1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. The original comments are included here for 4 ** completeness. They are very out-of-date but might be useful as 5 ** an historical reference. Most of the "enhancements" have been backed 6 ** out so that the functionality is now the same as standard printf(). 7 ** 8 ************************************************************************** 9 ** 10 ** This file contains code for a set of "printf"-like routines. These 11 ** routines format strings much like the printf() from the standard C 12 ** library, though the implementation here has enhancements to support 13 ** SQLlite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Conversion types fall into various categories as defined by the 19 ** following enumeration. 20 */ 21 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 22 #define etFLOAT 2 /* Floating point. %f */ 23 #define etEXP 3 /* Exponentional notation. %e and %E */ 24 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 25 #define etSIZE 5 /* Return number of characters processed so far. %n */ 26 #define etSTRING 6 /* Strings. %s */ 27 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 28 #define etPERCENT 8 /* Percent symbol. %% */ 29 #define etCHARX 9 /* Characters. %c */ 30 /* The rest are extensions, not normally found in printf() */ 31 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ 32 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', 33 NULL pointers replaced by SQL NULL. %Q */ 34 #define etTOKEN 12 /* a pointer to a Token structure */ 35 #define etSRCLIST 13 /* a pointer to a SrcList */ 36 #define etPOINTER 14 /* The %p conversion */ 37 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ 38 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 39 40 #define etINVALID 0 /* Any unrecognized conversion type */ 41 42 43 /* 44 ** An "etByte" is an 8-bit unsigned value. 45 */ 46 typedef unsigned char etByte; 47 48 /* 49 ** Each builtin conversion character (ex: the 'd' in "%d") is described 50 ** by an instance of the following structure 51 */ 52 typedef struct et_info { /* Information about each format field */ 53 char fmttype; /* The format field code letter */ 54 etByte base; /* The base for radix conversion */ 55 etByte flags; /* One or more of FLAG_ constants below */ 56 etByte type; /* Conversion paradigm */ 57 etByte charset; /* Offset into aDigits[] of the digits string */ 58 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 59 } et_info; 60 61 /* 62 ** Allowed values for et_info.flags 63 */ 64 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 65 #define FLAG_INTERN 2 /* True if for internal use only */ 66 #define FLAG_STRING 4 /* Allow infinity precision */ 67 68 69 /* 70 ** The following table is searched linearly, so it is good to put the 71 ** most frequently used conversion types first. 72 */ 73 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 74 static const char aPrefix[] = "-x0\000X0"; 75 static const et_info fmtinfo[] = { 76 { 'd', 10, 1, etRADIX, 0, 0 }, 77 { 's', 0, 4, etSTRING, 0, 0 }, 78 { 'g', 0, 1, etGENERIC, 30, 0 }, 79 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 80 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 81 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 82 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 83 { 'c', 0, 0, etCHARX, 0, 0 }, 84 { 'o', 8, 0, etRADIX, 0, 2 }, 85 { 'u', 10, 0, etRADIX, 0, 0 }, 86 { 'x', 16, 0, etRADIX, 16, 1 }, 87 { 'X', 16, 0, etRADIX, 0, 4 }, 88 #ifndef SQLITE_OMIT_FLOATING_POINT 89 { 'f', 0, 1, etFLOAT, 0, 0 }, 90 { 'e', 0, 1, etEXP, 30, 0 }, 91 { 'E', 0, 1, etEXP, 14, 0 }, 92 { 'G', 0, 1, etGENERIC, 14, 0 }, 93 #endif 94 { 'i', 10, 1, etRADIX, 0, 0 }, 95 { 'n', 0, 0, etSIZE, 0, 0 }, 96 { '%', 0, 0, etPERCENT, 0, 0 }, 97 { 'p', 16, 0, etPOINTER, 0, 1 }, 98 99 /* All the rest have the FLAG_INTERN bit set and are thus for internal 100 ** use only */ 101 { 'T', 0, 2, etTOKEN, 0, 0 }, 102 { 'S', 0, 2, etSRCLIST, 0, 0 }, 103 { 'r', 10, 3, etORDINAL, 0, 0 }, 104 }; 105 106 /* 107 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 108 ** conversions will work. 109 */ 110 #ifndef SQLITE_OMIT_FLOATING_POINT 111 /* 112 ** "*val" is a double such that 0.1 <= *val < 10.0 113 ** Return the ascii code for the leading digit of *val, then 114 ** multiply "*val" by 10.0 to renormalize. 115 ** 116 ** Example: 117 ** input: *val = 3.14159 118 ** output: *val = 1.4159 function return = '3' 119 ** 120 ** The counter *cnt is incremented each time. After counter exceeds 121 ** 16 (the number of significant digits in a 64-bit float) '0' is 122 ** always returned. 123 */ 124 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 125 int digit; 126 LONGDOUBLE_TYPE d; 127 if( (*cnt)++ >= 16 ) return '0'; 128 digit = (int)*val; 129 d = digit; 130 digit += '0'; 131 *val = (*val - d)*10.0; 132 return (char)digit; 133 } 134 #endif /* SQLITE_OMIT_FLOATING_POINT */ 135 136 /* 137 ** Append N space characters to the given string buffer. 138 */ 139 void sqlite3AppendSpace(StrAccum *pAccum, int N){ 140 static const char zSpaces[] = " "; 141 while( N>=(int)sizeof(zSpaces)-1 ){ 142 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); 143 N -= sizeof(zSpaces)-1; 144 } 145 if( N>0 ){ 146 sqlite3StrAccumAppend(pAccum, zSpaces, N); 147 } 148 } 149 150 /* 151 ** On machines with a small stack size, you can redefine the 152 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. 153 */ 154 #ifndef SQLITE_PRINT_BUF_SIZE 155 # define SQLITE_PRINT_BUF_SIZE 70 156 #endif 157 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 158 159 /* 160 ** Render a string given by "fmt" into the StrAccum object. 161 */ 162 void sqlite3VXPrintf( 163 StrAccum *pAccum, /* Accumulate results here */ 164 int useExtended, /* Allow extended %-conversions */ 165 const char *fmt, /* Format string */ 166 va_list ap /* arguments */ 167 ){ 168 int c; /* Next character in the format string */ 169 char *bufpt; /* Pointer to the conversion buffer */ 170 int precision; /* Precision of the current field */ 171 int length; /* Length of the field */ 172 int idx; /* A general purpose loop counter */ 173 int width; /* Width of the current field */ 174 etByte flag_leftjustify; /* True if "-" flag is present */ 175 etByte flag_plussign; /* True if "+" flag is present */ 176 etByte flag_blanksign; /* True if " " flag is present */ 177 etByte flag_alternateform; /* True if "#" flag is present */ 178 etByte flag_altform2; /* True if "!" flag is present */ 179 etByte flag_zeropad; /* True if field width constant starts with zero */ 180 etByte flag_long; /* True if "l" flag is present */ 181 etByte flag_longlong; /* True if the "ll" flag is present */ 182 etByte done; /* Loop termination flag */ 183 etByte xtype = 0; /* Conversion paradigm */ 184 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 185 sqlite_uint64 longvalue; /* Value for integer types */ 186 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 187 const et_info *infop; /* Pointer to the appropriate info structure */ 188 char *zOut; /* Rendering buffer */ 189 int nOut; /* Size of the rendering buffer */ 190 char *zExtra; /* Malloced memory used by some conversion */ 191 #ifndef SQLITE_OMIT_FLOATING_POINT 192 int exp, e2; /* exponent of real numbers */ 193 int nsd; /* Number of significant digits returned */ 194 double rounder; /* Used for rounding floating point values */ 195 etByte flag_dp; /* True if decimal point should be shown */ 196 etByte flag_rtz; /* True if trailing zeros should be removed */ 197 #endif 198 char buf[etBUFSIZE]; /* Conversion buffer */ 199 200 bufpt = 0; 201 for(; (c=(*fmt))!=0; ++fmt){ 202 if( c!='%' ){ 203 int amt; 204 bufpt = (char *)fmt; 205 amt = 1; 206 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 207 sqlite3StrAccumAppend(pAccum, bufpt, amt); 208 if( c==0 ) break; 209 } 210 if( (c=(*++fmt))==0 ){ 211 sqlite3StrAccumAppend(pAccum, "%", 1); 212 break; 213 } 214 /* Find out what flags are present */ 215 flag_leftjustify = flag_plussign = flag_blanksign = 216 flag_alternateform = flag_altform2 = flag_zeropad = 0; 217 done = 0; 218 do{ 219 switch( c ){ 220 case '-': flag_leftjustify = 1; break; 221 case '+': flag_plussign = 1; break; 222 case ' ': flag_blanksign = 1; break; 223 case '#': flag_alternateform = 1; break; 224 case '!': flag_altform2 = 1; break; 225 case '0': flag_zeropad = 1; break; 226 default: done = 1; break; 227 } 228 }while( !done && (c=(*++fmt))!=0 ); 229 /* Get the field width */ 230 width = 0; 231 if( c=='*' ){ 232 width = va_arg(ap,int); 233 if( width<0 ){ 234 flag_leftjustify = 1; 235 width = -width; 236 } 237 c = *++fmt; 238 }else{ 239 while( c>='0' && c<='9' ){ 240 width = width*10 + c - '0'; 241 c = *++fmt; 242 } 243 } 244 /* Get the precision */ 245 if( c=='.' ){ 246 precision = 0; 247 c = *++fmt; 248 if( c=='*' ){ 249 precision = va_arg(ap,int); 250 if( precision<0 ) precision = -precision; 251 c = *++fmt; 252 }else{ 253 while( c>='0' && c<='9' ){ 254 precision = precision*10 + c - '0'; 255 c = *++fmt; 256 } 257 } 258 }else{ 259 precision = -1; 260 } 261 /* Get the conversion type modifier */ 262 if( c=='l' ){ 263 flag_long = 1; 264 c = *++fmt; 265 if( c=='l' ){ 266 flag_longlong = 1; 267 c = *++fmt; 268 }else{ 269 flag_longlong = 0; 270 } 271 }else{ 272 flag_long = flag_longlong = 0; 273 } 274 /* Fetch the info entry for the field */ 275 infop = &fmtinfo[0]; 276 xtype = etINVALID; 277 for(idx=0; idx<ArraySize(fmtinfo); idx++){ 278 if( c==fmtinfo[idx].fmttype ){ 279 infop = &fmtinfo[idx]; 280 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 281 xtype = infop->type; 282 }else{ 283 return; 284 } 285 break; 286 } 287 } 288 zExtra = 0; 289 290 /* 291 ** At this point, variables are initialized as follows: 292 ** 293 ** flag_alternateform TRUE if a '#' is present. 294 ** flag_altform2 TRUE if a '!' is present. 295 ** flag_plussign TRUE if a '+' is present. 296 ** flag_leftjustify TRUE if a '-' is present or if the 297 ** field width was negative. 298 ** flag_zeropad TRUE if the width began with 0. 299 ** flag_long TRUE if the letter 'l' (ell) prefixed 300 ** the conversion character. 301 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 302 ** the conversion character. 303 ** flag_blanksign TRUE if a ' ' is present. 304 ** width The specified field width. This is 305 ** always non-negative. Zero is the default. 306 ** precision The specified precision. The default 307 ** is -1. 308 ** xtype The class of the conversion. 309 ** infop Pointer to the appropriate info struct. 310 */ 311 switch( xtype ){ 312 case etPOINTER: 313 flag_longlong = sizeof(char*)==sizeof(i64); 314 flag_long = sizeof(char*)==sizeof(long int); 315 /* Fall through into the next case */ 316 case etORDINAL: 317 case etRADIX: 318 if( infop->flags & FLAG_SIGNED ){ 319 i64 v; 320 if( flag_longlong ){ 321 v = va_arg(ap,i64); 322 }else if( flag_long ){ 323 v = va_arg(ap,long int); 324 }else{ 325 v = va_arg(ap,int); 326 } 327 if( v<0 ){ 328 if( v==SMALLEST_INT64 ){ 329 longvalue = ((u64)1)<<63; 330 }else{ 331 longvalue = -v; 332 } 333 prefix = '-'; 334 }else{ 335 longvalue = v; 336 if( flag_plussign ) prefix = '+'; 337 else if( flag_blanksign ) prefix = ' '; 338 else prefix = 0; 339 } 340 }else{ 341 if( flag_longlong ){ 342 longvalue = va_arg(ap,u64); 343 }else if( flag_long ){ 344 longvalue = va_arg(ap,unsigned long int); 345 }else{ 346 longvalue = va_arg(ap,unsigned int); 347 } 348 prefix = 0; 349 } 350 if( longvalue==0 ) flag_alternateform = 0; 351 if( flag_zeropad && precision<width-(prefix!=0) ){ 352 precision = width-(prefix!=0); 353 } 354 if( precision<etBUFSIZE-10 ){ 355 nOut = etBUFSIZE; 356 zOut = buf; 357 }else{ 358 nOut = precision + 10; 359 zOut = zExtra = sqlite3Malloc( nOut ); 360 if( zOut==0 ){ 361 pAccum->mallocFailed = 1; 362 return; 363 } 364 } 365 bufpt = &zOut[nOut-1]; 366 if( xtype==etORDINAL ){ 367 static const char zOrd[] = "thstndrd"; 368 int x = (int)(longvalue % 10); 369 if( x>=4 || (longvalue/10)%10==1 ){ 370 x = 0; 371 } 372 *(--bufpt) = zOrd[x*2+1]; 373 *(--bufpt) = zOrd[x*2]; 374 } 375 { 376 register const char *cset; /* Use registers for speed */ 377 register int base; 378 cset = &aDigits[infop->charset]; 379 base = infop->base; 380 do{ /* Convert to ascii */ 381 *(--bufpt) = cset[longvalue%base]; 382 longvalue = longvalue/base; 383 }while( longvalue>0 ); 384 } 385 length = (int)(&zOut[nOut-1]-bufpt); 386 for(idx=precision-length; idx>0; idx--){ 387 *(--bufpt) = '0'; /* Zero pad */ 388 } 389 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 390 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 391 const char *pre; 392 char x; 393 pre = &aPrefix[infop->prefix]; 394 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 395 } 396 length = (int)(&zOut[nOut-1]-bufpt); 397 break; 398 case etFLOAT: 399 case etEXP: 400 case etGENERIC: 401 realvalue = va_arg(ap,double); 402 #ifdef SQLITE_OMIT_FLOATING_POINT 403 length = 0; 404 #else 405 if( precision<0 ) precision = 6; /* Set default precision */ 406 if( realvalue<0.0 ){ 407 realvalue = -realvalue; 408 prefix = '-'; 409 }else{ 410 if( flag_plussign ) prefix = '+'; 411 else if( flag_blanksign ) prefix = ' '; 412 else prefix = 0; 413 } 414 if( xtype==etGENERIC && precision>0 ) precision--; 415 #if 0 416 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 417 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 418 #else 419 /* It makes more sense to use 0.5 */ 420 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 421 #endif 422 if( xtype==etFLOAT ) realvalue += rounder; 423 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 424 exp = 0; 425 if( sqlite3IsNaN((double)realvalue) ){ 426 bufpt = "NaN"; 427 length = 3; 428 break; 429 } 430 if( realvalue>0.0 ){ 431 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } 432 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 433 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 434 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 435 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 436 if( exp>350 ){ 437 if( prefix=='-' ){ 438 bufpt = "-Inf"; 439 }else if( prefix=='+' ){ 440 bufpt = "+Inf"; 441 }else{ 442 bufpt = "Inf"; 443 } 444 length = sqlite3Strlen30(bufpt); 445 break; 446 } 447 } 448 bufpt = buf; 449 /* 450 ** If the field type is etGENERIC, then convert to either etEXP 451 ** or etFLOAT, as appropriate. 452 */ 453 if( xtype!=etFLOAT ){ 454 realvalue += rounder; 455 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 456 } 457 if( xtype==etGENERIC ){ 458 flag_rtz = !flag_alternateform; 459 if( exp<-4 || exp>precision ){ 460 xtype = etEXP; 461 }else{ 462 precision = precision - exp; 463 xtype = etFLOAT; 464 } 465 }else{ 466 flag_rtz = 0; 467 } 468 if( xtype==etEXP ){ 469 e2 = 0; 470 }else{ 471 e2 = exp; 472 } 473 if( e2+precision+width > etBUFSIZE - 15 ){ 474 bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 ); 475 if( bufpt==0 ){ 476 pAccum->mallocFailed = 1; 477 return; 478 } 479 } 480 zOut = bufpt; 481 nsd = 0; 482 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; 483 /* The sign in front of the number */ 484 if( prefix ){ 485 *(bufpt++) = prefix; 486 } 487 /* Digits prior to the decimal point */ 488 if( e2<0 ){ 489 *(bufpt++) = '0'; 490 }else{ 491 for(; e2>=0; e2--){ 492 *(bufpt++) = et_getdigit(&realvalue,&nsd); 493 } 494 } 495 /* The decimal point */ 496 if( flag_dp ){ 497 *(bufpt++) = '.'; 498 } 499 /* "0" digits after the decimal point but before the first 500 ** significant digit of the number */ 501 for(e2++; e2<0; precision--, e2++){ 502 assert( precision>0 ); 503 *(bufpt++) = '0'; 504 } 505 /* Significant digits after the decimal point */ 506 while( (precision--)>0 ){ 507 *(bufpt++) = et_getdigit(&realvalue,&nsd); 508 } 509 /* Remove trailing zeros and the "." if no digits follow the "." */ 510 if( flag_rtz && flag_dp ){ 511 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 512 assert( bufpt>zOut ); 513 if( bufpt[-1]=='.' ){ 514 if( flag_altform2 ){ 515 *(bufpt++) = '0'; 516 }else{ 517 *(--bufpt) = 0; 518 } 519 } 520 } 521 /* Add the "eNNN" suffix */ 522 if( xtype==etEXP ){ 523 *(bufpt++) = aDigits[infop->charset]; 524 if( exp<0 ){ 525 *(bufpt++) = '-'; exp = -exp; 526 }else{ 527 *(bufpt++) = '+'; 528 } 529 if( exp>=100 ){ 530 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ 531 exp %= 100; 532 } 533 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ 534 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ 535 } 536 *bufpt = 0; 537 538 /* The converted number is in buf[] and zero terminated. Output it. 539 ** Note that the number is in the usual order, not reversed as with 540 ** integer conversions. */ 541 length = (int)(bufpt-zOut); 542 bufpt = zOut; 543 544 /* Special case: Add leading zeros if the flag_zeropad flag is 545 ** set and we are not left justified */ 546 if( flag_zeropad && !flag_leftjustify && length < width){ 547 int i; 548 int nPad = width - length; 549 for(i=width; i>=nPad; i--){ 550 bufpt[i] = bufpt[i-nPad]; 551 } 552 i = prefix!=0; 553 while( nPad-- ) bufpt[i++] = '0'; 554 length = width; 555 } 556 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ 557 break; 558 case etSIZE: 559 *(va_arg(ap,int*)) = pAccum->nChar; 560 length = width = 0; 561 break; 562 case etPERCENT: 563 buf[0] = '%'; 564 bufpt = buf; 565 length = 1; 566 break; 567 case etCHARX: 568 c = va_arg(ap,int); 569 buf[0] = (char)c; 570 if( precision>=0 ){ 571 for(idx=1; idx<precision; idx++) buf[idx] = (char)c; 572 length = precision; 573 }else{ 574 length =1; 575 } 576 bufpt = buf; 577 break; 578 case etSTRING: 579 case etDYNSTRING: 580 bufpt = va_arg(ap,char*); 581 if( bufpt==0 ){ 582 bufpt = ""; 583 }else if( xtype==etDYNSTRING ){ 584 zExtra = bufpt; 585 } 586 if( precision>=0 ){ 587 for(length=0; length<precision && bufpt[length]; length++){} 588 }else{ 589 length = sqlite3Strlen30(bufpt); 590 } 591 break; 592 case etSQLESCAPE: 593 case etSQLESCAPE2: 594 case etSQLESCAPE3: { 595 int i, j, k, n, isnull; 596 int needQuote; 597 char ch; 598 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 599 char *escarg = va_arg(ap,char*); 600 isnull = escarg==0; 601 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 602 k = precision; 603 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ 604 if( ch==q ) n++; 605 } 606 needQuote = !isnull && xtype==etSQLESCAPE2; 607 n += i + 1 + needQuote*2; 608 if( n>etBUFSIZE ){ 609 bufpt = zExtra = sqlite3Malloc( n ); 610 if( bufpt==0 ){ 611 pAccum->mallocFailed = 1; 612 return; 613 } 614 }else{ 615 bufpt = buf; 616 } 617 j = 0; 618 if( needQuote ) bufpt[j++] = q; 619 k = i; 620 for(i=0; i<k; i++){ 621 bufpt[j++] = ch = escarg[i]; 622 if( ch==q ) bufpt[j++] = ch; 623 } 624 if( needQuote ) bufpt[j++] = q; 625 bufpt[j] = 0; 626 length = j; 627 /* The precision in %q and %Q means how many input characters to 628 ** consume, not the length of the output... 629 ** if( precision>=0 && precision<length ) length = precision; */ 630 break; 631 } 632 case etTOKEN: { 633 Token *pToken = va_arg(ap, Token*); 634 if( pToken ){ 635 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 636 } 637 length = width = 0; 638 break; 639 } 640 case etSRCLIST: { 641 SrcList *pSrc = va_arg(ap, SrcList*); 642 int k = va_arg(ap, int); 643 struct SrcList_item *pItem = &pSrc->a[k]; 644 assert( k>=0 && k<pSrc->nSrc ); 645 if( pItem->zDatabase ){ 646 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); 647 sqlite3StrAccumAppend(pAccum, ".", 1); 648 } 649 sqlite3StrAccumAppend(pAccum, pItem->zName, -1); 650 length = width = 0; 651 break; 652 } 653 default: { 654 assert( xtype==etINVALID ); 655 return; 656 } 657 }/* End switch over the format type */ 658 /* 659 ** The text of the conversion is pointed to by "bufpt" and is 660 ** "length" characters long. The field width is "width". Do 661 ** the output. 662 */ 663 if( !flag_leftjustify ){ 664 register int nspace; 665 nspace = width-length; 666 if( nspace>0 ){ 667 sqlite3AppendSpace(pAccum, nspace); 668 } 669 } 670 if( length>0 ){ 671 sqlite3StrAccumAppend(pAccum, bufpt, length); 672 } 673 if( flag_leftjustify ){ 674 register int nspace; 675 nspace = width-length; 676 if( nspace>0 ){ 677 sqlite3AppendSpace(pAccum, nspace); 678 } 679 } 680 sqlite3_free(zExtra); 681 }/* End for loop over the format string */ 682 } /* End of function */ 683 684 /* 685 ** Append N bytes of text from z to the StrAccum object. 686 */ 687 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 688 assert( z!=0 || N==0 ); 689 if( p->tooBig | p->mallocFailed ){ 690 testcase(p->tooBig); 691 testcase(p->mallocFailed); 692 return; 693 } 694 assert( p->zText!=0 || p->nChar==0 ); 695 if( N<0 ){ 696 N = sqlite3Strlen30(z); 697 } 698 if( N==0 || NEVER(z==0) ){ 699 return; 700 } 701 if( p->nChar+N >= p->nAlloc ){ 702 char *zNew; 703 if( !p->useMalloc ){ 704 p->tooBig = 1; 705 N = p->nAlloc - p->nChar - 1; 706 if( N<=0 ){ 707 return; 708 } 709 }else{ 710 char *zOld = (p->zText==p->zBase ? 0 : p->zText); 711 i64 szNew = p->nChar; 712 szNew += N + 1; 713 if( szNew > p->mxAlloc ){ 714 sqlite3StrAccumReset(p); 715 p->tooBig = 1; 716 return; 717 }else{ 718 p->nAlloc = (int)szNew; 719 } 720 if( p->useMalloc==1 ){ 721 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); 722 }else{ 723 zNew = sqlite3_realloc(zOld, p->nAlloc); 724 } 725 if( zNew ){ 726 if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); 727 p->zText = zNew; 728 }else{ 729 p->mallocFailed = 1; 730 sqlite3StrAccumReset(p); 731 return; 732 } 733 } 734 } 735 assert( p->zText ); 736 memcpy(&p->zText[p->nChar], z, N); 737 p->nChar += N; 738 } 739 740 /* 741 ** Finish off a string by making sure it is zero-terminated. 742 ** Return a pointer to the resulting string. Return a NULL 743 ** pointer if any kind of error was encountered. 744 */ 745 char *sqlite3StrAccumFinish(StrAccum *p){ 746 if( p->zText ){ 747 p->zText[p->nChar] = 0; 748 if( p->useMalloc && p->zText==p->zBase ){ 749 if( p->useMalloc==1 ){ 750 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 751 }else{ 752 p->zText = sqlite3_malloc(p->nChar+1); 753 } 754 if( p->zText ){ 755 memcpy(p->zText, p->zBase, p->nChar+1); 756 }else{ 757 p->mallocFailed = 1; 758 } 759 } 760 } 761 return p->zText; 762 } 763 764 /* 765 ** Reset an StrAccum string. Reclaim all malloced memory. 766 */ 767 void sqlite3StrAccumReset(StrAccum *p){ 768 if( p->zText!=p->zBase ){ 769 if( p->useMalloc==1 ){ 770 sqlite3DbFree(p->db, p->zText); 771 }else{ 772 sqlite3_free(p->zText); 773 } 774 } 775 p->zText = 0; 776 } 777 778 /* 779 ** Initialize a string accumulator 780 */ 781 void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ 782 p->zText = p->zBase = zBase; 783 p->db = 0; 784 p->nChar = 0; 785 p->nAlloc = n; 786 p->mxAlloc = mx; 787 p->useMalloc = 1; 788 p->tooBig = 0; 789 p->mallocFailed = 0; 790 } 791 792 /* 793 ** Print into memory obtained from sqliteMalloc(). Use the internal 794 ** %-conversion extensions. 795 */ 796 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 797 char *z; 798 char zBase[SQLITE_PRINT_BUF_SIZE]; 799 StrAccum acc; 800 assert( db!=0 ); 801 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), 802 db->aLimit[SQLITE_LIMIT_LENGTH]); 803 acc.db = db; 804 sqlite3VXPrintf(&acc, 1, zFormat, ap); 805 z = sqlite3StrAccumFinish(&acc); 806 if( acc.mallocFailed ){ 807 db->mallocFailed = 1; 808 } 809 return z; 810 } 811 812 /* 813 ** Print into memory obtained from sqliteMalloc(). Use the internal 814 ** %-conversion extensions. 815 */ 816 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 817 va_list ap; 818 char *z; 819 va_start(ap, zFormat); 820 z = sqlite3VMPrintf(db, zFormat, ap); 821 va_end(ap); 822 return z; 823 } 824 825 /* 826 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting 827 ** the string and before returnning. This routine is intended to be used 828 ** to modify an existing string. For example: 829 ** 830 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); 831 ** 832 */ 833 char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ 834 va_list ap; 835 char *z; 836 va_start(ap, zFormat); 837 z = sqlite3VMPrintf(db, zFormat, ap); 838 va_end(ap); 839 sqlite3DbFree(db, zStr); 840 return z; 841 } 842 843 /* 844 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 845 ** %-conversion extensions. 846 */ 847 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 848 char *z; 849 char zBase[SQLITE_PRINT_BUF_SIZE]; 850 StrAccum acc; 851 #ifndef SQLITE_OMIT_AUTOINIT 852 if( sqlite3_initialize() ) return 0; 853 #endif 854 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 855 acc.useMalloc = 2; 856 sqlite3VXPrintf(&acc, 0, zFormat, ap); 857 z = sqlite3StrAccumFinish(&acc); 858 return z; 859 } 860 861 /* 862 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 863 ** %-conversion extensions. 864 */ 865 char *sqlite3_mprintf(const char *zFormat, ...){ 866 va_list ap; 867 char *z; 868 #ifndef SQLITE_OMIT_AUTOINIT 869 if( sqlite3_initialize() ) return 0; 870 #endif 871 va_start(ap, zFormat); 872 z = sqlite3_vmprintf(zFormat, ap); 873 va_end(ap); 874 return z; 875 } 876 877 /* 878 ** sqlite3_snprintf() works like snprintf() except that it ignores the 879 ** current locale settings. This is important for SQLite because we 880 ** are not able to use a "," as the decimal point in place of "." as 881 ** specified by some locales. 882 ** 883 ** Oops: The first two arguments of sqlite3_snprintf() are backwards 884 ** from the snprintf() standard. Unfortunately, it is too late to change 885 ** this without breaking compatibility, so we just have to live with the 886 ** mistake. 887 ** 888 ** sqlite3_vsnprintf() is the varargs version. 889 */ 890 char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ 891 StrAccum acc; 892 if( n<=0 ) return zBuf; 893 sqlite3StrAccumInit(&acc, zBuf, n, 0); 894 acc.useMalloc = 0; 895 sqlite3VXPrintf(&acc, 0, zFormat, ap); 896 return sqlite3StrAccumFinish(&acc); 897 } 898 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 899 char *z; 900 va_list ap; 901 va_start(ap,zFormat); 902 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); 903 va_end(ap); 904 return z; 905 } 906 907 /* 908 ** This is the routine that actually formats the sqlite3_log() message. 909 ** We house it in a separate routine from sqlite3_log() to avoid using 910 ** stack space on small-stack systems when logging is disabled. 911 ** 912 ** sqlite3_log() must render into a static buffer. It cannot dynamically 913 ** allocate memory because it might be called while the memory allocator 914 ** mutex is held. 915 */ 916 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ 917 StrAccum acc; /* String accumulator */ 918 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ 919 920 sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0); 921 acc.useMalloc = 0; 922 sqlite3VXPrintf(&acc, 0, zFormat, ap); 923 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, 924 sqlite3StrAccumFinish(&acc)); 925 } 926 927 /* 928 ** Format and write a message to the log if logging is enabled. 929 */ 930 void sqlite3_log(int iErrCode, const char *zFormat, ...){ 931 va_list ap; /* Vararg list */ 932 if( sqlite3GlobalConfig.xLog ){ 933 va_start(ap, zFormat); 934 renderLogMsg(iErrCode, zFormat, ap); 935 va_end(ap); 936 } 937 } 938 939 #if defined(SQLITE_DEBUG) 940 /* 941 ** A version of printf() that understands %lld. Used for debugging. 942 ** The printf() built into some versions of windows does not understand %lld 943 ** and segfaults if you give it a long long int. 944 */ 945 void sqlite3DebugPrintf(const char *zFormat, ...){ 946 va_list ap; 947 StrAccum acc; 948 char zBuf[500]; 949 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); 950 acc.useMalloc = 0; 951 va_start(ap,zFormat); 952 sqlite3VXPrintf(&acc, 0, zFormat, ap); 953 va_end(ap); 954 sqlite3StrAccumFinish(&acc); 955 fprintf(stdout,"%s", zBuf); 956 fflush(stdout); 957 } 958 #endif 959 960 #ifndef SQLITE_OMIT_TRACE 961 /* 962 ** variable-argument wrapper around sqlite3VXPrintf(). 963 */ 964 void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ 965 va_list ap; 966 va_start(ap,zFormat); 967 sqlite3VXPrintf(p, 1, zFormat, ap); 968 va_end(ap); 969 } 970 #endif 971