xref: /sqlite-3.40.0/src/rowset.c (revision cb6d66be)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometimes new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 */
63 #include "sqliteInt.h"
64 
65 
66 /*
67 ** Target size for allocation chunks.
68 */
69 #define ROWSET_ALLOCATION_SIZE 1024
70 
71 /*
72 ** The number of rowset entries per allocation chunk.
73 */
74 #define ROWSET_ENTRY_PER_CHUNK  \
75                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
76 
77 /*
78 ** Each entry in a RowSet is an instance of the following object.
79 **
80 ** This same object is reused to store a linked list of trees of RowSetEntry
81 ** objects.  In that alternative use, pRight points to the next entry
82 ** in the list, pLeft points to the tree, and v is unused.  The
83 ** RowSet.pForest value points to the head of this forest list.
84 */
85 struct RowSetEntry {
86   i64 v;                        /* ROWID value for this entry */
87   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
88   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
89 };
90 
91 /*
92 ** RowSetEntry objects are allocated in large chunks (instances of the
93 ** following structure) to reduce memory allocation overhead.  The
94 ** chunks are kept on a linked list so that they can be deallocated
95 ** when the RowSet is destroyed.
96 */
97 struct RowSetChunk {
98   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
99   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
100 };
101 
102 /*
103 ** A RowSet in an instance of the following structure.
104 **
105 ** A typedef of this structure if found in sqliteInt.h.
106 */
107 struct RowSet {
108   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
109   sqlite3 *db;                   /* The database connection */
110   struct RowSetEntry *pEntry;    /* List of entries using pRight */
111   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
112   struct RowSetEntry *pFresh;    /* Source of new entry objects */
113   struct RowSetEntry *pForest;   /* List of binary trees of entries */
114   u16 nFresh;                    /* Number of objects on pFresh */
115   u16 rsFlags;                   /* Various flags */
116   int iBatch;                    /* Current insert batch */
117 };
118 
119 /*
120 ** Allowed values for RowSet.rsFlags
121 */
122 #define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
123 #define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */
124 
125 /*
126 ** Turn bulk memory into a RowSet object.  N bytes of memory
127 ** are available at pSpace.  The db pointer is used as a memory context
128 ** for any subsequent allocations that need to occur.
129 ** Return a pointer to the new RowSet object.
130 **
131 ** It must be the case that N is sufficient to make a Rowset.  If not
132 ** an assertion fault occurs.
133 **
134 ** If N is larger than the minimum, use the surplus as an initial
135 ** allocation of entries available to be filled.
136 */
137 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
138   RowSet *p;
139   assert( N >= ROUND8(sizeof(*p)) );
140   p = pSpace;
141   p->pChunk = 0;
142   p->db = db;
143   p->pEntry = 0;
144   p->pLast = 0;
145   p->pForest = 0;
146   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
147   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
148   p->rsFlags = ROWSET_SORTED;
149   p->iBatch = 0;
150   return p;
151 }
152 
153 /*
154 ** Deallocate all chunks from a RowSet.  This frees all memory that
155 ** the RowSet has allocated over its lifetime.  This routine is
156 ** the destructor for the RowSet.
157 */
158 void sqlite3RowSetClear(RowSet *p){
159   struct RowSetChunk *pChunk, *pNextChunk;
160   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
161     pNextChunk = pChunk->pNextChunk;
162     sqlite3DbFree(p->db, pChunk);
163   }
164   p->pChunk = 0;
165   p->nFresh = 0;
166   p->pEntry = 0;
167   p->pLast = 0;
168   p->pForest = 0;
169   p->rsFlags = ROWSET_SORTED;
170 }
171 
172 /*
173 ** Allocate a new RowSetEntry object that is associated with the
174 ** given RowSet.  Return a pointer to the new and completely uninitialized
175 ** objected.
176 **
177 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
178 ** routine returns NULL.
179 */
180 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
181   assert( p!=0 );
182   if( p->nFresh==0 ){
183     struct RowSetChunk *pNew;
184     pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
185     if( pNew==0 ){
186       return 0;
187     }
188     pNew->pNextChunk = p->pChunk;
189     p->pChunk = pNew;
190     p->pFresh = pNew->aEntry;
191     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
192   }
193   p->nFresh--;
194   return p->pFresh++;
195 }
196 
197 /*
198 ** Insert a new value into a RowSet.
199 **
200 ** The mallocFailed flag of the database connection is set if a
201 ** memory allocation fails.
202 */
203 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
204   struct RowSetEntry *pEntry;  /* The new entry */
205   struct RowSetEntry *pLast;   /* The last prior entry */
206 
207   /* This routine is never called after sqlite3RowSetNext() */
208   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
209 
210   pEntry = rowSetEntryAlloc(p);
211   if( pEntry==0 ) return;
212   pEntry->v = rowid;
213   pEntry->pRight = 0;
214   pLast = p->pLast;
215   if( pLast ){
216     if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
217       p->rsFlags &= ~ROWSET_SORTED;
218     }
219     pLast->pRight = pEntry;
220   }else{
221     p->pEntry = pEntry;
222   }
223   p->pLast = pEntry;
224 }
225 
226 /*
227 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
228 **
229 ** The input lists are connected via pRight pointers and are
230 ** assumed to each already be in sorted order.
231 */
232 static struct RowSetEntry *rowSetEntryMerge(
233   struct RowSetEntry *pA,    /* First sorted list to be merged */
234   struct RowSetEntry *pB     /* Second sorted list to be merged */
235 ){
236   struct RowSetEntry head;
237   struct RowSetEntry *pTail;
238 
239   pTail = &head;
240   while( pA && pB ){
241     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
242     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
243     if( pA->v<pB->v ){
244       pTail->pRight = pA;
245       pA = pA->pRight;
246       pTail = pTail->pRight;
247     }else if( pB->v<pA->v ){
248       pTail->pRight = pB;
249       pB = pB->pRight;
250       pTail = pTail->pRight;
251     }else{
252       pA = pA->pRight;
253     }
254   }
255   if( pA ){
256     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
257     pTail->pRight = pA;
258   }else{
259     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
260     pTail->pRight = pB;
261   }
262   return head.pRight;
263 }
264 
265 /*
266 ** Sort all elements on the list of RowSetEntry objects into order of
267 ** increasing v.
268 */
269 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
270   unsigned int i;
271   struct RowSetEntry *pNext, *aBucket[40];
272 
273   memset(aBucket, 0, sizeof(aBucket));
274   while( pIn ){
275     pNext = pIn->pRight;
276     pIn->pRight = 0;
277     for(i=0; aBucket[i]; i++){
278       pIn = rowSetEntryMerge(aBucket[i], pIn);
279       aBucket[i] = 0;
280     }
281     aBucket[i] = pIn;
282     pIn = pNext;
283   }
284   pIn = 0;
285   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
286     pIn = rowSetEntryMerge(pIn, aBucket[i]);
287   }
288   return pIn;
289 }
290 
291 
292 /*
293 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
294 ** Convert this tree into a linked list connected by the pRight pointers
295 ** and return pointers to the first and last elements of the new list.
296 */
297 static void rowSetTreeToList(
298   struct RowSetEntry *pIn,         /* Root of the input tree */
299   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
300   struct RowSetEntry **ppLast      /* Write tail of the output list here */
301 ){
302   assert( pIn!=0 );
303   if( pIn->pLeft ){
304     struct RowSetEntry *p;
305     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
306     p->pRight = pIn;
307   }else{
308     *ppFirst = pIn;
309   }
310   if( pIn->pRight ){
311     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
312   }else{
313     *ppLast = pIn;
314   }
315   assert( (*ppLast)->pRight==0 );
316 }
317 
318 
319 /*
320 ** Convert a sorted list of elements (connected by pRight) into a binary
321 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
322 ** node taken from the head of *ppList.  A depth of 2 means a tree with
323 ** three nodes.  And so forth.
324 **
325 ** Use as many entries from the input list as required and update the
326 ** *ppList to point to the unused elements of the list.  If the input
327 ** list contains too few elements, then construct an incomplete tree
328 ** and leave *ppList set to NULL.
329 **
330 ** Return a pointer to the root of the constructed binary tree.
331 */
332 static struct RowSetEntry *rowSetNDeepTree(
333   struct RowSetEntry **ppList,
334   int iDepth
335 ){
336   struct RowSetEntry *p;         /* Root of the new tree */
337   struct RowSetEntry *pLeft;     /* Left subtree */
338   if( *ppList==0 ){
339     return 0;
340   }
341   if( iDepth>1 ){   /*OPTIMIZATION-IF-TRUE*/
342     /* This branch cases a *balanced* tree to be generated.  A valid tree
343     ** is still generated without this branch, but it is wildly unbalanced
344     ** and inefficient. */
345     pLeft = rowSetNDeepTree(ppList, iDepth-1);
346     p = *ppList;
347     if( p==0 ){
348       return pLeft;
349     }
350     p->pLeft = pLeft;
351     *ppList = p->pRight;
352     p->pRight = rowSetNDeepTree(ppList, iDepth-1);
353   }else{
354     p = *ppList;
355     *ppList = p->pRight;
356     p->pLeft = p->pRight = 0;
357   }
358   return p;
359 }
360 
361 /*
362 ** Convert a sorted list of elements into a binary tree. Make the tree
363 ** as deep as it needs to be in order to contain the entire list.
364 */
365 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
366   int iDepth;           /* Depth of the tree so far */
367   struct RowSetEntry *p;       /* Current tree root */
368   struct RowSetEntry *pLeft;   /* Left subtree */
369 
370   assert( pList!=0 );
371   p = pList;
372   pList = p->pRight;
373   p->pLeft = p->pRight = 0;
374   for(iDepth=1; pList; iDepth++){
375     pLeft = p;
376     p = pList;
377     pList = p->pRight;
378     p->pLeft = pLeft;
379     p->pRight = rowSetNDeepTree(&pList, iDepth);
380   }
381   return p;
382 }
383 
384 /*
385 ** Take all the entries on p->pEntry and on the trees in p->pForest and
386 ** sort them all together into one big ordered list on p->pEntry.
387 **
388 ** This routine should only be called once in the life of a RowSet.
389 */
390 static void rowSetToList(RowSet *p){
391 
392   /* This routine is called only once */
393   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
394 
395   if( (p->rsFlags & ROWSET_SORTED)==0 ){
396     p->pEntry = rowSetEntrySort(p->pEntry);
397   }
398 
399   /* While this module could theoretically support it, sqlite3RowSetNext()
400   ** is never called after sqlite3RowSetText() for the same RowSet.  So
401   ** there is never a forest to deal with.  Should this change, simply
402   ** remove the assert() and the #if 0. */
403   assert( p->pForest==0 );
404 #if 0
405   while( p->pForest ){
406     struct RowSetEntry *pTree = p->pForest->pLeft;
407     if( pTree ){
408       struct RowSetEntry *pHead, *pTail;
409       rowSetTreeToList(pTree, &pHead, &pTail);
410       p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
411     }
412     p->pForest = p->pForest->pRight;
413   }
414 #endif
415   p->rsFlags |= ROWSET_NEXT;  /* Verify this routine is never called again */
416 }
417 
418 /*
419 ** Extract the smallest element from the RowSet.
420 ** Write the element into *pRowid.  Return 1 on success.  Return
421 ** 0 if the RowSet is already empty.
422 **
423 ** After this routine has been called, the sqlite3RowSetInsert()
424 ** routine may not be called again.
425 */
426 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
427   assert( p!=0 );
428 
429   /* Merge the forest into a single sorted list on first call */
430   if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);
431 
432   /* Return the next entry on the list */
433   if( p->pEntry ){
434     *pRowid = p->pEntry->v;
435     p->pEntry = p->pEntry->pRight;
436     if( p->pEntry==0 ){
437       sqlite3RowSetClear(p);
438     }
439     return 1;
440   }else{
441     return 0;
442   }
443 }
444 
445 /*
446 ** Check to see if element iRowid was inserted into the rowset as
447 ** part of any insert batch prior to iBatch.  Return 1 or 0.
448 **
449 ** If this is the first test of a new batch and if there exist entries
450 ** on pRowSet->pEntry, then sort those entries into the forest at
451 ** pRowSet->pForest so that they can be tested.
452 */
453 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
454   struct RowSetEntry *p, *pTree;
455 
456   /* This routine is never called after sqlite3RowSetNext() */
457   assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
458 
459   /* Sort entries into the forest on the first test of a new batch
460   */
461   if( iBatch!=pRowSet->iBatch ){
462     p = pRowSet->pEntry;
463     if( p ){
464       struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
465       if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
466         p = rowSetEntrySort(p);
467       }
468       for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
469         ppPrevTree = &pTree->pRight;
470         if( pTree->pLeft==0 ){
471           pTree->pLeft = rowSetListToTree(p);
472           break;
473         }else{
474           struct RowSetEntry *pAux, *pTail;
475           rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
476           pTree->pLeft = 0;
477           p = rowSetEntryMerge(pAux, p);
478         }
479       }
480       if( pTree==0 ){
481         *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
482         if( pTree ){
483           pTree->v = 0;
484           pTree->pRight = 0;
485           pTree->pLeft = rowSetListToTree(p);
486         }
487       }
488       pRowSet->pEntry = 0;
489       pRowSet->pLast = 0;
490       pRowSet->rsFlags |= ROWSET_SORTED;
491     }
492     pRowSet->iBatch = iBatch;
493   }
494 
495   /* Test to see if the iRowid value appears anywhere in the forest.
496   ** Return 1 if it does and 0 if not.
497   */
498   for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
499     p = pTree->pLeft;
500     while( p ){
501       if( p->v<iRowid ){
502         p = p->pRight;
503       }else if( p->v>iRowid ){
504         p = p->pLeft;
505       }else{
506         return 1;
507       }
508     }
509   }
510   return 0;
511 }
512