1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCLIST 12 /* a pointer to a SrcList */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCLIST, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* 103 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 104 ** conversions will work. 105 */ 106 #ifndef SQLITE_OMIT_FLOATING_POINT 107 /* 108 ** "*val" is a double such that 0.1 <= *val < 10.0 109 ** Return the ascii code for the leading digit of *val, then 110 ** multiply "*val" by 10.0 to renormalize. 111 ** 112 ** Example: 113 ** input: *val = 3.14159 114 ** output: *val = 1.4159 function return = '3' 115 ** 116 ** The counter *cnt is incremented each time. After counter exceeds 117 ** 16 (the number of significant digits in a 64-bit float) '0' is 118 ** always returned. 119 */ 120 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 121 int digit; 122 LONGDOUBLE_TYPE d; 123 if( (*cnt)<=0 ) return '0'; 124 (*cnt)--; 125 digit = (int)*val; 126 d = digit; 127 digit += '0'; 128 *val = (*val - d)*10.0; 129 return (char)digit; 130 } 131 #endif /* SQLITE_OMIT_FLOATING_POINT */ 132 133 /* 134 ** Set the StrAccum object to an error mode. 135 */ 136 static void setStrAccumError(StrAccum *p, u8 eError){ 137 assert( eError==STRACCUM_NOMEM || eError==STRACCUM_TOOBIG ); 138 p->accError = eError; 139 p->nAlloc = 0; 140 } 141 142 /* 143 ** Extra argument values from a PrintfArguments object 144 */ 145 static sqlite3_int64 getIntArg(PrintfArguments *p){ 146 if( p->nArg<=p->nUsed ) return 0; 147 return sqlite3_value_int64(p->apArg[p->nUsed++]); 148 } 149 static double getDoubleArg(PrintfArguments *p){ 150 if( p->nArg<=p->nUsed ) return 0.0; 151 return sqlite3_value_double(p->apArg[p->nUsed++]); 152 } 153 static char *getTextArg(PrintfArguments *p){ 154 if( p->nArg<=p->nUsed ) return 0; 155 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 156 } 157 158 159 /* 160 ** On machines with a small stack size, you can redefine the 161 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 162 */ 163 #ifndef SQLITE_PRINT_BUF_SIZE 164 # define SQLITE_PRINT_BUF_SIZE 70 165 #endif 166 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 167 168 /* 169 ** Render a string given by "fmt" into the StrAccum object. 170 */ 171 void sqlite3VXPrintf( 172 StrAccum *pAccum, /* Accumulate results here */ 173 const char *fmt, /* Format string */ 174 va_list ap /* arguments */ 175 ){ 176 int c; /* Next character in the format string */ 177 char *bufpt; /* Pointer to the conversion buffer */ 178 int precision; /* Precision of the current field */ 179 int length; /* Length of the field */ 180 int idx; /* A general purpose loop counter */ 181 int width; /* Width of the current field */ 182 etByte flag_leftjustify; /* True if "-" flag is present */ 183 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 184 etByte flag_alternateform; /* True if "#" flag is present */ 185 etByte flag_altform2; /* True if "!" flag is present */ 186 etByte flag_zeropad; /* True if field width constant starts with zero */ 187 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 188 etByte done; /* Loop termination flag */ 189 etByte cThousand; /* Thousands separator for %d and %u */ 190 etByte xtype = etINVALID; /* Conversion paradigm */ 191 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 192 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 193 sqlite_uint64 longvalue; /* Value for integer types */ 194 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 195 const et_info *infop; /* Pointer to the appropriate info structure */ 196 char *zOut; /* Rendering buffer */ 197 int nOut; /* Size of the rendering buffer */ 198 char *zExtra = 0; /* Malloced memory used by some conversion */ 199 #ifndef SQLITE_OMIT_FLOATING_POINT 200 int exp, e2; /* exponent of real numbers */ 201 int nsd; /* Number of significant digits returned */ 202 double rounder; /* Used for rounding floating point values */ 203 etByte flag_dp; /* True if decimal point should be shown */ 204 etByte flag_rtz; /* True if trailing zeros should be removed */ 205 #endif 206 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 207 char buf[etBUFSIZE]; /* Conversion buffer */ 208 209 bufpt = 0; 210 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 211 pArgList = va_arg(ap, PrintfArguments*); 212 bArgList = 1; 213 }else{ 214 bArgList = 0; 215 } 216 for(; (c=(*fmt))!=0; ++fmt){ 217 if( c!='%' ){ 218 bufpt = (char *)fmt; 219 #if HAVE_STRCHRNUL 220 fmt = strchrnul(fmt, '%'); 221 #else 222 do{ fmt++; }while( *fmt && *fmt != '%' ); 223 #endif 224 sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt)); 225 if( *fmt==0 ) break; 226 } 227 if( (c=(*++fmt))==0 ){ 228 sqlite3StrAccumAppend(pAccum, "%", 1); 229 break; 230 } 231 /* Find out what flags are present */ 232 flag_leftjustify = flag_prefix = cThousand = 233 flag_alternateform = flag_altform2 = flag_zeropad = 0; 234 done = 0; 235 do{ 236 switch( c ){ 237 case '-': flag_leftjustify = 1; break; 238 case '+': flag_prefix = '+'; break; 239 case ' ': flag_prefix = ' '; break; 240 case '#': flag_alternateform = 1; break; 241 case '!': flag_altform2 = 1; break; 242 case '0': flag_zeropad = 1; break; 243 case ',': cThousand = ','; break; 244 default: done = 1; break; 245 } 246 }while( !done && (c=(*++fmt))!=0 ); 247 /* Get the field width */ 248 if( c=='*' ){ 249 if( bArgList ){ 250 width = (int)getIntArg(pArgList); 251 }else{ 252 width = va_arg(ap,int); 253 } 254 if( width<0 ){ 255 flag_leftjustify = 1; 256 width = width >= -2147483647 ? -width : 0; 257 } 258 c = *++fmt; 259 }else{ 260 unsigned wx = 0; 261 while( c>='0' && c<='9' ){ 262 wx = wx*10 + c - '0'; 263 c = *++fmt; 264 } 265 testcase( wx>0x7fffffff ); 266 width = wx & 0x7fffffff; 267 } 268 assert( width>=0 ); 269 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 270 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 271 width = SQLITE_PRINTF_PRECISION_LIMIT; 272 } 273 #endif 274 275 /* Get the precision */ 276 if( c=='.' ){ 277 c = *++fmt; 278 if( c=='*' ){ 279 if( bArgList ){ 280 precision = (int)getIntArg(pArgList); 281 }else{ 282 precision = va_arg(ap,int); 283 } 284 c = *++fmt; 285 if( precision<0 ){ 286 precision = precision >= -2147483647 ? -precision : -1; 287 } 288 }else{ 289 unsigned px = 0; 290 while( c>='0' && c<='9' ){ 291 px = px*10 + c - '0'; 292 c = *++fmt; 293 } 294 testcase( px>0x7fffffff ); 295 precision = px & 0x7fffffff; 296 } 297 }else{ 298 precision = -1; 299 } 300 assert( precision>=(-1) ); 301 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 302 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 303 precision = SQLITE_PRINTF_PRECISION_LIMIT; 304 } 305 #endif 306 307 308 /* Get the conversion type modifier */ 309 if( c=='l' ){ 310 flag_long = 1; 311 c = *++fmt; 312 if( c=='l' ){ 313 flag_long = 2; 314 c = *++fmt; 315 } 316 }else{ 317 flag_long = 0; 318 } 319 /* Fetch the info entry for the field */ 320 infop = &fmtinfo[0]; 321 xtype = etINVALID; 322 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 323 if( c==fmtinfo[idx].fmttype ){ 324 infop = &fmtinfo[idx]; 325 xtype = infop->type; 326 break; 327 } 328 } 329 330 /* 331 ** At this point, variables are initialized as follows: 332 ** 333 ** flag_alternateform TRUE if a '#' is present. 334 ** flag_altform2 TRUE if a '!' is present. 335 ** flag_prefix '+' or ' ' or zero 336 ** flag_leftjustify TRUE if a '-' is present or if the 337 ** field width was negative. 338 ** flag_zeropad TRUE if the width began with 0. 339 ** flag_long 1 for "l", 2 for "ll" 340 ** width The specified field width. This is 341 ** always non-negative. Zero is the default. 342 ** precision The specified precision. The default 343 ** is -1. 344 ** xtype The class of the conversion. 345 ** infop Pointer to the appropriate info struct. 346 */ 347 switch( xtype ){ 348 case etPOINTER: 349 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 350 sizeof(char*)==sizeof(long int) ? 1 : 0; 351 /* Fall through into the next case */ 352 case etORDINAL: 353 case etRADIX: 354 cThousand = 0; 355 /* Fall through into the next case */ 356 case etDECIMAL: 357 if( infop->flags & FLAG_SIGNED ){ 358 i64 v; 359 if( bArgList ){ 360 v = getIntArg(pArgList); 361 }else if( flag_long ){ 362 if( flag_long==2 ){ 363 v = va_arg(ap,i64) ; 364 }else{ 365 v = va_arg(ap,long int); 366 } 367 }else{ 368 v = va_arg(ap,int); 369 } 370 if( v<0 ){ 371 if( v==SMALLEST_INT64 ){ 372 longvalue = ((u64)1)<<63; 373 }else{ 374 longvalue = -v; 375 } 376 prefix = '-'; 377 }else{ 378 longvalue = v; 379 prefix = flag_prefix; 380 } 381 }else{ 382 if( bArgList ){ 383 longvalue = (u64)getIntArg(pArgList); 384 }else if( flag_long ){ 385 if( flag_long==2 ){ 386 longvalue = va_arg(ap,u64); 387 }else{ 388 longvalue = va_arg(ap,unsigned long int); 389 } 390 }else{ 391 longvalue = va_arg(ap,unsigned int); 392 } 393 prefix = 0; 394 } 395 if( longvalue==0 ) flag_alternateform = 0; 396 if( flag_zeropad && precision<width-(prefix!=0) ){ 397 precision = width-(prefix!=0); 398 } 399 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 400 nOut = etBUFSIZE; 401 zOut = buf; 402 }else{ 403 u64 n = (u64)precision + 10 + precision/3; 404 zOut = zExtra = sqlite3Malloc( n ); 405 if( zOut==0 ){ 406 setStrAccumError(pAccum, STRACCUM_NOMEM); 407 return; 408 } 409 nOut = (int)n; 410 } 411 bufpt = &zOut[nOut-1]; 412 if( xtype==etORDINAL ){ 413 static const char zOrd[] = "thstndrd"; 414 int x = (int)(longvalue % 10); 415 if( x>=4 || (longvalue/10)%10==1 ){ 416 x = 0; 417 } 418 *(--bufpt) = zOrd[x*2+1]; 419 *(--bufpt) = zOrd[x*2]; 420 } 421 { 422 const char *cset = &aDigits[infop->charset]; 423 u8 base = infop->base; 424 do{ /* Convert to ascii */ 425 *(--bufpt) = cset[longvalue%base]; 426 longvalue = longvalue/base; 427 }while( longvalue>0 ); 428 } 429 length = (int)(&zOut[nOut-1]-bufpt); 430 while( precision>length ){ 431 *(--bufpt) = '0'; /* Zero pad */ 432 length++; 433 } 434 if( cThousand ){ 435 int nn = (length - 1)/3; /* Number of "," to insert */ 436 int ix = (length - 1)%3 + 1; 437 bufpt -= nn; 438 for(idx=0; nn>0; idx++){ 439 bufpt[idx] = bufpt[idx+nn]; 440 ix--; 441 if( ix==0 ){ 442 bufpt[++idx] = cThousand; 443 nn--; 444 ix = 3; 445 } 446 } 447 } 448 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 449 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 450 const char *pre; 451 char x; 452 pre = &aPrefix[infop->prefix]; 453 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 454 } 455 length = (int)(&zOut[nOut-1]-bufpt); 456 break; 457 case etFLOAT: 458 case etEXP: 459 case etGENERIC: 460 if( bArgList ){ 461 realvalue = getDoubleArg(pArgList); 462 }else{ 463 realvalue = va_arg(ap,double); 464 } 465 #ifdef SQLITE_OMIT_FLOATING_POINT 466 length = 0; 467 #else 468 if( precision<0 ) precision = 6; /* Set default precision */ 469 if( realvalue<0.0 ){ 470 realvalue = -realvalue; 471 prefix = '-'; 472 }else{ 473 prefix = flag_prefix; 474 } 475 if( xtype==etGENERIC && precision>0 ) precision--; 476 testcase( precision>0xfff ); 477 for(idx=precision&0xfff, rounder=0.5; idx>0; idx--, rounder*=0.1){} 478 if( xtype==etFLOAT ) realvalue += rounder; 479 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 480 exp = 0; 481 if( sqlite3IsNaN((double)realvalue) ){ 482 bufpt = "NaN"; 483 length = 3; 484 break; 485 } 486 if( realvalue>0.0 ){ 487 LONGDOUBLE_TYPE scale = 1.0; 488 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 489 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 490 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 491 realvalue /= scale; 492 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 493 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 494 if( exp>350 ){ 495 bufpt = buf; 496 buf[0] = prefix; 497 memcpy(buf+(prefix!=0),"Inf",4); 498 length = 3+(prefix!=0); 499 break; 500 } 501 } 502 bufpt = buf; 503 /* 504 ** If the field type is etGENERIC, then convert to either etEXP 505 ** or etFLOAT, as appropriate. 506 */ 507 if( xtype!=etFLOAT ){ 508 realvalue += rounder; 509 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 510 } 511 if( xtype==etGENERIC ){ 512 flag_rtz = !flag_alternateform; 513 if( exp<-4 || exp>precision ){ 514 xtype = etEXP; 515 }else{ 516 precision = precision - exp; 517 xtype = etFLOAT; 518 } 519 }else{ 520 flag_rtz = flag_altform2; 521 } 522 if( xtype==etEXP ){ 523 e2 = 0; 524 }else{ 525 e2 = exp; 526 } 527 if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ 528 bufpt = zExtra 529 = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); 530 if( bufpt==0 ){ 531 setStrAccumError(pAccum, STRACCUM_NOMEM); 532 return; 533 } 534 } 535 zOut = bufpt; 536 nsd = 16 + flag_altform2*10; 537 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 538 /* The sign in front of the number */ 539 if( prefix ){ 540 *(bufpt++) = prefix; 541 } 542 /* Digits prior to the decimal point */ 543 if( e2<0 ){ 544 *(bufpt++) = '0'; 545 }else{ 546 for(; e2>=0; e2--){ 547 *(bufpt++) = et_getdigit(&realvalue,&nsd); 548 } 549 } 550 /* The decimal point */ 551 if( flag_dp ){ 552 *(bufpt++) = '.'; 553 } 554 /* "0" digits after the decimal point but before the first 555 ** significant digit of the number */ 556 for(e2++; e2<0; precision--, e2++){ 557 assert( precision>0 ); 558 *(bufpt++) = '0'; 559 } 560 /* Significant digits after the decimal point */ 561 while( (precision--)>0 ){ 562 *(bufpt++) = et_getdigit(&realvalue,&nsd); 563 } 564 /* Remove trailing zeros and the "." if no digits follow the "." */ 565 if( flag_rtz && flag_dp ){ 566 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 567 assert( bufpt>zOut ); 568 if( bufpt[-1]=='.' ){ 569 if( flag_altform2 ){ 570 *(bufpt++) = '0'; 571 }else{ 572 *(--bufpt) = 0; 573 } 574 } 575 } 576 /* Add the "eNNN" suffix */ 577 if( xtype==etEXP ){ 578 *(bufpt++) = aDigits[infop->charset]; 579 if( exp<0 ){ 580 *(bufpt++) = '-'; exp = -exp; 581 }else{ 582 *(bufpt++) = '+'; 583 } 584 if( exp>=100 ){ 585 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 586 exp %= 100; 587 } 588 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 589 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 590 } 591 *bufpt = 0; 592 593 /* The converted number is in buf[] and zero terminated. Output it. 594 ** Note that the number is in the usual order, not reversed as with 595 ** integer conversions. */ 596 length = (int)(bufpt-zOut); 597 bufpt = zOut; 598 599 /* Special case: Add leading zeros if the flag_zeropad flag is 600 ** set and we are not left justified */ 601 if( flag_zeropad && !flag_leftjustify && length < width){ 602 int i; 603 int nPad = width - length; 604 for(i=width; i>=nPad; i--){ 605 bufpt[i] = bufpt[i-nPad]; 606 } 607 i = prefix!=0; 608 while( nPad-- ) bufpt[i++] = '0'; 609 length = width; 610 } 611 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 612 break; 613 case etSIZE: 614 if( !bArgList ){ 615 *(va_arg(ap,int*)) = pAccum->nChar; 616 } 617 length = width = 0; 618 break; 619 case etPERCENT: 620 buf[0] = '%'; 621 bufpt = buf; 622 length = 1; 623 break; 624 case etCHARX: 625 if( bArgList ){ 626 bufpt = getTextArg(pArgList); 627 c = bufpt ? bufpt[0] : 0; 628 }else{ 629 c = va_arg(ap,int); 630 } 631 if( precision>1 ){ 632 width -= precision-1; 633 if( width>1 && !flag_leftjustify ){ 634 sqlite3AppendChar(pAccum, width-1, ' '); 635 width = 0; 636 } 637 sqlite3AppendChar(pAccum, precision-1, c); 638 } 639 length = 1; 640 buf[0] = c; 641 bufpt = buf; 642 break; 643 case etSTRING: 644 case etDYNSTRING: 645 if( bArgList ){ 646 bufpt = getTextArg(pArgList); 647 xtype = etSTRING; 648 }else{ 649 bufpt = va_arg(ap,char*); 650 } 651 if( bufpt==0 ){ 652 bufpt = ""; 653 }else if( xtype==etDYNSTRING ){ 654 zExtra = bufpt; 655 } 656 if( precision>=0 ){ 657 for(length=0; length<precision && bufpt[length]; length++){} 658 }else{ 659 length = sqlite3Strlen30(bufpt); 660 } 661 break; 662 case etSQLESCAPE: /* Escape ' characters */ 663 case etSQLESCAPE2: /* Escape ' and enclose in '...' */ 664 case etSQLESCAPE3: { /* Escape " characters */ 665 int i, j, k, n, isnull; 666 int needQuote; 667 char ch; 668 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 669 char *escarg; 670 671 if( bArgList ){ 672 escarg = getTextArg(pArgList); 673 }else{ 674 escarg = va_arg(ap,char*); 675 } 676 isnull = escarg==0; 677 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 678 k = precision; 679 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 680 if( ch==q ) n++; 681 } 682 needQuote = !isnull && xtype==etSQLESCAPE2; 683 n += i + 3; 684 if( n>etBUFSIZE ){ 685 bufpt = zExtra = sqlite3Malloc( n ); 686 if( bufpt==0 ){ 687 setStrAccumError(pAccum, STRACCUM_NOMEM); 688 return; 689 } 690 }else{ 691 bufpt = buf; 692 } 693 j = 0; 694 if( needQuote ) bufpt[j++] = q; 695 k = i; 696 for(i=0; i<k; i++){ 697 bufpt[j++] = ch = escarg[i]; 698 if( ch==q ) bufpt[j++] = ch; 699 } 700 if( needQuote ) bufpt[j++] = q; 701 bufpt[j] = 0; 702 length = j; 703 /* The precision in %q and %Q means how many input characters to 704 ** consume, not the length of the output... 705 ** if( precision>=0 && precision<length ) length = precision; */ 706 break; 707 } 708 case etTOKEN: { 709 Token *pToken; 710 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 711 pToken = va_arg(ap, Token*); 712 assert( bArgList==0 ); 713 if( pToken && pToken->n ){ 714 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 715 } 716 length = width = 0; 717 break; 718 } 719 case etSRCLIST: { 720 SrcList *pSrc; 721 int k; 722 struct SrcList_item *pItem; 723 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 724 pSrc = va_arg(ap, SrcList*); 725 k = va_arg(ap, int); 726 pItem = &pSrc->a[k]; 727 assert( bArgList==0 ); 728 assert( k>=0 && k<pSrc->nSrc ); 729 if( pItem->zDatabase ){ 730 sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase); 731 sqlite3StrAccumAppend(pAccum, ".", 1); 732 } 733 sqlite3StrAccumAppendAll(pAccum, pItem->zName); 734 length = width = 0; 735 break; 736 } 737 default: { 738 assert( xtype==etINVALID ); 739 return; 740 } 741 }/* End switch over the format type */ 742 /* 743 ** The text of the conversion is pointed to by "bufpt" and is 744 ** "length" characters long. The field width is "width". Do 745 ** the output. 746 */ 747 width -= length; 748 if( width>0 ){ 749 if( !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 750 sqlite3StrAccumAppend(pAccum, bufpt, length); 751 if( flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 752 }else{ 753 sqlite3StrAccumAppend(pAccum, bufpt, length); 754 } 755 756 if( zExtra ){ 757 sqlite3DbFree(pAccum->db, zExtra); 758 zExtra = 0; 759 } 760 }/* End for loop over the format string */ 761 } /* End of function */ 762 763 /* 764 ** Enlarge the memory allocation on a StrAccum object so that it is 765 ** able to accept at least N more bytes of text. 766 ** 767 ** Return the number of bytes of text that StrAccum is able to accept 768 ** after the attempted enlargement. The value returned might be zero. 769 */ 770 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 771 char *zNew; 772 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 773 if( p->accError ){ 774 testcase(p->accError==STRACCUM_TOOBIG); 775 testcase(p->accError==STRACCUM_NOMEM); 776 return 0; 777 } 778 if( p->mxAlloc==0 ){ 779 N = p->nAlloc - p->nChar - 1; 780 setStrAccumError(p, STRACCUM_TOOBIG); 781 return N; 782 }else{ 783 char *zOld = isMalloced(p) ? p->zText : 0; 784 i64 szNew = p->nChar; 785 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 786 szNew += N + 1; 787 if( szNew+p->nChar<=p->mxAlloc ){ 788 /* Force exponential buffer size growth as long as it does not overflow, 789 ** to avoid having to call this routine too often */ 790 szNew += p->nChar; 791 } 792 if( szNew > p->mxAlloc ){ 793 sqlite3StrAccumReset(p); 794 setStrAccumError(p, STRACCUM_TOOBIG); 795 return 0; 796 }else{ 797 p->nAlloc = (int)szNew; 798 } 799 if( p->db ){ 800 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 801 }else{ 802 zNew = sqlite3_realloc64(zOld, p->nAlloc); 803 } 804 if( zNew ){ 805 assert( p->zText!=0 || p->nChar==0 ); 806 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 807 p->zText = zNew; 808 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 809 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 810 }else{ 811 sqlite3StrAccumReset(p); 812 setStrAccumError(p, STRACCUM_NOMEM); 813 return 0; 814 } 815 } 816 return N; 817 } 818 819 /* 820 ** Append N copies of character c to the given string buffer. 821 */ 822 void sqlite3AppendChar(StrAccum *p, int N, char c){ 823 testcase( p->nChar + (i64)N > 0x7fffffff ); 824 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 825 return; 826 } 827 assert( (p->zText==p->zBase)==!isMalloced(p) ); 828 while( (N--)>0 ) p->zText[p->nChar++] = c; 829 } 830 831 /* 832 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 833 ** So enlarge if first, then do the append. 834 ** 835 ** This is a helper routine to sqlite3StrAccumAppend() that does special-case 836 ** work (enlarging the buffer) using tail recursion, so that the 837 ** sqlite3StrAccumAppend() routine can use fast calling semantics. 838 */ 839 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 840 N = sqlite3StrAccumEnlarge(p, N); 841 if( N>0 ){ 842 memcpy(&p->zText[p->nChar], z, N); 843 p->nChar += N; 844 } 845 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 846 } 847 848 /* 849 ** Append N bytes of text from z to the StrAccum object. Increase the 850 ** size of the memory allocation for StrAccum if necessary. 851 */ 852 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 853 assert( z!=0 || N==0 ); 854 assert( p->zText!=0 || p->nChar==0 || p->accError ); 855 assert( N>=0 ); 856 assert( p->accError==0 || p->nAlloc==0 ); 857 if( p->nChar+N >= p->nAlloc ){ 858 enlargeAndAppend(p,z,N); 859 }else if( N ){ 860 assert( p->zText ); 861 p->nChar += N; 862 memcpy(&p->zText[p->nChar-N], z, N); 863 } 864 } 865 866 /* 867 ** Append the complete text of zero-terminated string z[] to the p string. 868 */ 869 void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){ 870 sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z)); 871 } 872 873 874 /* 875 ** Finish off a string by making sure it is zero-terminated. 876 ** Return a pointer to the resulting string. Return a NULL 877 ** pointer if any kind of error was encountered. 878 */ 879 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 880 assert( p->mxAlloc>0 && !isMalloced(p) ); 881 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 882 if( p->zText ){ 883 memcpy(p->zText, p->zBase, p->nChar+1); 884 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 885 }else{ 886 setStrAccumError(p, STRACCUM_NOMEM); 887 } 888 return p->zText; 889 } 890 char *sqlite3StrAccumFinish(StrAccum *p){ 891 if( p->zText ){ 892 assert( (p->zText==p->zBase)==!isMalloced(p) ); 893 p->zText[p->nChar] = 0; 894 if( p->mxAlloc>0 && !isMalloced(p) ){ 895 return strAccumFinishRealloc(p); 896 } 897 } 898 return p->zText; 899 } 900 901 /* 902 ** Reset an StrAccum string. Reclaim all malloced memory. 903 */ 904 void sqlite3StrAccumReset(StrAccum *p){ 905 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 906 if( isMalloced(p) ){ 907 sqlite3DbFree(p->db, p->zText); 908 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 909 } 910 p->zText = 0; 911 } 912 913 /* 914 ** Initialize a string accumulator. 915 ** 916 ** p: The accumulator to be initialized. 917 ** db: Pointer to a database connection. May be NULL. Lookaside 918 ** memory is used if not NULL. db->mallocFailed is set appropriately 919 ** when not NULL. 920 ** zBase: An initial buffer. May be NULL in which case the initial buffer 921 ** is malloced. 922 ** n: Size of zBase in bytes. If total space requirements never exceed 923 ** n then no memory allocations ever occur. 924 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 925 ** allocations will ever occur. 926 */ 927 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 928 p->zText = p->zBase = zBase; 929 p->db = db; 930 p->nChar = 0; 931 p->nAlloc = n; 932 p->mxAlloc = mx; 933 p->accError = 0; 934 p->printfFlags = 0; 935 } 936 937 /* 938 ** Print into memory obtained from sqliteMalloc(). Use the internal 939 ** %-conversion extensions. 940 */ 941 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 942 char *z; 943 char zBase[SQLITE_PRINT_BUF_SIZE]; 944 StrAccum acc; 945 assert( db!=0 ); 946 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 947 db->aLimit[SQLITE_LIMIT_LENGTH]); 948 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 949 sqlite3VXPrintf(&acc, zFormat, ap); 950 z = sqlite3StrAccumFinish(&acc); 951 if( acc.accError==STRACCUM_NOMEM ){ 952 sqlite3OomFault(db); 953 } 954 return z; 955 } 956 957 /* 958 ** Print into memory obtained from sqliteMalloc(). Use the internal 959 ** %-conversion extensions. 960 */ 961 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 962 va_list ap; 963 char *z; 964 va_start(ap, zFormat); 965 z = sqlite3VMPrintf(db, zFormat, ap); 966 va_end(ap); 967 return z; 968 } 969 970 /* 971 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 972 ** %-conversion extensions. 973 */ 974 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 975 char *z; 976 char zBase[SQLITE_PRINT_BUF_SIZE]; 977 StrAccum acc; 978 979 #ifdef SQLITE_ENABLE_API_ARMOR 980 if( zFormat==0 ){ 981 (void)SQLITE_MISUSE_BKPT; 982 return 0; 983 } 984 #endif 985 #ifndef SQLITE_OMIT_AUTOINIT 986 if( sqlite3_initialize() ) return 0; 987 #endif 988 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 989 sqlite3VXPrintf(&acc, zFormat, ap); 990 z = sqlite3StrAccumFinish(&acc); 991 return z; 992 } 993 994 /* 995 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 996 ** %-conversion extensions. 997 */ 998 char *sqlite3_mprintf(const char *zFormat, ...){ 999 va_list ap; 1000 char *z; 1001 #ifndef SQLITE_OMIT_AUTOINIT 1002 if( sqlite3_initialize() ) return 0; 1003 #endif 1004 va_start(ap, zFormat); 1005 z = sqlite3_vmprintf(zFormat, ap); 1006 va_end(ap); 1007 return z; 1008 } 1009 1010 /* 1011 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1012 ** current locale settings. This is important for SQLite because we 1013 ** are not able to use a "," as the decimal point in place of "." as 1014 ** specified by some locales. 1015 ** 1016 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1017 ** from the snprintf() standard. Unfortunately, it is too late to change 1018 ** this without breaking compatibility, so we just have to live with the 1019 ** mistake. 1020 ** 1021 ** sqlite3_vsnprintf() is the varargs version. 1022 */ 1023 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1024 StrAccum acc; 1025 if( n<=0 ) return zBuf; 1026 #ifdef SQLITE_ENABLE_API_ARMOR 1027 if( zBuf==0 || zFormat==0 ) { 1028 (void)SQLITE_MISUSE_BKPT; 1029 if( zBuf ) zBuf[0] = 0; 1030 return zBuf; 1031 } 1032 #endif 1033 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1034 sqlite3VXPrintf(&acc, zFormat, ap); 1035 zBuf[acc.nChar] = 0; 1036 return zBuf; 1037 } 1038 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1039 char *z; 1040 va_list ap; 1041 va_start(ap,zFormat); 1042 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1043 va_end(ap); 1044 return z; 1045 } 1046 1047 /* 1048 ** This is the routine that actually formats the sqlite3_log() message. 1049 ** We house it in a separate routine from sqlite3_log() to avoid using 1050 ** stack space on small-stack systems when logging is disabled. 1051 ** 1052 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1053 ** allocate memory because it might be called while the memory allocator 1054 ** mutex is held. 1055 ** 1056 ** sqlite3VXPrintf() might ask for *temporary* memory allocations for 1057 ** certain format characters (%q) or for very large precisions or widths. 1058 ** Care must be taken that any sqlite3_log() calls that occur while the 1059 ** memory mutex is held do not use these mechanisms. 1060 */ 1061 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1062 StrAccum acc; /* String accumulator */ 1063 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1064 1065 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1066 sqlite3VXPrintf(&acc, zFormat, ap); 1067 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1068 sqlite3StrAccumFinish(&acc)); 1069 } 1070 1071 /* 1072 ** Format and write a message to the log if logging is enabled. 1073 */ 1074 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1075 va_list ap; /* Vararg list */ 1076 if( sqlite3GlobalConfig.xLog ){ 1077 va_start(ap, zFormat); 1078 renderLogMsg(iErrCode, zFormat, ap); 1079 va_end(ap); 1080 } 1081 } 1082 1083 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1084 /* 1085 ** A version of printf() that understands %lld. Used for debugging. 1086 ** The printf() built into some versions of windows does not understand %lld 1087 ** and segfaults if you give it a long long int. 1088 */ 1089 void sqlite3DebugPrintf(const char *zFormat, ...){ 1090 va_list ap; 1091 StrAccum acc; 1092 char zBuf[500]; 1093 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1094 va_start(ap,zFormat); 1095 sqlite3VXPrintf(&acc, zFormat, ap); 1096 va_end(ap); 1097 sqlite3StrAccumFinish(&acc); 1098 fprintf(stdout,"%s", zBuf); 1099 fflush(stdout); 1100 } 1101 #endif 1102 1103 1104 /* 1105 ** variable-argument wrapper around sqlite3VXPrintf(). The bFlags argument 1106 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1107 */ 1108 void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ 1109 va_list ap; 1110 va_start(ap,zFormat); 1111 sqlite3VXPrintf(p, zFormat, ap); 1112 va_end(ap); 1113 } 1114