1 /* 2 ** The "printf" code that follows dates from the 1980's. It is in 3 ** the public domain. The original comments are included here for 4 ** completeness. They are very out-of-date but might be useful as 5 ** an historical reference. Most of the "enhancements" have been backed 6 ** out so that the functionality is now the same as standard printf(). 7 ** 8 ** $Id: printf.c,v 1.94 2008/08/22 14:08:36 drh Exp $ 9 ** 10 ************************************************************************** 11 ** 12 ** The following modules is an enhanced replacement for the "printf" subroutines 13 ** found in the standard C library. The following enhancements are 14 ** supported: 15 ** 16 ** + Additional functions. The standard set of "printf" functions 17 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and 18 ** vsprintf. This module adds the following: 19 ** 20 ** * snprintf -- Works like sprintf, but has an extra argument 21 ** which is the size of the buffer written to. 22 ** 23 ** * mprintf -- Similar to sprintf. Writes output to memory 24 ** obtained from malloc. 25 ** 26 ** * xprintf -- Calls a function to dispose of output. 27 ** 28 ** * nprintf -- No output, but returns the number of characters 29 ** that would have been output by printf. 30 ** 31 ** * A v- version (ex: vsnprintf) of every function is also 32 ** supplied. 33 ** 34 ** + A few extensions to the formatting notation are supported: 35 ** 36 ** * The "=" flag (similar to "-") causes the output to be 37 ** be centered in the appropriately sized field. 38 ** 39 ** * The %b field outputs an integer in binary notation. 40 ** 41 ** * The %c field now accepts a precision. The character output 42 ** is repeated by the number of times the precision specifies. 43 ** 44 ** * The %' field works like %c, but takes as its character the 45 ** next character of the format string, instead of the next 46 ** argument. For example, printf("%.78'-") prints 78 minus 47 ** signs, the same as printf("%.78c",'-'). 48 ** 49 ** + When compiled using GCC on a SPARC, this version of printf is 50 ** faster than the library printf for SUN OS 4.1. 51 ** 52 ** + All functions are fully reentrant. 53 ** 54 */ 55 #include "sqliteInt.h" 56 57 /* 58 ** Conversion types fall into various categories as defined by the 59 ** following enumeration. 60 */ 61 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 62 #define etFLOAT 2 /* Floating point. %f */ 63 #define etEXP 3 /* Exponentional notation. %e and %E */ 64 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 65 #define etSIZE 5 /* Return number of characters processed so far. %n */ 66 #define etSTRING 6 /* Strings. %s */ 67 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 68 #define etPERCENT 8 /* Percent symbol. %% */ 69 #define etCHARX 9 /* Characters. %c */ 70 /* The rest are extensions, not normally found in printf() */ 71 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ 72 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', 73 NULL pointers replaced by SQL NULL. %Q */ 74 #define etTOKEN 12 /* a pointer to a Token structure */ 75 #define etSRCLIST 13 /* a pointer to a SrcList */ 76 #define etPOINTER 14 /* The %p conversion */ 77 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ 78 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 79 80 81 /* 82 ** An "etByte" is an 8-bit unsigned value. 83 */ 84 typedef unsigned char etByte; 85 86 /* 87 ** Each builtin conversion character (ex: the 'd' in "%d") is described 88 ** by an instance of the following structure 89 */ 90 typedef struct et_info { /* Information about each format field */ 91 char fmttype; /* The format field code letter */ 92 etByte base; /* The base for radix conversion */ 93 etByte flags; /* One or more of FLAG_ constants below */ 94 etByte type; /* Conversion paradigm */ 95 etByte charset; /* Offset into aDigits[] of the digits string */ 96 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 97 } et_info; 98 99 /* 100 ** Allowed values for et_info.flags 101 */ 102 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 103 #define FLAG_INTERN 2 /* True if for internal use only */ 104 #define FLAG_STRING 4 /* Allow infinity precision */ 105 106 107 /* 108 ** The following table is searched linearly, so it is good to put the 109 ** most frequently used conversion types first. 110 */ 111 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 112 static const char aPrefix[] = "-x0\000X0"; 113 static const et_info fmtinfo[] = { 114 { 'd', 10, 1, etRADIX, 0, 0 }, 115 { 's', 0, 4, etSTRING, 0, 0 }, 116 { 'g', 0, 1, etGENERIC, 30, 0 }, 117 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 118 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 119 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 120 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 121 { 'c', 0, 0, etCHARX, 0, 0 }, 122 { 'o', 8, 0, etRADIX, 0, 2 }, 123 { 'u', 10, 0, etRADIX, 0, 0 }, 124 { 'x', 16, 0, etRADIX, 16, 1 }, 125 { 'X', 16, 0, etRADIX, 0, 4 }, 126 #ifndef SQLITE_OMIT_FLOATING_POINT 127 { 'f', 0, 1, etFLOAT, 0, 0 }, 128 { 'e', 0, 1, etEXP, 30, 0 }, 129 { 'E', 0, 1, etEXP, 14, 0 }, 130 { 'G', 0, 1, etGENERIC, 14, 0 }, 131 #endif 132 { 'i', 10, 1, etRADIX, 0, 0 }, 133 { 'n', 0, 0, etSIZE, 0, 0 }, 134 { '%', 0, 0, etPERCENT, 0, 0 }, 135 { 'p', 16, 0, etPOINTER, 0, 1 }, 136 { 'T', 0, 2, etTOKEN, 0, 0 }, 137 { 'S', 0, 2, etSRCLIST, 0, 0 }, 138 { 'r', 10, 3, etORDINAL, 0, 0 }, 139 }; 140 #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) 141 142 /* 143 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 144 ** conversions will work. 145 */ 146 #ifndef SQLITE_OMIT_FLOATING_POINT 147 /* 148 ** "*val" is a double such that 0.1 <= *val < 10.0 149 ** Return the ascii code for the leading digit of *val, then 150 ** multiply "*val" by 10.0 to renormalize. 151 ** 152 ** Example: 153 ** input: *val = 3.14159 154 ** output: *val = 1.4159 function return = '3' 155 ** 156 ** The counter *cnt is incremented each time. After counter exceeds 157 ** 16 (the number of significant digits in a 64-bit float) '0' is 158 ** always returned. 159 */ 160 static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 161 int digit; 162 LONGDOUBLE_TYPE d; 163 if( (*cnt)++ >= 16 ) return '0'; 164 digit = (int)*val; 165 d = digit; 166 digit += '0'; 167 *val = (*val - d)*10.0; 168 return digit; 169 } 170 #endif /* SQLITE_OMIT_FLOATING_POINT */ 171 172 /* 173 ** Append N space characters to the given string buffer. 174 */ 175 static void appendSpace(StrAccum *pAccum, int N){ 176 static const char zSpaces[] = " "; 177 while( N>=sizeof(zSpaces)-1 ){ 178 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); 179 N -= sizeof(zSpaces)-1; 180 } 181 if( N>0 ){ 182 sqlite3StrAccumAppend(pAccum, zSpaces, N); 183 } 184 } 185 186 /* 187 ** On machines with a small stack size, you can redefine the 188 ** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for 189 ** smaller values some %f conversions may go into an infinite loop. 190 */ 191 #ifndef SQLITE_PRINT_BUF_SIZE 192 # define SQLITE_PRINT_BUF_SIZE 350 193 #endif 194 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 195 196 /* 197 ** The root program. All variations call this core. 198 ** 199 ** INPUTS: 200 ** func This is a pointer to a function taking three arguments 201 ** 1. A pointer to anything. Same as the "arg" parameter. 202 ** 2. A pointer to the list of characters to be output 203 ** (Note, this list is NOT null terminated.) 204 ** 3. An integer number of characters to be output. 205 ** (Note: This number might be zero.) 206 ** 207 ** arg This is the pointer to anything which will be passed as the 208 ** first argument to "func". Use it for whatever you like. 209 ** 210 ** fmt This is the format string, as in the usual print. 211 ** 212 ** ap This is a pointer to a list of arguments. Same as in 213 ** vfprint. 214 ** 215 ** OUTPUTS: 216 ** The return value is the total number of characters sent to 217 ** the function "func". Returns -1 on a error. 218 ** 219 ** Note that the order in which automatic variables are declared below 220 ** seems to make a big difference in determining how fast this beast 221 ** will run. 222 */ 223 void sqlite3VXPrintf( 224 StrAccum *pAccum, /* Accumulate results here */ 225 int useExtended, /* Allow extended %-conversions */ 226 const char *fmt, /* Format string */ 227 va_list ap /* arguments */ 228 ){ 229 int c; /* Next character in the format string */ 230 char *bufpt; /* Pointer to the conversion buffer */ 231 int precision; /* Precision of the current field */ 232 int length; /* Length of the field */ 233 int idx; /* A general purpose loop counter */ 234 int width; /* Width of the current field */ 235 etByte flag_leftjustify; /* True if "-" flag is present */ 236 etByte flag_plussign; /* True if "+" flag is present */ 237 etByte flag_blanksign; /* True if " " flag is present */ 238 etByte flag_alternateform; /* True if "#" flag is present */ 239 etByte flag_altform2; /* True if "!" flag is present */ 240 etByte flag_zeropad; /* True if field width constant starts with zero */ 241 etByte flag_long; /* True if "l" flag is present */ 242 etByte flag_longlong; /* True if the "ll" flag is present */ 243 etByte done; /* Loop termination flag */ 244 sqlite_uint64 longvalue; /* Value for integer types */ 245 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 246 const et_info *infop; /* Pointer to the appropriate info structure */ 247 char buf[etBUFSIZE]; /* Conversion buffer */ 248 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 249 etByte xtype; /* Conversion paradigm */ 250 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ 251 #ifndef SQLITE_OMIT_FLOATING_POINT 252 int exp, e2; /* exponent of real numbers */ 253 double rounder; /* Used for rounding floating point values */ 254 etByte flag_dp; /* True if decimal point should be shown */ 255 etByte flag_rtz; /* True if trailing zeros should be removed */ 256 etByte flag_exp; /* True to force display of the exponent */ 257 int nsd; /* Number of significant digits returned */ 258 #endif 259 260 length = 0; 261 bufpt = 0; 262 for(; (c=(*fmt))!=0; ++fmt){ 263 if( c!='%' ){ 264 int amt; 265 bufpt = (char *)fmt; 266 amt = 1; 267 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 268 sqlite3StrAccumAppend(pAccum, bufpt, amt); 269 if( c==0 ) break; 270 } 271 if( (c=(*++fmt))==0 ){ 272 sqlite3StrAccumAppend(pAccum, "%", 1); 273 break; 274 } 275 /* Find out what flags are present */ 276 flag_leftjustify = flag_plussign = flag_blanksign = 277 flag_alternateform = flag_altform2 = flag_zeropad = 0; 278 done = 0; 279 do{ 280 switch( c ){ 281 case '-': flag_leftjustify = 1; break; 282 case '+': flag_plussign = 1; break; 283 case ' ': flag_blanksign = 1; break; 284 case '#': flag_alternateform = 1; break; 285 case '!': flag_altform2 = 1; break; 286 case '0': flag_zeropad = 1; break; 287 default: done = 1; break; 288 } 289 }while( !done && (c=(*++fmt))!=0 ); 290 /* Get the field width */ 291 width = 0; 292 if( c=='*' ){ 293 width = va_arg(ap,int); 294 if( width<0 ){ 295 flag_leftjustify = 1; 296 width = -width; 297 } 298 c = *++fmt; 299 }else{ 300 while( c>='0' && c<='9' ){ 301 width = width*10 + c - '0'; 302 c = *++fmt; 303 } 304 } 305 if( width > etBUFSIZE-10 ){ 306 width = etBUFSIZE-10; 307 } 308 /* Get the precision */ 309 if( c=='.' ){ 310 precision = 0; 311 c = *++fmt; 312 if( c=='*' ){ 313 precision = va_arg(ap,int); 314 if( precision<0 ) precision = -precision; 315 c = *++fmt; 316 }else{ 317 while( c>='0' && c<='9' ){ 318 precision = precision*10 + c - '0'; 319 c = *++fmt; 320 } 321 } 322 }else{ 323 precision = -1; 324 } 325 /* Get the conversion type modifier */ 326 if( c=='l' ){ 327 flag_long = 1; 328 c = *++fmt; 329 if( c=='l' ){ 330 flag_longlong = 1; 331 c = *++fmt; 332 }else{ 333 flag_longlong = 0; 334 } 335 }else{ 336 flag_long = flag_longlong = 0; 337 } 338 /* Fetch the info entry for the field */ 339 infop = 0; 340 for(idx=0; idx<etNINFO; idx++){ 341 if( c==fmtinfo[idx].fmttype ){ 342 infop = &fmtinfo[idx]; 343 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 344 xtype = infop->type; 345 }else{ 346 return; 347 } 348 break; 349 } 350 } 351 zExtra = 0; 352 if( infop==0 ){ 353 return; 354 } 355 356 357 /* Limit the precision to prevent overflowing buf[] during conversion */ 358 if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ 359 precision = etBUFSIZE-40; 360 } 361 362 /* 363 ** At this point, variables are initialized as follows: 364 ** 365 ** flag_alternateform TRUE if a '#' is present. 366 ** flag_altform2 TRUE if a '!' is present. 367 ** flag_plussign TRUE if a '+' is present. 368 ** flag_leftjustify TRUE if a '-' is present or if the 369 ** field width was negative. 370 ** flag_zeropad TRUE if the width began with 0. 371 ** flag_long TRUE if the letter 'l' (ell) prefixed 372 ** the conversion character. 373 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 374 ** the conversion character. 375 ** flag_blanksign TRUE if a ' ' is present. 376 ** width The specified field width. This is 377 ** always non-negative. Zero is the default. 378 ** precision The specified precision. The default 379 ** is -1. 380 ** xtype The class of the conversion. 381 ** infop Pointer to the appropriate info struct. 382 */ 383 switch( xtype ){ 384 case etPOINTER: 385 flag_longlong = sizeof(char*)==sizeof(i64); 386 flag_long = sizeof(char*)==sizeof(long int); 387 /* Fall through into the next case */ 388 case etORDINAL: 389 case etRADIX: 390 if( infop->flags & FLAG_SIGNED ){ 391 i64 v; 392 if( flag_longlong ) v = va_arg(ap,i64); 393 else if( flag_long ) v = va_arg(ap,long int); 394 else v = va_arg(ap,int); 395 if( v<0 ){ 396 longvalue = -v; 397 prefix = '-'; 398 }else{ 399 longvalue = v; 400 if( flag_plussign ) prefix = '+'; 401 else if( flag_blanksign ) prefix = ' '; 402 else prefix = 0; 403 } 404 }else{ 405 if( flag_longlong ) longvalue = va_arg(ap,u64); 406 else if( flag_long ) longvalue = va_arg(ap,unsigned long int); 407 else longvalue = va_arg(ap,unsigned int); 408 prefix = 0; 409 } 410 if( longvalue==0 ) flag_alternateform = 0; 411 if( flag_zeropad && precision<width-(prefix!=0) ){ 412 precision = width-(prefix!=0); 413 } 414 bufpt = &buf[etBUFSIZE-1]; 415 if( xtype==etORDINAL ){ 416 static const char zOrd[] = "thstndrd"; 417 int x = longvalue % 10; 418 if( x>=4 || (longvalue/10)%10==1 ){ 419 x = 0; 420 } 421 buf[etBUFSIZE-3] = zOrd[x*2]; 422 buf[etBUFSIZE-2] = zOrd[x*2+1]; 423 bufpt -= 2; 424 } 425 { 426 register const char *cset; /* Use registers for speed */ 427 register int base; 428 cset = &aDigits[infop->charset]; 429 base = infop->base; 430 do{ /* Convert to ascii */ 431 *(--bufpt) = cset[longvalue%base]; 432 longvalue = longvalue/base; 433 }while( longvalue>0 ); 434 } 435 length = &buf[etBUFSIZE-1]-bufpt; 436 for(idx=precision-length; idx>0; idx--){ 437 *(--bufpt) = '0'; /* Zero pad */ 438 } 439 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 440 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 441 const char *pre; 442 char x; 443 pre = &aPrefix[infop->prefix]; 444 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 445 } 446 length = &buf[etBUFSIZE-1]-bufpt; 447 break; 448 case etFLOAT: 449 case etEXP: 450 case etGENERIC: 451 realvalue = va_arg(ap,double); 452 #ifndef SQLITE_OMIT_FLOATING_POINT 453 if( precision<0 ) precision = 6; /* Set default precision */ 454 if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; 455 if( realvalue<0.0 ){ 456 realvalue = -realvalue; 457 prefix = '-'; 458 }else{ 459 if( flag_plussign ) prefix = '+'; 460 else if( flag_blanksign ) prefix = ' '; 461 else prefix = 0; 462 } 463 if( xtype==etGENERIC && precision>0 ) precision--; 464 #if 0 465 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 466 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 467 #else 468 /* It makes more sense to use 0.5 */ 469 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 470 #endif 471 if( xtype==etFLOAT ) realvalue += rounder; 472 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 473 exp = 0; 474 if( sqlite3IsNaN(realvalue) ){ 475 bufpt = "NaN"; 476 length = 3; 477 break; 478 } 479 if( realvalue>0.0 ){ 480 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } 481 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 482 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 483 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 484 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 485 if( exp>350 ){ 486 if( prefix=='-' ){ 487 bufpt = "-Inf"; 488 }else if( prefix=='+' ){ 489 bufpt = "+Inf"; 490 }else{ 491 bufpt = "Inf"; 492 } 493 length = strlen(bufpt); 494 break; 495 } 496 } 497 bufpt = buf; 498 /* 499 ** If the field type is etGENERIC, then convert to either etEXP 500 ** or etFLOAT, as appropriate. 501 */ 502 flag_exp = xtype==etEXP; 503 if( xtype!=etFLOAT ){ 504 realvalue += rounder; 505 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 506 } 507 if( xtype==etGENERIC ){ 508 flag_rtz = !flag_alternateform; 509 if( exp<-4 || exp>precision ){ 510 xtype = etEXP; 511 }else{ 512 precision = precision - exp; 513 xtype = etFLOAT; 514 } 515 }else{ 516 flag_rtz = 0; 517 } 518 if( xtype==etEXP ){ 519 e2 = 0; 520 }else{ 521 e2 = exp; 522 } 523 nsd = 0; 524 flag_dp = (precision>0) | flag_alternateform | flag_altform2; 525 /* The sign in front of the number */ 526 if( prefix ){ 527 *(bufpt++) = prefix; 528 } 529 /* Digits prior to the decimal point */ 530 if( e2<0 ){ 531 *(bufpt++) = '0'; 532 }else{ 533 for(; e2>=0; e2--){ 534 *(bufpt++) = et_getdigit(&realvalue,&nsd); 535 } 536 } 537 /* The decimal point */ 538 if( flag_dp ){ 539 *(bufpt++) = '.'; 540 } 541 /* "0" digits after the decimal point but before the first 542 ** significant digit of the number */ 543 for(e2++; e2<0; precision--, e2++){ 544 assert( precision>0 ); 545 *(bufpt++) = '0'; 546 } 547 /* Significant digits after the decimal point */ 548 while( (precision--)>0 ){ 549 *(bufpt++) = et_getdigit(&realvalue,&nsd); 550 } 551 /* Remove trailing zeros and the "." if no digits follow the "." */ 552 if( flag_rtz && flag_dp ){ 553 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 554 assert( bufpt>buf ); 555 if( bufpt[-1]=='.' ){ 556 if( flag_altform2 ){ 557 *(bufpt++) = '0'; 558 }else{ 559 *(--bufpt) = 0; 560 } 561 } 562 } 563 /* Add the "eNNN" suffix */ 564 if( flag_exp || xtype==etEXP ){ 565 *(bufpt++) = aDigits[infop->charset]; 566 if( exp<0 ){ 567 *(bufpt++) = '-'; exp = -exp; 568 }else{ 569 *(bufpt++) = '+'; 570 } 571 if( exp>=100 ){ 572 *(bufpt++) = (exp/100)+'0'; /* 100's digit */ 573 exp %= 100; 574 } 575 *(bufpt++) = exp/10+'0'; /* 10's digit */ 576 *(bufpt++) = exp%10+'0'; /* 1's digit */ 577 } 578 *bufpt = 0; 579 580 /* The converted number is in buf[] and zero terminated. Output it. 581 ** Note that the number is in the usual order, not reversed as with 582 ** integer conversions. */ 583 length = bufpt-buf; 584 bufpt = buf; 585 586 /* Special case: Add leading zeros if the flag_zeropad flag is 587 ** set and we are not left justified */ 588 if( flag_zeropad && !flag_leftjustify && length < width){ 589 int i; 590 int nPad = width - length; 591 for(i=width; i>=nPad; i--){ 592 bufpt[i] = bufpt[i-nPad]; 593 } 594 i = prefix!=0; 595 while( nPad-- ) bufpt[i++] = '0'; 596 length = width; 597 } 598 #endif 599 break; 600 case etSIZE: 601 *(va_arg(ap,int*)) = pAccum->nChar; 602 length = width = 0; 603 break; 604 case etPERCENT: 605 buf[0] = '%'; 606 bufpt = buf; 607 length = 1; 608 break; 609 case etCHARX: 610 c = buf[0] = va_arg(ap,int); 611 if( precision>=0 ){ 612 for(idx=1; idx<precision; idx++) buf[idx] = c; 613 length = precision; 614 }else{ 615 length =1; 616 } 617 bufpt = buf; 618 break; 619 case etSTRING: 620 case etDYNSTRING: 621 bufpt = va_arg(ap,char*); 622 if( bufpt==0 ){ 623 bufpt = ""; 624 }else if( xtype==etDYNSTRING ){ 625 zExtra = bufpt; 626 } 627 if( precision>=0 ){ 628 for(length=0; length<precision && bufpt[length]; length++){} 629 }else{ 630 length = strlen(bufpt); 631 } 632 break; 633 case etSQLESCAPE: 634 case etSQLESCAPE2: 635 case etSQLESCAPE3: { 636 int i, j, n, ch, isnull; 637 int needQuote; 638 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 639 char *escarg = va_arg(ap,char*); 640 isnull = escarg==0; 641 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 642 for(i=n=0; (ch=escarg[i])!=0; i++){ 643 if( ch==q ) n++; 644 } 645 needQuote = !isnull && xtype==etSQLESCAPE2; 646 n += i + 1 + needQuote*2; 647 if( n>etBUFSIZE ){ 648 bufpt = zExtra = sqlite3Malloc( n ); 649 if( bufpt==0 ) return; 650 }else{ 651 bufpt = buf; 652 } 653 j = 0; 654 if( needQuote ) bufpt[j++] = q; 655 for(i=0; (ch=escarg[i])!=0; i++){ 656 bufpt[j++] = ch; 657 if( ch==q ) bufpt[j++] = ch; 658 } 659 if( needQuote ) bufpt[j++] = q; 660 bufpt[j] = 0; 661 length = j; 662 /* The precision is ignored on %q and %Q */ 663 /* if( precision>=0 && precision<length ) length = precision; */ 664 break; 665 } 666 case etTOKEN: { 667 Token *pToken = va_arg(ap, Token*); 668 if( pToken ){ 669 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 670 } 671 length = width = 0; 672 break; 673 } 674 case etSRCLIST: { 675 SrcList *pSrc = va_arg(ap, SrcList*); 676 int k = va_arg(ap, int); 677 struct SrcList_item *pItem = &pSrc->a[k]; 678 assert( k>=0 && k<pSrc->nSrc ); 679 if( pItem->zDatabase ){ 680 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); 681 sqlite3StrAccumAppend(pAccum, ".", 1); 682 } 683 sqlite3StrAccumAppend(pAccum, pItem->zName, -1); 684 length = width = 0; 685 break; 686 } 687 }/* End switch over the format type */ 688 /* 689 ** The text of the conversion is pointed to by "bufpt" and is 690 ** "length" characters long. The field width is "width". Do 691 ** the output. 692 */ 693 if( !flag_leftjustify ){ 694 register int nspace; 695 nspace = width-length; 696 if( nspace>0 ){ 697 appendSpace(pAccum, nspace); 698 } 699 } 700 if( length>0 ){ 701 sqlite3StrAccumAppend(pAccum, bufpt, length); 702 } 703 if( flag_leftjustify ){ 704 register int nspace; 705 nspace = width-length; 706 if( nspace>0 ){ 707 appendSpace(pAccum, nspace); 708 } 709 } 710 if( zExtra ){ 711 sqlite3_free(zExtra); 712 } 713 }/* End for loop over the format string */ 714 } /* End of function */ 715 716 /* 717 ** Append N bytes of text from z to the StrAccum object. 718 */ 719 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 720 if( p->tooBig | p->mallocFailed ){ 721 return; 722 } 723 if( N<0 ){ 724 N = strlen(z); 725 } 726 if( N==0 ){ 727 return; 728 } 729 if( p->nChar+N >= p->nAlloc ){ 730 char *zNew; 731 if( !p->useMalloc ){ 732 p->tooBig = 1; 733 N = p->nAlloc - p->nChar - 1; 734 if( N<=0 ){ 735 return; 736 } 737 }else{ 738 i64 szNew = p->nChar; 739 szNew += N + 1; 740 if( szNew > p->mxAlloc ){ 741 sqlite3StrAccumReset(p); 742 p->tooBig = 1; 743 return; 744 }else{ 745 p->nAlloc = szNew; 746 } 747 zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); 748 if( zNew ){ 749 memcpy(zNew, p->zText, p->nChar); 750 sqlite3StrAccumReset(p); 751 p->zText = zNew; 752 }else{ 753 p->mallocFailed = 1; 754 sqlite3StrAccumReset(p); 755 return; 756 } 757 } 758 } 759 memcpy(&p->zText[p->nChar], z, N); 760 p->nChar += N; 761 } 762 763 /* 764 ** Finish off a string by making sure it is zero-terminated. 765 ** Return a pointer to the resulting string. Return a NULL 766 ** pointer if any kind of error was encountered. 767 */ 768 char *sqlite3StrAccumFinish(StrAccum *p){ 769 if( p->zText ){ 770 p->zText[p->nChar] = 0; 771 if( p->useMalloc && p->zText==p->zBase ){ 772 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 773 if( p->zText ){ 774 memcpy(p->zText, p->zBase, p->nChar+1); 775 }else{ 776 p->mallocFailed = 1; 777 } 778 } 779 } 780 return p->zText; 781 } 782 783 /* 784 ** Reset an StrAccum string. Reclaim all malloced memory. 785 */ 786 void sqlite3StrAccumReset(StrAccum *p){ 787 if( p->zText!=p->zBase ){ 788 sqlite3DbFree(p->db, p->zText); 789 } 790 p->zText = 0; 791 } 792 793 /* 794 ** Initialize a string accumulator 795 */ 796 void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ 797 p->zText = p->zBase = zBase; 798 p->db = 0; 799 p->nChar = 0; 800 p->nAlloc = n; 801 p->mxAlloc = mx; 802 p->useMalloc = 1; 803 p->tooBig = 0; 804 p->mallocFailed = 0; 805 } 806 807 /* 808 ** Print into memory obtained from sqliteMalloc(). Use the internal 809 ** %-conversion extensions. 810 */ 811 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 812 char *z; 813 char zBase[SQLITE_PRINT_BUF_SIZE]; 814 StrAccum acc; 815 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), 816 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 817 acc.db = db; 818 sqlite3VXPrintf(&acc, 1, zFormat, ap); 819 z = sqlite3StrAccumFinish(&acc); 820 if( acc.mallocFailed && db ){ 821 db->mallocFailed = 1; 822 } 823 return z; 824 } 825 826 /* 827 ** Print into memory obtained from sqliteMalloc(). Use the internal 828 ** %-conversion extensions. 829 */ 830 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 831 va_list ap; 832 char *z; 833 va_start(ap, zFormat); 834 z = sqlite3VMPrintf(db, zFormat, ap); 835 va_end(ap); 836 return z; 837 } 838 839 /* 840 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting 841 ** the string and before returnning. This routine is intended to be used 842 ** to modify an existing string. For example: 843 ** 844 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); 845 ** 846 */ 847 char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ 848 va_list ap; 849 char *z; 850 va_start(ap, zFormat); 851 z = sqlite3VMPrintf(db, zFormat, ap); 852 va_end(ap); 853 sqlite3DbFree(db, zStr); 854 return z; 855 } 856 857 /* 858 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 859 ** %-conversion extensions. 860 */ 861 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 862 char *z; 863 char zBase[SQLITE_PRINT_BUF_SIZE]; 864 StrAccum acc; 865 #ifndef SQLITE_OMIT_AUTOINIT 866 if( sqlite3_initialize() ) return 0; 867 #endif 868 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 869 sqlite3VXPrintf(&acc, 0, zFormat, ap); 870 z = sqlite3StrAccumFinish(&acc); 871 return z; 872 } 873 874 /* 875 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 876 ** %-conversion extensions. 877 */ 878 char *sqlite3_mprintf(const char *zFormat, ...){ 879 va_list ap; 880 char *z; 881 #ifndef SQLITE_OMIT_AUTOINIT 882 if( sqlite3_initialize() ) return 0; 883 #endif 884 va_start(ap, zFormat); 885 z = sqlite3_vmprintf(zFormat, ap); 886 va_end(ap); 887 return z; 888 } 889 890 /* 891 ** sqlite3_snprintf() works like snprintf() except that it ignores the 892 ** current locale settings. This is important for SQLite because we 893 ** are not able to use a "," as the decimal point in place of "." as 894 ** specified by some locales. 895 */ 896 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 897 char *z; 898 va_list ap; 899 StrAccum acc; 900 901 if( n<=0 ){ 902 return zBuf; 903 } 904 sqlite3StrAccumInit(&acc, zBuf, n, 0); 905 acc.useMalloc = 0; 906 va_start(ap,zFormat); 907 sqlite3VXPrintf(&acc, 0, zFormat, ap); 908 va_end(ap); 909 z = sqlite3StrAccumFinish(&acc); 910 return z; 911 } 912 913 #if defined(SQLITE_DEBUG) 914 /* 915 ** A version of printf() that understands %lld. Used for debugging. 916 ** The printf() built into some versions of windows does not understand %lld 917 ** and segfaults if you give it a long long int. 918 */ 919 void sqlite3DebugPrintf(const char *zFormat, ...){ 920 va_list ap; 921 StrAccum acc; 922 char zBuf[500]; 923 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); 924 acc.useMalloc = 0; 925 va_start(ap,zFormat); 926 sqlite3VXPrintf(&acc, 0, zFormat, ap); 927 va_end(ap); 928 sqlite3StrAccumFinish(&acc); 929 fprintf(stdout,"%s", zBuf); 930 fflush(stdout); 931 } 932 #endif 933