xref: /sqlite-3.40.0/src/rowset.c (revision 396794f0)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometimes new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 */
63 #include "sqliteInt.h"
64 
65 
66 /*
67 ** Target size for allocation chunks.
68 */
69 #define ROWSET_ALLOCATION_SIZE 1024
70 
71 /*
72 ** The number of rowset entries per allocation chunk.
73 */
74 #define ROWSET_ENTRY_PER_CHUNK  \
75                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
76 
77 /*
78 ** Each entry in a RowSet is an instance of the following object.
79 **
80 ** This same object is reused to store a linked list of trees of RowSetEntry
81 ** objects.  In that alternative use, pRight points to the next entry
82 ** in the list, pLeft points to the tree, and v is unused.  The
83 ** RowSet.pForest value points to the head of this forest list.
84 */
85 struct RowSetEntry {
86   i64 v;                        /* ROWID value for this entry */
87   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
88   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
89 };
90 
91 /*
92 ** RowSetEntry objects are allocated in large chunks (instances of the
93 ** following structure) to reduce memory allocation overhead.  The
94 ** chunks are kept on a linked list so that they can be deallocated
95 ** when the RowSet is destroyed.
96 */
97 struct RowSetChunk {
98   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
99   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
100 };
101 
102 /*
103 ** A RowSet in an instance of the following structure.
104 **
105 ** A typedef of this structure if found in sqliteInt.h.
106 */
107 struct RowSet {
108   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
109   sqlite3 *db;                   /* The database connection */
110   struct RowSetEntry *pEntry;    /* List of entries using pRight */
111   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
112   struct RowSetEntry *pFresh;    /* Source of new entry objects */
113   struct RowSetEntry *pForest;   /* List of binary trees of entries */
114   u16 nFresh;                    /* Number of objects on pFresh */
115   u16 rsFlags;                   /* Various flags */
116   int iBatch;                    /* Current insert batch */
117 };
118 
119 /*
120 ** Allowed values for RowSet.rsFlags
121 */
122 #define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
123 #define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */
124 
125 /*
126 ** Turn bulk memory into a RowSet object.  N bytes of memory
127 ** are available at pSpace.  The db pointer is used as a memory context
128 ** for any subsequent allocations that need to occur.
129 ** Return a pointer to the new RowSet object.
130 **
131 ** It must be the case that N is sufficient to make a Rowset.  If not
132 ** an assertion fault occurs.
133 **
134 ** If N is larger than the minimum, use the surplus as an initial
135 ** allocation of entries available to be filled.
136 */
137 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
138   RowSet *p;
139   assert( N >= ROUND8(sizeof(*p)) );
140   p = pSpace;
141   p->pChunk = 0;
142   p->db = db;
143   p->pEntry = 0;
144   p->pLast = 0;
145   p->pForest = 0;
146   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
147   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
148   p->rsFlags = ROWSET_SORTED;
149   p->iBatch = 0;
150   return p;
151 }
152 
153 /*
154 ** Deallocate all chunks from a RowSet.  This frees all memory that
155 ** the RowSet has allocated over its lifetime.  This routine is
156 ** the destructor for the RowSet.
157 */
158 void sqlite3RowSetClear(RowSet *p){
159   struct RowSetChunk *pChunk, *pNextChunk;
160   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
161     pNextChunk = pChunk->pNextChunk;
162     sqlite3DbFree(p->db, pChunk);
163   }
164   p->pChunk = 0;
165   p->nFresh = 0;
166   p->pEntry = 0;
167   p->pLast = 0;
168   p->pForest = 0;
169   p->rsFlags = ROWSET_SORTED;
170 }
171 
172 /*
173 ** Allocate a new RowSetEntry object that is associated with the
174 ** given RowSet.  Return a pointer to the new and completely uninitialized
175 ** objected.
176 **
177 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
178 ** routine returns NULL.
179 */
180 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
181   assert( p!=0 );
182   if( p->nFresh==0 ){  /*OPTIMIZATION-IF-FALSE*/
183     /* We could allocate a fresh RowSetEntry each time one is needed, but it
184     ** is more efficient to pull a preallocated entry from the pool */
185     struct RowSetChunk *pNew;
186     pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
187     if( pNew==0 ){
188       return 0;
189     }
190     pNew->pNextChunk = p->pChunk;
191     p->pChunk = pNew;
192     p->pFresh = pNew->aEntry;
193     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
194   }
195   p->nFresh--;
196   return p->pFresh++;
197 }
198 
199 /*
200 ** Insert a new value into a RowSet.
201 **
202 ** The mallocFailed flag of the database connection is set if a
203 ** memory allocation fails.
204 */
205 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
206   struct RowSetEntry *pEntry;  /* The new entry */
207   struct RowSetEntry *pLast;   /* The last prior entry */
208 
209   /* This routine is never called after sqlite3RowSetNext() */
210   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
211 
212   pEntry = rowSetEntryAlloc(p);
213   if( pEntry==0 ) return;
214   pEntry->v = rowid;
215   pEntry->pRight = 0;
216   pLast = p->pLast;
217   if( pLast ){
218     if( rowid<=pLast->v ){  /*OPTIMIZATION-IF-FALSE*/
219       /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
220       ** where possible */
221       p->rsFlags &= ~ROWSET_SORTED;
222     }
223     pLast->pRight = pEntry;
224   }else{
225     p->pEntry = pEntry;
226   }
227   p->pLast = pEntry;
228 }
229 
230 /*
231 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
232 **
233 ** The input lists are connected via pRight pointers and are
234 ** assumed to each already be in sorted order.
235 */
236 static struct RowSetEntry *rowSetEntryMerge(
237   struct RowSetEntry *pA,    /* First sorted list to be merged */
238   struct RowSetEntry *pB     /* Second sorted list to be merged */
239 ){
240   struct RowSetEntry head;
241   struct RowSetEntry *pTail;
242 
243   pTail = &head;
244   while( pA && pB ){
245     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
246     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
247     if( pA->v<pB->v ){
248       pTail->pRight = pA;
249       pA = pA->pRight;
250       pTail = pTail->pRight;
251     }else if( pB->v<pA->v ){
252       pTail->pRight = pB;
253       pB = pB->pRight;
254       pTail = pTail->pRight;
255     }else{
256       pA = pA->pRight;
257     }
258   }
259   if( pA ){
260     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
261     pTail->pRight = pA;
262   }else{
263     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
264     pTail->pRight = pB;
265   }
266   return head.pRight;
267 }
268 
269 /*
270 ** Sort all elements on the list of RowSetEntry objects into order of
271 ** increasing v.
272 */
273 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
274   unsigned int i;
275   struct RowSetEntry *pNext, *aBucket[40];
276 
277   memset(aBucket, 0, sizeof(aBucket));
278   while( pIn ){
279     pNext = pIn->pRight;
280     pIn->pRight = 0;
281     for(i=0; aBucket[i]; i++){
282       pIn = rowSetEntryMerge(aBucket[i], pIn);
283       aBucket[i] = 0;
284     }
285     aBucket[i] = pIn;
286     pIn = pNext;
287   }
288   pIn = 0;
289   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
290     pIn = rowSetEntryMerge(pIn, aBucket[i]);
291   }
292   return pIn;
293 }
294 
295 
296 /*
297 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
298 ** Convert this tree into a linked list connected by the pRight pointers
299 ** and return pointers to the first and last elements of the new list.
300 */
301 static void rowSetTreeToList(
302   struct RowSetEntry *pIn,         /* Root of the input tree */
303   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
304   struct RowSetEntry **ppLast      /* Write tail of the output list here */
305 ){
306   assert( pIn!=0 );
307   if( pIn->pLeft ){
308     struct RowSetEntry *p;
309     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
310     p->pRight = pIn;
311   }else{
312     *ppFirst = pIn;
313   }
314   if( pIn->pRight ){
315     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
316   }else{
317     *ppLast = pIn;
318   }
319   assert( (*ppLast)->pRight==0 );
320 }
321 
322 
323 /*
324 ** Convert a sorted list of elements (connected by pRight) into a binary
325 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
326 ** node taken from the head of *ppList.  A depth of 2 means a tree with
327 ** three nodes.  And so forth.
328 **
329 ** Use as many entries from the input list as required and update the
330 ** *ppList to point to the unused elements of the list.  If the input
331 ** list contains too few elements, then construct an incomplete tree
332 ** and leave *ppList set to NULL.
333 **
334 ** Return a pointer to the root of the constructed binary tree.
335 */
336 static struct RowSetEntry *rowSetNDeepTree(
337   struct RowSetEntry **ppList,
338   int iDepth
339 ){
340   struct RowSetEntry *p;         /* Root of the new tree */
341   struct RowSetEntry *pLeft;     /* Left subtree */
342   if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
343     /* Prevent unnecessary deep recursion when we run out of entries */
344     return 0;
345   }
346   if( iDepth>1 ){   /*OPTIMIZATION-IF-TRUE*/
347     /* This branch causes a *balanced* tree to be generated.  A valid tree
348     ** is still generated without this branch, but the tree is wildly
349     ** unbalanced and inefficient. */
350     pLeft = rowSetNDeepTree(ppList, iDepth-1);
351     p = *ppList;
352     if( p==0 ){     /*OPTIMIZATION-IF-FALSE*/
353       /* It is safe to always return here, but the resulting tree
354       ** would be unbalanced */
355       return pLeft;
356     }
357     p->pLeft = pLeft;
358     *ppList = p->pRight;
359     p->pRight = rowSetNDeepTree(ppList, iDepth-1);
360   }else{
361     p = *ppList;
362     *ppList = p->pRight;
363     p->pLeft = p->pRight = 0;
364   }
365   return p;
366 }
367 
368 /*
369 ** Convert a sorted list of elements into a binary tree. Make the tree
370 ** as deep as it needs to be in order to contain the entire list.
371 */
372 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
373   int iDepth;           /* Depth of the tree so far */
374   struct RowSetEntry *p;       /* Current tree root */
375   struct RowSetEntry *pLeft;   /* Left subtree */
376 
377   assert( pList!=0 );
378   p = pList;
379   pList = p->pRight;
380   p->pLeft = p->pRight = 0;
381   for(iDepth=1; pList; iDepth++){
382     pLeft = p;
383     p = pList;
384     pList = p->pRight;
385     p->pLeft = pLeft;
386     p->pRight = rowSetNDeepTree(&pList, iDepth);
387   }
388   return p;
389 }
390 
391 /*
392 ** Take all the entries on p->pEntry and on the trees in p->pForest and
393 ** sort them all together into one big ordered list on p->pEntry.
394 **
395 ** This routine should only be called once in the life of a RowSet.
396 */
397 static void rowSetToList(RowSet *p){
398 
399   /* This routine is called only once */
400   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
401 
402   if( (p->rsFlags & ROWSET_SORTED)==0 ){
403     p->pEntry = rowSetEntrySort(p->pEntry);
404   }
405 
406   /* While this module could theoretically support it, sqlite3RowSetNext()
407   ** is never called after sqlite3RowSetText() for the same RowSet.  So
408   ** there is never a forest to deal with.  Should this change, simply
409   ** remove the assert() and the #if 0. */
410   assert( p->pForest==0 );
411 #if 0
412   while( p->pForest ){
413     struct RowSetEntry *pTree = p->pForest->pLeft;
414     if( pTree ){
415       struct RowSetEntry *pHead, *pTail;
416       rowSetTreeToList(pTree, &pHead, &pTail);
417       p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
418     }
419     p->pForest = p->pForest->pRight;
420   }
421 #endif
422   p->rsFlags |= ROWSET_NEXT;  /* Verify this routine is never called again */
423 }
424 
425 /*
426 ** Extract the smallest element from the RowSet.
427 ** Write the element into *pRowid.  Return 1 on success.  Return
428 ** 0 if the RowSet is already empty.
429 **
430 ** After this routine has been called, the sqlite3RowSetInsert()
431 ** routine may not be called again.
432 */
433 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
434   assert( p!=0 );
435 
436   /* Merge the forest into a single sorted list on first call */
437   if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);
438 
439   /* Return the next entry on the list */
440   if( p->pEntry ){
441     *pRowid = p->pEntry->v;
442     p->pEntry = p->pEntry->pRight;
443     if( p->pEntry==0 ){
444       sqlite3RowSetClear(p);
445     }
446     return 1;
447   }else{
448     return 0;
449   }
450 }
451 
452 /*
453 ** Check to see if element iRowid was inserted into the rowset as
454 ** part of any insert batch prior to iBatch.  Return 1 or 0.
455 **
456 ** If this is the first test of a new batch and if there exist entries
457 ** on pRowSet->pEntry, then sort those entries into the forest at
458 ** pRowSet->pForest so that they can be tested.
459 */
460 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
461   struct RowSetEntry *p, *pTree;
462 
463   /* This routine is never called after sqlite3RowSetNext() */
464   assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
465 
466   /* Sort entries into the forest on the first test of a new batch
467   */
468   if( iBatch!=pRowSet->iBatch ){
469     p = pRowSet->pEntry;
470     if( p ){
471       struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
472       if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
473         p = rowSetEntrySort(p);
474       }
475       for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
476         ppPrevTree = &pTree->pRight;
477         if( pTree->pLeft==0 ){
478           pTree->pLeft = rowSetListToTree(p);
479           break;
480         }else{
481           struct RowSetEntry *pAux, *pTail;
482           rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
483           pTree->pLeft = 0;
484           p = rowSetEntryMerge(pAux, p);
485         }
486       }
487       if( pTree==0 ){
488         *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
489         if( pTree ){
490           pTree->v = 0;
491           pTree->pRight = 0;
492           pTree->pLeft = rowSetListToTree(p);
493         }
494       }
495       pRowSet->pEntry = 0;
496       pRowSet->pLast = 0;
497       pRowSet->rsFlags |= ROWSET_SORTED;
498     }
499     pRowSet->iBatch = iBatch;
500   }
501 
502   /* Test to see if the iRowid value appears anywhere in the forest.
503   ** Return 1 if it does and 0 if not.
504   */
505   for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
506     p = pTree->pLeft;
507     while( p ){
508       if( p->v<iRowid ){
509         p = p->pRight;
510       }else if( p->v>iRowid ){
511         p = p->pLeft;
512       }else{
513         return 1;
514       }
515     }
516   }
517   return 0;
518 }
519