1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCLIST 12 /* a pointer to a SrcList */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCLIST, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* Floating point constants used for rounding */ 103 static const double arRound[] = { 104 5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05, 105 5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10, 106 }; 107 108 /* 109 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 110 ** conversions will work. 111 */ 112 #ifndef SQLITE_OMIT_FLOATING_POINT 113 /* 114 ** "*val" is a double such that 0.1 <= *val < 10.0 115 ** Return the ascii code for the leading digit of *val, then 116 ** multiply "*val" by 10.0 to renormalize. 117 ** 118 ** Example: 119 ** input: *val = 3.14159 120 ** output: *val = 1.4159 function return = '3' 121 ** 122 ** The counter *cnt is incremented each time. After counter exceeds 123 ** 16 (the number of significant digits in a 64-bit float) '0' is 124 ** always returned. 125 */ 126 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 127 int digit; 128 LONGDOUBLE_TYPE d; 129 if( (*cnt)<=0 ) return '0'; 130 (*cnt)--; 131 digit = (int)*val; 132 d = digit; 133 digit += '0'; 134 *val = (*val - d)*10.0; 135 return (char)digit; 136 } 137 #endif /* SQLITE_OMIT_FLOATING_POINT */ 138 139 /* 140 ** Set the StrAccum object to an error mode. 141 */ 142 static void setStrAccumError(StrAccum *p, u8 eError){ 143 assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); 144 p->accError = eError; 145 if( p->mxAlloc ) sqlite3_str_reset(p); 146 if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError); 147 } 148 149 /* 150 ** Extra argument values from a PrintfArguments object 151 */ 152 static sqlite3_int64 getIntArg(PrintfArguments *p){ 153 if( p->nArg<=p->nUsed ) return 0; 154 return sqlite3_value_int64(p->apArg[p->nUsed++]); 155 } 156 static double getDoubleArg(PrintfArguments *p){ 157 if( p->nArg<=p->nUsed ) return 0.0; 158 return sqlite3_value_double(p->apArg[p->nUsed++]); 159 } 160 static char *getTextArg(PrintfArguments *p){ 161 if( p->nArg<=p->nUsed ) return 0; 162 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 163 } 164 165 /* 166 ** Allocate memory for a temporary buffer needed for printf rendering. 167 ** 168 ** If the requested size of the temp buffer is larger than the size 169 ** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error. 170 ** Do the size check before the memory allocation to prevent rogue 171 ** SQL from requesting large allocations using the precision or width 172 ** field of the printf() function. 173 */ 174 static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){ 175 char *z; 176 if( pAccum->accError ) return 0; 177 if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){ 178 setStrAccumError(pAccum, SQLITE_TOOBIG); 179 return 0; 180 } 181 z = sqlite3DbMallocRaw(pAccum->db, n); 182 if( z==0 ){ 183 setStrAccumError(pAccum, SQLITE_NOMEM); 184 } 185 return z; 186 } 187 188 /* 189 ** On machines with a small stack size, you can redefine the 190 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 191 */ 192 #ifndef SQLITE_PRINT_BUF_SIZE 193 # define SQLITE_PRINT_BUF_SIZE 70 194 #endif 195 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 196 197 /* 198 ** Hard limit on the precision of floating-point conversions. 199 */ 200 #ifndef SQLITE_PRINTF_PRECISION_LIMIT 201 # define SQLITE_FP_PRECISION_LIMIT 100000000 202 #endif 203 204 /* 205 ** Render a string given by "fmt" into the StrAccum object. 206 */ 207 void sqlite3_str_vappendf( 208 sqlite3_str *pAccum, /* Accumulate results here */ 209 const char *fmt, /* Format string */ 210 va_list ap /* arguments */ 211 ){ 212 int c; /* Next character in the format string */ 213 char *bufpt; /* Pointer to the conversion buffer */ 214 int precision; /* Precision of the current field */ 215 int length; /* Length of the field */ 216 int idx; /* A general purpose loop counter */ 217 int width; /* Width of the current field */ 218 etByte flag_leftjustify; /* True if "-" flag is present */ 219 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 220 etByte flag_alternateform; /* True if "#" flag is present */ 221 etByte flag_altform2; /* True if "!" flag is present */ 222 etByte flag_zeropad; /* True if field width constant starts with zero */ 223 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 224 etByte done; /* Loop termination flag */ 225 etByte cThousand; /* Thousands separator for %d and %u */ 226 etByte xtype = etINVALID; /* Conversion paradigm */ 227 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 228 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 229 sqlite_uint64 longvalue; /* Value for integer types */ 230 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 231 const et_info *infop; /* Pointer to the appropriate info structure */ 232 char *zOut; /* Rendering buffer */ 233 int nOut; /* Size of the rendering buffer */ 234 char *zExtra = 0; /* Malloced memory used by some conversion */ 235 #ifndef SQLITE_OMIT_FLOATING_POINT 236 int exp, e2; /* exponent of real numbers */ 237 int nsd; /* Number of significant digits returned */ 238 double rounder; /* Used for rounding floating point values */ 239 etByte flag_dp; /* True if decimal point should be shown */ 240 etByte flag_rtz; /* True if trailing zeros should be removed */ 241 #endif 242 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 243 char buf[etBUFSIZE]; /* Conversion buffer */ 244 245 /* pAccum never starts out with an empty buffer that was obtained from 246 ** malloc(). This precondition is required by the mprintf("%z...") 247 ** optimization. */ 248 assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 249 250 bufpt = 0; 251 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 252 pArgList = va_arg(ap, PrintfArguments*); 253 bArgList = 1; 254 }else{ 255 bArgList = 0; 256 } 257 for(; (c=(*fmt))!=0; ++fmt){ 258 if( c!='%' ){ 259 bufpt = (char *)fmt; 260 #if HAVE_STRCHRNUL 261 fmt = strchrnul(fmt, '%'); 262 #else 263 do{ fmt++; }while( *fmt && *fmt != '%' ); 264 #endif 265 sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); 266 if( *fmt==0 ) break; 267 } 268 if( (c=(*++fmt))==0 ){ 269 sqlite3_str_append(pAccum, "%", 1); 270 break; 271 } 272 /* Find out what flags are present */ 273 flag_leftjustify = flag_prefix = cThousand = 274 flag_alternateform = flag_altform2 = flag_zeropad = 0; 275 done = 0; 276 width = 0; 277 flag_long = 0; 278 precision = -1; 279 do{ 280 switch( c ){ 281 case '-': flag_leftjustify = 1; break; 282 case '+': flag_prefix = '+'; break; 283 case ' ': flag_prefix = ' '; break; 284 case '#': flag_alternateform = 1; break; 285 case '!': flag_altform2 = 1; break; 286 case '0': flag_zeropad = 1; break; 287 case ',': cThousand = ','; break; 288 default: done = 1; break; 289 case 'l': { 290 flag_long = 1; 291 c = *++fmt; 292 if( c=='l' ){ 293 c = *++fmt; 294 flag_long = 2; 295 } 296 done = 1; 297 break; 298 } 299 case '1': case '2': case '3': case '4': case '5': 300 case '6': case '7': case '8': case '9': { 301 unsigned wx = c - '0'; 302 while( (c = *++fmt)>='0' && c<='9' ){ 303 wx = wx*10 + c - '0'; 304 } 305 testcase( wx>0x7fffffff ); 306 width = wx & 0x7fffffff; 307 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 308 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 309 width = SQLITE_PRINTF_PRECISION_LIMIT; 310 } 311 #endif 312 if( c!='.' && c!='l' ){ 313 done = 1; 314 }else{ 315 fmt--; 316 } 317 break; 318 } 319 case '*': { 320 if( bArgList ){ 321 width = (int)getIntArg(pArgList); 322 }else{ 323 width = va_arg(ap,int); 324 } 325 if( width<0 ){ 326 flag_leftjustify = 1; 327 width = width >= -2147483647 ? -width : 0; 328 } 329 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 330 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 331 width = SQLITE_PRINTF_PRECISION_LIMIT; 332 } 333 #endif 334 if( (c = fmt[1])!='.' && c!='l' ){ 335 c = *++fmt; 336 done = 1; 337 } 338 break; 339 } 340 case '.': { 341 c = *++fmt; 342 if( c=='*' ){ 343 if( bArgList ){ 344 precision = (int)getIntArg(pArgList); 345 }else{ 346 precision = va_arg(ap,int); 347 } 348 if( precision<0 ){ 349 precision = precision >= -2147483647 ? -precision : -1; 350 } 351 c = *++fmt; 352 }else{ 353 unsigned px = 0; 354 while( c>='0' && c<='9' ){ 355 px = px*10 + c - '0'; 356 c = *++fmt; 357 } 358 testcase( px>0x7fffffff ); 359 precision = px & 0x7fffffff; 360 } 361 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 362 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 363 precision = SQLITE_PRINTF_PRECISION_LIMIT; 364 } 365 #endif 366 if( c=='l' ){ 367 --fmt; 368 }else{ 369 done = 1; 370 } 371 break; 372 } 373 } 374 }while( !done && (c=(*++fmt))!=0 ); 375 376 /* Fetch the info entry for the field */ 377 infop = &fmtinfo[0]; 378 xtype = etINVALID; 379 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 380 if( c==fmtinfo[idx].fmttype ){ 381 infop = &fmtinfo[idx]; 382 xtype = infop->type; 383 break; 384 } 385 } 386 387 /* 388 ** At this point, variables are initialized as follows: 389 ** 390 ** flag_alternateform TRUE if a '#' is present. 391 ** flag_altform2 TRUE if a '!' is present. 392 ** flag_prefix '+' or ' ' or zero 393 ** flag_leftjustify TRUE if a '-' is present or if the 394 ** field width was negative. 395 ** flag_zeropad TRUE if the width began with 0. 396 ** flag_long 1 for "l", 2 for "ll" 397 ** width The specified field width. This is 398 ** always non-negative. Zero is the default. 399 ** precision The specified precision. The default 400 ** is -1. 401 ** xtype The class of the conversion. 402 ** infop Pointer to the appropriate info struct. 403 */ 404 assert( width>=0 ); 405 assert( precision>=(-1) ); 406 switch( xtype ){ 407 case etPOINTER: 408 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 409 sizeof(char*)==sizeof(long int) ? 1 : 0; 410 /* Fall through into the next case */ 411 case etORDINAL: 412 case etRADIX: 413 cThousand = 0; 414 /* Fall through into the next case */ 415 case etDECIMAL: 416 if( infop->flags & FLAG_SIGNED ){ 417 i64 v; 418 if( bArgList ){ 419 v = getIntArg(pArgList); 420 }else if( flag_long ){ 421 if( flag_long==2 ){ 422 v = va_arg(ap,i64) ; 423 }else{ 424 v = va_arg(ap,long int); 425 } 426 }else{ 427 v = va_arg(ap,int); 428 } 429 if( v<0 ){ 430 if( v==SMALLEST_INT64 ){ 431 longvalue = ((u64)1)<<63; 432 }else{ 433 longvalue = -v; 434 } 435 prefix = '-'; 436 }else{ 437 longvalue = v; 438 prefix = flag_prefix; 439 } 440 }else{ 441 if( bArgList ){ 442 longvalue = (u64)getIntArg(pArgList); 443 }else if( flag_long ){ 444 if( flag_long==2 ){ 445 longvalue = va_arg(ap,u64); 446 }else{ 447 longvalue = va_arg(ap,unsigned long int); 448 } 449 }else{ 450 longvalue = va_arg(ap,unsigned int); 451 } 452 prefix = 0; 453 } 454 if( longvalue==0 ) flag_alternateform = 0; 455 if( flag_zeropad && precision<width-(prefix!=0) ){ 456 precision = width-(prefix!=0); 457 } 458 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 459 nOut = etBUFSIZE; 460 zOut = buf; 461 }else{ 462 u64 n; 463 n = (u64)precision + 10; 464 if( cThousand ) n += precision/3; 465 zOut = zExtra = printfTempBuf(pAccum, n); 466 if( zOut==0 ) return; 467 nOut = (int)n; 468 } 469 bufpt = &zOut[nOut-1]; 470 if( xtype==etORDINAL ){ 471 static const char zOrd[] = "thstndrd"; 472 int x = (int)(longvalue % 10); 473 if( x>=4 || (longvalue/10)%10==1 ){ 474 x = 0; 475 } 476 *(--bufpt) = zOrd[x*2+1]; 477 *(--bufpt) = zOrd[x*2]; 478 } 479 { 480 const char *cset = &aDigits[infop->charset]; 481 u8 base = infop->base; 482 do{ /* Convert to ascii */ 483 *(--bufpt) = cset[longvalue%base]; 484 longvalue = longvalue/base; 485 }while( longvalue>0 ); 486 } 487 length = (int)(&zOut[nOut-1]-bufpt); 488 while( precision>length ){ 489 *(--bufpt) = '0'; /* Zero pad */ 490 length++; 491 } 492 if( cThousand ){ 493 int nn = (length - 1)/3; /* Number of "," to insert */ 494 int ix = (length - 1)%3 + 1; 495 bufpt -= nn; 496 for(idx=0; nn>0; idx++){ 497 bufpt[idx] = bufpt[idx+nn]; 498 ix--; 499 if( ix==0 ){ 500 bufpt[++idx] = cThousand; 501 nn--; 502 ix = 3; 503 } 504 } 505 } 506 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 507 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 508 const char *pre; 509 char x; 510 pre = &aPrefix[infop->prefix]; 511 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 512 } 513 length = (int)(&zOut[nOut-1]-bufpt); 514 break; 515 case etFLOAT: 516 case etEXP: 517 case etGENERIC: 518 if( bArgList ){ 519 realvalue = getDoubleArg(pArgList); 520 }else{ 521 realvalue = va_arg(ap,double); 522 } 523 #ifdef SQLITE_OMIT_FLOATING_POINT 524 length = 0; 525 #else 526 if( precision<0 ) precision = 6; /* Set default precision */ 527 #ifdef SQLITE_FP_PRECISION_LIMIT 528 if( precision>SQLITE_FP_PRECISION_LIMIT ){ 529 precision = SQLITE_FP_PRECISION_LIMIT; 530 } 531 #endif 532 if( realvalue<0.0 ){ 533 realvalue = -realvalue; 534 prefix = '-'; 535 }else{ 536 prefix = flag_prefix; 537 } 538 if( xtype==etGENERIC && precision>0 ) precision--; 539 testcase( precision>0xfff ); 540 idx = precision & 0xfff; 541 rounder = arRound[idx%10]; 542 while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; } 543 if( xtype==etFLOAT ){ 544 double rx = (double)realvalue; 545 sqlite3_uint64 u; 546 int ex; 547 memcpy(&u, &rx, sizeof(u)); 548 ex = -1023 + (int)((u>>52)&0x7ff); 549 if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16; 550 realvalue += rounder; 551 } 552 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 553 exp = 0; 554 if( sqlite3IsNaN((double)realvalue) ){ 555 bufpt = "NaN"; 556 length = 3; 557 break; 558 } 559 if( realvalue>0.0 ){ 560 LONGDOUBLE_TYPE scale = 1.0; 561 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 562 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 563 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 564 realvalue /= scale; 565 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 566 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 567 if( exp>350 ){ 568 bufpt = buf; 569 buf[0] = prefix; 570 memcpy(buf+(prefix!=0),"Inf",4); 571 length = 3+(prefix!=0); 572 break; 573 } 574 } 575 bufpt = buf; 576 /* 577 ** If the field type is etGENERIC, then convert to either etEXP 578 ** or etFLOAT, as appropriate. 579 */ 580 if( xtype!=etFLOAT ){ 581 realvalue += rounder; 582 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 583 } 584 if( xtype==etGENERIC ){ 585 flag_rtz = !flag_alternateform; 586 if( exp<-4 || exp>precision ){ 587 xtype = etEXP; 588 }else{ 589 precision = precision - exp; 590 xtype = etFLOAT; 591 } 592 }else{ 593 flag_rtz = flag_altform2; 594 } 595 if( xtype==etEXP ){ 596 e2 = 0; 597 }else{ 598 e2 = exp; 599 } 600 { 601 i64 szBufNeeded; /* Size of a temporary buffer needed */ 602 szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; 603 if( szBufNeeded > etBUFSIZE ){ 604 bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); 605 if( bufpt==0 ) return; 606 } 607 } 608 zOut = bufpt; 609 nsd = 16 + flag_altform2*10; 610 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 611 /* The sign in front of the number */ 612 if( prefix ){ 613 *(bufpt++) = prefix; 614 } 615 /* Digits prior to the decimal point */ 616 if( e2<0 ){ 617 *(bufpt++) = '0'; 618 }else{ 619 for(; e2>=0; e2--){ 620 *(bufpt++) = et_getdigit(&realvalue,&nsd); 621 } 622 } 623 /* The decimal point */ 624 if( flag_dp ){ 625 *(bufpt++) = '.'; 626 } 627 /* "0" digits after the decimal point but before the first 628 ** significant digit of the number */ 629 for(e2++; e2<0; precision--, e2++){ 630 assert( precision>0 ); 631 *(bufpt++) = '0'; 632 } 633 /* Significant digits after the decimal point */ 634 while( (precision--)>0 ){ 635 *(bufpt++) = et_getdigit(&realvalue,&nsd); 636 } 637 /* Remove trailing zeros and the "." if no digits follow the "." */ 638 if( flag_rtz && flag_dp ){ 639 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 640 assert( bufpt>zOut ); 641 if( bufpt[-1]=='.' ){ 642 if( flag_altform2 ){ 643 *(bufpt++) = '0'; 644 }else{ 645 *(--bufpt) = 0; 646 } 647 } 648 } 649 /* Add the "eNNN" suffix */ 650 if( xtype==etEXP ){ 651 *(bufpt++) = aDigits[infop->charset]; 652 if( exp<0 ){ 653 *(bufpt++) = '-'; exp = -exp; 654 }else{ 655 *(bufpt++) = '+'; 656 } 657 if( exp>=100 ){ 658 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 659 exp %= 100; 660 } 661 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 662 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 663 } 664 *bufpt = 0; 665 666 /* The converted number is in buf[] and zero terminated. Output it. 667 ** Note that the number is in the usual order, not reversed as with 668 ** integer conversions. */ 669 length = (int)(bufpt-zOut); 670 bufpt = zOut; 671 672 /* Special case: Add leading zeros if the flag_zeropad flag is 673 ** set and we are not left justified */ 674 if( flag_zeropad && !flag_leftjustify && length < width){ 675 int i; 676 int nPad = width - length; 677 for(i=width; i>=nPad; i--){ 678 bufpt[i] = bufpt[i-nPad]; 679 } 680 i = prefix!=0; 681 while( nPad-- ) bufpt[i++] = '0'; 682 length = width; 683 } 684 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 685 break; 686 case etSIZE: 687 if( !bArgList ){ 688 *(va_arg(ap,int*)) = pAccum->nChar; 689 } 690 length = width = 0; 691 break; 692 case etPERCENT: 693 buf[0] = '%'; 694 bufpt = buf; 695 length = 1; 696 break; 697 case etCHARX: 698 if( bArgList ){ 699 bufpt = getTextArg(pArgList); 700 length = 1; 701 if( bufpt ){ 702 buf[0] = c = *(bufpt++); 703 if( (c&0xc0)==0xc0 ){ 704 while( length<4 && (bufpt[0]&0xc0)==0x80 ){ 705 buf[length++] = *(bufpt++); 706 } 707 } 708 }else{ 709 buf[0] = 0; 710 } 711 }else{ 712 unsigned int ch = va_arg(ap,unsigned int); 713 if( ch<0x00080 ){ 714 buf[0] = ch & 0xff; 715 length = 1; 716 }else if( ch<0x00800 ){ 717 buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); 718 buf[1] = 0x80 + (u8)(ch & 0x3f); 719 length = 2; 720 }else if( ch<0x10000 ){ 721 buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); 722 buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); 723 buf[2] = 0x80 + (u8)(ch & 0x3f); 724 length = 3; 725 }else{ 726 buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); 727 buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); 728 buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); 729 buf[3] = 0x80 + (u8)(ch & 0x3f); 730 length = 4; 731 } 732 } 733 if( precision>1 ){ 734 width -= precision-1; 735 if( width>1 && !flag_leftjustify ){ 736 sqlite3_str_appendchar(pAccum, width-1, ' '); 737 width = 0; 738 } 739 while( precision-- > 1 ){ 740 sqlite3_str_append(pAccum, buf, length); 741 } 742 } 743 bufpt = buf; 744 flag_altform2 = 1; 745 goto adjust_width_for_utf8; 746 case etSTRING: 747 case etDYNSTRING: 748 if( bArgList ){ 749 bufpt = getTextArg(pArgList); 750 xtype = etSTRING; 751 }else{ 752 bufpt = va_arg(ap,char*); 753 } 754 if( bufpt==0 ){ 755 bufpt = ""; 756 }else if( xtype==etDYNSTRING ){ 757 if( pAccum->nChar==0 758 && pAccum->mxAlloc 759 && width==0 760 && precision<0 761 && pAccum->accError==0 762 ){ 763 /* Special optimization for sqlite3_mprintf("%z..."): 764 ** Extend an existing memory allocation rather than creating 765 ** a new one. */ 766 assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); 767 pAccum->zText = bufpt; 768 pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); 769 pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); 770 pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; 771 length = 0; 772 break; 773 } 774 zExtra = bufpt; 775 } 776 if( precision>=0 ){ 777 if( flag_altform2 ){ 778 /* Set length to the number of bytes needed in order to display 779 ** precision characters */ 780 unsigned char *z = (unsigned char*)bufpt; 781 while( precision-- > 0 && z[0] ){ 782 SQLITE_SKIP_UTF8(z); 783 } 784 length = (int)(z - (unsigned char*)bufpt); 785 }else{ 786 for(length=0; length<precision && bufpt[length]; length++){} 787 } 788 }else{ 789 length = 0x7fffffff & (int)strlen(bufpt); 790 } 791 adjust_width_for_utf8: 792 if( flag_altform2 && width>0 ){ 793 /* Adjust width to account for extra bytes in UTF-8 characters */ 794 int ii = length - 1; 795 while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; 796 } 797 break; 798 case etSQLESCAPE: /* %q: Escape ' characters */ 799 case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ 800 case etSQLESCAPE3: { /* %w: Escape " characters */ 801 int i, j, k, n, isnull; 802 int needQuote; 803 char ch; 804 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 805 char *escarg; 806 807 if( bArgList ){ 808 escarg = getTextArg(pArgList); 809 }else{ 810 escarg = va_arg(ap,char*); 811 } 812 isnull = escarg==0; 813 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 814 /* For %q, %Q, and %w, the precision is the number of bytes (or 815 ** characters if the ! flags is present) to use from the input. 816 ** Because of the extra quoting characters inserted, the number 817 ** of output characters may be larger than the precision. 818 */ 819 k = precision; 820 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 821 if( ch==q ) n++; 822 if( flag_altform2 && (ch&0xc0)==0xc0 ){ 823 while( (escarg[i+1]&0xc0)==0x80 ){ i++; } 824 } 825 } 826 needQuote = !isnull && xtype==etSQLESCAPE2; 827 n += i + 3; 828 if( n>etBUFSIZE ){ 829 bufpt = zExtra = printfTempBuf(pAccum, n); 830 if( bufpt==0 ) return; 831 }else{ 832 bufpt = buf; 833 } 834 j = 0; 835 if( needQuote ) bufpt[j++] = q; 836 k = i; 837 for(i=0; i<k; i++){ 838 bufpt[j++] = ch = escarg[i]; 839 if( ch==q ) bufpt[j++] = ch; 840 } 841 if( needQuote ) bufpt[j++] = q; 842 bufpt[j] = 0; 843 length = j; 844 goto adjust_width_for_utf8; 845 } 846 case etTOKEN: { 847 Token *pToken; 848 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 849 pToken = va_arg(ap, Token*); 850 assert( bArgList==0 ); 851 if( pToken && pToken->n ){ 852 sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); 853 } 854 length = width = 0; 855 break; 856 } 857 case etSRCLIST: { 858 SrcList *pSrc; 859 int k; 860 struct SrcList_item *pItem; 861 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 862 pSrc = va_arg(ap, SrcList*); 863 k = va_arg(ap, int); 864 pItem = &pSrc->a[k]; 865 assert( bArgList==0 ); 866 assert( k>=0 && k<pSrc->nSrc ); 867 if( pItem->zDatabase ){ 868 sqlite3_str_appendall(pAccum, pItem->zDatabase); 869 sqlite3_str_append(pAccum, ".", 1); 870 } 871 sqlite3_str_appendall(pAccum, pItem->zName); 872 length = width = 0; 873 break; 874 } 875 default: { 876 assert( xtype==etINVALID ); 877 return; 878 } 879 }/* End switch over the format type */ 880 /* 881 ** The text of the conversion is pointed to by "bufpt" and is 882 ** "length" characters long. The field width is "width". Do 883 ** the output. Both length and width are in bytes, not characters, 884 ** at this point. If the "!" flag was present on string conversions 885 ** indicating that width and precision should be expressed in characters, 886 ** then the values have been translated prior to reaching this point. 887 */ 888 width -= length; 889 if( width>0 ){ 890 if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 891 sqlite3_str_append(pAccum, bufpt, length); 892 if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); 893 }else{ 894 sqlite3_str_append(pAccum, bufpt, length); 895 } 896 897 if( zExtra ){ 898 sqlite3DbFree(pAccum->db, zExtra); 899 zExtra = 0; 900 } 901 }/* End for loop over the format string */ 902 } /* End of function */ 903 904 /* 905 ** Enlarge the memory allocation on a StrAccum object so that it is 906 ** able to accept at least N more bytes of text. 907 ** 908 ** Return the number of bytes of text that StrAccum is able to accept 909 ** after the attempted enlargement. The value returned might be zero. 910 */ 911 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 912 char *zNew; 913 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 914 if( p->accError ){ 915 testcase(p->accError==SQLITE_TOOBIG); 916 testcase(p->accError==SQLITE_NOMEM); 917 return 0; 918 } 919 if( p->mxAlloc==0 ){ 920 setStrAccumError(p, SQLITE_TOOBIG); 921 return p->nAlloc - p->nChar - 1; 922 }else{ 923 char *zOld = isMalloced(p) ? p->zText : 0; 924 i64 szNew = p->nChar; 925 szNew += N + 1; 926 if( szNew+p->nChar<=p->mxAlloc ){ 927 /* Force exponential buffer size growth as long as it does not overflow, 928 ** to avoid having to call this routine too often */ 929 szNew += p->nChar; 930 } 931 if( szNew > p->mxAlloc ){ 932 sqlite3_str_reset(p); 933 setStrAccumError(p, SQLITE_TOOBIG); 934 return 0; 935 }else{ 936 p->nAlloc = (int)szNew; 937 } 938 if( p->db ){ 939 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 940 }else{ 941 zNew = sqlite3Realloc(zOld, p->nAlloc); 942 } 943 if( zNew ){ 944 assert( p->zText!=0 || p->nChar==0 ); 945 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 946 p->zText = zNew; 947 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 948 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 949 }else{ 950 sqlite3_str_reset(p); 951 setStrAccumError(p, SQLITE_NOMEM); 952 return 0; 953 } 954 } 955 return N; 956 } 957 958 /* 959 ** Append N copies of character c to the given string buffer. 960 */ 961 void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ 962 testcase( p->nChar + (i64)N > 0x7fffffff ); 963 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 964 return; 965 } 966 while( (N--)>0 ) p->zText[p->nChar++] = c; 967 } 968 969 /* 970 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 971 ** So enlarge if first, then do the append. 972 ** 973 ** This is a helper routine to sqlite3_str_append() that does special-case 974 ** work (enlarging the buffer) using tail recursion, so that the 975 ** sqlite3_str_append() routine can use fast calling semantics. 976 */ 977 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 978 N = sqlite3StrAccumEnlarge(p, N); 979 if( N>0 ){ 980 memcpy(&p->zText[p->nChar], z, N); 981 p->nChar += N; 982 } 983 } 984 985 /* 986 ** Append N bytes of text from z to the StrAccum object. Increase the 987 ** size of the memory allocation for StrAccum if necessary. 988 */ 989 void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ 990 assert( z!=0 || N==0 ); 991 assert( p->zText!=0 || p->nChar==0 || p->accError ); 992 assert( N>=0 ); 993 assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 ); 994 if( p->nChar+N >= p->nAlloc ){ 995 enlargeAndAppend(p,z,N); 996 }else if( N ){ 997 assert( p->zText ); 998 p->nChar += N; 999 memcpy(&p->zText[p->nChar-N], z, N); 1000 } 1001 } 1002 1003 /* 1004 ** Append the complete text of zero-terminated string z[] to the p string. 1005 */ 1006 void sqlite3_str_appendall(sqlite3_str *p, const char *z){ 1007 sqlite3_str_append(p, z, sqlite3Strlen30(z)); 1008 } 1009 1010 1011 /* 1012 ** Finish off a string by making sure it is zero-terminated. 1013 ** Return a pointer to the resulting string. Return a NULL 1014 ** pointer if any kind of error was encountered. 1015 */ 1016 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 1017 char *zText; 1018 assert( p->mxAlloc>0 && !isMalloced(p) ); 1019 zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 1020 if( zText ){ 1021 memcpy(zText, p->zText, p->nChar+1); 1022 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 1023 }else{ 1024 setStrAccumError(p, SQLITE_NOMEM); 1025 } 1026 p->zText = zText; 1027 return zText; 1028 } 1029 char *sqlite3StrAccumFinish(StrAccum *p){ 1030 if( p->zText ){ 1031 p->zText[p->nChar] = 0; 1032 if( p->mxAlloc>0 && !isMalloced(p) ){ 1033 return strAccumFinishRealloc(p); 1034 } 1035 } 1036 return p->zText; 1037 } 1038 1039 /* 1040 ** This singleton is an sqlite3_str object that is returned if 1041 ** sqlite3_malloc() fails to provide space for a real one. This 1042 ** sqlite3_str object accepts no new text and always returns 1043 ** an SQLITE_NOMEM error. 1044 */ 1045 static sqlite3_str sqlite3OomStr = { 1046 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 1047 }; 1048 1049 /* Finalize a string created using sqlite3_str_new(). 1050 */ 1051 char *sqlite3_str_finish(sqlite3_str *p){ 1052 char *z; 1053 if( p!=0 && p!=&sqlite3OomStr ){ 1054 z = sqlite3StrAccumFinish(p); 1055 sqlite3_free(p); 1056 }else{ 1057 z = 0; 1058 } 1059 return z; 1060 } 1061 1062 /* Return any error code associated with p */ 1063 int sqlite3_str_errcode(sqlite3_str *p){ 1064 return p ? p->accError : SQLITE_NOMEM; 1065 } 1066 1067 /* Return the current length of p in bytes */ 1068 int sqlite3_str_length(sqlite3_str *p){ 1069 return p ? p->nChar : 0; 1070 } 1071 1072 /* Return the current value for p */ 1073 char *sqlite3_str_value(sqlite3_str *p){ 1074 if( p==0 || p->nChar==0 ) return 0; 1075 p->zText[p->nChar] = 0; 1076 return p->zText; 1077 } 1078 1079 /* 1080 ** Reset an StrAccum string. Reclaim all malloced memory. 1081 */ 1082 void sqlite3_str_reset(StrAccum *p){ 1083 if( isMalloced(p) ){ 1084 sqlite3DbFree(p->db, p->zText); 1085 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 1086 } 1087 p->nAlloc = 0; 1088 p->nChar = 0; 1089 p->zText = 0; 1090 } 1091 1092 /* 1093 ** Initialize a string accumulator. 1094 ** 1095 ** p: The accumulator to be initialized. 1096 ** db: Pointer to a database connection. May be NULL. Lookaside 1097 ** memory is used if not NULL. db->mallocFailed is set appropriately 1098 ** when not NULL. 1099 ** zBase: An initial buffer. May be NULL in which case the initial buffer 1100 ** is malloced. 1101 ** n: Size of zBase in bytes. If total space requirements never exceed 1102 ** n then no memory allocations ever occur. 1103 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 1104 ** allocations will ever occur. 1105 */ 1106 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 1107 p->zText = zBase; 1108 p->db = db; 1109 p->nAlloc = n; 1110 p->mxAlloc = mx; 1111 p->nChar = 0; 1112 p->accError = 0; 1113 p->printfFlags = 0; 1114 } 1115 1116 /* Allocate and initialize a new dynamic string object */ 1117 sqlite3_str *sqlite3_str_new(sqlite3 *db){ 1118 sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); 1119 if( p ){ 1120 sqlite3StrAccumInit(p, 0, 0, 0, 1121 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 1122 }else{ 1123 p = &sqlite3OomStr; 1124 } 1125 return p; 1126 } 1127 1128 /* 1129 ** Print into memory obtained from sqliteMalloc(). Use the internal 1130 ** %-conversion extensions. 1131 */ 1132 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 1133 char *z; 1134 char zBase[SQLITE_PRINT_BUF_SIZE]; 1135 StrAccum acc; 1136 assert( db!=0 ); 1137 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 1138 db->aLimit[SQLITE_LIMIT_LENGTH]); 1139 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 1140 sqlite3_str_vappendf(&acc, zFormat, ap); 1141 z = sqlite3StrAccumFinish(&acc); 1142 if( acc.accError==SQLITE_NOMEM ){ 1143 sqlite3OomFault(db); 1144 } 1145 return z; 1146 } 1147 1148 /* 1149 ** Print into memory obtained from sqliteMalloc(). Use the internal 1150 ** %-conversion extensions. 1151 */ 1152 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 1153 va_list ap; 1154 char *z; 1155 va_start(ap, zFormat); 1156 z = sqlite3VMPrintf(db, zFormat, ap); 1157 va_end(ap); 1158 return z; 1159 } 1160 1161 /* 1162 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 1163 ** %-conversion extensions. 1164 */ 1165 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 1166 char *z; 1167 char zBase[SQLITE_PRINT_BUF_SIZE]; 1168 StrAccum acc; 1169 1170 #ifdef SQLITE_ENABLE_API_ARMOR 1171 if( zFormat==0 ){ 1172 (void)SQLITE_MISUSE_BKPT; 1173 return 0; 1174 } 1175 #endif 1176 #ifndef SQLITE_OMIT_AUTOINIT 1177 if( sqlite3_initialize() ) return 0; 1178 #endif 1179 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 1180 sqlite3_str_vappendf(&acc, zFormat, ap); 1181 z = sqlite3StrAccumFinish(&acc); 1182 return z; 1183 } 1184 1185 /* 1186 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 1187 ** %-conversion extensions. 1188 */ 1189 char *sqlite3_mprintf(const char *zFormat, ...){ 1190 va_list ap; 1191 char *z; 1192 #ifndef SQLITE_OMIT_AUTOINIT 1193 if( sqlite3_initialize() ) return 0; 1194 #endif 1195 va_start(ap, zFormat); 1196 z = sqlite3_vmprintf(zFormat, ap); 1197 va_end(ap); 1198 return z; 1199 } 1200 1201 /* 1202 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1203 ** current locale settings. This is important for SQLite because we 1204 ** are not able to use a "," as the decimal point in place of "." as 1205 ** specified by some locales. 1206 ** 1207 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1208 ** from the snprintf() standard. Unfortunately, it is too late to change 1209 ** this without breaking compatibility, so we just have to live with the 1210 ** mistake. 1211 ** 1212 ** sqlite3_vsnprintf() is the varargs version. 1213 */ 1214 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1215 StrAccum acc; 1216 if( n<=0 ) return zBuf; 1217 #ifdef SQLITE_ENABLE_API_ARMOR 1218 if( zBuf==0 || zFormat==0 ) { 1219 (void)SQLITE_MISUSE_BKPT; 1220 if( zBuf ) zBuf[0] = 0; 1221 return zBuf; 1222 } 1223 #endif 1224 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1225 sqlite3_str_vappendf(&acc, zFormat, ap); 1226 zBuf[acc.nChar] = 0; 1227 return zBuf; 1228 } 1229 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1230 char *z; 1231 va_list ap; 1232 va_start(ap,zFormat); 1233 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1234 va_end(ap); 1235 return z; 1236 } 1237 1238 /* 1239 ** This is the routine that actually formats the sqlite3_log() message. 1240 ** We house it in a separate routine from sqlite3_log() to avoid using 1241 ** stack space on small-stack systems when logging is disabled. 1242 ** 1243 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1244 ** allocate memory because it might be called while the memory allocator 1245 ** mutex is held. 1246 ** 1247 ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for 1248 ** certain format characters (%q) or for very large precisions or widths. 1249 ** Care must be taken that any sqlite3_log() calls that occur while the 1250 ** memory mutex is held do not use these mechanisms. 1251 */ 1252 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1253 StrAccum acc; /* String accumulator */ 1254 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1255 1256 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1257 sqlite3_str_vappendf(&acc, zFormat, ap); 1258 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1259 sqlite3StrAccumFinish(&acc)); 1260 } 1261 1262 /* 1263 ** Format and write a message to the log if logging is enabled. 1264 */ 1265 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1266 va_list ap; /* Vararg list */ 1267 if( sqlite3GlobalConfig.xLog ){ 1268 va_start(ap, zFormat); 1269 renderLogMsg(iErrCode, zFormat, ap); 1270 va_end(ap); 1271 } 1272 } 1273 1274 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1275 /* 1276 ** A version of printf() that understands %lld. Used for debugging. 1277 ** The printf() built into some versions of windows does not understand %lld 1278 ** and segfaults if you give it a long long int. 1279 */ 1280 void sqlite3DebugPrintf(const char *zFormat, ...){ 1281 va_list ap; 1282 StrAccum acc; 1283 char zBuf[SQLITE_PRINT_BUF_SIZE*10]; 1284 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1285 va_start(ap,zFormat); 1286 sqlite3_str_vappendf(&acc, zFormat, ap); 1287 va_end(ap); 1288 sqlite3StrAccumFinish(&acc); 1289 #ifdef SQLITE_OS_TRACE_PROC 1290 { 1291 extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); 1292 SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); 1293 } 1294 #else 1295 fprintf(stdout,"%s", zBuf); 1296 fflush(stdout); 1297 #endif 1298 } 1299 #endif 1300 1301 1302 /* 1303 ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument 1304 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1305 */ 1306 void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ 1307 va_list ap; 1308 va_start(ap,zFormat); 1309 sqlite3_str_vappendf(p, zFormat, ap); 1310 va_end(ap); 1311 } 1312