xref: /sqlite-3.40.0/src/rowset.c (revision aa50271a)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometimes new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** TEST and SMALLEST may not be used by the same RowSet.  This used to
61 ** be possible, but the feature was not used, so it was removed in order
62 ** to simplify the code.
63 */
64 #include "sqliteInt.h"
65 
66 
67 /*
68 ** Target size for allocation chunks.
69 */
70 #define ROWSET_ALLOCATION_SIZE 1024
71 
72 /*
73 ** The number of rowset entries per allocation chunk.
74 */
75 #define ROWSET_ENTRY_PER_CHUNK  \
76                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
77 
78 /*
79 ** Each entry in a RowSet is an instance of the following object.
80 **
81 ** This same object is reused to store a linked list of trees of RowSetEntry
82 ** objects.  In that alternative use, pRight points to the next entry
83 ** in the list, pLeft points to the tree, and v is unused.  The
84 ** RowSet.pForest value points to the head of this forest list.
85 */
86 struct RowSetEntry {
87   i64 v;                        /* ROWID value for this entry */
88   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
89   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
90 };
91 
92 /*
93 ** RowSetEntry objects are allocated in large chunks (instances of the
94 ** following structure) to reduce memory allocation overhead.  The
95 ** chunks are kept on a linked list so that they can be deallocated
96 ** when the RowSet is destroyed.
97 */
98 struct RowSetChunk {
99   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
100   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
101 };
102 
103 /*
104 ** A RowSet in an instance of the following structure.
105 **
106 ** A typedef of this structure if found in sqliteInt.h.
107 */
108 struct RowSet {
109   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
110   sqlite3 *db;                   /* The database connection */
111   struct RowSetEntry *pEntry;    /* List of entries using pRight */
112   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
113   struct RowSetEntry *pFresh;    /* Source of new entry objects */
114   struct RowSetEntry *pForest;   /* List of binary trees of entries */
115   u16 nFresh;                    /* Number of objects on pFresh */
116   u16 rsFlags;                   /* Various flags */
117   int iBatch;                    /* Current insert batch */
118 };
119 
120 /*
121 ** Allowed values for RowSet.rsFlags
122 */
123 #define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
124 #define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */
125 
126 /*
127 ** Turn bulk memory into a RowSet object.  N bytes of memory
128 ** are available at pSpace.  The db pointer is used as a memory context
129 ** for any subsequent allocations that need to occur.
130 ** Return a pointer to the new RowSet object.
131 **
132 ** It must be the case that N is sufficient to make a Rowset.  If not
133 ** an assertion fault occurs.
134 **
135 ** If N is larger than the minimum, use the surplus as an initial
136 ** allocation of entries available to be filled.
137 */
138 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
139   RowSet *p;
140   assert( N >= ROUND8(sizeof(*p)) );
141   p = pSpace;
142   p->pChunk = 0;
143   p->db = db;
144   p->pEntry = 0;
145   p->pLast = 0;
146   p->pForest = 0;
147   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
148   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
149   p->rsFlags = ROWSET_SORTED;
150   p->iBatch = 0;
151   return p;
152 }
153 
154 /*
155 ** Deallocate all chunks from a RowSet.  This frees all memory that
156 ** the RowSet has allocated over its lifetime.  This routine is
157 ** the destructor for the RowSet.
158 */
159 void sqlite3RowSetClear(RowSet *p){
160   struct RowSetChunk *pChunk, *pNextChunk;
161   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
162     pNextChunk = pChunk->pNextChunk;
163     sqlite3DbFree(p->db, pChunk);
164   }
165   p->pChunk = 0;
166   p->nFresh = 0;
167   p->pEntry = 0;
168   p->pLast = 0;
169   p->pForest = 0;
170   p->rsFlags = ROWSET_SORTED;
171 }
172 
173 /*
174 ** Allocate a new RowSetEntry object that is associated with the
175 ** given RowSet.  Return a pointer to the new and completely uninitialized
176 ** objected.
177 **
178 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
179 ** routine returns NULL.
180 */
181 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
182   assert( p!=0 );
183   if( p->nFresh==0 ){  /*OPTIMIZATION-IF-FALSE*/
184     /* We could allocate a fresh RowSetEntry each time one is needed, but it
185     ** is more efficient to pull a preallocated entry from the pool */
186     struct RowSetChunk *pNew;
187     pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
188     if( pNew==0 ){
189       return 0;
190     }
191     pNew->pNextChunk = p->pChunk;
192     p->pChunk = pNew;
193     p->pFresh = pNew->aEntry;
194     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
195   }
196   p->nFresh--;
197   return p->pFresh++;
198 }
199 
200 /*
201 ** Insert a new value into a RowSet.
202 **
203 ** The mallocFailed flag of the database connection is set if a
204 ** memory allocation fails.
205 */
206 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
207   struct RowSetEntry *pEntry;  /* The new entry */
208   struct RowSetEntry *pLast;   /* The last prior entry */
209 
210   /* This routine is never called after sqlite3RowSetNext() */
211   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
212 
213   pEntry = rowSetEntryAlloc(p);
214   if( pEntry==0 ) return;
215   pEntry->v = rowid;
216   pEntry->pRight = 0;
217   pLast = p->pLast;
218   if( pLast ){
219     if( rowid<=pLast->v ){  /*OPTIMIZATION-IF-FALSE*/
220       /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
221       ** where possible */
222       p->rsFlags &= ~ROWSET_SORTED;
223     }
224     pLast->pRight = pEntry;
225   }else{
226     p->pEntry = pEntry;
227   }
228   p->pLast = pEntry;
229 }
230 
231 /*
232 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
233 **
234 ** The input lists are connected via pRight pointers and are
235 ** assumed to each already be in sorted order.
236 */
237 static struct RowSetEntry *rowSetEntryMerge(
238   struct RowSetEntry *pA,    /* First sorted list to be merged */
239   struct RowSetEntry *pB     /* Second sorted list to be merged */
240 ){
241   struct RowSetEntry head;
242   struct RowSetEntry *pTail;
243 
244   pTail = &head;
245   while( pA && pB ){
246     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
247     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
248     if( pA->v<pB->v ){
249       pTail->pRight = pA;
250       pA = pA->pRight;
251       pTail = pTail->pRight;
252     }else if( pB->v<pA->v ){
253       pTail->pRight = pB;
254       pB = pB->pRight;
255       pTail = pTail->pRight;
256     }else{
257       pA = pA->pRight;
258     }
259   }
260   if( pA ){
261     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
262     pTail->pRight = pA;
263   }else{
264     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
265     pTail->pRight = pB;
266   }
267   return head.pRight;
268 }
269 
270 /*
271 ** Sort all elements on the list of RowSetEntry objects into order of
272 ** increasing v.
273 */
274 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
275   unsigned int i;
276   struct RowSetEntry *pNext, *aBucket[40];
277 
278   memset(aBucket, 0, sizeof(aBucket));
279   while( pIn ){
280     pNext = pIn->pRight;
281     pIn->pRight = 0;
282     for(i=0; aBucket[i]; i++){
283       pIn = rowSetEntryMerge(aBucket[i], pIn);
284       aBucket[i] = 0;
285     }
286     aBucket[i] = pIn;
287     pIn = pNext;
288   }
289   pIn = 0;
290   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
291     pIn = rowSetEntryMerge(pIn, aBucket[i]);
292   }
293   return pIn;
294 }
295 
296 
297 /*
298 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
299 ** Convert this tree into a linked list connected by the pRight pointers
300 ** and return pointers to the first and last elements of the new list.
301 */
302 static void rowSetTreeToList(
303   struct RowSetEntry *pIn,         /* Root of the input tree */
304   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
305   struct RowSetEntry **ppLast      /* Write tail of the output list here */
306 ){
307   assert( pIn!=0 );
308   if( pIn->pLeft ){
309     struct RowSetEntry *p;
310     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
311     p->pRight = pIn;
312   }else{
313     *ppFirst = pIn;
314   }
315   if( pIn->pRight ){
316     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
317   }else{
318     *ppLast = pIn;
319   }
320   assert( (*ppLast)->pRight==0 );
321 }
322 
323 
324 /*
325 ** Convert a sorted list of elements (connected by pRight) into a binary
326 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
327 ** node taken from the head of *ppList.  A depth of 2 means a tree with
328 ** three nodes.  And so forth.
329 **
330 ** Use as many entries from the input list as required and update the
331 ** *ppList to point to the unused elements of the list.  If the input
332 ** list contains too few elements, then construct an incomplete tree
333 ** and leave *ppList set to NULL.
334 **
335 ** Return a pointer to the root of the constructed binary tree.
336 */
337 static struct RowSetEntry *rowSetNDeepTree(
338   struct RowSetEntry **ppList,
339   int iDepth
340 ){
341   struct RowSetEntry *p;         /* Root of the new tree */
342   struct RowSetEntry *pLeft;     /* Left subtree */
343   if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
344     /* Prevent unnecessary deep recursion when we run out of entries */
345     return 0;
346   }
347   if( iDepth>1 ){   /*OPTIMIZATION-IF-TRUE*/
348     /* This branch causes a *balanced* tree to be generated.  A valid tree
349     ** is still generated without this branch, but the tree is wildly
350     ** unbalanced and inefficient. */
351     pLeft = rowSetNDeepTree(ppList, iDepth-1);
352     p = *ppList;
353     if( p==0 ){     /*OPTIMIZATION-IF-FALSE*/
354       /* It is safe to always return here, but the resulting tree
355       ** would be unbalanced */
356       return pLeft;
357     }
358     p->pLeft = pLeft;
359     *ppList = p->pRight;
360     p->pRight = rowSetNDeepTree(ppList, iDepth-1);
361   }else{
362     p = *ppList;
363     *ppList = p->pRight;
364     p->pLeft = p->pRight = 0;
365   }
366   return p;
367 }
368 
369 /*
370 ** Convert a sorted list of elements into a binary tree. Make the tree
371 ** as deep as it needs to be in order to contain the entire list.
372 */
373 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
374   int iDepth;           /* Depth of the tree so far */
375   struct RowSetEntry *p;       /* Current tree root */
376   struct RowSetEntry *pLeft;   /* Left subtree */
377 
378   assert( pList!=0 );
379   p = pList;
380   pList = p->pRight;
381   p->pLeft = p->pRight = 0;
382   for(iDepth=1; pList; iDepth++){
383     pLeft = p;
384     p = pList;
385     pList = p->pRight;
386     p->pLeft = pLeft;
387     p->pRight = rowSetNDeepTree(&pList, iDepth);
388   }
389   return p;
390 }
391 
392 /*
393 ** Extract the smallest element from the RowSet.
394 ** Write the element into *pRowid.  Return 1 on success.  Return
395 ** 0 if the RowSet is already empty.
396 **
397 ** After this routine has been called, the sqlite3RowSetInsert()
398 ** routine may not be called again.
399 **
400 ** This routine may not be called after sqlite3RowSetTest() has
401 ** been used.  Older versions of RowSet allowed that, but as the
402 ** capability was not used by the code generator, it was removed
403 ** for code economy.
404 */
405 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
406   assert( p!=0 );
407   assert( p->pForest==0 );  /* Cannot be used with sqlite3RowSetText() */
408 
409   /* Merge the forest into a single sorted list on first call */
410   if( (p->rsFlags & ROWSET_NEXT)==0 ){  /*OPTIMIZATION-IF-FALSE*/
411     if( (p->rsFlags & ROWSET_SORTED)==0 ){  /*OPTIMIZATION-IF-FALSE*/
412       p->pEntry = rowSetEntrySort(p->pEntry);
413     }
414     p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
415   }
416 
417   /* Return the next entry on the list */
418   if( p->pEntry ){
419     *pRowid = p->pEntry->v;
420     p->pEntry = p->pEntry->pRight;
421     if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
422       /* Free memory immediately, rather than waiting on sqlite3_finalize() */
423       sqlite3RowSetClear(p);
424     }
425     return 1;
426   }else{
427     return 0;
428   }
429 }
430 
431 /*
432 ** Check to see if element iRowid was inserted into the rowset as
433 ** part of any insert batch prior to iBatch.  Return 1 or 0.
434 **
435 ** If this is the first test of a new batch and if there exist entries
436 ** on pRowSet->pEntry, then sort those entries into the forest at
437 ** pRowSet->pForest so that they can be tested.
438 */
439 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
440   struct RowSetEntry *p, *pTree;
441 
442   /* This routine is never called after sqlite3RowSetNext() */
443   assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
444 
445   /* Sort entries into the forest on the first test of a new batch.
446   ** To save unnecessary work, only do this when the batch number changes.
447   */
448   if( iBatch!=pRowSet->iBatch ){  /*OPTIMIZATION-IF-FALSE*/
449     p = pRowSet->pEntry;
450     if( p ){
451       struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
452       if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
453         /* Only sort the current set of entiries if they need it */
454         p = rowSetEntrySort(p);
455       }
456       for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
457         ppPrevTree = &pTree->pRight;
458         if( pTree->pLeft==0 ){
459           pTree->pLeft = rowSetListToTree(p);
460           break;
461         }else{
462           struct RowSetEntry *pAux, *pTail;
463           rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
464           pTree->pLeft = 0;
465           p = rowSetEntryMerge(pAux, p);
466         }
467       }
468       if( pTree==0 ){
469         *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
470         if( pTree ){
471           pTree->v = 0;
472           pTree->pRight = 0;
473           pTree->pLeft = rowSetListToTree(p);
474         }
475       }
476       pRowSet->pEntry = 0;
477       pRowSet->pLast = 0;
478       pRowSet->rsFlags |= ROWSET_SORTED;
479     }
480     pRowSet->iBatch = iBatch;
481   }
482 
483   /* Test to see if the iRowid value appears anywhere in the forest.
484   ** Return 1 if it does and 0 if not.
485   */
486   for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
487     p = pTree->pLeft;
488     while( p ){
489       if( p->v<iRowid ){
490         p = p->pRight;
491       }else if( p->v>iRowid ){
492         p = p->pLeft;
493       }else{
494         return 1;
495       }
496     }
497   }
498   return 0;
499 }
500