1 /* 2 ** 2008 December 3 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This module implements an object we call a "RowSet". 14 ** 15 ** The RowSet object is a collection of rowids. Rowids 16 ** are inserted into the RowSet in an arbitrary order. Inserts 17 ** can be intermixed with tests to see if a given rowid has been 18 ** previously inserted into the RowSet. 19 ** 20 ** After all inserts are finished, it is possible to extract the 21 ** elements of the RowSet in sorted order. Once this extraction 22 ** process has started, no new elements may be inserted. 23 ** 24 ** Hence, the primitive operations for a RowSet are: 25 ** 26 ** CREATE 27 ** INSERT 28 ** TEST 29 ** SMALLEST 30 ** DESTROY 31 ** 32 ** The CREATE and DESTROY primitives are the constructor and destructor, 33 ** obviously. The INSERT primitive adds a new element to the RowSet. 34 ** TEST checks to see if an element is already in the RowSet. SMALLEST 35 ** extracts the least value from the RowSet. 36 ** 37 ** The INSERT primitive might allocate additional memory. Memory is 38 ** allocated in chunks so most INSERTs do no allocation. There is an 39 ** upper bound on the size of allocated memory. No memory is freed 40 ** until DESTROY. 41 ** 42 ** The TEST primitive includes a "batch" number. The TEST primitive 43 ** will only see elements that were inserted before the last change 44 ** in the batch number. In other words, if an INSERT occurs between 45 ** two TESTs where the TESTs have the same batch nubmer, then the 46 ** value added by the INSERT will not be visible to the second TEST. 47 ** The initial batch number is zero, so if the very first TEST contains 48 ** a non-zero batch number, it will see all prior INSERTs. 49 ** 50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if 51 ** that is attempted. 52 ** 53 ** The cost of an INSERT is roughly constant. (Sometimes new memory 54 ** has to be allocated on an INSERT.) The cost of a TEST with a new 55 ** batch number is O(NlogN) where N is the number of elements in the RowSet. 56 ** The cost of a TEST using the same batch number is O(logN). The cost 57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST 58 ** primitives are constant time. The cost of DESTROY is O(N). 59 ** 60 ** TEST and SMALLEST may not be used by the same RowSet. This used to 61 ** be possible, but the feature was not used, so it was removed in order 62 ** to simplify the code. 63 */ 64 #include "sqliteInt.h" 65 66 67 /* 68 ** Target size for allocation chunks. 69 */ 70 #define ROWSET_ALLOCATION_SIZE 1024 71 72 /* 73 ** The number of rowset entries per allocation chunk. 74 */ 75 #define ROWSET_ENTRY_PER_CHUNK \ 76 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) 77 78 /* 79 ** Each entry in a RowSet is an instance of the following object. 80 ** 81 ** This same object is reused to store a linked list of trees of RowSetEntry 82 ** objects. In that alternative use, pRight points to the next entry 83 ** in the list, pLeft points to the tree, and v is unused. The 84 ** RowSet.pForest value points to the head of this forest list. 85 */ 86 struct RowSetEntry { 87 i64 v; /* ROWID value for this entry */ 88 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ 89 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ 90 }; 91 92 /* 93 ** RowSetEntry objects are allocated in large chunks (instances of the 94 ** following structure) to reduce memory allocation overhead. The 95 ** chunks are kept on a linked list so that they can be deallocated 96 ** when the RowSet is destroyed. 97 */ 98 struct RowSetChunk { 99 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ 100 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ 101 }; 102 103 /* 104 ** A RowSet in an instance of the following structure. 105 ** 106 ** A typedef of this structure if found in sqliteInt.h. 107 */ 108 struct RowSet { 109 struct RowSetChunk *pChunk; /* List of all chunk allocations */ 110 sqlite3 *db; /* The database connection */ 111 struct RowSetEntry *pEntry; /* List of entries using pRight */ 112 struct RowSetEntry *pLast; /* Last entry on the pEntry list */ 113 struct RowSetEntry *pFresh; /* Source of new entry objects */ 114 struct RowSetEntry *pForest; /* List of binary trees of entries */ 115 u16 nFresh; /* Number of objects on pFresh */ 116 u16 rsFlags; /* Various flags */ 117 int iBatch; /* Current insert batch */ 118 }; 119 120 /* 121 ** Allowed values for RowSet.rsFlags 122 */ 123 #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ 124 #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ 125 126 /* 127 ** Turn bulk memory into a RowSet object. N bytes of memory 128 ** are available at pSpace. The db pointer is used as a memory context 129 ** for any subsequent allocations that need to occur. 130 ** Return a pointer to the new RowSet object. 131 ** 132 ** It must be the case that N is sufficient to make a Rowset. If not 133 ** an assertion fault occurs. 134 ** 135 ** If N is larger than the minimum, use the surplus as an initial 136 ** allocation of entries available to be filled. 137 */ 138 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){ 139 RowSet *p; 140 assert( N >= ROUND8(sizeof(*p)) ); 141 p = pSpace; 142 p->pChunk = 0; 143 p->db = db; 144 p->pEntry = 0; 145 p->pLast = 0; 146 p->pForest = 0; 147 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); 148 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); 149 p->rsFlags = ROWSET_SORTED; 150 p->iBatch = 0; 151 return p; 152 } 153 154 /* 155 ** Deallocate all chunks from a RowSet. This frees all memory that 156 ** the RowSet has allocated over its lifetime. This routine is 157 ** the destructor for the RowSet. 158 */ 159 void sqlite3RowSetClear(RowSet *p){ 160 struct RowSetChunk *pChunk, *pNextChunk; 161 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ 162 pNextChunk = pChunk->pNextChunk; 163 sqlite3DbFree(p->db, pChunk); 164 } 165 p->pChunk = 0; 166 p->nFresh = 0; 167 p->pEntry = 0; 168 p->pLast = 0; 169 p->pForest = 0; 170 p->rsFlags = ROWSET_SORTED; 171 } 172 173 /* 174 ** Allocate a new RowSetEntry object that is associated with the 175 ** given RowSet. Return a pointer to the new and completely uninitialized 176 ** objected. 177 ** 178 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this 179 ** routine returns NULL. 180 */ 181 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ 182 assert( p!=0 ); 183 if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/ 184 /* We could allocate a fresh RowSetEntry each time one is needed, but it 185 ** is more efficient to pull a preallocated entry from the pool */ 186 struct RowSetChunk *pNew; 187 pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew)); 188 if( pNew==0 ){ 189 return 0; 190 } 191 pNew->pNextChunk = p->pChunk; 192 p->pChunk = pNew; 193 p->pFresh = pNew->aEntry; 194 p->nFresh = ROWSET_ENTRY_PER_CHUNK; 195 } 196 p->nFresh--; 197 return p->pFresh++; 198 } 199 200 /* 201 ** Insert a new value into a RowSet. 202 ** 203 ** The mallocFailed flag of the database connection is set if a 204 ** memory allocation fails. 205 */ 206 void sqlite3RowSetInsert(RowSet *p, i64 rowid){ 207 struct RowSetEntry *pEntry; /* The new entry */ 208 struct RowSetEntry *pLast; /* The last prior entry */ 209 210 /* This routine is never called after sqlite3RowSetNext() */ 211 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); 212 213 pEntry = rowSetEntryAlloc(p); 214 if( pEntry==0 ) return; 215 pEntry->v = rowid; 216 pEntry->pRight = 0; 217 pLast = p->pLast; 218 if( pLast ){ 219 if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/ 220 /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags 221 ** where possible */ 222 p->rsFlags &= ~ROWSET_SORTED; 223 } 224 pLast->pRight = pEntry; 225 }else{ 226 p->pEntry = pEntry; 227 } 228 p->pLast = pEntry; 229 } 230 231 /* 232 ** Merge two lists of RowSetEntry objects. Remove duplicates. 233 ** 234 ** The input lists are connected via pRight pointers and are 235 ** assumed to each already be in sorted order. 236 */ 237 static struct RowSetEntry *rowSetEntryMerge( 238 struct RowSetEntry *pA, /* First sorted list to be merged */ 239 struct RowSetEntry *pB /* Second sorted list to be merged */ 240 ){ 241 struct RowSetEntry head; 242 struct RowSetEntry *pTail; 243 244 pTail = &head; 245 while( pA && pB ){ 246 assert( pA->pRight==0 || pA->v<=pA->pRight->v ); 247 assert( pB->pRight==0 || pB->v<=pB->pRight->v ); 248 if( pA->v<pB->v ){ 249 pTail->pRight = pA; 250 pA = pA->pRight; 251 pTail = pTail->pRight; 252 }else if( pB->v<pA->v ){ 253 pTail->pRight = pB; 254 pB = pB->pRight; 255 pTail = pTail->pRight; 256 }else{ 257 pA = pA->pRight; 258 } 259 } 260 if( pA ){ 261 assert( pA->pRight==0 || pA->v<=pA->pRight->v ); 262 pTail->pRight = pA; 263 }else{ 264 assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v ); 265 pTail->pRight = pB; 266 } 267 return head.pRight; 268 } 269 270 /* 271 ** Sort all elements on the list of RowSetEntry objects into order of 272 ** increasing v. 273 */ 274 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ 275 unsigned int i; 276 struct RowSetEntry *pNext, *aBucket[40]; 277 278 memset(aBucket, 0, sizeof(aBucket)); 279 while( pIn ){ 280 pNext = pIn->pRight; 281 pIn->pRight = 0; 282 for(i=0; aBucket[i]; i++){ 283 pIn = rowSetEntryMerge(aBucket[i], pIn); 284 aBucket[i] = 0; 285 } 286 aBucket[i] = pIn; 287 pIn = pNext; 288 } 289 pIn = 0; 290 for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){ 291 pIn = rowSetEntryMerge(pIn, aBucket[i]); 292 } 293 return pIn; 294 } 295 296 297 /* 298 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. 299 ** Convert this tree into a linked list connected by the pRight pointers 300 ** and return pointers to the first and last elements of the new list. 301 */ 302 static void rowSetTreeToList( 303 struct RowSetEntry *pIn, /* Root of the input tree */ 304 struct RowSetEntry **ppFirst, /* Write head of the output list here */ 305 struct RowSetEntry **ppLast /* Write tail of the output list here */ 306 ){ 307 assert( pIn!=0 ); 308 if( pIn->pLeft ){ 309 struct RowSetEntry *p; 310 rowSetTreeToList(pIn->pLeft, ppFirst, &p); 311 p->pRight = pIn; 312 }else{ 313 *ppFirst = pIn; 314 } 315 if( pIn->pRight ){ 316 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); 317 }else{ 318 *ppLast = pIn; 319 } 320 assert( (*ppLast)->pRight==0 ); 321 } 322 323 324 /* 325 ** Convert a sorted list of elements (connected by pRight) into a binary 326 ** tree with depth of iDepth. A depth of 1 means the tree contains a single 327 ** node taken from the head of *ppList. A depth of 2 means a tree with 328 ** three nodes. And so forth. 329 ** 330 ** Use as many entries from the input list as required and update the 331 ** *ppList to point to the unused elements of the list. If the input 332 ** list contains too few elements, then construct an incomplete tree 333 ** and leave *ppList set to NULL. 334 ** 335 ** Return a pointer to the root of the constructed binary tree. 336 */ 337 static struct RowSetEntry *rowSetNDeepTree( 338 struct RowSetEntry **ppList, 339 int iDepth 340 ){ 341 struct RowSetEntry *p; /* Root of the new tree */ 342 struct RowSetEntry *pLeft; /* Left subtree */ 343 if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/ 344 /* Prevent unnecessary deep recursion when we run out of entries */ 345 return 0; 346 } 347 if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/ 348 /* This branch causes a *balanced* tree to be generated. A valid tree 349 ** is still generated without this branch, but the tree is wildly 350 ** unbalanced and inefficient. */ 351 pLeft = rowSetNDeepTree(ppList, iDepth-1); 352 p = *ppList; 353 if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/ 354 /* It is safe to always return here, but the resulting tree 355 ** would be unbalanced */ 356 return pLeft; 357 } 358 p->pLeft = pLeft; 359 *ppList = p->pRight; 360 p->pRight = rowSetNDeepTree(ppList, iDepth-1); 361 }else{ 362 p = *ppList; 363 *ppList = p->pRight; 364 p->pLeft = p->pRight = 0; 365 } 366 return p; 367 } 368 369 /* 370 ** Convert a sorted list of elements into a binary tree. Make the tree 371 ** as deep as it needs to be in order to contain the entire list. 372 */ 373 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ 374 int iDepth; /* Depth of the tree so far */ 375 struct RowSetEntry *p; /* Current tree root */ 376 struct RowSetEntry *pLeft; /* Left subtree */ 377 378 assert( pList!=0 ); 379 p = pList; 380 pList = p->pRight; 381 p->pLeft = p->pRight = 0; 382 for(iDepth=1; pList; iDepth++){ 383 pLeft = p; 384 p = pList; 385 pList = p->pRight; 386 p->pLeft = pLeft; 387 p->pRight = rowSetNDeepTree(&pList, iDepth); 388 } 389 return p; 390 } 391 392 /* 393 ** Extract the smallest element from the RowSet. 394 ** Write the element into *pRowid. Return 1 on success. Return 395 ** 0 if the RowSet is already empty. 396 ** 397 ** After this routine has been called, the sqlite3RowSetInsert() 398 ** routine may not be called again. 399 ** 400 ** This routine may not be called after sqlite3RowSetTest() has 401 ** been used. Older versions of RowSet allowed that, but as the 402 ** capability was not used by the code generator, it was removed 403 ** for code economy. 404 */ 405 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ 406 assert( p!=0 ); 407 assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */ 408 409 /* Merge the forest into a single sorted list on first call */ 410 if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 411 if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 412 p->pEntry = rowSetEntrySort(p->pEntry); 413 } 414 p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT; 415 } 416 417 /* Return the next entry on the list */ 418 if( p->pEntry ){ 419 *pRowid = p->pEntry->v; 420 p->pEntry = p->pEntry->pRight; 421 if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/ 422 /* Free memory immediately, rather than waiting on sqlite3_finalize() */ 423 sqlite3RowSetClear(p); 424 } 425 return 1; 426 }else{ 427 return 0; 428 } 429 } 430 431 /* 432 ** Check to see if element iRowid was inserted into the rowset as 433 ** part of any insert batch prior to iBatch. Return 1 or 0. 434 ** 435 ** If this is the first test of a new batch and if there exist entries 436 ** on pRowSet->pEntry, then sort those entries into the forest at 437 ** pRowSet->pForest so that they can be tested. 438 */ 439 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ 440 struct RowSetEntry *p, *pTree; 441 442 /* This routine is never called after sqlite3RowSetNext() */ 443 assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); 444 445 /* Sort entries into the forest on the first test of a new batch. 446 ** To save unnecessary work, only do this when the batch number changes. 447 */ 448 if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/ 449 p = pRowSet->pEntry; 450 if( p ){ 451 struct RowSetEntry **ppPrevTree = &pRowSet->pForest; 452 if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 453 /* Only sort the current set of entiries if they need it */ 454 p = rowSetEntrySort(p); 455 } 456 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 457 ppPrevTree = &pTree->pRight; 458 if( pTree->pLeft==0 ){ 459 pTree->pLeft = rowSetListToTree(p); 460 break; 461 }else{ 462 struct RowSetEntry *pAux, *pTail; 463 rowSetTreeToList(pTree->pLeft, &pAux, &pTail); 464 pTree->pLeft = 0; 465 p = rowSetEntryMerge(pAux, p); 466 } 467 } 468 if( pTree==0 ){ 469 *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); 470 if( pTree ){ 471 pTree->v = 0; 472 pTree->pRight = 0; 473 pTree->pLeft = rowSetListToTree(p); 474 } 475 } 476 pRowSet->pEntry = 0; 477 pRowSet->pLast = 0; 478 pRowSet->rsFlags |= ROWSET_SORTED; 479 } 480 pRowSet->iBatch = iBatch; 481 } 482 483 /* Test to see if the iRowid value appears anywhere in the forest. 484 ** Return 1 if it does and 0 if not. 485 */ 486 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 487 p = pTree->pLeft; 488 while( p ){ 489 if( p->v<iRowid ){ 490 p = p->pRight; 491 }else if( p->v>iRowid ){ 492 p = p->pLeft; 493 }else{ 494 return 1; 495 } 496 } 497 } 498 return 0; 499 } 500