1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. 4 ** 5 ************************************************************************** 6 ** 7 ** This file contains code for a set of "printf"-like routines. These 8 ** routines format strings much like the printf() from the standard C 9 ** library, though the implementation here has enhancements to support 10 ** SQLite. 11 */ 12 #include "sqliteInt.h" 13 14 /* 15 ** Conversion types fall into various categories as defined by the 16 ** following enumeration. 17 */ 18 #define etRADIX 0 /* non-decimal integer types. %x %o */ 19 #define etFLOAT 1 /* Floating point. %f */ 20 #define etEXP 2 /* Exponentional notation. %e and %E */ 21 #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ 22 #define etSIZE 4 /* Return number of characters processed so far. %n */ 23 #define etSTRING 5 /* Strings. %s */ 24 #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ 25 #define etPERCENT 7 /* Percent symbol. %% */ 26 #define etCHARX 8 /* Characters. %c */ 27 /* The rest are extensions, not normally found in printf() */ 28 #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ 29 #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', 30 NULL pointers replaced by SQL NULL. %Q */ 31 #define etTOKEN 11 /* a pointer to a Token structure */ 32 #define etSRCLIST 12 /* a pointer to a SrcList */ 33 #define etPOINTER 13 /* The %p conversion */ 34 #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ 35 #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 36 #define etDECIMAL 16 /* %d or %u, but not %x, %o */ 37 38 #define etINVALID 17 /* Any unrecognized conversion type */ 39 40 41 /* 42 ** An "etByte" is an 8-bit unsigned value. 43 */ 44 typedef unsigned char etByte; 45 46 /* 47 ** Each builtin conversion character (ex: the 'd' in "%d") is described 48 ** by an instance of the following structure 49 */ 50 typedef struct et_info { /* Information about each format field */ 51 char fmttype; /* The format field code letter */ 52 etByte base; /* The base for radix conversion */ 53 etByte flags; /* One or more of FLAG_ constants below */ 54 etByte type; /* Conversion paradigm */ 55 etByte charset; /* Offset into aDigits[] of the digits string */ 56 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 57 } et_info; 58 59 /* 60 ** Allowed values for et_info.flags 61 */ 62 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 63 #define FLAG_STRING 4 /* Allow infinite precision */ 64 65 66 /* 67 ** The following table is searched linearly, so it is good to put the 68 ** most frequently used conversion types first. 69 */ 70 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 71 static const char aPrefix[] = "-x0\000X0"; 72 static const et_info fmtinfo[] = { 73 { 'd', 10, 1, etDECIMAL, 0, 0 }, 74 { 's', 0, 4, etSTRING, 0, 0 }, 75 { 'g', 0, 1, etGENERIC, 30, 0 }, 76 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 77 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 78 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 79 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 80 { 'c', 0, 0, etCHARX, 0, 0 }, 81 { 'o', 8, 0, etRADIX, 0, 2 }, 82 { 'u', 10, 0, etDECIMAL, 0, 0 }, 83 { 'x', 16, 0, etRADIX, 16, 1 }, 84 { 'X', 16, 0, etRADIX, 0, 4 }, 85 #ifndef SQLITE_OMIT_FLOATING_POINT 86 { 'f', 0, 1, etFLOAT, 0, 0 }, 87 { 'e', 0, 1, etEXP, 30, 0 }, 88 { 'E', 0, 1, etEXP, 14, 0 }, 89 { 'G', 0, 1, etGENERIC, 14, 0 }, 90 #endif 91 { 'i', 10, 1, etDECIMAL, 0, 0 }, 92 { 'n', 0, 0, etSIZE, 0, 0 }, 93 { '%', 0, 0, etPERCENT, 0, 0 }, 94 { 'p', 16, 0, etPOINTER, 0, 1 }, 95 96 /* All the rest are undocumented and are for internal use only */ 97 { 'T', 0, 0, etTOKEN, 0, 0 }, 98 { 'S', 0, 0, etSRCLIST, 0, 0 }, 99 { 'r', 10, 1, etORDINAL, 0, 0 }, 100 }; 101 102 /* 103 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 104 ** conversions will work. 105 */ 106 #ifndef SQLITE_OMIT_FLOATING_POINT 107 /* 108 ** "*val" is a double such that 0.1 <= *val < 10.0 109 ** Return the ascii code for the leading digit of *val, then 110 ** multiply "*val" by 10.0 to renormalize. 111 ** 112 ** Example: 113 ** input: *val = 3.14159 114 ** output: *val = 1.4159 function return = '3' 115 ** 116 ** The counter *cnt is incremented each time. After counter exceeds 117 ** 16 (the number of significant digits in a 64-bit float) '0' is 118 ** always returned. 119 */ 120 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 121 int digit; 122 LONGDOUBLE_TYPE d; 123 if( (*cnt)<=0 ) return '0'; 124 (*cnt)--; 125 digit = (int)*val; 126 d = digit; 127 digit += '0'; 128 *val = (*val - d)*10.0; 129 return (char)digit; 130 } 131 #endif /* SQLITE_OMIT_FLOATING_POINT */ 132 133 /* 134 ** Set the StrAccum object to an error mode. 135 */ 136 static void setStrAccumError(StrAccum *p, u8 eError){ 137 assert( eError==STRACCUM_NOMEM || eError==STRACCUM_TOOBIG ); 138 p->accError = eError; 139 p->nAlloc = 0; 140 } 141 142 /* 143 ** Extra argument values from a PrintfArguments object 144 */ 145 static sqlite3_int64 getIntArg(PrintfArguments *p){ 146 if( p->nArg<=p->nUsed ) return 0; 147 return sqlite3_value_int64(p->apArg[p->nUsed++]); 148 } 149 static double getDoubleArg(PrintfArguments *p){ 150 if( p->nArg<=p->nUsed ) return 0.0; 151 return sqlite3_value_double(p->apArg[p->nUsed++]); 152 } 153 static char *getTextArg(PrintfArguments *p){ 154 if( p->nArg<=p->nUsed ) return 0; 155 return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); 156 } 157 158 159 /* 160 ** On machines with a small stack size, you can redefine the 161 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 162 */ 163 #ifndef SQLITE_PRINT_BUF_SIZE 164 # define SQLITE_PRINT_BUF_SIZE 70 165 #endif 166 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 167 168 /* 169 ** Render a string given by "fmt" into the StrAccum object. 170 */ 171 void sqlite3VXPrintf( 172 StrAccum *pAccum, /* Accumulate results here */ 173 const char *fmt, /* Format string */ 174 va_list ap /* arguments */ 175 ){ 176 int c; /* Next character in the format string */ 177 char *bufpt; /* Pointer to the conversion buffer */ 178 int precision; /* Precision of the current field */ 179 int length; /* Length of the field */ 180 int idx; /* A general purpose loop counter */ 181 int width; /* Width of the current field */ 182 etByte flag_leftjustify; /* True if "-" flag is present */ 183 etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ 184 etByte flag_alternateform; /* True if "#" flag is present */ 185 etByte flag_altform2; /* True if "!" flag is present */ 186 etByte flag_zeropad; /* True if field width constant starts with zero */ 187 etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ 188 etByte done; /* Loop termination flag */ 189 etByte cThousand; /* Thousands separator for %d and %u */ 190 etByte xtype = etINVALID; /* Conversion paradigm */ 191 u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ 192 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 193 sqlite_uint64 longvalue; /* Value for integer types */ 194 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 195 const et_info *infop; /* Pointer to the appropriate info structure */ 196 char *zOut; /* Rendering buffer */ 197 int nOut; /* Size of the rendering buffer */ 198 char *zExtra = 0; /* Malloced memory used by some conversion */ 199 #ifndef SQLITE_OMIT_FLOATING_POINT 200 int exp, e2; /* exponent of real numbers */ 201 int nsd; /* Number of significant digits returned */ 202 double rounder; /* Used for rounding floating point values */ 203 etByte flag_dp; /* True if decimal point should be shown */ 204 etByte flag_rtz; /* True if trailing zeros should be removed */ 205 #endif 206 PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ 207 char buf[etBUFSIZE]; /* Conversion buffer */ 208 209 bufpt = 0; 210 if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ 211 pArgList = va_arg(ap, PrintfArguments*); 212 bArgList = 1; 213 }else{ 214 bArgList = 0; 215 } 216 for(; (c=(*fmt))!=0; ++fmt){ 217 if( c!='%' ){ 218 bufpt = (char *)fmt; 219 #if HAVE_STRCHRNUL 220 fmt = strchrnul(fmt, '%'); 221 #else 222 do{ fmt++; }while( *fmt && *fmt != '%' ); 223 #endif 224 sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt)); 225 if( *fmt==0 ) break; 226 } 227 if( (c=(*++fmt))==0 ){ 228 sqlite3StrAccumAppend(pAccum, "%", 1); 229 break; 230 } 231 /* Find out what flags are present */ 232 flag_leftjustify = flag_prefix = cThousand = 233 flag_alternateform = flag_altform2 = flag_zeropad = 0; 234 done = 0; 235 do{ 236 switch( c ){ 237 case '-': flag_leftjustify = 1; break; 238 case '+': flag_prefix = '+'; break; 239 case ' ': flag_prefix = ' '; break; 240 case '#': flag_alternateform = 1; break; 241 case '!': flag_altform2 = 1; break; 242 case '0': flag_zeropad = 1; break; 243 case ',': cThousand = ','; break; 244 default: done = 1; break; 245 } 246 }while( !done && (c=(*++fmt))!=0 ); 247 /* Get the field width */ 248 if( c=='*' ){ 249 if( bArgList ){ 250 width = (int)getIntArg(pArgList); 251 }else{ 252 width = va_arg(ap,int); 253 } 254 if( width<0 ){ 255 flag_leftjustify = 1; 256 width = width >= -2147483647 ? -width : 0; 257 } 258 c = *++fmt; 259 }else{ 260 unsigned wx = 0; 261 while( c>='0' && c<='9' ){ 262 wx = wx*10 + c - '0'; 263 c = *++fmt; 264 } 265 testcase( wx>0x7fffffff ); 266 width = wx & 0x7fffffff; 267 } 268 assert( width>=0 ); 269 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 270 if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ 271 width = SQLITE_PRINTF_PRECISION_LIMIT; 272 } 273 #endif 274 275 /* Get the precision */ 276 if( c=='.' ){ 277 c = *++fmt; 278 if( c=='*' ){ 279 if( bArgList ){ 280 precision = (int)getIntArg(pArgList); 281 }else{ 282 precision = va_arg(ap,int); 283 } 284 c = *++fmt; 285 if( precision<0 ){ 286 precision = precision >= -2147483647 ? -precision : -1; 287 } 288 }else{ 289 unsigned px = 0; 290 while( c>='0' && c<='9' ){ 291 px = px*10 + c - '0'; 292 c = *++fmt; 293 } 294 testcase( px>0x7fffffff ); 295 precision = px & 0x7fffffff; 296 } 297 }else{ 298 precision = -1; 299 } 300 assert( precision>=(-1) ); 301 #ifdef SQLITE_PRINTF_PRECISION_LIMIT 302 if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ 303 precision = SQLITE_PRINTF_PRECISION_LIMIT; 304 } 305 #endif 306 307 308 /* Get the conversion type modifier */ 309 if( c=='l' ){ 310 flag_long = 1; 311 c = *++fmt; 312 if( c=='l' ){ 313 flag_long = 2; 314 c = *++fmt; 315 } 316 }else{ 317 flag_long = 0; 318 } 319 /* Fetch the info entry for the field */ 320 infop = &fmtinfo[0]; 321 xtype = etINVALID; 322 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 323 if( c==fmtinfo[idx].fmttype ){ 324 infop = &fmtinfo[idx]; 325 xtype = infop->type; 326 break; 327 } 328 } 329 330 /* 331 ** At this point, variables are initialized as follows: 332 ** 333 ** flag_alternateform TRUE if a '#' is present. 334 ** flag_altform2 TRUE if a '!' is present. 335 ** flag_prefix '+' or ' ' or zero 336 ** flag_leftjustify TRUE if a '-' is present or if the 337 ** field width was negative. 338 ** flag_zeropad TRUE if the width began with 0. 339 ** flag_long 1 for "l", 2 for "ll" 340 ** width The specified field width. This is 341 ** always non-negative. Zero is the default. 342 ** precision The specified precision. The default 343 ** is -1. 344 ** xtype The class of the conversion. 345 ** infop Pointer to the appropriate info struct. 346 */ 347 switch( xtype ){ 348 case etPOINTER: 349 flag_long = sizeof(char*)==sizeof(i64) ? 2 : 350 sizeof(char*)==sizeof(long int) ? 1 : 0; 351 /* Fall through into the next case */ 352 case etORDINAL: 353 case etRADIX: 354 cThousand = 0; 355 /* Fall through into the next case */ 356 case etDECIMAL: 357 if( infop->flags & FLAG_SIGNED ){ 358 i64 v; 359 if( bArgList ){ 360 v = getIntArg(pArgList); 361 }else if( flag_long ){ 362 if( flag_long==2 ){ 363 v = va_arg(ap,i64) ; 364 }else{ 365 v = va_arg(ap,long int); 366 } 367 }else{ 368 v = va_arg(ap,int); 369 } 370 if( v<0 ){ 371 if( v==SMALLEST_INT64 ){ 372 longvalue = ((u64)1)<<63; 373 }else{ 374 longvalue = -v; 375 } 376 prefix = '-'; 377 }else{ 378 longvalue = v; 379 prefix = flag_prefix; 380 } 381 }else{ 382 if( bArgList ){ 383 longvalue = (u64)getIntArg(pArgList); 384 }else if( flag_long ){ 385 if( flag_long==2 ){ 386 longvalue = va_arg(ap,u64); 387 }else{ 388 longvalue = va_arg(ap,unsigned long int); 389 } 390 }else{ 391 longvalue = va_arg(ap,unsigned int); 392 } 393 prefix = 0; 394 } 395 if( longvalue==0 ) flag_alternateform = 0; 396 if( flag_zeropad && precision<width-(prefix!=0) ){ 397 precision = width-(prefix!=0); 398 } 399 if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ 400 nOut = etBUFSIZE; 401 zOut = buf; 402 }else{ 403 nOut = precision + 10 + precision/3; 404 zOut = zExtra = sqlite3Malloc( nOut ); 405 if( zOut==0 ){ 406 setStrAccumError(pAccum, STRACCUM_NOMEM); 407 return; 408 } 409 } 410 bufpt = &zOut[nOut-1]; 411 if( xtype==etORDINAL ){ 412 static const char zOrd[] = "thstndrd"; 413 int x = (int)(longvalue % 10); 414 if( x>=4 || (longvalue/10)%10==1 ){ 415 x = 0; 416 } 417 *(--bufpt) = zOrd[x*2+1]; 418 *(--bufpt) = zOrd[x*2]; 419 } 420 { 421 const char *cset = &aDigits[infop->charset]; 422 u8 base = infop->base; 423 do{ /* Convert to ascii */ 424 *(--bufpt) = cset[longvalue%base]; 425 longvalue = longvalue/base; 426 }while( longvalue>0 ); 427 } 428 length = (int)(&zOut[nOut-1]-bufpt); 429 while( precision>length ){ 430 *(--bufpt) = '0'; /* Zero pad */ 431 length++; 432 } 433 if( cThousand ){ 434 int nn = (length - 1)/3; /* Number of "," to insert */ 435 int ix = (length - 1)%3 + 1; 436 bufpt -= nn; 437 for(idx=0; nn>0; idx++){ 438 bufpt[idx] = bufpt[idx+nn]; 439 ix--; 440 if( ix==0 ){ 441 bufpt[++idx] = cThousand; 442 nn--; 443 ix = 3; 444 } 445 } 446 } 447 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 448 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 449 const char *pre; 450 char x; 451 pre = &aPrefix[infop->prefix]; 452 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 453 } 454 length = (int)(&zOut[nOut-1]-bufpt); 455 break; 456 case etFLOAT: 457 case etEXP: 458 case etGENERIC: 459 if( bArgList ){ 460 realvalue = getDoubleArg(pArgList); 461 }else{ 462 realvalue = va_arg(ap,double); 463 } 464 #ifdef SQLITE_OMIT_FLOATING_POINT 465 length = 0; 466 #else 467 if( precision<0 ) precision = 6; /* Set default precision */ 468 if( realvalue<0.0 ){ 469 realvalue = -realvalue; 470 prefix = '-'; 471 }else{ 472 prefix = flag_prefix; 473 } 474 if( xtype==etGENERIC && precision>0 ) precision--; 475 testcase( precision>0xfff ); 476 for(idx=precision&0xfff, rounder=0.5; idx>0; idx--, rounder*=0.1){} 477 if( xtype==etFLOAT ) realvalue += rounder; 478 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 479 exp = 0; 480 if( sqlite3IsNaN((double)realvalue) ){ 481 bufpt = "NaN"; 482 length = 3; 483 break; 484 } 485 if( realvalue>0.0 ){ 486 LONGDOUBLE_TYPE scale = 1.0; 487 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 488 while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } 489 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 490 realvalue /= scale; 491 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 492 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 493 if( exp>350 ){ 494 bufpt = buf; 495 buf[0] = prefix; 496 memcpy(buf+(prefix!=0),"Inf",4); 497 length = 3+(prefix!=0); 498 break; 499 } 500 } 501 bufpt = buf; 502 /* 503 ** If the field type is etGENERIC, then convert to either etEXP 504 ** or etFLOAT, as appropriate. 505 */ 506 if( xtype!=etFLOAT ){ 507 realvalue += rounder; 508 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 509 } 510 if( xtype==etGENERIC ){ 511 flag_rtz = !flag_alternateform; 512 if( exp<-4 || exp>precision ){ 513 xtype = etEXP; 514 }else{ 515 precision = precision - exp; 516 xtype = etFLOAT; 517 } 518 }else{ 519 flag_rtz = flag_altform2; 520 } 521 if( xtype==etEXP ){ 522 e2 = 0; 523 }else{ 524 e2 = exp; 525 } 526 if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ 527 bufpt = zExtra 528 = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); 529 if( bufpt==0 ){ 530 setStrAccumError(pAccum, STRACCUM_NOMEM); 531 return; 532 } 533 } 534 zOut = bufpt; 535 nsd = 16 + flag_altform2*10; 536 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 537 /* The sign in front of the number */ 538 if( prefix ){ 539 *(bufpt++) = prefix; 540 } 541 /* Digits prior to the decimal point */ 542 if( e2<0 ){ 543 *(bufpt++) = '0'; 544 }else{ 545 for(; e2>=0; e2--){ 546 *(bufpt++) = et_getdigit(&realvalue,&nsd); 547 } 548 } 549 /* The decimal point */ 550 if( flag_dp ){ 551 *(bufpt++) = '.'; 552 } 553 /* "0" digits after the decimal point but before the first 554 ** significant digit of the number */ 555 for(e2++; e2<0; precision--, e2++){ 556 assert( precision>0 ); 557 *(bufpt++) = '0'; 558 } 559 /* Significant digits after the decimal point */ 560 while( (precision--)>0 ){ 561 *(bufpt++) = et_getdigit(&realvalue,&nsd); 562 } 563 /* Remove trailing zeros and the "." if no digits follow the "." */ 564 if( flag_rtz && flag_dp ){ 565 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 566 assert( bufpt>zOut ); 567 if( bufpt[-1]=='.' ){ 568 if( flag_altform2 ){ 569 *(bufpt++) = '0'; 570 }else{ 571 *(--bufpt) = 0; 572 } 573 } 574 } 575 /* Add the "eNNN" suffix */ 576 if( xtype==etEXP ){ 577 *(bufpt++) = aDigits[infop->charset]; 578 if( exp<0 ){ 579 *(bufpt++) = '-'; exp = -exp; 580 }else{ 581 *(bufpt++) = '+'; 582 } 583 if( exp>=100 ){ 584 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 585 exp %= 100; 586 } 587 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 588 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 589 } 590 *bufpt = 0; 591 592 /* The converted number is in buf[] and zero terminated. Output it. 593 ** Note that the number is in the usual order, not reversed as with 594 ** integer conversions. */ 595 length = (int)(bufpt-zOut); 596 bufpt = zOut; 597 598 /* Special case: Add leading zeros if the flag_zeropad flag is 599 ** set and we are not left justified */ 600 if( flag_zeropad && !flag_leftjustify && length < width){ 601 int i; 602 int nPad = width - length; 603 for(i=width; i>=nPad; i--){ 604 bufpt[i] = bufpt[i-nPad]; 605 } 606 i = prefix!=0; 607 while( nPad-- ) bufpt[i++] = '0'; 608 length = width; 609 } 610 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 611 break; 612 case etSIZE: 613 if( !bArgList ){ 614 *(va_arg(ap,int*)) = pAccum->nChar; 615 } 616 length = width = 0; 617 break; 618 case etPERCENT: 619 buf[0] = '%'; 620 bufpt = buf; 621 length = 1; 622 break; 623 case etCHARX: 624 if( bArgList ){ 625 bufpt = getTextArg(pArgList); 626 c = bufpt ? bufpt[0] : 0; 627 }else{ 628 c = va_arg(ap,int); 629 } 630 if( precision>1 ){ 631 width -= precision-1; 632 if( width>1 && !flag_leftjustify ){ 633 sqlite3AppendChar(pAccum, width-1, ' '); 634 width = 0; 635 } 636 sqlite3AppendChar(pAccum, precision-1, c); 637 } 638 length = 1; 639 buf[0] = c; 640 bufpt = buf; 641 break; 642 case etSTRING: 643 case etDYNSTRING: 644 if( bArgList ){ 645 bufpt = getTextArg(pArgList); 646 xtype = etSTRING; 647 }else{ 648 bufpt = va_arg(ap,char*); 649 } 650 if( bufpt==0 ){ 651 bufpt = ""; 652 }else if( xtype==etDYNSTRING ){ 653 zExtra = bufpt; 654 } 655 if( precision>=0 ){ 656 for(length=0; length<precision && bufpt[length]; length++){} 657 }else{ 658 length = sqlite3Strlen30(bufpt); 659 } 660 break; 661 case etSQLESCAPE: /* Escape ' characters */ 662 case etSQLESCAPE2: /* Escape ' and enclose in '...' */ 663 case etSQLESCAPE3: { /* Escape " characters */ 664 int i, j, k, n, isnull; 665 int needQuote; 666 char ch; 667 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 668 char *escarg; 669 670 if( bArgList ){ 671 escarg = getTextArg(pArgList); 672 }else{ 673 escarg = va_arg(ap,char*); 674 } 675 isnull = escarg==0; 676 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 677 k = precision; 678 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 679 if( ch==q ) n++; 680 } 681 needQuote = !isnull && xtype==etSQLESCAPE2; 682 n += i + 3; 683 if( n>etBUFSIZE ){ 684 bufpt = zExtra = sqlite3Malloc( n ); 685 if( bufpt==0 ){ 686 setStrAccumError(pAccum, STRACCUM_NOMEM); 687 return; 688 } 689 }else{ 690 bufpt = buf; 691 } 692 j = 0; 693 if( needQuote ) bufpt[j++] = q; 694 k = i; 695 for(i=0; i<k; i++){ 696 bufpt[j++] = ch = escarg[i]; 697 if( ch==q ) bufpt[j++] = ch; 698 } 699 if( needQuote ) bufpt[j++] = q; 700 bufpt[j] = 0; 701 length = j; 702 /* The precision in %q and %Q means how many input characters to 703 ** consume, not the length of the output... 704 ** if( precision>=0 && precision<length ) length = precision; */ 705 break; 706 } 707 case etTOKEN: { 708 Token *pToken; 709 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 710 pToken = va_arg(ap, Token*); 711 assert( bArgList==0 ); 712 if( pToken && pToken->n ){ 713 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 714 } 715 length = width = 0; 716 break; 717 } 718 case etSRCLIST: { 719 SrcList *pSrc; 720 int k; 721 struct SrcList_item *pItem; 722 if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; 723 pSrc = va_arg(ap, SrcList*); 724 k = va_arg(ap, int); 725 pItem = &pSrc->a[k]; 726 assert( bArgList==0 ); 727 assert( k>=0 && k<pSrc->nSrc ); 728 if( pItem->zDatabase ){ 729 sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase); 730 sqlite3StrAccumAppend(pAccum, ".", 1); 731 } 732 sqlite3StrAccumAppendAll(pAccum, pItem->zName); 733 length = width = 0; 734 break; 735 } 736 default: { 737 assert( xtype==etINVALID ); 738 return; 739 } 740 }/* End switch over the format type */ 741 /* 742 ** The text of the conversion is pointed to by "bufpt" and is 743 ** "length" characters long. The field width is "width". Do 744 ** the output. 745 */ 746 width -= length; 747 if( width>0 ){ 748 if( !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 749 sqlite3StrAccumAppend(pAccum, bufpt, length); 750 if( flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); 751 }else{ 752 sqlite3StrAccumAppend(pAccum, bufpt, length); 753 } 754 755 if( zExtra ){ 756 sqlite3DbFree(pAccum->db, zExtra); 757 zExtra = 0; 758 } 759 }/* End for loop over the format string */ 760 } /* End of function */ 761 762 /* 763 ** Enlarge the memory allocation on a StrAccum object so that it is 764 ** able to accept at least N more bytes of text. 765 ** 766 ** Return the number of bytes of text that StrAccum is able to accept 767 ** after the attempted enlargement. The value returned might be zero. 768 */ 769 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ 770 char *zNew; 771 assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ 772 if( p->accError ){ 773 testcase(p->accError==STRACCUM_TOOBIG); 774 testcase(p->accError==STRACCUM_NOMEM); 775 return 0; 776 } 777 if( p->mxAlloc==0 ){ 778 N = p->nAlloc - p->nChar - 1; 779 setStrAccumError(p, STRACCUM_TOOBIG); 780 return N; 781 }else{ 782 char *zOld = isMalloced(p) ? p->zText : 0; 783 i64 szNew = p->nChar; 784 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 785 szNew += N + 1; 786 if( szNew+p->nChar<=p->mxAlloc ){ 787 /* Force exponential buffer size growth as long as it does not overflow, 788 ** to avoid having to call this routine too often */ 789 szNew += p->nChar; 790 } 791 if( szNew > p->mxAlloc ){ 792 sqlite3StrAccumReset(p); 793 setStrAccumError(p, STRACCUM_TOOBIG); 794 return 0; 795 }else{ 796 p->nAlloc = (int)szNew; 797 } 798 if( p->db ){ 799 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 800 }else{ 801 zNew = sqlite3_realloc64(zOld, p->nAlloc); 802 } 803 if( zNew ){ 804 assert( p->zText!=0 || p->nChar==0 ); 805 if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 806 p->zText = zNew; 807 p->nAlloc = sqlite3DbMallocSize(p->db, zNew); 808 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 809 }else{ 810 sqlite3StrAccumReset(p); 811 setStrAccumError(p, STRACCUM_NOMEM); 812 return 0; 813 } 814 } 815 return N; 816 } 817 818 /* 819 ** Append N copies of character c to the given string buffer. 820 */ 821 void sqlite3AppendChar(StrAccum *p, int N, char c){ 822 testcase( p->nChar + (i64)N > 0x7fffffff ); 823 if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ 824 return; 825 } 826 assert( (p->zText==p->zBase)==!isMalloced(p) ); 827 while( (N--)>0 ) p->zText[p->nChar++] = c; 828 } 829 830 /* 831 ** The StrAccum "p" is not large enough to accept N new bytes of z[]. 832 ** So enlarge if first, then do the append. 833 ** 834 ** This is a helper routine to sqlite3StrAccumAppend() that does special-case 835 ** work (enlarging the buffer) using tail recursion, so that the 836 ** sqlite3StrAccumAppend() routine can use fast calling semantics. 837 */ 838 static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ 839 N = sqlite3StrAccumEnlarge(p, N); 840 if( N>0 ){ 841 memcpy(&p->zText[p->nChar], z, N); 842 p->nChar += N; 843 } 844 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 845 } 846 847 /* 848 ** Append N bytes of text from z to the StrAccum object. Increase the 849 ** size of the memory allocation for StrAccum if necessary. 850 */ 851 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 852 assert( z!=0 || N==0 ); 853 assert( p->zText!=0 || p->nChar==0 || p->accError ); 854 assert( N>=0 ); 855 assert( p->accError==0 || p->nAlloc==0 ); 856 if( p->nChar+N >= p->nAlloc ){ 857 enlargeAndAppend(p,z,N); 858 }else if( N ){ 859 assert( p->zText ); 860 p->nChar += N; 861 memcpy(&p->zText[p->nChar-N], z, N); 862 } 863 } 864 865 /* 866 ** Append the complete text of zero-terminated string z[] to the p string. 867 */ 868 void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){ 869 sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z)); 870 } 871 872 873 /* 874 ** Finish off a string by making sure it is zero-terminated. 875 ** Return a pointer to the resulting string. Return a NULL 876 ** pointer if any kind of error was encountered. 877 */ 878 static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ 879 assert( p->mxAlloc>0 && !isMalloced(p) ); 880 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 881 if( p->zText ){ 882 memcpy(p->zText, p->zBase, p->nChar+1); 883 p->printfFlags |= SQLITE_PRINTF_MALLOCED; 884 }else{ 885 setStrAccumError(p, STRACCUM_NOMEM); 886 } 887 return p->zText; 888 } 889 char *sqlite3StrAccumFinish(StrAccum *p){ 890 if( p->zText ){ 891 assert( (p->zText==p->zBase)==!isMalloced(p) ); 892 p->zText[p->nChar] = 0; 893 if( p->mxAlloc>0 && !isMalloced(p) ){ 894 return strAccumFinishRealloc(p); 895 } 896 } 897 return p->zText; 898 } 899 900 /* 901 ** Reset an StrAccum string. Reclaim all malloced memory. 902 */ 903 void sqlite3StrAccumReset(StrAccum *p){ 904 assert( (p->zText==0 || p->zText==p->zBase)==!isMalloced(p) ); 905 if( isMalloced(p) ){ 906 sqlite3DbFree(p->db, p->zText); 907 p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; 908 } 909 p->zText = 0; 910 } 911 912 /* 913 ** Initialize a string accumulator. 914 ** 915 ** p: The accumulator to be initialized. 916 ** db: Pointer to a database connection. May be NULL. Lookaside 917 ** memory is used if not NULL. db->mallocFailed is set appropriately 918 ** when not NULL. 919 ** zBase: An initial buffer. May be NULL in which case the initial buffer 920 ** is malloced. 921 ** n: Size of zBase in bytes. If total space requirements never exceed 922 ** n then no memory allocations ever occur. 923 ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory 924 ** allocations will ever occur. 925 */ 926 void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ 927 p->zText = p->zBase = zBase; 928 p->db = db; 929 p->nChar = 0; 930 p->nAlloc = n; 931 p->mxAlloc = mx; 932 p->accError = 0; 933 p->printfFlags = 0; 934 } 935 936 /* 937 ** Print into memory obtained from sqliteMalloc(). Use the internal 938 ** %-conversion extensions. 939 */ 940 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 941 char *z; 942 char zBase[SQLITE_PRINT_BUF_SIZE]; 943 StrAccum acc; 944 assert( db!=0 ); 945 sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), 946 db->aLimit[SQLITE_LIMIT_LENGTH]); 947 acc.printfFlags = SQLITE_PRINTF_INTERNAL; 948 sqlite3VXPrintf(&acc, zFormat, ap); 949 z = sqlite3StrAccumFinish(&acc); 950 if( acc.accError==STRACCUM_NOMEM ){ 951 sqlite3OomFault(db); 952 } 953 return z; 954 } 955 956 /* 957 ** Print into memory obtained from sqliteMalloc(). Use the internal 958 ** %-conversion extensions. 959 */ 960 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 961 va_list ap; 962 char *z; 963 va_start(ap, zFormat); 964 z = sqlite3VMPrintf(db, zFormat, ap); 965 va_end(ap); 966 return z; 967 } 968 969 /* 970 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 971 ** %-conversion extensions. 972 */ 973 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 974 char *z; 975 char zBase[SQLITE_PRINT_BUF_SIZE]; 976 StrAccum acc; 977 978 #ifdef SQLITE_ENABLE_API_ARMOR 979 if( zFormat==0 ){ 980 (void)SQLITE_MISUSE_BKPT; 981 return 0; 982 } 983 #endif 984 #ifndef SQLITE_OMIT_AUTOINIT 985 if( sqlite3_initialize() ) return 0; 986 #endif 987 sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 988 sqlite3VXPrintf(&acc, zFormat, ap); 989 z = sqlite3StrAccumFinish(&acc); 990 return z; 991 } 992 993 /* 994 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 995 ** %-conversion extensions. 996 */ 997 char *sqlite3_mprintf(const char *zFormat, ...){ 998 va_list ap; 999 char *z; 1000 #ifndef SQLITE_OMIT_AUTOINIT 1001 if( sqlite3_initialize() ) return 0; 1002 #endif 1003 va_start(ap, zFormat); 1004 z = sqlite3_vmprintf(zFormat, ap); 1005 va_end(ap); 1006 return z; 1007 } 1008 1009 /* 1010 ** sqlite3_snprintf() works like snprintf() except that it ignores the 1011 ** current locale settings. This is important for SQLite because we 1012 ** are not able to use a "," as the decimal point in place of "." as 1013 ** specified by some locales. 1014 ** 1015 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 1016 ** from the snprintf() standard. Unfortunately, it is too late to change 1017 ** this without breaking compatibility, so we just have to live with the 1018 ** mistake. 1019 ** 1020 ** sqlite3_vsnprintf() is the varargs version. 1021 */ 1022 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 1023 StrAccum acc; 1024 if( n<=0 ) return zBuf; 1025 #ifdef SQLITE_ENABLE_API_ARMOR 1026 if( zBuf==0 || zFormat==0 ) { 1027 (void)SQLITE_MISUSE_BKPT; 1028 if( zBuf ) zBuf[0] = 0; 1029 return zBuf; 1030 } 1031 #endif 1032 sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); 1033 sqlite3VXPrintf(&acc, zFormat, ap); 1034 zBuf[acc.nChar] = 0; 1035 return zBuf; 1036 } 1037 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 1038 char *z; 1039 va_list ap; 1040 va_start(ap,zFormat); 1041 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 1042 va_end(ap); 1043 return z; 1044 } 1045 1046 /* 1047 ** This is the routine that actually formats the sqlite3_log() message. 1048 ** We house it in a separate routine from sqlite3_log() to avoid using 1049 ** stack space on small-stack systems when logging is disabled. 1050 ** 1051 ** sqlite3_log() must render into a static buffer. It cannot dynamically 1052 ** allocate memory because it might be called while the memory allocator 1053 ** mutex is held. 1054 ** 1055 ** sqlite3VXPrintf() might ask for *temporary* memory allocations for 1056 ** certain format characters (%q) or for very large precisions or widths. 1057 ** Care must be taken that any sqlite3_log() calls that occur while the 1058 ** memory mutex is held do not use these mechanisms. 1059 */ 1060 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 1061 StrAccum acc; /* String accumulator */ 1062 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 1063 1064 sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); 1065 sqlite3VXPrintf(&acc, zFormat, ap); 1066 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 1067 sqlite3StrAccumFinish(&acc)); 1068 } 1069 1070 /* 1071 ** Format and write a message to the log if logging is enabled. 1072 */ 1073 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 1074 va_list ap; /* Vararg list */ 1075 if( sqlite3GlobalConfig.xLog ){ 1076 va_start(ap, zFormat); 1077 renderLogMsg(iErrCode, zFormat, ap); 1078 va_end(ap); 1079 } 1080 } 1081 1082 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 1083 /* 1084 ** A version of printf() that understands %lld. Used for debugging. 1085 ** The printf() built into some versions of windows does not understand %lld 1086 ** and segfaults if you give it a long long int. 1087 */ 1088 void sqlite3DebugPrintf(const char *zFormat, ...){ 1089 va_list ap; 1090 StrAccum acc; 1091 char zBuf[500]; 1092 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 1093 va_start(ap,zFormat); 1094 sqlite3VXPrintf(&acc, zFormat, ap); 1095 va_end(ap); 1096 sqlite3StrAccumFinish(&acc); 1097 fprintf(stdout,"%s", zBuf); 1098 fflush(stdout); 1099 } 1100 #endif 1101 1102 1103 /* 1104 ** variable-argument wrapper around sqlite3VXPrintf(). The bFlags argument 1105 ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. 1106 */ 1107 void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ 1108 va_list ap; 1109 va_start(ap,zFormat); 1110 sqlite3VXPrintf(p, zFormat, ap); 1111 va_end(ap); 1112 } 1113