471     Table *pTab = pSort->aDefer[i].pTab;
1472     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1473     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1474     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1475   }
1476 #endif
1477 
1478   iTab = pSort->iECursor;
1479   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1480     regRowid = 0;
1481     regRow = pDest->iSdst;
1482   }else{
1483     regRowid = sqlite3GetTempReg(pParse);
1484     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1485       regRow = sqlite3GetTempReg(pParse);
1486       nColumn = 0;
1487     }else{
1488       regRow = sqlite3GetTempRange(pParse, nColumn);
1489     }
1490   }
1491   nKey = pOrderBy->nExpr - pSort->nOBSat;
1492   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1493     int regSortOut = ++pParse->nMem;
1494     iSortTab = pParse->nTab++;
1495     if( pSort->labelBkOut ){
1496       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1497     }
1498     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1499         nKey+1+nColumn+nRefKey);
1500     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1501     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1502     VdbeCoverage(v);
1503     codeOffset(v, p->iOffset, addrContinue);
1504     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1505     bSeq = 0;
1506   }else{
1507     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1508     codeOffset(v, p->iOffset, addrContinue);
1509     iSortTab = iTab;
1510     bSeq = 1;
1511   }
1512   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1513 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1514     if( aOutEx[i].bSorterRef ) continue;
1515 #endif
1516     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1517   }
1518 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1519   if( pSort->nDefer ){
1520     int iKey = iCol+1;
1521     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1522 
1523     for(i=0; i<pSort->nDefer; i++){
1524       int iCsr = pSort->aDefer[i].iCsr;
1525       Table *pTab = pSort->aDefer[i].pTab;
1526       int nKey = pSort->aDefer[i].nKey;
1527 
1528       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1529       if( HasRowid(pTab) ){
1530         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1531         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1532             sqlite3VdbeCurrentAddr(v)+1, regKey);
1533       }else{
1534         int k;
1535         int iJmp;
1536         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1537         for(k=0; k<nKey; k++){
1538           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1539         }
1540         iJmp = sqlite3VdbeCurrentAddr(v);
1541         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1542         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1543         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1544       }
1545     }
1546     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1547   }
1548 #endif
1549   for(i=nColumn-1; i>=0; i--){
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551     if( aOutEx[i].bSorterRef ){
1552       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1553     }else
1554 #endif
1555     {
1556       int iRead;
1557       if( aOutEx[i].u.x.iOrderByCol ){
1558         iRead = aOutEx[i].u.x.iOrderByCol-1;
1559       }else{
1560         iRead = iCol--;
1561       }
1562       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1563       VdbeComment((v, "%s", aOutEx[i].zEName));
1564     }
1565   }
1566   switch( eDest ){
1567     case SRT_Table:
1568     case SRT_EphemTab: {
1569       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1570       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1571       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1572       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1573       break;
1574     }
1575 #ifndef SQLITE_OMIT_SUBQUERY
1576     case SRT_Set: {
1577       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1578       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1579                         pDest->zAffSdst, nColumn);
1580       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1581       break;
1582     }
1583     case SRT_Mem: {
1584       /* The LIMIT clause will terminate the loop for us */
1585       break;
1586     }
1587 #endif
1588     default: {
1589       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1590       testcase( eDest==SRT_Output );
1591       testcase( eDest==SRT_Coroutine );
1592       if( eDest==SRT_Output ){
1593         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1594       }else{
1595         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1596       }
1597       break;
1598     }
1599   }
1600   if( regRowid ){
1601     if( eDest==SRT_Set ){
1602       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1603     }else{
1604       sqlite3ReleaseTempReg(pParse, regRow);
1605     }
1606     sqlite3ReleaseTempReg(pParse, regRowid);
1607   }
1608   /* The bottom of the loop
1609   */
1610   sqlite3VdbeResolveLabel(v, addrContinue);
1611   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1612     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1613   }else{
1614     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1615   }
1616   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1617   sqlite3VdbeResolveLabel(v, addrBreak);
1618 }
1619 
1620 /*
1621 ** Return a pointer to a string containing the 'declaration type' of the
1622 ** expression pExpr. The string may be treated as static by the caller.
1623 **
1624 ** Also try to estimate the size of the returned value and return that
1625 ** result in *pEstWidth.
1626 **
1627 ** The declaration type is the exact datatype definition extracted from the
1628 ** original CREATE TABLE statement if the expression is a column. The
1629 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1630 ** is considered a column can be complex in the presence of subqueries. The
1631 ** result-set expression in all of the following SELECT statements is
1632 ** considered a column by this function.
1633 **
1634 **   SELECT col FROM tbl;
1635 **   SELECT (SELECT col FROM tbl;
1636 **   SELECT (SELECT col FROM tbl);
1637 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1638 **
1639 ** The declaration type for any expression other than a column is NULL.
1640 **
1641 ** This routine has either 3 or 6 parameters depending on whether or not
1642 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1643 */
1644 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1645 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1646 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1647 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1648 #endif
1649 static const char *columnTypeImpl(
1650   NameContext *pNC,
1651 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1652   Expr *pExpr
1653 #else
1654   Expr *pExpr,
1655   const char **pzOrigDb,
1656   const char **pzOrigTab,
1657   const char **pzOrigCol
1658 #endif
1659 ){
1660   char const *zType = 0;
1661   int j;
1662 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1663   char const *zOrigDb = 0;
1664   char const *zOrigTab = 0;
1665   char const *zOrigCol = 0;
1666 #endif
1667 
1668   assert( pExpr!=0 );
1669   assert( pNC->pSrcList!=0 );
1670   switch( pExpr->op ){
1671     case TK_COLUMN: {
1672       /* The expression is a column. Locate the table the column is being
1673       ** extracted from in NameContext.pSrcList. This table may be real
1674       ** database table or a subquery.
1675       */
1676       Table *pTab = 0;            /* Table structure column is extracted from */
1677       Select *pS = 0;             /* Select the column is extracted from */
1678       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1679       while( pNC && !pTab ){
1680         SrcList *pTabList = pNC->pSrcList;
1681         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1682         if( j<pTabList->nSrc ){
1683           pTab = pTabList->a[j].pTab;
1684           pS = pTabList->a[j].pSelect;
1685         }else{
1686           pNC = pNC->pNext;
1687         }
1688       }
1689 
1690       if( pTab==0 ){
1691         /* At one time, code such as "SELECT new.x" within a trigger would
1692         ** cause this condition to run.  Since then, we have restructured how
1693         ** trigger code is generated and so this condition is no longer
1694         ** possible. However, it can still be true for statements like
1695         ** the following:
1696         **
1697         **   CREATE TABLE t1(col INTEGER);
1698         **   SELECT (SELECT t1.col) FROM FROM t1;
1699         **
1700         ** when columnType() is called on the expression "t1.col" in the
1701         ** sub-select. In this case, set the column type to NULL, even
1702         ** though it should really be "INTEGER".
1703         **
1704         ** This is not a problem, as the column type of "t1.col" is never
1705         ** used. When columnType() is called on the expression
1706         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1707         ** branch below.  */
1708         break;
1709       }
1710 
1711       assert( pTab && pExpr->y.pTab==pTab );
1712       if( pS ){
1713         /* The "table" is actually a sub-select or a view in the FROM clause
1714         ** of the SELECT statement. Return the declaration type and origin
1715         ** data for the result-set column of the sub-select.
1716         */
1717         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1718           /* If iCol is less than zero, then the expression requests the
1719           ** rowid of the sub-select or view. This expression is legal (see
1720           ** test case misc2.2.2) - it always evaluates to NULL.
1721           */
1722           NameContext sNC;
1723           Expr *p = pS->pEList->a[iCol].pExpr;
1724           sNC.pSrcList = pS->pSrc;
1725           sNC.pNext = pNC;
1726           sNC.pParse = pNC->pParse;
1727           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1728         }
1729       }else{
1730         /* A real table or a CTE table */
1731         assert( !pS );
1732 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1733         if( iCol<0 ) iCol = pTab->iPKey;
1734         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1735         if( iCol<0 ){
1736           zType = "INTEGER";
1737           zOrigCol = "rowid";
1738         }else{
1739           zOrigCol = pTab->aCol[iCol].zName;
1740           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1741         }
1742         zOrigTab = pTab->zName;
1743         if( pNC->pParse && pTab->pSchema ){
1744           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1745           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1746         }
1747 #else
1748         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1749         if( iCol<0 ){
1750           zType = "INTEGER";
1751         }else{
1752           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1753         }
1754 #endif
1755       }
1756       break;
1757     }
1758 #ifndef SQLITE_OMIT_SUBQUERY
1759     case TK_SELECT: {
1760       /* The expression is a sub-select. Return the declaration type and
1761       ** origin info for the single column in the result set of the SELECT
1762       ** statement.
1763       */
1764       NameContext sNC;
1765       Select *pS = pExpr->x.pSelect;
1766       Expr *p = pS->pEList->a[0].pExpr;
1767       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1768       sNC.pSrcList = pS->pSrc;
1769       sNC.pNext = pNC;
1770       sNC.pParse = pNC->pParse;
1771       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1772       break;
1773     }
1774 #endif
1775   }
1776 
1777 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1778   if( pzOrigDb ){
1779     assert( pzOrigTab && pzOrigCol );
1780     *pzOrigDb = zOrigDb;
1781     *pzOrigTab = zOrigTab;
1782     *pzOrigCol = zOrigCol;
1783   }
1784 #endif
1785   return zType;
1786 }
1787 
1788 /*
1789 ** Generate code that will tell the VDBE the declaration types of columns
1790 ** in the result set.
1791 */
1792 static void generateColumnTypes(
1793   Parse *pParse,      /* Parser context */
1794   SrcList *pTabList,  /* List of tables */
1795   ExprList *pEList    /* Expressions defining the result set */
1796 ){
1797 #ifndef SQLITE_OMIT_DECLTYPE
1798   Vdbe *v = pParse->pVdbe;
1799   int i;
1800   NameContext sNC;
1801   sNC.pSrcList = pTabList;
1802   sNC.pParse = pParse;
1803   sNC.pNext = 0;
1804   for(i=0; i<pEList->nExpr; i++){
1805     Expr *p = pEList->a[i].pExpr;
1806     const char *zType;
1807 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1808     const char *zOrigDb = 0;
1809     const char *zOrigTab = 0;
1810     const char *zOrigCol = 0;
1811     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1812 
1813     /* The vdbe must make its own copy of the column-type and other
1814     ** column specific strings, in case the schema is reset before this
1815     ** virtual machine is deleted.
1816     */
1817     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1818     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1819     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1820 #else
1821     zType = columnType(&sNC, p, 0, 0, 0);
1822 #endif
1823     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1824   }
1825 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1826 }
1827 
1828 
1829 /*
1830 ** Compute the column names for a SELECT statement.
1831 **
1832 ** The only guarantee that SQLite makes about column names is that if the
1833 ** column has an AS clause assigning it a name, that will be the name used.
1834 ** That is the only documented guarantee.  However, countless applications
1835 ** developed over the years have made baseless assumptions about column names
1836 ** and will break if those assumptions changes.  Hence, use extreme caution
1837 ** when modifying this routine to avoid breaking legacy.
1838 **
1839 ** See Also: sqlite3ColumnsFromExprList()
1840 **
1841 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1842 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1843 ** applications should operate this way.  Nevertheless, we need to support the
1844 ** other modes for legacy:
1845 **
1846 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1847 **                              originally appears in the SELECT statement.  In
1848 **                              other words, the zSpan of the result expression.
1849 **
1850 **    short=ON, full=OFF:       (This is the default setting).  If the result
1851 **                              refers directly to a table column, then the
1852 **                              result column name is just the table column
1853 **                              name: COLUMN.  Otherwise use zSpan.
1854 **
1855 **    full=ON, short=ANY:       If the result refers directly to a table column,
1856 **                              then the result column name with the table name
1857 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1858 */
1859 static void generateColumnNames(
1860   Parse *pParse,      /* Parser context */
1861   Select *pSelect     /* Generate column names for this SELECT statement */
1862 ){
1863   Vdbe *v = pParse->pVdbe;
1864   int i;
1865   Table *pTab;
1866   SrcList *pTabList;
1867   ExprList *pEList;
1868   sqlite3 *db = pParse->db;
1869   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1870   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1871 
1872 #ifndef SQLITE_OMIT_EXPLAIN
1873   /* If this is an EXPLAIN, skip this step */
1874   if( pParse->explain ){
1875     return;
1876   }
1877 #endif
1878 
1879   if( pParse->colNamesSet ) return;
1880   /* Column names are determined by the left-most term of a compound select */
1881   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1882   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1883   pTabList = pSelect->pSrc;
1884   pEList = pSelect->pEList;
1885   assert( v!=0 );
1886   assert( pTabList!=0 );
1887   pParse->colNamesSet = 1;
1888   fullName = (db->flags & SQLITE_FullColNames)!=0;
1889   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1890   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1891   for(i=0; i<pEList->nExpr; i++){
1892     Expr *p = pEList->a[i].pExpr;
1893 
1894     assert( p!=0 );
1895     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1896     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1897     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1898       /* An AS clause always takes first priority */
1899       char *zName = pEList->a[i].zEName;
1900       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1901     }else if( srcName && p->op==TK_COLUMN ){
1902       char *zCol;
1903       int iCol = p->iColumn;
1904       pTab = p->y.pTab;
1905       assert( pTab!=0 );
1906       if( iCol<0 ) iCol = pTab->iPKey;
1907       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1908       if( iCol<0 ){
1909         zCol = "rowid";
1910       }else{
1911         zCol = pTab->aCol[iCol].zName;
1912       }
1913       if( fullName ){
1914         char *zName = 0;
1915         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1916         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1917       }else{
1918         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1919       }
1920     }else{
1921       const char *z = pEList->a[i].zEName;
1922       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1923       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1924     }
1925   }
1926   generateColumnTypes(pParse, pTabList, pEList);
1927 }
1928 
1929 /*
1930 ** Given an expression list (which is really the list of expressions
1931 ** that form the result set of a SELECT statement) compute appropriate
1932 ** column names for a table that would hold the expression list.
1933 **
1934 ** All column names will be unique.
1935 **
1936 ** Only the column names are computed.  Column.zType, Column.zColl,
1937 ** and other fields of Column are zeroed.
1938 **
1939 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1940 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1941 **
1942 ** The only guarantee that SQLite makes about column names is that if the
1943 ** column has an AS clause assigning it a name, that will be the name used.
1944 ** That is the only documented guarantee.  However, countless applications
1945 ** developed over the years have made baseless assumptions about column names
1946 ** and will break if those assumptions changes.  Hence, use extreme caution
1947 ** when modifying this routine to avoid breaking legacy.
1948 **
1949 ** See Also: generateColumnNames()
1950 */
1951 int sqlite3ColumnsFromExprList(
1952   Parse *pParse,          /* Parsing context */
1953   ExprList *pEList,       /* Expr list from which to derive column names */
1954   i16 *pnCol,             /* Write the number of columns here */
1955   Column **paCol          /* Write the new column list here */
1956 ){
1957   sqlite3 *db = pParse->db;   /* Database connection */
1958   int i, j;                   /* Loop counters */
1959   u32 cnt;                    /* Index added to make the name unique */
1960   Column *aCol, *pCol;        /* For looping over result columns */
1961   int nCol;                   /* Number of columns in the result set */
1962   char *zName;                /* Column name */
1963   int nName;                  /* Size of name in zName[] */
1964   Hash ht;                    /* Hash table of column names */
1965 
1966   sqlite3HashInit(&ht);
1967   if( pEList ){
1968     nCol = pEList->nExpr;
1969     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1970     testcase( aCol==0 );
1971     if( nCol>32767 ) nCol = 32767;
1972   }else{
1973     nCol = 0;
1974     aCol = 0;
1975   }
1976   assert( nCol==(i16)nCol );
1977   *pnCol = nCol;
1978   *paCol = aCol;
1979 
1980   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1981     /* Get an appropriate name for the column
1982     */
1983     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1984       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1985     }else{
1986       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1987       while( pColExpr->op==TK_DOT ){
1988         pColExpr = pColExpr->pRight;
1989         assert( pColExpr!=0 );
1990       }
1991       if( pColExpr->op==TK_COLUMN ){
1992         /* For columns use the column name name */
1993         int iCol = pColExpr->iColumn;
1994         Table *pTab = pColExpr->y.pTab;
1995         assert( pTab!=0 );
1996         if( iCol<0 ) iCol = pTab->iPKey;
1997         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1998       }else if( pColExpr->op==TK_ID ){
1999         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2000         zName = pColExpr->u.zToken;
2001       }else{
2002         /* Use the original text of the column expression as its name */
2003         zName = pEList->a[i].zEName;
2004       }
2005     }
2006     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2007       zName = sqlite3DbStrDup(db, zName);
2008     }else{
2009       zName = sqlite3MPrintf(db,"column%d",i+1);
2010     }
2011 
2012     /* Make sure the column name is unique.  If the name is not unique,
2013     ** append an integer to the name so that it becomes unique.
2014     */
2015     cnt = 0;
2016     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2017       nName = sqlite3Strlen30(zName);
2018       if( nName>0 ){
2019         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2020         if( zName[j]==':' ) nName = j;
2021       }
2022       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2023       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2024     }
2025     pCol->zName = zName;
2026     sqlite3ColumnPropertiesFromName(0, pCol);
2027     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2028       sqlite3OomFault(db);
2029     }
2030   }
2031   sqlite3HashClear(&ht);
2032   if( db->mallocFailed ){
2033     for(j=0; j<i; j++){
2034       sqlite3DbFree(db, aCol[j].zName);
2035     }
2036     sqlite3DbFree(db, aCol);
2037     *paCol = 0;
2038     *pnCol = 0;
2039     return SQLITE_NOMEM_BKPT;
2040   }
2041   return SQLITE_OK;
2042 }
2043 
2044 /*
2045 ** Add type and collation information to a column list based on
2046 ** a SELECT statement.
2047 **
2048 ** The column list presumably came from selectColumnNamesFromExprList().
2049 ** The column list has only names, not types or collations.  This
2050 ** routine goes through and adds the types and collations.
2051 **
2052 ** This routine requires that all identifiers in the SELECT
2053 ** statement be resolved.
2054 */
2055 void sqlite3SelectAddColumnTypeAndCollation(
2056   Parse *pParse,        /* Parsing contexts */
2057   Table *pTab,          /* Add column type information to this table */
2058   Select *pSelect,      /* SELECT used to determine types and collations */
2059   char aff              /* Default affinity for columns */
2060 ){
2061   sqlite3 *db = pParse->db;
2062   NameContext sNC;
2063   Column *pCol;
2064   CollSeq *pColl;
2065   int i;
2066   Expr *p;
2067   struct ExprList_item *a;
2068 
2069   assert( pSelect!=0 );
2070   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2071   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2072   if( db->mallocFailed ) return;
2073   memset(&sNC, 0, sizeof(sNC));
2074   sNC.pSrcList = pSelect->pSrc;
2075   a = pSelect->pEList->a;
2076   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2077     const char *zType;
2078     int n, m;
2079     p = a[i].pExpr;
2080     zType = columnType(&sNC, p, 0, 0, 0);
2081     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2082     pCol->affinity = sqlite3ExprAffinity(p);
2083     if( zType ){
2084       m = sqlite3Strlen30(zType);
2085       n = sqlite3Strlen30(pCol->zName);
2086       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2087       if( pCol->zName ){
2088         memcpy(&pCol->zName[n+1], zType, m+1);
2089         pCol->colFlags |= COLFLAG_HASTYPE;
2090       }
2091     }
2092     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2093     pColl = sqlite3ExprCollSeq(pParse, p);
2094     if( pColl && pCol->zColl==0 ){
2095       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2096     }
2097   }
2098   pTab->szTabRow = 1; /* Any non-zero value works */
2099 }
2100 
2101 /*
2102 ** Given a SELECT statement, generate a Table structure that describes
2103 ** the result set of that SELECT.
2104 */
2105 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2106   Table *pTab;
2107   sqlite3 *db = pParse->db;
2108   u64 savedFlags;
2109 
2110   savedFlags = db->flags;
2111   db->flags &= ~(u64)SQLITE_FullColNames;
2112   db->flags |= SQLITE_ShortColNames;
2113   sqlite3SelectPrep(pParse, pSelect, 0);
2114   db->flags = savedFlags;
2115   if( pParse->nErr ) return 0;
2116   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2117   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2118   if( pTab==0 ){
2119     return 0;
2120   }
2121   pTab->nTabRef = 1;
2122   pTab->zName = 0;
2123   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2124   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2125   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2126   pTab->iPKey = -1;
2127   if( db->mallocFailed ){
2128     sqlite3DeleteTable(db, pTab);
2129     return 0;
2130   }
2131   return pTab;
2132 }
2133 
2134 /*
2135 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2136 ** If an error occurs, return NULL and leave a message in pParse.
2137 */
2138 Vdbe *sqlite3GetVdbe(Parse *pParse){
2139   if( pParse->pVdbe ){
2140     return pParse->pVdbe;
2141   }
2142   if( pParse->pToplevel==0
2143    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2144   ){
2145     pParse->okConstFactor = 1;
2146   }
2147   return sqlite3VdbeCreate(pParse);
2148 }
2149 
2150 
2151 /*
2152 ** Compute the iLimit and iOffset fields of the SELECT based on the
2153 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2154 ** that appear in the original SQL statement after the LIMIT and OFFSET
2155 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2156 ** are the integer memory register numbers for counters used to compute
2157 ** the limit and offset.  If there is no limit and/or offset, then
2158 ** iLimit and iOffset are negative.
2159 **
2160 ** This routine changes the values of iLimit and iOffset only if
2161 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2162 ** and iOffset should have been preset to appropriate default values (zero)
2163 ** prior to calling this routine.
2164 **
2165 ** The iOffset register (if it exists) is initialized to the value
2166 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2167 ** iOffset+1 is initialized to LIMIT+OFFSET.
2168 **
2169 ** Only if pLimit->pLeft!=0 do the limit registers get
2170 ** redefined.  The UNION ALL operator uses this property to force
2171 ** the reuse of the same limit and offset registers across multiple
2172 ** SELECT statements.
2173 */
2174 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2175   Vdbe *v = 0;
2176   int iLimit = 0;
2177   int iOffset;
2178   int n;
2179   Expr *pLimit = p->pLimit;
2180 
2181   if( p->iLimit ) return;
2182 
2183   /*
2184   ** "LIMIT -1" always shows all rows.  There is some
2185   ** controversy about what the correct behavior should be.
2186   ** The current implementation interprets "LIMIT 0" to mean
2187   ** no rows.
2188   */
2189   if( pLimit ){
2190     assert( pLimit->op==TK_LIMIT );
2191     assert( pLimit->pLeft!=0 );
2192     p->iLimit = iLimit = ++pParse->nMem;
2193     v = sqlite3GetVdbe(pParse);
2194     assert( v!=0 );
2195     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2196       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2197       VdbeComment((v, "LIMIT counter"));
2198       if( n==0 ){
2199         sqlite3VdbeGoto(v, iBreak);
2200       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2201         p->nSelectRow = sqlite3LogEst((u64)n);
2202         p->selFlags |= SF_FixedLimit;
2203       }
2204     }else{
2205       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2206       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2207       VdbeComment((v, "LIMIT counter"));
2208       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2209     }
2210     if( pLimit->pRight ){
2211       p->iOffset = iOffset = ++pParse->nMem;
2212       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2213       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2214       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2215       VdbeComment((v, "OFFSET counter"));
2216       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2217       VdbeComment((v, "LIMIT+OFFSET"));
2218     }
2219   }
2220 }
2221 
2222 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2223 /*
2224 ** Return the appropriate collating sequence for the iCol-th column of
2225 ** the result set for the compound-select statement "p".  Return NULL if
2226 ** the column has no default collating sequence.
2227 **
2228 ** The collating sequence for the compound select is taken from the
2229 ** left-most term of the select that has a collating sequence.
2230 */
2231 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2232   CollSeq *pRet;
2233   if( p->pPrior ){
2234     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2235   }else{
2236     pRet = 0;
2237   }
2238   assert( iCol>=0 );
2239   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2240   ** have been thrown during name resolution and we would not have gotten
2241   ** this far */
2242   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2243     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2244   }
2245   return pRet;
2246 }
2247 
2248 /*
2249 ** The select statement passed as the second parameter is a compound SELECT
2250 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2251 ** structure suitable for implementing the ORDER BY.
2252 **
2253 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2254 ** function is responsible for ensuring that this structure is eventually
2255 ** freed.
2256 */
2257 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2258   ExprList *pOrderBy = p->pOrderBy;
2259   int nOrderBy = p->pOrderBy->nExpr;
2260   sqlite3 *db = pParse->db;
2261   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2262   if( pRet ){
2263     int i;
2264     for(i=0; i<nOrderBy; i++){
2265       struct ExprList_item *pItem = &pOrderBy->a[i];
2266       Expr *pTerm = pItem->pExpr;
2267       CollSeq *pColl;
2268 
2269       if( pTerm->flags & EP_Collate ){
2270         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2271       }else{
2272         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2273         if( pColl==0 ) pColl = db->pDfltColl;
2274         pOrderBy->a[i].pExpr =
2275           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2276       }
2277       assert( sqlite3KeyInfoIsWriteable(pRet) );
2278       pRet->aColl[i] = pColl;
2279       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2280     }
2281   }
2282 
2283   return pRet;
2284 }
2285 
2286 #ifndef SQLITE_OMIT_CTE
2287 /*
2288 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2289 ** query of the form:
2290 **
2291 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2292 **                         \___________/             \_______________/
2293 **                           p->pPrior                      p
2294 **
2295 **
2296 ** There is exactly one reference to the recursive-table in the FROM clause
2297 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2298 **
2299 ** The setup-query runs once to generate an initial set of rows that go
2300 ** into a Queue table.  Rows are extracted from the Queue table one by
2301 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2302 ** extracted row (now in the iCurrent table) becomes the content of the
2303 ** recursive-table for a recursive-query run.  The output of the recursive-query
2304 ** is added back into the Queue table.  Then another row is extracted from Queue
2305 ** and the iteration continues until the Queue table is empty.
2306 **
2307 ** If the compound query operator is UNION then no duplicate rows are ever
2308 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2309 ** that have ever been inserted into Queue and causes duplicates to be
2310 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2311 **
2312 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2313 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2314 ** an ORDER BY, the Queue table is just a FIFO.
2315 **
2316 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2317 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2318 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2319 ** with a positive value, then the first OFFSET outputs are discarded rather
2320 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2321 ** rows have been skipped.
2322 */
2323 static void generateWithRecursiveQuery(
2324   Parse *pParse,        /* Parsing context */
2325   Select *p,            /* The recursive SELECT to be coded */
2326   SelectDest *pDest     /* What to do with query results */
2327 ){
2328   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2329   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2330   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2331   Select *pSetup = p->pPrior;   /* The setup query */
2332   int addrTop;                  /* Top of the loop */
2333   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2334   int iCurrent = 0;             /* The Current table */
2335   int regCurrent;               /* Register holding Current table */
2336   int iQueue;                   /* The Queue table */
2337   int iDistinct = 0;            /* To ensure unique results if UNION */
2338   int eDest = SRT_Fifo;         /* How to write to Queue */
2339   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2340   int i;                        /* Loop counter */
2341   int rc;                       /* Result code */
2342   ExprList *pOrderBy;           /* The ORDER BY clause */
2343   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2344   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2345 
2346 #ifndef SQLITE_OMIT_WINDOWFUNC
2347   if( p->pWin ){
2348     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2349     return;
2350   }
2351 #endif
2352 
2353   /* Obtain authorization to do a recursive query */
2354   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2355 
2356   /* Process the LIMIT and OFFSET clauses, if they exist */
2357   addrBreak = sqlite3VdbeMakeLabel(pParse);
2358   p->nSelectRow = 320;  /* 4 billion rows */
2359   computeLimitRegisters(pParse, p, addrBreak);
2360   pLimit = p->pLimit;
2361   regLimit = p->iLimit;
2362   regOffset = p->iOffset;
2363   p->pLimit = 0;
2364   p->iLimit = p->iOffset = 0;
2365   pOrderBy = p->pOrderBy;
2366 
2367   /* Locate the cursor number of the Current table */
2368   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2369     if( pSrc->a[i].fg.isRecursive ){
2370       iCurrent = pSrc->a[i].iCursor;
2371       break;
2372     }
2373   }
2374 
2375   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2376   ** the Distinct table must be exactly one greater than Queue in order
2377   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2378   iQueue = pParse->nTab++;
2379   if( p->op==TK_UNION ){
2380     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2381     iDistinct = pParse->nTab++;
2382   }else{
2383     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2384   }
2385   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2386 
2387   /* Allocate cursors for Current, Queue, and Distinct. */
2388   regCurrent = ++pParse->nMem;
2389   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2390   if( pOrderBy ){
2391     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2392     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2393                       (char*)pKeyInfo, P4_KEYINFO);
2394     destQueue.pOrderBy = pOrderBy;
2395   }else{
2396     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2397   }
2398   VdbeComment((v, "Queue table"));
2399   if( iDistinct ){
2400     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2401     p->selFlags |= SF_UsesEphemeral;
2402   }
2403 
2404   /* Detach the ORDER BY clause from the compound SELECT */
2405   p->pOrderBy = 0;
2406 
2407   /* Store the results of the setup-query in Queue. */
2408   pSetup->pNext = 0;
2409   ExplainQueryPlan((pParse, 1, "SETUP"));
2410   rc = sqlite3Select(pParse, pSetup, &destQueue);
2411   pSetup->pNext = p;
2412   if( rc ) goto end_of_recursive_query;
2413 
2414   /* Find the next row in the Queue and output that row */
2415   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2416 
2417   /* Transfer the next row in Queue over to Current */
2418   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2419   if( pOrderBy ){
2420     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2421   }else{
2422     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2423   }
2424   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2425 
2426   /* Output the single row in Current */
2427   addrCont = sqlite3VdbeMakeLabel(pParse);
2428   codeOffset(v, regOffset, addrCont);
2429   selectInnerLoop(pParse, p, iCurrent,
2430       0, 0, pDest, addrCont, addrBreak);
2431   if( regLimit ){
2432     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2433     VdbeCoverage(v);
2434   }
2435   sqlite3VdbeResolveLabel(v, addrCont);
2436 
2437   /* Execute the recursive SELECT taking the single row in Current as
2438   ** the value for the recursive-table. Store the results in the Queue.
2439   */
2440   if( p->selFlags & SF_Aggregate ){
2441     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2442   }else{
2443     p->pPrior = 0;
2444     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2445     sqlite3Select(pParse, p, &destQueue);
2446     assert( p->pPrior==0 );
2447     p->pPrior = pSetup;
2448   }
2449 
2450   /* Keep running the loop until the Queue is empty */
2451   sqlite3VdbeGoto(v, addrTop);
2452   sqlite3VdbeResolveLabel(v, addrBreak);
2453 
2454 end_of_recursive_query:
2455   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2456   p->pOrderBy = pOrderBy;
2457   p->pLimit = pLimit;
2458   return;
2459 }
2460 #endif /* SQLITE_OMIT_CTE */
2461 
2462 /* Forward references */
2463 static int multiSelectOrderBy(
2464   Parse *pParse,        /* Parsing context */
2465   Select *p,            /* The right-most of SELECTs to be coded */
2466   SelectDest *pDest     /* What to do with query results */
2467 );
2468 
2469 /*
2470 ** Handle the special case of a compound-select that originates from a
2471 ** VALUES clause.  By handling this as a special case, we avoid deep
2472 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2473 ** on a VALUES clause.
2474 **
2475 ** Because the Select object originates from a VALUES clause:
2476 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2477 **   (2) All terms are UNION ALL
2478 **   (3) There is no ORDER BY clause
2479 **
2480 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2481 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2482 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2483 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2484 */
2485 static int multiSelectValues(
2486   Parse *pParse,        /* Parsing context */
2487   Select *p,            /* The right-most of SELECTs to be coded */
2488   SelectDest *pDest     /* What to do with query results */
2489 ){
2490   int nRow = 1;
2491   int rc = 0;
2492   int bShowAll = p->pLimit==0;
2493   assert( p->selFlags & SF_MultiValue );
2494   do{
2495     assert( p->selFlags & SF_Values );
2496     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2497     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2498 #ifndef SQLITE_OMIT_WINDOWFUNC
2499     if( p->pWin ) return -1;
2500 #endif
2501     if( p->pPrior==0 ) break;
2502     assert( p->pPrior->pNext==p );
2503     p = p->pPrior;
2504     nRow += bShowAll;
2505   }while(1);
2506   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2507                     nRow==1 ? "" : "S"));
2508   while( p ){
2509     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2510     if( !bShowAll ) break;
2511     p->nSelectRow = nRow;
2512     p = p->pNext;
2513   }
2514   return rc;
2515 }
2516 
2517 /*
2518 ** This routine is called to process a compound query form from
2519 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2520 ** INTERSECT
2521 **
2522 ** "p" points to the right-most of the two queries.  the query on the
2523 ** left is p->pPrior.  The left query could also be a compound query
2524 ** in which case this routine will be called recursively.
2525 **
2526 ** The results of the total query are to be written into a destination
2527 ** of type eDest with parameter iParm.
2528 **
2529 ** Example 1:  Consider a three-way compound SQL statement.
2530 **
2531 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2532 **
2533 ** This statement is parsed up as follows:
2534 **
2535 **     SELECT c FROM t3
2536 **      |
2537 **      `----->  SELECT b FROM t2
2538 **                |
2539 **                `------>  SELECT a FROM t1
2540 **
2541 ** The arrows in the diagram above represent the Select.pPrior pointer.
2542 ** So if this routine is called with p equal to the t3 query, then
2543 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2544 **
2545 ** Notice that because of the way SQLite parses compound SELECTs, the
2546 ** individual selects always group from left to right.
2547 */
2548 static int multiSelect(
2549   Parse *pParse,        /* Parsing context */
2550   Select *p,            /* The right-most of SELECTs to be coded */
2551   SelectDest *pDest     /* What to do with query results */
2552 ){
2553   int rc = SQLITE_OK;   /* Success code from a subroutine */
2554   Select *pPrior;       /* Another SELECT immediately to our left */
2555   Vdbe *v;              /* Generate code to this VDBE */
2556   SelectDest dest;      /* Alternative data destination */
2557   Select *pDelete = 0;  /* Chain of simple selects to delete */
2558   sqlite3 *db;          /* Database connection */
2559 
2560   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2561   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2562   */
2563   assert( p && p->pPrior );  /* Calling function guarantees this much */
2564   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2565   assert( p->selFlags & SF_Compound );
2566   db = pParse->db;
2567   pPrior = p->pPrior;
2568   dest = *pDest;
2569   if( pPrior->pOrderBy || pPrior->pLimit ){
2570     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2571       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2572     rc = 1;
2573     goto multi_select_end;
2574   }
2575 
2576   v = sqlite3GetVdbe(pParse);
2577   assert( v!=0 );  /* The VDBE already created by calling function */
2578 
2579   /* Create the destination temporary table if necessary
2580   */
2581   if( dest.eDest==SRT_EphemTab ){
2582     assert( p->pEList );
2583     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2584     dest.eDest = SRT_Table;
2585   }
2586 
2587   /* Special handling for a compound-select that originates as a VALUES clause.
2588   */
2589   if( p->selFlags & SF_MultiValue ){
2590     rc = multiSelectValues(pParse, p, &dest);
2591     if( rc>=0 ) goto multi_select_end;
2592     rc = SQLITE_OK;
2593   }
2594 
2595   /* Make sure all SELECTs in the statement have the same number of elements
2596   ** in their result sets.
2597   */
2598   assert( p->pEList && pPrior->pEList );
2599   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2600 
2601 #ifndef SQLITE_OMIT_CTE
2602   if( p->selFlags & SF_Recursive ){
2603     generateWithRecursiveQuery(pParse, p, &dest);
2604   }else
2605 #endif
2606 
2607   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2608   */
2609   if( p->pOrderBy ){
2610     return multiSelectOrderBy(pParse, p, pDest);
2611   }else{
2612 
2613 #ifndef SQLITE_OMIT_EXPLAIN
2614     if( pPrior->pPrior==0 ){
2615       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2616       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2617     }
2618 #endif
2619 
2620     /* Generate code for the left and right SELECT statements.
2621     */
2622     switch( p->op ){
2623       case TK_ALL: {
2624         int addr = 0;
2625         int nLimit;
2626         assert( !pPrior->pLimit );
2627         pPrior->iLimit = p->iLimit;
2628         pPrior->iOffset = p->iOffset;
2629         pPrior->pLimit = p->pLimit;
2630         rc = sqlite3Select(pParse, pPrior, &dest);
2631         p->pLimit = 0;
2632         if( rc ){
2633           goto multi_select_end;
2634         }
2635         p->pPrior = 0;
2636         p->iLimit = pPrior->iLimit;
2637         p->iOffset = pPrior->iOffset;
2638         if( p->iLimit ){
2639           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2640           VdbeComment((v, "Jump ahead if LIMIT reached"));
2641           if( p->iOffset ){
2642             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2643                               p->iLimit, p->iOffset+1, p->iOffset);
2644           }
2645         }
2646         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2647         rc = sqlite3Select(pParse, p, &dest);
2648         testcase( rc!=SQLITE_OK );
2649         pDelete = p->pPrior;
2650         p->pPrior = pPrior;
2651         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2652         if( pPrior->pLimit
2653          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2654          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2655         ){
2656           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2657         }
2658         if( addr ){
2659           sqlite3VdbeJumpHere(v, addr);
2660         }
2661         break;
2662       }
2663       case TK_EXCEPT:
2664       case TK_UNION: {
2665         int unionTab;    /* Cursor number of the temp table holding result */
2666         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2667         int priorOp;     /* The SRT_ operation to apply to prior selects */
2668         Expr *pLimit;    /* Saved values of p->nLimit  */
2669         int addr;
2670         SelectDest uniondest;
2671 
2672         testcase( p->op==TK_EXCEPT );
2673         testcase( p->op==TK_UNION );
2674         priorOp = SRT_Union;
2675         if( dest.eDest==priorOp ){
2676           /* We can reuse a temporary table generated by a SELECT to our
2677           ** right.
2678           */
2679           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2680           unionTab = dest.iSDParm;
2681         }else{
2682           /* We will need to create our own temporary table to hold the
2683           ** intermediate results.
2684           */
2685           unionTab = pParse->nTab++;
2686           assert( p->pOrderBy==0 );
2687           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2688           assert( p->addrOpenEphm[0] == -1 );
2689           p->addrOpenEphm[0] = addr;
2690           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2691           assert( p->pEList );
2692         }
2693 
2694         /* Code the SELECT statements to our left
2695         */
2696         assert( !pPrior->pOrderBy );
2697         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2698         rc = sqlite3Select(pParse, pPrior, &uniondest);
2699         if( rc ){
2700           goto multi_select_end;
2701         }
2702 
2703         /* Code the current SELECT statement
2704         */
2705         if( p->op==TK_EXCEPT ){
2706           op = SRT_Except;
2707         }else{
2708           assert( p->op==TK_UNION );
2709           op = SRT_Union;
2710         }
2711         p->pPrior = 0;
2712         pLimit = p->pLimit;
2713         p->pLimit = 0;
2714         uniondest.eDest = op;
2715         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2716                           selectOpName(p->op)));
2717         rc = sqlite3Select(pParse, p, &uniondest);
2718         testcase( rc!=SQLITE_OK );
2719         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2720         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2721         sqlite3ExprListDelete(db, p->pOrderBy);
2722         pDelete = p->pPrior;
2723         p->pPrior = pPrior;
2724         p->pOrderBy = 0;
2725         if( p->op==TK_UNION ){
2726           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2727         }
2728         sqlite3ExprDelete(db, p->pLimit);
2729         p->pLimit = pLimit;
2730         p->iLimit = 0;
2731         p->iOffset = 0;
2732 
2733         /* Convert the data in the temporary table into whatever form
2734         ** it is that we currently need.
2735         */
2736         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2737         assert( p->pEList || db->mallocFailed );
2738         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2739           int iCont, iBreak, iStart;
2740           iBreak = sqlite3VdbeMakeLabel(pParse);
2741           iCont = sqlite3VdbeMakeLabel(pParse);
2742           computeLimitRegisters(pParse, p, iBreak);
2743           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2744           iStart = sqlite3VdbeCurrentAddr(v);
2745           selectInnerLoop(pParse, p, unionTab,
2746                           0, 0, &dest, iCont, iBreak);
2747           sqlite3VdbeResolveLabel(v, iCont);
2748           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2749           sqlite3VdbeResolveLabel(v, iBreak);
2750           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2751         }
2752         break;
2753       }
2754       default: assert( p->op==TK_INTERSECT ); {
2755         int tab1, tab2;
2756         int iCont, iBreak, iStart;
2757         Expr *pLimit;
2758         int addr;
2759         SelectDest intersectdest;
2760         int r1;
2761 
2762         /* INTERSECT is different from the others since it requires
2763         ** two temporary tables.  Hence it has its own case.  Begin
2764         ** by allocating the tables we will need.
2765         */
2766         tab1 = pParse->nTab++;
2767         tab2 = pParse->nTab++;
2768         assert( p->pOrderBy==0 );
2769 
2770         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2771         assert( p->addrOpenEphm[0] == -1 );
2772         p->addrOpenEphm[0] = addr;
2773         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2774         assert( p->pEList );
2775 
2776         /* Code the SELECTs to our left into temporary table "tab1".
2777         */
2778         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2779         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2780         if( rc ){
2781           goto multi_select_end;
2782         }
2783 
2784         /* Code the current SELECT into temporary table "tab2"
2785         */
2786         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2787         assert( p->addrOpenEphm[1] == -1 );
2788         p->addrOpenEphm[1] = addr;
2789         p->pPrior = 0;
2790         pLimit = p->pLimit;
2791         p->pLimit = 0;
2792         intersectdest.iSDParm = tab2;
2793         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2794                           selectOpName(p->op)));
2795         rc = sqlite3Select(pParse, p, &intersectdest);
2796         testcase( rc!=SQLITE_OK );
2797         pDelete = p->pPrior;
2798         p->pPrior = pPrior;
2799         if( p->nSelectRow>pPrior->nSelectRow ){
2800           p->nSelectRow = pPrior->nSelectRow;
2801         }
2802         sqlite3ExprDelete(db, p->pLimit);
2803         p->pLimit = pLimit;
2804 
2805         /* Generate code to take the intersection of the two temporary
2806         ** tables.
2807         */
2808         if( rc ) break;
2809         assert( p->pEList );
2810         iBreak = sqlite3VdbeMakeLabel(pParse);
2811         iCont = sqlite3VdbeMakeLabel(pParse);
2812         computeLimitRegisters(pParse, p, iBreak);
2813         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2814         r1 = sqlite3GetTempReg(pParse);
2815         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2816         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2817         VdbeCoverage(v);
2818         sqlite3ReleaseTempReg(pParse, r1);
2819         selectInnerLoop(pParse, p, tab1,
2820                         0, 0, &dest, iCont, iBreak);
2821         sqlite3VdbeResolveLabel(v, iCont);
2822         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2823         sqlite3VdbeResolveLabel(v, iBreak);
2824         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2825         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2826         break;
2827       }
2828     }
2829 
2830   #ifndef SQLITE_OMIT_EXPLAIN
2831     if( p->pNext==0 ){
2832       ExplainQueryPlanPop(pParse);
2833     }
2834   #endif
2835   }
2836   if( pParse->nErr ) goto multi_select_end;
2837 
2838   /* Compute collating sequences used by
2839   ** temporary tables needed to implement the compound select.
2840   ** Attach the KeyInfo structure to all temporary tables.
2841   **
2842   ** This section is run by the right-most SELECT statement only.
2843   ** SELECT statements to the left always skip this part.  The right-most
2844   ** SELECT might also skip this part if it has no ORDER BY clause and
2845   ** no temp tables are required.
2846   */
2847   if( p->selFlags & SF_UsesEphemeral ){
2848     int i;                        /* Loop counter */
2849     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2850     Select *pLoop;                /* For looping through SELECT statements */
2851     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2852     int nCol;                     /* Number of columns in result set */
2853 
2854     assert( p->pNext==0 );
2855     nCol = p->pEList->nExpr;
2856     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2857     if( !pKeyInfo ){
2858       rc = SQLITE_NOMEM_BKPT;
2859       goto multi_select_end;
2860     }
2861     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2862       *apColl = multiSelectCollSeq(pParse, p, i);
2863       if( 0==*apColl ){
2864         *apColl = db->pDfltColl;
2865       }
2866     }
2867 
2868     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2869       for(i=0; i<2; i++){
2870         int addr = pLoop->addrOpenEphm[i];
2871         if( addr<0 ){
2872           /* If [0] is unused then [1] is also unused.  So we can
2873           ** always safely abort as soon as the first unused slot is found */
2874           assert( pLoop->addrOpenEphm[1]<0 );
2875           break;
2876         }
2877         sqlite3VdbeChangeP2(v, addr, nCol);
2878         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2879                             P4_KEYINFO);
2880         pLoop->addrOpenEphm[i] = -1;
2881       }
2882     }
2883     sqlite3KeyInfoUnref(pKeyInfo);
2884   }
2885 
2886 multi_select_end:
2887   pDest->iSdst = dest.iSdst;
2888   pDest->nSdst = dest.nSdst;
2889   sqlite3SelectDelete(db, pDelete);
2890   return rc;
2891 }
2892 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2893 
2894 /*
2895 ** Error message for when two or more terms of a compound select have different
2896 ** size result sets.
2897 */
2898 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2899   if( p->selFlags & SF_Values ){
2900     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2901   }else{
2902     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2903       " do not have the same number of result columns", selectOpName(p->op));
2904   }
2905 }
2906 
2907 /*
2908 ** Code an output subroutine for a coroutine implementation of a
2909 ** SELECT statment.
2910 **
2911 ** The data to be output is contained in pIn->iSdst.  There are
2912 ** pIn->nSdst columns to be output.  pDest is where the output should
2913 ** be sent.
2914 **
2915 ** regReturn is the number of the register holding the subroutine
2916 ** return address.
2917 **
2918 ** If regPrev>0 then it is the first register in a vector that
2919 ** records the previous output.  mem[regPrev] is a flag that is false
2920 ** if there has been no previous output.  If regPrev>0 then code is
2921 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2922 ** keys.
2923 **
2924 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2925 ** iBreak.
2926 */
2927 static int generateOutputSubroutine(
2928   Parse *pParse,          /* Parsing context */
2929   Select *p,              /* The SELECT statement */
2930   SelectDest *pIn,        /* Coroutine supplying data */
2931   SelectDest *pDest,      /* Where to send the data */
2932   int regReturn,          /* The return address register */
2933   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2934   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2935   int iBreak              /* Jump here if we hit the LIMIT */
2936 ){
2937   Vdbe *v = pParse->pVdbe;
2938   int iContinue;
2939   int addr;
2940 
2941   addr = sqlite3VdbeCurrentAddr(v);
2942   iContinue = sqlite3VdbeMakeLabel(pParse);
2943 
2944   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2945   */
2946   if( regPrev ){
2947     int addr1, addr2;
2948     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2949     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2950                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2951     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2952     sqlite3VdbeJumpHere(v, addr1);
2953     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2954     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2955   }
2956   if( pParse->db->mallocFailed ) return 0;
2957 
2958   /* Suppress the first OFFSET entries if there is an OFFSET clause
2959   */
2960   codeOffset(v, p->iOffset, iContinue);
2961 
2962   assert( pDest->eDest!=SRT_Exists );
2963   assert( pDest->eDest!=SRT_Table );
2964   switch( pDest->eDest ){
2965     /* Store the result as data using a unique key.
2966     */
2967     case SRT_EphemTab: {
2968       int r1 = sqlite3GetTempReg(pParse);
2969       int r2 = sqlite3GetTempReg(pParse);
2970       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2971       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2972       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2973       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2974       sqlite3ReleaseTempReg(pParse, r2);
2975       sqlite3ReleaseTempReg(pParse, r1);
2976       break;
2977     }
2978 
2979 #ifndef SQLITE_OMIT_SUBQUERY
2980     /* If we are creating a set for an "expr IN (SELECT ...)".
2981     */
2982     case SRT_Set: {
2983       int r1;
2984       testcase( pIn->nSdst>1 );
2985       r1 = sqlite3GetTempReg(pParse);
2986       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2987           r1, pDest->zAffSdst, pIn->nSdst);
2988       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2989                            pIn->iSdst, pIn->nSdst);
2990       sqlite3ReleaseTempReg(pParse, r1);
2991       break;
2992     }
2993 
2994     /* If this is a scalar select that is part of an expression, then
2995     ** store the results in the appropriate memory cell and break out
2996     ** of the scan loop.  Note that the select might return multiple columns
2997     ** if it is the RHS of a row-value IN operator.
2998     */
2999     case SRT_Mem: {
3000       if( pParse->nErr==0 ){
3001         testcase( pIn->nSdst>1 );
3002         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3003       }
3004       /* The LIMIT clause will jump out of the loop for us */
3005       break;
3006     }
3007 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3008 
3009     /* The results are stored in a sequence of registers
3010     ** starting at pDest->iSdst.  Then the co-routine yields.
3011     */
3012     case SRT_Coroutine: {
3013       if( pDest->iSdst==0 ){
3014         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3015         pDest->nSdst = pIn->nSdst;
3016       }
3017       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3018       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3019       break;
3020     }
3021 
3022     /* If none of the above, then the result destination must be
3023     ** SRT_Output.  This routine is never called with any other
3024     ** destination other than the ones handled above or SRT_Output.
3025     **
3026     ** For SRT_Output, results are stored in a sequence of registers.
3027     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3028     ** return the next row of result.
3029     */
3030     default: {
3031       assert( pDest->eDest==SRT_Output );
3032       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3033       break;
3034     }
3035   }
3036 
3037   /* Jump to the end of the loop if the LIMIT is reached.
3038   */
3039   if( p->iLimit ){
3040     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3041   }
3042 
3043   /* Generate the subroutine return
3044   */
3045   sqlite3VdbeResolveLabel(v, iContinue);
3046   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3047 
3048   return addr;
3049 }
3050 
3051 /*
3052 ** Alternative compound select code generator for cases when there
3053 ** is an ORDER BY clause.
3054 **
3055 ** We assume a query of the following form:
3056 **
3057 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3058 **
3059 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3060 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3061 ** co-routines.  Then run the co-routines in parallel and merge the results
3062 ** into the output.  In addition to the two coroutines (called selectA and
3063 ** selectB) there are 7 subroutines:
3064 **
3065 **    outA:    Move the output of the selectA coroutine into the output
3066 **             of the compound query.
3067 **
3068 **    outB:    Move the output of the selectB coroutine into the output
3069 **             of the compound query.  (Only generated for UNION and
3070 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3071 **             appears only in B.)
3072 **
3073 **    AltB:    Called when there is data from both coroutines and A<B.
3074 **
3075 **    AeqB:    Called when there is data from both coroutines and A==B.
3076 **
3077 **    AgtB:    Called when there is data from both coroutines and A>B.
3078 **
3079 **    EofA:    Called when data is exhausted from selectA.
3080 **
3081 **    EofB:    Called when data is exhausted from selectB.
3082 **
3083 ** The implementation of the latter five subroutines depend on which
3084 ** <operator> is used:
3085 **
3086 **
3087 **             UNION ALL         UNION            EXCEPT          INTERSECT
3088 **          -------------  -----------------  --------------  -----------------
3089 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3090 **
3091 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3092 **
3093 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3094 **
3095 **   EofA:   outB, nextB      outB, nextB          halt             halt
3096 **
3097 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3098 **
3099 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3100 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3101 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3102 ** following nextX causes a jump to the end of the select processing.
3103 **
3104 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3105 ** within the output subroutine.  The regPrev register set holds the previously
3106 ** output value.  A comparison is made against this value and the output
3107 ** is skipped if the next results would be the same as the previous.
3108 **
3109 ** The implementation plan is to implement the two coroutines and seven
3110 ** subroutines first, then put the control logic at the bottom.  Like this:
3111 **
3112 **          goto Init
3113 **     coA: coroutine for left query (A)
3114 **     coB: coroutine for right query (B)
3115 **    outA: output one row of A
3116 **    outB: output one row of B (UNION and UNION ALL only)
3117 **    EofA: ...
3118 **    EofB: ...
3119 **    AltB: ...
3120 **    AeqB: ...
3121 **    AgtB: ...
3122 **    Init: initialize coroutine registers
3123 **          yield coA
3124 **          if eof(A) goto EofA
3125 **          yield coB
3126 **          if eof(B) goto EofB
3127 **    Cmpr: Compare A, B
3128 **          Jump AltB, AeqB, AgtB
3129 **     End: ...
3130 **
3131 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3132 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3133 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3134 ** and AgtB jump to either L2 or to one of EofA or EofB.
3135 */
3136 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3137 static int multiSelectOrderBy(
3138   Parse *pParse,        /* Parsing context */
3139   Select *p,            /* The right-most of SELECTs to be coded */
3140   SelectDest *pDest     /* What to do with query results */
3141 ){
3142   int i, j;             /* Loop counters */
3143   Select *pPrior;       /* Another SELECT immediately to our left */
3144   Vdbe *v;              /* Generate code to this VDBE */
3145   SelectDest destA;     /* Destination for coroutine A */
3146   SelectDest destB;     /* Destination for coroutine B */
3147   int regAddrA;         /* Address register for select-A coroutine */
3148   int regAddrB;         /* Address register for select-B coroutine */
3149   int addrSelectA;      /* Address of the select-A coroutine */
3150   int addrSelectB;      /* Address of the select-B coroutine */
3151   int regOutA;          /* Address register for the output-A subroutine */
3152   int regOutB;          /* Address register for the output-B subroutine */
3153   int addrOutA;         /* Address of the output-A subroutine */
3154   int addrOutB = 0;     /* Address of the output-B subroutine */
3155   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3156   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3157   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3158   int addrAltB;         /* Address of the A<B subroutine */
3159   int addrAeqB;         /* Address of the A==B subroutine */
3160   int addrAgtB;         /* Address of the A>B subroutine */
3161   int regLimitA;        /* Limit register for select-A */
3162   int regLimitB;        /* Limit register for select-A */
3163   int regPrev;          /* A range of registers to hold previous output */
3164   int savedLimit;       /* Saved value of p->iLimit */
3165   int savedOffset;      /* Saved value of p->iOffset */
3166   int labelCmpr;        /* Label for the start of the merge algorithm */
3167   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3168   int addr1;            /* Jump instructions that get retargetted */
3169   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3170   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3171   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3172   sqlite3 *db;          /* Database connection */
3173   ExprList *pOrderBy;   /* The ORDER BY clause */
3174   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3175   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3176 
3177   assert( p->pOrderBy!=0 );
3178   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3179   db = pParse->db;
3180   v = pParse->pVdbe;
3181   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3182   labelEnd = sqlite3VdbeMakeLabel(pParse);
3183   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3184 
3185 
3186   /* Patch up the ORDER BY clause
3187   */
3188   op = p->op;
3189   pPrior = p->pPrior;
3190   assert( pPrior->pOrderBy==0 );
3191   pOrderBy = p->pOrderBy;
3192   assert( pOrderBy );
3193   nOrderBy = pOrderBy->nExpr;
3194 
3195   /* For operators other than UNION ALL we have to make sure that
3196   ** the ORDER BY clause covers every term of the result set.  Add
3197   ** terms to the ORDER BY clause as necessary.
3198   */
3199   if( op!=TK_ALL ){
3200     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3201       struct ExprList_item *pItem;
3202       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3203         assert( pItem->u.x.iOrderByCol>0 );
3204         if( pItem->u.x.iOrderByCol==i ) break;
3205       }
3206       if( j==nOrderBy ){
3207         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3208         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3209         pNew->flags |= EP_IntValue;
3210         pNew->u.iValue = i;
3211         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3212         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3213       }
3214     }
3215   }
3216 
3217   /* Compute the comparison permutation and keyinfo that is used with
3218   ** the permutation used to determine if the next
3219   ** row of results comes from selectA or selectB.  Also add explicit
3220   ** collations to the ORDER BY clause terms so that when the subqueries
3221   ** to the right and the left are evaluated, they use the correct
3222   ** collation.
3223   */
3224   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3225   if( aPermute ){
3226     struct ExprList_item *pItem;
3227     aPermute[0] = nOrderBy;
3228     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3229       assert( pItem->u.x.iOrderByCol>0 );
3230       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3231       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3232     }
3233     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3234   }else{
3235     pKeyMerge = 0;
3236   }
3237 
3238   /* Reattach the ORDER BY clause to the query.
3239   */
3240   p->pOrderBy = pOrderBy;
3241   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3242 
3243   /* Allocate a range of temporary registers and the KeyInfo needed
3244   ** for the logic that removes duplicate result rows when the
3245   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3246   */
3247   if( op==TK_ALL ){
3248     regPrev = 0;
3249   }else{
3250     int nExpr = p->pEList->nExpr;
3251     assert( nOrderBy>=nExpr || db->mallocFailed );
3252     regPrev = pParse->nMem+1;
3253     pParse->nMem += nExpr+1;
3254     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3255     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3256     if( pKeyDup ){
3257       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3258       for(i=0; i<nExpr; i++){
3259         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3260         pKeyDup->aSortFlags[i] = 0;
3261       }
3262     }
3263   }
3264 
3265   /* Separate the left and the right query from one another
3266   */
3267   p->pPrior = 0;
3268   pPrior->pNext = 0;
3269   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3270   if( pPrior->pPrior==0 ){
3271     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3272   }
3273 
3274   /* Compute the limit registers */
3275   computeLimitRegisters(pParse, p, labelEnd);
3276   if( p->iLimit && op==TK_ALL ){
3277     regLimitA = ++pParse->nMem;
3278     regLimitB = ++pParse->nMem;
3279     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3280                                   regLimitA);
3281     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3282   }else{
3283     regLimitA = regLimitB = 0;
3284   }
3285   sqlite3ExprDelete(db, p->pLimit);
3286   p->pLimit = 0;
3287 
3288   regAddrA = ++pParse->nMem;
3289   regAddrB = ++pParse->nMem;
3290   regOutA = ++pParse->nMem;
3291   regOutB = ++pParse->nMem;
3292   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3293   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3294 
3295   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3296 
3297   /* Generate a coroutine to evaluate the SELECT statement to the
3298   ** left of the compound operator - the "A" select.
3299   */
3300   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3301   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3302   VdbeComment((v, "left SELECT"));
3303   pPrior->iLimit = regLimitA;
3304   ExplainQueryPlan((pParse, 1, "LEFT"));
3305   sqlite3Select(pParse, pPrior, &destA);
3306   sqlite3VdbeEndCoroutine(v, regAddrA);
3307   sqlite3VdbeJumpHere(v, addr1);
3308 
3309   /* Generate a coroutine to evaluate the SELECT statement on
3310   ** the right - the "B" select
3311   */
3312   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3313   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3314   VdbeComment((v, "right SELECT"));
3315   savedLimit = p->iLimit;
3316   savedOffset = p->iOffset;
3317   p->iLimit = regLimitB;
3318   p->iOffset = 0;
3319   ExplainQueryPlan((pParse, 1, "RIGHT"));
3320   sqlite3Select(pParse, p, &destB);
3321   p->iLimit = savedLimit;
3322   p->iOffset = savedOffset;
3323   sqlite3VdbeEndCoroutine(v, regAddrB);
3324 
3325   /* Generate a subroutine that outputs the current row of the A
3326   ** select as the next output row of the compound select.
3327   */
3328   VdbeNoopComment((v, "Output routine for A"));
3329   addrOutA = generateOutputSubroutine(pParse,
3330                  p, &destA, pDest, regOutA,
3331                  regPrev, pKeyDup, labelEnd);
3332 
3333   /* Generate a subroutine that outputs the current row of the B
3334   ** select as the next output row of the compound select.
3335   */
3336   if( op==TK_ALL || op==TK_UNION ){
3337     VdbeNoopComment((v, "Output routine for B"));
3338     addrOutB = generateOutputSubroutine(pParse,
3339                  p, &destB, pDest, regOutB,
3340                  regPrev, pKeyDup, labelEnd);
3341   }
3342   sqlite3KeyInfoUnref(pKeyDup);
3343 
3344   /* Generate a subroutine to run when the results from select A
3345   ** are exhausted and only data in select B remains.
3346   */
3347   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3348     addrEofA_noB = addrEofA = labelEnd;
3349   }else{
3350     VdbeNoopComment((v, "eof-A subroutine"));
3351     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3352     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3353                                      VdbeCoverage(v);
3354     sqlite3VdbeGoto(v, addrEofA);
3355     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3356   }
3357 
3358   /* Generate a subroutine to run when the results from select B
3359   ** are exhausted and only data in select A remains.
3360   */
3361   if( op==TK_INTERSECT ){
3362     addrEofB = addrEofA;
3363     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3364   }else{
3365     VdbeNoopComment((v, "eof-B subroutine"));
3366     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3367     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3368     sqlite3VdbeGoto(v, addrEofB);
3369   }
3370 
3371   /* Generate code to handle the case of A<B
3372   */
3373   VdbeNoopComment((v, "A-lt-B subroutine"));
3374   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3375   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3376   sqlite3VdbeGoto(v, labelCmpr);
3377 
3378   /* Generate code to handle the case of A==B
3379   */
3380   if( op==TK_ALL ){
3381     addrAeqB = addrAltB;
3382   }else if( op==TK_INTERSECT ){
3383     addrAeqB = addrAltB;
3384     addrAltB++;
3385   }else{
3386     VdbeNoopComment((v, "A-eq-B subroutine"));
3387     addrAeqB =
3388     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3389     sqlite3VdbeGoto(v, labelCmpr);
3390   }
3391 
3392   /* Generate code to handle the case of A>B
3393   */
3394   VdbeNoopComment((v, "A-gt-B subroutine"));
3395   addrAgtB = sqlite3VdbeCurrentAddr(v);
3396   if( op==TK_ALL || op==TK_UNION ){
3397     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3398   }
3399   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3400   sqlite3VdbeGoto(v, labelCmpr);
3401 
3402   /* This code runs once to initialize everything.
3403   */
3404   sqlite3VdbeJumpHere(v, addr1);
3405   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3406   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3407 
3408   /* Implement the main merge loop
3409   */
3410   sqlite3VdbeResolveLabel(v, labelCmpr);
3411   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3412   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3413                          (char*)pKeyMerge, P4_KEYINFO);
3414   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3415   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3416 
3417   /* Jump to the this point in order to terminate the query.
3418   */
3419   sqlite3VdbeResolveLabel(v, labelEnd);
3420 
3421   /* Reassembly the compound query so that it will be freed correctly
3422   ** by the calling function */
3423   if( p->pPrior ){
3424     sqlite3SelectDelete(db, p->pPrior);
3425   }
3426   p->pPrior = pPrior;
3427   pPrior->pNext = p;
3428 
3429   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3430   **** subqueries ****/
3431   ExplainQueryPlanPop(pParse);
3432   return pParse->nErr!=0;
3433 }
3434 #endif
3435 
3436 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3437 
3438 /* An instance of the SubstContext object describes an substitution edit
3439 ** to be performed on a parse tree.
3440 **
3441 ** All references to columns in table iTable are to be replaced by corresponding
3442 ** expressions in pEList.
3443 */
3444 typedef struct SubstContext {
3445   Parse *pParse;            /* The parsing context */
3446   int iTable;               /* Replace references to this table */
3447   int iNewTable;            /* New table number */
3448   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3449   ExprList *pEList;         /* Replacement expressions */
3450 } SubstContext;
3451 
3452 /* Forward Declarations */
3453 static void substExprList(SubstContext*, ExprList*);
3454 static void substSelect(SubstContext*, Select*, int);
3455 
3456 /*
3457 ** Scan through the expression pExpr.  Replace every reference to
3458 ** a column in table number iTable with a copy of the iColumn-th
3459 ** entry in pEList.  (But leave references to the ROWID column
3460 ** unchanged.)
3461 **
3462 ** This routine is part of the flattening procedure.  A subquery
3463 ** whose result set is defined by pEList appears as entry in the
3464 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3465 ** FORM clause entry is iTable.  This routine makes the necessary
3466 ** changes to pExpr so that it refers directly to the source table
3467 ** of the subquery rather the result set of the subquery.
3468 */
3469 static Expr *substExpr(
3470   SubstContext *pSubst,  /* Description of the substitution */
3471   Expr *pExpr            /* Expr in which substitution occurs */
3472 ){
3473   if( pExpr==0 ) return 0;
3474   if( ExprHasProperty(pExpr, EP_FromJoin)
3475    && pExpr->iRightJoinTable==pSubst->iTable
3476   ){
3477     pExpr->iRightJoinTable = pSubst->iNewTable;
3478   }
3479   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3480     if( pExpr->iColumn<0 ){
3481       pExpr->op = TK_NULL;
3482     }else{
3483       Expr *pNew;
3484       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3485       Expr ifNullRow;
3486       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3487       assert( pExpr->pRight==0 );
3488       if( sqlite3ExprIsVector(pCopy) ){
3489         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3490       }else{
3491         sqlite3 *db = pSubst->pParse->db;
3492         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3493           memset(&ifNullRow, 0, sizeof(ifNullRow));
3494           ifNullRow.op = TK_IF_NULL_ROW;
3495           ifNullRow.pLeft = pCopy;
3496           ifNullRow.iTable = pSubst->iNewTable;
3497           pCopy = &ifNullRow;
3498         }
3499         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3500         pNew = sqlite3ExprDup(db, pCopy, 0);
3501         if( pNew && pSubst->isLeftJoin ){
3502           ExprSetProperty(pNew, EP_CanBeNull);
3503         }
3504         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3505           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3506           ExprSetProperty(pNew, EP_FromJoin);
3507         }
3508         sqlite3ExprDelete(db, pExpr);
3509         pExpr = pNew;
3510 
3511         /* Ensure that the expression now has an implicit collation sequence,
3512         ** just as it did when it was a column of a view or sub-query. */
3513         if( pExpr ){
3514           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3515             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3516             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3517                 (pColl ? pColl->zName : "BINARY")
3518             );
3519           }
3520           ExprClearProperty(pExpr, EP_Collate);
3521         }
3522       }
3523     }
3524   }else{
3525     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3526       pExpr->iTable = pSubst->iNewTable;
3527     }
3528     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3529     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3530     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3531       substSelect(pSubst, pExpr->x.pSelect, 1);
3532     }else{
3533       substExprList(pSubst, pExpr->x.pList);
3534     }
3535 #ifndef SQLITE_OMIT_WINDOWFUNC
3536     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3537       Window *pWin = pExpr->y.pWin;
3538       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3539       substExprList(pSubst, pWin->pPartition);
3540       substExprList(pSubst, pWin->pOrderBy);
3541     }
3542 #endif
3543   }
3544   return pExpr;
3545 }
3546 static void substExprList(
3547   SubstContext *pSubst, /* Description of the substitution */
3548   ExprList *pList       /* List to scan and in which to make substitutes */
3549 ){
3550   int i;
3551   if( pList==0 ) return;
3552   for(i=0; i<pList->nExpr; i++){
3553     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3554   }
3555 }
3556 static void substSelect(
3557   SubstContext *pSubst, /* Description of the substitution */
3558   Select *p,            /* SELECT statement in which to make substitutions */
3559   int doPrior           /* Do substitutes on p->pPrior too */
3560 ){
3561   SrcList *pSrc;
3562   struct SrcList_item *pItem;
3563   int i;
3564   if( !p ) return;
3565   do{
3566     substExprList(pSubst, p->pEList);
3567     substExprList(pSubst, p->pGroupBy);
3568     substExprList(pSubst, p->pOrderBy);
3569     p->pHaving = substExpr(pSubst, p->pHaving);
3570     p->pWhere = substExpr(pSubst, p->pWhere);
3571     pSrc = p->pSrc;
3572     assert( pSrc!=0 );
3573     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3574       substSelect(pSubst, pItem->pSelect, 1);
3575       if( pItem->fg.isTabFunc ){
3576         substExprList(pSubst, pItem->u1.pFuncArg);
3577       }
3578     }
3579   }while( doPrior && (p = p->pPrior)!=0 );
3580 }
3581 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3582 
3583 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3584 /*
3585 ** This routine attempts to flatten subqueries as a performance optimization.
3586 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3587 **
3588 ** To understand the concept of flattening, consider the following
3589 ** query:
3590 **
3591 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3592 **
3593 ** The default way of implementing this query is to execute the
3594 ** subquery first and store the results in a temporary table, then
3595 ** run the outer query on that temporary table.  This requires two
3596 ** passes over the data.  Furthermore, because the temporary table
3597 ** has no indices, the WHERE clause on the outer query cannot be
3598 ** optimized.
3599 **
3600 ** This routine attempts to rewrite queries such as the above into
3601 ** a single flat select, like this:
3602 **
3603 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3604 **
3605 ** The code generated for this simplification gives the same result
3606 ** but only has to scan the data once.  And because indices might
3607 ** exist on the table t1, a complete scan of the data might be
3608 ** avoided.
3609 **
3610 ** Flattening is subject to the following constraints:
3611 **
3612 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3613 **        The subquery and the outer query cannot both be aggregates.
3614 **
3615 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3616 **        (2) If the subquery is an aggregate then
3617 **        (2a) the outer query must not be a join and
3618 **        (2b) the outer query must not use subqueries
3619 **             other than the one FROM-clause subquery that is a candidate
3620 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3621 **             from 2015-02-09.)
3622 **
3623 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3624 **        (3a) the subquery may not be a join and
3625 **        (3b) the FROM clause of the subquery may not contain a virtual
3626 **             table and
3627 **        (3c) the outer query may not be an aggregate.
3628 **        (3d) the outer query may not be DISTINCT.
3629 **
3630 **   (4)  The subquery can not be DISTINCT.
3631 **
3632 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3633 **        sub-queries that were excluded from this optimization. Restriction
3634 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3635 **
3636 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3637 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3638 **
3639 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3640 **        A FROM clause, consider adding a FROM clause with the special
3641 **        table sqlite_once that consists of a single row containing a
3642 **        single NULL.
3643 **
3644 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3645 **
3646 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3647 **
3648 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3649 **        accidently carried the comment forward until 2014-09-15.  Original
3650 **        constraint: "If the subquery is aggregate then the outer query
3651 **        may not use LIMIT."
3652 **
3653 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3654 **
3655 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3656 **        a separate restriction deriving from ticket #350.
3657 **
3658 **  (13)  The subquery and outer query may not both use LIMIT.
3659 **
3660 **  (14)  The subquery may not use OFFSET.
3661 **
3662 **  (15)  If the outer query is part of a compound select, then the
3663 **        subquery may not use LIMIT.
3664 **        (See ticket #2339 and ticket [02a8e81d44]).
3665 **
3666 **  (16)  If the outer query is aggregate, then the subquery may not
3667 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3668 **        until we introduced the group_concat() function.
3669 **
3670 **  (17)  If the subquery is a compound select, then
3671 **        (17a) all compound operators must be a UNION ALL, and
3672 **        (17b) no terms within the subquery compound may be aggregate
3673 **              or DISTINCT, and
3674 **        (17c) every term within the subquery compound must have a FROM clause
3675 **        (17d) the outer query may not be
3676 **              (17d1) aggregate, or
3677 **              (17d2) DISTINCT, or
3678 **              (17d3) a join.
3679 **        (17e) the subquery may not contain window functions
3680 **
3681 **        The parent and sub-query may contain WHERE clauses. Subject to
3682 **        rules (11), (13) and (14), they may also contain ORDER BY,
3683 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3684 **        operator other than UNION ALL because all the other compound
3685 **        operators have an implied DISTINCT which is disallowed by
3686 **        restriction (4).
3687 **
3688 **        Also, each component of the sub-query must return the same number
3689 **        of result columns. This is actually a requirement for any compound
3690 **        SELECT statement, but all the code here does is make sure that no
3691 **        such (illegal) sub-query is flattened. The caller will detect the
3692 **        syntax error and return a detailed message.
3693 **
3694 **  (18)  If the sub-query is a compound select, then all terms of the
3695 **        ORDER BY clause of the parent must be simple references to
3696 **        columns of the sub-query.
3697 **
3698 **  (19)  If the subquery uses LIMIT then the outer query may not
3699 **        have a WHERE clause.
3700 **
3701 **  (20)  If the sub-query is a compound select, then it must not use
3702 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3703 **        somewhat by saying that the terms of the ORDER BY clause must
3704 **        appear as unmodified result columns in the outer query.  But we
3705 **        have other optimizations in mind to deal with that case.
3706 **
3707 **  (21)  If the subquery uses LIMIT then the outer query may not be
3708 **        DISTINCT.  (See ticket [752e1646fc]).
3709 **
3710 **  (22)  The subquery may not be a recursive CTE.
3711 **
3712 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3713 **        a recursive CTE, then the sub-query may not be a compound query.
3714 **        This restriction is because transforming the
3715 **        parent to a compound query confuses the code that handles
3716 **        recursive queries in multiSelect().
3717 **
3718 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3719 **        The subquery may not be an aggregate that uses the built-in min() or
3720 **        or max() functions.  (Without this restriction, a query like:
3721 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3722 **        return the value X for which Y was maximal.)
3723 **
3724 **  (25)  If either the subquery or the parent query contains a window
3725 **        function in the select list or ORDER BY clause, flattening
3726 **        is not attempted.
3727 **
3728 **
3729 ** In this routine, the "p" parameter is a pointer to the outer query.
3730 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3731 ** uses aggregates.
3732 **
3733 ** If flattening is not attempted, this routine is a no-op and returns 0.
3734 ** If flattening is attempted this routine returns 1.
3735 **
3736 ** All of the expression analysis must occur on both the outer query and
3737 ** the subquery before this routine runs.
3738 */
3739 static int flattenSubquery(
3740   Parse *pParse,       /* Parsing context */
3741   Select *p,           /* The parent or outer SELECT statement */
3742   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3743   int isAgg            /* True if outer SELECT uses aggregate functions */
3744 ){
3745   const char *zSavedAuthContext = pParse->zAuthContext;
3746   Select *pParent;    /* Current UNION ALL term of the other query */
3747   Select *pSub;       /* The inner query or "subquery" */
3748   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3749   SrcList *pSrc;      /* The FROM clause of the outer query */
3750   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3751   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3752   int iNewParent = -1;/* Replacement table for iParent */
3753   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3754   int i;              /* Loop counter */
3755   Expr *pWhere;                    /* The WHERE clause */
3756   struct SrcList_item *pSubitem;   /* The subquery */
3757   sqlite3 *db = pParse->db;
3758 
3759   /* Check to see if flattening is permitted.  Return 0 if not.
3760   */
3761   assert( p!=0 );
3762   assert( p->pPrior==0 );
3763   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3764   pSrc = p->pSrc;
3765   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3766   pSubitem = &pSrc->a[iFrom];
3767   iParent = pSubitem->iCursor;
3768   pSub = pSubitem->pSelect;
3769   assert( pSub!=0 );
3770 
3771 #ifndef SQLITE_OMIT_WINDOWFUNC
3772   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3773 #endif
3774 
3775   pSubSrc = pSub->pSrc;
3776   assert( pSubSrc );
3777   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3778   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3779   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3780   ** became arbitrary expressions, we were forced to add restrictions (13)
3781   ** and (14). */
3782   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3783   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3784   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3785     return 0;                                            /* Restriction (15) */
3786   }
3787   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3788   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3789   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3790      return 0;         /* Restrictions (8)(9) */
3791   }
3792   if( p->pOrderBy && pSub->pOrderBy ){
3793      return 0;                                           /* Restriction (11) */
3794   }
3795   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3796   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3797   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3798      return 0;         /* Restriction (21) */
3799   }
3800   if( pSub->selFlags & (SF_Recursive) ){
3801     return 0; /* Restrictions (22) */
3802   }
3803 
3804   /*
3805   ** If the subquery is the right operand of a LEFT JOIN, then the
3806   ** subquery may not be a join itself (3a). Example of why this is not
3807   ** allowed:
3808   **
3809   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3810   **
3811   ** If we flatten the above, we would get
3812   **
3813   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3814   **
3815   ** which is not at all the same thing.
3816   **
3817   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3818   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3819   ** aggregates are processed - there is no mechanism to determine if
3820   ** the LEFT JOIN table should be all-NULL.
3821   **
3822   ** See also tickets #306, #350, and #3300.
3823   */
3824   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3825     isLeftJoin = 1;
3826     if( pSubSrc->nSrc>1                   /* (3a) */
3827      || isAgg                             /* (3b) */
3828      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3829      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3830     ){
3831       return 0;
3832     }
3833   }
3834 #ifdef SQLITE_EXTRA_IFNULLROW
3835   else if( iFrom>0 && !isAgg ){
3836     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3837     ** every reference to any result column from subquery in a join, even
3838     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3839     ** opcode. */
3840     isLeftJoin = -1;
3841   }
3842 #endif
3843 
3844   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3845   ** use only the UNION ALL operator. And none of the simple select queries
3846   ** that make up the compound SELECT are allowed to be aggregate or distinct
3847   ** queries.
3848   */
3849   if( pSub->pPrior ){
3850     if( pSub->pOrderBy ){
3851       return 0;  /* Restriction (20) */
3852     }
3853     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3854       return 0; /* (17d1), (17d2), or (17d3) */
3855     }
3856     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3857       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3858       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3859       assert( pSub->pSrc!=0 );
3860       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3861       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3862        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3863        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3864 #ifndef SQLITE_OMIT_WINDOWFUNC
3865        || pSub1->pWin                                          /* (17e) */
3866 #endif
3867       ){
3868         return 0;
3869       }
3870       testcase( pSub1->pSrc->nSrc>1 );
3871     }
3872 
3873     /* Restriction (18). */
3874     if( p->pOrderBy ){
3875       int ii;
3876       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3877         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3878       }
3879     }
3880   }
3881 
3882   /* Ex-restriction (23):
3883   ** The only way that the recursive part of a CTE can contain a compound
3884   ** subquery is for the subquery to be one term of a join.  But if the
3885   ** subquery is a join, then the flattening has already been stopped by
3886   ** restriction (17d3)
3887   */
3888   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3889 
3890   /***** If we reach this point, flattening is permitted. *****/
3891   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3892                    pSub->selId, pSub, iFrom));
3893 
3894   /* Authorize the subquery */
3895   pParse->zAuthContext = pSubitem->zName;
3896   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3897   testcase( i==SQLITE_DENY );
3898   pParse->zAuthContext = zSavedAuthContext;
3899 
3900   /* If the sub-query is a compound SELECT statement, then (by restrictions
3901   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3902   ** be of the form:
3903   **
3904   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3905   **
3906   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3907   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3908   ** OFFSET clauses and joins them to the left-hand-side of the original
3909   ** using UNION ALL operators. In this case N is the number of simple
3910   ** select statements in the compound sub-query.
3911   **
3912   ** Example:
3913   **
3914   **     SELECT a+1 FROM (
3915   **        SELECT x FROM tab
3916   **        UNION ALL
3917   **        SELECT y FROM tab
3918   **        UNION ALL
3919   **        SELECT abs(z*2) FROM tab2
3920   **     ) WHERE a!=5 ORDER BY 1
3921   **
3922   ** Transformed into:
3923   **
3924   **     SELECT x+1 FROM tab WHERE x+1!=5
3925   **     UNION ALL
3926   **     SELECT y+1 FROM tab WHERE y+1!=5
3927   **     UNION ALL
3928   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3929   **     ORDER BY 1
3930   **
3931   ** We call this the "compound-subquery flattening".
3932   */
3933   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3934     Select *pNew;
3935     ExprList *pOrderBy = p->pOrderBy;
3936     Expr *pLimit = p->pLimit;
3937     Select *pPrior = p->pPrior;
3938     p->pOrderBy = 0;
3939     p->pSrc = 0;
3940     p->pPrior = 0;
3941     p->pLimit = 0;
3942     pNew = sqlite3SelectDup(db, p, 0);
3943     p->pLimit = pLimit;
3944     p->pOrderBy = pOrderBy;
3945     p->pSrc = pSrc;
3946     p->op = TK_ALL;
3947     if( pNew==0 ){
3948       p->pPrior = pPrior;
3949     }else{
3950       pNew->pPrior = pPrior;
3951       if( pPrior ) pPrior->pNext = pNew;
3952       pNew->pNext = p;
3953       p->pPrior = pNew;
3954       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3955                               " creates %u as peer\n",pNew->selId));
3956     }
3957     if( db->mallocFailed ) return 1;
3958   }
3959 
3960   /* Begin flattening the iFrom-th entry of the FROM clause
3961   ** in the outer query.
3962   */
3963   pSub = pSub1 = pSubitem->pSelect;
3964 
3965   /* Delete the transient table structure associated with the
3966   ** subquery
3967   */
3968   sqlite3DbFree(db, pSubitem->zDatabase);
3969   sqlite3DbFree(db, pSubitem->zName);
3970   sqlite3DbFree(db, pSubitem->zAlias);
3971   pSubitem->zDatabase = 0;
3972   pSubitem->zName = 0;
3973   pSubitem->zAlias = 0;
3974   pSubitem->pSelect = 0;
3975 
3976   /* Defer deleting the Table object associated with the
3977   ** subquery until code generation is
3978   ** complete, since there may still exist Expr.pTab entries that
3979   ** refer to the subquery even after flattening.  Ticket #3346.
3980   **
3981   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3982   */
3983   if( ALWAYS(pSubitem->pTab!=0) ){
3984     Table *pTabToDel = pSubitem->pTab;
3985     if( pTabToDel->nTabRef==1 ){
3986       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3987       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3988       pToplevel->pZombieTab = pTabToDel;
3989     }else{
3990       pTabToDel->nTabRef--;
3991     }
3992     pSubitem->pTab = 0;
3993   }
3994 
3995   /* The following loop runs once for each term in a compound-subquery
3996   ** flattening (as described above).  If we are doing a different kind
3997   ** of flattening - a flattening other than a compound-subquery flattening -
3998   ** then this loop only runs once.
3999   **
4000   ** This loop moves all of the FROM elements of the subquery into the
4001   ** the FROM clause of the outer query.  Before doing this, remember
4002   ** the cursor number for the original outer query FROM element in
4003   ** iParent.  The iParent cursor will never be used.  Subsequent code
4004   ** will scan expressions looking for iParent references and replace
4005   ** those references with expressions that resolve to the subquery FROM
4006   ** elements we are now copying in.
4007   */
4008   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4009     int nSubSrc;
4010     u8 jointype = 0;
4011     assert( pSub!=0 );
4012     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4013     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4014     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4015 
4016     if( pSrc ){
4017       assert( pParent==p );  /* First time through the loop */
4018       jointype = pSubitem->fg.jointype;
4019     }else{
4020       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4021       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4022       if( pSrc==0 ) break;
4023       pParent->pSrc = pSrc;
4024     }
4025 
4026     /* The subquery uses a single slot of the FROM clause of the outer
4027     ** query.  If the subquery has more than one element in its FROM clause,
4028     ** then expand the outer query to make space for it to hold all elements
4029     ** of the subquery.
4030     **
4031     ** Example:
4032     **
4033     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4034     **
4035     ** The outer query has 3 slots in its FROM clause.  One slot of the
4036     ** outer query (the middle slot) is used by the subquery.  The next
4037     ** block of code will expand the outer query FROM clause to 4 slots.
4038     ** The middle slot is expanded to two slots in order to make space
4039     ** for the two elements in the FROM clause of the subquery.
4040     */
4041     if( nSubSrc>1 ){
4042       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4043       if( pSrc==0 ) break;
4044       pParent->pSrc = pSrc;
4045     }
4046 
4047     /* Transfer the FROM clause terms from the subquery into the
4048     ** outer query.
4049     */
4050     for(i=0; i<nSubSrc; i++){
4051       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4052       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4053       pSrc->a[i+iFrom] = pSubSrc->a[i];
4054       iNewParent = pSubSrc->a[i].iCursor;
4055       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4056     }
4057     pSrc->a[iFrom].fg.jointype = jointype;
4058 
4059     /* Now begin substituting subquery result set expressions for
4060     ** references to the iParent in the outer query.
4061     **
4062     ** Example:
4063     **
4064     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4065     **   \                     \_____________ subquery __________/          /
4066     **    \_____________________ outer query ______________________________/
4067     **
4068     ** We look at every expression in the outer query and every place we see
4069     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4070     */
4071     if( pSub->pOrderBy ){
4072       /* At this point, any non-zero iOrderByCol values indicate that the
4073       ** ORDER BY column expression is identical to the iOrderByCol'th
4074       ** expression returned by SELECT statement pSub. Since these values
4075       ** do not necessarily correspond to columns in SELECT statement pParent,
4076       ** zero them before transfering the ORDER BY clause.
4077       **
4078       ** Not doing this may cause an error if a subsequent call to this
4079       ** function attempts to flatten a compound sub-query into pParent
4080       ** (the only way this can happen is if the compound sub-query is
4081       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4082       ExprList *pOrderBy = pSub->pOrderBy;
4083       for(i=0; i<pOrderBy->nExpr; i++){
4084         pOrderBy->a[i].u.x.iOrderByCol = 0;
4085       }
4086       assert( pParent->pOrderBy==0 );
4087       pParent->pOrderBy = pOrderBy;
4088       pSub->pOrderBy = 0;
4089     }
4090     pWhere = pSub->pWhere;
4091     pSub->pWhere = 0;
4092     if( isLeftJoin>0 ){
4093       sqlite3SetJoinExpr(pWhere, iNewParent);
4094     }
4095     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4096     if( db->mallocFailed==0 ){
4097       SubstContext x;
4098       x.pParse = pParse;
4099       x.iTable = iParent;
4100       x.iNewTable = iNewParent;
4101       x.isLeftJoin = isLeftJoin;
4102       x.pEList = pSub->pEList;
4103       substSelect(&x, pParent, 0);
4104     }
4105 
4106     /* The flattened query is a compound if either the inner or the
4107     ** outer query is a compound. */
4108     pParent->selFlags |= pSub->selFlags & SF_Compound;
4109     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4110 
4111     /*
4112     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4113     **
4114     ** One is tempted to try to add a and b to combine the limits.  But this
4115     ** does not work if either limit is negative.
4116     */
4117     if( pSub->pLimit ){
4118       pParent->pLimit = pSub->pLimit;
4119       pSub->pLimit = 0;
4120     }
4121   }
4122 
4123   /* Finially, delete what is left of the subquery and return
4124   ** success.
4125   */
4126   sqlite3SelectDelete(db, pSub1);
4127 
4128 #if SELECTTRACE_ENABLED
4129   if( sqlite3SelectTrace & 0x100 ){
4130     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4131     sqlite3TreeViewSelect(0, p, 0);
4132   }
4133 #endif
4134 
4135   return 1;
4136 }
4137 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4138 
4139 /*
4140 ** A structure to keep track of all of the column values that are fixed to
4141 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4142 */
4143 typedef struct WhereConst WhereConst;
4144 struct WhereConst {
4145   Parse *pParse;   /* Parsing context */
4146   int nConst;      /* Number for COLUMN=CONSTANT terms */
4147   int nChng;       /* Number of times a constant is propagated */
4148   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4149 };
4150 
4151 /*
4152 ** Add a new entry to the pConst object.  Except, do not add duplicate
4153 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4154 **
4155 ** The caller guarantees the pColumn is a column and pValue is a constant.
4156 ** This routine has to do some additional checks before completing the
4157 ** insert.
4158 */
4159 static void constInsert(
4160   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4161   Expr *pColumn,       /* The COLUMN part of the constraint */
4162   Expr *pValue,        /* The VALUE part of the constraint */
4163   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4164 ){
4165   int i;
4166   assert( pColumn->op==TK_COLUMN );
4167   assert( sqlite3ExprIsConstant(pValue) );
4168 
4169   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4170   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4171   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4172     return;
4173   }
4174 
4175   /* 2018-10-25 ticket [cf5ed20f]
4176   ** Make sure the same pColumn is not inserted more than once */
4177   for(i=0; i<pConst->nConst; i++){
4178     const Expr *pE2 = pConst->apExpr[i*2];
4179     assert( pE2->op==TK_COLUMN );
4180     if( pE2->iTable==pColumn->iTable
4181      && pE2->iColumn==pColumn->iColumn
4182     ){
4183       return;  /* Already present.  Return without doing anything. */
4184     }
4185   }
4186 
4187   pConst->nConst++;
4188   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4189                          pConst->nConst*2*sizeof(Expr*));
4190   if( pConst->apExpr==0 ){
4191     pConst->nConst = 0;
4192   }else{
4193     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4194     pConst->apExpr[pConst->nConst*2-1] = pValue;
4195   }
4196 }
4197 
4198 /*
4199 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4200 ** is a constant expression and where the term must be true because it
4201 ** is part of the AND-connected terms of the expression.  For each term
4202 ** found, add it to the pConst structure.
4203 */
4204 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4205   Expr *pRight, *pLeft;
4206   if( pExpr==0 ) return;
4207   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4208   if( pExpr->op==TK_AND ){
4209     findConstInWhere(pConst, pExpr->pRight);
4210     findConstInWhere(pConst, pExpr->pLeft);
4211     return;
4212   }
4213   if( pExpr->op!=TK_EQ ) return;
4214   pRight = pExpr->pRight;
4215   pLeft = pExpr->pLeft;
4216   assert( pRight!=0 );
4217   assert( pLeft!=0 );
4218   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4219     constInsert(pConst,pRight,pLeft,pExpr);
4220   }
4221   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4222     constInsert(pConst,pLeft,pRight,pExpr);
4223   }
4224 }
4225 
4226 /*
4227 ** This is a Walker expression callback.  pExpr is a candidate expression
4228 ** to be replaced by a value.  If pExpr is equivalent to one of the
4229 ** columns named in pWalker->u.pConst, then overwrite it with its
4230 ** corresponding value.
4231 */
4232 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4233   int i;
4234   WhereConst *pConst;
4235   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4236   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4237     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4238     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4239     return WRC_Continue;
4240   }
4241   pConst = pWalker->u.pConst;
4242   for(i=0; i<pConst->nConst; i++){
4243     Expr *pColumn = pConst->apExpr[i*2];
4244     if( pColumn==pExpr ) continue;
4245     if( pColumn->iTable!=pExpr->iTable ) continue;
4246     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4247     /* A match is found.  Add the EP_FixedCol property */
4248     pConst->nChng++;
4249     ExprClearProperty(pExpr, EP_Leaf);
4250     ExprSetProperty(pExpr, EP_FixedCol);
4251     assert( pExpr->pLeft==0 );
4252     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4253     break;
4254   }
4255   return WRC_Prune;
4256 }
4257 
4258 /*
4259 ** The WHERE-clause constant propagation optimization.
4260 **
4261 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4262 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4263 ** part of a ON clause from a LEFT JOIN, then throughout the query
4264 ** replace all other occurrences of COLUMN with CONSTANT.
4265 **
4266 ** For example, the query:
4267 **
4268 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4269 **
4270 ** Is transformed into
4271 **
4272 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4273 **
4274 ** Return true if any transformations where made and false if not.
4275 **
4276 ** Implementation note:  Constant propagation is tricky due to affinity
4277 ** and collating sequence interactions.  Consider this example:
4278 **
4279 **    CREATE TABLE t1(a INT,b TEXT);
4280 **    INSERT INTO t1 VALUES(123,'0123');
4281 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4282 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4283 **
4284 ** The two SELECT statements above should return different answers.  b=a
4285 ** is alway true because the comparison uses numeric affinity, but b=123
4286 ** is false because it uses text affinity and '0123' is not the same as '123'.
4287 ** To work around this, the expression tree is not actually changed from
4288 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4289 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4290 ** routines know to generate the constant "123" instead of looking up the
4291 ** column value.  Also, to avoid collation problems, this optimization is
4292 ** only attempted if the "a=123" term uses the default BINARY collation.
4293 */
4294 static int propagateConstants(
4295   Parse *pParse,   /* The parsing context */
4296   Select *p        /* The query in which to propagate constants */
4297 ){
4298   WhereConst x;
4299   Walker w;
4300   int nChng = 0;
4301   x.pParse = pParse;
4302   do{
4303     x.nConst = 0;
4304     x.nChng = 0;
4305     x.apExpr = 0;
4306     findConstInWhere(&x, p->pWhere);
4307     if( x.nConst ){
4308       memset(&w, 0, sizeof(w));
4309       w.pParse = pParse;
4310       w.xExprCallback = propagateConstantExprRewrite;
4311       w.xSelectCallback = sqlite3SelectWalkNoop;
4312       w.xSelectCallback2 = 0;
4313       w.walkerDepth = 0;
4314       w.u.pConst = &x;
4315       sqlite3WalkExpr(&w, p->pWhere);
4316       sqlite3DbFree(x.pParse->db, x.apExpr);
4317       nChng += x.nChng;
4318     }
4319   }while( x.nChng );
4320   return nChng;
4321 }
4322 
4323 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4324 /*
4325 ** Make copies of relevant WHERE clause terms of the outer query into
4326 ** the WHERE clause of subquery.  Example:
4327 **
4328 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4329 **
4330 ** Transformed into:
4331 **
4332 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4333 **     WHERE x=5 AND y=10;
4334 **
4335 ** The hope is that the terms added to the inner query will make it more
4336 ** efficient.
4337 **
4338 ** Do not attempt this optimization if:
4339 **
4340 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4341 **           disallow this optimization for aggregate subqueries, but now
4342 **           it is allowed by putting the extra terms on the HAVING clause.
4343 **           The added HAVING clause is pointless if the subquery lacks
4344 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4345 **           so there does not appear to be any reason to add extra logic
4346 **           to suppress it. **)
4347 **
4348 **   (2) The inner query is the recursive part of a common table expression.
4349 **
4350 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4351 **       clause would change the meaning of the LIMIT).
4352 **
4353 **   (4) The inner query is the right operand of a LEFT JOIN and the
4354 **       expression to be pushed down does not come from the ON clause
4355 **       on that LEFT JOIN.
4356 **
4357 **   (5) The WHERE clause expression originates in the ON or USING clause
4358 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4359 **       left join.  An example:
4360 **
4361 **           SELECT *
4362 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4363 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4364 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4365 **
4366 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4367 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4368 **       then the (1,1,NULL) row would be suppressed.
4369 **
4370 **   (6) The inner query features one or more window-functions (since
4371 **       changes to the WHERE clause of the inner query could change the
4372 **       window over which window functions are calculated).
4373 **
4374 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4375 ** terms are duplicated into the subquery.
4376 */
4377 static int pushDownWhereTerms(
4378   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4379   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4380   Expr *pWhere,         /* The WHERE clause of the outer query */
4381   int iCursor,          /* Cursor number of the subquery */
4382   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4383 ){
4384   Expr *pNew;
4385   int nChng = 0;
4386   if( pWhere==0 ) return 0;
4387   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4388 
4389 #ifndef SQLITE_OMIT_WINDOWFUNC
4390   if( pSubq->pWin ) return 0;    /* restriction (6) */
4391 #endif
4392 
4393 #ifdef SQLITE_DEBUG
4394   /* Only the first term of a compound can have a WITH clause.  But make
4395   ** sure no other terms are marked SF_Recursive in case something changes
4396   ** in the future.
4397   */
4398   {
4399     Select *pX;
4400     for(pX=pSubq; pX; pX=pX->pPrior){
4401       assert( (pX->selFlags & (SF_Recursive))==0 );
4402     }
4403   }
4404 #endif
4405 
4406   if( pSubq->pLimit!=0 ){
4407     return 0; /* restriction (3) */
4408   }
4409   while( pWhere->op==TK_AND ){
4410     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4411                                 iCursor, isLeftJoin);
4412     pWhere = pWhere->pLeft;
4413   }
4414   if( isLeftJoin
4415    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4416          || pWhere->iRightJoinTable!=iCursor)
4417   ){
4418     return 0; /* restriction (4) */
4419   }
4420   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4421     return 0; /* restriction (5) */
4422   }
4423   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4424     nChng++;
4425     while( pSubq ){
4426       SubstContext x;
4427       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4428       unsetJoinExpr(pNew, -1);
4429       x.pParse = pParse;
4430       x.iTable = iCursor;
4431       x.iNewTable = iCursor;
4432       x.isLeftJoin = 0;
4433       x.pEList = pSubq->pEList;
4434       pNew = substExpr(&x, pNew);
4435       if( pSubq->selFlags & SF_Aggregate ){
4436         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4437       }else{
4438         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4439       }
4440       pSubq = pSubq->pPrior;
4441     }
4442   }
4443   return nChng;
4444 }
4445 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4446 
4447 /*
4448 ** The pFunc is the only aggregate function in the query.  Check to see
4449 ** if the query is a candidate for the min/max optimization.
4450 **
4451 ** If the query is a candidate for the min/max optimization, then set
4452 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4453 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4454 ** whether pFunc is a min() or max() function.
4455 **
4456 ** If the query is not a candidate for the min/max optimization, return
4457 ** WHERE_ORDERBY_NORMAL (which must be zero).
4458 **
4459 ** This routine must be called after aggregate functions have been
4460 ** located but before their arguments have been subjected to aggregate
4461 ** analysis.
4462 */
4463 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4464   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4465   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4466   const char *zFunc;                    /* Name of aggregate function pFunc */
4467   ExprList *pOrderBy;
4468   u8 sortFlags = 0;
4469 
4470   assert( *ppMinMax==0 );
4471   assert( pFunc->op==TK_AGG_FUNCTION );
4472   assert( !IsWindowFunc(pFunc) );
4473   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4474     return eRet;
4475   }
4476   zFunc = pFunc->u.zToken;
4477   if( sqlite3StrICmp(zFunc, "min")==0 ){
4478     eRet = WHERE_ORDERBY_MIN;
4479     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4480       sortFlags = KEYINFO_ORDER_BIGNULL;
4481     }
4482   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4483     eRet = WHERE_ORDERBY_MAX;
4484     sortFlags = KEYINFO_ORDER_DESC;
4485   }else{
4486     return eRet;
4487   }
4488   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4489   assert( pOrderBy!=0 || db->mallocFailed );
4490   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4491   return eRet;
4492 }
4493 
4494 /*
4495 ** The select statement passed as the first argument is an aggregate query.
4496 ** The second argument is the associated aggregate-info object. This
4497 ** function tests if the SELECT is of the form:
4498 **
4499 **   SELECT count(*) FROM <tbl>
4500 **
4501 ** where table is a database table, not a sub-select or view. If the query
4502 ** does match this pattern, then a pointer to the Table object representing
4503 ** <tbl> is returned. Otherwise, 0 is returned.
4504 */
4505 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4506   Table *pTab;
4507   Expr *pExpr;
4508 
4509   assert( !p->pGroupBy );
4510 
4511   if( p->pWhere || p->pEList->nExpr!=1
4512    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4513   ){
4514     return 0;
4515   }
4516   pTab = p->pSrc->a[0].pTab;
4517   pExpr = p->pEList->a[0].pExpr;
4518   assert( pTab && !pTab->pSelect && pExpr );
4519 
4520   if( IsVirtual(pTab) ) return 0;
4521   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4522   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4523   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4524   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4525 
4526   return pTab;
4527 }
4528 
4529 /*
4530 ** If the source-list item passed as an argument was augmented with an
4531 ** INDEXED BY clause, then try to locate the specified index. If there
4532 ** was such a clause and the named index cannot be found, return
4533 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4534 ** pFrom->pIndex and return SQLITE_OK.
4535 */
4536 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4537   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4538     Table *pTab = pFrom->pTab;
4539     char *zIndexedBy = pFrom->u1.zIndexedBy;
4540     Index *pIdx;
4541     for(pIdx=pTab->pIndex;
4542         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4543         pIdx=pIdx->pNext
4544     );
4545     if( !pIdx ){
4546       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4547       pParse->checkSchema = 1;
4548       return SQLITE_ERROR;
4549     }
4550     pFrom->pIBIndex = pIdx;
4551   }
4552   return SQLITE_OK;
4553 }
4554 /*
4555 ** Detect compound SELECT statements that use an ORDER BY clause with
4556 ** an alternative collating sequence.
4557 **
4558 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4559 **
4560 ** These are rewritten as a subquery:
4561 **
4562 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4563 **     ORDER BY ... COLLATE ...
4564 **
4565 ** This transformation is necessary because the multiSelectOrderBy() routine
4566 ** above that generates the code for a compound SELECT with an ORDER BY clause
4567 ** uses a merge algorithm that requires the same collating sequence on the
4568 ** result columns as on the ORDER BY clause.  See ticket
4569 ** http://www.sqlite.org/src/info/6709574d2a
4570 **
4571 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4572 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4573 ** there are COLLATE terms in the ORDER BY.
4574 */
4575 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4576   int i;
4577   Select *pNew;
4578   Select *pX;
4579   sqlite3 *db;
4580   struct ExprList_item *a;
4581   SrcList *pNewSrc;
4582   Parse *pParse;
4583   Token dummy;
4584 
4585   if( p->pPrior==0 ) return WRC_Continue;
4586   if( p->pOrderBy==0 ) return WRC_Continue;
4587   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4588   if( pX==0 ) return WRC_Continue;
4589   a = p->pOrderBy->a;
4590   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4591     if( a[i].pExpr->flags & EP_Collate ) break;
4592   }
4593   if( i<0 ) return WRC_Continue;
4594 
4595   /* If we reach this point, that means the transformation is required. */
4596 
4597   pParse = pWalker->pParse;
4598   db = pParse->db;
4599   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4600   if( pNew==0 ) return WRC_Abort;
4601   memset(&dummy, 0, sizeof(dummy));
4602   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4603   if( pNewSrc==0 ) return WRC_Abort;
4604   *pNew = *p;
4605   p->pSrc = pNewSrc;
4606   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4607   p->op = TK_SELECT;
4608   p->pWhere = 0;
4609   pNew->pGroupBy = 0;
4610   pNew->pHaving = 0;
4611   pNew->pOrderBy = 0;
4612   p->pPrior = 0;
4613   p->pNext = 0;
4614   p->pWith = 0;
4615 #ifndef SQLITE_OMIT_WINDOWFUNC
4616   p->pWinDefn = 0;
4617 #endif
4618   p->selFlags &= ~SF_Compound;
4619   assert( (p->selFlags & SF_Converted)==0 );
4620   p->selFlags |= SF_Converted;
4621   assert( pNew->pPrior!=0 );
4622   pNew->pPrior->pNext = pNew;
4623   pNew->pLimit = 0;
4624   return WRC_Continue;
4625 }
4626 
4627 /*
4628 ** Check to see if the FROM clause term pFrom has table-valued function
4629 ** arguments.  If it does, leave an error message in pParse and return
4630 ** non-zero, since pFrom is not allowed to be a table-valued function.
4631 */
4632 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4633   if( pFrom->fg.isTabFunc ){
4634     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4635     return 1;
4636   }
4637   return 0;
4638 }
4639 
4640 #ifndef SQLITE_OMIT_CTE
4641 /*
4642 ** Argument pWith (which may be NULL) points to a linked list of nested
4643 ** WITH contexts, from inner to outermost. If the table identified by
4644 ** FROM clause element pItem is really a common-table-expression (CTE)
4645 ** then return a pointer to the CTE definition for that table. Otherwise
4646 ** return NULL.
4647 **
4648 ** If a non-NULL value is returned, set *ppContext to point to the With
4649 ** object that the returned CTE belongs to.
4650 */
4651 static struct Cte *searchWith(
4652   With *pWith,                    /* Current innermost WITH clause */
4653   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4654   With **ppContext                /* OUT: WITH clause return value belongs to */
4655 ){
4656   const char *zName;
4657   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4658     With *p;
4659     for(p=pWith; p; p=p->pOuter){
4660       int i;
4661       for(i=0; i<p->nCte; i++){
4662         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4663           *ppContext = p;
4664           return &p->a[i];
4665         }
4666       }
4667     }
4668   }
4669   return 0;
4670 }
4671 
4672 /* The code generator maintains a stack of active WITH clauses
4673 ** with the inner-most WITH clause being at the top of the stack.
4674 **
4675 ** This routine pushes the WITH clause passed as the second argument
4676 ** onto the top of the stack. If argument bFree is true, then this
4677 ** WITH clause will never be popped from the stack. In this case it
4678 ** should be freed along with the Parse object. In other cases, when
4679 ** bFree==0, the With object will be freed along with the SELECT
4680 ** statement with which it is associated.
4681 */
4682 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4683   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4684   if( pWith ){
4685     assert( pParse->pWith!=pWith );
4686     pWith->pOuter = pParse->pWith;
4687     pParse->pWith = pWith;
4688     if( bFree ) pParse->pWithToFree = pWith;
4689   }
4690 }
4691 
4692 /*
4693 ** This function checks if argument pFrom refers to a CTE declared by
4694 ** a WITH clause on the stack currently maintained by the parser. And,
4695 ** if currently processing a CTE expression, if it is a recursive
4696 ** reference to the current CTE.
4697 **
4698 ** If pFrom falls into either of the two categories above, pFrom->pTab
4699 ** and other fields are populated accordingly. The caller should check
4700 ** (pFrom->pTab!=0) to determine whether or not a successful match
4701 ** was found.
4702 **
4703 ** Whether or not a match is found, SQLITE_OK is returned if no error
4704 ** occurs. If an error does occur, an error message is stored in the
4705 ** parser and some error code other than SQLITE_OK returned.
4706 */
4707 static int withExpand(
4708   Walker *pWalker,
4709   struct SrcList_item *pFrom
4710 ){
4711   Parse *pParse = pWalker->pParse;
4712   sqlite3 *db = pParse->db;
4713   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4714   With *pWith;                    /* WITH clause that pCte belongs to */
4715 
4716   assert( pFrom->pTab==0 );
4717   if( pParse->nErr ){
4718     return SQLITE_ERROR;
4719   }
4720 
4721   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4722   if( pCte ){
4723     Table *pTab;
4724     ExprList *pEList;
4725     Select *pSel;
4726     Select *pLeft;                /* Left-most SELECT statement */
4727     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4728     With *pSavedWith;             /* Initial value of pParse->pWith */
4729 
4730     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4731     ** recursive reference to CTE pCte. Leave an error in pParse and return
4732     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4733     ** In this case, proceed.  */
4734     if( pCte->zCteErr ){
4735       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4736       return SQLITE_ERROR;
4737     }
4738     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4739 
4740     assert( pFrom->pTab==0 );
4741     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4742     if( pTab==0 ) return WRC_Abort;
4743     pTab->nTabRef = 1;
4744     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4745     pTab->iPKey = -1;
4746     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4747     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4748     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4749     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4750     assert( pFrom->pSelect );
4751 
4752     /* Check if this is a recursive CTE. */
4753     pSel = pFrom->pSelect;
4754     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4755     if( bMayRecursive ){
4756       int i;
4757       SrcList *pSrc = pFrom->pSelect->pSrc;
4758       for(i=0; i<pSrc->nSrc; i++){
4759         struct SrcList_item *pItem = &pSrc->a[i];
4760         if( pItem->zDatabase==0
4761          && pItem->zName!=0
4762          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4763           ){
4764           pItem->pTab = pTab;
4765           pItem->fg.isRecursive = 1;
4766           pTab->nTabRef++;
4767           pSel->selFlags |= SF_Recursive;
4768         }
4769       }
4770     }
4771 
4772     /* Only one recursive reference is permitted. */
4773     if( pTab->nTabRef>2 ){
4774       sqlite3ErrorMsg(
4775           pParse, "multiple references to recursive table: %s", pCte->zName
4776       );
4777       return SQLITE_ERROR;
4778     }
4779     assert( pTab->nTabRef==1 ||
4780             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4781 
4782     pCte->zCteErr = "circular reference: %s";
4783     pSavedWith = pParse->pWith;
4784     pParse->pWith = pWith;
4785     if( bMayRecursive ){
4786       Select *pPrior = pSel->pPrior;
4787       assert( pPrior->pWith==0 );
4788       pPrior->pWith = pSel->pWith;
4789       sqlite3WalkSelect(pWalker, pPrior);
4790       pPrior->pWith = 0;
4791     }else{
4792       sqlite3WalkSelect(pWalker, pSel);
4793     }
4794     pParse->pWith = pWith;
4795 
4796     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4797     pEList = pLeft->pEList;
4798     if( pCte->pCols ){
4799       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4800         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4801             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4802         );
4803         pParse->pWith = pSavedWith;
4804         return SQLITE_ERROR;
4805       }
4806       pEList = pCte->pCols;
4807     }
4808 
4809     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4810     if( bMayRecursive ){
4811       if( pSel->selFlags & SF_Recursive ){
4812         pCte->zCteErr = "multiple recursive references: %s";
4813       }else{
4814         pCte->zCteErr = "recursive reference in a subquery: %s";
4815       }
4816       sqlite3WalkSelect(pWalker, pSel);
4817     }
4818     pCte->zCteErr = 0;
4819     pParse->pWith = pSavedWith;
4820   }
4821 
4822   return SQLITE_OK;
4823 }
4824 #endif
4825 
4826 #ifndef SQLITE_OMIT_CTE
4827 /*
4828 ** If the SELECT passed as the second argument has an associated WITH
4829 ** clause, pop it from the stack stored as part of the Parse object.
4830 **
4831 ** This function is used as the xSelectCallback2() callback by
4832 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4833 ** names and other FROM clause elements.
4834 */
4835 static void selectPopWith(Walker *pWalker, Select *p){
4836   Parse *pParse = pWalker->pParse;
4837   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4838     With *pWith = findRightmost(p)->pWith;
4839     if( pWith!=0 ){
4840       assert( pParse->pWith==pWith || pParse->nErr );
4841       pParse->pWith = pWith->pOuter;
4842     }
4843   }
4844 }
4845 #else
4846 #define selectPopWith 0
4847 #endif
4848 
4849 /*
4850 ** The SrcList_item structure passed as the second argument represents a
4851 ** sub-query in the FROM clause of a SELECT statement. This function
4852 ** allocates and populates the SrcList_item.pTab object. If successful,
4853 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4854 ** SQLITE_NOMEM.
4855 */
4856 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4857   Select *pSel = pFrom->pSelect;
4858   Table *pTab;
4859 
4860   assert( pSel );
4861   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4862   if( pTab==0 ) return SQLITE_NOMEM;
4863   pTab->nTabRef = 1;
4864   if( pFrom->zAlias ){
4865     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4866   }else{
4867     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4868   }
4869   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4870   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4871   pTab->iPKey = -1;
4872   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4873   pTab->tabFlags |= TF_Ephemeral;
4874 
4875   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4876 }
4877 
4878 /*
4879 ** This routine is a Walker callback for "expanding" a SELECT statement.
4880 ** "Expanding" means to do the following:
4881 **
4882 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4883 **         element of the FROM clause.
4884 **
4885 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4886 **         defines FROM clause.  When views appear in the FROM clause,
4887 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4888 **         that implements the view.  A copy is made of the view's SELECT
4889 **         statement so that we can freely modify or delete that statement
4890 **         without worrying about messing up the persistent representation
4891 **         of the view.
4892 **
4893 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4894 **         on joins and the ON and USING clause of joins.
4895 **
4896 **    (4)  Scan the list of columns in the result set (pEList) looking
4897 **         for instances of the "*" operator or the TABLE.* operator.
4898 **         If found, expand each "*" to be every column in every table
4899 **         and TABLE.* to be every column in TABLE.
4900 **
4901 */
4902 static int selectExpander(Walker *pWalker, Select *p){
4903   Parse *pParse = pWalker->pParse;
4904   int i, j, k;
4905   SrcList *pTabList;
4906   ExprList *pEList;
4907   struct SrcList_item *pFrom;
4908   sqlite3 *db = pParse->db;
4909   Expr *pE, *pRight, *pExpr;
4910   u16 selFlags = p->selFlags;
4911   u32 elistFlags = 0;
4912 
4913   p->selFlags |= SF_Expanded;
4914   if( db->mallocFailed  ){
4915     return WRC_Abort;
4916   }
4917   assert( p->pSrc!=0 );
4918   if( (selFlags & SF_Expanded)!=0 ){
4919     return WRC_Prune;
4920   }
4921   if( pWalker->eCode ){
4922     /* Renumber selId because it has been copied from a view */
4923     p->selId = ++pParse->nSelect;
4924   }
4925   pTabList = p->pSrc;
4926   pEList = p->pEList;
4927   sqlite3WithPush(pParse, p->pWith, 0);
4928 
4929   /* Make sure cursor numbers have been assigned to all entries in
4930   ** the FROM clause of the SELECT statement.
4931   */
4932   sqlite3SrcListAssignCursors(pParse, pTabList);
4933 
4934   /* Look up every table named in the FROM clause of the select.  If
4935   ** an entry of the FROM clause is a subquery instead of a table or view,
4936   ** then create a transient table structure to describe the subquery.
4937   */
4938   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4939     Table *pTab;
4940     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4941     if( pFrom->fg.isRecursive ) continue;
4942     assert( pFrom->pTab==0 );
4943 #ifndef SQLITE_OMIT_CTE
4944     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4945     if( pFrom->pTab ) {} else
4946 #endif
4947     if( pFrom->zName==0 ){
4948 #ifndef SQLITE_OMIT_SUBQUERY
4949       Select *pSel = pFrom->pSelect;
4950       /* A sub-query in the FROM clause of a SELECT */
4951       assert( pSel!=0 );
4952       assert( pFrom->pTab==0 );
4953       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4954       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4955 #endif
4956     }else{
4957       /* An ordinary table or view name in the FROM clause */
4958       assert( pFrom->pTab==0 );
4959       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4960       if( pTab==0 ) return WRC_Abort;
4961       if( pTab->nTabRef>=0xffff ){
4962         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4963            pTab->zName);
4964         pFrom->pTab = 0;
4965         return WRC_Abort;
4966       }
4967       pTab->nTabRef++;
4968       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4969         return WRC_Abort;
4970       }
4971 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
4972       if( IsVirtual(pTab) || pTab->pSelect ){
4973         i16 nCol;
4974         u8 eCodeOrig = pWalker->eCode;
4975         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4976         assert( pFrom->pSelect==0 );
4977         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
4978           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
4979             pTab->zName);
4980         }
4981 #ifndef SQLITE_OMIT_VIRTUALTABLE
4982         if( IsVirtual(pTab)
4983          && pFrom->fg.fromDDL
4984          && ALWAYS(pTab->pVTable!=0)
4985          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
4986         ){
4987           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
4988                                   pTab->zName);
4989         }
4990 #endif
4991         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4992         nCol = pTab->nCol;
4993         pTab->nCol = -1;
4994         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4995         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4996         pWalker->eCode = eCodeOrig;
4997         pTab->nCol = nCol;
4998       }
4999 #endif
5000     }
5001 
5002     /* Locate the index named by the INDEXED BY clause, if any. */
5003     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5004       return WRC_Abort;
5005     }
5006   }
5007 
5008   /* Process NATURAL keywords, and ON and USING clauses of joins.
5009   */
5010   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5011     return WRC_Abort;
5012   }
5013 
5014   /* For every "*" that occurs in the column list, insert the names of
5015   ** all columns in all tables.  And for every TABLE.* insert the names
5016   ** of all columns in TABLE.  The parser inserted a special expression
5017   ** with the TK_ASTERISK operator for each "*" that it found in the column
5018   ** list.  The following code just has to locate the TK_ASTERISK
5019   ** expressions and expand each one to the list of all columns in
5020   ** all tables.
5021   **
5022   ** The first loop just checks to see if there are any "*" operators
5023   ** that need expanding.
5024   */
5025   for(k=0; k<pEList->nExpr; k++){
5026     pE = pEList->a[k].pExpr;
5027     if( pE->op==TK_ASTERISK ) break;
5028     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5029     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5030     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5031     elistFlags |= pE->flags;
5032   }
5033   if( k<pEList->nExpr ){
5034     /*
5035     ** If we get here it means the result set contains one or more "*"
5036     ** operators that need to be expanded.  Loop through each expression
5037     ** in the result set and expand them one by one.
5038     */
5039     struct ExprList_item *a = pEList->a;
5040     ExprList *pNew = 0;
5041     int flags = pParse->db->flags;
5042     int longNames = (flags & SQLITE_FullColNames)!=0
5043                       && (flags & SQLITE_ShortColNames)==0;
5044 
5045     for(k=0; k<pEList->nExpr; k++){
5046       pE = a[k].pExpr;
5047       elistFlags |= pE->flags;
5048       pRight = pE->pRight;
5049       assert( pE->op!=TK_DOT || pRight!=0 );
5050       if( pE->op!=TK_ASTERISK
5051        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5052       ){
5053         /* This particular expression does not need to be expanded.
5054         */
5055         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5056         if( pNew ){
5057           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5058           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5059           a[k].zEName = 0;
5060         }
5061         a[k].pExpr = 0;
5062       }else{
5063         /* This expression is a "*" or a "TABLE.*" and needs to be
5064         ** expanded. */
5065         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5066         char *zTName = 0;       /* text of name of TABLE */
5067         if( pE->op==TK_DOT ){
5068           assert( pE->pLeft!=0 );
5069           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5070           zTName = pE->pLeft->u.zToken;
5071         }
5072         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5073           Table *pTab = pFrom->pTab;
5074           Select *pSub = pFrom->pSelect;
5075           char *zTabName = pFrom->zAlias;
5076           const char *zSchemaName = 0;
5077           int iDb;
5078           if( zTabName==0 ){
5079             zTabName = pTab->zName;
5080           }
5081           if( db->mallocFailed ) break;
5082           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5083             pSub = 0;
5084             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5085               continue;
5086             }
5087             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5088             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5089           }
5090           for(j=0; j<pTab->nCol; j++){
5091             char *zName = pTab->aCol[j].zName;
5092             char *zColname;  /* The computed column name */
5093             char *zToFree;   /* Malloced string that needs to be freed */
5094             Token sColname;  /* Computed column name as a token */
5095 
5096             assert( zName );
5097             if( zTName && pSub
5098              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5099             ){
5100               continue;
5101             }
5102 
5103             /* If a column is marked as 'hidden', omit it from the expanded
5104             ** result-set list unless the SELECT has the SF_IncludeHidden
5105             ** bit set.
5106             */
5107             if( (p->selFlags & SF_IncludeHidden)==0
5108              && IsHiddenColumn(&pTab->aCol[j])
5109             ){
5110               continue;
5111             }
5112             tableSeen = 1;
5113 
5114             if( i>0 && zTName==0 ){
5115               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5116                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5117               ){
5118                 /* In a NATURAL join, omit the join columns from the
5119                 ** table to the right of the join */
5120                 continue;
5121               }
5122               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5123                 /* In a join with a USING clause, omit columns in the
5124                 ** using clause from the table on the right. */
5125                 continue;
5126               }
5127             }
5128             pRight = sqlite3Expr(db, TK_ID, zName);
5129             zColname = zName;
5130             zToFree = 0;
5131             if( longNames || pTabList->nSrc>1 ){
5132               Expr *pLeft;
5133               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5134               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5135               if( zSchemaName ){
5136                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5137                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5138               }
5139               if( longNames ){
5140                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5141                 zToFree = zColname;
5142               }
5143             }else{
5144               pExpr = pRight;
5145             }
5146             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5147             sqlite3TokenInit(&sColname, zColname);
5148             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5149             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5150               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5151               sqlite3DbFree(db, pX->zEName);
5152               if( pSub ){
5153                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5154                 testcase( pX->zEName==0 );
5155               }else{
5156                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5157                                            zSchemaName, zTabName, zColname);
5158                 testcase( pX->zEName==0 );
5159               }
5160               pX->eEName = ENAME_TAB;
5161             }
5162             sqlite3DbFree(db, zToFree);
5163           }
5164         }
5165         if( !tableSeen ){
5166           if( zTName ){
5167             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5168           }else{
5169             sqlite3ErrorMsg(pParse, "no tables specified");
5170           }
5171         }
5172       }
5173     }
5174     sqlite3ExprListDelete(db, pEList);
5175     p->pEList = pNew;
5176   }
5177   if( p->pEList ){
5178     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5179       sqlite3ErrorMsg(pParse, "too many columns in result set");
5180       return WRC_Abort;
5181     }
5182     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5183       p->selFlags |= SF_ComplexResult;
5184     }
5185   }
5186   return WRC_Continue;
5187 }
5188 
5189 /*
5190 ** No-op routine for the parse-tree walker.
5191 **
5192 ** When this routine is the Walker.xExprCallback then expression trees
5193 ** are walked without any actions being taken at each node.  Presumably,
5194 ** when this routine is used for Walker.xExprCallback then
5195 ** Walker.xSelectCallback is set to do something useful for every
5196 ** subquery in the parser tree.
5197 */
5198 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5199   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5200   return WRC_Continue;
5201 }
5202 
5203 /*
5204 ** No-op routine for the parse-tree walker for SELECT statements.
5205 ** subquery in the parser tree.
5206 */
5207 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5208   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5209   return WRC_Continue;
5210 }
5211 
5212 #if SQLITE_DEBUG
5213 /*
5214 ** Always assert.  This xSelectCallback2 implementation proves that the
5215 ** xSelectCallback2 is never invoked.
5216 */
5217 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5218   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5219   assert( 0 );
5220 }
5221 #endif
5222 /*
5223 ** This routine "expands" a SELECT statement and all of its subqueries.
5224 ** For additional information on what it means to "expand" a SELECT
5225 ** statement, see the comment on the selectExpand worker callback above.
5226 **
5227 ** Expanding a SELECT statement is the first step in processing a
5228 ** SELECT statement.  The SELECT statement must be expanded before
5229 ** name resolution is performed.
5230 **
5231 ** If anything goes wrong, an error message is written into pParse.
5232 ** The calling function can detect the problem by looking at pParse->nErr
5233 ** and/or pParse->db->mallocFailed.
5234 */
5235 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5236   Walker w;
5237   w.xExprCallback = sqlite3ExprWalkNoop;
5238   w.pParse = pParse;
5239   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5240     w.xSelectCallback = convertCompoundSelectToSubquery;
5241     w.xSelectCallback2 = 0;
5242     sqlite3WalkSelect(&w, pSelect);
5243   }
5244   w.xSelectCallback = selectExpander;
5245   w.xSelectCallback2 = selectPopWith;
5246   w.eCode = 0;
5247   sqlite3WalkSelect(&w, pSelect);
5248 }
5249 
5250 
5251 #ifndef SQLITE_OMIT_SUBQUERY
5252 /*
5253 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5254 ** interface.
5255 **
5256 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5257 ** information to the Table structure that represents the result set
5258 ** of that subquery.
5259 **
5260 ** The Table structure that represents the result set was constructed
5261 ** by selectExpander() but the type and collation information was omitted
5262 ** at that point because identifiers had not yet been resolved.  This
5263 ** routine is called after identifier resolution.
5264 */
5265 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5266   Parse *pParse;
5267   int i;
5268   SrcList *pTabList;
5269   struct SrcList_item *pFrom;
5270 
5271   assert( p->selFlags & SF_Resolved );
5272   if( p->selFlags & SF_HasTypeInfo ) return;
5273   p->selFlags |= SF_HasTypeInfo;
5274   pParse = pWalker->pParse;
5275   pTabList = p->pSrc;
5276   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5277     Table *pTab = pFrom->pTab;
5278     assert( pTab!=0 );
5279     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5280       /* A sub-query in the FROM clause of a SELECT */
5281       Select *pSel = pFrom->pSelect;
5282       if( pSel ){
5283         while( pSel->pPrior ) pSel = pSel->pPrior;
5284         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5285                                                SQLITE_AFF_NONE);
5286       }
5287     }
5288   }
5289 }
5290 #endif
5291 
5292 
5293 /*
5294 ** This routine adds datatype and collating sequence information to
5295 ** the Table structures of all FROM-clause subqueries in a
5296 ** SELECT statement.
5297 **
5298 ** Use this routine after name resolution.
5299 */
5300 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5301 #ifndef SQLITE_OMIT_SUBQUERY
5302   Walker w;
5303   w.xSelectCallback = sqlite3SelectWalkNoop;
5304   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5305   w.xExprCallback = sqlite3ExprWalkNoop;
5306   w.pParse = pParse;
5307   sqlite3WalkSelect(&w, pSelect);
5308 #endif
5309 }
5310 
5311 
5312 /*
5313 ** This routine sets up a SELECT statement for processing.  The
5314 ** following is accomplished:
5315 **
5316 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5317 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5318 **     *  ON and USING clauses are shifted into WHERE statements
5319 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5320 **     *  Identifiers in expression are matched to tables.
5321 **
5322 ** This routine acts recursively on all subqueries within the SELECT.
5323 */
5324 void sqlite3SelectPrep(
5325   Parse *pParse,         /* The parser context */
5326   Select *p,             /* The SELECT statement being coded. */
5327   NameContext *pOuterNC  /* Name context for container */
5328 ){
5329   assert( p!=0 || pParse->db->mallocFailed );
5330   if( pParse->db->mallocFailed ) return;
5331   if( p->selFlags & SF_HasTypeInfo ) return;
5332   sqlite3SelectExpand(pParse, p);
5333   if( pParse->nErr || pParse->db->mallocFailed ) return;
5334   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5335   if( pParse->nErr || pParse->db->mallocFailed ) return;
5336   sqlite3SelectAddTypeInfo(pParse, p);
5337 }
5338 
5339 /*
5340 ** Reset the aggregate accumulator.
5341 **
5342 ** The aggregate accumulator is a set of memory cells that hold
5343 ** intermediate results while calculating an aggregate.  This
5344 ** routine generates code that stores NULLs in all of those memory
5345 ** cells.
5346 */
5347 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5348   Vdbe *v = pParse->pVdbe;
5349   int i;
5350   struct AggInfo_func *pFunc;
5351   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5352   if( nReg==0 ) return;
5353 #ifdef SQLITE_DEBUG
5354   /* Verify that all AggInfo registers are within the range specified by
5355   ** AggInfo.mnReg..AggInfo.mxReg */
5356   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5357   for(i=0; i<pAggInfo->nColumn; i++){
5358     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5359          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5360   }
5361   for(i=0; i<pAggInfo->nFunc; i++){
5362     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5363          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5364   }
5365 #endif
5366   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5367   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5368     if( pFunc->iDistinct>=0 ){
5369       Expr *pE = pFunc->pExpr;
5370       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5371       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5372         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5373            "argument");
5374         pFunc->iDistinct = -1;
5375       }else{
5376         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5377         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5378                           (char*)pKeyInfo, P4_KEYINFO);
5379       }
5380     }
5381   }
5382 }
5383 
5384 /*
5385 ** Invoke the OP_AggFinalize opcode for every aggregate function
5386 ** in the AggInfo structure.
5387 */
5388 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5389   Vdbe *v = pParse->pVdbe;
5390   int i;
5391   struct AggInfo_func *pF;
5392   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5393     ExprList *pList = pF->pExpr->x.pList;
5394     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5395     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5396     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5397   }
5398 }
5399 
5400 
5401 /*
5402 ** Update the accumulator memory cells for an aggregate based on
5403 ** the current cursor position.
5404 **
5405 ** If regAcc is non-zero and there are no min() or max() aggregates
5406 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5407 ** registers if register regAcc contains 0. The caller will take care
5408 ** of setting and clearing regAcc.
5409 */
5410 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5411   Vdbe *v = pParse->pVdbe;
5412   int i;
5413   int regHit = 0;
5414   int addrHitTest = 0;
5415   struct AggInfo_func *pF;
5416   struct AggInfo_col *pC;
5417 
5418   pAggInfo->directMode = 1;
5419   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5420     int nArg;
5421     int addrNext = 0;
5422     int regAgg;
5423     ExprList *pList = pF->pExpr->x.pList;
5424     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5425     assert( !IsWindowFunc(pF->pExpr) );
5426     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5427       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5428       if( pAggInfo->nAccumulator
5429        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5430       ){
5431         if( regHit==0 ) regHit = ++pParse->nMem;
5432         /* If this is the first row of the group (regAcc==0), clear the
5433         ** "magnet" register regHit so that the accumulator registers
5434         ** are populated if the FILTER clause jumps over the the
5435         ** invocation of min() or max() altogether. Or, if this is not
5436         ** the first row (regAcc==1), set the magnet register so that the
5437         ** accumulators are not populated unless the min()/max() is invoked and
5438         ** indicates that they should be.  */
5439         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5440       }
5441       addrNext = sqlite3VdbeMakeLabel(pParse);
5442       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5443     }
5444     if( pList ){
5445       nArg = pList->nExpr;
5446       regAgg = sqlite3GetTempRange(pParse, nArg);
5447       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5448     }else{
5449       nArg = 0;
5450       regAgg = 0;
5451     }
5452     if( pF->iDistinct>=0 ){
5453       if( addrNext==0 ){
5454         addrNext = sqlite3VdbeMakeLabel(pParse);
5455       }
5456       testcase( nArg==0 );  /* Error condition */
5457       testcase( nArg>1 );   /* Also an error */
5458       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5459     }
5460     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5461       CollSeq *pColl = 0;
5462       struct ExprList_item *pItem;
5463       int j;
5464       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5465       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5466         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5467       }
5468       if( !pColl ){
5469         pColl = pParse->db->pDfltColl;
5470       }
5471       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5472       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5473     }
5474     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5475     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5476     sqlite3VdbeChangeP5(v, (u8)nArg);
5477     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5478     if( addrNext ){
5479       sqlite3VdbeResolveLabel(v, addrNext);
5480     }
5481   }
5482   if( regHit==0 && pAggInfo->nAccumulator ){
5483     regHit = regAcc;
5484   }
5485   if( regHit ){
5486     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5487   }
5488   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5489     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5490   }
5491 
5492   pAggInfo->directMode = 0;
5493   if( addrHitTest ){
5494     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5495   }
5496 }
5497 
5498 /*
5499 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5500 ** count(*) query ("SELECT count(*) FROM pTab").
5501 */
5502 #ifndef SQLITE_OMIT_EXPLAIN
5503 static void explainSimpleCount(
5504   Parse *pParse,                  /* Parse context */
5505   Table *pTab,                    /* Table being queried */
5506   Index *pIdx                     /* Index used to optimize scan, or NULL */
5507 ){
5508   if( pParse->explain==2 ){
5509     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5510     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5511         pTab->zName,
5512         bCover ? " USING COVERING INDEX " : "",
5513         bCover ? pIdx->zName : ""
5514     );
5515   }
5516 }
5517 #else
5518 # define explainSimpleCount(a,b,c)
5519 #endif
5520 
5521 /*
5522 ** sqlite3WalkExpr() callback used by havingToWhere().
5523 **
5524 ** If the node passed to the callback is a TK_AND node, return
5525 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5526 **
5527 ** Otherwise, return WRC_Prune. In this case, also check if the
5528 ** sub-expression matches the criteria for being moved to the WHERE
5529 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5530 ** within the HAVING expression with a constant "1".
5531 */
5532 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5533   if( pExpr->op!=TK_AND ){
5534     Select *pS = pWalker->u.pSelect;
5535     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5536       sqlite3 *db = pWalker->pParse->db;
5537       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5538       if( pNew ){
5539         Expr *pWhere = pS->pWhere;
5540         SWAP(Expr, *pNew, *pExpr);
5541         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5542         pS->pWhere = pNew;
5543         pWalker->eCode = 1;
5544       }
5545     }
5546     return WRC_Prune;
5547   }
5548   return WRC_Continue;
5549 }
5550 
5551 /*
5552 ** Transfer eligible terms from the HAVING clause of a query, which is
5553 ** processed after grouping, to the WHERE clause, which is processed before
5554 ** grouping. For example, the query:
5555 **
5556 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5557 **
5558 ** can be rewritten as:
5559 **
5560 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5561 **
5562 ** A term of the HAVING expression is eligible for transfer if it consists
5563 ** entirely of constants and expressions that are also GROUP BY terms that
5564 ** use the "BINARY" collation sequence.
5565 */
5566 static void havingToWhere(Parse *pParse, Select *p){
5567   Walker sWalker;
5568   memset(&sWalker, 0, sizeof(sWalker));
5569   sWalker.pParse = pParse;
5570   sWalker.xExprCallback = havingToWhereExprCb;
5571   sWalker.u.pSelect = p;
5572   sqlite3WalkExpr(&sWalker, p->pHaving);
5573 #if SELECTTRACE_ENABLED
5574   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5575     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5576     sqlite3TreeViewSelect(0, p, 0);
5577   }
5578 #endif
5579 }
5580 
5581 /*
5582 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5583 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5584 ** then return 0.
5585 */
5586 static struct SrcList_item *isSelfJoinView(
5587   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5588   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5589 ){
5590   struct SrcList_item *pItem;
5591   for(pItem = pTabList->a; pItem<pThis; pItem++){
5592     Select *pS1;
5593     if( pItem->pSelect==0 ) continue;
5594     if( pItem->fg.viaCoroutine ) continue;
5595     if( pItem->zName==0 ) continue;
5596     assert( pItem->pTab!=0 );
5597     assert( pThis->pTab!=0 );
5598     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5599     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5600     pS1 = pItem->pSelect;
5601     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5602       /* The query flattener left two different CTE tables with identical
5603       ** names in the same FROM clause. */
5604       continue;
5605     }
5606     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5607      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5608     ){
5609       /* The view was modified by some other optimization such as
5610       ** pushDownWhereTerms() */
5611       continue;
5612     }
5613     return pItem;
5614   }
5615   return 0;
5616 }
5617 
5618 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5619 /*
5620 ** Attempt to transform a query of the form
5621 **
5622 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5623 **
5624 ** Into this:
5625 **
5626 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5627 **
5628 ** The transformation only works if all of the following are true:
5629 **
5630 **   *  The subquery is a UNION ALL of two or more terms
5631 **   *  The subquery does not have a LIMIT clause
5632 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5633 **   *  The outer query is a simple count(*) with no WHERE clause or other
5634 **      extraneous syntax.
5635 **
5636 ** Return TRUE if the optimization is undertaken.
5637 */
5638 static int countOfViewOptimization(Parse *pParse, Select *p){
5639   Select *pSub, *pPrior;
5640   Expr *pExpr;
5641   Expr *pCount;
5642   sqlite3 *db;
5643   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5644   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5645   if( p->pWhere ) return 0;
5646   if( p->pGroupBy ) return 0;
5647   pExpr = p->pEList->a[0].pExpr;
5648   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5649   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5650   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5651   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5652   pSub = p->pSrc->a[0].pSelect;
5653   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5654   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5655   do{
5656     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5657     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5658     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5659     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5660     pSub = pSub->pPrior;                              /* Repeat over compound */
5661   }while( pSub );
5662 
5663   /* If we reach this point then it is OK to perform the transformation */
5664 
5665   db = pParse->db;
5666   pCount = pExpr;
5667   pExpr = 0;
5668   pSub = p->pSrc->a[0].pSelect;
5669   p->pSrc->a[0].pSelect = 0;
5670   sqlite3SrcListDelete(db, p->pSrc);
5671   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5672   while( pSub ){
5673     Expr *pTerm;
5674     pPrior = pSub->pPrior;
5675     pSub->pPrior = 0;
5676     pSub->pNext = 0;
5677     pSub->selFlags |= SF_Aggregate;
5678     pSub->selFlags &= ~SF_Compound;
5679     pSub->nSelectRow = 0;
5680     sqlite3ExprListDelete(db, pSub->pEList);
5681     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5682     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5683     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5684     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5685     if( pExpr==0 ){
5686       pExpr = pTerm;
5687     }else{
5688       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5689     }
5690     pSub = pPrior;
5691   }
5692   p->pEList->a[0].pExpr = pExpr;
5693   p->selFlags &= ~SF_Aggregate;
5694 
5695 #if SELECTTRACE_ENABLED
5696   if( sqlite3SelectTrace & 0x400 ){
5697     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5698     sqlite3TreeViewSelect(0, p, 0);
5699   }
5700 #endif
5701   return 1;
5702 }
5703 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5704 
5705 /*
5706 ** Generate code for the SELECT statement given in the p argument.
5707 **
5708 ** The results are returned according to the SelectDest structure.
5709 ** See comments in sqliteInt.h for further information.
5710 **
5711 ** This routine returns the number of errors.  If any errors are
5712 ** encountered, then an appropriate error message is left in
5713 ** pParse->zErrMsg.
5714 **
5715 ** This routine does NOT free the Select structure passed in.  The
5716 ** calling function needs to do that.
5717 */
5718 int sqlite3Select(
5719   Parse *pParse,         /* The parser context */
5720   Select *p,             /* The SELECT statement being coded. */
5721   SelectDest *pDest      /* What to do with the query results */
5722 ){
5723   int i, j;              /* Loop counters */
5724   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5725   Vdbe *v;               /* The virtual machine under construction */
5726   int isAgg;             /* True for select lists like "count(*)" */
5727   ExprList *pEList = 0;  /* List of columns to extract. */
5728   SrcList *pTabList;     /* List of tables to select from */
5729   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5730   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5731   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5732   int rc = 1;            /* Value to return from this function */
5733   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5734   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5735   AggInfo sAggInfo;      /* Information used by aggregate queries */
5736   int iEnd;              /* Address of the end of the query */
5737   sqlite3 *db;           /* The database connection */
5738   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5739   u8 minMaxFlag;                 /* Flag for min/max queries */
5740 
5741   db = pParse->db;
5742   v = sqlite3GetVdbe(pParse);
5743   if( p==0 || db->mallocFailed || pParse->nErr ){
5744     return 1;
5745   }
5746   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5747   memset(&sAggInfo, 0, sizeof(sAggInfo));
5748 #if SELECTTRACE_ENABLED
5749   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5750   if( sqlite3SelectTrace & 0x100 ){
5751     sqlite3TreeViewSelect(0, p, 0);
5752   }
5753 #endif
5754 
5755   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5756   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5757   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5758   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5759   if( IgnorableOrderby(pDest) ){
5760     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5761            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5762            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5763            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5764     /* If ORDER BY makes no difference in the output then neither does
5765     ** DISTINCT so it can be removed too. */
5766     sqlite3ExprListDelete(db, p->pOrderBy);
5767     p->pOrderBy = 0;
5768     p->selFlags &= ~SF_Distinct;
5769   }
5770   sqlite3SelectPrep(pParse, p, 0);
5771   if( pParse->nErr || db->mallocFailed ){
5772     goto select_end;
5773   }
5774   assert( p->pEList!=0 );
5775 #if SELECTTRACE_ENABLED
5776   if( sqlite3SelectTrace & 0x104 ){
5777     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5778     sqlite3TreeViewSelect(0, p, 0);
5779   }
5780 #endif
5781 
5782   if( pDest->eDest==SRT_Output ){
5783     generateColumnNames(pParse, p);
5784   }
5785 
5786 #ifndef SQLITE_OMIT_WINDOWFUNC
5787   rc = sqlite3WindowRewrite(pParse, p);
5788   if( rc ){
5789     assert( db->mallocFailed || pParse->nErr>0 );
5790     goto select_end;
5791   }
5792 #if SELECTTRACE_ENABLED
5793   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5794     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5795     sqlite3TreeViewSelect(0, p, 0);
5796   }
5797 #endif
5798 #endif /* SQLITE_OMIT_WINDOWFUNC */
5799   pTabList = p->pSrc;
5800   isAgg = (p->selFlags & SF_Aggregate)!=0;
5801   memset(&sSort, 0, sizeof(sSort));
5802   sSort.pOrderBy = p->pOrderBy;
5803 
5804   /* Try to various optimizations (flattening subqueries, and strength
5805   ** reduction of join operators) in the FROM clause up into the main query
5806   */
5807 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5808   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5809     struct SrcList_item *pItem = &pTabList->a[i];
5810     Select *pSub = pItem->pSelect;
5811     Table *pTab = pItem->pTab;
5812 
5813     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5814     ** of the LEFT JOIN used in the WHERE clause.
5815     */
5816     if( (pItem->fg.jointype & JT_LEFT)!=0
5817      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5818      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5819     ){
5820       SELECTTRACE(0x100,pParse,p,
5821                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5822       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5823       unsetJoinExpr(p->pWhere, pItem->iCursor);
5824     }
5825 
5826     /* No futher action if this term of the FROM clause is no a subquery */
5827     if( pSub==0 ) continue;
5828 
5829     /* Catch mismatch in the declared columns of a view and the number of
5830     ** columns in the SELECT on the RHS */
5831     if( pTab->nCol!=pSub->pEList->nExpr ){
5832       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5833                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5834       goto select_end;
5835     }
5836 
5837     /* Do not try to flatten an aggregate subquery.
5838     **
5839     ** Flattening an aggregate subquery is only possible if the outer query
5840     ** is not a join.  But if the outer query is not a join, then the subquery
5841     ** will be implemented as a co-routine and there is no advantage to
5842     ** flattening in that case.
5843     */
5844     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5845     assert( pSub->pGroupBy==0 );
5846 
5847     /* If the outer query contains a "complex" result set (that is,
5848     ** if the result set of the outer query uses functions or subqueries)
5849     ** and if the subquery contains an ORDER BY clause and if
5850     ** it will be implemented as a co-routine, then do not flatten.  This
5851     ** restriction allows SQL constructs like this:
5852     **
5853     **  SELECT expensive_function(x)
5854     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5855     **
5856     ** The expensive_function() is only computed on the 10 rows that
5857     ** are output, rather than every row of the table.
5858     **
5859     ** The requirement that the outer query have a complex result set
5860     ** means that flattening does occur on simpler SQL constraints without
5861     ** the expensive_function() like:
5862     **
5863     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5864     */
5865     if( pSub->pOrderBy!=0
5866      && i==0
5867      && (p->selFlags & SF_ComplexResult)!=0
5868      && (pTabList->nSrc==1
5869          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5870     ){
5871       continue;
5872     }
5873 
5874     if( flattenSubquery(pParse, p, i, isAgg) ){
5875       if( pParse->nErr ) goto select_end;
5876       /* This subquery can be absorbed into its parent. */
5877       i = -1;
5878     }
5879     pTabList = p->pSrc;
5880     if( db->mallocFailed ) goto select_end;
5881     if( !IgnorableOrderby(pDest) ){
5882       sSort.pOrderBy = p->pOrderBy;
5883     }
5884   }
5885 #endif
5886 
5887 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5888   /* Handle compound SELECT statements using the separate multiSelect()
5889   ** procedure.
5890   */
5891   if( p->pPrior ){
5892     rc = multiSelect(pParse, p, pDest);
5893 #if SELECTTRACE_ENABLED
5894     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5895     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5896       sqlite3TreeViewSelect(0, p, 0);
5897     }
5898 #endif
5899     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5900     return rc;
5901   }
5902 #endif
5903 
5904   /* Do the WHERE-clause constant propagation optimization if this is
5905   ** a join.  No need to speed time on this operation for non-join queries
5906   ** as the equivalent optimization will be handled by query planner in
5907   ** sqlite3WhereBegin().
5908   */
5909   if( pTabList->nSrc>1
5910    && OptimizationEnabled(db, SQLITE_PropagateConst)
5911    && propagateConstants(pParse, p)
5912   ){
5913 #if SELECTTRACE_ENABLED
5914     if( sqlite3SelectTrace & 0x100 ){
5915       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5916       sqlite3TreeViewSelect(0, p, 0);
5917     }
5918 #endif
5919   }else{
5920     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5921   }
5922 
5923 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5924   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5925    && countOfViewOptimization(pParse, p)
5926   ){
5927     if( db->mallocFailed ) goto select_end;
5928     pEList = p->pEList;
5929     pTabList = p->pSrc;
5930   }
5931 #endif
5932 
5933   /* For each term in the FROM clause, do two things:
5934   ** (1) Authorized unreferenced tables
5935   ** (2) Generate code for all sub-queries
5936   */
5937   for(i=0; i<pTabList->nSrc; i++){
5938     struct SrcList_item *pItem = &pTabList->a[i];
5939     SelectDest dest;
5940     Select *pSub;
5941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5942     const char *zSavedAuthContext;
5943 #endif
5944 
5945     /* Issue SQLITE_READ authorizations with a fake column name for any
5946     ** tables that are referenced but from which no values are extracted.
5947     ** Examples of where these kinds of null SQLITE_READ authorizations
5948     ** would occur:
5949     **
5950     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5951     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5952     **
5953     ** The fake column name is an empty string.  It is possible for a table to
5954     ** have a column named by the empty string, in which case there is no way to
5955     ** distinguish between an unreferenced table and an actual reference to the
5956     ** "" column. The original design was for the fake column name to be a NULL,
5957     ** which would be unambiguous.  But legacy authorization callbacks might
5958     ** assume the column name is non-NULL and segfault.  The use of an empty
5959     ** string for the fake column name seems safer.
5960     */
5961     if( pItem->colUsed==0 && pItem->zName!=0 ){
5962       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5963     }
5964 
5965 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5966     /* Generate code for all sub-queries in the FROM clause
5967     */
5968     pSub = pItem->pSelect;
5969     if( pSub==0 ) continue;
5970 
5971     /* The code for a subquery should only be generated once, though it is
5972     ** technically harmless for it to be generated multiple times. The
5973     ** following assert() will detect if something changes to cause
5974     ** the same subquery to be coded multiple times, as a signal to the
5975     ** developers to try to optimize the situation.
5976     **
5977     ** Update 2019-07-24:
5978     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5979     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5980     ** coded twice.  So this assert() now becomes a testcase().  It should
5981     ** be very rare, though.
5982     */
5983     testcase( pItem->addrFillSub!=0 );
5984 
5985     /* Increment Parse.nHeight by the height of the largest expression
5986     ** tree referred to by this, the parent select. The child select
5987     ** may contain expression trees of at most
5988     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5989     ** more conservative than necessary, but much easier than enforcing
5990     ** an exact limit.
5991     */
5992     pParse->nHeight += sqlite3SelectExprHeight(p);
5993 
5994     /* Make copies of constant WHERE-clause terms in the outer query down
5995     ** inside the subquery.  This can help the subquery to run more efficiently.
5996     */
5997     if( OptimizationEnabled(db, SQLITE_PushDown)
5998      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5999                            (pItem->fg.jointype & JT_OUTER)!=0)
6000     ){
6001 #if SELECTTRACE_ENABLED
6002       if( sqlite3SelectTrace & 0x100 ){
6003         SELECTTRACE(0x100,pParse,p,
6004             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6005         sqlite3TreeViewSelect(0, p, 0);
6006       }
6007 #endif
6008     }else{
6009       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6010     }
6011 
6012     zSavedAuthContext = pParse->zAuthContext;
6013     pParse->zAuthContext = pItem->zName;
6014 
6015     /* Generate code to implement the subquery
6016     **
6017     ** The subquery is implemented as a co-routine if the subquery is
6018     ** guaranteed to be the outer loop (so that it does not need to be
6019     ** computed more than once)
6020     **
6021     ** TODO: Are there other reasons beside (1) to use a co-routine
6022     ** implementation?
6023     */
6024     if( i==0
6025      && (pTabList->nSrc==1
6026             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6027     ){
6028       /* Implement a co-routine that will return a single row of the result
6029       ** set on each invocation.
6030       */
6031       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6032 
6033       pItem->regReturn = ++pParse->nMem;
6034       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6035       VdbeComment((v, "%s", pItem->pTab->zName));
6036       pItem->addrFillSub = addrTop;
6037       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6038       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6039       sqlite3Select(pParse, pSub, &dest);
6040       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6041       pItem->fg.viaCoroutine = 1;
6042       pItem->regResult = dest.iSdst;
6043       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6044       sqlite3VdbeJumpHere(v, addrTop-1);
6045       sqlite3ClearTempRegCache(pParse);
6046     }else{
6047       /* Generate a subroutine that will fill an ephemeral table with
6048       ** the content of this subquery.  pItem->addrFillSub will point
6049       ** to the address of the generated subroutine.  pItem->regReturn
6050       ** is a register allocated to hold the subroutine return address
6051       */
6052       int topAddr;
6053       int onceAddr = 0;
6054       int retAddr;
6055       struct SrcList_item *pPrior;
6056 
6057       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6058       pItem->regReturn = ++pParse->nMem;
6059       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6060       pItem->addrFillSub = topAddr+1;
6061       if( pItem->fg.isCorrelated==0 ){
6062         /* If the subquery is not correlated and if we are not inside of
6063         ** a trigger, then we only need to compute the value of the subquery
6064         ** once. */
6065         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6066         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6067       }else{
6068         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6069       }
6070       pPrior = isSelfJoinView(pTabList, pItem);
6071       if( pPrior ){
6072         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6073         assert( pPrior->pSelect!=0 );
6074         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6075       }else{
6076         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6077         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6078         sqlite3Select(pParse, pSub, &dest);
6079       }
6080       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6081       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6082       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6083       VdbeComment((v, "end %s", pItem->pTab->zName));
6084       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6085       sqlite3ClearTempRegCache(pParse);
6086     }
6087     if( db->mallocFailed ) goto select_end;
6088     pParse->nHeight -= sqlite3SelectExprHeight(p);
6089     pParse->zAuthContext = zSavedAuthContext;
6090 #endif
6091   }
6092 
6093   /* Various elements of the SELECT copied into local variables for
6094   ** convenience */
6095   pEList = p->pEList;
6096   pWhere = p->pWhere;
6097   pGroupBy = p->pGroupBy;
6098   pHaving = p->pHaving;
6099   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6100 
6101 #if SELECTTRACE_ENABLED
6102   if( sqlite3SelectTrace & 0x400 ){
6103     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6104     sqlite3TreeViewSelect(0, p, 0);
6105   }
6106 #endif
6107 
6108   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6109   ** if the select-list is the same as the ORDER BY list, then this query
6110   ** can be rewritten as a GROUP BY. In other words, this:
6111   **
6112   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6113   **
6114   ** is transformed to:
6115   **
6116   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6117   **
6118   ** The second form is preferred as a single index (or temp-table) may be
6119   ** used for both the ORDER BY and DISTINCT processing. As originally
6120   ** written the query must use a temp-table for at least one of the ORDER
6121   ** BY and DISTINCT, and an index or separate temp-table for the other.
6122   */
6123   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6124    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6125 #ifndef SQLITE_OMIT_WINDOWFUNC
6126    && p->pWin==0
6127 #endif
6128   ){
6129     p->selFlags &= ~SF_Distinct;
6130     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6131     p->selFlags |= SF_Aggregate;
6132     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6133     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6134     ** original setting of the SF_Distinct flag, not the current setting */
6135     assert( sDistinct.isTnct );
6136 
6137 #if SELECTTRACE_ENABLED
6138     if( sqlite3SelectTrace & 0x400 ){
6139       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6140       sqlite3TreeViewSelect(0, p, 0);
6141     }
6142 #endif
6143   }
6144 
6145   /* If there is an ORDER BY clause, then create an ephemeral index to
6146   ** do the sorting.  But this sorting ephemeral index might end up
6147   ** being unused if the data can be extracted in pre-sorted order.
6148   ** If that is the case, then the OP_OpenEphemeral instruction will be
6149   ** changed to an OP_Noop once we figure out that the sorting index is
6150   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6151   ** that change.
6152   */
6153   if( sSort.pOrderBy ){
6154     KeyInfo *pKeyInfo;
6155     pKeyInfo = sqlite3KeyInfoFromExprList(
6156         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6157     sSort.iECursor = pParse->nTab++;
6158     sSort.addrSortIndex =
6159       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6160           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6161           (char*)pKeyInfo, P4_KEYINFO
6162       );
6163   }else{
6164     sSort.addrSortIndex = -1;
6165   }
6166 
6167   /* If the output is destined for a temporary table, open that table.
6168   */
6169   if( pDest->eDest==SRT_EphemTab ){
6170     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6171   }
6172 
6173   /* Set the limiter.
6174   */
6175   iEnd = sqlite3VdbeMakeLabel(pParse);
6176   if( (p->selFlags & SF_FixedLimit)==0 ){
6177     p->nSelectRow = 320;  /* 4 billion rows */
6178   }
6179   computeLimitRegisters(pParse, p, iEnd);
6180   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6181     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6182     sSort.sortFlags |= SORTFLAG_UseSorter;
6183   }
6184 
6185   /* Open an ephemeral index to use for the distinct set.
6186   */
6187   if( p->selFlags & SF_Distinct ){
6188     sDistinct.tabTnct = pParse->nTab++;
6189     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6190                        sDistinct.tabTnct, 0, 0,
6191                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6192                        P4_KEYINFO);
6193     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6194     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6195   }else{
6196     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6197   }
6198 
6199   if( !isAgg && pGroupBy==0 ){
6200     /* No aggregate functions and no GROUP BY clause */
6201     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6202                    | (p->selFlags & SF_FixedLimit);
6203 #ifndef SQLITE_OMIT_WINDOWFUNC
6204     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6205     if( pWin ){
6206       sqlite3WindowCodeInit(pParse, p);
6207     }
6208 #endif
6209     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6210 
6211 
6212     /* Begin the database scan. */
6213     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6214     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6215                                p->pEList, wctrlFlags, p->nSelectRow);
6216     if( pWInfo==0 ) goto select_end;
6217     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6218       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6219     }
6220     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6221       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6222     }
6223     if( sSort.pOrderBy ){
6224       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6225       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6226       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6227         sSort.pOrderBy = 0;
6228       }
6229     }
6230 
6231     /* If sorting index that was created by a prior OP_OpenEphemeral
6232     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6233     ** into an OP_Noop.
6234     */
6235     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6236       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6237     }
6238 
6239     assert( p->pEList==pEList );
6240 #ifndef SQLITE_OMIT_WINDOWFUNC
6241     if( pWin ){
6242       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6243       int iCont = sqlite3VdbeMakeLabel(pParse);
6244       int iBreak = sqlite3VdbeMakeLabel(pParse);
6245       int regGosub = ++pParse->nMem;
6246 
6247       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6248 
6249       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6250       sqlite3VdbeResolveLabel(v, addrGosub);
6251       VdbeNoopComment((v, "inner-loop subroutine"));
6252       sSort.labelOBLopt = 0;
6253       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6254       sqlite3VdbeResolveLabel(v, iCont);
6255       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6256       VdbeComment((v, "end inner-loop subroutine"));
6257       sqlite3VdbeResolveLabel(v, iBreak);
6258     }else
6259 #endif /* SQLITE_OMIT_WINDOWFUNC */
6260     {
6261       /* Use the standard inner loop. */
6262       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6263           sqlite3WhereContinueLabel(pWInfo),
6264           sqlite3WhereBreakLabel(pWInfo));
6265 
6266       /* End the database scan loop.
6267       */
6268       sqlite3WhereEnd(pWInfo);
6269     }
6270   }else{
6271     /* This case when there exist aggregate functions or a GROUP BY clause
6272     ** or both */
6273     NameContext sNC;    /* Name context for processing aggregate information */
6274     int iAMem;          /* First Mem address for storing current GROUP BY */
6275     int iBMem;          /* First Mem address for previous GROUP BY */
6276     int iUseFlag;       /* Mem address holding flag indicating that at least
6277                         ** one row of the input to the aggregator has been
6278                         ** processed */
6279     int iAbortFlag;     /* Mem address which causes query abort if positive */
6280     int groupBySort;    /* Rows come from source in GROUP BY order */
6281     int addrEnd;        /* End of processing for this SELECT */
6282     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6283     int sortOut = 0;    /* Output register from the sorter */
6284     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6285 
6286     /* Remove any and all aliases between the result set and the
6287     ** GROUP BY clause.
6288     */
6289     if( pGroupBy ){
6290       int k;                        /* Loop counter */
6291       struct ExprList_item *pItem;  /* For looping over expression in a list */
6292 
6293       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6294         pItem->u.x.iAlias = 0;
6295       }
6296       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6297         pItem->u.x.iAlias = 0;
6298       }
6299       assert( 66==sqlite3LogEst(100) );
6300       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6301 
6302       /* If there is both a GROUP BY and an ORDER BY clause and they are
6303       ** identical, then it may be possible to disable the ORDER BY clause
6304       ** on the grounds that the GROUP BY will cause elements to come out
6305       ** in the correct order. It also may not - the GROUP BY might use a
6306       ** database index that causes rows to be grouped together as required
6307       ** but not actually sorted. Either way, record the fact that the
6308       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6309       ** variable.  */
6310       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6311         int ii;
6312         /* The GROUP BY processing doesn't care whether rows are delivered in
6313         ** ASC or DESC order - only that each group is returned contiguously.
6314         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6315         ** ORDER BY to maximize the chances of rows being delivered in an
6316         ** order that makes the ORDER BY redundant.  */
6317         for(ii=0; ii<pGroupBy->nExpr; ii++){
6318           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6319           pGroupBy->a[ii].sortFlags = sortFlags;
6320         }
6321         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6322           orderByGrp = 1;
6323         }
6324       }
6325     }else{
6326       assert( 0==sqlite3LogEst(1) );
6327       p->nSelectRow = 0;
6328     }
6329 
6330     /* Create a label to jump to when we want to abort the query */
6331     addrEnd = sqlite3VdbeMakeLabel(pParse);
6332 
6333     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6334     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6335     ** SELECT statement.
6336     */
6337     memset(&sNC, 0, sizeof(sNC));
6338     sNC.pParse = pParse;
6339     sNC.pSrcList = pTabList;
6340     sNC.uNC.pAggInfo = &sAggInfo;
6341     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6342     sAggInfo.mnReg = pParse->nMem+1;
6343     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6344     sAggInfo.pGroupBy = pGroupBy;
6345     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6346     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6347     if( pHaving ){
6348       if( pGroupBy ){
6349         assert( pWhere==p->pWhere );
6350         assert( pHaving==p->pHaving );
6351         assert( pGroupBy==p->pGroupBy );
6352         havingToWhere(pParse, p);
6353         pWhere = p->pWhere;
6354       }
6355       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6356     }
6357     sAggInfo.nAccumulator = sAggInfo.nColumn;
6358     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6359       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6360     }else{
6361       minMaxFlag = WHERE_ORDERBY_NORMAL;
6362     }
6363     for(i=0; i<sAggInfo.nFunc; i++){
6364       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6365       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6366       sNC.ncFlags |= NC_InAggFunc;
6367       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6368 #ifndef SQLITE_OMIT_WINDOWFUNC
6369       assert( !IsWindowFunc(pExpr) );
6370       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6371         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6372       }
6373 #endif
6374       sNC.ncFlags &= ~NC_InAggFunc;
6375     }
6376     sAggInfo.mxReg = pParse->nMem;
6377     if( db->mallocFailed ) goto select_end;
6378 #if SELECTTRACE_ENABLED
6379     if( sqlite3SelectTrace & 0x400 ){
6380       int ii;
6381       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6382       sqlite3TreeViewSelect(0, p, 0);
6383       for(ii=0; ii<sAggInfo.nColumn; ii++){
6384         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6385             ii, sAggInfo.aCol[ii].iMem);
6386         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6387       }
6388       for(ii=0; ii<sAggInfo.nFunc; ii++){
6389         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6390             ii, sAggInfo.aFunc[ii].iMem);
6391         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6392       }
6393     }
6394 #endif
6395 
6396 
6397     /* Processing for aggregates with GROUP BY is very different and
6398     ** much more complex than aggregates without a GROUP BY.
6399     */
6400     if( pGroupBy ){
6401       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6402       int addr1;          /* A-vs-B comparision jump */
6403       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6404       int regOutputRow;   /* Return address register for output subroutine */
6405       int addrSetAbort;   /* Set the abort flag and return */
6406       int addrTopOfLoop;  /* Top of the input loop */
6407       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6408       int addrReset;      /* Subroutine for resetting the accumulator */
6409       int regReset;       /* Return address register for reset subroutine */
6410 
6411       /* If there is a GROUP BY clause we might need a sorting index to
6412       ** implement it.  Allocate that sorting index now.  If it turns out
6413       ** that we do not need it after all, the OP_SorterOpen instruction
6414       ** will be converted into a Noop.
6415       */
6416       sAggInfo.sortingIdx = pParse->nTab++;
6417       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6418       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6419           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6420           0, (char*)pKeyInfo, P4_KEYINFO);
6421 
6422       /* Initialize memory locations used by GROUP BY aggregate processing
6423       */
6424       iUseFlag = ++pParse->nMem;
6425       iAbortFlag = ++pParse->nMem;
6426       regOutputRow = ++pParse->nMem;
6427       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6428       regReset = ++pParse->nMem;
6429       addrReset = sqlite3VdbeMakeLabel(pParse);
6430       iAMem = pParse->nMem + 1;
6431       pParse->nMem += pGroupBy->nExpr;
6432       iBMem = pParse->nMem + 1;
6433       pParse->nMem += pGroupBy->nExpr;
6434       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6435       VdbeComment((v, "clear abort flag"));
6436       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6437 
6438       /* Begin a loop that will extract all source rows in GROUP BY order.
6439       ** This might involve two separate loops with an OP_Sort in between, or
6440       ** it might be a single loop that uses an index to extract information
6441       ** in the right order to begin with.
6442       */
6443       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6444       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6445       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6446           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6447       );
6448       if( pWInfo==0 ) goto select_end;
6449       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6450         /* The optimizer is able to deliver rows in group by order so
6451         ** we do not have to sort.  The OP_OpenEphemeral table will be
6452         ** cancelled later because we still need to use the pKeyInfo
6453         */
6454         groupBySort = 0;
6455       }else{
6456         /* Rows are coming out in undetermined order.  We have to push
6457         ** each row into a sorting index, terminate the first loop,
6458         ** then loop over the sorting index in order to get the output
6459         ** in sorted order
6460         */
6461         int regBase;
6462         int regRecord;
6463         int nCol;
6464         int nGroupBy;
6465 
6466         explainTempTable(pParse,
6467             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6468                     "DISTINCT" : "GROUP BY");
6469 
6470         groupBySort = 1;
6471         nGroupBy = pGroupBy->nExpr;
6472         nCol = nGroupBy;
6473         j = nGroupBy;
6474         for(i=0; i<sAggInfo.nColumn; i++){
6475           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6476             nCol++;
6477             j++;
6478           }
6479         }
6480         regBase = sqlite3GetTempRange(pParse, nCol);
6481         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6482         j = nGroupBy;
6483         for(i=0; i<sAggInfo.nColumn; i++){
6484           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6485           if( pCol->iSorterColumn>=j ){
6486             int r1 = j + regBase;
6487             sqlite3ExprCodeGetColumnOfTable(v,
6488                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6489             j++;
6490           }
6491         }
6492         regRecord = sqlite3GetTempReg(pParse);
6493         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6494         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6495         sqlite3ReleaseTempReg(pParse, regRecord);
6496         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6497         sqlite3WhereEnd(pWInfo);
6498         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6499         sortOut = sqlite3GetTempReg(pParse);
6500         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6501         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6502         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6503         sAggInfo.useSortingIdx = 1;
6504       }
6505 
6506       /* If the index or temporary table used by the GROUP BY sort
6507       ** will naturally deliver rows in the order required by the ORDER BY
6508       ** clause, cancel the ephemeral table open coded earlier.
6509       **
6510       ** This is an optimization - the correct answer should result regardless.
6511       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6512       ** disable this optimization for testing purposes.  */
6513       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6514        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6515       ){
6516         sSort.pOrderBy = 0;
6517         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6518       }
6519 
6520       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6521       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6522       ** Then compare the current GROUP BY terms against the GROUP BY terms
6523       ** from the previous row currently stored in a0, a1, a2...
6524       */
6525       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6526       if( groupBySort ){
6527         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6528                           sortOut, sortPTab);
6529       }
6530       for(j=0; j<pGroupBy->nExpr; j++){
6531         if( groupBySort ){
6532           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6533         }else{
6534           sAggInfo.directMode = 1;
6535           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6536         }
6537       }
6538       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6539                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6540       addr1 = sqlite3VdbeCurrentAddr(v);
6541       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6542 
6543       /* Generate code that runs whenever the GROUP BY changes.
6544       ** Changes in the GROUP BY are detected by the previous code
6545       ** block.  If there were no changes, this block is skipped.
6546       **
6547       ** This code copies current group by terms in b0,b1,b2,...
6548       ** over to a0,a1,a2.  It then calls the output subroutine
6549       ** and resets the aggregate accumulator registers in preparation
6550       ** for the next GROUP BY batch.
6551       */
6552       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6553       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6554       VdbeComment((v, "output one row"));
6555       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6556       VdbeComment((v, "check abort flag"));
6557       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6558       VdbeComment((v, "reset accumulator"));
6559 
6560       /* Update the aggregate accumulators based on the content of
6561       ** the current row
6562       */
6563       sqlite3VdbeJumpHere(v, addr1);
6564       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6565       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6566       VdbeComment((v, "indicate data in accumulator"));
6567 
6568       /* End of the loop
6569       */
6570       if( groupBySort ){
6571         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6572         VdbeCoverage(v);
6573       }else{
6574         sqlite3WhereEnd(pWInfo);
6575         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6576       }
6577 
6578       /* Output the final row of result
6579       */
6580       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6581       VdbeComment((v, "output final row"));
6582 
6583       /* Jump over the subroutines
6584       */
6585       sqlite3VdbeGoto(v, addrEnd);
6586 
6587       /* Generate a subroutine that outputs a single row of the result
6588       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6589       ** is less than or equal to zero, the subroutine is a no-op.  If
6590       ** the processing calls for the query to abort, this subroutine
6591       ** increments the iAbortFlag memory location before returning in
6592       ** order to signal the caller to abort.
6593       */
6594       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6595       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6596       VdbeComment((v, "set abort flag"));
6597       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6598       sqlite3VdbeResolveLabel(v, addrOutputRow);
6599       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6600       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6601       VdbeCoverage(v);
6602       VdbeComment((v, "Groupby result generator entry point"));
6603       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6604       finalizeAggFunctions(pParse, &sAggInfo);
6605       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6606       selectInnerLoop(pParse, p, -1, &sSort,
6607                       &sDistinct, pDest,
6608                       addrOutputRow+1, addrSetAbort);
6609       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6610       VdbeComment((v, "end groupby result generator"));
6611 
6612       /* Generate a subroutine that will reset the group-by accumulator
6613       */
6614       sqlite3VdbeResolveLabel(v, addrReset);
6615       resetAccumulator(pParse, &sAggInfo);
6616       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6617       VdbeComment((v, "indicate accumulator empty"));
6618       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6619 
6620     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6621     else {
6622 #ifndef SQLITE_OMIT_BTREECOUNT
6623       Table *pTab;
6624       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6625         /* If isSimpleCount() returns a pointer to a Table structure, then
6626         ** the SQL statement is of the form:
6627         **
6628         **   SELECT count(*) FROM <tbl>
6629         **
6630         ** where the Table structure returned represents table <tbl>.
6631         **
6632         ** This statement is so common that it is optimized specially. The
6633         ** OP_Count instruction is executed either on the intkey table that
6634         ** contains the data for table <tbl> or on one of its indexes. It
6635         ** is better to execute the op on an index, as indexes are almost
6636         ** always spread across less pages than their corresponding tables.
6637         */
6638         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6639         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6640         Index *pIdx;                         /* Iterator variable */
6641         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6642         Index *pBest = 0;                    /* Best index found so far */
6643         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6644 
6645         sqlite3CodeVerifySchema(pParse, iDb);
6646         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6647 
6648         /* Search for the index that has the lowest scan cost.
6649         **
6650         ** (2011-04-15) Do not do a full scan of an unordered index.
6651         **
6652         ** (2013-10-03) Do not count the entries in a partial index.
6653         **
6654         ** In practice the KeyInfo structure will not be used. It is only
6655         ** passed to keep OP_OpenRead happy.
6656         */
6657         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6658         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6659           if( pIdx->bUnordered==0
6660            && pIdx->szIdxRow<pTab->szTabRow
6661            && pIdx->pPartIdxWhere==0
6662            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6663           ){
6664             pBest = pIdx;
6665           }
6666         }
6667         if( pBest ){
6668           iRoot = pBest->tnum;
6669           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6670         }
6671 
6672         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6673         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6674         if( pKeyInfo ){
6675           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6676         }
6677         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6678         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6679         explainSimpleCount(pParse, pTab, pBest);
6680       }else
6681 #endif /* SQLITE_OMIT_BTREECOUNT */
6682       {
6683         int regAcc = 0;           /* "populate accumulators" flag */
6684 
6685         /* If there are accumulator registers but no min() or max() functions
6686         ** without FILTER clauses, allocate register regAcc. Register regAcc
6687         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6688         ** The code generated by updateAccumulator() uses this to ensure
6689         ** that the accumulator registers are (a) updated only once if
6690         ** there are no min() or max functions or (b) always updated for the
6691         ** first row visited by the aggregate, so that they are updated at
6692         ** least once even if the FILTER clause means the min() or max()
6693         ** function visits zero rows.  */
6694         if( sAggInfo.nAccumulator ){
6695           for(i=0; i<sAggInfo.nFunc; i++){
6696             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6697             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6698           }
6699           if( i==sAggInfo.nFunc ){
6700             regAcc = ++pParse->nMem;
6701             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6702           }
6703         }
6704 
6705         /* This case runs if the aggregate has no GROUP BY clause.  The
6706         ** processing is much simpler since there is only a single row
6707         ** of output.
6708         */
6709         assert( p->pGroupBy==0 );
6710         resetAccumulator(pParse, &sAggInfo);
6711 
6712         /* If this query is a candidate for the min/max optimization, then
6713         ** minMaxFlag will have been previously set to either
6714         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6715         ** be an appropriate ORDER BY expression for the optimization.
6716         */
6717         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6718         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6719 
6720         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6721         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6722                                    0, minMaxFlag, 0);
6723         if( pWInfo==0 ){
6724           goto select_end;
6725         }
6726         updateAccumulator(pParse, regAcc, &sAggInfo);
6727         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6728         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6729           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6730           VdbeComment((v, "%s() by index",
6731                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6732         }
6733         sqlite3WhereEnd(pWInfo);
6734         finalizeAggFunctions(pParse, &sAggInfo);
6735       }
6736 
6737       sSort.pOrderBy = 0;
6738       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6739       selectInnerLoop(pParse, p, -1, 0, 0,
6740                       pDest, addrEnd, addrEnd);
6741     }
6742     sqlite3VdbeResolveLabel(v, addrEnd);
6743 
6744   } /* endif aggregate query */
6745 
6746   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6747     explainTempTable(pParse, "DISTINCT");
6748   }
6749 
6750   /* If there is an ORDER BY clause, then we need to sort the results
6751   ** and send them to the callback one by one.
6752   */
6753   if( sSort.pOrderBy ){
6754     explainTempTable(pParse,
6755                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6756     assert( p->pEList==pEList );
6757     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6758   }
6759 
6760   /* Jump here to skip this query
6761   */
6762   sqlite3VdbeResolveLabel(v, iEnd);
6763 
6764   /* The SELECT has been coded. If there is an error in the Parse structure,
6765   ** set the return code to 1. Otherwise 0. */
6766   rc = (pParse->nErr>0);
6767 
6768   /* Control jumps to here if an error is encountered above, or upon
6769   ** successful coding of the SELECT.
6770   */
6771 select_end:
6772   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6773   sqlite3DbFree(db, sAggInfo.aCol);
6774   sqlite3DbFree(db, sAggInfo.aFunc);
6775 #if SELECTTRACE_ENABLED
6776   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6777   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6778     sqlite3TreeViewSelect(0, p, 0);
6779   }
6780 #endif
6781   ExplainQueryPlanPop(pParse);
6782   return rc;
6783 }
6784