1 /* 2 ** 2005 May 25 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the implementation of the sqlite3_prepare() 13 ** interface, and routines that contribute to loading the database schema 14 ** from disk. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** Fill the InitData structure with an error message that indicates 20 ** that the database is corrupt. 21 */ 22 static void corruptSchema( 23 InitData *pData, /* Initialization context */ 24 const char *zObj, /* Object being parsed at the point of error */ 25 const char *zExtra /* Error information */ 26 ){ 27 sqlite3 *db = pData->db; 28 if( db->mallocFailed ){ 29 pData->rc = SQLITE_NOMEM_BKPT; 30 }else if( pData->pzErrMsg[0]!=0 ){ 31 /* A error message has already been generated. Do not overwrite it */ 32 }else if( pData->mInitFlags & INITFLAG_AlterTable ){ 33 *pData->pzErrMsg = sqlite3DbStrDup(db, zExtra); 34 pData->rc = SQLITE_ERROR; 35 }else if( db->flags & SQLITE_WriteSchema ){ 36 pData->rc = SQLITE_CORRUPT_BKPT; 37 }else{ 38 char *z; 39 if( zObj==0 ) zObj = "?"; 40 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 41 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 42 *pData->pzErrMsg = z; 43 pData->rc = SQLITE_CORRUPT_BKPT; 44 } 45 } 46 47 /* 48 ** This is the callback routine for the code that initializes the 49 ** database. See sqlite3Init() below for additional information. 50 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 51 ** 52 ** Each callback contains the following information: 53 ** 54 ** argv[0] = name of thing being created 55 ** argv[1] = root page number for table or index. 0 for trigger or view. 56 ** argv[2] = SQL text for the CREATE statement. 57 ** 58 */ 59 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 60 InitData *pData = (InitData*)pInit; 61 sqlite3 *db = pData->db; 62 int iDb = pData->iDb; 63 64 assert( argc==3 ); 65 UNUSED_PARAMETER2(NotUsed, argc); 66 assert( sqlite3_mutex_held(db->mutex) ); 67 DbClearProperty(db, iDb, DB_Empty); 68 if( db->mallocFailed ){ 69 corruptSchema(pData, argv[0], 0); 70 return 1; 71 } 72 73 assert( iDb>=0 && iDb<db->nDb ); 74 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 75 if( argv[1]==0 ){ 76 corruptSchema(pData, argv[0], 0); 77 }else if( sqlite3_strnicmp(argv[2],"create ",7)==0 ){ 78 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 79 ** But because db->init.busy is set to 1, no VDBE code is generated 80 ** or executed. All the parser does is build the internal data 81 ** structures that describe the table, index, or view. 82 */ 83 int rc; 84 u8 saved_iDb = db->init.iDb; 85 sqlite3_stmt *pStmt; 86 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 87 88 assert( db->init.busy ); 89 db->init.iDb = iDb; 90 db->init.newTnum = sqlite3Atoi(argv[1]); 91 db->init.orphanTrigger = 0; 92 TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0); 93 rc = db->errCode; 94 assert( (rc&0xFF)==(rcp&0xFF) ); 95 db->init.iDb = saved_iDb; 96 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 97 if( SQLITE_OK!=rc ){ 98 if( db->init.orphanTrigger ){ 99 assert( iDb==1 ); 100 }else{ 101 pData->rc = rc; 102 if( rc==SQLITE_NOMEM ){ 103 sqlite3OomFault(db); 104 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 105 corruptSchema(pData, argv[0], sqlite3_errmsg(db)); 106 } 107 } 108 } 109 sqlite3_finalize(pStmt); 110 }else if( argv[0]==0 || (argv[2]!=0 && argv[2][0]!=0) ){ 111 corruptSchema(pData, argv[0], 0); 112 }else{ 113 /* If the SQL column is blank it means this is an index that 114 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 115 ** constraint for a CREATE TABLE. The index should have already 116 ** been created when we processed the CREATE TABLE. All we have 117 ** to do here is record the root page number for that index. 118 */ 119 Index *pIndex; 120 pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zDbSName); 121 if( pIndex==0 ){ 122 /* This can occur if there exists an index on a TEMP table which 123 ** has the same name as another index on a permanent index. Since 124 ** the permanent table is hidden by the TEMP table, we can also 125 ** safely ignore the index on the permanent table. 126 */ 127 /* Do Nothing */; 128 }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){ 129 corruptSchema(pData, argv[0], "invalid rootpage"); 130 } 131 } 132 return 0; 133 } 134 135 /* 136 ** Attempt to read the database schema and initialize internal 137 ** data structures for a single database file. The index of the 138 ** database file is given by iDb. iDb==0 is used for the main 139 ** database. iDb==1 should never be used. iDb>=2 is used for 140 ** auxiliary databases. Return one of the SQLITE_ error codes to 141 ** indicate success or failure. 142 */ 143 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 144 int rc; 145 int i; 146 #ifndef SQLITE_OMIT_DEPRECATED 147 int size; 148 #endif 149 Db *pDb; 150 char const *azArg[4]; 151 int meta[5]; 152 InitData initData; 153 const char *zMasterName; 154 int openedTransaction = 0; 155 156 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 157 assert( iDb>=0 && iDb<db->nDb ); 158 assert( db->aDb[iDb].pSchema ); 159 assert( sqlite3_mutex_held(db->mutex) ); 160 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 161 162 db->init.busy = 1; 163 164 /* Construct the in-memory representation schema tables (sqlite_master or 165 ** sqlite_temp_master) by invoking the parser directly. The appropriate 166 ** table name will be inserted automatically by the parser so we can just 167 ** use the abbreviation "x" here. The parser will also automatically tag 168 ** the schema table as read-only. */ 169 azArg[0] = zMasterName = SCHEMA_TABLE(iDb); 170 azArg[1] = "1"; 171 azArg[2] = "CREATE TABLE x(type text,name text,tbl_name text," 172 "rootpage int,sql text)"; 173 azArg[3] = 0; 174 initData.db = db; 175 initData.iDb = iDb; 176 initData.rc = SQLITE_OK; 177 initData.pzErrMsg = pzErrMsg; 178 initData.mInitFlags = mFlags; 179 sqlite3InitCallback(&initData, 3, (char **)azArg, 0); 180 if( initData.rc ){ 181 rc = initData.rc; 182 goto error_out; 183 } 184 185 /* Create a cursor to hold the database open 186 */ 187 pDb = &db->aDb[iDb]; 188 if( pDb->pBt==0 ){ 189 assert( iDb==1 ); 190 DbSetProperty(db, 1, DB_SchemaLoaded); 191 rc = SQLITE_OK; 192 goto error_out; 193 } 194 195 /* If there is not already a read-only (or read-write) transaction opened 196 ** on the b-tree database, open one now. If a transaction is opened, it 197 ** will be closed before this function returns. */ 198 sqlite3BtreeEnter(pDb->pBt); 199 if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ 200 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 201 if( rc!=SQLITE_OK ){ 202 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 203 goto initone_error_out; 204 } 205 openedTransaction = 1; 206 } 207 208 /* Get the database meta information. 209 ** 210 ** Meta values are as follows: 211 ** meta[0] Schema cookie. Changes with each schema change. 212 ** meta[1] File format of schema layer. 213 ** meta[2] Size of the page cache. 214 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 215 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 216 ** meta[5] User version 217 ** meta[6] Incremental vacuum mode 218 ** meta[7] unused 219 ** meta[8] unused 220 ** meta[9] unused 221 ** 222 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 223 ** the possible values of meta[4]. 224 */ 225 for(i=0; i<ArraySize(meta); i++){ 226 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 227 } 228 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 229 memset(meta, 0, sizeof(meta)); 230 } 231 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 232 233 /* If opening a non-empty database, check the text encoding. For the 234 ** main database, set sqlite3.enc to the encoding of the main database. 235 ** For an attached db, it is an error if the encoding is not the same 236 ** as sqlite3.enc. 237 */ 238 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 239 if( iDb==0 ){ 240 #ifndef SQLITE_OMIT_UTF16 241 u8 encoding; 242 /* If opening the main database, set ENC(db). */ 243 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 244 if( encoding==0 ) encoding = SQLITE_UTF8; 245 ENC(db) = encoding; 246 #else 247 ENC(db) = SQLITE_UTF8; 248 #endif 249 }else{ 250 /* If opening an attached database, the encoding much match ENC(db) */ 251 if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){ 252 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 253 " text encoding as main database"); 254 rc = SQLITE_ERROR; 255 goto initone_error_out; 256 } 257 } 258 }else{ 259 DbSetProperty(db, iDb, DB_Empty); 260 } 261 pDb->pSchema->enc = ENC(db); 262 263 if( pDb->pSchema->cache_size==0 ){ 264 #ifndef SQLITE_OMIT_DEPRECATED 265 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 266 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 267 pDb->pSchema->cache_size = size; 268 #else 269 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 270 #endif 271 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 272 } 273 274 /* 275 ** file_format==1 Version 3.0.0. 276 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 277 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 278 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 279 */ 280 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 281 if( pDb->pSchema->file_format==0 ){ 282 pDb->pSchema->file_format = 1; 283 } 284 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 285 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 286 rc = SQLITE_ERROR; 287 goto initone_error_out; 288 } 289 290 /* Ticket #2804: When we open a database in the newer file format, 291 ** clear the legacy_file_format pragma flag so that a VACUUM will 292 ** not downgrade the database and thus invalidate any descending 293 ** indices that the user might have created. 294 */ 295 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 296 db->flags &= ~SQLITE_LegacyFileFmt; 297 } 298 299 /* Read the schema information out of the schema tables 300 */ 301 assert( db->init.busy ); 302 { 303 char *zSql; 304 zSql = sqlite3MPrintf(db, 305 "SELECT name, rootpage, sql FROM \"%w\".%s ORDER BY rowid", 306 db->aDb[iDb].zDbSName, zMasterName); 307 #ifndef SQLITE_OMIT_AUTHORIZATION 308 { 309 sqlite3_xauth xAuth; 310 xAuth = db->xAuth; 311 db->xAuth = 0; 312 #endif 313 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 314 #ifndef SQLITE_OMIT_AUTHORIZATION 315 db->xAuth = xAuth; 316 } 317 #endif 318 if( rc==SQLITE_OK ) rc = initData.rc; 319 sqlite3DbFree(db, zSql); 320 #ifndef SQLITE_OMIT_ANALYZE 321 if( rc==SQLITE_OK ){ 322 sqlite3AnalysisLoad(db, iDb); 323 } 324 #endif 325 } 326 if( db->mallocFailed ){ 327 rc = SQLITE_NOMEM_BKPT; 328 sqlite3ResetAllSchemasOfConnection(db); 329 } 330 if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ 331 /* Black magic: If the SQLITE_NoSchemaError flag is set, then consider 332 ** the schema loaded, even if errors occurred. In this situation the 333 ** current sqlite3_prepare() operation will fail, but the following one 334 ** will attempt to compile the supplied statement against whatever subset 335 ** of the schema was loaded before the error occurred. The primary 336 ** purpose of this is to allow access to the sqlite_master table 337 ** even when its contents have been corrupted. 338 */ 339 DbSetProperty(db, iDb, DB_SchemaLoaded); 340 rc = SQLITE_OK; 341 } 342 343 /* Jump here for an error that occurs after successfully allocating 344 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 345 ** before that point, jump to error_out. 346 */ 347 initone_error_out: 348 if( openedTransaction ){ 349 sqlite3BtreeCommit(pDb->pBt); 350 } 351 sqlite3BtreeLeave(pDb->pBt); 352 353 error_out: 354 if( rc ){ 355 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 356 sqlite3OomFault(db); 357 } 358 sqlite3ResetOneSchema(db, iDb); 359 } 360 db->init.busy = 0; 361 return rc; 362 } 363 364 /* 365 ** Initialize all database files - the main database file, the file 366 ** used to store temporary tables, and any additional database files 367 ** created using ATTACH statements. Return a success code. If an 368 ** error occurs, write an error message into *pzErrMsg. 369 ** 370 ** After a database is initialized, the DB_SchemaLoaded bit is set 371 ** bit is set in the flags field of the Db structure. If the database 372 ** file was of zero-length, then the DB_Empty flag is also set. 373 */ 374 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 375 int i, rc; 376 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 377 378 assert( sqlite3_mutex_held(db->mutex) ); 379 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 380 assert( db->init.busy==0 ); 381 ENC(db) = SCHEMA_ENC(db); 382 assert( db->nDb>0 ); 383 /* Do the main schema first */ 384 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 385 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 386 if( rc ) return rc; 387 } 388 /* All other schemas after the main schema. The "temp" schema must be last */ 389 for(i=db->nDb-1; i>0; i--){ 390 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 391 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 392 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 393 if( rc ) return rc; 394 } 395 } 396 if( commit_internal ){ 397 sqlite3CommitInternalChanges(db); 398 } 399 return SQLITE_OK; 400 } 401 402 /* 403 ** This routine is a no-op if the database schema is already initialized. 404 ** Otherwise, the schema is loaded. An error code is returned. 405 */ 406 int sqlite3ReadSchema(Parse *pParse){ 407 int rc = SQLITE_OK; 408 sqlite3 *db = pParse->db; 409 assert( sqlite3_mutex_held(db->mutex) ); 410 if( !db->init.busy ){ 411 rc = sqlite3Init(db, &pParse->zErrMsg); 412 if( rc!=SQLITE_OK ){ 413 pParse->rc = rc; 414 pParse->nErr++; 415 }else if( db->noSharedCache ){ 416 db->mDbFlags |= DBFLAG_SchemaKnownOk; 417 } 418 } 419 return rc; 420 } 421 422 423 /* 424 ** Check schema cookies in all databases. If any cookie is out 425 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 426 ** make no changes to pParse->rc. 427 */ 428 static void schemaIsValid(Parse *pParse){ 429 sqlite3 *db = pParse->db; 430 int iDb; 431 int rc; 432 int cookie; 433 434 assert( pParse->checkSchema ); 435 assert( sqlite3_mutex_held(db->mutex) ); 436 for(iDb=0; iDb<db->nDb; iDb++){ 437 int openedTransaction = 0; /* True if a transaction is opened */ 438 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 439 if( pBt==0 ) continue; 440 441 /* If there is not already a read-only (or read-write) transaction opened 442 ** on the b-tree database, open one now. If a transaction is opened, it 443 ** will be closed immediately after reading the meta-value. */ 444 if( !sqlite3BtreeIsInReadTrans(pBt) ){ 445 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 446 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 447 sqlite3OomFault(db); 448 } 449 if( rc!=SQLITE_OK ) return; 450 openedTransaction = 1; 451 } 452 453 /* Read the schema cookie from the database. If it does not match the 454 ** value stored as part of the in-memory schema representation, 455 ** set Parse.rc to SQLITE_SCHEMA. */ 456 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 458 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 459 sqlite3ResetOneSchema(db, iDb); 460 pParse->rc = SQLITE_SCHEMA; 461 } 462 463 /* Close the transaction, if one was opened. */ 464 if( openedTransaction ){ 465 sqlite3BtreeCommit(pBt); 466 } 467 } 468 } 469 470 /* 471 ** Convert a schema pointer into the iDb index that indicates 472 ** which database file in db->aDb[] the schema refers to. 473 ** 474 ** If the same database is attached more than once, the first 475 ** attached database is returned. 476 */ 477 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 478 int i = -1000000; 479 480 /* If pSchema is NULL, then return -1000000. This happens when code in 481 ** expr.c is trying to resolve a reference to a transient table (i.e. one 482 ** created by a sub-select). In this case the return value of this 483 ** function should never be used. 484 ** 485 ** We return -1000000 instead of the more usual -1 simply because using 486 ** -1000000 as the incorrect index into db->aDb[] is much 487 ** more likely to cause a segfault than -1 (of course there are assert() 488 ** statements too, but it never hurts to play the odds). 489 */ 490 assert( sqlite3_mutex_held(db->mutex) ); 491 if( pSchema ){ 492 for(i=0; 1; i++){ 493 assert( i<db->nDb ); 494 if( db->aDb[i].pSchema==pSchema ){ 495 break; 496 } 497 } 498 assert( i>=0 && i<db->nDb ); 499 } 500 return i; 501 } 502 503 /* 504 ** Free all memory allocations in the pParse object 505 */ 506 void sqlite3ParserReset(Parse *pParse){ 507 sqlite3 *db = pParse->db; 508 sqlite3DbFree(db, pParse->aLabel); 509 sqlite3ExprListDelete(db, pParse->pConstExpr); 510 if( db ){ 511 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 512 db->lookaside.bDisable -= pParse->disableLookaside; 513 } 514 pParse->disableLookaside = 0; 515 } 516 517 /* 518 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 519 */ 520 static int sqlite3Prepare( 521 sqlite3 *db, /* Database handle. */ 522 const char *zSql, /* UTF-8 encoded SQL statement. */ 523 int nBytes, /* Length of zSql in bytes. */ 524 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 525 Vdbe *pReprepare, /* VM being reprepared */ 526 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 527 const char **pzTail /* OUT: End of parsed string */ 528 ){ 529 char *zErrMsg = 0; /* Error message */ 530 int rc = SQLITE_OK; /* Result code */ 531 int i; /* Loop counter */ 532 Parse sParse; /* Parsing context */ 533 534 memset(&sParse, 0, PARSE_HDR_SZ); 535 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 536 sParse.pReprepare = pReprepare; 537 assert( ppStmt && *ppStmt==0 ); 538 /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ 539 assert( sqlite3_mutex_held(db->mutex) ); 540 541 /* For a long-term use prepared statement avoid the use of 542 ** lookaside memory. 543 */ 544 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 545 sParse.disableLookaside++; 546 db->lookaside.bDisable++; 547 } 548 549 /* Check to verify that it is possible to get a read lock on all 550 ** database schemas. The inability to get a read lock indicates that 551 ** some other database connection is holding a write-lock, which in 552 ** turn means that the other connection has made uncommitted changes 553 ** to the schema. 554 ** 555 ** Were we to proceed and prepare the statement against the uncommitted 556 ** schema changes and if those schema changes are subsequently rolled 557 ** back and different changes are made in their place, then when this 558 ** prepared statement goes to run the schema cookie would fail to detect 559 ** the schema change. Disaster would follow. 560 ** 561 ** This thread is currently holding mutexes on all Btrees (because 562 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 563 ** is not possible for another thread to start a new schema change 564 ** while this routine is running. Hence, we do not need to hold 565 ** locks on the schema, we just need to make sure nobody else is 566 ** holding them. 567 ** 568 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 569 ** but it does *not* override schema lock detection, so this all still 570 ** works even if READ_UNCOMMITTED is set. 571 */ 572 for(i=0; i<db->nDb; i++) { 573 Btree *pBt = db->aDb[i].pBt; 574 if( pBt ){ 575 assert( sqlite3BtreeHoldsMutex(pBt) ); 576 rc = sqlite3BtreeSchemaLocked(pBt); 577 if( rc ){ 578 const char *zDb = db->aDb[i].zDbSName; 579 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 580 testcase( db->flags & SQLITE_ReadUncommit ); 581 goto end_prepare; 582 } 583 } 584 } 585 586 sqlite3VtabUnlockList(db); 587 588 sParse.db = db; 589 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 590 char *zSqlCopy; 591 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 592 testcase( nBytes==mxLen ); 593 testcase( nBytes==mxLen+1 ); 594 if( nBytes>mxLen ){ 595 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 596 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 597 goto end_prepare; 598 } 599 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 600 if( zSqlCopy ){ 601 sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); 602 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 603 sqlite3DbFree(db, zSqlCopy); 604 }else{ 605 sParse.zTail = &zSql[nBytes]; 606 } 607 }else{ 608 sqlite3RunParser(&sParse, zSql, &zErrMsg); 609 } 610 assert( 0==sParse.nQueryLoop ); 611 612 if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; 613 if( sParse.checkSchema ){ 614 schemaIsValid(&sParse); 615 } 616 if( db->mallocFailed ){ 617 sParse.rc = SQLITE_NOMEM_BKPT; 618 } 619 if( pzTail ){ 620 *pzTail = sParse.zTail; 621 } 622 rc = sParse.rc; 623 624 #ifndef SQLITE_OMIT_EXPLAIN 625 if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ 626 static const char * const azColName[] = { 627 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 628 "id", "parent", "notused", "detail" 629 }; 630 int iFirst, mx; 631 if( sParse.explain==2 ){ 632 sqlite3VdbeSetNumCols(sParse.pVdbe, 4); 633 iFirst = 8; 634 mx = 12; 635 }else{ 636 sqlite3VdbeSetNumCols(sParse.pVdbe, 8); 637 iFirst = 0; 638 mx = 8; 639 } 640 for(i=iFirst; i<mx; i++){ 641 sqlite3VdbeSetColName(sParse.pVdbe, i-iFirst, COLNAME_NAME, 642 azColName[i], SQLITE_STATIC); 643 } 644 } 645 #endif 646 647 if( db->init.busy==0 ){ 648 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 649 } 650 if( sParse.pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){ 651 sqlite3VdbeFinalize(sParse.pVdbe); 652 assert(!(*ppStmt)); 653 }else{ 654 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 655 } 656 657 if( zErrMsg ){ 658 sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); 659 sqlite3DbFree(db, zErrMsg); 660 }else{ 661 sqlite3Error(db, rc); 662 } 663 664 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 665 while( sParse.pTriggerPrg ){ 666 TriggerPrg *pT = sParse.pTriggerPrg; 667 sParse.pTriggerPrg = pT->pNext; 668 sqlite3DbFree(db, pT); 669 } 670 671 end_prepare: 672 673 sqlite3ParserReset(&sParse); 674 return rc; 675 } 676 static int sqlite3LockAndPrepare( 677 sqlite3 *db, /* Database handle. */ 678 const char *zSql, /* UTF-8 encoded SQL statement. */ 679 int nBytes, /* Length of zSql in bytes. */ 680 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 681 Vdbe *pOld, /* VM being reprepared */ 682 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 683 const char **pzTail /* OUT: End of parsed string */ 684 ){ 685 int rc; 686 int cnt = 0; 687 688 #ifdef SQLITE_ENABLE_API_ARMOR 689 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 690 #endif 691 *ppStmt = 0; 692 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 693 return SQLITE_MISUSE_BKPT; 694 } 695 sqlite3_mutex_enter(db->mutex); 696 sqlite3BtreeEnterAll(db); 697 do{ 698 /* Make multiple attempts to compile the SQL, until it either succeeds 699 ** or encounters a permanent error. A schema problem after one schema 700 ** reset is considered a permanent error. */ 701 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 702 assert( rc==SQLITE_OK || *ppStmt==0 ); 703 }while( rc==SQLITE_ERROR_RETRY 704 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 705 sqlite3BtreeLeaveAll(db); 706 rc = sqlite3ApiExit(db, rc); 707 assert( (rc&db->errMask)==rc ); 708 sqlite3_mutex_leave(db->mutex); 709 return rc; 710 } 711 712 #ifdef SQLITE_ENABLE_NORMALIZE 713 /* 714 ** Checks if the specified token is a table, column, or function name, 715 ** based on the databases associated with the statement being prepared. 716 ** If the function fails, zero is returned and pRc is filled with the 717 ** error code. 718 */ 719 static int shouldTreatAsIdentifier( 720 sqlite3 *db, /* Database handle. */ 721 const char *zToken, /* Pointer to start of token to be checked */ 722 int nToken, /* Length of token to be checked */ 723 int *pRc /* Pointer to error code upon failure */ 724 ){ 725 int bFound = 0; /* Non-zero if token is an identifier name. */ 726 int i, j; /* Database and column loop indexes. */ 727 Schema *pSchema; /* Schema for current database. */ 728 Hash *pHash; /* Hash table of tables for current database. */ 729 HashElem *e; /* Hash element for hash table iteration. */ 730 Table *pTab; /* Database table for columns being checked. */ 731 732 if( sqlite3IsRowidN(zToken, nToken) ){ 733 return 1; 734 } 735 if( nToken>0 ){ 736 int hash = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zToken[0]], nToken); 737 if( sqlite3FunctionSearchN(hash, zToken, nToken) ) return 1; 738 } 739 assert( db!=0 ); 740 sqlite3_mutex_enter(db->mutex); 741 sqlite3BtreeEnterAll(db); 742 for(i=0; i<db->nDb; i++){ 743 pHash = &db->aFunc; 744 if( sqlite3HashFindN(pHash, zToken, nToken) ){ 745 bFound = 1; 746 break; 747 } 748 pSchema = db->aDb[i].pSchema; 749 if( pSchema==0 ) continue; 750 pHash = &pSchema->tblHash; 751 if( sqlite3HashFindN(pHash, zToken, nToken) ){ 752 bFound = 1; 753 break; 754 } 755 for(e=sqliteHashFirst(pHash); e; e=sqliteHashNext(e)){ 756 pTab = sqliteHashData(e); 757 if( pTab==0 ) continue; 758 pHash = pTab->pColHash; 759 if( pHash==0 ){ 760 pTab->pColHash = pHash = sqlite3_malloc(sizeof(Hash)); 761 if( pHash ){ 762 sqlite3HashInit(pHash); 763 for(j=0; j<pTab->nCol; j++){ 764 Column *pCol = &pTab->aCol[j]; 765 sqlite3HashInsert(pHash, pCol->zName, pCol); 766 } 767 }else{ 768 *pRc = SQLITE_NOMEM_BKPT; 769 bFound = 0; 770 goto done; 771 } 772 } 773 if( pHash && sqlite3HashFindN(pHash, zToken, nToken) ){ 774 bFound = 1; 775 goto done; 776 } 777 } 778 } 779 done: 780 sqlite3BtreeLeaveAll(db); 781 sqlite3_mutex_leave(db->mutex); 782 return bFound; 783 } 784 785 /* 786 ** Attempt to estimate the final output buffer size needed for the fully 787 ** normalized version of the specified SQL string. This should take into 788 ** account any potential expansion that could occur (e.g. via IN clauses 789 ** being expanded, etc). This size returned is the total number of bytes 790 ** including the NUL terminator. 791 */ 792 static int estimateNormalizedSize( 793 const char *zSql, /* The original SQL string */ 794 int nSql, /* Length of original SQL string */ 795 u8 prepFlags /* The flags passed to sqlite3_prepare_v3() */ 796 ){ 797 int nOut = nSql + 4; 798 const char *z = zSql; 799 while( nOut<nSql*5 ){ 800 while( z[0]!=0 && z[0]!='I' && z[0]!='i' ){ z++; } 801 if( z[0]==0 ) break; 802 z++; 803 if( z[0]!='N' && z[0]!='n' ) break; 804 z++; 805 while( sqlite3Isspace(z[0]) ){ z++; } 806 if( z[0]!='(' ) break; 807 z++; 808 nOut += 5; /* ?,?,? */ 809 } 810 return nOut; 811 } 812 813 /* 814 ** Copy the current token into the output buffer while dealing with quoted 815 ** identifiers. By default, all letters will be converted into lowercase. 816 ** If the bUpper flag is set, uppercase will be used. The piOut argument 817 ** will be used to update the target index into the output string. 818 */ 819 static void copyNormalizedToken( 820 const char *zSql, /* The original SQL string */ 821 int iIn, /* Current index into the original SQL string */ 822 int nToken, /* Number of bytes in the current token */ 823 int tokenFlags, /* Flags returned by the tokenizer */ 824 char *zOut, /* The output string */ 825 int *piOut /* Pointer to target index into the output string */ 826 ){ 827 int bQuoted = tokenFlags & SQLITE_TOKEN_QUOTED; 828 int bKeyword = tokenFlags & SQLITE_TOKEN_KEYWORD; 829 int j = *piOut, k = 0; 830 for(; k<nToken; k++){ 831 if( bQuoted ){ 832 if( k==0 && iIn>0 ){ 833 zOut[j++] = '"'; 834 continue; 835 }else if( k==nToken-1 ){ 836 zOut[j++] = '"'; 837 continue; 838 } 839 } 840 if( bKeyword ){ 841 zOut[j++] = sqlite3Toupper(zSql[iIn+k]); 842 }else{ 843 zOut[j++] = sqlite3Tolower(zSql[iIn+k]); 844 } 845 } 846 *piOut = j; 847 } 848 849 /* 850 ** Perform normalization of the SQL contained in the prepared statement and 851 ** store the result in the zNormSql field. The schema for the associated 852 ** databases are consulted while performing the normalization in order to 853 ** determine if a token appears to be an identifier. All identifiers are 854 ** left intact in the normalized SQL and all literals are replaced with a 855 ** single '?'. 856 */ 857 void sqlite3Normalize( 858 Vdbe *pVdbe, /* VM being reprepared */ 859 const char *zSql, /* The original SQL string */ 860 int nSql, /* Size of the input string in bytes */ 861 u8 prepFlags /* The flags passed to sqlite3_prepare_v3() */ 862 ){ 863 sqlite3 *db; /* Database handle. */ 864 char *z; /* The output string */ 865 int nZ; /* Size of the output string in bytes */ 866 int i; /* Next character to read from zSql[] */ 867 int j; /* Next character to fill in on z[] */ 868 int tokenType = 0; /* Type of the next token */ 869 int prevTokenType = 0; /* Type of the previous token, except spaces */ 870 int n; /* Size of the next token */ 871 int nParen = 0; /* Nesting level of parenthesis */ 872 Hash inHash; /* Table of parenthesis levels to output index. */ 873 874 db = sqlite3VdbeDb(pVdbe); 875 assert( db!=0 ); 876 assert( pVdbe->zNormSql==0 ); 877 if( zSql==0 ) return; 878 nZ = estimateNormalizedSize(zSql, nSql, prepFlags); 879 z = sqlite3DbMallocRawNN(db, nZ); 880 if( z==0 ) return; 881 sqlite3HashInit(&inHash); 882 for(i=j=0; i<nSql && zSql[i]; i+=n){ 883 int flags = 0; 884 if( tokenType!=TK_SPACE ) prevTokenType = tokenType; 885 n = sqlite3GetTokenNormalized((unsigned char*)zSql+i, &tokenType, &flags); 886 switch( tokenType ){ 887 case TK_SPACE: { 888 break; 889 } 890 case TK_ILLEGAL: { 891 sqlite3DbFree(db, z); 892 sqlite3HashClear(&inHash); 893 return; 894 } 895 case TK_STRING: 896 case TK_INTEGER: 897 case TK_FLOAT: 898 case TK_VARIABLE: 899 case TK_BLOB: { 900 z[j++] = '?'; 901 break; 902 } 903 case TK_LP: 904 case TK_RP: { 905 if( tokenType==TK_LP ){ 906 nParen++; 907 if( prevTokenType==TK_IN ){ 908 assert( nParen<nSql ); 909 sqlite3HashInsert(&inHash, zSql+nParen, SQLITE_INT_TO_PTR(j)); 910 } 911 }else{ 912 int jj; 913 assert( nParen<nSql ); 914 jj = SQLITE_PTR_TO_INT(sqlite3HashFind(&inHash, zSql+nParen)); 915 if( jj>0 ){ 916 sqlite3HashInsert(&inHash, zSql+nParen, 0); 917 assert( jj+6<nZ ); 918 memcpy(z+jj+1, "?,?,?", 5); 919 j = jj+6; 920 assert( nZ-1-j>=0 ); 921 assert( nZ-1-j<nZ ); 922 memset(z+j, 0, nZ-1-j); 923 } 924 nParen--; 925 } 926 assert( nParen>=0 ); 927 /* Fall through */ 928 } 929 case TK_MINUS: 930 case TK_SEMI: 931 case TK_PLUS: 932 case TK_STAR: 933 case TK_SLASH: 934 case TK_REM: 935 case TK_EQ: 936 case TK_LE: 937 case TK_NE: 938 case TK_LSHIFT: 939 case TK_LT: 940 case TK_RSHIFT: 941 case TK_GT: 942 case TK_GE: 943 case TK_BITOR: 944 case TK_CONCAT: 945 case TK_COMMA: 946 case TK_BITAND: 947 case TK_BITNOT: 948 case TK_DOT: 949 case TK_IN: 950 case TK_IS: 951 case TK_NOT: 952 case TK_NULL: 953 case TK_ID: { 954 if( tokenType==TK_NULL ){ 955 if( prevTokenType==TK_IS || prevTokenType==TK_NOT ){ 956 /* NULL is a keyword in this case, not a literal value */ 957 }else{ 958 /* Here the NULL is a literal value */ 959 z[j++] = '?'; 960 break; 961 } 962 } 963 if( j>0 && sqlite3IsIdChar(z[j-1]) && sqlite3IsIdChar(zSql[i]) ){ 964 z[j++] = ' '; 965 } 966 if( tokenType==TK_ID ){ 967 int i2 = i, n2 = n, rc = SQLITE_OK; 968 if( nParen>0 ){ 969 assert( nParen<nSql ); 970 sqlite3HashInsert(&inHash, zSql+nParen, 0); 971 } 972 if( flags&SQLITE_TOKEN_QUOTED ){ i2++; n2-=2; } 973 if( shouldTreatAsIdentifier(db, zSql+i2, n2, &rc)==0 ){ 974 if( rc!=SQLITE_OK ){ 975 sqlite3DbFree(db, z); 976 sqlite3HashClear(&inHash); 977 return; 978 } 979 if( sqlite3_keyword_check(zSql+i2, n2)==0 ){ 980 z[j++] = '?'; 981 break; 982 } 983 } 984 } 985 copyNormalizedToken(zSql, i, n, flags, z, &j); 986 break; 987 } 988 } 989 } 990 assert( j<nZ && "one" ); 991 while( j>0 && z[j-1]==' ' ){ j--; } 992 if( j>0 && z[j-1]!=';' ){ z[j++] = ';'; } 993 z[j] = 0; 994 assert( j<nZ && "two" ); 995 pVdbe->zNormSql = z; 996 sqlite3HashClear(&inHash); 997 } 998 #endif /* SQLITE_ENABLE_NORMALIZE */ 999 1000 /* 1001 ** Rerun the compilation of a statement after a schema change. 1002 ** 1003 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 1004 ** if the statement cannot be recompiled because another connection has 1005 ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error 1006 ** occurs, return SQLITE_SCHEMA. 1007 */ 1008 int sqlite3Reprepare(Vdbe *p){ 1009 int rc; 1010 sqlite3_stmt *pNew; 1011 const char *zSql; 1012 sqlite3 *db; 1013 u8 prepFlags; 1014 1015 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 1016 zSql = sqlite3_sql((sqlite3_stmt *)p); 1017 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 1018 db = sqlite3VdbeDb(p); 1019 assert( sqlite3_mutex_held(db->mutex) ); 1020 prepFlags = sqlite3VdbePrepareFlags(p); 1021 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 1022 if( rc ){ 1023 if( rc==SQLITE_NOMEM ){ 1024 sqlite3OomFault(db); 1025 } 1026 assert( pNew==0 ); 1027 return rc; 1028 }else{ 1029 assert( pNew!=0 ); 1030 } 1031 sqlite3VdbeSwap((Vdbe*)pNew, p); 1032 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 1033 sqlite3VdbeResetStepResult((Vdbe*)pNew); 1034 sqlite3VdbeFinalize((Vdbe*)pNew); 1035 return SQLITE_OK; 1036 } 1037 1038 1039 /* 1040 ** Two versions of the official API. Legacy and new use. In the legacy 1041 ** version, the original SQL text is not saved in the prepared statement 1042 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 1043 ** sqlite3_step(). In the new version, the original SQL text is retained 1044 ** and the statement is automatically recompiled if an schema change 1045 ** occurs. 1046 */ 1047 int sqlite3_prepare( 1048 sqlite3 *db, /* Database handle. */ 1049 const char *zSql, /* UTF-8 encoded SQL statement. */ 1050 int nBytes, /* Length of zSql in bytes. */ 1051 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1052 const char **pzTail /* OUT: End of parsed string */ 1053 ){ 1054 int rc; 1055 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 1056 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1057 return rc; 1058 } 1059 int sqlite3_prepare_v2( 1060 sqlite3 *db, /* Database handle. */ 1061 const char *zSql, /* UTF-8 encoded SQL statement. */ 1062 int nBytes, /* Length of zSql in bytes. */ 1063 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1064 const char **pzTail /* OUT: End of parsed string */ 1065 ){ 1066 int rc; 1067 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 1068 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 1069 ** parameter. 1070 ** 1071 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 1072 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 1073 ppStmt,pzTail); 1074 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 1075 return rc; 1076 } 1077 int sqlite3_prepare_v3( 1078 sqlite3 *db, /* Database handle. */ 1079 const char *zSql, /* UTF-8 encoded SQL statement. */ 1080 int nBytes, /* Length of zSql in bytes. */ 1081 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1082 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1083 const char **pzTail /* OUT: End of parsed string */ 1084 ){ 1085 int rc; 1086 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 1087 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 1088 ** which is a bit array consisting of zero or more of the 1089 ** SQLITE_PREPARE_* flags. 1090 ** 1091 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 1092 ** directly above. */ 1093 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 1094 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 1095 0,ppStmt,pzTail); 1096 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 1097 return rc; 1098 } 1099 1100 1101 #ifndef SQLITE_OMIT_UTF16 1102 /* 1103 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 1104 */ 1105 static int sqlite3Prepare16( 1106 sqlite3 *db, /* Database handle. */ 1107 const void *zSql, /* UTF-16 encoded SQL statement. */ 1108 int nBytes, /* Length of zSql in bytes. */ 1109 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1110 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1111 const void **pzTail /* OUT: End of parsed string */ 1112 ){ 1113 /* This function currently works by first transforming the UTF-16 1114 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 1115 ** tricky bit is figuring out the pointer to return in *pzTail. 1116 */ 1117 char *zSql8; 1118 const char *zTail8 = 0; 1119 int rc = SQLITE_OK; 1120 1121 #ifdef SQLITE_ENABLE_API_ARMOR 1122 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 1123 #endif 1124 *ppStmt = 0; 1125 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 1126 return SQLITE_MISUSE_BKPT; 1127 } 1128 if( nBytes>=0 ){ 1129 int sz; 1130 const char *z = (const char*)zSql; 1131 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 1132 nBytes = sz; 1133 } 1134 sqlite3_mutex_enter(db->mutex); 1135 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 1136 if( zSql8 ){ 1137 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 1138 } 1139 1140 if( zTail8 && pzTail ){ 1141 /* If sqlite3_prepare returns a tail pointer, we calculate the 1142 ** equivalent pointer into the UTF-16 string by counting the unicode 1143 ** characters between zSql8 and zTail8, and then returning a pointer 1144 ** the same number of characters into the UTF-16 string. 1145 */ 1146 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 1147 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); 1148 } 1149 sqlite3DbFree(db, zSql8); 1150 rc = sqlite3ApiExit(db, rc); 1151 sqlite3_mutex_leave(db->mutex); 1152 return rc; 1153 } 1154 1155 /* 1156 ** Two versions of the official API. Legacy and new use. In the legacy 1157 ** version, the original SQL text is not saved in the prepared statement 1158 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 1159 ** sqlite3_step(). In the new version, the original SQL text is retained 1160 ** and the statement is automatically recompiled if an schema change 1161 ** occurs. 1162 */ 1163 int sqlite3_prepare16( 1164 sqlite3 *db, /* Database handle. */ 1165 const void *zSql, /* UTF-16 encoded SQL statement. */ 1166 int nBytes, /* Length of zSql in bytes. */ 1167 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1168 const void **pzTail /* OUT: End of parsed string */ 1169 ){ 1170 int rc; 1171 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 1172 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1173 return rc; 1174 } 1175 int sqlite3_prepare16_v2( 1176 sqlite3 *db, /* Database handle. */ 1177 const void *zSql, /* UTF-16 encoded SQL statement. */ 1178 int nBytes, /* Length of zSql in bytes. */ 1179 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1180 const void **pzTail /* OUT: End of parsed string */ 1181 ){ 1182 int rc; 1183 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 1184 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1185 return rc; 1186 } 1187 int sqlite3_prepare16_v3( 1188 sqlite3 *db, /* Database handle. */ 1189 const void *zSql, /* UTF-16 encoded SQL statement. */ 1190 int nBytes, /* Length of zSql in bytes. */ 1191 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1192 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1193 const void **pzTail /* OUT: End of parsed string */ 1194 ){ 1195 int rc; 1196 rc = sqlite3Prepare16(db,zSql,nBytes, 1197 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 1198 ppStmt,pzTail); 1199 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1200 return rc; 1201 } 1202 1203 #endif /* SQLITE_OMIT_UTF16 */ 1204