1 /* 2 ** 2008 December 3 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This module implements an object we call a "RowSet". 14 ** 15 ** The RowSet object is a collection of rowids. Rowids 16 ** are inserted into the RowSet in an arbitrary order. Inserts 17 ** can be intermixed with tests to see if a given rowid has been 18 ** previously inserted into the RowSet. 19 ** 20 ** After all inserts are finished, it is possible to extract the 21 ** elements of the RowSet in sorted order. Once this extraction 22 ** process has started, no new elements may be inserted. 23 ** 24 ** Hence, the primitive operations for a RowSet are: 25 ** 26 ** CREATE 27 ** INSERT 28 ** TEST 29 ** SMALLEST 30 ** DESTROY 31 ** 32 ** The CREATE and DESTROY primitives are the constructor and destructor, 33 ** obviously. The INSERT primitive adds a new element to the RowSet. 34 ** TEST checks to see if an element is already in the RowSet. SMALLEST 35 ** extracts the least value from the RowSet. 36 ** 37 ** The INSERT primitive might allocate additional memory. Memory is 38 ** allocated in chunks so most INSERTs do no allocation. There is an 39 ** upper bound on the size of allocated memory. No memory is freed 40 ** until DESTROY. 41 ** 42 ** The TEST primitive includes a "batch" number. The TEST primitive 43 ** will only see elements that were inserted before the last change 44 ** in the batch number. In other words, if an INSERT occurs between 45 ** two TESTs where the TESTs have the same batch nubmer, then the 46 ** value added by the INSERT will not be visible to the second TEST. 47 ** The initial batch number is zero, so if the very first TEST contains 48 ** a non-zero batch number, it will see all prior INSERTs. 49 ** 50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if 51 ** that is attempted. 52 ** 53 ** The cost of an INSERT is roughly constant. (Sometimes new memory 54 ** has to be allocated on an INSERT.) The cost of a TEST with a new 55 ** batch number is O(NlogN) where N is the number of elements in the RowSet. 56 ** The cost of a TEST using the same batch number is O(logN). The cost 57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST 58 ** primitives are constant time. The cost of DESTROY is O(N). 59 ** 60 ** TEST and SMALLEST may not be used by the same RowSet. This used to 61 ** be possible, but the feature was not used, so it was removed in order 62 ** to simplify the code. 63 */ 64 #include "sqliteInt.h" 65 66 67 /* 68 ** Target size for allocation chunks. 69 */ 70 #define ROWSET_ALLOCATION_SIZE 1024 71 72 /* 73 ** The number of rowset entries per allocation chunk. 74 */ 75 #define ROWSET_ENTRY_PER_CHUNK \ 76 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) 77 78 /* 79 ** Each entry in a RowSet is an instance of the following object. 80 ** 81 ** This same object is reused to store a linked list of trees of RowSetEntry 82 ** objects. In that alternative use, pRight points to the next entry 83 ** in the list, pLeft points to the tree, and v is unused. The 84 ** RowSet.pForest value points to the head of this forest list. 85 */ 86 struct RowSetEntry { 87 i64 v; /* ROWID value for this entry */ 88 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ 89 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ 90 }; 91 92 /* 93 ** RowSetEntry objects are allocated in large chunks (instances of the 94 ** following structure) to reduce memory allocation overhead. The 95 ** chunks are kept on a linked list so that they can be deallocated 96 ** when the RowSet is destroyed. 97 */ 98 struct RowSetChunk { 99 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ 100 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ 101 }; 102 103 /* 104 ** A RowSet in an instance of the following structure. 105 ** 106 ** A typedef of this structure if found in sqliteInt.h. 107 */ 108 struct RowSet { 109 struct RowSetChunk *pChunk; /* List of all chunk allocations */ 110 sqlite3 *db; /* The database connection */ 111 struct RowSetEntry *pEntry; /* List of entries using pRight */ 112 struct RowSetEntry *pLast; /* Last entry on the pEntry list */ 113 struct RowSetEntry *pFresh; /* Source of new entry objects */ 114 struct RowSetEntry *pForest; /* List of binary trees of entries */ 115 u16 nFresh; /* Number of objects on pFresh */ 116 u16 rsFlags; /* Various flags */ 117 int iBatch; /* Current insert batch */ 118 }; 119 120 /* 121 ** Allowed values for RowSet.rsFlags 122 */ 123 #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ 124 #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ 125 126 /* 127 ** Allocate a RowSet object. Return NULL if a memory allocation 128 ** error occurs. 129 */ 130 RowSet *sqlite3RowSetInit(sqlite3 *db){ 131 RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p)); 132 if( p ){ 133 int N = sqlite3DbMallocSize(db, p); 134 p->pChunk = 0; 135 p->db = db; 136 p->pEntry = 0; 137 p->pLast = 0; 138 p->pForest = 0; 139 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); 140 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); 141 p->rsFlags = ROWSET_SORTED; 142 p->iBatch = 0; 143 } 144 return p; 145 } 146 147 /* 148 ** Deallocate all chunks from a RowSet. This frees all memory that 149 ** the RowSet has allocated over its lifetime. This routine is 150 ** the destructor for the RowSet. 151 */ 152 void sqlite3RowSetClear(void *pArg){ 153 RowSet *p = (RowSet*)pArg; 154 struct RowSetChunk *pChunk, *pNextChunk; 155 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ 156 pNextChunk = pChunk->pNextChunk; 157 sqlite3DbFree(p->db, pChunk); 158 } 159 p->pChunk = 0; 160 p->nFresh = 0; 161 p->pEntry = 0; 162 p->pLast = 0; 163 p->pForest = 0; 164 p->rsFlags = ROWSET_SORTED; 165 } 166 167 /* 168 ** Deallocate all chunks from a RowSet. This frees all memory that 169 ** the RowSet has allocated over its lifetime. This routine is 170 ** the destructor for the RowSet. 171 */ 172 void sqlite3RowSetDelete(void *pArg){ 173 sqlite3RowSetClear(pArg); 174 sqlite3DbFree(((RowSet*)pArg)->db, pArg); 175 } 176 177 /* 178 ** Allocate a new RowSetEntry object that is associated with the 179 ** given RowSet. Return a pointer to the new and completely uninitialized 180 ** object. 181 ** 182 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this 183 ** routine returns NULL. 184 */ 185 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ 186 assert( p!=0 ); 187 if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/ 188 /* We could allocate a fresh RowSetEntry each time one is needed, but it 189 ** is more efficient to pull a preallocated entry from the pool */ 190 struct RowSetChunk *pNew; 191 pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew)); 192 if( pNew==0 ){ 193 return 0; 194 } 195 pNew->pNextChunk = p->pChunk; 196 p->pChunk = pNew; 197 p->pFresh = pNew->aEntry; 198 p->nFresh = ROWSET_ENTRY_PER_CHUNK; 199 } 200 p->nFresh--; 201 return p->pFresh++; 202 } 203 204 /* 205 ** Insert a new value into a RowSet. 206 ** 207 ** The mallocFailed flag of the database connection is set if a 208 ** memory allocation fails. 209 */ 210 void sqlite3RowSetInsert(RowSet *p, i64 rowid){ 211 struct RowSetEntry *pEntry; /* The new entry */ 212 struct RowSetEntry *pLast; /* The last prior entry */ 213 214 /* This routine is never called after sqlite3RowSetNext() */ 215 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); 216 217 pEntry = rowSetEntryAlloc(p); 218 if( pEntry==0 ) return; 219 pEntry->v = rowid; 220 pEntry->pRight = 0; 221 pLast = p->pLast; 222 if( pLast ){ 223 if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/ 224 /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags 225 ** where possible */ 226 p->rsFlags &= ~ROWSET_SORTED; 227 } 228 pLast->pRight = pEntry; 229 }else{ 230 p->pEntry = pEntry; 231 } 232 p->pLast = pEntry; 233 } 234 235 /* 236 ** Merge two lists of RowSetEntry objects. Remove duplicates. 237 ** 238 ** The input lists are connected via pRight pointers and are 239 ** assumed to each already be in sorted order. 240 */ 241 static struct RowSetEntry *rowSetEntryMerge( 242 struct RowSetEntry *pA, /* First sorted list to be merged */ 243 struct RowSetEntry *pB /* Second sorted list to be merged */ 244 ){ 245 struct RowSetEntry head; 246 struct RowSetEntry *pTail; 247 248 pTail = &head; 249 assert( pA!=0 && pB!=0 ); 250 for(;;){ 251 assert( pA->pRight==0 || pA->v<=pA->pRight->v ); 252 assert( pB->pRight==0 || pB->v<=pB->pRight->v ); 253 if( pA->v<=pB->v ){ 254 if( pA->v<pB->v ) pTail = pTail->pRight = pA; 255 pA = pA->pRight; 256 if( pA==0 ){ 257 pTail->pRight = pB; 258 break; 259 } 260 }else{ 261 pTail = pTail->pRight = pB; 262 pB = pB->pRight; 263 if( pB==0 ){ 264 pTail->pRight = pA; 265 break; 266 } 267 } 268 } 269 return head.pRight; 270 } 271 272 /* 273 ** Sort all elements on the list of RowSetEntry objects into order of 274 ** increasing v. 275 */ 276 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ 277 unsigned int i; 278 struct RowSetEntry *pNext, *aBucket[40]; 279 280 memset(aBucket, 0, sizeof(aBucket)); 281 while( pIn ){ 282 pNext = pIn->pRight; 283 pIn->pRight = 0; 284 for(i=0; aBucket[i]; i++){ 285 pIn = rowSetEntryMerge(aBucket[i], pIn); 286 aBucket[i] = 0; 287 } 288 aBucket[i] = pIn; 289 pIn = pNext; 290 } 291 pIn = aBucket[0]; 292 for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){ 293 if( aBucket[i]==0 ) continue; 294 pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i]; 295 } 296 return pIn; 297 } 298 299 300 /* 301 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. 302 ** Convert this tree into a linked list connected by the pRight pointers 303 ** and return pointers to the first and last elements of the new list. 304 */ 305 static void rowSetTreeToList( 306 struct RowSetEntry *pIn, /* Root of the input tree */ 307 struct RowSetEntry **ppFirst, /* Write head of the output list here */ 308 struct RowSetEntry **ppLast /* Write tail of the output list here */ 309 ){ 310 assert( pIn!=0 ); 311 if( pIn->pLeft ){ 312 struct RowSetEntry *p; 313 rowSetTreeToList(pIn->pLeft, ppFirst, &p); 314 p->pRight = pIn; 315 }else{ 316 *ppFirst = pIn; 317 } 318 if( pIn->pRight ){ 319 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); 320 }else{ 321 *ppLast = pIn; 322 } 323 assert( (*ppLast)->pRight==0 ); 324 } 325 326 327 /* 328 ** Convert a sorted list of elements (connected by pRight) into a binary 329 ** tree with depth of iDepth. A depth of 1 means the tree contains a single 330 ** node taken from the head of *ppList. A depth of 2 means a tree with 331 ** three nodes. And so forth. 332 ** 333 ** Use as many entries from the input list as required and update the 334 ** *ppList to point to the unused elements of the list. If the input 335 ** list contains too few elements, then construct an incomplete tree 336 ** and leave *ppList set to NULL. 337 ** 338 ** Return a pointer to the root of the constructed binary tree. 339 */ 340 static struct RowSetEntry *rowSetNDeepTree( 341 struct RowSetEntry **ppList, 342 int iDepth 343 ){ 344 struct RowSetEntry *p; /* Root of the new tree */ 345 struct RowSetEntry *pLeft; /* Left subtree */ 346 if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/ 347 /* Prevent unnecessary deep recursion when we run out of entries */ 348 return 0; 349 } 350 if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/ 351 /* This branch causes a *balanced* tree to be generated. A valid tree 352 ** is still generated without this branch, but the tree is wildly 353 ** unbalanced and inefficient. */ 354 pLeft = rowSetNDeepTree(ppList, iDepth-1); 355 p = *ppList; 356 if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/ 357 /* It is safe to always return here, but the resulting tree 358 ** would be unbalanced */ 359 return pLeft; 360 } 361 p->pLeft = pLeft; 362 *ppList = p->pRight; 363 p->pRight = rowSetNDeepTree(ppList, iDepth-1); 364 }else{ 365 p = *ppList; 366 *ppList = p->pRight; 367 p->pLeft = p->pRight = 0; 368 } 369 return p; 370 } 371 372 /* 373 ** Convert a sorted list of elements into a binary tree. Make the tree 374 ** as deep as it needs to be in order to contain the entire list. 375 */ 376 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ 377 int iDepth; /* Depth of the tree so far */ 378 struct RowSetEntry *p; /* Current tree root */ 379 struct RowSetEntry *pLeft; /* Left subtree */ 380 381 assert( pList!=0 ); 382 p = pList; 383 pList = p->pRight; 384 p->pLeft = p->pRight = 0; 385 for(iDepth=1; pList; iDepth++){ 386 pLeft = p; 387 p = pList; 388 pList = p->pRight; 389 p->pLeft = pLeft; 390 p->pRight = rowSetNDeepTree(&pList, iDepth); 391 } 392 return p; 393 } 394 395 /* 396 ** Extract the smallest element from the RowSet. 397 ** Write the element into *pRowid. Return 1 on success. Return 398 ** 0 if the RowSet is already empty. 399 ** 400 ** After this routine has been called, the sqlite3RowSetInsert() 401 ** routine may not be called again. 402 ** 403 ** This routine may not be called after sqlite3RowSetTest() has 404 ** been used. Older versions of RowSet allowed that, but as the 405 ** capability was not used by the code generator, it was removed 406 ** for code economy. 407 */ 408 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ 409 assert( p!=0 ); 410 assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */ 411 412 /* Merge the forest into a single sorted list on first call */ 413 if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 414 if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 415 p->pEntry = rowSetEntrySort(p->pEntry); 416 } 417 p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT; 418 } 419 420 /* Return the next entry on the list */ 421 if( p->pEntry ){ 422 *pRowid = p->pEntry->v; 423 p->pEntry = p->pEntry->pRight; 424 if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/ 425 /* Free memory immediately, rather than waiting on sqlite3_finalize() */ 426 sqlite3RowSetClear(p); 427 } 428 return 1; 429 }else{ 430 return 0; 431 } 432 } 433 434 /* 435 ** Check to see if element iRowid was inserted into the rowset as 436 ** part of any insert batch prior to iBatch. Return 1 or 0. 437 ** 438 ** If this is the first test of a new batch and if there exist entries 439 ** on pRowSet->pEntry, then sort those entries into the forest at 440 ** pRowSet->pForest so that they can be tested. 441 */ 442 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ 443 struct RowSetEntry *p, *pTree; 444 445 /* This routine is never called after sqlite3RowSetNext() */ 446 assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); 447 448 /* Sort entries into the forest on the first test of a new batch. 449 ** To save unnecessary work, only do this when the batch number changes. 450 */ 451 if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/ 452 p = pRowSet->pEntry; 453 if( p ){ 454 struct RowSetEntry **ppPrevTree = &pRowSet->pForest; 455 if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 456 /* Only sort the current set of entries if they need it */ 457 p = rowSetEntrySort(p); 458 } 459 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 460 ppPrevTree = &pTree->pRight; 461 if( pTree->pLeft==0 ){ 462 pTree->pLeft = rowSetListToTree(p); 463 break; 464 }else{ 465 struct RowSetEntry *pAux, *pTail; 466 rowSetTreeToList(pTree->pLeft, &pAux, &pTail); 467 pTree->pLeft = 0; 468 p = rowSetEntryMerge(pAux, p); 469 } 470 } 471 if( pTree==0 ){ 472 *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); 473 if( pTree ){ 474 pTree->v = 0; 475 pTree->pRight = 0; 476 pTree->pLeft = rowSetListToTree(p); 477 } 478 } 479 pRowSet->pEntry = 0; 480 pRowSet->pLast = 0; 481 pRowSet->rsFlags |= ROWSET_SORTED; 482 } 483 pRowSet->iBatch = iBatch; 484 } 485 486 /* Test to see if the iRowid value appears anywhere in the forest. 487 ** Return 1 if it does and 0 if not. 488 */ 489 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ 490 p = pTree->pLeft; 491 while( p ){ 492 if( p->v<iRowid ){ 493 p = p->pRight; 494 }else if( p->v>iRowid ){ 495 p = p->pLeft; 496 }else{ 497 return 1; 498 } 499 } 500 } 501 return 0; 502 } 503