1 /* 2 ** 2008 December 3 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This module implements an object we call a "RowSet". 14 ** 15 ** The RowSet object is a collection of rowids. Rowids 16 ** are inserted into the RowSet in an arbitrary order. Inserts 17 ** can be intermixed with tests to see if a given rowid has been 18 ** previously inserted into the RowSet. 19 ** 20 ** After all inserts are finished, it is possible to extract the 21 ** elements of the RowSet in sorted order. Once this extraction 22 ** process has started, no new elements may be inserted. 23 ** 24 ** Hence, the primitive operations for a RowSet are: 25 ** 26 ** CREATE 27 ** INSERT 28 ** TEST 29 ** SMALLEST 30 ** DESTROY 31 ** 32 ** The CREATE and DESTROY primitives are the constructor and destructor, 33 ** obviously. The INSERT primitive adds a new element to the RowSet. 34 ** TEST checks to see if an element is already in the RowSet. SMALLEST 35 ** extracts the least value from the RowSet. 36 ** 37 ** The INSERT primitive might allocate additional memory. Memory is 38 ** allocated in chunks so most INSERTs do no allocation. There is an 39 ** upper bound on the size of allocated memory. No memory is freed 40 ** until DESTROY. 41 ** 42 ** The TEST primitive includes a "batch" number. The TEST primitive 43 ** will only see elements that were inserted before the last change 44 ** in the batch number. In other words, if an INSERT occurs between 45 ** two TESTs where the TESTs have the same batch nubmer, then the 46 ** value added by the INSERT will not be visible to the second TEST. 47 ** The initial batch number is zero, so if the very first TEST contains 48 ** a non-zero batch number, it will see all prior INSERTs. 49 ** 50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if 51 ** that is attempted. 52 ** 53 ** The cost of an INSERT is roughly constant. (Sometimes new memory 54 ** has to be allocated on an INSERT.) The cost of a TEST with a new 55 ** batch number is O(NlogN) where N is the number of elements in the RowSet. 56 ** The cost of a TEST using the same batch number is O(logN). The cost 57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST 58 ** primitives are constant time. The cost of DESTROY is O(N). 59 ** 60 ** TEST and SMALLEST may not be used by the same RowSet. This used to 61 ** be possible, but the feature was not used, so it was removed in order 62 ** to simplify the code. 63 */ 64 #include "sqliteInt.h" 65 66 67 /* 68 ** Target size for allocation chunks. 69 */ 70 #define ROWSET_ALLOCATION_SIZE 1024 71 72 /* 73 ** The number of rowset entries per allocation chunk. 74 */ 75 #define ROWSET_ENTRY_PER_CHUNK \ 76 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) 77 78 /* 79 ** Each entry in a RowSet is an instance of the following object. 80 ** 81 ** This same object is reused to store a linked list of trees of RowSetEntry 82 ** objects. In that alternative use, pRight points to the next entry 83 ** in the list, pLeft points to the tree, and v is unused. The 84 ** RowSet.pForest value points to the head of this forest list. 85 */ 86 struct RowSetEntry { 87 i64 v; /* ROWID value for this entry */ 88 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ 89 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ 90 }; 91 92 /* 93 ** RowSetEntry objects are allocated in large chunks (instances of the 94 ** following structure) to reduce memory allocation overhead. The 95 ** chunks are kept on a linked list so that they can be deallocated 96 ** when the RowSet is destroyed. 97 */ 98 struct RowSetChunk { 99 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ 100 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ 101 }; 102 103 /* 104 ** A RowSet in an instance of the following structure. 105 ** 106 ** A typedef of this structure if found in sqliteInt.h. 107 */ 108 struct RowSet { 109 struct RowSetChunk *pChunk; /* List of all chunk allocations */ 110 sqlite3 *db; /* The database connection */ 111 struct RowSetEntry *pEntry; /* List of entries using pRight */ 112 struct RowSetEntry *pLast; /* Last entry on the pEntry list */ 113 struct RowSetEntry *pFresh; /* Source of new entry objects */ 114 struct RowSetEntry *pForest; /* List of binary trees of entries */ 115 u16 nFresh; /* Number of objects on pFresh */ 116 u16 rsFlags; /* Various flags */ 117 int iBatch; /* Current insert batch */ 118 }; 119 120 /* 121 ** Allowed values for RowSet.rsFlags 122 */ 123 #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ 124 #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ 125 126 /* 127 ** Turn bulk memory into a RowSet object. N bytes of memory 128 ** are available at pSpace. The db pointer is used as a memory context 129 ** for any subsequent allocations that need to occur. 130 ** Return a pointer to the new RowSet object. 131 ** 132 ** It must be the case that N is sufficient to make a Rowset. If not 133 ** an assertion fault occurs. 134 ** 135 ** If N is larger than the minimum, use the surplus as an initial 136 ** allocation of entries available to be filled. 137 */ 138 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){ 139 RowSet *p; 140 assert( N >= ROUND8(sizeof(*p)) ); 141 p = pSpace; 142 p->pChunk = 0; 143 p->db = db; 144 p->pEntry = 0; 145 p->pLast = 0; 146 p->pForest = 0; 147 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); 148 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); 149 p->rsFlags = ROWSET_SORTED; 150 p->iBatch = 0; 151 return p; 152 } 153 154 /* 155 ** Deallocate all chunks from a RowSet. This frees all memory that 156 ** the RowSet has allocated over its lifetime. This routine is 157 ** the destructor for the RowSet. 158 */ 159 void sqlite3RowSetClear(RowSet *p){ 160 struct RowSetChunk *pChunk, *pNextChunk; 161 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ 162 pNextChunk = pChunk->pNextChunk; 163 sqlite3DbFree(p->db, pChunk); 164 } 165 p->pChunk = 0; 166 p->nFresh = 0; 167 p->pEntry = 0; 168 p->pLast = 0; 169 p->pForest = 0; 170 p->rsFlags = ROWSET_SORTED; 171 } 172 173 /* 174 ** Allocate a new RowSetEntry object that is associated with the 175 ** given RowSet. Return a pointer to the new and completely uninitialized 176 ** objected. 177 ** 178 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this 179 ** routine returns NULL. 180 */ 181 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ 182 assert( p!=0 ); 183 if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/ 184 /* We could allocate a fresh RowSetEntry each time one is needed, but it 185 ** is more efficient to pull a preallocated entry from the pool */ 186 struct RowSetChunk *pNew; 187 pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew)); 188 if( pNew==0 ){ 189 return 0; 190 } 191 pNew->pNextChunk = p->pChunk; 192 p->pChunk = pNew; 193 p->pFresh = pNew->aEntry; 194 p->nFresh = ROWSET_ENTRY_PER_CHUNK; 195 } 196 p->nFresh--; 197 return p->pFresh++; 198 } 199 200 /* 201 ** Insert a new value into a RowSet. 202 ** 203 ** The mallocFailed flag of the database connection is set if a 204 ** memory allocation fails. 205 */ 206 void sqlite3RowSetInsert(RowSet *p, i64 rowid){ 207 struct RowSetEntry *pEntry; /* The new entry */ 208 struct RowSetEntry *pLast; /* The last prior entry */ 209 210 /* This routine is never called after sqlite3RowSetNext() */ 211 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); 212 213 pEntry = rowSetEntryAlloc(p); 214 if( pEntry==0 ) return; 215 pEntry->v = rowid; 216 pEntry->pRight = 0; 217 pLast = p->pLast; 218 if( pLast ){ 219 if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/ 220 /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags 221 ** where possible */ 222 p->rsFlags &= ~ROWSET_SORTED; 223 } 224 pLast->pRight = pEntry; 225 }else{ 226 p->pEntry = pEntry; 227 } 228 p->pLast = pEntry; 229 } 230 231 /* 232 ** Merge two lists of RowSetEntry objects. Remove duplicates. 233 ** 234 ** The input lists are connected via pRight pointers and are 235 ** assumed to each already be in sorted order. 236 */ 237 static struct RowSetEntry *rowSetEntryMerge( 238 struct RowSetEntry *pA, /* First sorted list to be merged */ 239 struct RowSetEntry *pB /* Second sorted list to be merged */ 240 ){ 241 struct RowSetEntry head; 242 struct RowSetEntry *pTail; 243 244 pTail = &head; 245 assert( pA!=0 && pB!=0 ); 246 for(;;){ 247 assert( pA->pRight==0 || pA->v<=pA->pRight->v ); 248 assert( pB->pRight==0 || pB->v<=pB->pRight->v ); 249 if( pA->v<=pB->v ){ 250 if( pA->v<pB->v ) pTail = pTail->pRight = pA; 251 pA = pA->pRight; 252 if( pA==0 ){ 253 pTail->pRight = pB; 254 break; 255 } 256 }else{ 257 pTail = pTail->pRight = pB; 258 pB = pB->pRight; 259 if( pB==0 ){ 260 pTail->pRight = pA; 261 break; 262 } 263 } 264 } 265 return head.pRight; 266 } 267 268 /* 269 ** Sort all elements on the list of RowSetEntry objects into order of 270 ** increasing v. 271 */ 272 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ 273 unsigned int i; 274 struct RowSetEntry *pNext, *aBucket[40]; 275 276 memset(aBucket, 0, sizeof(aBucket)); 277 while( pIn ){ 278 pNext = pIn->pRight; 279 pIn->pRight = 0; 280 for(i=0; aBucket[i]; i++){ 281 pIn = rowSetEntryMerge(aBucket[i], pIn); 282 aBucket[i] = 0; 283 } 284 aBucket[i] = pIn; 285 pIn = pNext; 286 } 287 pIn = aBucket[0]; 288 for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){ 289 if( aBucket[i]==0 ) continue; 290 pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i]; 291 } 292 return pIn; 293 } 294 295 296 /* 297 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. 298 ** Convert this tree into a linked list connected by the pRight pointers 299 ** and return pointers to the first and last elements of the new list. 300 */ 301 static void rowSetTreeToList( 302 struct RowSetEntry *pIn, /* Root of the input tree */ 303 struct RowSetEntry **ppFirst, /* Write head of the output list here */ 304 struct RowSetEntry **ppLast /* Write tail of the output list here */ 305 ){ 306 assert( pIn!=0 ); 307 if( pIn->pLeft ){ 308 struct RowSetEntry *p; 309 rowSetTreeToList(pIn->pLeft, ppFirst, &p); 310 p->pRight = pIn; 311 }else{ 312 *ppFirst = pIn; 313 } 314 if( pIn->pRight ){ 315 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); 316 }else{ 317 *ppLast = pIn; 318 } 319 assert( (*ppLast)->pRight==0 ); 320 } 321 322 323 /* 324 ** Convert a sorted list of elements (connected by pRight) into a binary 325 ** tree with depth of iDepth. A depth of 1 means the tree contains a single 326 ** node taken from the head of *ppList. A depth of 2 means a tree with 327 ** three nodes. And so forth. 328 ** 329 ** Use as many entries from the input list as required and update the 330 ** *ppList to point to the unused elements of the list. If the input 331 ** list contains too few elements, then construct an incomplete tree 332 ** and leave *ppList set to NULL. 333 ** 334 ** Return a pointer to the root of the constructed binary tree. 335 */ 336 static struct RowSetEntry *rowSetNDeepTree( 337 struct RowSetEntry **ppList, 338 int iDepth 339 ){ 340 struct RowSetEntry *p; /* Root of the new tree */ 341 struct RowSetEntry *pLeft; /* Left subtree */ 342 if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/ 343 /* Prevent unnecessary deep recursion when we run out of entries */ 344 return 0; 345 } 346 if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/ 347 /* This branch causes a *balanced* tree to be generated. A valid tree 348 ** is still generated without this branch, but the tree is wildly 349 ** unbalanced and inefficient. */ 350 pLeft = rowSetNDeepTree(ppList, iDepth-1); 351 p = *ppList; 352 if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/ 353 /* It is safe to always return here, but the resulting tree 354 ** would be unbalanced */ 355 return pLeft; 356 } 357 p->pLeft = pLeft; 358 *ppList = p->pRight; 359 p->pRight = rowSetNDeepTree(ppList, iDepth-1); 360 }else{ 361 p = *ppList; 362 *ppList = p->pRight; 363 p->pLeft = p->pRight = 0; 364 } 365 return p; 366 } 367 368 /* 369 ** Convert a sorted list of elements into a binary tree. Make the tree 370 ** as deep as it needs to be in order to contain the entire list. 371 */ 372 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ 373 int iDepth; /* Depth of the tree so far */ 374 struct RowSetEntry *p; /* Current tree root */ 375 struct RowSetEntry *pLeft; /* Left subtree */ 376 377 assert( pList!=0 ); 378 p = pList; 379 pList = p->pRight; 380 p->pLeft = p->pRight = 0; 381 for(iDepth=1; pList; iDepth++){ 382 pLeft = p; 383 p = pList; 384 pList = p->pRight; 385 p->pLeft = pLeft; 386 p->pRight = rowSetNDeepTree(&pList, iDepth); 387 } 388 return p; 389 } 390 391 /* 392 ** Extract the smallest element from the RowSet. 393 ** Write the element into *pRowid. Return 1 on success. Return 394 ** 0 if the RowSet is already empty. 395 ** 396 ** After this routine has been called, the sqlite3RowSetInsert() 397 ** routine may not be called again. 398 ** 399 ** This routine may not be called after sqlite3RowSetTest() has 400 ** been used. Older versions of RowSet allowed that, but as the 401 ** capability was not used by the code generator, it was removed 402 ** for code economy. 403 */ 404 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ 405 assert( p!=0 ); 406 assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */ 407 408 /* Merge the forest into a single sorted list on first call */ 409 if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 410 if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 411 p->pEntry = rowSetEntrySort(p->pEntry); 412 } 413 p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT; 414 } 415 416 /* Return the next entry on the list */ 417 if( p->pEntry ){ 418 *pRowid = p->pEntry->v; 419 p->pEntry = p->pEntry->pRight; 420 if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/ 421 /* Free memory immediately, rather than waiting on sqlite3_finalize() */ 422 sqlite3RowSetClear(p); 423 } 424 return 1; 425 }else{ 426 return 0; 427 } 428 } 429 430 /* 431 ** Check to see if element iRowid was inserted into the rowset as 432 ** part of any insert batch prior to iBatch. Return 1 or 0. 433 ** 434 ** If this is the first test of a new batch and if there exist entries 435 ** on pRowSet->pEntry, then sort those entries into the forest at 436 ** pRowSet->pForest so that they can be tested. 437 */ 438 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ 439 struct RowSetEntry *p, *pTree; 440 441 /* This routine is never called after sqlite3RowSetNext() */ 442 assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); 443 444 /* Sort entries into the forest on the first test of a new batch. 445 ** To save unnecessary work, only do this when the batch number changes. 446 */ 447 if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/ 448 p = pRowSet->pEntry; 449 if( p ){ 450 struct RowSetEntry **ppPrevTree = &pRowSet->pForest; 451 if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 452 /* Only sort the current set of entiries if they need it */ 453 p = rowSetEntrySort(p); 454 } 455 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 456 ppPrevTree = &pTree->pRight; 457 if( pTree->pLeft==0 ){ 458 pTree->pLeft = rowSetListToTree(p); 459 break; 460 }else{ 461 struct RowSetEntry *pAux, *pTail; 462 rowSetTreeToList(pTree->pLeft, &pAux, &pTail); 463 pTree->pLeft = 0; 464 p = rowSetEntryMerge(pAux, p); 465 } 466 } 467 if( pTree==0 ){ 468 *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); 469 if( pTree ){ 470 pTree->v = 0; 471 pTree->pRight = 0; 472 pTree->pLeft = rowSetListToTree(p); 473 } 474 } 475 pRowSet->pEntry = 0; 476 pRowSet->pLast = 0; 477 pRowSet->rsFlags |= ROWSET_SORTED; 478 } 479 pRowSet->iBatch = iBatch; 480 } 481 482 /* Test to see if the iRowid value appears anywhere in the forest. 483 ** Return 1 if it does and 0 if not. 484 */ 485 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 486 p = pTree->pLeft; 487 while( p ){ 488 if( p->v<iRowid ){ 489 p = p->pRight; 490 }else if( p->v>iRowid ){ 491 p = p->pLeft; 492 }else{ 493 return 1; 494 } 495 } 496 } 497 return 0; 498 } 499