xref: /sqlite-3.40.0/src/rowset.c (revision 5368f29a)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometime new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 **
63 ** $Id: rowset.c,v 1.7 2009/05/22 01:00:13 drh Exp $
64 */
65 #include "sqliteInt.h"
66 
67 
68 /*
69 ** Target size for allocation chunks.
70 */
71 #define ROWSET_ALLOCATION_SIZE 1024
72 
73 /*
74 ** The number of rowset entries per allocation chunk.
75 */
76 #define ROWSET_ENTRY_PER_CHUNK  \
77                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
78 
79 /*
80 ** Each entry in a RowSet is an instance of the following object.
81 */
82 struct RowSetEntry {
83   i64 v;                        /* ROWID value for this entry */
84   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
85   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
86 };
87 
88 /*
89 ** RowSetEntry objects are allocated in large chunks (instances of the
90 ** following structure) to reduce memory allocation overhead.  The
91 ** chunks are kept on a linked list so that they can be deallocated
92 ** when the RowSet is destroyed.
93 */
94 struct RowSetChunk {
95   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
96   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
97 };
98 
99 /*
100 ** A RowSet in an instance of the following structure.
101 **
102 ** A typedef of this structure if found in sqliteInt.h.
103 */
104 struct RowSet {
105   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
106   sqlite3 *db;                   /* The database connection */
107   struct RowSetEntry *pEntry;    /* List of entries using pRight */
108   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
109   struct RowSetEntry *pFresh;    /* Source of new entry objects */
110   struct RowSetEntry *pTree;     /* Binary tree of entries */
111   u16 nFresh;                    /* Number of objects on pFresh */
112   u8 isSorted;                   /* True if pEntry is sorted */
113   u8 iBatch;                     /* Current insert batch */
114 };
115 
116 /*
117 ** Turn bulk memory into a RowSet object.  N bytes of memory
118 ** are available at pSpace.  The db pointer is used as a memory context
119 ** for any subsequent allocations that need to occur.
120 ** Return a pointer to the new RowSet object.
121 **
122 ** It must be the case that N is sufficient to make a Rowset.  If not
123 ** an assertion fault occurs.
124 **
125 ** If N is larger than the minimum, use the surplus as an initial
126 ** allocation of entries available to be filled.
127 */
128 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
129   RowSet *p;
130   assert( N >= ROUND8(sizeof(*p)) );
131   p = pSpace;
132   p->pChunk = 0;
133   p->db = db;
134   p->pEntry = 0;
135   p->pLast = 0;
136   p->pTree = 0;
137   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
138   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
139   p->isSorted = 1;
140   p->iBatch = 0;
141   return p;
142 }
143 
144 /*
145 ** Deallocate all chunks from a RowSet.  This frees all memory that
146 ** the RowSet has allocated over its lifetime.  This routine is
147 ** the destructor for the RowSet.
148 */
149 void sqlite3RowSetClear(RowSet *p){
150   struct RowSetChunk *pChunk, *pNextChunk;
151   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
152     pNextChunk = pChunk->pNextChunk;
153     sqlite3DbFree(p->db, pChunk);
154   }
155   p->pChunk = 0;
156   p->nFresh = 0;
157   p->pEntry = 0;
158   p->pLast = 0;
159   p->pTree = 0;
160   p->isSorted = 1;
161 }
162 
163 /*
164 ** Insert a new value into a RowSet.
165 **
166 ** The mallocFailed flag of the database connection is set if a
167 ** memory allocation fails.
168 */
169 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
170   struct RowSetEntry *pEntry;  /* The new entry */
171   struct RowSetEntry *pLast;   /* The last prior entry */
172   assert( p!=0 );
173   if( p->nFresh==0 ){
174     struct RowSetChunk *pNew;
175     pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
176     if( pNew==0 ){
177       return;
178     }
179     pNew->pNextChunk = p->pChunk;
180     p->pChunk = pNew;
181     p->pFresh = pNew->aEntry;
182     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
183   }
184   pEntry = p->pFresh++;
185   p->nFresh--;
186   pEntry->v = rowid;
187   pEntry->pRight = 0;
188   pLast = p->pLast;
189   if( pLast ){
190     if( p->isSorted && rowid<=pLast->v ){
191       p->isSorted = 0;
192     }
193     pLast->pRight = pEntry;
194   }else{
195     assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
196     p->pEntry = pEntry;
197   }
198   p->pLast = pEntry;
199 }
200 
201 /*
202 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
203 **
204 ** The input lists are connected via pRight pointers and are
205 ** assumed to each already be in sorted order.
206 */
207 static struct RowSetEntry *rowSetMerge(
208   struct RowSetEntry *pA,    /* First sorted list to be merged */
209   struct RowSetEntry *pB     /* Second sorted list to be merged */
210 ){
211   struct RowSetEntry head;
212   struct RowSetEntry *pTail;
213 
214   pTail = &head;
215   while( pA && pB ){
216     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
217     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
218     if( pA->v<pB->v ){
219       pTail->pRight = pA;
220       pA = pA->pRight;
221       pTail = pTail->pRight;
222     }else if( pB->v<pA->v ){
223       pTail->pRight = pB;
224       pB = pB->pRight;
225       pTail = pTail->pRight;
226     }else{
227       pA = pA->pRight;
228     }
229   }
230   if( pA ){
231     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
232     pTail->pRight = pA;
233   }else{
234     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
235     pTail->pRight = pB;
236   }
237   return head.pRight;
238 }
239 
240 /*
241 ** Sort all elements on the pEntry list of the RowSet into ascending order.
242 */
243 static void rowSetSort(RowSet *p){
244   unsigned int i;
245   struct RowSetEntry *pEntry;
246   struct RowSetEntry *aBucket[40];
247 
248   assert( p->isSorted==0 );
249   memset(aBucket, 0, sizeof(aBucket));
250   while( p->pEntry ){
251     pEntry = p->pEntry;
252     p->pEntry = pEntry->pRight;
253     pEntry->pRight = 0;
254     for(i=0; aBucket[i]; i++){
255       pEntry = rowSetMerge(aBucket[i], pEntry);
256       aBucket[i] = 0;
257     }
258     aBucket[i] = pEntry;
259   }
260   pEntry = 0;
261   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
262     pEntry = rowSetMerge(pEntry, aBucket[i]);
263   }
264   p->pEntry = pEntry;
265   p->pLast = 0;
266   p->isSorted = 1;
267 }
268 
269 
270 /*
271 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
272 ** Convert this tree into a linked list connected by the pRight pointers
273 ** and return pointers to the first and last elements of the new list.
274 */
275 static void rowSetTreeToList(
276   struct RowSetEntry *pIn,         /* Root of the input tree */
277   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
278   struct RowSetEntry **ppLast      /* Write tail of the output list here */
279 ){
280   assert( pIn!=0 );
281   if( pIn->pLeft ){
282     struct RowSetEntry *p;
283     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
284     p->pRight = pIn;
285   }else{
286     *ppFirst = pIn;
287   }
288   if( pIn->pRight ){
289     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
290   }else{
291     *ppLast = pIn;
292   }
293   assert( (*ppLast)->pRight==0 );
294 }
295 
296 
297 /*
298 ** Convert a sorted list of elements (connected by pRight) into a binary
299 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
300 ** node taken from the head of *ppList.  A depth of 2 means a tree with
301 ** three nodes.  And so forth.
302 **
303 ** Use as many entries from the input list as required and update the
304 ** *ppList to point to the unused elements of the list.  If the input
305 ** list contains too few elements, then construct an incomplete tree
306 ** and leave *ppList set to NULL.
307 **
308 ** Return a pointer to the root of the constructed binary tree.
309 */
310 static struct RowSetEntry *rowSetNDeepTree(
311   struct RowSetEntry **ppList,
312   int iDepth
313 ){
314   struct RowSetEntry *p;         /* Root of the new tree */
315   struct RowSetEntry *pLeft;     /* Left subtree */
316   if( *ppList==0 ){
317     return 0;
318   }
319   if( iDepth==1 ){
320     p = *ppList;
321     *ppList = p->pRight;
322     p->pLeft = p->pRight = 0;
323     return p;
324   }
325   pLeft = rowSetNDeepTree(ppList, iDepth-1);
326   p = *ppList;
327   if( p==0 ){
328     return pLeft;
329   }
330   p->pLeft = pLeft;
331   *ppList = p->pRight;
332   p->pRight = rowSetNDeepTree(ppList, iDepth-1);
333   return p;
334 }
335 
336 /*
337 ** Convert a sorted list of elements into a binary tree. Make the tree
338 ** as deep as it needs to be in order to contain the entire list.
339 */
340 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
341   int iDepth;           /* Depth of the tree so far */
342   struct RowSetEntry *p;       /* Current tree root */
343   struct RowSetEntry *pLeft;   /* Left subtree */
344 
345   assert( pList!=0 );
346   p = pList;
347   pList = p->pRight;
348   p->pLeft = p->pRight = 0;
349   for(iDepth=1; pList; iDepth++){
350     pLeft = p;
351     p = pList;
352     pList = p->pRight;
353     p->pLeft = pLeft;
354     p->pRight = rowSetNDeepTree(&pList, iDepth);
355   }
356   return p;
357 }
358 
359 /*
360 ** Convert the list in p->pEntry into a sorted list if it is not
361 ** sorted already.  If there is a binary tree on p->pTree, then
362 ** convert it into a list too and merge it into the p->pEntry list.
363 */
364 static void rowSetToList(RowSet *p){
365   if( !p->isSorted ){
366     rowSetSort(p);
367   }
368   if( p->pTree ){
369     struct RowSetEntry *pHead, *pTail;
370     rowSetTreeToList(p->pTree, &pHead, &pTail);
371     p->pTree = 0;
372     p->pEntry = rowSetMerge(p->pEntry, pHead);
373   }
374 }
375 
376 /*
377 ** Extract the smallest element from the RowSet.
378 ** Write the element into *pRowid.  Return 1 on success.  Return
379 ** 0 if the RowSet is already empty.
380 **
381 ** After this routine has been called, the sqlite3RowSetInsert()
382 ** routine may not be called again.
383 */
384 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
385   rowSetToList(p);
386   if( p->pEntry ){
387     *pRowid = p->pEntry->v;
388     p->pEntry = p->pEntry->pRight;
389     if( p->pEntry==0 ){
390       sqlite3RowSetClear(p);
391     }
392     return 1;
393   }else{
394     return 0;
395   }
396 }
397 
398 /*
399 ** Check to see if element iRowid was inserted into the the rowset as
400 ** part of any insert batch prior to iBatch.  Return 1 or 0.
401 */
402 int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
403   struct RowSetEntry *p;
404   if( iBatch!=pRowSet->iBatch ){
405     if( pRowSet->pEntry ){
406       rowSetToList(pRowSet);
407       pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
408       pRowSet->pEntry = 0;
409       pRowSet->pLast = 0;
410     }
411     pRowSet->iBatch = iBatch;
412   }
413   p = pRowSet->pTree;
414   while( p ){
415     if( p->v<iRowid ){
416       p = p->pRight;
417     }else if( p->v>iRowid ){
418       p = p->pLeft;
419     }else{
420       return 1;
421     }
422   }
423   return 0;
424 }
425