1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. The original comments are included here for 4 ** completeness. They are very out-of-date but might be useful as 5 ** an historical reference. Most of the "enhancements" have been backed 6 ** out so that the functionality is now the same as standard printf(). 7 ** 8 ************************************************************************** 9 ** 10 ** This file contains code for a set of "printf"-like routines. These 11 ** routines format strings much like the printf() from the standard C 12 ** library, though the implementation here has enhancements to support 13 ** SQLlite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Conversion types fall into various categories as defined by the 19 ** following enumeration. 20 */ 21 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 22 #define etFLOAT 2 /* Floating point. %f */ 23 #define etEXP 3 /* Exponentional notation. %e and %E */ 24 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 25 #define etSIZE 5 /* Return number of characters processed so far. %n */ 26 #define etSTRING 6 /* Strings. %s */ 27 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 28 #define etPERCENT 8 /* Percent symbol. %% */ 29 #define etCHARX 9 /* Characters. %c */ 30 /* The rest are extensions, not normally found in printf() */ 31 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ 32 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', 33 NULL pointers replaced by SQL NULL. %Q */ 34 #define etTOKEN 12 /* a pointer to a Token structure */ 35 #define etSRCLIST 13 /* a pointer to a SrcList */ 36 #define etPOINTER 14 /* The %p conversion */ 37 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ 38 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 39 40 #define etINVALID 0 /* Any unrecognized conversion type */ 41 42 43 /* 44 ** An "etByte" is an 8-bit unsigned value. 45 */ 46 typedef unsigned char etByte; 47 48 /* 49 ** Each builtin conversion character (ex: the 'd' in "%d") is described 50 ** by an instance of the following structure 51 */ 52 typedef struct et_info { /* Information about each format field */ 53 char fmttype; /* The format field code letter */ 54 etByte base; /* The base for radix conversion */ 55 etByte flags; /* One or more of FLAG_ constants below */ 56 etByte type; /* Conversion paradigm */ 57 etByte charset; /* Offset into aDigits[] of the digits string */ 58 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 59 } et_info; 60 61 /* 62 ** Allowed values for et_info.flags 63 */ 64 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 65 #define FLAG_INTERN 2 /* True if for internal use only */ 66 #define FLAG_STRING 4 /* Allow infinity precision */ 67 68 69 /* 70 ** The following table is searched linearly, so it is good to put the 71 ** most frequently used conversion types first. 72 */ 73 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 74 static const char aPrefix[] = "-x0\000X0"; 75 static const et_info fmtinfo[] = { 76 { 'd', 10, 1, etRADIX, 0, 0 }, 77 { 's', 0, 4, etSTRING, 0, 0 }, 78 { 'g', 0, 1, etGENERIC, 30, 0 }, 79 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 80 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 81 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 82 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 83 { 'c', 0, 0, etCHARX, 0, 0 }, 84 { 'o', 8, 0, etRADIX, 0, 2 }, 85 { 'u', 10, 0, etRADIX, 0, 0 }, 86 { 'x', 16, 0, etRADIX, 16, 1 }, 87 { 'X', 16, 0, etRADIX, 0, 4 }, 88 #ifndef SQLITE_OMIT_FLOATING_POINT 89 { 'f', 0, 1, etFLOAT, 0, 0 }, 90 { 'e', 0, 1, etEXP, 30, 0 }, 91 { 'E', 0, 1, etEXP, 14, 0 }, 92 { 'G', 0, 1, etGENERIC, 14, 0 }, 93 #endif 94 { 'i', 10, 1, etRADIX, 0, 0 }, 95 { 'n', 0, 0, etSIZE, 0, 0 }, 96 { '%', 0, 0, etPERCENT, 0, 0 }, 97 { 'p', 16, 0, etPOINTER, 0, 1 }, 98 99 /* All the rest have the FLAG_INTERN bit set and are thus for internal 100 ** use only */ 101 { 'T', 0, 2, etTOKEN, 0, 0 }, 102 { 'S', 0, 2, etSRCLIST, 0, 0 }, 103 { 'r', 10, 3, etORDINAL, 0, 0 }, 104 }; 105 106 /* 107 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 108 ** conversions will work. 109 */ 110 #ifndef SQLITE_OMIT_FLOATING_POINT 111 /* 112 ** "*val" is a double such that 0.1 <= *val < 10.0 113 ** Return the ascii code for the leading digit of *val, then 114 ** multiply "*val" by 10.0 to renormalize. 115 ** 116 ** Example: 117 ** input: *val = 3.14159 118 ** output: *val = 1.4159 function return = '3' 119 ** 120 ** The counter *cnt is incremented each time. After counter exceeds 121 ** 16 (the number of significant digits in a 64-bit float) '0' is 122 ** always returned. 123 */ 124 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 125 int digit; 126 LONGDOUBLE_TYPE d; 127 if( (*cnt)<=0 ) return '0'; 128 (*cnt)--; 129 digit = (int)*val; 130 d = digit; 131 digit += '0'; 132 *val = (*val - d)*10.0; 133 return (char)digit; 134 } 135 #endif /* SQLITE_OMIT_FLOATING_POINT */ 136 137 /* 138 ** Append N space characters to the given string buffer. 139 */ 140 void sqlite3AppendSpace(StrAccum *pAccum, int N){ 141 static const char zSpaces[] = " "; 142 while( N>=(int)sizeof(zSpaces)-1 ){ 143 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); 144 N -= sizeof(zSpaces)-1; 145 } 146 if( N>0 ){ 147 sqlite3StrAccumAppend(pAccum, zSpaces, N); 148 } 149 } 150 151 /* 152 ** On machines with a small stack size, you can redefine the 153 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 154 */ 155 #ifndef SQLITE_PRINT_BUF_SIZE 156 # define SQLITE_PRINT_BUF_SIZE 70 157 #endif 158 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 159 160 /* 161 ** Render a string given by "fmt" into the StrAccum object. 162 */ 163 void sqlite3VXPrintf( 164 StrAccum *pAccum, /* Accumulate results here */ 165 int useExtended, /* Allow extended %-conversions */ 166 const char *fmt, /* Format string */ 167 va_list ap /* arguments */ 168 ){ 169 int c; /* Next character in the format string */ 170 char *bufpt; /* Pointer to the conversion buffer */ 171 int precision; /* Precision of the current field */ 172 int length; /* Length of the field */ 173 int idx; /* A general purpose loop counter */ 174 int width; /* Width of the current field */ 175 etByte flag_leftjustify; /* True if "-" flag is present */ 176 etByte flag_plussign; /* True if "+" flag is present */ 177 etByte flag_blanksign; /* True if " " flag is present */ 178 etByte flag_alternateform; /* True if "#" flag is present */ 179 etByte flag_altform2; /* True if "!" flag is present */ 180 etByte flag_zeropad; /* True if field width constant starts with zero */ 181 etByte flag_long; /* True if "l" flag is present */ 182 etByte flag_longlong; /* True if the "ll" flag is present */ 183 etByte done; /* Loop termination flag */ 184 etByte xtype = 0; /* Conversion paradigm */ 185 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 186 sqlite_uint64 longvalue; /* Value for integer types */ 187 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 188 const et_info *infop; /* Pointer to the appropriate info structure */ 189 char *zOut; /* Rendering buffer */ 190 int nOut; /* Size of the rendering buffer */ 191 char *zExtra; /* Malloced memory used by some conversion */ 192 #ifndef SQLITE_OMIT_FLOATING_POINT 193 int exp, e2; /* exponent of real numbers */ 194 int nsd; /* Number of significant digits returned */ 195 double rounder; /* Used for rounding floating point values */ 196 etByte flag_dp; /* True if decimal point should be shown */ 197 etByte flag_rtz; /* True if trailing zeros should be removed */ 198 #endif 199 char buf[etBUFSIZE]; /* Conversion buffer */ 200 201 bufpt = 0; 202 for(; (c=(*fmt))!=0; ++fmt){ 203 if( c!='%' ){ 204 int amt; 205 bufpt = (char *)fmt; 206 amt = 1; 207 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 208 sqlite3StrAccumAppend(pAccum, bufpt, amt); 209 if( c==0 ) break; 210 } 211 if( (c=(*++fmt))==0 ){ 212 sqlite3StrAccumAppend(pAccum, "%", 1); 213 break; 214 } 215 /* Find out what flags are present */ 216 flag_leftjustify = flag_plussign = flag_blanksign = 217 flag_alternateform = flag_altform2 = flag_zeropad = 0; 218 done = 0; 219 do{ 220 switch( c ){ 221 case '-': flag_leftjustify = 1; break; 222 case '+': flag_plussign = 1; break; 223 case ' ': flag_blanksign = 1; break; 224 case '#': flag_alternateform = 1; break; 225 case '!': flag_altform2 = 1; break; 226 case '0': flag_zeropad = 1; break; 227 default: done = 1; break; 228 } 229 }while( !done && (c=(*++fmt))!=0 ); 230 /* Get the field width */ 231 width = 0; 232 if( c=='*' ){ 233 width = va_arg(ap,int); 234 if( width<0 ){ 235 flag_leftjustify = 1; 236 width = -width; 237 } 238 c = *++fmt; 239 }else{ 240 while( c>='0' && c<='9' ){ 241 width = width*10 + c - '0'; 242 c = *++fmt; 243 } 244 } 245 /* Get the precision */ 246 if( c=='.' ){ 247 precision = 0; 248 c = *++fmt; 249 if( c=='*' ){ 250 precision = va_arg(ap,int); 251 if( precision<0 ) precision = -precision; 252 c = *++fmt; 253 }else{ 254 while( c>='0' && c<='9' ){ 255 precision = precision*10 + c - '0'; 256 c = *++fmt; 257 } 258 } 259 }else{ 260 precision = -1; 261 } 262 /* Get the conversion type modifier */ 263 if( c=='l' ){ 264 flag_long = 1; 265 c = *++fmt; 266 if( c=='l' ){ 267 flag_longlong = 1; 268 c = *++fmt; 269 }else{ 270 flag_longlong = 0; 271 } 272 }else{ 273 flag_long = flag_longlong = 0; 274 } 275 /* Fetch the info entry for the field */ 276 infop = &fmtinfo[0]; 277 xtype = etINVALID; 278 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 279 if( c==fmtinfo[idx].fmttype ){ 280 infop = &fmtinfo[idx]; 281 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 282 xtype = infop->type; 283 }else{ 284 return; 285 } 286 break; 287 } 288 } 289 zExtra = 0; 290 291 /* 292 ** At this point, variables are initialized as follows: 293 ** 294 ** flag_alternateform TRUE if a '#' is present. 295 ** flag_altform2 TRUE if a '!' is present. 296 ** flag_plussign TRUE if a '+' is present. 297 ** flag_leftjustify TRUE if a '-' is present or if the 298 ** field width was negative. 299 ** flag_zeropad TRUE if the width began with 0. 300 ** flag_long TRUE if the letter 'l' (ell) prefixed 301 ** the conversion character. 302 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 303 ** the conversion character. 304 ** flag_blanksign TRUE if a ' ' is present. 305 ** width The specified field width. This is 306 ** always non-negative. Zero is the default. 307 ** precision The specified precision. The default 308 ** is -1. 309 ** xtype The class of the conversion. 310 ** infop Pointer to the appropriate info struct. 311 */ 312 switch( xtype ){ 313 case etPOINTER: 314 flag_longlong = sizeof(char*)==sizeof(i64); 315 flag_long = sizeof(char*)==sizeof(long int); 316 /* Fall through into the next case */ 317 case etORDINAL: 318 case etRADIX: 319 if( infop->flags & FLAG_SIGNED ){ 320 i64 v; 321 if( flag_longlong ){ 322 v = va_arg(ap,i64); 323 }else if( flag_long ){ 324 v = va_arg(ap,long int); 325 }else{ 326 v = va_arg(ap,int); 327 } 328 if( v<0 ){ 329 if( v==SMALLEST_INT64 ){ 330 longvalue = ((u64)1)<<63; 331 }else{ 332 longvalue = -v; 333 } 334 prefix = '-'; 335 }else{ 336 longvalue = v; 337 if( flag_plussign ) prefix = '+'; 338 else if( flag_blanksign ) prefix = ' '; 339 else prefix = 0; 340 } 341 }else{ 342 if( flag_longlong ){ 343 longvalue = va_arg(ap,u64); 344 }else if( flag_long ){ 345 longvalue = va_arg(ap,unsigned long int); 346 }else{ 347 longvalue = va_arg(ap,unsigned int); 348 } 349 prefix = 0; 350 } 351 if( longvalue==0 ) flag_alternateform = 0; 352 if( flag_zeropad && precision<width-(prefix!=0) ){ 353 precision = width-(prefix!=0); 354 } 355 if( precision<etBUFSIZE-10 ){ 356 nOut = etBUFSIZE; 357 zOut = buf; 358 }else{ 359 nOut = precision + 10; 360 zOut = zExtra = sqlite3Malloc( nOut ); 361 if( zOut==0 ){ 362 pAccum->mallocFailed = 1; 363 return; 364 } 365 } 366 bufpt = &zOut[nOut-1]; 367 if( xtype==etORDINAL ){ 368 static const char zOrd[] = "thstndrd"; 369 int x = (int)(longvalue % 10); 370 if( x>=4 || (longvalue/10)%10==1 ){ 371 x = 0; 372 } 373 *(--bufpt) = zOrd[x*2+1]; 374 *(--bufpt) = zOrd[x*2]; 375 } 376 { 377 register const char *cset; /* Use registers for speed */ 378 register int base; 379 cset = &aDigits[infop->charset]; 380 base = infop->base; 381 do{ /* Convert to ascii */ 382 *(--bufpt) = cset[longvalue%base]; 383 longvalue = longvalue/base; 384 }while( longvalue>0 ); 385 } 386 length = (int)(&zOut[nOut-1]-bufpt); 387 for(idx=precision-length; idx>0; idx--){ 388 *(--bufpt) = '0'; /* Zero pad */ 389 } 390 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 391 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 392 const char *pre; 393 char x; 394 pre = &aPrefix[infop->prefix]; 395 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 396 } 397 length = (int)(&zOut[nOut-1]-bufpt); 398 break; 399 case etFLOAT: 400 case etEXP: 401 case etGENERIC: 402 realvalue = va_arg(ap,double); 403 #ifdef SQLITE_OMIT_FLOATING_POINT 404 length = 0; 405 #else 406 if( precision<0 ) precision = 6; /* Set default precision */ 407 if( realvalue<0.0 ){ 408 realvalue = -realvalue; 409 prefix = '-'; 410 }else{ 411 if( flag_plussign ) prefix = '+'; 412 else if( flag_blanksign ) prefix = ' '; 413 else prefix = 0; 414 } 415 if( xtype==etGENERIC && precision>0 ) precision--; 416 #if 0 417 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 418 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 419 #else 420 /* It makes more sense to use 0.5 */ 421 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 422 #endif 423 if( xtype==etFLOAT ) realvalue += rounder; 424 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 425 exp = 0; 426 if( sqlite3IsNaN((double)realvalue) ){ 427 bufpt = "NaN"; 428 length = 3; 429 break; 430 } 431 if( realvalue>0.0 ){ 432 LONGDOUBLE_TYPE scale = 1.0; 433 while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} 434 while( realvalue>=1e64*scale && exp<=350 ){ scale *= 1e64; exp+=64; } 435 while( realvalue>=1e8*scale && exp<=350 ){ scale *= 1e8; exp+=8; } 436 while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } 437 realvalue /= scale; 438 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 439 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 440 if( exp>350 ){ 441 if( prefix=='-' ){ 442 bufpt = "-Inf"; 443 }else if( prefix=='+' ){ 444 bufpt = "+Inf"; 445 }else{ 446 bufpt = "Inf"; 447 } 448 length = sqlite3Strlen30(bufpt); 449 break; 450 } 451 } 452 bufpt = buf; 453 /* 454 ** If the field type is etGENERIC, then convert to either etEXP 455 ** or etFLOAT, as appropriate. 456 */ 457 if( xtype!=etFLOAT ){ 458 realvalue += rounder; 459 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 460 } 461 if( xtype==etGENERIC ){ 462 flag_rtz = !flag_alternateform; 463 if( exp<-4 || exp>precision ){ 464 xtype = etEXP; 465 }else{ 466 precision = precision - exp; 467 xtype = etFLOAT; 468 } 469 }else{ 470 flag_rtz = flag_altform2; 471 } 472 if( xtype==etEXP ){ 473 e2 = 0; 474 }else{ 475 e2 = exp; 476 } 477 if( e2+precision+width > etBUFSIZE - 15 ){ 478 bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 ); 479 if( bufpt==0 ){ 480 pAccum->mallocFailed = 1; 481 return; 482 } 483 } 484 zOut = bufpt; 485 nsd = 16 + flag_altform2*10; 486 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 487 /* The sign in front of the number */ 488 if( prefix ){ 489 *(bufpt++) = prefix; 490 } 491 /* Digits prior to the decimal point */ 492 if( e2<0 ){ 493 *(bufpt++) = '0'; 494 }else{ 495 for(; e2>=0; e2--){ 496 *(bufpt++) = et_getdigit(&realvalue,&nsd); 497 } 498 } 499 /* The decimal point */ 500 if( flag_dp ){ 501 *(bufpt++) = '.'; 502 } 503 /* "0" digits after the decimal point but before the first 504 ** significant digit of the number */ 505 for(e2++; e2<0; precision--, e2++){ 506 assert( precision>0 ); 507 *(bufpt++) = '0'; 508 } 509 /* Significant digits after the decimal point */ 510 while( (precision--)>0 ){ 511 *(bufpt++) = et_getdigit(&realvalue,&nsd); 512 } 513 /* Remove trailing zeros and the "." if no digits follow the "." */ 514 if( flag_rtz && flag_dp ){ 515 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 516 assert( bufpt>zOut ); 517 if( bufpt[-1]=='.' ){ 518 if( flag_altform2 ){ 519 *(bufpt++) = '0'; 520 }else{ 521 *(--bufpt) = 0; 522 } 523 } 524 } 525 /* Add the "eNNN" suffix */ 526 if( xtype==etEXP ){ 527 *(bufpt++) = aDigits[infop->charset]; 528 if( exp<0 ){ 529 *(bufpt++) = '-'; exp = -exp; 530 }else{ 531 *(bufpt++) = '+'; 532 } 533 if( exp>=100 ){ 534 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 535 exp %= 100; 536 } 537 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 538 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 539 } 540 *bufpt = 0; 541 542 /* The converted number is in buf[] and zero terminated. Output it. 543 ** Note that the number is in the usual order, not reversed as with 544 ** integer conversions. */ 545 length = (int)(bufpt-zOut); 546 bufpt = zOut; 547 548 /* Special case: Add leading zeros if the flag_zeropad flag is 549 ** set and we are not left justified */ 550 if( flag_zeropad && !flag_leftjustify && length < width){ 551 int i; 552 int nPad = width - length; 553 for(i=width; i>=nPad; i--){ 554 bufpt[i] = bufpt[i-nPad]; 555 } 556 i = prefix!=0; 557 while( nPad-- ) bufpt[i++] = '0'; 558 length = width; 559 } 560 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 561 break; 562 case etSIZE: 563 *(va_arg(ap,int*)) = pAccum->nChar; 564 length = width = 0; 565 break; 566 case etPERCENT: 567 buf[0] = '%'; 568 bufpt = buf; 569 length = 1; 570 break; 571 case etCHARX: 572 c = va_arg(ap,int); 573 buf[0] = (char)c; 574 if( precision>=0 ){ 575 for(idx=1; idx<precision; idx++) buf[idx] = (char)c; 576 length = precision; 577 }else{ 578 length =1; 579 } 580 bufpt = buf; 581 break; 582 case etSTRING: 583 case etDYNSTRING: 584 bufpt = va_arg(ap,char*); 585 if( bufpt==0 ){ 586 bufpt = ""; 587 }else if( xtype==etDYNSTRING ){ 588 zExtra = bufpt; 589 } 590 if( precision>=0 ){ 591 for(length=0; length<precision && bufpt[length]; length++){} 592 }else{ 593 length = sqlite3Strlen30(bufpt); 594 } 595 break; 596 case etSQLESCAPE: 597 case etSQLESCAPE2: 598 case etSQLESCAPE3: { 599 int i, j, k, n, isnull; 600 int needQuote; 601 char ch; 602 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 603 char *escarg = va_arg(ap,char*); 604 isnull = escarg==0; 605 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 606 k = precision; 607 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 608 if( ch==q ) n++; 609 } 610 needQuote = !isnull && xtype==etSQLESCAPE2; 611 n += i + 1 + needQuote*2; 612 if( n>etBUFSIZE ){ 613 bufpt = zExtra = sqlite3Malloc( n ); 614 if( bufpt==0 ){ 615 pAccum->mallocFailed = 1; 616 return; 617 } 618 }else{ 619 bufpt = buf; 620 } 621 j = 0; 622 if( needQuote ) bufpt[j++] = q; 623 k = i; 624 for(i=0; i<k; i++){ 625 bufpt[j++] = ch = escarg[i]; 626 if( ch==q ) bufpt[j++] = ch; 627 } 628 if( needQuote ) bufpt[j++] = q; 629 bufpt[j] = 0; 630 length = j; 631 /* The precision in %q and %Q means how many input characters to 632 ** consume, not the length of the output... 633 ** if( precision>=0 && precision<length ) length = precision; */ 634 break; 635 } 636 case etTOKEN: { 637 Token *pToken = va_arg(ap, Token*); 638 if( pToken ){ 639 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 640 } 641 length = width = 0; 642 break; 643 } 644 case etSRCLIST: { 645 SrcList *pSrc = va_arg(ap, SrcList*); 646 int k = va_arg(ap, int); 647 struct SrcList_item *pItem = &pSrc->a[k]; 648 assert( k>=0 && k<pSrc->nSrc ); 649 if( pItem->zDatabase ){ 650 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); 651 sqlite3StrAccumAppend(pAccum, ".", 1); 652 } 653 sqlite3StrAccumAppend(pAccum, pItem->zName, -1); 654 length = width = 0; 655 break; 656 } 657 default: { 658 assert( xtype==etINVALID ); 659 return; 660 } 661 }/* End switch over the format type */ 662 /* 663 ** The text of the conversion is pointed to by "bufpt" and is 664 ** "length" characters long. The field width is "width". Do 665 ** the output. 666 */ 667 if( !flag_leftjustify ){ 668 register int nspace; 669 nspace = width-length; 670 if( nspace>0 ){ 671 sqlite3AppendSpace(pAccum, nspace); 672 } 673 } 674 if( length>0 ){ 675 sqlite3StrAccumAppend(pAccum, bufpt, length); 676 } 677 if( flag_leftjustify ){ 678 register int nspace; 679 nspace = width-length; 680 if( nspace>0 ){ 681 sqlite3AppendSpace(pAccum, nspace); 682 } 683 } 684 sqlite3_free(zExtra); 685 }/* End for loop over the format string */ 686 } /* End of function */ 687 688 /* 689 ** Append N bytes of text from z to the StrAccum object. 690 */ 691 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 692 assert( z!=0 || N==0 ); 693 if( p->tooBig | p->mallocFailed ){ 694 testcase(p->tooBig); 695 testcase(p->mallocFailed); 696 return; 697 } 698 assert( p->zText!=0 || p->nChar==0 ); 699 if( N<0 ){ 700 N = sqlite3Strlen30(z); 701 } 702 if( N==0 || NEVER(z==0) ){ 703 return; 704 } 705 if( p->nChar+N >= p->nAlloc ){ 706 char *zNew; 707 if( !p->useMalloc ){ 708 p->tooBig = 1; 709 N = p->nAlloc - p->nChar - 1; 710 if( N<=0 ){ 711 return; 712 } 713 }else{ 714 char *zOld = (p->zText==p->zBase ? 0 : p->zText); 715 i64 szNew = p->nChar; 716 szNew += N + 1; 717 if( szNew > p->mxAlloc ){ 718 sqlite3StrAccumReset(p); 719 p->tooBig = 1; 720 return; 721 }else{ 722 p->nAlloc = (int)szNew; 723 } 724 if( p->useMalloc==1 ){ 725 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 726 }else{ 727 zNew = sqlite3_realloc(zOld, p->nAlloc); 728 } 729 if( zNew ){ 730 if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 731 p->zText = zNew; 732 }else{ 733 p->mallocFailed = 1; 734 sqlite3StrAccumReset(p); 735 return; 736 } 737 } 738 } 739 assert( p->zText ); 740 memcpy(&p->zText[p->nChar], z, N); 741 p->nChar += N; 742 } 743 744 /* 745 ** Finish off a string by making sure it is zero-terminated. 746 ** Return a pointer to the resulting string. Return a NULL 747 ** pointer if any kind of error was encountered. 748 */ 749 char *sqlite3StrAccumFinish(StrAccum *p){ 750 if( p->zText ){ 751 p->zText[p->nChar] = 0; 752 if( p->useMalloc && p->zText==p->zBase ){ 753 if( p->useMalloc==1 ){ 754 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 755 }else{ 756 p->zText = sqlite3_malloc(p->nChar+1); 757 } 758 if( p->zText ){ 759 memcpy(p->zText, p->zBase, p->nChar+1); 760 }else{ 761 p->mallocFailed = 1; 762 } 763 } 764 } 765 return p->zText; 766 } 767 768 /* 769 ** Reset an StrAccum string. Reclaim all malloced memory. 770 */ 771 void sqlite3StrAccumReset(StrAccum *p){ 772 if( p->zText!=p->zBase ){ 773 if( p->useMalloc==1 ){ 774 sqlite3DbFree(p->db, p->zText); 775 }else{ 776 sqlite3_free(p->zText); 777 } 778 } 779 p->zText = 0; 780 } 781 782 /* 783 ** Initialize a string accumulator 784 */ 785 void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ 786 p->zText = p->zBase = zBase; 787 p->db = 0; 788 p->nChar = 0; 789 p->nAlloc = n; 790 p->mxAlloc = mx; 791 p->useMalloc = 1; 792 p->tooBig = 0; 793 p->mallocFailed = 0; 794 } 795 796 /* 797 ** Print into memory obtained from sqliteMalloc(). Use the internal 798 ** %-conversion extensions. 799 */ 800 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 801 char *z; 802 char zBase[SQLITE_PRINT_BUF_SIZE]; 803 StrAccum acc; 804 assert( db!=0 ); 805 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), 806 db->aLimit[SQLITE_LIMIT_LENGTH]); 807 acc.db = db; 808 sqlite3VXPrintf(&acc, 1, zFormat, ap); 809 z = sqlite3StrAccumFinish(&acc); 810 if( acc.mallocFailed ){ 811 db->mallocFailed = 1; 812 } 813 return z; 814 } 815 816 /* 817 ** Print into memory obtained from sqliteMalloc(). Use the internal 818 ** %-conversion extensions. 819 */ 820 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 821 va_list ap; 822 char *z; 823 va_start(ap, zFormat); 824 z = sqlite3VMPrintf(db, zFormat, ap); 825 va_end(ap); 826 return z; 827 } 828 829 /* 830 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting 831 ** the string and before returnning. This routine is intended to be used 832 ** to modify an existing string. For example: 833 ** 834 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); 835 ** 836 */ 837 char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ 838 va_list ap; 839 char *z; 840 va_start(ap, zFormat); 841 z = sqlite3VMPrintf(db, zFormat, ap); 842 va_end(ap); 843 sqlite3DbFree(db, zStr); 844 return z; 845 } 846 847 /* 848 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 849 ** %-conversion extensions. 850 */ 851 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 852 char *z; 853 char zBase[SQLITE_PRINT_BUF_SIZE]; 854 StrAccum acc; 855 #ifndef SQLITE_OMIT_AUTOINIT 856 if( sqlite3_initialize() ) return 0; 857 #endif 858 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 859 acc.useMalloc = 2; 860 sqlite3VXPrintf(&acc, 0, zFormat, ap); 861 z = sqlite3StrAccumFinish(&acc); 862 return z; 863 } 864 865 /* 866 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 867 ** %-conversion extensions. 868 */ 869 char *sqlite3_mprintf(const char *zFormat, ...){ 870 va_list ap; 871 char *z; 872 #ifndef SQLITE_OMIT_AUTOINIT 873 if( sqlite3_initialize() ) return 0; 874 #endif 875 va_start(ap, zFormat); 876 z = sqlite3_vmprintf(zFormat, ap); 877 va_end(ap); 878 return z; 879 } 880 881 /* 882 ** sqlite3_snprintf() works like snprintf() except that it ignores the 883 ** current locale settings. This is important for SQLite because we 884 ** are not able to use a "," as the decimal point in place of "." as 885 ** specified by some locales. 886 ** 887 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 888 ** from the snprintf() standard. Unfortunately, it is too late to change 889 ** this without breaking compatibility, so we just have to live with the 890 ** mistake. 891 ** 892 ** sqlite3_vsnprintf() is the varargs version. 893 */ 894 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 895 StrAccum acc; 896 if( n<=0 ) return zBuf; 897 sqlite3StrAccumInit(&acc, zBuf, n, 0); 898 acc.useMalloc = 0; 899 sqlite3VXPrintf(&acc, 0, zFormat, ap); 900 return sqlite3StrAccumFinish(&acc); 901 } 902 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 903 char *z; 904 va_list ap; 905 va_start(ap,zFormat); 906 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 907 va_end(ap); 908 return z; 909 } 910 911 /* 912 ** This is the routine that actually formats the sqlite3_log() message. 913 ** We house it in a separate routine from sqlite3_log() to avoid using 914 ** stack space on small-stack systems when logging is disabled. 915 ** 916 ** sqlite3_log() must render into a static buffer. It cannot dynamically 917 ** allocate memory because it might be called while the memory allocator 918 ** mutex is held. 919 */ 920 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 921 StrAccum acc; /* String accumulator */ 922 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 923 924 sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0); 925 acc.useMalloc = 0; 926 sqlite3VXPrintf(&acc, 0, zFormat, ap); 927 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 928 sqlite3StrAccumFinish(&acc)); 929 } 930 931 /* 932 ** Format and write a message to the log if logging is enabled. 933 */ 934 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 935 va_list ap; /* Vararg list */ 936 if( sqlite3GlobalConfig.xLog ){ 937 va_start(ap, zFormat); 938 renderLogMsg(iErrCode, zFormat, ap); 939 va_end(ap); 940 } 941 } 942 943 #if defined(SQLITE_DEBUG) 944 /* 945 ** A version of printf() that understands %lld. Used for debugging. 946 ** The printf() built into some versions of windows does not understand %lld 947 ** and segfaults if you give it a long long int. 948 */ 949 void sqlite3DebugPrintf(const char *zFormat, ...){ 950 va_list ap; 951 StrAccum acc; 952 char zBuf[500]; 953 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); 954 acc.useMalloc = 0; 955 va_start(ap,zFormat); 956 sqlite3VXPrintf(&acc, 0, zFormat, ap); 957 va_end(ap); 958 sqlite3StrAccumFinish(&acc); 959 fprintf(stdout,"%s", zBuf); 960 fflush(stdout); 961 } 962 #endif 963 964 #ifndef SQLITE_OMIT_TRACE 965 /* 966 ** variable-argument wrapper around sqlite3VXPrintf(). 967 */ 968 void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ 969 va_list ap; 970 va_start(ap,zFormat); 971 sqlite3VXPrintf(p, 1, zFormat, ap); 972 va_end(ap); 973 } 974 #endif 975