1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. The original comments are included here for 4 ** completeness. They are very out-of-date but might be useful as 5 ** an historical reference. Most of the "enhancements" have been backed 6 ** out so that the functionality is now the same as standard printf(). 7 ** 8 ************************************************************************** 9 ** 10 ** The following modules is an enhanced replacement for the "printf" subroutines 11 ** found in the standard C library. The following enhancements are 12 ** supported: 13 ** 14 ** + Additional functions. The standard set of "printf" functions 15 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and 16 ** vsprintf. This module adds the following: 17 ** 18 ** * snprintf -- Works like sprintf, but has an extra argument 19 ** which is the size of the buffer written to. 20 ** 21 ** * mprintf -- Similar to sprintf. Writes output to memory 22 ** obtained from malloc. 23 ** 24 ** * xprintf -- Calls a function to dispose of output. 25 ** 26 ** * nprintf -- No output, but returns the number of characters 27 ** that would have been output by printf. 28 ** 29 ** * A v- version (ex: vsnprintf) of every function is also 30 ** supplied. 31 ** 32 ** + A few extensions to the formatting notation are supported: 33 ** 34 ** * The "=" flag (similar to "-") causes the output to be 35 ** be centered in the appropriately sized field. 36 ** 37 ** * The %b field outputs an integer in binary notation. 38 ** 39 ** * The %c field now accepts a precision. The character output 40 ** is repeated by the number of times the precision specifies. 41 ** 42 ** * The %' field works like %c, but takes as its character the 43 ** next character of the format string, instead of the next 44 ** argument. For example, printf("%.78'-") prints 78 minus 45 ** signs, the same as printf("%.78c",'-'). 46 ** 47 ** + When compiled using GCC on a SPARC, this version of printf is 48 ** faster than the library printf for SUN OS 4.1. 49 ** 50 ** + All functions are fully reentrant. 51 ** 52 */ 53 #include "sqliteInt.h" 54 55 /* 56 ** Conversion types fall into various categories as defined by the 57 ** following enumeration. 58 */ 59 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 60 #define etFLOAT 2 /* Floating point. %f */ 61 #define etEXP 3 /* Exponentional notation. %e and %E */ 62 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 63 #define etSIZE 5 /* Return number of characters processed so far. %n */ 64 #define etSTRING 6 /* Strings. %s */ 65 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 66 #define etPERCENT 8 /* Percent symbol. %% */ 67 #define etCHARX 9 /* Characters. %c */ 68 /* The rest are extensions, not normally found in printf() */ 69 #define etCHARLIT 10 /* Literal characters. %' */ 70 #define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */ 71 #define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '', 72 NULL pointers replaced by SQL NULL. %Q */ 73 #define etTOKEN 13 /* a pointer to a Token structure */ 74 #define etSRCLIST 14 /* a pointer to a SrcList */ 75 #define etPOINTER 15 /* The %p conversion */ 76 #define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */ 77 78 79 /* 80 ** An "etByte" is an 8-bit unsigned value. 81 */ 82 typedef unsigned char etByte; 83 84 /* 85 ** Each builtin conversion character (ex: the 'd' in "%d") is described 86 ** by an instance of the following structure 87 */ 88 typedef struct et_info { /* Information about each format field */ 89 char fmttype; /* The format field code letter */ 90 etByte base; /* The base for radix conversion */ 91 etByte flags; /* One or more of FLAG_ constants below */ 92 etByte type; /* Conversion paradigm */ 93 etByte charset; /* Offset into aDigits[] of the digits string */ 94 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 95 } et_info; 96 97 /* 98 ** Allowed values for et_info.flags 99 */ 100 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 101 #define FLAG_INTERN 2 /* True if for internal use only */ 102 #define FLAG_STRING 4 /* Allow infinity precision */ 103 104 105 /* 106 ** The following table is searched linearly, so it is good to put the 107 ** most frequently used conversion types first. 108 */ 109 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 110 static const char aPrefix[] = "-x0\000X0"; 111 static const et_info fmtinfo[] = { 112 { 'd', 10, 1, etRADIX, 0, 0 }, 113 { 's', 0, 4, etSTRING, 0, 0 }, 114 { 'g', 0, 1, etGENERIC, 30, 0 }, 115 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 116 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 117 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 118 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 119 { 'c', 0, 0, etCHARX, 0, 0 }, 120 { 'o', 8, 0, etRADIX, 0, 2 }, 121 { 'u', 10, 0, etRADIX, 0, 0 }, 122 { 'x', 16, 0, etRADIX, 16, 1 }, 123 { 'X', 16, 0, etRADIX, 0, 4 }, 124 #ifndef SQLITE_OMIT_FLOATING_POINT 125 { 'f', 0, 1, etFLOAT, 0, 0 }, 126 { 'e', 0, 1, etEXP, 30, 0 }, 127 { 'E', 0, 1, etEXP, 14, 0 }, 128 { 'G', 0, 1, etGENERIC, 14, 0 }, 129 #endif 130 { 'i', 10, 1, etRADIX, 0, 0 }, 131 { 'n', 0, 0, etSIZE, 0, 0 }, 132 { '%', 0, 0, etPERCENT, 0, 0 }, 133 { 'p', 16, 0, etPOINTER, 0, 1 }, 134 { 'T', 0, 2, etTOKEN, 0, 0 }, 135 { 'S', 0, 2, etSRCLIST, 0, 0 }, 136 }; 137 #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) 138 139 /* 140 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 141 ** conversions will work. 142 */ 143 #ifndef SQLITE_OMIT_FLOATING_POINT 144 /* 145 ** "*val" is a double such that 0.1 <= *val < 10.0 146 ** Return the ascii code for the leading digit of *val, then 147 ** multiply "*val" by 10.0 to renormalize. 148 ** 149 ** Example: 150 ** input: *val = 3.14159 151 ** output: *val = 1.4159 function return = '3' 152 ** 153 ** The counter *cnt is incremented each time. After counter exceeds 154 ** 16 (the number of significant digits in a 64-bit float) '0' is 155 ** always returned. 156 */ 157 static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 158 int digit; 159 LONGDOUBLE_TYPE d; 160 if( (*cnt)++ >= 16 ) return '0'; 161 digit = (int)*val; 162 d = digit; 163 digit += '0'; 164 *val = (*val - d)*10.0; 165 return digit; 166 } 167 #endif /* SQLITE_OMIT_FLOATING_POINT */ 168 169 /* 170 ** On machines with a small stack size, you can redefine the 171 ** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for 172 ** smaller values some %f conversions may go into an infinite loop. 173 */ 174 #ifndef SQLITE_PRINT_BUF_SIZE 175 # define SQLITE_PRINT_BUF_SIZE 350 176 #endif 177 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 178 179 /* 180 ** The root program. All variations call this core. 181 ** 182 ** INPUTS: 183 ** func This is a pointer to a function taking three arguments 184 ** 1. A pointer to anything. Same as the "arg" parameter. 185 ** 2. A pointer to the list of characters to be output 186 ** (Note, this list is NOT null terminated.) 187 ** 3. An integer number of characters to be output. 188 ** (Note: This number might be zero.) 189 ** 190 ** arg This is the pointer to anything which will be passed as the 191 ** first argument to "func". Use it for whatever you like. 192 ** 193 ** fmt This is the format string, as in the usual print. 194 ** 195 ** ap This is a pointer to a list of arguments. Same as in 196 ** vfprint. 197 ** 198 ** OUTPUTS: 199 ** The return value is the total number of characters sent to 200 ** the function "func". Returns -1 on a error. 201 ** 202 ** Note that the order in which automatic variables are declared below 203 ** seems to make a big difference in determining how fast this beast 204 ** will run. 205 */ 206 static int vxprintf( 207 void (*func)(void*,const char*,int), /* Consumer of text */ 208 void *arg, /* First argument to the consumer */ 209 int useExtended, /* Allow extended %-conversions */ 210 const char *fmt, /* Format string */ 211 va_list ap /* arguments */ 212 ){ 213 int c; /* Next character in the format string */ 214 char *bufpt; /* Pointer to the conversion buffer */ 215 int precision; /* Precision of the current field */ 216 int length; /* Length of the field */ 217 int idx; /* A general purpose loop counter */ 218 int count; /* Total number of characters output */ 219 int width; /* Width of the current field */ 220 etByte flag_leftjustify; /* True if "-" flag is present */ 221 etByte flag_plussign; /* True if "+" flag is present */ 222 etByte flag_blanksign; /* True if " " flag is present */ 223 etByte flag_alternateform; /* True if "#" flag is present */ 224 etByte flag_altform2; /* True if "!" flag is present */ 225 etByte flag_zeropad; /* True if field width constant starts with zero */ 226 etByte flag_long; /* True if "l" flag is present */ 227 etByte flag_longlong; /* True if the "ll" flag is present */ 228 etByte done; /* Loop termination flag */ 229 sqlite_uint64 longvalue; /* Value for integer types */ 230 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 231 const et_info *infop; /* Pointer to the appropriate info structure */ 232 char buf[etBUFSIZE]; /* Conversion buffer */ 233 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 234 etByte errorflag = 0; /* True if an error is encountered */ 235 etByte xtype; /* Conversion paradigm */ 236 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ 237 static const char spaces[] = 238 " "; 239 #define etSPACESIZE (sizeof(spaces)-1) 240 #ifndef SQLITE_OMIT_FLOATING_POINT 241 int exp, e2; /* exponent of real numbers */ 242 double rounder; /* Used for rounding floating point values */ 243 etByte flag_dp; /* True if decimal point should be shown */ 244 etByte flag_rtz; /* True if trailing zeros should be removed */ 245 etByte flag_exp; /* True to force display of the exponent */ 246 int nsd; /* Number of significant digits returned */ 247 #endif 248 249 func(arg,"",0); 250 count = length = 0; 251 bufpt = 0; 252 for(; (c=(*fmt))!=0; ++fmt){ 253 if( c!='%' ){ 254 int amt; 255 bufpt = (char *)fmt; 256 amt = 1; 257 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 258 (*func)(arg,bufpt,amt); 259 count += amt; 260 if( c==0 ) break; 261 } 262 if( (c=(*++fmt))==0 ){ 263 errorflag = 1; 264 (*func)(arg,"%",1); 265 count++; 266 break; 267 } 268 /* Find out what flags are present */ 269 flag_leftjustify = flag_plussign = flag_blanksign = 270 flag_alternateform = flag_altform2 = flag_zeropad = 0; 271 done = 0; 272 do{ 273 switch( c ){ 274 case '-': flag_leftjustify = 1; break; 275 case '+': flag_plussign = 1; break; 276 case ' ': flag_blanksign = 1; break; 277 case '#': flag_alternateform = 1; break; 278 case '!': flag_altform2 = 1; break; 279 case '0': flag_zeropad = 1; break; 280 default: done = 1; break; 281 } 282 }while( !done && (c=(*++fmt))!=0 ); 283 /* Get the field width */ 284 width = 0; 285 if( c=='*' ){ 286 width = va_arg(ap,int); 287 if( width<0 ){ 288 flag_leftjustify = 1; 289 width = -width; 290 } 291 c = *++fmt; 292 }else{ 293 while( c>='0' && c<='9' ){ 294 width = width*10 + c - '0'; 295 c = *++fmt; 296 } 297 } 298 if( width > etBUFSIZE-10 ){ 299 width = etBUFSIZE-10; 300 } 301 /* Get the precision */ 302 if( c=='.' ){ 303 precision = 0; 304 c = *++fmt; 305 if( c=='*' ){ 306 precision = va_arg(ap,int); 307 if( precision<0 ) precision = -precision; 308 c = *++fmt; 309 }else{ 310 while( c>='0' && c<='9' ){ 311 precision = precision*10 + c - '0'; 312 c = *++fmt; 313 } 314 } 315 }else{ 316 precision = -1; 317 } 318 /* Get the conversion type modifier */ 319 if( c=='l' ){ 320 flag_long = 1; 321 c = *++fmt; 322 if( c=='l' ){ 323 flag_longlong = 1; 324 c = *++fmt; 325 }else{ 326 flag_longlong = 0; 327 } 328 }else{ 329 flag_long = flag_longlong = 0; 330 } 331 /* Fetch the info entry for the field */ 332 infop = 0; 333 for(idx=0; idx<etNINFO; idx++){ 334 if( c==fmtinfo[idx].fmttype ){ 335 infop = &fmtinfo[idx]; 336 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 337 xtype = infop->type; 338 }else{ 339 return -1; 340 } 341 break; 342 } 343 } 344 zExtra = 0; 345 if( infop==0 ){ 346 return -1; 347 } 348 349 350 /* Limit the precision to prevent overflowing buf[] during conversion */ 351 if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ 352 precision = etBUFSIZE-40; 353 } 354 355 /* 356 ** At this point, variables are initialized as follows: 357 ** 358 ** flag_alternateform TRUE if a '#' is present. 359 ** flag_altform2 TRUE if a '!' is present. 360 ** flag_plussign TRUE if a '+' is present. 361 ** flag_leftjustify TRUE if a '-' is present or if the 362 ** field width was negative. 363 ** flag_zeropad TRUE if the width began with 0. 364 ** flag_long TRUE if the letter 'l' (ell) prefixed 365 ** the conversion character. 366 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 367 ** the conversion character. 368 ** flag_blanksign TRUE if a ' ' is present. 369 ** width The specified field width. This is 370 ** always non-negative. Zero is the default. 371 ** precision The specified precision. The default 372 ** is -1. 373 ** xtype The class of the conversion. 374 ** infop Pointer to the appropriate info struct. 375 */ 376 switch( xtype ){ 377 case etPOINTER: 378 flag_longlong = sizeof(char*)==sizeof(i64); 379 flag_long = sizeof(char*)==sizeof(long int); 380 /* Fall through into the next case */ 381 case etRADIX: 382 if( infop->flags & FLAG_SIGNED ){ 383 i64 v; 384 if( flag_longlong ) v = va_arg(ap,i64); 385 else if( flag_long ) v = va_arg(ap,long int); 386 else v = va_arg(ap,int); 387 if( v<0 ){ 388 longvalue = -v; 389 prefix = '-'; 390 }else{ 391 longvalue = v; 392 if( flag_plussign ) prefix = '+'; 393 else if( flag_blanksign ) prefix = ' '; 394 else prefix = 0; 395 } 396 }else{ 397 if( flag_longlong ) longvalue = va_arg(ap,u64); 398 else if( flag_long ) longvalue = va_arg(ap,unsigned long int); 399 else longvalue = va_arg(ap,unsigned int); 400 prefix = 0; 401 } 402 if( longvalue==0 ) flag_alternateform = 0; 403 if( flag_zeropad && precision<width-(prefix!=0) ){ 404 precision = width-(prefix!=0); 405 } 406 bufpt = &buf[etBUFSIZE-1]; 407 { 408 register const char *cset; /* Use registers for speed */ 409 register int base; 410 cset = &aDigits[infop->charset]; 411 base = infop->base; 412 do{ /* Convert to ascii */ 413 *(--bufpt) = cset[longvalue%base]; 414 longvalue = longvalue/base; 415 }while( longvalue>0 ); 416 } 417 length = &buf[etBUFSIZE-1]-bufpt; 418 for(idx=precision-length; idx>0; idx--){ 419 *(--bufpt) = '0'; /* Zero pad */ 420 } 421 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 422 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 423 const char *pre; 424 char x; 425 pre = &aPrefix[infop->prefix]; 426 if( *bufpt!=pre[0] ){ 427 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 428 } 429 } 430 length = &buf[etBUFSIZE-1]-bufpt; 431 break; 432 case etFLOAT: 433 case etEXP: 434 case etGENERIC: 435 realvalue = va_arg(ap,double); 436 #ifndef SQLITE_OMIT_FLOATING_POINT 437 if( precision<0 ) precision = 6; /* Set default precision */ 438 if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; 439 if( realvalue<0.0 ){ 440 realvalue = -realvalue; 441 prefix = '-'; 442 }else{ 443 if( flag_plussign ) prefix = '+'; 444 else if( flag_blanksign ) prefix = ' '; 445 else prefix = 0; 446 } 447 if( xtype==etGENERIC && precision>0 ) precision--; 448 #if 0 449 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 450 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 451 #else 452 /* It makes more sense to use 0.5 */ 453 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 454 #endif 455 if( xtype==etFLOAT ) realvalue += rounder; 456 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 457 exp = 0; 458 if( sqlite3_isnan(realvalue) ){ 459 bufpt = "NaN"; 460 length = 3; 461 break; 462 } 463 if( realvalue>0.0 ){ 464 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } 465 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 466 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 467 while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; } 468 while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; } 469 if( exp>350 || exp<-350 ){ 470 if( prefix=='-' ){ 471 bufpt = "-Inf"; 472 }else if( prefix=='+' ){ 473 bufpt = "+Inf"; 474 }else{ 475 bufpt = "Inf"; 476 } 477 length = strlen(bufpt); 478 break; 479 } 480 } 481 bufpt = buf; 482 /* 483 ** If the field type is etGENERIC, then convert to either etEXP 484 ** or etFLOAT, as appropriate. 485 */ 486 flag_exp = xtype==etEXP; 487 if( xtype!=etFLOAT ){ 488 realvalue += rounder; 489 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 490 } 491 if( xtype==etGENERIC ){ 492 flag_rtz = !flag_alternateform; 493 if( exp<-4 || exp>precision ){ 494 xtype = etEXP; 495 }else{ 496 precision = precision - exp; 497 xtype = etFLOAT; 498 } 499 }else{ 500 flag_rtz = 0; 501 } 502 if( xtype==etEXP ){ 503 e2 = 0; 504 }else{ 505 e2 = exp; 506 } 507 nsd = 0; 508 flag_dp = (precision>0) | flag_alternateform | flag_altform2; 509 /* The sign in front of the number */ 510 if( prefix ){ 511 *(bufpt++) = prefix; 512 } 513 /* Digits prior to the decimal point */ 514 if( e2<0 ){ 515 *(bufpt++) = '0'; 516 }else{ 517 for(; e2>=0; e2--){ 518 *(bufpt++) = et_getdigit(&realvalue,&nsd); 519 } 520 } 521 /* The decimal point */ 522 if( flag_dp ){ 523 *(bufpt++) = '.'; 524 } 525 /* "0" digits after the decimal point but before the first 526 ** significant digit of the number */ 527 for(e2++; e2<0 && precision>0; precision--, e2++){ 528 *(bufpt++) = '0'; 529 } 530 /* Significant digits after the decimal point */ 531 while( (precision--)>0 ){ 532 *(bufpt++) = et_getdigit(&realvalue,&nsd); 533 } 534 /* Remove trailing zeros and the "." if no digits follow the "." */ 535 if( flag_rtz && flag_dp ){ 536 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 537 assert( bufpt>buf ); 538 if( bufpt[-1]=='.' ){ 539 if( flag_altform2 ){ 540 *(bufpt++) = '0'; 541 }else{ 542 *(--bufpt) = 0; 543 } 544 } 545 } 546 /* Add the "eNNN" suffix */ 547 if( flag_exp || (xtype==etEXP && exp) ){ 548 *(bufpt++) = aDigits[infop->charset]; 549 if( exp<0 ){ 550 *(bufpt++) = '-'; exp = -exp; 551 }else{ 552 *(bufpt++) = '+'; 553 } 554 if( exp>=100 ){ 555 *(bufpt++) = (exp/100)+'0'; /* 100's digit */ 556 exp %= 100; 557 } 558 *(bufpt++) = exp/10+'0'; /* 10's digit */ 559 *(bufpt++) = exp%10+'0'; /* 1's digit */ 560 } 561 *bufpt = 0; 562 563 /* The converted number is in buf[] and zero terminated. Output it. 564 ** Note that the number is in the usual order, not reversed as with 565 ** integer conversions. */ 566 length = bufpt-buf; 567 bufpt = buf; 568 569 /* Special case: Add leading zeros if the flag_zeropad flag is 570 ** set and we are not left justified */ 571 if( flag_zeropad && !flag_leftjustify && length < width){ 572 int i; 573 int nPad = width - length; 574 for(i=width; i>=nPad; i--){ 575 bufpt[i] = bufpt[i-nPad]; 576 } 577 i = prefix!=0; 578 while( nPad-- ) bufpt[i++] = '0'; 579 length = width; 580 } 581 #endif 582 break; 583 case etSIZE: 584 *(va_arg(ap,int*)) = count; 585 length = width = 0; 586 break; 587 case etPERCENT: 588 buf[0] = '%'; 589 bufpt = buf; 590 length = 1; 591 break; 592 case etCHARLIT: 593 case etCHARX: 594 c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); 595 if( precision>=0 ){ 596 for(idx=1; idx<precision; idx++) buf[idx] = c; 597 length = precision; 598 }else{ 599 length =1; 600 } 601 bufpt = buf; 602 break; 603 case etSTRING: 604 case etDYNSTRING: 605 bufpt = va_arg(ap,char*); 606 if( bufpt==0 ){ 607 bufpt = ""; 608 }else if( xtype==etDYNSTRING ){ 609 zExtra = bufpt; 610 } 611 length = strlen(bufpt); 612 if( precision>=0 && precision<length ) length = precision; 613 break; 614 case etSQLESCAPE: 615 case etSQLESCAPE2: 616 case etSQLESCAPE3: { 617 int i, j, n, ch, isnull; 618 int needQuote; 619 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 620 char *escarg = va_arg(ap,char*); 621 isnull = escarg==0; 622 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 623 for(i=n=0; (ch=escarg[i])!=0; i++){ 624 if( ch==q ) n++; 625 } 626 needQuote = !isnull && xtype==etSQLESCAPE2; 627 n += i + 1 + needQuote*2; 628 if( n>etBUFSIZE ){ 629 bufpt = zExtra = sqlite3_malloc( n ); 630 if( bufpt==0 ) return -1; 631 }else{ 632 bufpt = buf; 633 } 634 j = 0; 635 if( needQuote ) bufpt[j++] = q; 636 for(i=0; (ch=escarg[i])!=0; i++){ 637 bufpt[j++] = ch; 638 if( ch==q ) bufpt[j++] = ch; 639 } 640 if( needQuote ) bufpt[j++] = q; 641 bufpt[j] = 0; 642 length = j; 643 /* The precision is ignored on %q and %Q */ 644 /* if( precision>=0 && precision<length ) length = precision; */ 645 break; 646 } 647 case etTOKEN: { 648 Token *pToken = va_arg(ap, Token*); 649 if( pToken && pToken->z ){ 650 (*func)(arg, (char*)pToken->z, pToken->n); 651 } 652 length = width = 0; 653 break; 654 } 655 case etSRCLIST: { 656 SrcList *pSrc = va_arg(ap, SrcList*); 657 int k = va_arg(ap, int); 658 struct SrcList_item *pItem = &pSrc->a[k]; 659 assert( k>=0 && k<pSrc->nSrc ); 660 if( pItem->zDatabase && pItem->zDatabase[0] ){ 661 (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase)); 662 (*func)(arg, ".", 1); 663 } 664 (*func)(arg, pItem->zName, strlen(pItem->zName)); 665 length = width = 0; 666 break; 667 } 668 }/* End switch over the format type */ 669 /* 670 ** The text of the conversion is pointed to by "bufpt" and is 671 ** "length" characters long. The field width is "width". Do 672 ** the output. 673 */ 674 if( !flag_leftjustify ){ 675 register int nspace; 676 nspace = width-length; 677 if( nspace>0 ){ 678 count += nspace; 679 while( nspace>=etSPACESIZE ){ 680 (*func)(arg,spaces,etSPACESIZE); 681 nspace -= etSPACESIZE; 682 } 683 if( nspace>0 ) (*func)(arg,spaces,nspace); 684 } 685 } 686 if( length>0 ){ 687 (*func)(arg,bufpt,length); 688 count += length; 689 } 690 if( flag_leftjustify ){ 691 register int nspace; 692 nspace = width-length; 693 if( nspace>0 ){ 694 count += nspace; 695 while( nspace>=etSPACESIZE ){ 696 (*func)(arg,spaces,etSPACESIZE); 697 nspace -= etSPACESIZE; 698 } 699 if( nspace>0 ) (*func)(arg,spaces,nspace); 700 } 701 } 702 if( zExtra ){ 703 sqlite3_free(zExtra); 704 } 705 }/* End for loop over the format string */ 706 return errorflag ? -1 : count; 707 } /* End of function */ 708 709 710 /* This structure is used to store state information about the 711 ** write to memory that is currently in progress. 712 */ 713 struct sgMprintf { 714 char *zBase; /* A base allocation */ 715 char *zText; /* The string collected so far */ 716 int nChar; /* Length of the string so far */ 717 int nTotal; /* Output size if unconstrained */ 718 int nAlloc; /* Amount of space allocated in zText */ 719 void *(*xRealloc)(void*,int); /* Function used to realloc memory */ 720 int iMallocFailed; /* True if xRealloc() has failed */ 721 }; 722 723 /* 724 ** This function implements the callback from vxprintf. 725 ** 726 ** This routine add nNewChar characters of text in zNewText to 727 ** the sgMprintf structure pointed to by "arg". 728 */ 729 static void mout(void *arg, const char *zNewText, int nNewChar){ 730 struct sgMprintf *pM = (struct sgMprintf*)arg; 731 if( pM->iMallocFailed ) return; 732 pM->nTotal += nNewChar; 733 if( pM->zText ){ 734 if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ 735 if( pM->xRealloc==0 ){ 736 nNewChar = pM->nAlloc - pM->nChar - 1; 737 }else{ 738 int nAlloc = pM->nChar + nNewChar*2 + 1; 739 if( pM->zText==pM->zBase ){ 740 pM->zText = pM->xRealloc(0, nAlloc); 741 if( pM->zText==0 ){ 742 pM->nAlloc = 0; 743 pM->iMallocFailed = 1; 744 return; 745 }else if( pM->nChar ){ 746 memcpy(pM->zText, pM->zBase, pM->nChar); 747 } 748 }else{ 749 char *zNew; 750 zNew = pM->xRealloc(pM->zText, nAlloc); 751 if( zNew ){ 752 pM->zText = zNew; 753 }else{ 754 pM->iMallocFailed = 1; 755 pM->xRealloc(pM->zText, 0); 756 pM->zText = 0; 757 pM->nAlloc = 0; 758 return; 759 } 760 } 761 pM->nAlloc = nAlloc; 762 } 763 } 764 if( nNewChar>0 ){ 765 memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); 766 pM->nChar += nNewChar; 767 } 768 pM->zText[pM->nChar] = 0; 769 } 770 } 771 772 /* 773 ** This routine is a wrapper around xprintf() that invokes mout() as 774 ** the consumer. 775 */ 776 static char *base_vprintf( 777 void *(*xRealloc)(void*, int), /* realloc() function. May be NULL */ 778 int useInternal, /* Use internal %-conversions if true */ 779 char *zInitBuf, /* Initially write here, before mallocing */ 780 int nInitBuf, /* Size of zInitBuf[] */ 781 const char *zFormat, /* format string */ 782 va_list ap /* arguments */ 783 ){ 784 struct sgMprintf sM; 785 sM.zBase = sM.zText = zInitBuf; 786 sM.nChar = sM.nTotal = 0; 787 sM.nAlloc = nInitBuf; 788 sM.xRealloc = xRealloc; 789 sM.iMallocFailed = 0; 790 vxprintf(mout, &sM, useInternal, zFormat, ap); 791 assert(sM.iMallocFailed==0 || sM.zText==0); 792 if( xRealloc && !sM.iMallocFailed ){ 793 if( sM.zText==sM.zBase ){ 794 sM.zText = xRealloc(0, sM.nChar+1); 795 if( sM.zText ){ 796 memcpy(sM.zText, sM.zBase, sM.nChar+1); 797 } 798 }else if( sM.nAlloc>sM.nChar+10 ){ 799 char *zNew; 800 sqlite3MallocBenignFailure(1); 801 zNew = xRealloc(sM.zText, sM.nChar+1); 802 if( zNew ){ 803 sM.zText = zNew; 804 } 805 } 806 } 807 return sM.zText; 808 } 809 810 /* 811 ** Realloc that is a real function, not a macro. 812 */ 813 static void *printf_realloc(void *old, int size){ 814 return sqlite3_realloc(old, size); 815 } 816 817 /* 818 ** Print into memory obtained from sqliteMalloc(). Use the internal 819 ** %-conversion extensions. 820 */ 821 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 822 char *z; 823 char zBase[SQLITE_PRINT_BUF_SIZE]; 824 z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); 825 if( z==0 && db!=0 ){ 826 db->mallocFailed = 1; 827 } 828 return z; 829 } 830 831 /* 832 ** Print into memory obtained from sqliteMalloc(). Use the internal 833 ** %-conversion extensions. 834 */ 835 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 836 va_list ap; 837 char *z; 838 char zBase[SQLITE_PRINT_BUF_SIZE]; 839 va_start(ap, zFormat); 840 z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); 841 va_end(ap); 842 if( z==0 && db!=0 ){ 843 db->mallocFailed = 1; 844 } 845 return z; 846 } 847 848 /* 849 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 850 ** %-conversion extensions. 851 */ 852 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 853 char zBase[SQLITE_PRINT_BUF_SIZE]; 854 return base_vprintf(sqlite3_realloc, 0, zBase, sizeof(zBase), zFormat, ap); 855 } 856 857 /* 858 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 859 ** %-conversion extensions. 860 */ 861 char *sqlite3_mprintf(const char *zFormat, ...){ 862 va_list ap; 863 char *z; 864 va_start(ap, zFormat); 865 z = sqlite3_vmprintf(zFormat, ap); 866 va_end(ap); 867 return z; 868 } 869 870 /* 871 ** sqlite3_snprintf() works like snprintf() except that it ignores the 872 ** current locale settings. This is important for SQLite because we 873 ** are not able to use a "," as the decimal point in place of "." as 874 ** specified by some locales. 875 */ 876 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 877 char *z; 878 va_list ap; 879 880 if( n<=0 ){ 881 return zBuf; 882 } 883 zBuf[0] = 0; 884 va_start(ap,zFormat); 885 z = base_vprintf(0, 0, zBuf, n, zFormat, ap); 886 va_end(ap); 887 return z; 888 } 889 890 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG) 891 /* 892 ** A version of printf() that understands %lld. Used for debugging. 893 ** The printf() built into some versions of windows does not understand %lld 894 ** and segfaults if you give it a long long int. 895 */ 896 void sqlite3DebugPrintf(const char *zFormat, ...){ 897 extern int getpid(void); 898 va_list ap; 899 char zBuf[500]; 900 va_start(ap, zFormat); 901 base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap); 902 va_end(ap); 903 fprintf(stdout,"%s", zBuf); 904 fflush(stdout); 905 } 906 #endif 907