1 /* 2 ** 2005 May 25 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the implementation of the sqlite3_prepare() 13 ** interface, and routines that contribute to loading the database schema 14 ** from disk. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** Fill the InitData structure with an error message that indicates 20 ** that the database is corrupt. 21 */ 22 static void corruptSchema( 23 InitData *pData, /* Initialization context */ 24 const char *zObj, /* Object being parsed at the point of error */ 25 const char *zExtra /* Error information */ 26 ){ 27 sqlite3 *db = pData->db; 28 if( db->mallocFailed ){ 29 pData->rc = SQLITE_NOMEM_BKPT; 30 }else if( pData->pzErrMsg[0]!=0 ){ 31 /* A error message has already been generated. Do not overwrite it */ 32 }else if( pData->mInitFlags & INITFLAG_AlterTable ){ 33 *pData->pzErrMsg = sqlite3DbStrDup(db, zExtra); 34 pData->rc = SQLITE_ERROR; 35 }else if( db->flags & SQLITE_WriteSchema ){ 36 pData->rc = SQLITE_CORRUPT_BKPT; 37 }else{ 38 char *z; 39 if( zObj==0 ) zObj = "?"; 40 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 41 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 42 *pData->pzErrMsg = z; 43 pData->rc = SQLITE_CORRUPT_BKPT; 44 } 45 } 46 47 /* 48 ** This is the callback routine for the code that initializes the 49 ** database. See sqlite3Init() below for additional information. 50 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 51 ** 52 ** Each callback contains the following information: 53 ** 54 ** argv[0] = name of thing being created 55 ** argv[1] = root page number for table or index. 0 for trigger or view. 56 ** argv[2] = SQL text for the CREATE statement. 57 ** 58 */ 59 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 60 InitData *pData = (InitData*)pInit; 61 sqlite3 *db = pData->db; 62 int iDb = pData->iDb; 63 64 assert( argc==3 ); 65 UNUSED_PARAMETER2(NotUsed, argc); 66 assert( sqlite3_mutex_held(db->mutex) ); 67 DbClearProperty(db, iDb, DB_Empty); 68 if( db->mallocFailed ){ 69 corruptSchema(pData, argv[0], 0); 70 return 1; 71 } 72 73 assert( iDb>=0 && iDb<db->nDb ); 74 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 75 if( argv[1]==0 ){ 76 corruptSchema(pData, argv[0], 0); 77 }else if( sqlite3_strnicmp(argv[2],"create ",7)==0 ){ 78 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 79 ** But because db->init.busy is set to 1, no VDBE code is generated 80 ** or executed. All the parser does is build the internal data 81 ** structures that describe the table, index, or view. 82 */ 83 int rc; 84 u8 saved_iDb = db->init.iDb; 85 sqlite3_stmt *pStmt; 86 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 87 88 assert( db->init.busy ); 89 db->init.iDb = iDb; 90 db->init.newTnum = sqlite3Atoi(argv[1]); 91 db->init.orphanTrigger = 0; 92 TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0); 93 rc = db->errCode; 94 assert( (rc&0xFF)==(rcp&0xFF) ); 95 db->init.iDb = saved_iDb; 96 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 97 if( SQLITE_OK!=rc ){ 98 if( db->init.orphanTrigger ){ 99 assert( iDb==1 ); 100 }else{ 101 pData->rc = rc; 102 if( rc==SQLITE_NOMEM ){ 103 sqlite3OomFault(db); 104 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 105 corruptSchema(pData, argv[0], sqlite3_errmsg(db)); 106 } 107 } 108 } 109 sqlite3_finalize(pStmt); 110 }else if( argv[0]==0 || (argv[2]!=0 && argv[2][0]!=0) ){ 111 corruptSchema(pData, argv[0], 0); 112 }else{ 113 /* If the SQL column is blank it means this is an index that 114 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 115 ** constraint for a CREATE TABLE. The index should have already 116 ** been created when we processed the CREATE TABLE. All we have 117 ** to do here is record the root page number for that index. 118 */ 119 Index *pIndex; 120 pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zDbSName); 121 if( pIndex==0 ){ 122 /* This can occur if there exists an index on a TEMP table which 123 ** has the same name as another index on a permanent index. Since 124 ** the permanent table is hidden by the TEMP table, we can also 125 ** safely ignore the index on the permanent table. 126 */ 127 /* Do Nothing */; 128 }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){ 129 corruptSchema(pData, argv[0], "invalid rootpage"); 130 } 131 } 132 return 0; 133 } 134 135 /* 136 ** Attempt to read the database schema and initialize internal 137 ** data structures for a single database file. The index of the 138 ** database file is given by iDb. iDb==0 is used for the main 139 ** database. iDb==1 should never be used. iDb>=2 is used for 140 ** auxiliary databases. Return one of the SQLITE_ error codes to 141 ** indicate success or failure. 142 */ 143 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 144 int rc; 145 int i; 146 #ifndef SQLITE_OMIT_DEPRECATED 147 int size; 148 #endif 149 Db *pDb; 150 char const *azArg[4]; 151 int meta[5]; 152 InitData initData; 153 const char *zMasterName; 154 int openedTransaction = 0; 155 156 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 157 assert( iDb>=0 && iDb<db->nDb ); 158 assert( db->aDb[iDb].pSchema ); 159 assert( sqlite3_mutex_held(db->mutex) ); 160 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 161 162 db->init.busy = 1; 163 164 /* Construct the in-memory representation schema tables (sqlite_master or 165 ** sqlite_temp_master) by invoking the parser directly. The appropriate 166 ** table name will be inserted automatically by the parser so we can just 167 ** use the abbreviation "x" here. The parser will also automatically tag 168 ** the schema table as read-only. */ 169 azArg[0] = zMasterName = SCHEMA_TABLE(iDb); 170 azArg[1] = "1"; 171 azArg[2] = "CREATE TABLE x(type text,name text,tbl_name text," 172 "rootpage int,sql text)"; 173 azArg[3] = 0; 174 initData.db = db; 175 initData.iDb = iDb; 176 initData.rc = SQLITE_OK; 177 initData.pzErrMsg = pzErrMsg; 178 initData.mInitFlags = mFlags; 179 sqlite3InitCallback(&initData, 3, (char **)azArg, 0); 180 if( initData.rc ){ 181 rc = initData.rc; 182 goto error_out; 183 } 184 185 /* Create a cursor to hold the database open 186 */ 187 pDb = &db->aDb[iDb]; 188 if( pDb->pBt==0 ){ 189 assert( iDb==1 ); 190 DbSetProperty(db, 1, DB_SchemaLoaded); 191 rc = SQLITE_OK; 192 goto error_out; 193 } 194 195 /* If there is not already a read-only (or read-write) transaction opened 196 ** on the b-tree database, open one now. If a transaction is opened, it 197 ** will be closed before this function returns. */ 198 sqlite3BtreeEnter(pDb->pBt); 199 if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ 200 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 201 if( rc!=SQLITE_OK ){ 202 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 203 goto initone_error_out; 204 } 205 openedTransaction = 1; 206 } 207 208 /* Get the database meta information. 209 ** 210 ** Meta values are as follows: 211 ** meta[0] Schema cookie. Changes with each schema change. 212 ** meta[1] File format of schema layer. 213 ** meta[2] Size of the page cache. 214 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 215 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 216 ** meta[5] User version 217 ** meta[6] Incremental vacuum mode 218 ** meta[7] unused 219 ** meta[8] unused 220 ** meta[9] unused 221 ** 222 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 223 ** the possible values of meta[4]. 224 */ 225 for(i=0; i<ArraySize(meta); i++){ 226 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 227 } 228 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 229 memset(meta, 0, sizeof(meta)); 230 } 231 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 232 233 /* If opening a non-empty database, check the text encoding. For the 234 ** main database, set sqlite3.enc to the encoding of the main database. 235 ** For an attached db, it is an error if the encoding is not the same 236 ** as sqlite3.enc. 237 */ 238 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 239 if( iDb==0 ){ 240 #ifndef SQLITE_OMIT_UTF16 241 u8 encoding; 242 /* If opening the main database, set ENC(db). */ 243 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 244 if( encoding==0 ) encoding = SQLITE_UTF8; 245 ENC(db) = encoding; 246 #else 247 ENC(db) = SQLITE_UTF8; 248 #endif 249 }else{ 250 /* If opening an attached database, the encoding much match ENC(db) */ 251 if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){ 252 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 253 " text encoding as main database"); 254 rc = SQLITE_ERROR; 255 goto initone_error_out; 256 } 257 } 258 }else{ 259 DbSetProperty(db, iDb, DB_Empty); 260 } 261 pDb->pSchema->enc = ENC(db); 262 263 if( pDb->pSchema->cache_size==0 ){ 264 #ifndef SQLITE_OMIT_DEPRECATED 265 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 266 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 267 pDb->pSchema->cache_size = size; 268 #else 269 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 270 #endif 271 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 272 } 273 274 /* 275 ** file_format==1 Version 3.0.0. 276 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 277 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 278 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 279 */ 280 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 281 if( pDb->pSchema->file_format==0 ){ 282 pDb->pSchema->file_format = 1; 283 } 284 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 285 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 286 rc = SQLITE_ERROR; 287 goto initone_error_out; 288 } 289 290 /* Ticket #2804: When we open a database in the newer file format, 291 ** clear the legacy_file_format pragma flag so that a VACUUM will 292 ** not downgrade the database and thus invalidate any descending 293 ** indices that the user might have created. 294 */ 295 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 296 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 297 } 298 299 /* Read the schema information out of the schema tables 300 */ 301 assert( db->init.busy ); 302 { 303 char *zSql; 304 zSql = sqlite3MPrintf(db, 305 "SELECT name, rootpage, sql FROM \"%w\".%s ORDER BY rowid", 306 db->aDb[iDb].zDbSName, zMasterName); 307 #ifndef SQLITE_OMIT_AUTHORIZATION 308 { 309 sqlite3_xauth xAuth; 310 xAuth = db->xAuth; 311 db->xAuth = 0; 312 #endif 313 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 314 #ifndef SQLITE_OMIT_AUTHORIZATION 315 db->xAuth = xAuth; 316 } 317 #endif 318 if( rc==SQLITE_OK ) rc = initData.rc; 319 sqlite3DbFree(db, zSql); 320 #ifndef SQLITE_OMIT_ANALYZE 321 if( rc==SQLITE_OK ){ 322 sqlite3AnalysisLoad(db, iDb); 323 } 324 #endif 325 } 326 if( db->mallocFailed ){ 327 rc = SQLITE_NOMEM_BKPT; 328 sqlite3ResetAllSchemasOfConnection(db); 329 } 330 if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ 331 /* Black magic: If the SQLITE_NoSchemaError flag is set, then consider 332 ** the schema loaded, even if errors occurred. In this situation the 333 ** current sqlite3_prepare() operation will fail, but the following one 334 ** will attempt to compile the supplied statement against whatever subset 335 ** of the schema was loaded before the error occurred. The primary 336 ** purpose of this is to allow access to the sqlite_master table 337 ** even when its contents have been corrupted. 338 */ 339 DbSetProperty(db, iDb, DB_SchemaLoaded); 340 rc = SQLITE_OK; 341 } 342 343 /* Jump here for an error that occurs after successfully allocating 344 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 345 ** before that point, jump to error_out. 346 */ 347 initone_error_out: 348 if( openedTransaction ){ 349 sqlite3BtreeCommit(pDb->pBt); 350 } 351 sqlite3BtreeLeave(pDb->pBt); 352 353 error_out: 354 if( rc ){ 355 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 356 sqlite3OomFault(db); 357 } 358 sqlite3ResetOneSchema(db, iDb); 359 } 360 db->init.busy = 0; 361 return rc; 362 } 363 364 /* 365 ** Initialize all database files - the main database file, the file 366 ** used to store temporary tables, and any additional database files 367 ** created using ATTACH statements. Return a success code. If an 368 ** error occurs, write an error message into *pzErrMsg. 369 ** 370 ** After a database is initialized, the DB_SchemaLoaded bit is set 371 ** bit is set in the flags field of the Db structure. If the database 372 ** file was of zero-length, then the DB_Empty flag is also set. 373 */ 374 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 375 int i, rc; 376 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 377 378 assert( sqlite3_mutex_held(db->mutex) ); 379 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 380 assert( db->init.busy==0 ); 381 ENC(db) = SCHEMA_ENC(db); 382 assert( db->nDb>0 ); 383 /* Do the main schema first */ 384 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 385 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 386 if( rc ) return rc; 387 } 388 /* All other schemas after the main schema. The "temp" schema must be last */ 389 for(i=db->nDb-1; i>0; i--){ 390 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 391 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 392 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 393 if( rc ) return rc; 394 } 395 } 396 if( commit_internal ){ 397 sqlite3CommitInternalChanges(db); 398 } 399 return SQLITE_OK; 400 } 401 402 /* 403 ** This routine is a no-op if the database schema is already initialized. 404 ** Otherwise, the schema is loaded. An error code is returned. 405 */ 406 int sqlite3ReadSchema(Parse *pParse){ 407 int rc = SQLITE_OK; 408 sqlite3 *db = pParse->db; 409 assert( sqlite3_mutex_held(db->mutex) ); 410 if( !db->init.busy ){ 411 rc = sqlite3Init(db, &pParse->zErrMsg); 412 if( rc!=SQLITE_OK ){ 413 pParse->rc = rc; 414 pParse->nErr++; 415 }else if( db->noSharedCache ){ 416 db->mDbFlags |= DBFLAG_SchemaKnownOk; 417 } 418 } 419 return rc; 420 } 421 422 423 /* 424 ** Check schema cookies in all databases. If any cookie is out 425 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 426 ** make no changes to pParse->rc. 427 */ 428 static void schemaIsValid(Parse *pParse){ 429 sqlite3 *db = pParse->db; 430 int iDb; 431 int rc; 432 int cookie; 433 434 assert( pParse->checkSchema ); 435 assert( sqlite3_mutex_held(db->mutex) ); 436 for(iDb=0; iDb<db->nDb; iDb++){ 437 int openedTransaction = 0; /* True if a transaction is opened */ 438 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 439 if( pBt==0 ) continue; 440 441 /* If there is not already a read-only (or read-write) transaction opened 442 ** on the b-tree database, open one now. If a transaction is opened, it 443 ** will be closed immediately after reading the meta-value. */ 444 if( !sqlite3BtreeIsInReadTrans(pBt) ){ 445 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 446 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 447 sqlite3OomFault(db); 448 } 449 if( rc!=SQLITE_OK ) return; 450 openedTransaction = 1; 451 } 452 453 /* Read the schema cookie from the database. If it does not match the 454 ** value stored as part of the in-memory schema representation, 455 ** set Parse.rc to SQLITE_SCHEMA. */ 456 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 458 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 459 sqlite3ResetOneSchema(db, iDb); 460 pParse->rc = SQLITE_SCHEMA; 461 } 462 463 /* Close the transaction, if one was opened. */ 464 if( openedTransaction ){ 465 sqlite3BtreeCommit(pBt); 466 } 467 } 468 } 469 470 /* 471 ** Convert a schema pointer into the iDb index that indicates 472 ** which database file in db->aDb[] the schema refers to. 473 ** 474 ** If the same database is attached more than once, the first 475 ** attached database is returned. 476 */ 477 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 478 int i = -1000000; 479 480 /* If pSchema is NULL, then return -1000000. This happens when code in 481 ** expr.c is trying to resolve a reference to a transient table (i.e. one 482 ** created by a sub-select). In this case the return value of this 483 ** function should never be used. 484 ** 485 ** We return -1000000 instead of the more usual -1 simply because using 486 ** -1000000 as the incorrect index into db->aDb[] is much 487 ** more likely to cause a segfault than -1 (of course there are assert() 488 ** statements too, but it never hurts to play the odds). 489 */ 490 assert( sqlite3_mutex_held(db->mutex) ); 491 if( pSchema ){ 492 for(i=0; 1; i++){ 493 assert( i<db->nDb ); 494 if( db->aDb[i].pSchema==pSchema ){ 495 break; 496 } 497 } 498 assert( i>=0 && i<db->nDb ); 499 } 500 return i; 501 } 502 503 /* 504 ** Free all memory allocations in the pParse object 505 */ 506 void sqlite3ParserReset(Parse *pParse){ 507 sqlite3 *db = pParse->db; 508 sqlite3DbFree(db, pParse->aLabel); 509 sqlite3ExprListDelete(db, pParse->pConstExpr); 510 if( db ){ 511 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 512 db->lookaside.bDisable -= pParse->disableLookaside; 513 } 514 pParse->disableLookaside = 0; 515 } 516 517 /* 518 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 519 */ 520 static int sqlite3Prepare( 521 sqlite3 *db, /* Database handle. */ 522 const char *zSql, /* UTF-8 encoded SQL statement. */ 523 int nBytes, /* Length of zSql in bytes. */ 524 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 525 Vdbe *pReprepare, /* VM being reprepared */ 526 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 527 const char **pzTail /* OUT: End of parsed string */ 528 ){ 529 char *zErrMsg = 0; /* Error message */ 530 int rc = SQLITE_OK; /* Result code */ 531 int i; /* Loop counter */ 532 Parse sParse; /* Parsing context */ 533 534 memset(&sParse, 0, PARSE_HDR_SZ); 535 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 536 sParse.pReprepare = pReprepare; 537 assert( ppStmt && *ppStmt==0 ); 538 /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ 539 assert( sqlite3_mutex_held(db->mutex) ); 540 541 /* For a long-term use prepared statement avoid the use of 542 ** lookaside memory. 543 */ 544 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 545 sParse.disableLookaside++; 546 db->lookaside.bDisable++; 547 } 548 sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0; 549 550 /* Check to verify that it is possible to get a read lock on all 551 ** database schemas. The inability to get a read lock indicates that 552 ** some other database connection is holding a write-lock, which in 553 ** turn means that the other connection has made uncommitted changes 554 ** to the schema. 555 ** 556 ** Were we to proceed and prepare the statement against the uncommitted 557 ** schema changes and if those schema changes are subsequently rolled 558 ** back and different changes are made in their place, then when this 559 ** prepared statement goes to run the schema cookie would fail to detect 560 ** the schema change. Disaster would follow. 561 ** 562 ** This thread is currently holding mutexes on all Btrees (because 563 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 564 ** is not possible for another thread to start a new schema change 565 ** while this routine is running. Hence, we do not need to hold 566 ** locks on the schema, we just need to make sure nobody else is 567 ** holding them. 568 ** 569 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 570 ** but it does *not* override schema lock detection, so this all still 571 ** works even if READ_UNCOMMITTED is set. 572 */ 573 for(i=0; i<db->nDb; i++) { 574 Btree *pBt = db->aDb[i].pBt; 575 if( pBt ){ 576 assert( sqlite3BtreeHoldsMutex(pBt) ); 577 rc = sqlite3BtreeSchemaLocked(pBt); 578 if( rc ){ 579 const char *zDb = db->aDb[i].zDbSName; 580 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 581 testcase( db->flags & SQLITE_ReadUncommit ); 582 goto end_prepare; 583 } 584 } 585 } 586 587 sqlite3VtabUnlockList(db); 588 589 sParse.db = db; 590 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 591 char *zSqlCopy; 592 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 593 testcase( nBytes==mxLen ); 594 testcase( nBytes==mxLen+1 ); 595 if( nBytes>mxLen ){ 596 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 597 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 598 goto end_prepare; 599 } 600 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 601 if( zSqlCopy ){ 602 sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); 603 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 604 sqlite3DbFree(db, zSqlCopy); 605 }else{ 606 sParse.zTail = &zSql[nBytes]; 607 } 608 }else{ 609 sqlite3RunParser(&sParse, zSql, &zErrMsg); 610 } 611 assert( 0==sParse.nQueryLoop ); 612 613 if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; 614 if( sParse.checkSchema ){ 615 schemaIsValid(&sParse); 616 } 617 if( db->mallocFailed ){ 618 sParse.rc = SQLITE_NOMEM_BKPT; 619 } 620 if( pzTail ){ 621 *pzTail = sParse.zTail; 622 } 623 rc = sParse.rc; 624 625 #ifndef SQLITE_OMIT_EXPLAIN 626 if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ 627 static const char * const azColName[] = { 628 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 629 "id", "parent", "notused", "detail" 630 }; 631 int iFirst, mx; 632 if( sParse.explain==2 ){ 633 sqlite3VdbeSetNumCols(sParse.pVdbe, 4); 634 iFirst = 8; 635 mx = 12; 636 }else{ 637 sqlite3VdbeSetNumCols(sParse.pVdbe, 8); 638 iFirst = 0; 639 mx = 8; 640 } 641 for(i=iFirst; i<mx; i++){ 642 sqlite3VdbeSetColName(sParse.pVdbe, i-iFirst, COLNAME_NAME, 643 azColName[i], SQLITE_STATIC); 644 } 645 } 646 #endif 647 648 if( db->init.busy==0 ){ 649 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 650 } 651 if( sParse.pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){ 652 sqlite3VdbeFinalize(sParse.pVdbe); 653 assert(!(*ppStmt)); 654 }else{ 655 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 656 } 657 658 if( zErrMsg ){ 659 sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); 660 sqlite3DbFree(db, zErrMsg); 661 }else{ 662 sqlite3Error(db, rc); 663 } 664 665 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 666 while( sParse.pTriggerPrg ){ 667 TriggerPrg *pT = sParse.pTriggerPrg; 668 sParse.pTriggerPrg = pT->pNext; 669 sqlite3DbFree(db, pT); 670 } 671 672 end_prepare: 673 674 sqlite3ParserReset(&sParse); 675 return rc; 676 } 677 static int sqlite3LockAndPrepare( 678 sqlite3 *db, /* Database handle. */ 679 const char *zSql, /* UTF-8 encoded SQL statement. */ 680 int nBytes, /* Length of zSql in bytes. */ 681 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 682 Vdbe *pOld, /* VM being reprepared */ 683 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 684 const char **pzTail /* OUT: End of parsed string */ 685 ){ 686 int rc; 687 int cnt = 0; 688 689 #ifdef SQLITE_ENABLE_API_ARMOR 690 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 691 #endif 692 *ppStmt = 0; 693 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 694 return SQLITE_MISUSE_BKPT; 695 } 696 sqlite3_mutex_enter(db->mutex); 697 sqlite3BtreeEnterAll(db); 698 do{ 699 /* Make multiple attempts to compile the SQL, until it either succeeds 700 ** or encounters a permanent error. A schema problem after one schema 701 ** reset is considered a permanent error. */ 702 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 703 assert( rc==SQLITE_OK || *ppStmt==0 ); 704 }while( rc==SQLITE_ERROR_RETRY 705 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 706 sqlite3BtreeLeaveAll(db); 707 rc = sqlite3ApiExit(db, rc); 708 assert( (rc&db->errMask)==rc ); 709 sqlite3_mutex_leave(db->mutex); 710 return rc; 711 } 712 713 714 /* 715 ** Rerun the compilation of a statement after a schema change. 716 ** 717 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 718 ** if the statement cannot be recompiled because another connection has 719 ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error 720 ** occurs, return SQLITE_SCHEMA. 721 */ 722 int sqlite3Reprepare(Vdbe *p){ 723 int rc; 724 sqlite3_stmt *pNew; 725 const char *zSql; 726 sqlite3 *db; 727 u8 prepFlags; 728 729 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 730 zSql = sqlite3_sql((sqlite3_stmt *)p); 731 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 732 db = sqlite3VdbeDb(p); 733 assert( sqlite3_mutex_held(db->mutex) ); 734 prepFlags = sqlite3VdbePrepareFlags(p); 735 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 736 if( rc ){ 737 if( rc==SQLITE_NOMEM ){ 738 sqlite3OomFault(db); 739 } 740 assert( pNew==0 ); 741 return rc; 742 }else{ 743 assert( pNew!=0 ); 744 } 745 sqlite3VdbeSwap((Vdbe*)pNew, p); 746 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 747 sqlite3VdbeResetStepResult((Vdbe*)pNew); 748 sqlite3VdbeFinalize((Vdbe*)pNew); 749 return SQLITE_OK; 750 } 751 752 753 /* 754 ** Two versions of the official API. Legacy and new use. In the legacy 755 ** version, the original SQL text is not saved in the prepared statement 756 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 757 ** sqlite3_step(). In the new version, the original SQL text is retained 758 ** and the statement is automatically recompiled if an schema change 759 ** occurs. 760 */ 761 int sqlite3_prepare( 762 sqlite3 *db, /* Database handle. */ 763 const char *zSql, /* UTF-8 encoded SQL statement. */ 764 int nBytes, /* Length of zSql in bytes. */ 765 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 766 const char **pzTail /* OUT: End of parsed string */ 767 ){ 768 int rc; 769 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 770 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 771 return rc; 772 } 773 int sqlite3_prepare_v2( 774 sqlite3 *db, /* Database handle. */ 775 const char *zSql, /* UTF-8 encoded SQL statement. */ 776 int nBytes, /* Length of zSql in bytes. */ 777 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 778 const char **pzTail /* OUT: End of parsed string */ 779 ){ 780 int rc; 781 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 782 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 783 ** parameter. 784 ** 785 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 786 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 787 ppStmt,pzTail); 788 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 789 return rc; 790 } 791 int sqlite3_prepare_v3( 792 sqlite3 *db, /* Database handle. */ 793 const char *zSql, /* UTF-8 encoded SQL statement. */ 794 int nBytes, /* Length of zSql in bytes. */ 795 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 796 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 797 const char **pzTail /* OUT: End of parsed string */ 798 ){ 799 int rc; 800 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 801 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 802 ** which is a bit array consisting of zero or more of the 803 ** SQLITE_PREPARE_* flags. 804 ** 805 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 806 ** directly above. */ 807 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 808 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 809 0,ppStmt,pzTail); 810 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 811 return rc; 812 } 813 814 815 #ifndef SQLITE_OMIT_UTF16 816 /* 817 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 818 */ 819 static int sqlite3Prepare16( 820 sqlite3 *db, /* Database handle. */ 821 const void *zSql, /* UTF-16 encoded SQL statement. */ 822 int nBytes, /* Length of zSql in bytes. */ 823 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 824 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 825 const void **pzTail /* OUT: End of parsed string */ 826 ){ 827 /* This function currently works by first transforming the UTF-16 828 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 829 ** tricky bit is figuring out the pointer to return in *pzTail. 830 */ 831 char *zSql8; 832 const char *zTail8 = 0; 833 int rc = SQLITE_OK; 834 835 #ifdef SQLITE_ENABLE_API_ARMOR 836 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 837 #endif 838 *ppStmt = 0; 839 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 840 return SQLITE_MISUSE_BKPT; 841 } 842 if( nBytes>=0 ){ 843 int sz; 844 const char *z = (const char*)zSql; 845 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 846 nBytes = sz; 847 } 848 sqlite3_mutex_enter(db->mutex); 849 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 850 if( zSql8 ){ 851 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 852 } 853 854 if( zTail8 && pzTail ){ 855 /* If sqlite3_prepare returns a tail pointer, we calculate the 856 ** equivalent pointer into the UTF-16 string by counting the unicode 857 ** characters between zSql8 and zTail8, and then returning a pointer 858 ** the same number of characters into the UTF-16 string. 859 */ 860 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 861 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); 862 } 863 sqlite3DbFree(db, zSql8); 864 rc = sqlite3ApiExit(db, rc); 865 sqlite3_mutex_leave(db->mutex); 866 return rc; 867 } 868 869 /* 870 ** Two versions of the official API. Legacy and new use. In the legacy 871 ** version, the original SQL text is not saved in the prepared statement 872 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 873 ** sqlite3_step(). In the new version, the original SQL text is retained 874 ** and the statement is automatically recompiled if an schema change 875 ** occurs. 876 */ 877 int sqlite3_prepare16( 878 sqlite3 *db, /* Database handle. */ 879 const void *zSql, /* UTF-16 encoded SQL statement. */ 880 int nBytes, /* Length of zSql in bytes. */ 881 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 882 const void **pzTail /* OUT: End of parsed string */ 883 ){ 884 int rc; 885 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 886 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 887 return rc; 888 } 889 int sqlite3_prepare16_v2( 890 sqlite3 *db, /* Database handle. */ 891 const void *zSql, /* UTF-16 encoded SQL statement. */ 892 int nBytes, /* Length of zSql in bytes. */ 893 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 894 const void **pzTail /* OUT: End of parsed string */ 895 ){ 896 int rc; 897 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 898 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 899 return rc; 900 } 901 int sqlite3_prepare16_v3( 902 sqlite3 *db, /* Database handle. */ 903 const void *zSql, /* UTF-16 encoded SQL statement. */ 904 int nBytes, /* Length of zSql in bytes. */ 905 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 906 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 907 const void **pzTail /* OUT: End of parsed string */ 908 ){ 909 int rc; 910 rc = sqlite3Prepare16(db,zSql,nBytes, 911 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 912 ppStmt,pzTail); 913 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 914 return rc; 915 } 916 917 #endif /* SQLITE_OMIT_UTF16 */ 918