1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCLIST 12 /* a pointer to a SrcList */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCLIST, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* Floating point constants used for rounding */ 103 static const double arRound[] = { 104 5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05, 105 5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10, 106 }; 107 108 /* 109 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 110 ** conversions will work. 111 */ 112 #ifndef SQLITE_OMIT_FLOATING_POINT 113 /* 114 ** "*val" is a double such that 0.1 <= *val < 10.0 115 ** Return the ascii code for the leading digit of *val, then 116 ** multiply "*val" by 10.0 to renormalize. 117 ** 118 ** Example: 119 ** input: *val = 3.14159 120 ** output: *val = 1.4159 function return = '3' 121 ** 122 ** The counter *cnt is incremented each time. After counter exceeds 123 ** 16 (the number of significant digits in a 64-bit float) '0' is 124 ** always returned. 125 */ 126 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 127 int digit; 128 LONGDOUBLE_TYPE d; 129 if( (*cnt)<=0 ) return '0'; 130 (*cnt)--; 131 digit = (int)*val; 132 d = digit; 133 digit += '0'; 134 *val = (*val - d)*10.0; 135 return (char)digit; 136 } 137 #endif /* SQLITE_OMIT_FLOATING_POINT */ 138 139 /* 140 ** Set the StrAccum object to an error mode. 141 */ 142 static void setStrAccumError(StrAccum *p, u8 eError){ 143 assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); 144 p->accError = eError; 145 if( p->mxAlloc ) sqlite3_str_reset(p); 146 if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError); 147 } 148 149 /* 150 ** Extra argument values from a PrintfArguments object 151 */ 152 static sqlite3_int64 getIntArg(PrintfArguments *p){ 153 if( p->nArg<=p->nUsed ) return 0; 154 return sqlite3_value_int64(p->apArg[p->nUsed++]); 155 } 156 static double getDoubleArg(PrintfArguments *p){ 157 if( p->nArg<=p->nUsed ) return 0.0; 158 return sqlite3_value_double(p->apArg[p->nUsed++]); 159 } 160 static char *getTextArg(PrintfArguments *p){ 161 if( p->nArg<=p->nUsed ) return 0; 162 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 163 } 164 165 /* 166 ** Allocate memory for a temporary buffer needed for printf rendering. 167 ** 168 ** If the requested size of the temp buffer is larger than the size 169 ** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error. 170 ** Do the size check before the memory allocation to prevent rogue 171 ** SQL from requesting large allocations using the precision or width 172 ** field of the printf() function. 173 */ 174 static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){ 175 char *z; 176 if( pAccum->accError ) return 0; 177 if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){ 178 setStrAccumError(pAccum, SQLITE_TOOBIG); 179 return 0; 180 } 181 z = sqlite3DbMallocRaw(pAccum->db, n); 182 if( z==0 ){ 183 setStrAccumError(pAccum, SQLITE_NOMEM); 184 } 185 return z; 186 } 187 188 /* 189 ** On machines with a small stack size, you can redefine the 190 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 191 */ 192 #ifndef SQLITE_PRINT_BUF_SIZE 193 # define SQLITE_PRINT_BUF_SIZE 70 194 #endif 195 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 196 197 /* 198 ** Hard limit on the precision of floating-point conversions. 199 */ 200 #ifndef SQLITE_PRINTF_PRECISION_LIMIT 201 # define SQLITE_FP_PRECISION_LIMIT 100000000 202 #endif 203 204 /* 205 ** Render a string given by "fmt" into the StrAccum object. 206 */ 207 void sqlite3_str_vappendf( 208 sqlite3_str *pAccum, /* Accumulate results here */ 209 const char *fmt, /* Format string */ 210 va_list ap /* arguments */ 211 ){ 212 int c; /* Next character in the format string */ 213 char *bufpt; /* Pointer to the conversion buffer */ 214 int precision; /* Precision of the current field */ 215 int length; /* Length of the field */ 216 int idx; /* A general purpose loop counter */ 217 int width; /* Width of the current field */ 218 etByte flag_leftjustify; /* True if "-" flag is present */ 219 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 220 etByte flag_alternateform; /* True if "#" flag is present */ 221 etByte flag_altform2; /* True if "!" flag is present */ 222 etByte flag_zeropad; /* True if field width constant starts with zero */ 223 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 224 etByte done; /* Loop termination flag */ 225 etByte cThousand; /* Thousands separator for %d and %u */ 226 etByte xtype = etINVALID; /* Conversion paradigm */ 227 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 228 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 229 sqlite_uint64 longvalue; /* Value for integer types */ 230 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 231 const et_info *infop; /* Pointer to the appropriate info structure */ 232 char *zOut; /* Rendering buffer */ 233 int nOut; /* Size of the rendering buffer */ 234 char *zExtra = 0; /* Malloced memory used by some conversion */ 235 #ifndef SQLITE_OMIT_FLOATING_POINT 236 int exp, e2; /* exponent of real numbers */ 237 int nsd; /* Number of significant digits returned */ 238 double rounder; /* Used for rounding floating point values */ 239 etByte flag_dp; /* True if decimal point should be shown */ 240 etByte flag_rtz; /* True if trailing zeros should be removed */ 241 #endif 242 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 243 char buf[etBUFSIZE]; /* Conversion buffer */ 244 245 /* pAccum never starts out with an empty buffer that was obtained from 246 ** malloc(). This precondition is required by the mprintf("%z...") 247 ** optimization. */ 248 assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 249 250 bufpt = 0; 251 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 252 pArgList = va_arg(ap, PrintfArguments*); 253 bArgList = 1; 254 }else{ 255 bArgList = 0; 256 } 257 for(; (c=(*fmt))!=0; ++fmt){ 258 if( c!='%' ){ 259 bufpt = (char *)fmt; 260 #if HAVE_STRCHRNUL 261 fmt = strchrnul(fmt, '%'); 262 #else 263 do{ fmt++; }while( *fmt && *fmt != '%' ); 264 #endif 265 sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); 266 if( *fmt==0 ) break; 267 } 268 if( (c=(*++fmt))==0 ){ 269 sqlite3_str_append(pAccum, "%", 1); 270 break; 271 } 272 /* Find out what flags are present */ 273 flag_leftjustify = flag_prefix = cThousand = 274 flag_alternateform = flag_altform2 = flag_zeropad = 0; 275 done = 0; 276 width = 0; 277 flag_long = 0; 278 precision = -1; 279 do{ 280 switch( c ){ 281 case '-': flag_leftjustify = 1; break; 282 case '+': flag_prefix = '+'; break; 283 case ' ': flag_prefix = ' '; break; 284 case '#': flag_alternateform = 1; break; 285 case '!': flag_altform2 = 1; break; 286 case '0': flag_zeropad = 1; break; 287 case ',': cThousand = ','; break; 288 default: done = 1; break; 289 case 'l': { 290 flag_long = 1; 291 c = *++fmt; 292 if( c=='l' ){ 293 c = *++fmt; 294 flag_long = 2; 295 } 296 done = 1; 297 break; 298 } 299 case '1': case '2': case '3': case '4': case '5': 300 case '6': case '7': case '8': case '9': { 301 unsigned wx = c - '0'; 302 while( (c = *++fmt)>='0' && c<='9' ){ 303 wx = wx*10 + c - '0'; 304 } 305 testcase( wx>0x7fffffff ); 306 width = wx & 0x7fffffff; 307 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 308 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 309 width = SQLITE_PRINTF_PRECISION_LIMIT; 310 } 311 #endif 312 if( c!='.' && c!='l' ){ 313 done = 1; 314 }else{ 315 fmt--; 316 } 317 break; 318 } 319 case '*': { 320 if( bArgList ){ 321 width = (int)getIntArg(pArgList); 322 }else{ 323 width = va_arg(ap,int); 324 } 325 if( width<0 ){ 326 flag_leftjustify = 1; 327 width = width >= -2147483647 ? -width : 0; 328 } 329 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 330 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 331 width = SQLITE_PRINTF_PRECISION_LIMIT; 332 } 333 #endif 334 if( (c = fmt[1])!='.' && c!='l' ){ 335 c = *++fmt; 336 done = 1; 337 } 338 break; 339 } 340 case '.': { 341 c = *++fmt; 342 if( c=='*' ){ 343 if( bArgList ){ 344 precision = (int)getIntArg(pArgList); 345 }else{ 346 precision = va_arg(ap,int); 347 } 348 if( precision<0 ){ 349 precision = precision >= -2147483647 ? -precision : -1; 350 } 351 c = *++fmt; 352 }else{ 353 unsigned px = 0; 354 while( c>='0' && c<='9' ){ 355 px = px*10 + c - '0'; 356 c = *++fmt; 357 } 358 testcase( px>0x7fffffff ); 359 precision = px & 0x7fffffff; 360 } 361 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 362 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 363 precision = SQLITE_PRINTF_PRECISION_LIMIT; 364 } 365 #endif 366 if( c=='l' ){ 367 --fmt; 368 }else{ 369 done = 1; 370 } 371 break; 372 } 373 } 374 }while( !done && (c=(*++fmt))!=0 ); 375 376 /* Fetch the info entry for the field */ 377 infop = &fmtinfo[0]; 378 xtype = etINVALID; 379 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 380 if( c==fmtinfo[idx].fmttype ){ 381 infop = &fmtinfo[idx]; 382 xtype = infop->type; 383 break; 384 } 385 } 386 387 /* 388 ** At this point, variables are initialized as follows: 389 ** 390 ** flag_alternateform TRUE if a '#' is present. 391 ** flag_altform2 TRUE if a '!' is present. 392 ** flag_prefix '+' or ' ' or zero 393 ** flag_leftjustify TRUE if a '-' is present or if the 394 ** field width was negative. 395 ** flag_zeropad TRUE if the width began with 0. 396 ** flag_long 1 for "l", 2 for "ll" 397 ** width The specified field width. This is 398 ** always non-negative. Zero is the default. 399 ** precision The specified precision. The default 400 ** is -1. 401 ** xtype The class of the conversion. 402 ** infop Pointer to the appropriate info struct. 403 */ 404 assert( width>=0 ); 405 assert( precision>=(-1) ); 406 switch( xtype ){ 407 case etPOINTER: 408 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 409 sizeof(char*)==sizeof(long int) ? 1 : 0; 410 /* no break */ deliberate_fall_through 411 case etORDINAL: 412 case etRADIX: 413 cThousand = 0; 414 /* no break */ deliberate_fall_through 415 case etDECIMAL: 416 if( infop->flags & FLAG_SIGNED ){ 417 i64 v; 418 if( bArgList ){ 419 v = getIntArg(pArgList); 420 }else if( flag_long ){ 421 if( flag_long==2 ){ 422 v = va_arg(ap,i64) ; 423 }else{ 424 v = va_arg(ap,long int); 425 } 426 }else{ 427 v = va_arg(ap,int); 428 } 429 if( v<0 ){ 430 testcase( v==SMALLEST_INT64 ); 431 testcase( v==(-1) ); 432 longvalue = ~v; 433 longvalue++; 434 prefix = '-'; 435 }else{ 436 longvalue = v; 437 prefix = flag_prefix; 438 } 439 }else{ 440 if( bArgList ){ 441 longvalue = (u64)getIntArg(pArgList); 442 }else if( flag_long ){ 443 if( flag_long==2 ){ 444 longvalue = va_arg(ap,u64); 445 }else{ 446 longvalue = va_arg(ap,unsigned long int); 447 } 448 }else{ 449 longvalue = va_arg(ap,unsigned int); 450 } 451 prefix = 0; 452 } 453 if( longvalue==0 ) flag_alternateform = 0; 454 if( flag_zeropad && precision<width-(prefix!=0) ){ 455 precision = width-(prefix!=0); 456 } 457 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 458 nOut = etBUFSIZE; 459 zOut = buf; 460 }else{ 461 u64 n; 462 n = (u64)precision + 10; 463 if( cThousand ) n += precision/3; 464 zOut = zExtra = printfTempBuf(pAccum, n); 465 if( zOut==0 ) return; 466 nOut = (int)n; 467 } 468 bufpt = &zOut[nOut-1]; 469 if( xtype==etORDINAL ){ 470 static const char zOrd[] = "thstndrd"; 471 int x = (int)(longvalue % 10); 472 if( x>=4 || (longvalue/10)%10==1 ){ 473 x = 0; 474 } 475 *(--bufpt) = zOrd[x*2+1]; 476 *(--bufpt) = zOrd[x*2]; 477 } 478 { 479 const char *cset = &aDigits[infop->charset]; 480 u8 base = infop->base; 481 do{ /* Convert to ascii */ 482 *(--bufpt) = cset[longvalue%base]; 483 longvalue = longvalue/base; 484 }while( longvalue>0 ); 485 } 486 length = (int)(&zOut[nOut-1]-bufpt); 487 while( precision>length ){ 488 *(--bufpt) = '0'; /* Zero pad */ 489 length++; 490 } 491 if( cThousand ){ 492 int nn = (length - 1)/3; /* Number of "," to insert */ 493 int ix = (length - 1)%3 + 1; 494 bufpt -= nn; 495 for(idx=0; nn>0; idx++){ 496 bufpt[idx] = bufpt[idx+nn]; 497 ix--; 498 if( ix==0 ){ 499 bufpt[++idx] = cThousand; 500 nn--; 501 ix = 3; 502 } 503 } 504 } 505 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 506 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 507 const char *pre; 508 char x; 509 pre = &aPrefix[infop->prefix]; 510 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 511 } 512 length = (int)(&zOut[nOut-1]-bufpt); 513 break; 514 case etFLOAT: 515 case etEXP: 516 case etGENERIC: 517 if( bArgList ){ 518 realvalue = getDoubleArg(pArgList); 519 }else{ 520 realvalue = va_arg(ap,double); 521 } 522 #ifdef SQLITE_OMIT_FLOATING_POINT 523 length = 0; 524 #else 525 if( precision<0 ) precision = 6; /* Set default precision */ 526 #ifdef SQLITE_FP_PRECISION_LIMIT 527 if( precision>SQLITE_FP_PRECISION_LIMIT ){ 528 precision = SQLITE_FP_PRECISION_LIMIT; 529 } 530 #endif 531 if( realvalue<0.0 ){ 532 realvalue = -realvalue; 533 prefix = '-'; 534 }else{ 535 prefix = flag_prefix; 536 } 537 if( xtype==etGENERIC && precision>0 ) precision--; 538 testcase( precision>0xfff ); 539 idx = precision & 0xfff; 540 rounder = arRound[idx%10]; 541 while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; } 542 if( xtype==etFLOAT ){ 543 double rx = (double)realvalue; 544 sqlite3_uint64 u; 545 int ex; 546 memcpy(&u, &rx, sizeof(u)); 547 ex = -1023 + (int)((u>>52)&0x7ff); 548 if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16; 549 realvalue += rounder; 550 } 551 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 552 exp = 0; 553 if( sqlite3IsNaN((double)realvalue) ){ 554 bufpt = "NaN"; 555 length = 3; 556 break; 557 } 558 if( realvalue>0.0 ){ 559 LONGDOUBLE_TYPE scale = 1.0; 560 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 561 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 562 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 563 realvalue /= scale; 564 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 565 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 566 if( exp>350 ){ 567 bufpt = buf; 568 buf[0] = prefix; 569 memcpy(buf+(prefix!=0),"Inf",4); 570 length = 3+(prefix!=0); 571 break; 572 } 573 } 574 bufpt = buf; 575 /* 576 ** If the field type is etGENERIC, then convert to either etEXP 577 ** or etFLOAT, as appropriate. 578 */ 579 if( xtype!=etFLOAT ){ 580 realvalue += rounder; 581 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 582 } 583 if( xtype==etGENERIC ){ 584 flag_rtz = !flag_alternateform; 585 if( exp<-4 || exp>precision ){ 586 xtype = etEXP; 587 }else{ 588 precision = precision - exp; 589 xtype = etFLOAT; 590 } 591 }else{ 592 flag_rtz = flag_altform2; 593 } 594 if( xtype==etEXP ){ 595 e2 = 0; 596 }else{ 597 e2 = exp; 598 } 599 { 600 i64 szBufNeeded; /* Size of a temporary buffer needed */ 601 szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; 602 if( szBufNeeded > etBUFSIZE ){ 603 bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); 604 if( bufpt==0 ) return; 605 } 606 } 607 zOut = bufpt; 608 nsd = 16 + flag_altform2*10; 609 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 610 /* The sign in front of the number */ 611 if( prefix ){ 612 *(bufpt++) = prefix; 613 } 614 /* Digits prior to the decimal point */ 615 if( e2<0 ){ 616 *(bufpt++) = '0'; 617 }else{ 618 for(; e2>=0; e2--){ 619 *(bufpt++) = et_getdigit(&realvalue,&nsd); 620 } 621 } 622 /* The decimal point */ 623 if( flag_dp ){ 624 *(bufpt++) = '.'; 625 } 626 /* "0" digits after the decimal point but before the first 627 ** significant digit of the number */ 628 for(e2++; e2<0; precision--, e2++){ 629 assert( precision>0 ); 630 *(bufpt++) = '0'; 631 } 632 /* Significant digits after the decimal point */ 633 while( (precision--)>0 ){ 634 *(bufpt++) = et_getdigit(&realvalue,&nsd); 635 } 636 /* Remove trailing zeros and the "." if no digits follow the "." */ 637 if( flag_rtz && flag_dp ){ 638 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 639 assert( bufpt>zOut ); 640 if( bufpt[-1]=='.' ){ 641 if( flag_altform2 ){ 642 *(bufpt++) = '0'; 643 }else{ 644 *(--bufpt) = 0; 645 } 646 } 647 } 648 /* Add the "eNNN" suffix */ 649 if( xtype==etEXP ){ 650 *(bufpt++) = aDigits[infop->charset]; 651 if( exp<0 ){ 652 *(bufpt++) = '-'; exp = -exp; 653 }else{ 654 *(bufpt++) = '+'; 655 } 656 if( exp>=100 ){ 657 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 658 exp %= 100; 659 } 660 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 661 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 662 } 663 *bufpt = 0; 664 665 /* The converted number is in buf[] and zero terminated. Output it. 666 ** Note that the number is in the usual order, not reversed as with 667 ** integer conversions. */ 668 length = (int)(bufpt-zOut); 669 bufpt = zOut; 670 671 /* Special case: Add leading zeros if the flag_zeropad flag is 672 ** set and we are not left justified */ 673 if( flag_zeropad && !flag_leftjustify && length < width){ 674 int i; 675 int nPad = width - length; 676 for(i=width; i>=nPad; i--){ 677 bufpt[i] = bufpt[i-nPad]; 678 } 679 i = prefix!=0; 680 while( nPad-- ) bufpt[i++] = '0'; 681 length = width; 682 } 683 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 684 break; 685 case etSIZE: 686 if( !bArgList ){ 687 *(va_arg(ap,int*)) = pAccum->nChar; 688 } 689 length = width = 0; 690 break; 691 case etPERCENT: 692 buf[0] = '%'; 693 bufpt = buf; 694 length = 1; 695 break; 696 case etCHARX: 697 if( bArgList ){ 698 bufpt = getTextArg(pArgList); 699 length = 1; 700 if( bufpt ){ 701 buf[0] = c = *(bufpt++); 702 if( (c&0xc0)==0xc0 ){ 703 while( length<4 && (bufpt[0]&0xc0)==0x80 ){ 704 buf[length++] = *(bufpt++); 705 } 706 } 707 }else{ 708 buf[0] = 0; 709 } 710 }else{ 711 unsigned int ch = va_arg(ap,unsigned int); 712 if( ch<0x00080 ){ 713 buf[0] = ch & 0xff; 714 length = 1; 715 }else if( ch<0x00800 ){ 716 buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); 717 buf[1] = 0x80 + (u8)(ch & 0x3f); 718 length = 2; 719 }else if( ch<0x10000 ){ 720 buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); 721 buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); 722 buf[2] = 0x80 + (u8)(ch & 0x3f); 723 length = 3; 724 }else{ 725 buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); 726 buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); 727 buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); 728 buf[3] = 0x80 + (u8)(ch & 0x3f); 729 length = 4; 730 } 731 } 732 if( precision>1 ){ 733 width -= precision-1; 734 if( width>1 && !flag_leftjustify ){ 735 sqlite3_str_appendchar(pAccum, width-1, ' '); 736 width = 0; 737 } 738 while( precision-- > 1 ){ 739 sqlite3_str_append(pAccum, buf, length); 740 } 741 } 742 bufpt = buf; 743 flag_altform2 = 1; 744 goto adjust_width_for_utf8; 745 case etSTRING: 746 case etDYNSTRING: 747 if( bArgList ){ 748 bufpt = getTextArg(pArgList); 749 xtype = etSTRING; 750 }else{ 751 bufpt = va_arg(ap,char*); 752 } 753 if( bufpt==0 ){ 754 bufpt = ""; 755 }else if( xtype==etDYNSTRING ){ 756 if( pAccum->nChar==0 757 && pAccum->mxAlloc 758 && width==0 759 && precision<0 760 && pAccum->accError==0 761 ){ 762 /* Special optimization for sqlite3_mprintf("%z..."): 763 ** Extend an existing memory allocation rather than creating 764 ** a new one. */ 765 assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 766 pAccum->zText = bufpt; 767 pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); 768 pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); 769 pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; 770 length = 0; 771 break; 772 } 773 zExtra = bufpt; 774 } 775 if( precision>=0 ){ 776 if( flag_altform2 ){ 777 /* Set length to the number of bytes needed in order to display 778 ** precision characters */ 779 unsigned char *z = (unsigned char*)bufpt; 780 while( precision-- > 0 && z[0] ){ 781 SQLITE_SKIP_UTF8(z); 782 } 783 length = (int)(z - (unsigned char*)bufpt); 784 }else{ 785 for(length=0; length<precision && bufpt[length]; length++){} 786 } 787 }else{ 788 length = 0x7fffffff & (int)strlen(bufpt); 789 } 790 adjust_width_for_utf8: 791 if( flag_altform2 && width>0 ){ 792 /* Adjust width to account for extra bytes in UTF-8 characters */ 793 int ii = length - 1; 794 while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; 795 } 796 break; 797 case etSQLESCAPE: /* %q: Escape ' characters */ 798 case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ 799 case etSQLESCAPE3: { /* %w: Escape " characters */ 800 int i, j, k, n, isnull; 801 int needQuote; 802 char ch; 803 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 804 char *escarg; 805 806 if( bArgList ){ 807 escarg = getTextArg(pArgList); 808 }else{ 809 escarg = va_arg(ap,char*); 810 } 811 isnull = escarg==0; 812 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 813 /* For %q, %Q, and %w, the precision is the number of bytes (or 814 ** characters if the ! flags is present) to use from the input. 815 ** Because of the extra quoting characters inserted, the number 816 ** of output characters may be larger than the precision. 817 */ 818 k = precision; 819 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 820 if( ch==q ) n++; 821 if( flag_altform2 && (ch&0xc0)==0xc0 ){ 822 while( (escarg[i+1]&0xc0)==0x80 ){ i++; } 823 } 824 } 825 needQuote = !isnull && xtype==etSQLESCAPE2; 826 n += i + 3; 827 if( n>etBUFSIZE ){ 828 bufpt = zExtra = printfTempBuf(pAccum, n); 829 if( bufpt==0 ) return; 830 }else{ 831 bufpt = buf; 832 } 833 j = 0; 834 if( needQuote ) bufpt[j++] = q; 835 k = i; 836 for(i=0; i<k; i++){ 837 bufpt[j++] = ch = escarg[i]; 838 if( ch==q ) bufpt[j++] = ch; 839 } 840 if( needQuote ) bufpt[j++] = q; 841 bufpt[j] = 0; 842 length = j; 843 goto adjust_width_for_utf8; 844 } 845 case etTOKEN: { 846 Token *pToken; 847 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 848 pToken = va_arg(ap, Token*); 849 assert( bArgList==0 ); 850 if( pToken && pToken->n ){ 851 sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); 852 } 853 length = width = 0; 854 break; 855 } 856 case etSRCLIST: { 857 SrcList *pSrc; 858 int k; 859 SrcItem *pItem; 860 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 861 pSrc = va_arg(ap, SrcList*); 862 k = va_arg(ap, int); 863 pItem = &pSrc->a[k]; 864 assert( bArgList==0 ); 865 assert( k>=0 && k<pSrc->nSrc ); 866 if( pItem->zDatabase ){ 867 sqlite3_str_appendall(pAccum, pItem->zDatabase); 868 sqlite3_str_append(pAccum, ".", 1); 869 } 870 sqlite3_str_appendall(pAccum, pItem->zName); 871 length = width = 0; 872 break; 873 } 874 default: { 875 assert( xtype==etINVALID ); 876 return; 877 } 878 }/* End switch over the format type */ 879 /* 880 ** The text of the conversion is pointed to by "bufpt" and is 881 ** "length" characters long. The field width is "width". Do 882 ** the output. Both length and width are in bytes, not characters, 883 ** at this point. If the "!" flag was present on string conversions 884 ** indicating that width and precision should be expressed in characters, 885 ** then the values have been translated prior to reaching this point. 886 */ 887 width -= length; 888 if( width>0 ){ 889 if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 890 sqlite3_str_append(pAccum, bufpt, length); 891 if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 892 }else{ 893 sqlite3_str_append(pAccum, bufpt, length); 894 } 895 896 if( zExtra ){ 897 sqlite3DbFree(pAccum->db, zExtra); 898 zExtra = 0; 899 } 900 }/* End for loop over the format string */ 901 } /* End of function */ 902 903 /* 904 ** Enlarge the memory allocation on a StrAccum object so that it is 905 ** able to accept at least N more bytes of text. 906 ** 907 ** Return the number of bytes of text that StrAccum is able to accept 908 ** after the attempted enlargement. The value returned might be zero. 909 */ 910 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 911 char *zNew; 912 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 913 if( p->accError ){ 914 testcase(p->accError==SQLITE_TOOBIG); 915 testcase(p->accError==SQLITE_NOMEM); 916 return 0; 917 } 918 if( p->mxAlloc==0 ){ 919 setStrAccumError(p, SQLITE_TOOBIG); 920 return p->nAlloc - p->nChar - 1; 921 }else{ 922 char *zOld = isMalloced(p) ? p->zText : 0; 923 i64 szNew = p->nChar; 924 szNew += (sqlite3_int64)N + 1; 925 if( szNew+p->nChar<=p->mxAlloc ){ 926 /* Force exponential buffer size growth as long as it does not overflow, 927 ** to avoid having to call this routine too often */ 928 szNew += p->nChar; 929 } 930 if( szNew > p->mxAlloc ){ 931 sqlite3_str_reset(p); 932 setStrAccumError(p, SQLITE_TOOBIG); 933 return 0; 934 }else{ 935 p->nAlloc = (int)szNew; 936 } 937 if( p->db ){ 938 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 939 }else{ 940 zNew = sqlite3Realloc(zOld, p->nAlloc); 941 } 942 if( zNew ){ 943 assert( p->zText!=0 || p->nChar==0 ); 944 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 945 p->zText = zNew; 946 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 947 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 948 }else{ 949 sqlite3_str_reset(p); 950 setStrAccumError(p, SQLITE_NOMEM); 951 return 0; 952 } 953 } 954 return N; 955 } 956 957 /* 958 ** Append N copies of character c to the given string buffer. 959 */ 960 void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ 961 testcase( p->nChar + (i64)N > 0x7fffffff ); 962 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 963 return; 964 } 965 while( (N--)>0 ) p->zText[p->nChar++] = c; 966 } 967 968 /* 969 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 970 ** So enlarge if first, then do the append. 971 ** 972 ** This is a helper routine to sqlite3_str_append() that does special-case 973 ** work (enlarging the buffer) using tail recursion, so that the 974 ** sqlite3_str_append() routine can use fast calling semantics. 975 */ 976 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 977 N = sqlite3StrAccumEnlarge(p, N); 978 if( N>0 ){ 979 memcpy(&p->zText[p->nChar], z, N); 980 p->nChar += N; 981 } 982 } 983 984 /* 985 ** Append N bytes of text from z to the StrAccum object. Increase the 986 ** size of the memory allocation for StrAccum if necessary. 987 */ 988 void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ 989 assert( z!=0 || N==0 ); 990 assert( p->zText!=0 || p->nChar==0 || p->accError ); 991 assert( N>=0 ); 992 assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 ); 993 if( p->nChar+N >= p->nAlloc ){ 994 enlargeAndAppend(p,z,N); 995 }else if( N ){ 996 assert( p->zText ); 997 p->nChar += N; 998 memcpy(&p->zText[p->nChar-N], z, N); 999 } 1000 } 1001 1002 /* 1003 ** Append the complete text of zero-terminated string z[] to the p string. 1004 */ 1005 void sqlite3_str_appendall(sqlite3_str *p, const char *z){ 1006 sqlite3_str_append(p, z, sqlite3Strlen30(z)); 1007 } 1008 1009 1010 /* 1011 ** Finish off a string by making sure it is zero-terminated. 1012 ** Return a pointer to the resulting string. Return a NULL 1013 ** pointer if any kind of error was encountered. 1014 */ 1015 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 1016 char *zText; 1017 assert( p->mxAlloc>0 && !isMalloced(p) ); 1018 zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 1019 if( zText ){ 1020 memcpy(zText, p->zText, p->nChar+1); 1021 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 1022 }else{ 1023 setStrAccumError(p, SQLITE_NOMEM); 1024 } 1025 p->zText = zText; 1026 return zText; 1027 } 1028 char *sqlite3StrAccumFinish(StrAccum *p){ 1029 if( p->zText ){ 1030 p->zText[p->nChar] = 0; 1031 if( p->mxAlloc>0 && !isMalloced(p) ){ 1032 return strAccumFinishRealloc(p); 1033 } 1034 } 1035 return p->zText; 1036 } 1037 1038 /* 1039 ** This singleton is an sqlite3_str object that is returned if 1040 ** sqlite3_malloc() fails to provide space for a real one. This 1041 ** sqlite3_str object accepts no new text and always returns 1042 ** an SQLITE_NOMEM error. 1043 */ 1044 static sqlite3_str sqlite3OomStr = { 1045 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 1046 }; 1047 1048 /* Finalize a string created using sqlite3_str_new(). 1049 */ 1050 char *sqlite3_str_finish(sqlite3_str *p){ 1051 char *z; 1052 if( p!=0 && p!=&sqlite3OomStr ){ 1053 z = sqlite3StrAccumFinish(p); 1054 sqlite3_free(p); 1055 }else{ 1056 z = 0; 1057 } 1058 return z; 1059 } 1060 1061 /* Return any error code associated with p */ 1062 int sqlite3_str_errcode(sqlite3_str *p){ 1063 return p ? p->accError : SQLITE_NOMEM; 1064 } 1065 1066 /* Return the current length of p in bytes */ 1067 int sqlite3_str_length(sqlite3_str *p){ 1068 return p ? p->nChar : 0; 1069 } 1070 1071 /* Return the current value for p */ 1072 char *sqlite3_str_value(sqlite3_str *p){ 1073 if( p==0 || p->nChar==0 ) return 0; 1074 p->zText[p->nChar] = 0; 1075 return p->zText; 1076 } 1077 1078 /* 1079 ** Reset an StrAccum string. Reclaim all malloced memory. 1080 */ 1081 void sqlite3_str_reset(StrAccum *p){ 1082 if( isMalloced(p) ){ 1083 sqlite3DbFree(p->db, p->zText); 1084 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 1085 } 1086 p->nAlloc = 0; 1087 p->nChar = 0; 1088 p->zText = 0; 1089 } 1090 1091 /* 1092 ** Initialize a string accumulator. 1093 ** 1094 ** p: The accumulator to be initialized. 1095 ** db: Pointer to a database connection. May be NULL. Lookaside 1096 ** memory is used if not NULL. db->mallocFailed is set appropriately 1097 ** when not NULL. 1098 ** zBase: An initial buffer. May be NULL in which case the initial buffer 1099 ** is malloced. 1100 ** n: Size of zBase in bytes. If total space requirements never exceed 1101 ** n then no memory allocations ever occur. 1102 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 1103 ** allocations will ever occur. 1104 */ 1105 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 1106 p->zText = zBase; 1107 p->db = db; 1108 p->nAlloc = n; 1109 p->mxAlloc = mx; 1110 p->nChar = 0; 1111 p->accError = 0; 1112 p->printfFlags = 0; 1113 } 1114 1115 /* Allocate and initialize a new dynamic string object */ 1116 sqlite3_str *sqlite3_str_new(sqlite3 *db){ 1117 sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); 1118 if( p ){ 1119 sqlite3StrAccumInit(p, 0, 0, 0, 1120 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 1121 }else{ 1122 p = &sqlite3OomStr; 1123 } 1124 return p; 1125 } 1126 1127 /* 1128 ** Print into memory obtained from sqliteMalloc(). Use the internal 1129 ** %-conversion extensions. 1130 */ 1131 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 1132 char *z; 1133 char zBase[SQLITE_PRINT_BUF_SIZE]; 1134 StrAccum acc; 1135 assert( db!=0 ); 1136 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 1137 db->aLimit[SQLITE_LIMIT_LENGTH]); 1138 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 1139 sqlite3_str_vappendf(&acc, zFormat, ap); 1140 z = sqlite3StrAccumFinish(&acc); 1141 if( acc.accError==SQLITE_NOMEM ){ 1142 sqlite3OomFault(db); 1143 } 1144 return z; 1145 } 1146 1147 /* 1148 ** Print into memory obtained from sqliteMalloc(). Use the internal 1149 ** %-conversion extensions. 1150 */ 1151 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 1152 va_list ap; 1153 char *z; 1154 va_start(ap, zFormat); 1155 z = sqlite3VMPrintf(db, zFormat, ap); 1156 va_end(ap); 1157 return z; 1158 } 1159 1160 /* 1161 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 1162 ** %-conversion extensions. 1163 */ 1164 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 1165 char *z; 1166 char zBase[SQLITE_PRINT_BUF_SIZE]; 1167 StrAccum acc; 1168 1169 #ifdef SQLITE_ENABLE_API_ARMOR 1170 if( zFormat==0 ){ 1171 (void)SQLITE_MISUSE_BKPT; 1172 return 0; 1173 } 1174 #endif 1175 #ifndef SQLITE_OMIT_AUTOINIT 1176 if( sqlite3_initialize() ) return 0; 1177 #endif 1178 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 1179 sqlite3_str_vappendf(&acc, zFormat, ap); 1180 z = sqlite3StrAccumFinish(&acc); 1181 return z; 1182 } 1183 1184 /* 1185 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 1186 ** %-conversion extensions. 1187 */ 1188 char *sqlite3_mprintf(const char *zFormat, ...){ 1189 va_list ap; 1190 char *z; 1191 #ifndef SQLITE_OMIT_AUTOINIT 1192 if( sqlite3_initialize() ) return 0; 1193 #endif 1194 va_start(ap, zFormat); 1195 z = sqlite3_vmprintf(zFormat, ap); 1196 va_end(ap); 1197 return z; 1198 } 1199 1200 /* 1201 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1202 ** current locale settings. This is important for SQLite because we 1203 ** are not able to use a "," as the decimal point in place of "." as 1204 ** specified by some locales. 1205 ** 1206 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1207 ** from the snprintf() standard. Unfortunately, it is too late to change 1208 ** this without breaking compatibility, so we just have to live with the 1209 ** mistake. 1210 ** 1211 ** sqlite3_vsnprintf() is the varargs version. 1212 */ 1213 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1214 StrAccum acc; 1215 if( n<=0 ) return zBuf; 1216 #ifdef SQLITE_ENABLE_API_ARMOR 1217 if( zBuf==0 || zFormat==0 ) { 1218 (void)SQLITE_MISUSE_BKPT; 1219 if( zBuf ) zBuf[0] = 0; 1220 return zBuf; 1221 } 1222 #endif 1223 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1224 sqlite3_str_vappendf(&acc, zFormat, ap); 1225 zBuf[acc.nChar] = 0; 1226 return zBuf; 1227 } 1228 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1229 char *z; 1230 va_list ap; 1231 va_start(ap,zFormat); 1232 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1233 va_end(ap); 1234 return z; 1235 } 1236 1237 /* 1238 ** This is the routine that actually formats the sqlite3_log() message. 1239 ** We house it in a separate routine from sqlite3_log() to avoid using 1240 ** stack space on small-stack systems when logging is disabled. 1241 ** 1242 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1243 ** allocate memory because it might be called while the memory allocator 1244 ** mutex is held. 1245 ** 1246 ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for 1247 ** certain format characters (%q) or for very large precisions or widths. 1248 ** Care must be taken that any sqlite3_log() calls that occur while the 1249 ** memory mutex is held do not use these mechanisms. 1250 */ 1251 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1252 StrAccum acc; /* String accumulator */ 1253 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1254 1255 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1256 sqlite3_str_vappendf(&acc, zFormat, ap); 1257 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1258 sqlite3StrAccumFinish(&acc)); 1259 } 1260 1261 /* 1262 ** Format and write a message to the log if logging is enabled. 1263 */ 1264 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1265 va_list ap; /* Vararg list */ 1266 if( sqlite3GlobalConfig.xLog ){ 1267 va_start(ap, zFormat); 1268 renderLogMsg(iErrCode, zFormat, ap); 1269 va_end(ap); 1270 } 1271 } 1272 1273 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1274 /* 1275 ** A version of printf() that understands %lld. Used for debugging. 1276 ** The printf() built into some versions of windows does not understand %lld 1277 ** and segfaults if you give it a long long int. 1278 */ 1279 void sqlite3DebugPrintf(const char *zFormat, ...){ 1280 va_list ap; 1281 StrAccum acc; 1282 char zBuf[SQLITE_PRINT_BUF_SIZE*10]; 1283 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1284 va_start(ap,zFormat); 1285 sqlite3_str_vappendf(&acc, zFormat, ap); 1286 va_end(ap); 1287 sqlite3StrAccumFinish(&acc); 1288 #ifdef SQLITE_OS_TRACE_PROC 1289 { 1290 extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); 1291 SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); 1292 } 1293 #else 1294 fprintf(stdout,"%s", zBuf); 1295 fflush(stdout); 1296 #endif 1297 } 1298 #endif 1299 1300 1301 /* 1302 ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument 1303 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1304 */ 1305 void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ 1306 va_list ap; 1307 va_start(ap,zFormat); 1308 sqlite3_str_vappendf(p, zFormat, ap); 1309 va_end(ap); 1310 } 1311