1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. The original comments are included here for 4 ** completeness. They are very out-of-date but might be useful as 5 ** an historical reference. Most of the "enhancements" have been backed 6 ** out so that the functionality is now the same as standard printf(). 7 ** 8 ** $Id: printf.c,v 1.99 2008/12/10 19:26:24 drh Exp $ 9 ** 10 ************************************************************************** 11 ** 12 ** The following modules is an enhanced replacement for the "printf" subroutines 13 ** found in the standard C library. The following enhancements are 14 ** supported: 15 ** 16 ** + Additional functions. The standard set of "printf" functions 17 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and 18 ** vsprintf. This module adds the following: 19 ** 20 ** * snprintf -- Works like sprintf, but has an extra argument 21 ** which is the size of the buffer written to. 22 ** 23 ** * mprintf -- Similar to sprintf. Writes output to memory 24 ** obtained from malloc. 25 ** 26 ** * xprintf -- Calls a function to dispose of output. 27 ** 28 ** * nprintf -- No output, but returns the number of characters 29 ** that would have been output by printf. 30 ** 31 ** * A v- version (ex: vsnprintf) of every function is also 32 ** supplied. 33 ** 34 ** + A few extensions to the formatting notation are supported: 35 ** 36 ** * The "=" flag (similar to "-") causes the output to be 37 ** be centered in the appropriately sized field. 38 ** 39 ** * The %b field outputs an integer in binary notation. 40 ** 41 ** * The %c field now accepts a precision. The character output 42 ** is repeated by the number of times the precision specifies. 43 ** 44 ** * The %' field works like %c, but takes as its character the 45 ** next character of the format string, instead of the next 46 ** argument. For example, printf("%.78'-") prints 78 minus 47 ** signs, the same as printf("%.78c",'-'). 48 ** 49 ** + When compiled using GCC on a SPARC, this version of printf is 50 ** faster than the library printf for SUN OS 4.1. 51 ** 52 ** + All functions are fully reentrant. 53 ** 54 */ 55 #include "sqliteInt.h" 56 57 /* 58 ** Conversion types fall into various categories as defined by the 59 ** following enumeration. 60 */ 61 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 62 #define etFLOAT 2 /* Floating point. %f */ 63 #define etEXP 3 /* Exponentional notation. %e and %E */ 64 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 65 #define etSIZE 5 /* Return number of characters processed so far. %n */ 66 #define etSTRING 6 /* Strings. %s */ 67 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 68 #define etPERCENT 8 /* Percent symbol. %% */ 69 #define etCHARX 9 /* Characters. %c */ 70 /* The rest are extensions, not normally found in printf() */ 71 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ 72 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', 73 NULL pointers replaced by SQL NULL. %Q */ 74 #define etTOKEN 12 /* a pointer to a Token structure */ 75 #define etSRCLIST 13 /* a pointer to a SrcList */ 76 #define etPOINTER 14 /* The %p conversion */ 77 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ 78 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 79 80 81 /* 82 ** An "etByte" is an 8-bit unsigned value. 83 */ 84 typedef unsigned char etByte; 85 86 /* 87 ** Each builtin conversion character (ex: the 'd' in "%d") is described 88 ** by an instance of the following structure 89 */ 90 typedef struct et_info { /* Information about each format field */ 91 char fmttype; /* The format field code letter */ 92 etByte base; /* The base for radix conversion */ 93 etByte flags; /* One or more of FLAG_ constants below */ 94 etByte type; /* Conversion paradigm */ 95 etByte charset; /* Offset into aDigits[] of the digits string */ 96 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 97 } et_info; 98 99 /* 100 ** Allowed values for et_info.flags 101 */ 102 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 103 #define FLAG_INTERN 2 /* True if for internal use only */ 104 #define FLAG_STRING 4 /* Allow infinity precision */ 105 106 107 /* 108 ** The following table is searched linearly, so it is good to put the 109 ** most frequently used conversion types first. 110 */ 111 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 112 static const char aPrefix[] = "-x0\000X0"; 113 static const et_info fmtinfo[] = { 114 { 'd', 10, 1, etRADIX, 0, 0 }, 115 { 's', 0, 4, etSTRING, 0, 0 }, 116 { 'g', 0, 1, etGENERIC, 30, 0 }, 117 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 118 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 119 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 120 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 121 { 'c', 0, 0, etCHARX, 0, 0 }, 122 { 'o', 8, 0, etRADIX, 0, 2 }, 123 { 'u', 10, 0, etRADIX, 0, 0 }, 124 { 'x', 16, 0, etRADIX, 16, 1 }, 125 { 'X', 16, 0, etRADIX, 0, 4 }, 126 #ifndef SQLITE_OMIT_FLOATING_POINT 127 { 'f', 0, 1, etFLOAT, 0, 0 }, 128 { 'e', 0, 1, etEXP, 30, 0 }, 129 { 'E', 0, 1, etEXP, 14, 0 }, 130 { 'G', 0, 1, etGENERIC, 14, 0 }, 131 #endif 132 { 'i', 10, 1, etRADIX, 0, 0 }, 133 { 'n', 0, 0, etSIZE, 0, 0 }, 134 { '%', 0, 0, etPERCENT, 0, 0 }, 135 { 'p', 16, 0, etPOINTER, 0, 1 }, 136 { 'T', 0, 2, etTOKEN, 0, 0 }, 137 { 'S', 0, 2, etSRCLIST, 0, 0 }, 138 { 'r', 10, 3, etORDINAL, 0, 0 }, 139 }; 140 141 /* 142 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 143 ** conversions will work. 144 */ 145 #ifndef SQLITE_OMIT_FLOATING_POINT 146 /* 147 ** "*val" is a double such that 0.1 <= *val < 10.0 148 ** Return the ascii code for the leading digit of *val, then 149 ** multiply "*val" by 10.0 to renormalize. 150 ** 151 ** Example: 152 ** input: *val = 3.14159 153 ** output: *val = 1.4159 function return = '3' 154 ** 155 ** The counter *cnt is incremented each time. After counter exceeds 156 ** 16 (the number of significant digits in a 64-bit float) '0' is 157 ** always returned. 158 */ 159 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 160 int digit; 161 LONGDOUBLE_TYPE d; 162 if( (*cnt)++ >= 16 ) return '0'; 163 digit = (int)*val; 164 d = digit; 165 digit += '0'; 166 *val = (*val - d)*10.0; 167 return (char)digit; 168 } 169 #endif /* SQLITE_OMIT_FLOATING_POINT */ 170 171 /* 172 ** Append N space characters to the given string buffer. 173 */ 174 static void appendSpace(StrAccum *pAccum, int N){ 175 static const char zSpaces[] = " "; 176 while( N>=(int)sizeof(zSpaces)-1 ){ 177 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); 178 N -= sizeof(zSpaces)-1; 179 } 180 if( N>0 ){ 181 sqlite3StrAccumAppend(pAccum, zSpaces, N); 182 } 183 } 184 185 /* 186 ** On machines with a small stack size, you can redefine the 187 ** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for 188 ** smaller values some %f conversions may go into an infinite loop. 189 */ 190 #ifndef SQLITE_PRINT_BUF_SIZE 191 # define SQLITE_PRINT_BUF_SIZE 350 192 #endif 193 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 194 195 /* 196 ** The root program. All variations call this core. 197 ** 198 ** INPUTS: 199 ** func This is a pointer to a function taking three arguments 200 ** 1. A pointer to anything. Same as the "arg" parameter. 201 ** 2. A pointer to the list of characters to be output 202 ** (Note, this list is NOT null terminated.) 203 ** 3. An integer number of characters to be output. 204 ** (Note: This number might be zero.) 205 ** 206 ** arg This is the pointer to anything which will be passed as the 207 ** first argument to "func". Use it for whatever you like. 208 ** 209 ** fmt This is the format string, as in the usual print. 210 ** 211 ** ap This is a pointer to a list of arguments. Same as in 212 ** vfprint. 213 ** 214 ** OUTPUTS: 215 ** The return value is the total number of characters sent to 216 ** the function "func". Returns -1 on a error. 217 ** 218 ** Note that the order in which automatic variables are declared below 219 ** seems to make a big difference in determining how fast this beast 220 ** will run. 221 */ 222 void sqlite3VXPrintf( 223 StrAccum *pAccum, /* Accumulate results here */ 224 int useExtended, /* Allow extended %-conversions */ 225 const char *fmt, /* Format string */ 226 va_list ap /* arguments */ 227 ){ 228 int c; /* Next character in the format string */ 229 char *bufpt; /* Pointer to the conversion buffer */ 230 int precision; /* Precision of the current field */ 231 int length; /* Length of the field */ 232 int idx; /* A general purpose loop counter */ 233 int width; /* Width of the current field */ 234 etByte flag_leftjustify; /* True if "-" flag is present */ 235 etByte flag_plussign; /* True if "+" flag is present */ 236 etByte flag_blanksign; /* True if " " flag is present */ 237 etByte flag_alternateform; /* True if "#" flag is present */ 238 etByte flag_altform2; /* True if "!" flag is present */ 239 etByte flag_zeropad; /* True if field width constant starts with zero */ 240 etByte flag_long; /* True if "l" flag is present */ 241 etByte flag_longlong; /* True if the "ll" flag is present */ 242 etByte done; /* Loop termination flag */ 243 sqlite_uint64 longvalue; /* Value for integer types */ 244 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 245 const et_info *infop; /* Pointer to the appropriate info structure */ 246 char buf[etBUFSIZE]; /* Conversion buffer */ 247 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 248 etByte xtype = 0; /* Conversion paradigm */ 249 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ 250 #ifndef SQLITE_OMIT_FLOATING_POINT 251 int exp, e2; /* exponent of real numbers */ 252 double rounder; /* Used for rounding floating point values */ 253 etByte flag_dp; /* True if decimal point should be shown */ 254 etByte flag_rtz; /* True if trailing zeros should be removed */ 255 etByte flag_exp; /* True to force display of the exponent */ 256 int nsd; /* Number of significant digits returned */ 257 #endif 258 259 length = 0; 260 bufpt = 0; 261 for(; (c=(*fmt))!=0; ++fmt){ 262 if( c!='%' ){ 263 int amt; 264 bufpt = (char *)fmt; 265 amt = 1; 266 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 267 sqlite3StrAccumAppend(pAccum, bufpt, amt); 268 if( c==0 ) break; 269 } 270 if( (c=(*++fmt))==0 ){ 271 sqlite3StrAccumAppend(pAccum, "%", 1); 272 break; 273 } 274 /* Find out what flags are present */ 275 flag_leftjustify = flag_plussign = flag_blanksign = 276 flag_alternateform = flag_altform2 = flag_zeropad = 0; 277 done = 0; 278 do{ 279 switch( c ){ 280 case '-': flag_leftjustify = 1; break; 281 case '+': flag_plussign = 1; break; 282 case ' ': flag_blanksign = 1; break; 283 case '#': flag_alternateform = 1; break; 284 case '!': flag_altform2 = 1; break; 285 case '0': flag_zeropad = 1; break; 286 default: done = 1; break; 287 } 288 }while( !done && (c=(*++fmt))!=0 ); 289 /* Get the field width */ 290 width = 0; 291 if( c=='*' ){ 292 width = va_arg(ap,int); 293 if( width<0 ){ 294 flag_leftjustify = 1; 295 width = -width; 296 } 297 c = *++fmt; 298 }else{ 299 while( c>='0' && c<='9' ){ 300 width = width*10 + c - '0'; 301 c = *++fmt; 302 } 303 } 304 if( width > etBUFSIZE-10 ){ 305 width = etBUFSIZE-10; 306 } 307 /* Get the precision */ 308 if( c=='.' ){ 309 precision = 0; 310 c = *++fmt; 311 if( c=='*' ){ 312 precision = va_arg(ap,int); 313 if( precision<0 ) precision = -precision; 314 c = *++fmt; 315 }else{ 316 while( c>='0' && c<='9' ){ 317 precision = precision*10 + c - '0'; 318 c = *++fmt; 319 } 320 } 321 }else{ 322 precision = -1; 323 } 324 /* Get the conversion type modifier */ 325 if( c=='l' ){ 326 flag_long = 1; 327 c = *++fmt; 328 if( c=='l' ){ 329 flag_longlong = 1; 330 c = *++fmt; 331 }else{ 332 flag_longlong = 0; 333 } 334 }else{ 335 flag_long = flag_longlong = 0; 336 } 337 /* Fetch the info entry for the field */ 338 infop = 0; 339 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 340 if( c==fmtinfo[idx].fmttype ){ 341 infop = &fmtinfo[idx]; 342 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 343 xtype = infop->type; 344 }else{ 345 return; 346 } 347 break; 348 } 349 } 350 zExtra = 0; 351 if( infop==0 ){ 352 return; 353 } 354 355 356 /* Limit the precision to prevent overflowing buf[] during conversion */ 357 if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ 358 precision = etBUFSIZE-40; 359 } 360 361 /* 362 ** At this point, variables are initialized as follows: 363 ** 364 ** flag_alternateform TRUE if a '#' is present. 365 ** flag_altform2 TRUE if a '!' is present. 366 ** flag_plussign TRUE if a '+' is present. 367 ** flag_leftjustify TRUE if a '-' is present or if the 368 ** field width was negative. 369 ** flag_zeropad TRUE if the width began with 0. 370 ** flag_long TRUE if the letter 'l' (ell) prefixed 371 ** the conversion character. 372 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 373 ** the conversion character. 374 ** flag_blanksign TRUE if a ' ' is present. 375 ** width The specified field width. This is 376 ** always non-negative. Zero is the default. 377 ** precision The specified precision. The default 378 ** is -1. 379 ** xtype The class of the conversion. 380 ** infop Pointer to the appropriate info struct. 381 */ 382 switch( xtype ){ 383 case etPOINTER: 384 flag_longlong = sizeof(char*)==sizeof(i64); 385 flag_long = sizeof(char*)==sizeof(long int); 386 /* Fall through into the next case */ 387 case etORDINAL: 388 case etRADIX: 389 if( infop->flags & FLAG_SIGNED ){ 390 i64 v; 391 if( flag_longlong ) v = va_arg(ap,i64); 392 else if( flag_long ) v = va_arg(ap,long int); 393 else v = va_arg(ap,int); 394 if( v<0 ){ 395 longvalue = -v; 396 prefix = '-'; 397 }else{ 398 longvalue = v; 399 if( flag_plussign ) prefix = '+'; 400 else if( flag_blanksign ) prefix = ' '; 401 else prefix = 0; 402 } 403 }else{ 404 if( flag_longlong ) longvalue = va_arg(ap,u64); 405 else if( flag_long ) longvalue = va_arg(ap,unsigned long int); 406 else longvalue = va_arg(ap,unsigned int); 407 prefix = 0; 408 } 409 if( longvalue==0 ) flag_alternateform = 0; 410 if( flag_zeropad && precision<width-(prefix!=0) ){ 411 precision = width-(prefix!=0); 412 } 413 bufpt = &buf[etBUFSIZE-1]; 414 if( xtype==etORDINAL ){ 415 static const char zOrd[] = "thstndrd"; 416 int x = (int)(longvalue % 10); 417 if( x>=4 || (longvalue/10)%10==1 ){ 418 x = 0; 419 } 420 buf[etBUFSIZE-3] = zOrd[x*2]; 421 buf[etBUFSIZE-2] = zOrd[x*2+1]; 422 bufpt -= 2; 423 } 424 { 425 register const char *cset; /* Use registers for speed */ 426 register int base; 427 cset = &aDigits[infop->charset]; 428 base = infop->base; 429 do{ /* Convert to ascii */ 430 *(--bufpt) = cset[longvalue%base]; 431 longvalue = longvalue/base; 432 }while( longvalue>0 ); 433 } 434 length = (int)(&buf[etBUFSIZE-1]-bufpt); 435 for(idx=precision-length; idx>0; idx--){ 436 *(--bufpt) = '0'; /* Zero pad */ 437 } 438 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 439 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 440 const char *pre; 441 char x; 442 pre = &aPrefix[infop->prefix]; 443 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 444 } 445 length = (int)(&buf[etBUFSIZE-1]-bufpt); 446 break; 447 case etFLOAT: 448 case etEXP: 449 case etGENERIC: 450 realvalue = va_arg(ap,double); 451 #ifndef SQLITE_OMIT_FLOATING_POINT 452 if( precision<0 ) precision = 6; /* Set default precision */ 453 if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; 454 if( realvalue<0.0 ){ 455 realvalue = -realvalue; 456 prefix = '-'; 457 }else{ 458 if( flag_plussign ) prefix = '+'; 459 else if( flag_blanksign ) prefix = ' '; 460 else prefix = 0; 461 } 462 if( xtype==etGENERIC && precision>0 ) precision--; 463 #if 0 464 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 465 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 466 #else 467 /* It makes more sense to use 0.5 */ 468 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 469 #endif 470 if( xtype==etFLOAT ) realvalue += rounder; 471 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 472 exp = 0; 473 if( sqlite3IsNaN((double)realvalue) ){ 474 bufpt = "NaN"; 475 length = 3; 476 break; 477 } 478 if( realvalue>0.0 ){ 479 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } 480 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 481 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 482 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 483 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 484 if( exp>350 ){ 485 if( prefix=='-' ){ 486 bufpt = "-Inf"; 487 }else if( prefix=='+' ){ 488 bufpt = "+Inf"; 489 }else{ 490 bufpt = "Inf"; 491 } 492 length = sqlite3Strlen30(bufpt); 493 break; 494 } 495 } 496 bufpt = buf; 497 /* 498 ** If the field type is etGENERIC, then convert to either etEXP 499 ** or etFLOAT, as appropriate. 500 */ 501 flag_exp = xtype==etEXP; 502 if( xtype!=etFLOAT ){ 503 realvalue += rounder; 504 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 505 } 506 if( xtype==etGENERIC ){ 507 flag_rtz = !flag_alternateform; 508 if( exp<-4 || exp>precision ){ 509 xtype = etEXP; 510 }else{ 511 precision = precision - exp; 512 xtype = etFLOAT; 513 } 514 }else{ 515 flag_rtz = 0; 516 } 517 if( xtype==etEXP ){ 518 e2 = 0; 519 }else{ 520 e2 = exp; 521 } 522 nsd = 0; 523 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 524 /* The sign in front of the number */ 525 if( prefix ){ 526 *(bufpt++) = prefix; 527 } 528 /* Digits prior to the decimal point */ 529 if( e2<0 ){ 530 *(bufpt++) = '0'; 531 }else{ 532 for(; e2>=0; e2--){ 533 *(bufpt++) = et_getdigit(&realvalue,&nsd); 534 } 535 } 536 /* The decimal point */ 537 if( flag_dp ){ 538 *(bufpt++) = '.'; 539 } 540 /* "0" digits after the decimal point but before the first 541 ** significant digit of the number */ 542 for(e2++; e2<0; precision--, e2++){ 543 assert( precision>0 ); 544 *(bufpt++) = '0'; 545 } 546 /* Significant digits after the decimal point */ 547 while( (precision--)>0 ){ 548 *(bufpt++) = et_getdigit(&realvalue,&nsd); 549 } 550 /* Remove trailing zeros and the "." if no digits follow the "." */ 551 if( flag_rtz && flag_dp ){ 552 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 553 assert( bufpt>buf ); 554 if( bufpt[-1]=='.' ){ 555 if( flag_altform2 ){ 556 *(bufpt++) = '0'; 557 }else{ 558 *(--bufpt) = 0; 559 } 560 } 561 } 562 /* Add the "eNNN" suffix */ 563 if( flag_exp || xtype==etEXP ){ 564 *(bufpt++) = aDigits[infop->charset]; 565 if( exp<0 ){ 566 *(bufpt++) = '-'; exp = -exp; 567 }else{ 568 *(bufpt++) = '+'; 569 } 570 if( exp>=100 ){ 571 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 572 exp %= 100; 573 } 574 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 575 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 576 } 577 *bufpt = 0; 578 579 /* The converted number is in buf[] and zero terminated. Output it. 580 ** Note that the number is in the usual order, not reversed as with 581 ** integer conversions. */ 582 length = (int)(bufpt-buf); 583 bufpt = buf; 584 585 /* Special case: Add leading zeros if the flag_zeropad flag is 586 ** set and we are not left justified */ 587 if( flag_zeropad && !flag_leftjustify && length < width){ 588 int i; 589 int nPad = width - length; 590 for(i=width; i>=nPad; i--){ 591 bufpt[i] = bufpt[i-nPad]; 592 } 593 i = prefix!=0; 594 while( nPad-- ) bufpt[i++] = '0'; 595 length = width; 596 } 597 #endif 598 break; 599 case etSIZE: 600 *(va_arg(ap,int*)) = pAccum->nChar; 601 length = width = 0; 602 break; 603 case etPERCENT: 604 buf[0] = '%'; 605 bufpt = buf; 606 length = 1; 607 break; 608 case etCHARX: 609 c = va_arg(ap,int); 610 buf[0] = (char)c; 611 if( precision>=0 ){ 612 for(idx=1; idx<precision; idx++) buf[idx] = (char)c; 613 length = precision; 614 }else{ 615 length =1; 616 } 617 bufpt = buf; 618 break; 619 case etSTRING: 620 case etDYNSTRING: 621 bufpt = va_arg(ap,char*); 622 if( bufpt==0 ){ 623 bufpt = ""; 624 }else if( xtype==etDYNSTRING ){ 625 zExtra = bufpt; 626 } 627 if( precision>=0 ){ 628 for(length=0; length<precision && bufpt[length]; length++){} 629 }else{ 630 length = sqlite3Strlen30(bufpt); 631 } 632 break; 633 case etSQLESCAPE: 634 case etSQLESCAPE2: 635 case etSQLESCAPE3: { 636 int i, j, n, isnull; 637 int needQuote; 638 char ch; 639 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 640 char *escarg = va_arg(ap,char*); 641 isnull = escarg==0; 642 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 643 for(i=n=0; (ch=escarg[i])!=0; i++){ 644 if( ch==q ) n++; 645 } 646 needQuote = !isnull && xtype==etSQLESCAPE2; 647 n += i + 1 + needQuote*2; 648 if( n>etBUFSIZE ){ 649 bufpt = zExtra = sqlite3Malloc( n ); 650 if( bufpt==0 ){ 651 pAccum->mallocFailed = 1; 652 return; 653 } 654 }else{ 655 bufpt = buf; 656 } 657 j = 0; 658 if( needQuote ) bufpt[j++] = q; 659 for(i=0; (ch=escarg[i])!=0; i++){ 660 bufpt[j++] = ch; 661 if( ch==q ) bufpt[j++] = ch; 662 } 663 if( needQuote ) bufpt[j++] = q; 664 bufpt[j] = 0; 665 length = j; 666 /* The precision is ignored on %q and %Q */ 667 /* if( precision>=0 && precision<length ) length = precision; */ 668 break; 669 } 670 case etTOKEN: { 671 Token *pToken = va_arg(ap, Token*); 672 if( pToken ){ 673 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 674 } 675 length = width = 0; 676 break; 677 } 678 case etSRCLIST: { 679 SrcList *pSrc = va_arg(ap, SrcList*); 680 int k = va_arg(ap, int); 681 struct SrcList_item *pItem = &pSrc->a[k]; 682 assert( k>=0 && k<pSrc->nSrc ); 683 if( pItem->zDatabase ){ 684 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); 685 sqlite3StrAccumAppend(pAccum, ".", 1); 686 } 687 sqlite3StrAccumAppend(pAccum, pItem->zName, -1); 688 length = width = 0; 689 break; 690 } 691 }/* End switch over the format type */ 692 /* 693 ** The text of the conversion is pointed to by "bufpt" and is 694 ** "length" characters long. The field width is "width". Do 695 ** the output. 696 */ 697 if( !flag_leftjustify ){ 698 register int nspace; 699 nspace = width-length; 700 if( nspace>0 ){ 701 appendSpace(pAccum, nspace); 702 } 703 } 704 if( length>0 ){ 705 sqlite3StrAccumAppend(pAccum, bufpt, length); 706 } 707 if( flag_leftjustify ){ 708 register int nspace; 709 nspace = width-length; 710 if( nspace>0 ){ 711 appendSpace(pAccum, nspace); 712 } 713 } 714 if( zExtra ){ 715 sqlite3_free(zExtra); 716 } 717 }/* End for loop over the format string */ 718 } /* End of function */ 719 720 /* 721 ** Append N bytes of text from z to the StrAccum object. 722 */ 723 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 724 if( p->tooBig | p->mallocFailed ){ 725 return; 726 } 727 if( N<0 ){ 728 N = sqlite3Strlen30(z); 729 } 730 if( N==0 || z==0 ){ 731 return; 732 } 733 if( p->nChar+N >= p->nAlloc ){ 734 char *zNew; 735 if( !p->useMalloc ){ 736 p->tooBig = 1; 737 N = p->nAlloc - p->nChar - 1; 738 if( N<=0 ){ 739 return; 740 } 741 }else{ 742 i64 szNew = p->nChar; 743 szNew += N + 1; 744 if( szNew > p->mxAlloc ){ 745 sqlite3StrAccumReset(p); 746 p->tooBig = 1; 747 return; 748 }else{ 749 p->nAlloc = (int)szNew; 750 } 751 zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); 752 if( zNew ){ 753 memcpy(zNew, p->zText, p->nChar); 754 sqlite3StrAccumReset(p); 755 p->zText = zNew; 756 }else{ 757 p->mallocFailed = 1; 758 sqlite3StrAccumReset(p); 759 return; 760 } 761 } 762 } 763 memcpy(&p->zText[p->nChar], z, N); 764 p->nChar += N; 765 } 766 767 /* 768 ** Finish off a string by making sure it is zero-terminated. 769 ** Return a pointer to the resulting string. Return a NULL 770 ** pointer if any kind of error was encountered. 771 */ 772 char *sqlite3StrAccumFinish(StrAccum *p){ 773 if( p->zText ){ 774 p->zText[p->nChar] = 0; 775 if( p->useMalloc && p->zText==p->zBase ){ 776 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 777 if( p->zText ){ 778 memcpy(p->zText, p->zBase, p->nChar+1); 779 }else{ 780 p->mallocFailed = 1; 781 } 782 } 783 } 784 return p->zText; 785 } 786 787 /* 788 ** Reset an StrAccum string. Reclaim all malloced memory. 789 */ 790 void sqlite3StrAccumReset(StrAccum *p){ 791 if( p->zText!=p->zBase ){ 792 sqlite3DbFree(p->db, p->zText); 793 } 794 p->zText = 0; 795 } 796 797 /* 798 ** Initialize a string accumulator 799 */ 800 void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ 801 p->zText = p->zBase = zBase; 802 p->db = 0; 803 p->nChar = 0; 804 p->nAlloc = n; 805 p->mxAlloc = mx; 806 p->useMalloc = 1; 807 p->tooBig = 0; 808 p->mallocFailed = 0; 809 } 810 811 /* 812 ** Print into memory obtained from sqliteMalloc(). Use the internal 813 ** %-conversion extensions. 814 */ 815 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 816 char *z; 817 char zBase[SQLITE_PRINT_BUF_SIZE]; 818 StrAccum acc; 819 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), 820 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 821 acc.db = db; 822 sqlite3VXPrintf(&acc, 1, zFormat, ap); 823 z = sqlite3StrAccumFinish(&acc); 824 if( acc.mallocFailed && db ){ 825 db->mallocFailed = 1; 826 } 827 return z; 828 } 829 830 /* 831 ** Print into memory obtained from sqliteMalloc(). Use the internal 832 ** %-conversion extensions. 833 */ 834 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 835 va_list ap; 836 char *z; 837 va_start(ap, zFormat); 838 z = sqlite3VMPrintf(db, zFormat, ap); 839 va_end(ap); 840 return z; 841 } 842 843 /* 844 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting 845 ** the string and before returnning. This routine is intended to be used 846 ** to modify an existing string. For example: 847 ** 848 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); 849 ** 850 */ 851 char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ 852 va_list ap; 853 char *z; 854 va_start(ap, zFormat); 855 z = sqlite3VMPrintf(db, zFormat, ap); 856 va_end(ap); 857 sqlite3DbFree(db, zStr); 858 return z; 859 } 860 861 /* 862 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 863 ** %-conversion extensions. 864 */ 865 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 866 char *z; 867 char zBase[SQLITE_PRINT_BUF_SIZE]; 868 StrAccum acc; 869 #ifndef SQLITE_OMIT_AUTOINIT 870 if( sqlite3_initialize() ) return 0; 871 #endif 872 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 873 sqlite3VXPrintf(&acc, 0, zFormat, ap); 874 z = sqlite3StrAccumFinish(&acc); 875 return z; 876 } 877 878 /* 879 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 880 ** %-conversion extensions. 881 */ 882 char *sqlite3_mprintf(const char *zFormat, ...){ 883 va_list ap; 884 char *z; 885 #ifndef SQLITE_OMIT_AUTOINIT 886 if( sqlite3_initialize() ) return 0; 887 #endif 888 va_start(ap, zFormat); 889 z = sqlite3_vmprintf(zFormat, ap); 890 va_end(ap); 891 return z; 892 } 893 894 /* 895 ** sqlite3_snprintf() works like snprintf() except that it ignores the 896 ** current locale settings. This is important for SQLite because we 897 ** are not able to use a "," as the decimal point in place of "." as 898 ** specified by some locales. 899 */ 900 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 901 char *z; 902 va_list ap; 903 StrAccum acc; 904 905 if( n<=0 ){ 906 return zBuf; 907 } 908 sqlite3StrAccumInit(&acc, zBuf, n, 0); 909 acc.useMalloc = 0; 910 va_start(ap,zFormat); 911 sqlite3VXPrintf(&acc, 0, zFormat, ap); 912 va_end(ap); 913 z = sqlite3StrAccumFinish(&acc); 914 return z; 915 } 916 917 #if defined(SQLITE_DEBUG) 918 /* 919 ** A version of printf() that understands %lld. Used for debugging. 920 ** The printf() built into some versions of windows does not understand %lld 921 ** and segfaults if you give it a long long int. 922 */ 923 void sqlite3DebugPrintf(const char *zFormat, ...){ 924 va_list ap; 925 StrAccum acc; 926 char zBuf[500]; 927 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); 928 acc.useMalloc = 0; 929 va_start(ap,zFormat); 930 sqlite3VXPrintf(&acc, 0, zFormat, ap); 931 va_end(ap); 932 sqlite3StrAccumFinish(&acc); 933 fprintf(stdout,"%s", zBuf); 934 fflush(stdout); 935 } 936 #endif 937