1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCLIST 12 /* a pointer to a SrcList */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCLIST, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* 103 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 104 ** conversions will work. 105 */ 106 #ifndef SQLITE_OMIT_FLOATING_POINT 107 /* 108 ** "*val" is a double such that 0.1 <= *val < 10.0 109 ** Return the ascii code for the leading digit of *val, then 110 ** multiply "*val" by 10.0 to renormalize. 111 ** 112 ** Example: 113 ** input: *val = 3.14159 114 ** output: *val = 1.4159 function return = '3' 115 ** 116 ** The counter *cnt is incremented each time. After counter exceeds 117 ** 16 (the number of significant digits in a 64-bit float) '0' is 118 ** always returned. 119 */ 120 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 121 int digit; 122 LONGDOUBLE_TYPE d; 123 if( (*cnt)<=0 ) return '0'; 124 (*cnt)--; 125 digit = (int)*val; 126 d = digit; 127 digit += '0'; 128 *val = (*val - d)*10.0; 129 return (char)digit; 130 } 131 #endif /* SQLITE_OMIT_FLOATING_POINT */ 132 133 /* 134 ** Set the StrAccum object to an error mode. 135 */ 136 static void setStrAccumError(StrAccum *p, u8 eError){ 137 assert( eError==STRACCUM_NOMEM || eError==STRACCUM_TOOBIG ); 138 p->accError = eError; 139 p->nAlloc = 0; 140 } 141 142 /* 143 ** Extra argument values from a PrintfArguments object 144 */ 145 static sqlite3_int64 getIntArg(PrintfArguments *p){ 146 if( p->nArg<=p->nUsed ) return 0; 147 return sqlite3_value_int64(p->apArg[p->nUsed++]); 148 } 149 static double getDoubleArg(PrintfArguments *p){ 150 if( p->nArg<=p->nUsed ) return 0.0; 151 return sqlite3_value_double(p->apArg[p->nUsed++]); 152 } 153 static char *getTextArg(PrintfArguments *p){ 154 if( p->nArg<=p->nUsed ) return 0; 155 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 156 } 157 158 159 /* 160 ** On machines with a small stack size, you can redefine the 161 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 162 */ 163 #ifndef SQLITE_PRINT_BUF_SIZE 164 # define SQLITE_PRINT_BUF_SIZE 70 165 #endif 166 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 167 168 /* 169 ** Render a string given by "fmt" into the StrAccum object. 170 */ 171 void sqlite3VXPrintf( 172 StrAccum *pAccum, /* Accumulate results here */ 173 const char *fmt, /* Format string */ 174 va_list ap /* arguments */ 175 ){ 176 int c; /* Next character in the format string */ 177 char *bufpt; /* Pointer to the conversion buffer */ 178 int precision; /* Precision of the current field */ 179 int length; /* Length of the field */ 180 int idx; /* A general purpose loop counter */ 181 int width; /* Width of the current field */ 182 etByte flag_leftjustify; /* True if "-" flag is present */ 183 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 184 etByte flag_alternateform; /* True if "#" flag is present */ 185 etByte flag_altform2; /* True if "!" flag is present */ 186 etByte flag_zeropad; /* True if field width constant starts with zero */ 187 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 188 etByte done; /* Loop termination flag */ 189 etByte cThousand; /* Thousands separator for %d and %u */ 190 etByte xtype = etINVALID; /* Conversion paradigm */ 191 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 192 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 193 sqlite_uint64 longvalue; /* Value for integer types */ 194 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 195 const et_info *infop; /* Pointer to the appropriate info structure */ 196 char *zOut; /* Rendering buffer */ 197 int nOut; /* Size of the rendering buffer */ 198 char *zExtra = 0; /* Malloced memory used by some conversion */ 199 #ifndef SQLITE_OMIT_FLOATING_POINT 200 int exp, e2; /* exponent of real numbers */ 201 int nsd; /* Number of significant digits returned */ 202 double rounder; /* Used for rounding floating point values */ 203 etByte flag_dp; /* True if decimal point should be shown */ 204 etByte flag_rtz; /* True if trailing zeros should be removed */ 205 #endif 206 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 207 char buf[etBUFSIZE]; /* Conversion buffer */ 208 209 /* pAccum never starts out with an empty buffer that was obtained from 210 ** malloc(). This precondition is required by the mprintf("%z...") 211 ** optimization. */ 212 assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 213 214 bufpt = 0; 215 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 216 pArgList = va_arg(ap, PrintfArguments*); 217 bArgList = 1; 218 }else{ 219 bArgList = 0; 220 } 221 for(; (c=(*fmt))!=0; ++fmt){ 222 if( c!='%' ){ 223 bufpt = (char *)fmt; 224 #if HAVE_STRCHRNUL 225 fmt = strchrnul(fmt, '%'); 226 #else 227 do{ fmt++; }while( *fmt && *fmt != '%' ); 228 #endif 229 sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt)); 230 if( *fmt==0 ) break; 231 } 232 if( (c=(*++fmt))==0 ){ 233 sqlite3StrAccumAppend(pAccum, "%", 1); 234 break; 235 } 236 /* Find out what flags are present */ 237 flag_leftjustify = flag_prefix = cThousand = 238 flag_alternateform = flag_altform2 = flag_zeropad = 0; 239 done = 0; 240 do{ 241 switch( c ){ 242 case '-': flag_leftjustify = 1; break; 243 case '+': flag_prefix = '+'; break; 244 case ' ': flag_prefix = ' '; break; 245 case '#': flag_alternateform = 1; break; 246 case '!': flag_altform2 = 1; break; 247 case '0': flag_zeropad = 1; break; 248 case ',': cThousand = ','; break; 249 default: done = 1; break; 250 } 251 }while( !done && (c=(*++fmt))!=0 ); 252 /* Get the field width */ 253 if( c=='*' ){ 254 if( bArgList ){ 255 width = (int)getIntArg(pArgList); 256 }else{ 257 width = va_arg(ap,int); 258 } 259 if( width<0 ){ 260 flag_leftjustify = 1; 261 width = width >= -2147483647 ? -width : 0; 262 } 263 c = *++fmt; 264 }else{ 265 unsigned wx = 0; 266 while( c>='0' && c<='9' ){ 267 wx = wx*10 + c - '0'; 268 c = *++fmt; 269 } 270 testcase( wx>0x7fffffff ); 271 width = wx & 0x7fffffff; 272 } 273 assert( width>=0 ); 274 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 275 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 276 width = SQLITE_PRINTF_PRECISION_LIMIT; 277 } 278 #endif 279 280 /* Get the precision */ 281 if( c=='.' ){ 282 c = *++fmt; 283 if( c=='*' ){ 284 if( bArgList ){ 285 precision = (int)getIntArg(pArgList); 286 }else{ 287 precision = va_arg(ap,int); 288 } 289 c = *++fmt; 290 if( precision<0 ){ 291 precision = precision >= -2147483647 ? -precision : -1; 292 } 293 }else{ 294 unsigned px = 0; 295 while( c>='0' && c<='9' ){ 296 px = px*10 + c - '0'; 297 c = *++fmt; 298 } 299 testcase( px>0x7fffffff ); 300 precision = px & 0x7fffffff; 301 } 302 }else{ 303 precision = -1; 304 } 305 assert( precision>=(-1) ); 306 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 307 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 308 precision = SQLITE_PRINTF_PRECISION_LIMIT; 309 } 310 #endif 311 312 313 /* Get the conversion type modifier */ 314 if( c=='l' ){ 315 flag_long = 1; 316 c = *++fmt; 317 if( c=='l' ){ 318 flag_long = 2; 319 c = *++fmt; 320 } 321 }else{ 322 flag_long = 0; 323 } 324 /* Fetch the info entry for the field */ 325 infop = &fmtinfo[0]; 326 xtype = etINVALID; 327 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 328 if( c==fmtinfo[idx].fmttype ){ 329 infop = &fmtinfo[idx]; 330 xtype = infop->type; 331 break; 332 } 333 } 334 335 /* 336 ** At this point, variables are initialized as follows: 337 ** 338 ** flag_alternateform TRUE if a '#' is present. 339 ** flag_altform2 TRUE if a '!' is present. 340 ** flag_prefix '+' or ' ' or zero 341 ** flag_leftjustify TRUE if a '-' is present or if the 342 ** field width was negative. 343 ** flag_zeropad TRUE if the width began with 0. 344 ** flag_long 1 for "l", 2 for "ll" 345 ** width The specified field width. This is 346 ** always non-negative. Zero is the default. 347 ** precision The specified precision. The default 348 ** is -1. 349 ** xtype The class of the conversion. 350 ** infop Pointer to the appropriate info struct. 351 */ 352 switch( xtype ){ 353 case etPOINTER: 354 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 355 sizeof(char*)==sizeof(long int) ? 1 : 0; 356 /* Fall through into the next case */ 357 case etORDINAL: 358 case etRADIX: 359 cThousand = 0; 360 /* Fall through into the next case */ 361 case etDECIMAL: 362 if( infop->flags & FLAG_SIGNED ){ 363 i64 v; 364 if( bArgList ){ 365 v = getIntArg(pArgList); 366 }else if( flag_long ){ 367 if( flag_long==2 ){ 368 v = va_arg(ap,i64) ; 369 }else{ 370 v = va_arg(ap,long int); 371 } 372 }else{ 373 v = va_arg(ap,int); 374 } 375 if( v<0 ){ 376 if( v==SMALLEST_INT64 ){ 377 longvalue = ((u64)1)<<63; 378 }else{ 379 longvalue = -v; 380 } 381 prefix = '-'; 382 }else{ 383 longvalue = v; 384 prefix = flag_prefix; 385 } 386 }else{ 387 if( bArgList ){ 388 longvalue = (u64)getIntArg(pArgList); 389 }else if( flag_long ){ 390 if( flag_long==2 ){ 391 longvalue = va_arg(ap,u64); 392 }else{ 393 longvalue = va_arg(ap,unsigned long int); 394 } 395 }else{ 396 longvalue = va_arg(ap,unsigned int); 397 } 398 prefix = 0; 399 } 400 if( longvalue==0 ) flag_alternateform = 0; 401 if( flag_zeropad && precision<width-(prefix!=0) ){ 402 precision = width-(prefix!=0); 403 } 404 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 405 nOut = etBUFSIZE; 406 zOut = buf; 407 }else{ 408 u64 n = (u64)precision + 10 + precision/3; 409 zOut = zExtra = sqlite3Malloc( n ); 410 if( zOut==0 ){ 411 setStrAccumError(pAccum, STRACCUM_NOMEM); 412 return; 413 } 414 nOut = (int)n; 415 } 416 bufpt = &zOut[nOut-1]; 417 if( xtype==etORDINAL ){ 418 static const char zOrd[] = "thstndrd"; 419 int x = (int)(longvalue % 10); 420 if( x>=4 || (longvalue/10)%10==1 ){ 421 x = 0; 422 } 423 *(--bufpt) = zOrd[x*2+1]; 424 *(--bufpt) = zOrd[x*2]; 425 } 426 { 427 const char *cset = &aDigits[infop->charset]; 428 u8 base = infop->base; 429 do{ /* Convert to ascii */ 430 *(--bufpt) = cset[longvalue%base]; 431 longvalue = longvalue/base; 432 }while( longvalue>0 ); 433 } 434 length = (int)(&zOut[nOut-1]-bufpt); 435 while( precision>length ){ 436 *(--bufpt) = '0'; /* Zero pad */ 437 length++; 438 } 439 if( cThousand ){ 440 int nn = (length - 1)/3; /* Number of "," to insert */ 441 int ix = (length - 1)%3 + 1; 442 bufpt -= nn; 443 for(idx=0; nn>0; idx++){ 444 bufpt[idx] = bufpt[idx+nn]; 445 ix--; 446 if( ix==0 ){ 447 bufpt[++idx] = cThousand; 448 nn--; 449 ix = 3; 450 } 451 } 452 } 453 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 454 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 455 const char *pre; 456 char x; 457 pre = &aPrefix[infop->prefix]; 458 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 459 } 460 length = (int)(&zOut[nOut-1]-bufpt); 461 break; 462 case etFLOAT: 463 case etEXP: 464 case etGENERIC: 465 if( bArgList ){ 466 realvalue = getDoubleArg(pArgList); 467 }else{ 468 realvalue = va_arg(ap,double); 469 } 470 #ifdef SQLITE_OMIT_FLOATING_POINT 471 length = 0; 472 #else 473 if( precision<0 ) precision = 6; /* Set default precision */ 474 if( realvalue<0.0 ){ 475 realvalue = -realvalue; 476 prefix = '-'; 477 }else{ 478 prefix = flag_prefix; 479 } 480 if( xtype==etGENERIC && precision>0 ) precision--; 481 testcase( precision>0xfff ); 482 for(idx=precision&0xfff, rounder=0.5; idx>0; idx--, rounder*=0.1){} 483 if( xtype==etFLOAT ) realvalue += rounder; 484 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 485 exp = 0; 486 if( sqlite3IsNaN((double)realvalue) ){ 487 bufpt = "NaN"; 488 length = 3; 489 break; 490 } 491 if( realvalue>0.0 ){ 492 LONGDOUBLE_TYPE scale = 1.0; 493 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 494 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 495 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 496 realvalue /= scale; 497 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 498 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 499 if( exp>350 ){ 500 bufpt = buf; 501 buf[0] = prefix; 502 memcpy(buf+(prefix!=0),"Inf",4); 503 length = 3+(prefix!=0); 504 break; 505 } 506 } 507 bufpt = buf; 508 /* 509 ** If the field type is etGENERIC, then convert to either etEXP 510 ** or etFLOAT, as appropriate. 511 */ 512 if( xtype!=etFLOAT ){ 513 realvalue += rounder; 514 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 515 } 516 if( xtype==etGENERIC ){ 517 flag_rtz = !flag_alternateform; 518 if( exp<-4 || exp>precision ){ 519 xtype = etEXP; 520 }else{ 521 precision = precision - exp; 522 xtype = etFLOAT; 523 } 524 }else{ 525 flag_rtz = flag_altform2; 526 } 527 if( xtype==etEXP ){ 528 e2 = 0; 529 }else{ 530 e2 = exp; 531 } 532 if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ 533 bufpt = zExtra 534 = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); 535 if( bufpt==0 ){ 536 setStrAccumError(pAccum, STRACCUM_NOMEM); 537 return; 538 } 539 } 540 zOut = bufpt; 541 nsd = 16 + flag_altform2*10; 542 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 543 /* The sign in front of the number */ 544 if( prefix ){ 545 *(bufpt++) = prefix; 546 } 547 /* Digits prior to the decimal point */ 548 if( e2<0 ){ 549 *(bufpt++) = '0'; 550 }else{ 551 for(; e2>=0; e2--){ 552 *(bufpt++) = et_getdigit(&realvalue,&nsd); 553 } 554 } 555 /* The decimal point */ 556 if( flag_dp ){ 557 *(bufpt++) = '.'; 558 } 559 /* "0" digits after the decimal point but before the first 560 ** significant digit of the number */ 561 for(e2++; e2<0; precision--, e2++){ 562 assert( precision>0 ); 563 *(bufpt++) = '0'; 564 } 565 /* Significant digits after the decimal point */ 566 while( (precision--)>0 ){ 567 *(bufpt++) = et_getdigit(&realvalue,&nsd); 568 } 569 /* Remove trailing zeros and the "." if no digits follow the "." */ 570 if( flag_rtz && flag_dp ){ 571 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 572 assert( bufpt>zOut ); 573 if( bufpt[-1]=='.' ){ 574 if( flag_altform2 ){ 575 *(bufpt++) = '0'; 576 }else{ 577 *(--bufpt) = 0; 578 } 579 } 580 } 581 /* Add the "eNNN" suffix */ 582 if( xtype==etEXP ){ 583 *(bufpt++) = aDigits[infop->charset]; 584 if( exp<0 ){ 585 *(bufpt++) = '-'; exp = -exp; 586 }else{ 587 *(bufpt++) = '+'; 588 } 589 if( exp>=100 ){ 590 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 591 exp %= 100; 592 } 593 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 594 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 595 } 596 *bufpt = 0; 597 598 /* The converted number is in buf[] and zero terminated. Output it. 599 ** Note that the number is in the usual order, not reversed as with 600 ** integer conversions. */ 601 length = (int)(bufpt-zOut); 602 bufpt = zOut; 603 604 /* Special case: Add leading zeros if the flag_zeropad flag is 605 ** set and we are not left justified */ 606 if( flag_zeropad && !flag_leftjustify && length < width){ 607 int i; 608 int nPad = width - length; 609 for(i=width; i>=nPad; i--){ 610 bufpt[i] = bufpt[i-nPad]; 611 } 612 i = prefix!=0; 613 while( nPad-- ) bufpt[i++] = '0'; 614 length = width; 615 } 616 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 617 break; 618 case etSIZE: 619 if( !bArgList ){ 620 *(va_arg(ap,int*)) = pAccum->nChar; 621 } 622 length = width = 0; 623 break; 624 case etPERCENT: 625 buf[0] = '%'; 626 bufpt = buf; 627 length = 1; 628 break; 629 case etCHARX: 630 if( bArgList ){ 631 bufpt = getTextArg(pArgList); 632 length = 1; 633 if( bufpt ){ 634 buf[0] = c = *(bufpt++); 635 if( (c&0xc0)==0xc0 ){ 636 while( length<4 && (bufpt[0]&0xc0)==0x80 ){ 637 buf[length++] = *(bufpt++); 638 } 639 } 640 }else{ 641 buf[0] = 0; 642 } 643 }else{ 644 unsigned int ch = va_arg(ap,unsigned int); 645 if( ch<0x00080 ){ 646 buf[0] = ch & 0xff; 647 length = 1; 648 }else if( ch<0x00800 ){ 649 buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); 650 buf[1] = 0x80 + (u8)(ch & 0x3f); 651 length = 2; 652 }else if( ch<0x10000 ){ 653 buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); 654 buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); 655 buf[2] = 0x80 + (u8)(ch & 0x3f); 656 length = 3; 657 }else{ 658 buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); 659 buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); 660 buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); 661 buf[3] = 0x80 + (u8)(ch & 0x3f); 662 length = 4; 663 } 664 } 665 if( precision>1 ){ 666 width -= precision-1; 667 if( width>1 && !flag_leftjustify ){ 668 sqlite3AppendChar(pAccum, width-1, ' '); 669 width = 0; 670 } 671 while( precision-- > 1 ){ 672 sqlite3StrAccumAppend(pAccum, buf, length); 673 } 674 } 675 bufpt = buf; 676 flag_altform2 = 1; 677 goto adjust_width_for_utf8; 678 case etSTRING: 679 case etDYNSTRING: 680 if( bArgList ){ 681 bufpt = getTextArg(pArgList); 682 xtype = etSTRING; 683 }else{ 684 bufpt = va_arg(ap,char*); 685 } 686 if( bufpt==0 ){ 687 bufpt = ""; 688 }else if( xtype==etDYNSTRING ){ 689 if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 ){ 690 /* Special optimization for sqlite3_mprintf("%z..."): 691 ** Extend an existing memory allocation rather than creating 692 ** a new one. */ 693 assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 694 pAccum->zText = bufpt; 695 pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); 696 pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); 697 pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; 698 length = 0; 699 break; 700 } 701 zExtra = bufpt; 702 } 703 if( precision>=0 ){ 704 if( flag_altform2 ){ 705 /* Set length to the number of bytes needed in order to display 706 ** precision characters */ 707 unsigned char *z = (unsigned char*)bufpt; 708 while( precision-- > 0 && z[0] ){ 709 SQLITE_SKIP_UTF8(z); 710 } 711 length = (int)(z - (unsigned char*)bufpt); 712 }else{ 713 for(length=0; length<precision && bufpt[length]; length++){} 714 } 715 }else{ 716 length = 0x7fffffff & (int)strlen(bufpt); 717 } 718 adjust_width_for_utf8: 719 if( flag_altform2 && width>0 ){ 720 /* Adjust width to account for extra bytes in UTF-8 characters */ 721 int ii = length - 1; 722 while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; 723 } 724 break; 725 case etSQLESCAPE: /* %q: Escape ' characters */ 726 case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ 727 case etSQLESCAPE3: { /* %w: Escape " characters */ 728 int i, j, k, n, isnull; 729 int needQuote; 730 char ch; 731 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 732 char *escarg; 733 734 if( bArgList ){ 735 escarg = getTextArg(pArgList); 736 }else{ 737 escarg = va_arg(ap,char*); 738 } 739 isnull = escarg==0; 740 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 741 /* For %q, %Q, and %w, the precision is the number of byte (or 742 ** characters if the ! flags is present) to use from the input. 743 ** Because of the extra quoting characters inserted, the number 744 ** of output characters may be larger than the precision. 745 */ 746 k = precision; 747 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 748 if( ch==q ) n++; 749 if( flag_altform2 && (ch&0xc0)==0xc0 ){ 750 while( (escarg[i+1]&0xc0)==0x80 ){ i++; } 751 } 752 } 753 needQuote = !isnull && xtype==etSQLESCAPE2; 754 n += i + 3; 755 if( n>etBUFSIZE ){ 756 bufpt = zExtra = sqlite3Malloc( n ); 757 if( bufpt==0 ){ 758 setStrAccumError(pAccum, STRACCUM_NOMEM); 759 return; 760 } 761 }else{ 762 bufpt = buf; 763 } 764 j = 0; 765 if( needQuote ) bufpt[j++] = q; 766 k = i; 767 for(i=0; i<k; i++){ 768 bufpt[j++] = ch = escarg[i]; 769 if( ch==q ) bufpt[j++] = ch; 770 } 771 if( needQuote ) bufpt[j++] = q; 772 bufpt[j] = 0; 773 length = j; 774 goto adjust_width_for_utf8; 775 } 776 case etTOKEN: { 777 Token *pToken; 778 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 779 pToken = va_arg(ap, Token*); 780 assert( bArgList==0 ); 781 if( pToken && pToken->n ){ 782 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 783 } 784 length = width = 0; 785 break; 786 } 787 case etSRCLIST: { 788 SrcList *pSrc; 789 int k; 790 struct SrcList_item *pItem; 791 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 792 pSrc = va_arg(ap, SrcList*); 793 k = va_arg(ap, int); 794 pItem = &pSrc->a[k]; 795 assert( bArgList==0 ); 796 assert( k>=0 && k<pSrc->nSrc ); 797 if( pItem->zDatabase ){ 798 sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase); 799 sqlite3StrAccumAppend(pAccum, ".", 1); 800 } 801 sqlite3StrAccumAppendAll(pAccum, pItem->zName); 802 length = width = 0; 803 break; 804 } 805 default: { 806 assert( xtype==etINVALID ); 807 return; 808 } 809 }/* End switch over the format type */ 810 /* 811 ** The text of the conversion is pointed to by "bufpt" and is 812 ** "length" characters long. The field width is "width". Do 813 ** the output. Both length and width are in bytes, not characters, 814 ** at this point. If the "!" flag was present on string conversions 815 ** indicating that width and precision should be expressed in characters, 816 ** then the values have been translated prior to reaching this point. 817 */ 818 width -= length; 819 if( width>0 ){ 820 if( !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 821 sqlite3StrAccumAppend(pAccum, bufpt, length); 822 if( flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 823 }else{ 824 sqlite3StrAccumAppend(pAccum, bufpt, length); 825 } 826 827 if( zExtra ){ 828 sqlite3DbFree(pAccum->db, zExtra); 829 zExtra = 0; 830 } 831 }/* End for loop over the format string */ 832 } /* End of function */ 833 834 /* 835 ** Enlarge the memory allocation on a StrAccum object so that it is 836 ** able to accept at least N more bytes of text. 837 ** 838 ** Return the number of bytes of text that StrAccum is able to accept 839 ** after the attempted enlargement. The value returned might be zero. 840 */ 841 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 842 char *zNew; 843 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 844 if( p->accError ){ 845 testcase(p->accError==STRACCUM_TOOBIG); 846 testcase(p->accError==STRACCUM_NOMEM); 847 return 0; 848 } 849 if( p->mxAlloc==0 ){ 850 N = p->nAlloc - p->nChar - 1; 851 setStrAccumError(p, STRACCUM_TOOBIG); 852 return N; 853 }else{ 854 char *zOld = isMalloced(p) ? p->zText : 0; 855 i64 szNew = p->nChar; 856 szNew += N + 1; 857 if( szNew+p->nChar<=p->mxAlloc ){ 858 /* Force exponential buffer size growth as long as it does not overflow, 859 ** to avoid having to call this routine too often */ 860 szNew += p->nChar; 861 } 862 if( szNew > p->mxAlloc ){ 863 sqlite3StrAccumReset(p); 864 setStrAccumError(p, STRACCUM_TOOBIG); 865 return 0; 866 }else{ 867 p->nAlloc = (int)szNew; 868 } 869 if( p->db ){ 870 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 871 }else{ 872 zNew = sqlite3_realloc64(zOld, p->nAlloc); 873 } 874 if( zNew ){ 875 assert( p->zText!=0 || p->nChar==0 ); 876 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 877 p->zText = zNew; 878 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 879 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 880 }else{ 881 sqlite3StrAccumReset(p); 882 setStrAccumError(p, STRACCUM_NOMEM); 883 return 0; 884 } 885 } 886 return N; 887 } 888 889 /* 890 ** Append N copies of character c to the given string buffer. 891 */ 892 void sqlite3AppendChar(StrAccum *p, int N, char c){ 893 testcase( p->nChar + (i64)N > 0x7fffffff ); 894 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 895 return; 896 } 897 while( (N--)>0 ) p->zText[p->nChar++] = c; 898 } 899 900 /* 901 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 902 ** So enlarge if first, then do the append. 903 ** 904 ** This is a helper routine to sqlite3StrAccumAppend() that does special-case 905 ** work (enlarging the buffer) using tail recursion, so that the 906 ** sqlite3StrAccumAppend() routine can use fast calling semantics. 907 */ 908 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 909 N = sqlite3StrAccumEnlarge(p, N); 910 if( N>0 ){ 911 memcpy(&p->zText[p->nChar], z, N); 912 p->nChar += N; 913 } 914 } 915 916 /* 917 ** Append N bytes of text from z to the StrAccum object. Increase the 918 ** size of the memory allocation for StrAccum if necessary. 919 */ 920 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 921 assert( z!=0 || N==0 ); 922 assert( p->zText!=0 || p->nChar==0 || p->accError ); 923 assert( N>=0 ); 924 assert( p->accError==0 || p->nAlloc==0 ); 925 if( p->nChar+N >= p->nAlloc ){ 926 enlargeAndAppend(p,z,N); 927 }else if( N ){ 928 assert( p->zText ); 929 p->nChar += N; 930 memcpy(&p->zText[p->nChar-N], z, N); 931 } 932 } 933 934 /* 935 ** Append the complete text of zero-terminated string z[] to the p string. 936 */ 937 void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){ 938 sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z)); 939 } 940 941 942 /* 943 ** Finish off a string by making sure it is zero-terminated. 944 ** Return a pointer to the resulting string. Return a NULL 945 ** pointer if any kind of error was encountered. 946 */ 947 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 948 char *zText; 949 assert( p->mxAlloc>0 && !isMalloced(p) ); 950 zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 951 if( zText ){ 952 memcpy(zText, p->zText, p->nChar+1); 953 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 954 }else{ 955 setStrAccumError(p, STRACCUM_NOMEM); 956 } 957 p->zText = zText; 958 return zText; 959 } 960 char *sqlite3StrAccumFinish(StrAccum *p){ 961 if( p->zText ){ 962 p->zText[p->nChar] = 0; 963 if( p->mxAlloc>0 && !isMalloced(p) ){ 964 return strAccumFinishRealloc(p); 965 } 966 } 967 return p->zText; 968 } 969 970 /* 971 ** Reset an StrAccum string. Reclaim all malloced memory. 972 */ 973 void sqlite3StrAccumReset(StrAccum *p){ 974 if( isMalloced(p) ){ 975 sqlite3DbFree(p->db, p->zText); 976 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 977 } 978 p->zText = 0; 979 } 980 981 /* 982 ** Initialize a string accumulator. 983 ** 984 ** p: The accumulator to be initialized. 985 ** db: Pointer to a database connection. May be NULL. Lookaside 986 ** memory is used if not NULL. db->mallocFailed is set appropriately 987 ** when not NULL. 988 ** zBase: An initial buffer. May be NULL in which case the initial buffer 989 ** is malloced. 990 ** n: Size of zBase in bytes. If total space requirements never exceed 991 ** n then no memory allocations ever occur. 992 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 993 ** allocations will ever occur. 994 */ 995 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 996 p->zText = zBase; 997 p->db = db; 998 p->nAlloc = n; 999 p->mxAlloc = mx; 1000 p->nChar = 0; 1001 p->accError = 0; 1002 p->printfFlags = 0; 1003 } 1004 1005 /* 1006 ** Print into memory obtained from sqliteMalloc(). Use the internal 1007 ** %-conversion extensions. 1008 */ 1009 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 1010 char *z; 1011 char zBase[SQLITE_PRINT_BUF_SIZE]; 1012 StrAccum acc; 1013 assert( db!=0 ); 1014 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 1015 db->aLimit[SQLITE_LIMIT_LENGTH]); 1016 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 1017 sqlite3VXPrintf(&acc, zFormat, ap); 1018 z = sqlite3StrAccumFinish(&acc); 1019 if( acc.accError==STRACCUM_NOMEM ){ 1020 sqlite3OomFault(db); 1021 } 1022 return z; 1023 } 1024 1025 /* 1026 ** Print into memory obtained from sqliteMalloc(). Use the internal 1027 ** %-conversion extensions. 1028 */ 1029 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 1030 va_list ap; 1031 char *z; 1032 va_start(ap, zFormat); 1033 z = sqlite3VMPrintf(db, zFormat, ap); 1034 va_end(ap); 1035 return z; 1036 } 1037 1038 /* 1039 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 1040 ** %-conversion extensions. 1041 */ 1042 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 1043 char *z; 1044 char zBase[SQLITE_PRINT_BUF_SIZE]; 1045 StrAccum acc; 1046 1047 #ifdef SQLITE_ENABLE_API_ARMOR 1048 if( zFormat==0 ){ 1049 (void)SQLITE_MISUSE_BKPT; 1050 return 0; 1051 } 1052 #endif 1053 #ifndef SQLITE_OMIT_AUTOINIT 1054 if( sqlite3_initialize() ) return 0; 1055 #endif 1056 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 1057 sqlite3VXPrintf(&acc, zFormat, ap); 1058 z = sqlite3StrAccumFinish(&acc); 1059 return z; 1060 } 1061 1062 /* 1063 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 1064 ** %-conversion extensions. 1065 */ 1066 char *sqlite3_mprintf(const char *zFormat, ...){ 1067 va_list ap; 1068 char *z; 1069 #ifndef SQLITE_OMIT_AUTOINIT 1070 if( sqlite3_initialize() ) return 0; 1071 #endif 1072 va_start(ap, zFormat); 1073 z = sqlite3_vmprintf(zFormat, ap); 1074 va_end(ap); 1075 return z; 1076 } 1077 1078 /* 1079 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1080 ** current locale settings. This is important for SQLite because we 1081 ** are not able to use a "," as the decimal point in place of "." as 1082 ** specified by some locales. 1083 ** 1084 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1085 ** from the snprintf() standard. Unfortunately, it is too late to change 1086 ** this without breaking compatibility, so we just have to live with the 1087 ** mistake. 1088 ** 1089 ** sqlite3_vsnprintf() is the varargs version. 1090 */ 1091 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1092 StrAccum acc; 1093 if( n<=0 ) return zBuf; 1094 #ifdef SQLITE_ENABLE_API_ARMOR 1095 if( zBuf==0 || zFormat==0 ) { 1096 (void)SQLITE_MISUSE_BKPT; 1097 if( zBuf ) zBuf[0] = 0; 1098 return zBuf; 1099 } 1100 #endif 1101 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1102 sqlite3VXPrintf(&acc, zFormat, ap); 1103 zBuf[acc.nChar] = 0; 1104 return zBuf; 1105 } 1106 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1107 char *z; 1108 va_list ap; 1109 va_start(ap,zFormat); 1110 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1111 va_end(ap); 1112 return z; 1113 } 1114 1115 /* 1116 ** This is the routine that actually formats the sqlite3_log() message. 1117 ** We house it in a separate routine from sqlite3_log() to avoid using 1118 ** stack space on small-stack systems when logging is disabled. 1119 ** 1120 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1121 ** allocate memory because it might be called while the memory allocator 1122 ** mutex is held. 1123 ** 1124 ** sqlite3VXPrintf() might ask for *temporary* memory allocations for 1125 ** certain format characters (%q) or for very large precisions or widths. 1126 ** Care must be taken that any sqlite3_log() calls that occur while the 1127 ** memory mutex is held do not use these mechanisms. 1128 */ 1129 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1130 StrAccum acc; /* String accumulator */ 1131 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1132 1133 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1134 sqlite3VXPrintf(&acc, zFormat, ap); 1135 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1136 sqlite3StrAccumFinish(&acc)); 1137 } 1138 1139 /* 1140 ** Format and write a message to the log if logging is enabled. 1141 */ 1142 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1143 va_list ap; /* Vararg list */ 1144 if( sqlite3GlobalConfig.xLog ){ 1145 va_start(ap, zFormat); 1146 renderLogMsg(iErrCode, zFormat, ap); 1147 va_end(ap); 1148 } 1149 } 1150 1151 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1152 /* 1153 ** A version of printf() that understands %lld. Used for debugging. 1154 ** The printf() built into some versions of windows does not understand %lld 1155 ** and segfaults if you give it a long long int. 1156 */ 1157 void sqlite3DebugPrintf(const char *zFormat, ...){ 1158 va_list ap; 1159 StrAccum acc; 1160 char zBuf[500]; 1161 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1162 va_start(ap,zFormat); 1163 sqlite3VXPrintf(&acc, zFormat, ap); 1164 va_end(ap); 1165 sqlite3StrAccumFinish(&acc); 1166 #ifdef SQLITE_OS_TRACE_PROC 1167 { 1168 extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); 1169 SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); 1170 } 1171 #else 1172 fprintf(stdout,"%s", zBuf); 1173 fflush(stdout); 1174 #endif 1175 } 1176 #endif 1177 1178 1179 /* 1180 ** variable-argument wrapper around sqlite3VXPrintf(). The bFlags argument 1181 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1182 */ 1183 void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ 1184 va_list ap; 1185 va_start(ap,zFormat); 1186 sqlite3VXPrintf(p, zFormat, ap); 1187 va_end(ap); 1188 } 1189