1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCITEM 12 /* a pointer to a SrcItem */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCITEM, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* Notes: 103 ** 104 ** %S Takes a pointer to SrcItem. Shows name or database.name 105 ** %!S Like %S but prefer the zName over the zAlias 106 */ 107 108 /* Floating point constants used for rounding */ 109 static const double arRound[] = { 110 5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05, 111 5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10, 112 }; 113 114 /* 115 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 116 ** conversions will work. 117 */ 118 #ifndef SQLITE_OMIT_FLOATING_POINT 119 /* 120 ** "*val" is a double such that 0.1 <= *val < 10.0 121 ** Return the ascii code for the leading digit of *val, then 122 ** multiply "*val" by 10.0 to renormalize. 123 ** 124 ** Example: 125 ** input: *val = 3.14159 126 ** output: *val = 1.4159 function return = '3' 127 ** 128 ** The counter *cnt is incremented each time. After counter exceeds 129 ** 16 (the number of significant digits in a 64-bit float) '0' is 130 ** always returned. 131 */ 132 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 133 int digit; 134 LONGDOUBLE_TYPE d; 135 if( (*cnt)<=0 ) return '0'; 136 (*cnt)--; 137 digit = (int)*val; 138 d = digit; 139 digit += '0'; 140 *val = (*val - d)*10.0; 141 return (char)digit; 142 } 143 #endif /* SQLITE_OMIT_FLOATING_POINT */ 144 145 /* 146 ** Set the StrAccum object to an error mode. 147 */ 148 void sqlite3StrAccumSetError(StrAccum *p, u8 eError){ 149 assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); 150 p->accError = eError; 151 if( p->mxAlloc ) sqlite3_str_reset(p); 152 if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError); 153 } 154 155 /* 156 ** Extra argument values from a PrintfArguments object 157 */ 158 static sqlite3_int64 getIntArg(PrintfArguments *p){ 159 if( p->nArg<=p->nUsed ) return 0; 160 return sqlite3_value_int64(p->apArg[p->nUsed++]); 161 } 162 static double getDoubleArg(PrintfArguments *p){ 163 if( p->nArg<=p->nUsed ) return 0.0; 164 return sqlite3_value_double(p->apArg[p->nUsed++]); 165 } 166 static char *getTextArg(PrintfArguments *p){ 167 if( p->nArg<=p->nUsed ) return 0; 168 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 169 } 170 171 /* 172 ** Allocate memory for a temporary buffer needed for printf rendering. 173 ** 174 ** If the requested size of the temp buffer is larger than the size 175 ** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error. 176 ** Do the size check before the memory allocation to prevent rogue 177 ** SQL from requesting large allocations using the precision or width 178 ** field of the printf() function. 179 */ 180 static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){ 181 char *z; 182 if( pAccum->accError ) return 0; 183 if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){ 184 sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG); 185 return 0; 186 } 187 z = sqlite3DbMallocRaw(pAccum->db, n); 188 if( z==0 ){ 189 sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM); 190 } 191 return z; 192 } 193 194 /* 195 ** On machines with a small stack size, you can redefine the 196 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 197 */ 198 #ifndef SQLITE_PRINT_BUF_SIZE 199 # define SQLITE_PRINT_BUF_SIZE 70 200 #endif 201 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 202 203 /* 204 ** Hard limit on the precision of floating-point conversions. 205 */ 206 #ifndef SQLITE_PRINTF_PRECISION_LIMIT 207 # define SQLITE_FP_PRECISION_LIMIT 100000000 208 #endif 209 210 /* 211 ** Render a string given by "fmt" into the StrAccum object. 212 */ 213 void sqlite3_str_vappendf( 214 sqlite3_str *pAccum, /* Accumulate results here */ 215 const char *fmt, /* Format string */ 216 va_list ap /* arguments */ 217 ){ 218 int c; /* Next character in the format string */ 219 char *bufpt; /* Pointer to the conversion buffer */ 220 int precision; /* Precision of the current field */ 221 int length; /* Length of the field */ 222 int idx; /* A general purpose loop counter */ 223 int width; /* Width of the current field */ 224 etByte flag_leftjustify; /* True if "-" flag is present */ 225 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 226 etByte flag_alternateform; /* True if "#" flag is present */ 227 etByte flag_altform2; /* True if "!" flag is present */ 228 etByte flag_zeropad; /* True if field width constant starts with zero */ 229 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 230 etByte done; /* Loop termination flag */ 231 etByte cThousand; /* Thousands separator for %d and %u */ 232 etByte xtype = etINVALID; /* Conversion paradigm */ 233 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 234 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 235 sqlite_uint64 longvalue; /* Value for integer types */ 236 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 237 const et_info *infop; /* Pointer to the appropriate info structure */ 238 char *zOut; /* Rendering buffer */ 239 int nOut; /* Size of the rendering buffer */ 240 char *zExtra = 0; /* Malloced memory used by some conversion */ 241 #ifndef SQLITE_OMIT_FLOATING_POINT 242 int exp, e2; /* exponent of real numbers */ 243 int nsd; /* Number of significant digits returned */ 244 double rounder; /* Used for rounding floating point values */ 245 etByte flag_dp; /* True if decimal point should be shown */ 246 etByte flag_rtz; /* True if trailing zeros should be removed */ 247 #endif 248 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 249 char buf[etBUFSIZE]; /* Conversion buffer */ 250 251 /* pAccum never starts out with an empty buffer that was obtained from 252 ** malloc(). This precondition is required by the mprintf("%z...") 253 ** optimization. */ 254 assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 255 256 bufpt = 0; 257 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 258 pArgList = va_arg(ap, PrintfArguments*); 259 bArgList = 1; 260 }else{ 261 bArgList = 0; 262 } 263 for(; (c=(*fmt))!=0; ++fmt){ 264 if( c!='%' ){ 265 bufpt = (char *)fmt; 266 #if HAVE_STRCHRNUL 267 fmt = strchrnul(fmt, '%'); 268 #else 269 do{ fmt++; }while( *fmt && *fmt != '%' ); 270 #endif 271 sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); 272 if( *fmt==0 ) break; 273 } 274 if( (c=(*++fmt))==0 ){ 275 sqlite3_str_append(pAccum, "%", 1); 276 break; 277 } 278 /* Find out what flags are present */ 279 flag_leftjustify = flag_prefix = cThousand = 280 flag_alternateform = flag_altform2 = flag_zeropad = 0; 281 done = 0; 282 width = 0; 283 flag_long = 0; 284 precision = -1; 285 do{ 286 switch( c ){ 287 case '-': flag_leftjustify = 1; break; 288 case '+': flag_prefix = '+'; break; 289 case ' ': flag_prefix = ' '; break; 290 case '#': flag_alternateform = 1; break; 291 case '!': flag_altform2 = 1; break; 292 case '0': flag_zeropad = 1; break; 293 case ',': cThousand = ','; break; 294 default: done = 1; break; 295 case 'l': { 296 flag_long = 1; 297 c = *++fmt; 298 if( c=='l' ){ 299 c = *++fmt; 300 flag_long = 2; 301 } 302 done = 1; 303 break; 304 } 305 case '1': case '2': case '3': case '4': case '5': 306 case '6': case '7': case '8': case '9': { 307 unsigned wx = c - '0'; 308 while( (c = *++fmt)>='0' && c<='9' ){ 309 wx = wx*10 + c - '0'; 310 } 311 testcase( wx>0x7fffffff ); 312 width = wx & 0x7fffffff; 313 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 314 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 315 width = SQLITE_PRINTF_PRECISION_LIMIT; 316 } 317 #endif 318 if( c!='.' && c!='l' ){ 319 done = 1; 320 }else{ 321 fmt--; 322 } 323 break; 324 } 325 case '*': { 326 if( bArgList ){ 327 width = (int)getIntArg(pArgList); 328 }else{ 329 width = va_arg(ap,int); 330 } 331 if( width<0 ){ 332 flag_leftjustify = 1; 333 width = width >= -2147483647 ? -width : 0; 334 } 335 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 336 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 337 width = SQLITE_PRINTF_PRECISION_LIMIT; 338 } 339 #endif 340 if( (c = fmt[1])!='.' && c!='l' ){ 341 c = *++fmt; 342 done = 1; 343 } 344 break; 345 } 346 case '.': { 347 c = *++fmt; 348 if( c=='*' ){ 349 if( bArgList ){ 350 precision = (int)getIntArg(pArgList); 351 }else{ 352 precision = va_arg(ap,int); 353 } 354 if( precision<0 ){ 355 precision = precision >= -2147483647 ? -precision : -1; 356 } 357 c = *++fmt; 358 }else{ 359 unsigned px = 0; 360 while( c>='0' && c<='9' ){ 361 px = px*10 + c - '0'; 362 c = *++fmt; 363 } 364 testcase( px>0x7fffffff ); 365 precision = px & 0x7fffffff; 366 } 367 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 368 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 369 precision = SQLITE_PRINTF_PRECISION_LIMIT; 370 } 371 #endif 372 if( c=='l' ){ 373 --fmt; 374 }else{ 375 done = 1; 376 } 377 break; 378 } 379 } 380 }while( !done && (c=(*++fmt))!=0 ); 381 382 /* Fetch the info entry for the field */ 383 infop = &fmtinfo[0]; 384 xtype = etINVALID; 385 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 386 if( c==fmtinfo[idx].fmttype ){ 387 infop = &fmtinfo[idx]; 388 xtype = infop->type; 389 break; 390 } 391 } 392 393 /* 394 ** At this point, variables are initialized as follows: 395 ** 396 ** flag_alternateform TRUE if a '#' is present. 397 ** flag_altform2 TRUE if a '!' is present. 398 ** flag_prefix '+' or ' ' or zero 399 ** flag_leftjustify TRUE if a '-' is present or if the 400 ** field width was negative. 401 ** flag_zeropad TRUE if the width began with 0. 402 ** flag_long 1 for "l", 2 for "ll" 403 ** width The specified field width. This is 404 ** always non-negative. Zero is the default. 405 ** precision The specified precision. The default 406 ** is -1. 407 ** xtype The class of the conversion. 408 ** infop Pointer to the appropriate info struct. 409 */ 410 assert( width>=0 ); 411 assert( precision>=(-1) ); 412 switch( xtype ){ 413 case etPOINTER: 414 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 415 sizeof(char*)==sizeof(long int) ? 1 : 0; 416 /* no break */ deliberate_fall_through 417 case etORDINAL: 418 case etRADIX: 419 cThousand = 0; 420 /* no break */ deliberate_fall_through 421 case etDECIMAL: 422 if( infop->flags & FLAG_SIGNED ){ 423 i64 v; 424 if( bArgList ){ 425 v = getIntArg(pArgList); 426 }else if( flag_long ){ 427 if( flag_long==2 ){ 428 v = va_arg(ap,i64) ; 429 }else{ 430 v = va_arg(ap,long int); 431 } 432 }else{ 433 v = va_arg(ap,int); 434 } 435 if( v<0 ){ 436 testcase( v==SMALLEST_INT64 ); 437 testcase( v==(-1) ); 438 longvalue = ~v; 439 longvalue++; 440 prefix = '-'; 441 }else{ 442 longvalue = v; 443 prefix = flag_prefix; 444 } 445 }else{ 446 if( bArgList ){ 447 longvalue = (u64)getIntArg(pArgList); 448 }else if( flag_long ){ 449 if( flag_long==2 ){ 450 longvalue = va_arg(ap,u64); 451 }else{ 452 longvalue = va_arg(ap,unsigned long int); 453 } 454 }else{ 455 longvalue = va_arg(ap,unsigned int); 456 } 457 prefix = 0; 458 } 459 if( longvalue==0 ) flag_alternateform = 0; 460 if( flag_zeropad && precision<width-(prefix!=0) ){ 461 precision = width-(prefix!=0); 462 } 463 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 464 nOut = etBUFSIZE; 465 zOut = buf; 466 }else{ 467 u64 n; 468 n = (u64)precision + 10; 469 if( cThousand ) n += precision/3; 470 zOut = zExtra = printfTempBuf(pAccum, n); 471 if( zOut==0 ) return; 472 nOut = (int)n; 473 } 474 bufpt = &zOut[nOut-1]; 475 if( xtype==etORDINAL ){ 476 static const char zOrd[] = "thstndrd"; 477 int x = (int)(longvalue % 10); 478 if( x>=4 || (longvalue/10)%10==1 ){ 479 x = 0; 480 } 481 *(--bufpt) = zOrd[x*2+1]; 482 *(--bufpt) = zOrd[x*2]; 483 } 484 { 485 const char *cset = &aDigits[infop->charset]; 486 u8 base = infop->base; 487 do{ /* Convert to ascii */ 488 *(--bufpt) = cset[longvalue%base]; 489 longvalue = longvalue/base; 490 }while( longvalue>0 ); 491 } 492 length = (int)(&zOut[nOut-1]-bufpt); 493 while( precision>length ){ 494 *(--bufpt) = '0'; /* Zero pad */ 495 length++; 496 } 497 if( cThousand ){ 498 int nn = (length - 1)/3; /* Number of "," to insert */ 499 int ix = (length - 1)%3 + 1; 500 bufpt -= nn; 501 for(idx=0; nn>0; idx++){ 502 bufpt[idx] = bufpt[idx+nn]; 503 ix--; 504 if( ix==0 ){ 505 bufpt[++idx] = cThousand; 506 nn--; 507 ix = 3; 508 } 509 } 510 } 511 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 512 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 513 const char *pre; 514 char x; 515 pre = &aPrefix[infop->prefix]; 516 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 517 } 518 length = (int)(&zOut[nOut-1]-bufpt); 519 break; 520 case etFLOAT: 521 case etEXP: 522 case etGENERIC: 523 if( bArgList ){ 524 realvalue = getDoubleArg(pArgList); 525 }else{ 526 realvalue = va_arg(ap,double); 527 } 528 #ifdef SQLITE_OMIT_FLOATING_POINT 529 length = 0; 530 #else 531 if( precision<0 ) precision = 6; /* Set default precision */ 532 #ifdef SQLITE_FP_PRECISION_LIMIT 533 if( precision>SQLITE_FP_PRECISION_LIMIT ){ 534 precision = SQLITE_FP_PRECISION_LIMIT; 535 } 536 #endif 537 if( realvalue<0.0 ){ 538 realvalue = -realvalue; 539 prefix = '-'; 540 }else{ 541 prefix = flag_prefix; 542 } 543 if( xtype==etGENERIC && precision>0 ) precision--; 544 testcase( precision>0xfff ); 545 idx = precision & 0xfff; 546 rounder = arRound[idx%10]; 547 while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; } 548 if( xtype==etFLOAT ){ 549 double rx = (double)realvalue; 550 sqlite3_uint64 u; 551 int ex; 552 memcpy(&u, &rx, sizeof(u)); 553 ex = -1023 + (int)((u>>52)&0x7ff); 554 if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16; 555 realvalue += rounder; 556 } 557 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 558 exp = 0; 559 if( sqlite3IsNaN((double)realvalue) ){ 560 bufpt = "NaN"; 561 length = 3; 562 break; 563 } 564 if( realvalue>0.0 ){ 565 LONGDOUBLE_TYPE scale = 1.0; 566 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 567 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 568 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 569 realvalue /= scale; 570 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 571 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 572 if( exp>350 ){ 573 bufpt = buf; 574 buf[0] = prefix; 575 memcpy(buf+(prefix!=0),"Inf",4); 576 length = 3+(prefix!=0); 577 break; 578 } 579 } 580 bufpt = buf; 581 /* 582 ** If the field type is etGENERIC, then convert to either etEXP 583 ** or etFLOAT, as appropriate. 584 */ 585 if( xtype!=etFLOAT ){ 586 realvalue += rounder; 587 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 588 } 589 if( xtype==etGENERIC ){ 590 flag_rtz = !flag_alternateform; 591 if( exp<-4 || exp>precision ){ 592 xtype = etEXP; 593 }else{ 594 precision = precision - exp; 595 xtype = etFLOAT; 596 } 597 }else{ 598 flag_rtz = flag_altform2; 599 } 600 if( xtype==etEXP ){ 601 e2 = 0; 602 }else{ 603 e2 = exp; 604 } 605 { 606 i64 szBufNeeded; /* Size of a temporary buffer needed */ 607 szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; 608 if( szBufNeeded > etBUFSIZE ){ 609 bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); 610 if( bufpt==0 ) return; 611 } 612 } 613 zOut = bufpt; 614 nsd = 16 + flag_altform2*10; 615 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 616 /* The sign in front of the number */ 617 if( prefix ){ 618 *(bufpt++) = prefix; 619 } 620 /* Digits prior to the decimal point */ 621 if( e2<0 ){ 622 *(bufpt++) = '0'; 623 }else{ 624 for(; e2>=0; e2--){ 625 *(bufpt++) = et_getdigit(&realvalue,&nsd); 626 } 627 } 628 /* The decimal point */ 629 if( flag_dp ){ 630 *(bufpt++) = '.'; 631 } 632 /* "0" digits after the decimal point but before the first 633 ** significant digit of the number */ 634 for(e2++; e2<0; precision--, e2++){ 635 assert( precision>0 ); 636 *(bufpt++) = '0'; 637 } 638 /* Significant digits after the decimal point */ 639 while( (precision--)>0 ){ 640 *(bufpt++) = et_getdigit(&realvalue,&nsd); 641 } 642 /* Remove trailing zeros and the "." if no digits follow the "." */ 643 if( flag_rtz && flag_dp ){ 644 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 645 assert( bufpt>zOut ); 646 if( bufpt[-1]=='.' ){ 647 if( flag_altform2 ){ 648 *(bufpt++) = '0'; 649 }else{ 650 *(--bufpt) = 0; 651 } 652 } 653 } 654 /* Add the "eNNN" suffix */ 655 if( xtype==etEXP ){ 656 *(bufpt++) = aDigits[infop->charset]; 657 if( exp<0 ){ 658 *(bufpt++) = '-'; exp = -exp; 659 }else{ 660 *(bufpt++) = '+'; 661 } 662 if( exp>=100 ){ 663 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 664 exp %= 100; 665 } 666 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 667 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 668 } 669 *bufpt = 0; 670 671 /* The converted number is in buf[] and zero terminated. Output it. 672 ** Note that the number is in the usual order, not reversed as with 673 ** integer conversions. */ 674 length = (int)(bufpt-zOut); 675 bufpt = zOut; 676 677 /* Special case: Add leading zeros if the flag_zeropad flag is 678 ** set and we are not left justified */ 679 if( flag_zeropad && !flag_leftjustify && length < width){ 680 int i; 681 int nPad = width - length; 682 for(i=width; i>=nPad; i--){ 683 bufpt[i] = bufpt[i-nPad]; 684 } 685 i = prefix!=0; 686 while( nPad-- ) bufpt[i++] = '0'; 687 length = width; 688 } 689 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 690 break; 691 case etSIZE: 692 if( !bArgList ){ 693 *(va_arg(ap,int*)) = pAccum->nChar; 694 } 695 length = width = 0; 696 break; 697 case etPERCENT: 698 buf[0] = '%'; 699 bufpt = buf; 700 length = 1; 701 break; 702 case etCHARX: 703 if( bArgList ){ 704 bufpt = getTextArg(pArgList); 705 length = 1; 706 if( bufpt ){ 707 buf[0] = c = *(bufpt++); 708 if( (c&0xc0)==0xc0 ){ 709 while( length<4 && (bufpt[0]&0xc0)==0x80 ){ 710 buf[length++] = *(bufpt++); 711 } 712 } 713 }else{ 714 buf[0] = 0; 715 } 716 }else{ 717 unsigned int ch = va_arg(ap,unsigned int); 718 if( ch<0x00080 ){ 719 buf[0] = ch & 0xff; 720 length = 1; 721 }else if( ch<0x00800 ){ 722 buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); 723 buf[1] = 0x80 + (u8)(ch & 0x3f); 724 length = 2; 725 }else if( ch<0x10000 ){ 726 buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); 727 buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); 728 buf[2] = 0x80 + (u8)(ch & 0x3f); 729 length = 3; 730 }else{ 731 buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); 732 buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); 733 buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); 734 buf[3] = 0x80 + (u8)(ch & 0x3f); 735 length = 4; 736 } 737 } 738 if( precision>1 ){ 739 width -= precision-1; 740 if( width>1 && !flag_leftjustify ){ 741 sqlite3_str_appendchar(pAccum, width-1, ' '); 742 width = 0; 743 } 744 while( precision-- > 1 ){ 745 sqlite3_str_append(pAccum, buf, length); 746 } 747 } 748 bufpt = buf; 749 flag_altform2 = 1; 750 goto adjust_width_for_utf8; 751 case etSTRING: 752 case etDYNSTRING: 753 if( bArgList ){ 754 bufpt = getTextArg(pArgList); 755 xtype = etSTRING; 756 }else{ 757 bufpt = va_arg(ap,char*); 758 } 759 if( bufpt==0 ){ 760 bufpt = ""; 761 }else if( xtype==etDYNSTRING ){ 762 if( pAccum->nChar==0 763 && pAccum->mxAlloc 764 && width==0 765 && precision<0 766 && pAccum->accError==0 767 ){ 768 /* Special optimization for sqlite3_mprintf("%z..."): 769 ** Extend an existing memory allocation rather than creating 770 ** a new one. */ 771 assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 772 pAccum->zText = bufpt; 773 pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); 774 pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); 775 pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; 776 length = 0; 777 break; 778 } 779 zExtra = bufpt; 780 } 781 if( precision>=0 ){ 782 if( flag_altform2 ){ 783 /* Set length to the number of bytes needed in order to display 784 ** precision characters */ 785 unsigned char *z = (unsigned char*)bufpt; 786 while( precision-- > 0 && z[0] ){ 787 SQLITE_SKIP_UTF8(z); 788 } 789 length = (int)(z - (unsigned char*)bufpt); 790 }else{ 791 for(length=0; length<precision && bufpt[length]; length++){} 792 } 793 }else{ 794 length = 0x7fffffff & (int)strlen(bufpt); 795 } 796 adjust_width_for_utf8: 797 if( flag_altform2 && width>0 ){ 798 /* Adjust width to account for extra bytes in UTF-8 characters */ 799 int ii = length - 1; 800 while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; 801 } 802 break; 803 case etSQLESCAPE: /* %q: Escape ' characters */ 804 case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ 805 case etSQLESCAPE3: { /* %w: Escape " characters */ 806 int i, j, k, n, isnull; 807 int needQuote; 808 char ch; 809 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 810 char *escarg; 811 812 if( bArgList ){ 813 escarg = getTextArg(pArgList); 814 }else{ 815 escarg = va_arg(ap,char*); 816 } 817 isnull = escarg==0; 818 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 819 /* For %q, %Q, and %w, the precision is the number of bytes (or 820 ** characters if the ! flags is present) to use from the input. 821 ** Because of the extra quoting characters inserted, the number 822 ** of output characters may be larger than the precision. 823 */ 824 k = precision; 825 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 826 if( ch==q ) n++; 827 if( flag_altform2 && (ch&0xc0)==0xc0 ){ 828 while( (escarg[i+1]&0xc0)==0x80 ){ i++; } 829 } 830 } 831 needQuote = !isnull && xtype==etSQLESCAPE2; 832 n += i + 3; 833 if( n>etBUFSIZE ){ 834 bufpt = zExtra = printfTempBuf(pAccum, n); 835 if( bufpt==0 ) return; 836 }else{ 837 bufpt = buf; 838 } 839 j = 0; 840 if( needQuote ) bufpt[j++] = q; 841 k = i; 842 for(i=0; i<k; i++){ 843 bufpt[j++] = ch = escarg[i]; 844 if( ch==q ) bufpt[j++] = ch; 845 } 846 if( needQuote ) bufpt[j++] = q; 847 bufpt[j] = 0; 848 length = j; 849 goto adjust_width_for_utf8; 850 } 851 case etTOKEN: { 852 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 853 if( flag_alternateform ){ 854 /* %#T means an Expr pointer that uses Expr.u.zToken */ 855 Expr *pExpr = va_arg(ap,Expr*); 856 if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){ 857 sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken); 858 sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr); 859 } 860 }else{ 861 /* %T means a Token pointer */ 862 Token *pToken = va_arg(ap, Token*); 863 assert( bArgList==0 ); 864 if( pToken && pToken->n ){ 865 sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); 866 sqlite3RecordErrorByteOffset(pAccum->db, pToken->z); 867 } 868 } 869 length = width = 0; 870 break; 871 } 872 case etSRCITEM: { 873 SrcItem *pItem; 874 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 875 pItem = va_arg(ap, SrcItem*); 876 assert( bArgList==0 ); 877 if( pItem->zAlias && !flag_altform2 ){ 878 sqlite3_str_appendall(pAccum, pItem->zAlias); 879 }else if( pItem->zName ){ 880 if( pItem->zDatabase ){ 881 sqlite3_str_appendall(pAccum, pItem->zDatabase); 882 sqlite3_str_append(pAccum, ".", 1); 883 } 884 sqlite3_str_appendall(pAccum, pItem->zName); 885 }else if( pItem->zAlias ){ 886 sqlite3_str_appendall(pAccum, pItem->zAlias); 887 }else if( ALWAYS(pItem->pSelect) ){ 888 sqlite3_str_appendf(pAccum, "SUBQUERY %u", pItem->pSelect->selId); 889 } 890 length = width = 0; 891 break; 892 } 893 default: { 894 assert( xtype==etINVALID ); 895 return; 896 } 897 }/* End switch over the format type */ 898 /* 899 ** The text of the conversion is pointed to by "bufpt" and is 900 ** "length" characters long. The field width is "width". Do 901 ** the output. Both length and width are in bytes, not characters, 902 ** at this point. If the "!" flag was present on string conversions 903 ** indicating that width and precision should be expressed in characters, 904 ** then the values have been translated prior to reaching this point. 905 */ 906 width -= length; 907 if( width>0 ){ 908 if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 909 sqlite3_str_append(pAccum, bufpt, length); 910 if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 911 }else{ 912 sqlite3_str_append(pAccum, bufpt, length); 913 } 914 915 if( zExtra ){ 916 sqlite3DbFree(pAccum->db, zExtra); 917 zExtra = 0; 918 } 919 }/* End for loop over the format string */ 920 } /* End of function */ 921 922 923 /* 924 ** The z string points to the first character of a token that is 925 ** associated with an error. If db does not already have an error 926 ** byte offset recorded, try to compute the error byte offset for 927 ** z and set the error byte offset in db. 928 */ 929 void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){ 930 const Parse *pParse; 931 const char *zText; 932 const char *zEnd; 933 assert( z!=0 ); 934 if( NEVER(db==0) ) return; 935 if( db->errByteOffset!=(-2) ) return; 936 pParse = db->pParse; 937 if( NEVER(pParse==0) ) return; 938 zText =pParse->zTail; 939 if( NEVER(zText==0) ) return; 940 zEnd = &zText[strlen(zText)]; 941 if( SQLITE_WITHIN(z,zText,zEnd) ){ 942 db->errByteOffset = (int)(z-zText); 943 } 944 } 945 946 /* 947 ** If pExpr has a byte offset for the start of a token, record that as 948 ** as the error offset. 949 */ 950 void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){ 951 while( pExpr && (ExprHasProperty(pExpr,EP_FromJoin) || pExpr->w.iOfst<=0) ){ 952 pExpr = pExpr->pLeft; 953 } 954 if( pExpr==0 ) return; 955 db->errByteOffset = pExpr->w.iOfst; 956 } 957 958 /* 959 ** Enlarge the memory allocation on a StrAccum object so that it is 960 ** able to accept at least N more bytes of text. 961 ** 962 ** Return the number of bytes of text that StrAccum is able to accept 963 ** after the attempted enlargement. The value returned might be zero. 964 */ 965 int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 966 char *zNew; 967 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 968 if( p->accError ){ 969 testcase(p->accError==SQLITE_TOOBIG); 970 testcase(p->accError==SQLITE_NOMEM); 971 return 0; 972 } 973 if( p->mxAlloc==0 ){ 974 sqlite3StrAccumSetError(p, SQLITE_TOOBIG); 975 return p->nAlloc - p->nChar - 1; 976 }else{ 977 char *zOld = isMalloced(p) ? p->zText : 0; 978 i64 szNew = p->nChar; 979 szNew += (sqlite3_int64)N + 1; 980 if( szNew+p->nChar<=p->mxAlloc ){ 981 /* Force exponential buffer size growth as long as it does not overflow, 982 ** to avoid having to call this routine too often */ 983 szNew += p->nChar; 984 } 985 if( szNew > p->mxAlloc ){ 986 sqlite3_str_reset(p); 987 sqlite3StrAccumSetError(p, SQLITE_TOOBIG); 988 return 0; 989 }else{ 990 p->nAlloc = (int)szNew; 991 } 992 if( p->db ){ 993 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 994 }else{ 995 zNew = sqlite3Realloc(zOld, p->nAlloc); 996 } 997 if( zNew ){ 998 assert( p->zText!=0 || p->nChar==0 ); 999 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 1000 p->zText = zNew; 1001 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 1002 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 1003 }else{ 1004 sqlite3_str_reset(p); 1005 sqlite3StrAccumSetError(p, SQLITE_NOMEM); 1006 return 0; 1007 } 1008 } 1009 return N; 1010 } 1011 1012 /* 1013 ** Append N copies of character c to the given string buffer. 1014 */ 1015 void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ 1016 testcase( p->nChar + (i64)N > 0x7fffffff ); 1017 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 1018 return; 1019 } 1020 while( (N--)>0 ) p->zText[p->nChar++] = c; 1021 } 1022 1023 /* 1024 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 1025 ** So enlarge if first, then do the append. 1026 ** 1027 ** This is a helper routine to sqlite3_str_append() that does special-case 1028 ** work (enlarging the buffer) using tail recursion, so that the 1029 ** sqlite3_str_append() routine can use fast calling semantics. 1030 */ 1031 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 1032 N = sqlite3StrAccumEnlarge(p, N); 1033 if( N>0 ){ 1034 memcpy(&p->zText[p->nChar], z, N); 1035 p->nChar += N; 1036 } 1037 } 1038 1039 /* 1040 ** Append N bytes of text from z to the StrAccum object. Increase the 1041 ** size of the memory allocation for StrAccum if necessary. 1042 */ 1043 void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ 1044 assert( z!=0 || N==0 ); 1045 assert( p->zText!=0 || p->nChar==0 || p->accError ); 1046 assert( N>=0 ); 1047 assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 ); 1048 if( p->nChar+N >= p->nAlloc ){ 1049 enlargeAndAppend(p,z,N); 1050 }else if( N ){ 1051 assert( p->zText ); 1052 p->nChar += N; 1053 memcpy(&p->zText[p->nChar-N], z, N); 1054 } 1055 } 1056 1057 /* 1058 ** Append the complete text of zero-terminated string z[] to the p string. 1059 */ 1060 void sqlite3_str_appendall(sqlite3_str *p, const char *z){ 1061 sqlite3_str_append(p, z, sqlite3Strlen30(z)); 1062 } 1063 1064 1065 /* 1066 ** Finish off a string by making sure it is zero-terminated. 1067 ** Return a pointer to the resulting string. Return a NULL 1068 ** pointer if any kind of error was encountered. 1069 */ 1070 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 1071 char *zText; 1072 assert( p->mxAlloc>0 && !isMalloced(p) ); 1073 zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 1074 if( zText ){ 1075 memcpy(zText, p->zText, p->nChar+1); 1076 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 1077 }else{ 1078 sqlite3StrAccumSetError(p, SQLITE_NOMEM); 1079 } 1080 p->zText = zText; 1081 return zText; 1082 } 1083 char *sqlite3StrAccumFinish(StrAccum *p){ 1084 if( p->zText ){ 1085 p->zText[p->nChar] = 0; 1086 if( p->mxAlloc>0 && !isMalloced(p) ){ 1087 return strAccumFinishRealloc(p); 1088 } 1089 } 1090 return p->zText; 1091 } 1092 1093 /* 1094 ** Use the content of the StrAccum passed as the second argument 1095 ** as the result of an SQL function. 1096 */ 1097 void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){ 1098 if( p->accError ){ 1099 sqlite3_result_error_code(pCtx, p->accError); 1100 sqlite3_str_reset(p); 1101 }else if( isMalloced(p) ){ 1102 sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC); 1103 }else{ 1104 sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); 1105 sqlite3_str_reset(p); 1106 } 1107 } 1108 1109 /* 1110 ** This singleton is an sqlite3_str object that is returned if 1111 ** sqlite3_malloc() fails to provide space for a real one. This 1112 ** sqlite3_str object accepts no new text and always returns 1113 ** an SQLITE_NOMEM error. 1114 */ 1115 static sqlite3_str sqlite3OomStr = { 1116 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 1117 }; 1118 1119 /* Finalize a string created using sqlite3_str_new(). 1120 */ 1121 char *sqlite3_str_finish(sqlite3_str *p){ 1122 char *z; 1123 if( p!=0 && p!=&sqlite3OomStr ){ 1124 z = sqlite3StrAccumFinish(p); 1125 sqlite3_free(p); 1126 }else{ 1127 z = 0; 1128 } 1129 return z; 1130 } 1131 1132 /* Return any error code associated with p */ 1133 int sqlite3_str_errcode(sqlite3_str *p){ 1134 return p ? p->accError : SQLITE_NOMEM; 1135 } 1136 1137 /* Return the current length of p in bytes */ 1138 int sqlite3_str_length(sqlite3_str *p){ 1139 return p ? p->nChar : 0; 1140 } 1141 1142 /* Return the current value for p */ 1143 char *sqlite3_str_value(sqlite3_str *p){ 1144 if( p==0 || p->nChar==0 ) return 0; 1145 p->zText[p->nChar] = 0; 1146 return p->zText; 1147 } 1148 1149 /* 1150 ** Reset an StrAccum string. Reclaim all malloced memory. 1151 */ 1152 void sqlite3_str_reset(StrAccum *p){ 1153 if( isMalloced(p) ){ 1154 sqlite3DbFree(p->db, p->zText); 1155 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 1156 } 1157 p->nAlloc = 0; 1158 p->nChar = 0; 1159 p->zText = 0; 1160 } 1161 1162 /* 1163 ** Initialize a string accumulator. 1164 ** 1165 ** p: The accumulator to be initialized. 1166 ** db: Pointer to a database connection. May be NULL. Lookaside 1167 ** memory is used if not NULL. db->mallocFailed is set appropriately 1168 ** when not NULL. 1169 ** zBase: An initial buffer. May be NULL in which case the initial buffer 1170 ** is malloced. 1171 ** n: Size of zBase in bytes. If total space requirements never exceed 1172 ** n then no memory allocations ever occur. 1173 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 1174 ** allocations will ever occur. 1175 */ 1176 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 1177 p->zText = zBase; 1178 p->db = db; 1179 p->nAlloc = n; 1180 p->mxAlloc = mx; 1181 p->nChar = 0; 1182 p->accError = 0; 1183 p->printfFlags = 0; 1184 } 1185 1186 /* Allocate and initialize a new dynamic string object */ 1187 sqlite3_str *sqlite3_str_new(sqlite3 *db){ 1188 sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); 1189 if( p ){ 1190 sqlite3StrAccumInit(p, 0, 0, 0, 1191 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 1192 }else{ 1193 p = &sqlite3OomStr; 1194 } 1195 return p; 1196 } 1197 1198 /* 1199 ** Print into memory obtained from sqliteMalloc(). Use the internal 1200 ** %-conversion extensions. 1201 */ 1202 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 1203 char *z; 1204 char zBase[SQLITE_PRINT_BUF_SIZE]; 1205 StrAccum acc; 1206 assert( db!=0 ); 1207 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 1208 db->aLimit[SQLITE_LIMIT_LENGTH]); 1209 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 1210 sqlite3_str_vappendf(&acc, zFormat, ap); 1211 z = sqlite3StrAccumFinish(&acc); 1212 if( acc.accError==SQLITE_NOMEM ){ 1213 sqlite3OomFault(db); 1214 } 1215 return z; 1216 } 1217 1218 /* 1219 ** Print into memory obtained from sqliteMalloc(). Use the internal 1220 ** %-conversion extensions. 1221 */ 1222 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 1223 va_list ap; 1224 char *z; 1225 va_start(ap, zFormat); 1226 z = sqlite3VMPrintf(db, zFormat, ap); 1227 va_end(ap); 1228 return z; 1229 } 1230 1231 /* 1232 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 1233 ** %-conversion extensions. 1234 */ 1235 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 1236 char *z; 1237 char zBase[SQLITE_PRINT_BUF_SIZE]; 1238 StrAccum acc; 1239 1240 #ifdef SQLITE_ENABLE_API_ARMOR 1241 if( zFormat==0 ){ 1242 (void)SQLITE_MISUSE_BKPT; 1243 return 0; 1244 } 1245 #endif 1246 #ifndef SQLITE_OMIT_AUTOINIT 1247 if( sqlite3_initialize() ) return 0; 1248 #endif 1249 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 1250 sqlite3_str_vappendf(&acc, zFormat, ap); 1251 z = sqlite3StrAccumFinish(&acc); 1252 return z; 1253 } 1254 1255 /* 1256 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 1257 ** %-conversion extensions. 1258 */ 1259 char *sqlite3_mprintf(const char *zFormat, ...){ 1260 va_list ap; 1261 char *z; 1262 #ifndef SQLITE_OMIT_AUTOINIT 1263 if( sqlite3_initialize() ) return 0; 1264 #endif 1265 va_start(ap, zFormat); 1266 z = sqlite3_vmprintf(zFormat, ap); 1267 va_end(ap); 1268 return z; 1269 } 1270 1271 /* 1272 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1273 ** current locale settings. This is important for SQLite because we 1274 ** are not able to use a "," as the decimal point in place of "." as 1275 ** specified by some locales. 1276 ** 1277 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1278 ** from the snprintf() standard. Unfortunately, it is too late to change 1279 ** this without breaking compatibility, so we just have to live with the 1280 ** mistake. 1281 ** 1282 ** sqlite3_vsnprintf() is the varargs version. 1283 */ 1284 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1285 StrAccum acc; 1286 if( n<=0 ) return zBuf; 1287 #ifdef SQLITE_ENABLE_API_ARMOR 1288 if( zBuf==0 || zFormat==0 ) { 1289 (void)SQLITE_MISUSE_BKPT; 1290 if( zBuf ) zBuf[0] = 0; 1291 return zBuf; 1292 } 1293 #endif 1294 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1295 sqlite3_str_vappendf(&acc, zFormat, ap); 1296 zBuf[acc.nChar] = 0; 1297 return zBuf; 1298 } 1299 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1300 char *z; 1301 va_list ap; 1302 va_start(ap,zFormat); 1303 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1304 va_end(ap); 1305 return z; 1306 } 1307 1308 /* 1309 ** This is the routine that actually formats the sqlite3_log() message. 1310 ** We house it in a separate routine from sqlite3_log() to avoid using 1311 ** stack space on small-stack systems when logging is disabled. 1312 ** 1313 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1314 ** allocate memory because it might be called while the memory allocator 1315 ** mutex is held. 1316 ** 1317 ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for 1318 ** certain format characters (%q) or for very large precisions or widths. 1319 ** Care must be taken that any sqlite3_log() calls that occur while the 1320 ** memory mutex is held do not use these mechanisms. 1321 */ 1322 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1323 StrAccum acc; /* String accumulator */ 1324 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1325 1326 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1327 sqlite3_str_vappendf(&acc, zFormat, ap); 1328 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1329 sqlite3StrAccumFinish(&acc)); 1330 } 1331 1332 /* 1333 ** Format and write a message to the log if logging is enabled. 1334 */ 1335 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1336 va_list ap; /* Vararg list */ 1337 if( sqlite3GlobalConfig.xLog ){ 1338 va_start(ap, zFormat); 1339 renderLogMsg(iErrCode, zFormat, ap); 1340 va_end(ap); 1341 } 1342 } 1343 1344 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1345 /* 1346 ** A version of printf() that understands %lld. Used for debugging. 1347 ** The printf() built into some versions of windows does not understand %lld 1348 ** and segfaults if you give it a long long int. 1349 */ 1350 void sqlite3DebugPrintf(const char *zFormat, ...){ 1351 va_list ap; 1352 StrAccum acc; 1353 char zBuf[SQLITE_PRINT_BUF_SIZE*10]; 1354 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1355 va_start(ap,zFormat); 1356 sqlite3_str_vappendf(&acc, zFormat, ap); 1357 va_end(ap); 1358 sqlite3StrAccumFinish(&acc); 1359 #ifdef SQLITE_OS_TRACE_PROC 1360 { 1361 extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); 1362 SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); 1363 } 1364 #else 1365 fprintf(stdout,"%s", zBuf); 1366 fflush(stdout); 1367 #endif 1368 } 1369 #endif 1370 1371 1372 /* 1373 ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument 1374 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1375 */ 1376 void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ 1377 va_list ap; 1378 va_start(ap,zFormat); 1379 sqlite3_str_vappendf(p, zFormat, ap); 1380 va_end(ap); 1381 } 1382