1 /* 2 ** 2005 May 25 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the implementation of the sqlite3_prepare() 13 ** interface, and routines that contribute to loading the database schema 14 ** from disk. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** Fill the InitData structure with an error message that indicates 20 ** that the database is corrupt. 21 */ 22 static void corruptSchema( 23 InitData *pData, /* Initialization context */ 24 char **azObj, /* Type and name of object being parsed */ 25 const char *zExtra /* Error information */ 26 ){ 27 sqlite3 *db = pData->db; 28 if( db->mallocFailed ){ 29 pData->rc = SQLITE_NOMEM_BKPT; 30 }else if( pData->pzErrMsg[0]!=0 ){ 31 /* A error message has already been generated. Do not overwrite it */ 32 }else if( pData->mInitFlags & (INITFLAG_AlterRename|INITFLAG_AlterDrop) ){ 33 *pData->pzErrMsg = sqlite3MPrintf(db, 34 "error in %s %s after %s: %s", azObj[0], azObj[1], 35 (pData->mInitFlags & INITFLAG_AlterRename) ? "rename" : "drop column", 36 zExtra 37 ); 38 pData->rc = SQLITE_ERROR; 39 }else if( db->flags & SQLITE_WriteSchema ){ 40 pData->rc = SQLITE_CORRUPT_BKPT; 41 }else{ 42 char *z; 43 const char *zObj = azObj[1] ? azObj[1] : "?"; 44 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 45 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 46 *pData->pzErrMsg = z; 47 pData->rc = SQLITE_CORRUPT_BKPT; 48 } 49 } 50 51 /* 52 ** Check to see if any sibling index (another index on the same table) 53 ** of pIndex has the same root page number, and if it does, return true. 54 ** This would indicate a corrupt schema. 55 */ 56 int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ 57 Index *p; 58 for(p=pIndex->pTable->pIndex; p; p=p->pNext){ 59 if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; 60 } 61 return 0; 62 } 63 64 /* forward declaration */ 65 static int sqlite3Prepare( 66 sqlite3 *db, /* Database handle. */ 67 const char *zSql, /* UTF-8 encoded SQL statement. */ 68 int nBytes, /* Length of zSql in bytes. */ 69 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 70 Vdbe *pReprepare, /* VM being reprepared */ 71 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 72 const char **pzTail /* OUT: End of parsed string */ 73 ); 74 75 76 /* 77 ** This is the callback routine for the code that initializes the 78 ** database. See sqlite3Init() below for additional information. 79 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 80 ** 81 ** Each callback contains the following information: 82 ** 83 ** argv[0] = type of object: "table", "index", "trigger", or "view". 84 ** argv[1] = name of thing being created 85 ** argv[2] = associated table if an index or trigger 86 ** argv[3] = root page number for table or index. 0 for trigger or view. 87 ** argv[4] = SQL text for the CREATE statement. 88 ** 89 */ 90 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 91 InitData *pData = (InitData*)pInit; 92 sqlite3 *db = pData->db; 93 int iDb = pData->iDb; 94 95 assert( argc==5 ); 96 UNUSED_PARAMETER2(NotUsed, argc); 97 assert( sqlite3_mutex_held(db->mutex) ); 98 db->mDbFlags |= DBFLAG_EncodingFixed; 99 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 100 pData->nInitRow++; 101 if( db->mallocFailed ){ 102 corruptSchema(pData, argv, 0); 103 return 1; 104 } 105 106 assert( iDb>=0 && iDb<db->nDb ); 107 if( argv[3]==0 ){ 108 corruptSchema(pData, argv, 0); 109 }else if( argv[4] 110 && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] 111 && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ 112 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 113 ** But because db->init.busy is set to 1, no VDBE code is generated 114 ** or executed. All the parser does is build the internal data 115 ** structures that describe the table, index, or view. 116 ** 117 ** No other valid SQL statement, other than the variable CREATE statements, 118 ** can begin with the letters "C" and "R". Thus, it is not possible run 119 ** any other kind of statement while parsing the schema, even a corrupt 120 ** schema. 121 */ 122 int rc; 123 u8 saved_iDb = db->init.iDb; 124 sqlite3_stmt *pStmt; 125 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 126 127 assert( db->init.busy ); 128 db->init.iDb = iDb; 129 if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 130 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) 131 ){ 132 if( sqlite3Config.bExtraSchemaChecks ){ 133 corruptSchema(pData, argv, "invalid rootpage"); 134 } 135 } 136 db->init.orphanTrigger = 0; 137 db->init.azInit = argv; 138 pStmt = 0; 139 TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); 140 rc = db->errCode; 141 assert( (rc&0xFF)==(rcp&0xFF) ); 142 db->init.iDb = saved_iDb; 143 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 144 if( SQLITE_OK!=rc ){ 145 if( db->init.orphanTrigger ){ 146 assert( iDb==1 ); 147 }else{ 148 if( rc > pData->rc ) pData->rc = rc; 149 if( rc==SQLITE_NOMEM ){ 150 sqlite3OomFault(db); 151 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 152 corruptSchema(pData, argv, sqlite3_errmsg(db)); 153 } 154 } 155 } 156 sqlite3_finalize(pStmt); 157 }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ 158 corruptSchema(pData, argv, 0); 159 }else{ 160 /* If the SQL column is blank it means this is an index that 161 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 162 ** constraint for a CREATE TABLE. The index should have already 163 ** been created when we processed the CREATE TABLE. All we have 164 ** to do here is record the root page number for that index. 165 */ 166 Index *pIndex; 167 pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); 168 if( pIndex==0 ){ 169 corruptSchema(pData, argv, "orphan index"); 170 }else 171 if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 172 || pIndex->tnum<2 173 || pIndex->tnum>pData->mxPage 174 || sqlite3IndexHasDuplicateRootPage(pIndex) 175 ){ 176 if( sqlite3Config.bExtraSchemaChecks ){ 177 corruptSchema(pData, argv, "invalid rootpage"); 178 } 179 } 180 } 181 return 0; 182 } 183 184 /* 185 ** Attempt to read the database schema and initialize internal 186 ** data structures for a single database file. The index of the 187 ** database file is given by iDb. iDb==0 is used for the main 188 ** database. iDb==1 should never be used. iDb>=2 is used for 189 ** auxiliary databases. Return one of the SQLITE_ error codes to 190 ** indicate success or failure. 191 */ 192 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 193 int rc; 194 int i; 195 #ifndef SQLITE_OMIT_DEPRECATED 196 int size; 197 #endif 198 Db *pDb; 199 char const *azArg[6]; 200 int meta[5]; 201 InitData initData; 202 const char *zSchemaTabName; 203 int openedTransaction = 0; 204 int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); 205 206 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 207 assert( iDb>=0 && iDb<db->nDb ); 208 assert( db->aDb[iDb].pSchema ); 209 assert( sqlite3_mutex_held(db->mutex) ); 210 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 211 212 db->init.busy = 1; 213 214 /* Construct the in-memory representation schema tables (sqlite_schema or 215 ** sqlite_temp_schema) by invoking the parser directly. The appropriate 216 ** table name will be inserted automatically by the parser so we can just 217 ** use the abbreviation "x" here. The parser will also automatically tag 218 ** the schema table as read-only. */ 219 azArg[0] = "table"; 220 azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); 221 azArg[2] = azArg[1]; 222 azArg[3] = "1"; 223 azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," 224 "rootpage int,sql text)"; 225 azArg[5] = 0; 226 initData.db = db; 227 initData.iDb = iDb; 228 initData.rc = SQLITE_OK; 229 initData.pzErrMsg = pzErrMsg; 230 initData.mInitFlags = mFlags; 231 initData.nInitRow = 0; 232 initData.mxPage = 0; 233 sqlite3InitCallback(&initData, 5, (char **)azArg, 0); 234 db->mDbFlags &= mask; 235 if( initData.rc ){ 236 rc = initData.rc; 237 goto error_out; 238 } 239 240 /* Create a cursor to hold the database open 241 */ 242 pDb = &db->aDb[iDb]; 243 if( pDb->pBt==0 ){ 244 assert( iDb==1 ); 245 DbSetProperty(db, 1, DB_SchemaLoaded); 246 rc = SQLITE_OK; 247 goto error_out; 248 } 249 250 /* If there is not already a read-only (or read-write) transaction opened 251 ** on the b-tree database, open one now. If a transaction is opened, it 252 ** will be closed before this function returns. */ 253 sqlite3BtreeEnter(pDb->pBt); 254 if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ 255 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 256 if( rc!=SQLITE_OK ){ 257 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 258 goto initone_error_out; 259 } 260 openedTransaction = 1; 261 } 262 263 /* Get the database meta information. 264 ** 265 ** Meta values are as follows: 266 ** meta[0] Schema cookie. Changes with each schema change. 267 ** meta[1] File format of schema layer. 268 ** meta[2] Size of the page cache. 269 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 270 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 271 ** meta[5] User version 272 ** meta[6] Incremental vacuum mode 273 ** meta[7] unused 274 ** meta[8] unused 275 ** meta[9] unused 276 ** 277 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 278 ** the possible values of meta[4]. 279 */ 280 for(i=0; i<ArraySize(meta); i++){ 281 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 282 } 283 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 284 memset(meta, 0, sizeof(meta)); 285 } 286 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 287 288 /* If opening a non-empty database, check the text encoding. For the 289 ** main database, set sqlite3.enc to the encoding of the main database. 290 ** For an attached db, it is an error if the encoding is not the same 291 ** as sqlite3.enc. 292 */ 293 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 294 if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 295 u8 encoding; 296 #ifndef SQLITE_OMIT_UTF16 297 /* If opening the main database, set ENC(db). */ 298 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 299 if( encoding==0 ) encoding = SQLITE_UTF8; 300 #else 301 encoding = SQLITE_UTF8; 302 #endif 303 sqlite3SetTextEncoding(db, encoding); 304 }else{ 305 /* If opening an attached database, the encoding much match ENC(db) */ 306 if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ 307 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 308 " text encoding as main database"); 309 rc = SQLITE_ERROR; 310 goto initone_error_out; 311 } 312 } 313 } 314 pDb->pSchema->enc = ENC(db); 315 316 if( pDb->pSchema->cache_size==0 ){ 317 #ifndef SQLITE_OMIT_DEPRECATED 318 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 319 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 320 pDb->pSchema->cache_size = size; 321 #else 322 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 323 #endif 324 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 325 } 326 327 /* 328 ** file_format==1 Version 3.0.0. 329 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 330 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 331 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 332 */ 333 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 334 if( pDb->pSchema->file_format==0 ){ 335 pDb->pSchema->file_format = 1; 336 } 337 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 338 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 339 rc = SQLITE_ERROR; 340 goto initone_error_out; 341 } 342 343 /* Ticket #2804: When we open a database in the newer file format, 344 ** clear the legacy_file_format pragma flag so that a VACUUM will 345 ** not downgrade the database and thus invalidate any descending 346 ** indices that the user might have created. 347 */ 348 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 349 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 350 } 351 352 /* Read the schema information out of the schema tables 353 */ 354 assert( db->init.busy ); 355 initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); 356 { 357 char *zSql; 358 zSql = sqlite3MPrintf(db, 359 "SELECT*FROM\"%w\".%s ORDER BY rowid", 360 db->aDb[iDb].zDbSName, zSchemaTabName); 361 #ifndef SQLITE_OMIT_AUTHORIZATION 362 { 363 sqlite3_xauth xAuth; 364 xAuth = db->xAuth; 365 db->xAuth = 0; 366 #endif 367 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 368 #ifndef SQLITE_OMIT_AUTHORIZATION 369 db->xAuth = xAuth; 370 } 371 #endif 372 if( rc==SQLITE_OK ) rc = initData.rc; 373 sqlite3DbFree(db, zSql); 374 #ifndef SQLITE_OMIT_ANALYZE 375 if( rc==SQLITE_OK ){ 376 sqlite3AnalysisLoad(db, iDb); 377 } 378 #endif 379 } 380 assert( pDb == &(db->aDb[iDb]) ); 381 if( db->mallocFailed ){ 382 rc = SQLITE_NOMEM_BKPT; 383 sqlite3ResetAllSchemasOfConnection(db); 384 pDb = &db->aDb[iDb]; 385 }else 386 if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ 387 /* Hack: If the SQLITE_NoSchemaError flag is set, then consider 388 ** the schema loaded, even if errors (other than OOM) occurred. In 389 ** this situation the current sqlite3_prepare() operation will fail, 390 ** but the following one will attempt to compile the supplied statement 391 ** against whatever subset of the schema was loaded before the error 392 ** occurred. 393 ** 394 ** The primary purpose of this is to allow access to the sqlite_schema 395 ** table even when its contents have been corrupted. 396 */ 397 DbSetProperty(db, iDb, DB_SchemaLoaded); 398 rc = SQLITE_OK; 399 } 400 401 /* Jump here for an error that occurs after successfully allocating 402 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 403 ** before that point, jump to error_out. 404 */ 405 initone_error_out: 406 if( openedTransaction ){ 407 sqlite3BtreeCommit(pDb->pBt); 408 } 409 sqlite3BtreeLeave(pDb->pBt); 410 411 error_out: 412 if( rc ){ 413 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 414 sqlite3OomFault(db); 415 } 416 sqlite3ResetOneSchema(db, iDb); 417 } 418 db->init.busy = 0; 419 return rc; 420 } 421 422 /* 423 ** Initialize all database files - the main database file, the file 424 ** used to store temporary tables, and any additional database files 425 ** created using ATTACH statements. Return a success code. If an 426 ** error occurs, write an error message into *pzErrMsg. 427 ** 428 ** After a database is initialized, the DB_SchemaLoaded bit is set 429 ** bit is set in the flags field of the Db structure. 430 */ 431 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 432 int i, rc; 433 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 434 435 assert( sqlite3_mutex_held(db->mutex) ); 436 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 437 assert( db->init.busy==0 ); 438 ENC(db) = SCHEMA_ENC(db); 439 assert( db->nDb>0 ); 440 /* Do the main schema first */ 441 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 442 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 443 if( rc ) return rc; 444 } 445 /* All other schemas after the main schema. The "temp" schema must be last */ 446 for(i=db->nDb-1; i>0; i--){ 447 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 448 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 449 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 450 if( rc ) return rc; 451 } 452 } 453 if( commit_internal ){ 454 sqlite3CommitInternalChanges(db); 455 } 456 return SQLITE_OK; 457 } 458 459 /* 460 ** This routine is a no-op if the database schema is already initialized. 461 ** Otherwise, the schema is loaded. An error code is returned. 462 */ 463 int sqlite3ReadSchema(Parse *pParse){ 464 int rc = SQLITE_OK; 465 sqlite3 *db = pParse->db; 466 assert( sqlite3_mutex_held(db->mutex) ); 467 if( !db->init.busy ){ 468 rc = sqlite3Init(db, &pParse->zErrMsg); 469 if( rc!=SQLITE_OK ){ 470 pParse->rc = rc; 471 pParse->nErr++; 472 }else if( db->noSharedCache ){ 473 db->mDbFlags |= DBFLAG_SchemaKnownOk; 474 } 475 } 476 return rc; 477 } 478 479 480 /* 481 ** Check schema cookies in all databases. If any cookie is out 482 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 483 ** make no changes to pParse->rc. 484 */ 485 static void schemaIsValid(Parse *pParse){ 486 sqlite3 *db = pParse->db; 487 int iDb; 488 int rc; 489 int cookie; 490 491 assert( pParse->checkSchema ); 492 assert( sqlite3_mutex_held(db->mutex) ); 493 for(iDb=0; iDb<db->nDb; iDb++){ 494 int openedTransaction = 0; /* True if a transaction is opened */ 495 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 496 if( pBt==0 ) continue; 497 498 /* If there is not already a read-only (or read-write) transaction opened 499 ** on the b-tree database, open one now. If a transaction is opened, it 500 ** will be closed immediately after reading the meta-value. */ 501 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ 502 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 503 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 504 sqlite3OomFault(db); 505 pParse->rc = SQLITE_NOMEM; 506 } 507 if( rc!=SQLITE_OK ) return; 508 openedTransaction = 1; 509 } 510 511 /* Read the schema cookie from the database. If it does not match the 512 ** value stored as part of the in-memory schema representation, 513 ** set Parse.rc to SQLITE_SCHEMA. */ 514 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 515 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 516 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 517 sqlite3ResetOneSchema(db, iDb); 518 pParse->rc = SQLITE_SCHEMA; 519 } 520 521 /* Close the transaction, if one was opened. */ 522 if( openedTransaction ){ 523 sqlite3BtreeCommit(pBt); 524 } 525 } 526 } 527 528 /* 529 ** Convert a schema pointer into the iDb index that indicates 530 ** which database file in db->aDb[] the schema refers to. 531 ** 532 ** If the same database is attached more than once, the first 533 ** attached database is returned. 534 */ 535 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 536 int i = -32768; 537 538 /* If pSchema is NULL, then return -32768. This happens when code in 539 ** expr.c is trying to resolve a reference to a transient table (i.e. one 540 ** created by a sub-select). In this case the return value of this 541 ** function should never be used. 542 ** 543 ** We return -32768 instead of the more usual -1 simply because using 544 ** -32768 as the incorrect index into db->aDb[] is much 545 ** more likely to cause a segfault than -1 (of course there are assert() 546 ** statements too, but it never hurts to play the odds) and 547 ** -32768 will still fit into a 16-bit signed integer. 548 */ 549 assert( sqlite3_mutex_held(db->mutex) ); 550 if( pSchema ){ 551 for(i=0; 1; i++){ 552 assert( i<db->nDb ); 553 if( db->aDb[i].pSchema==pSchema ){ 554 break; 555 } 556 } 557 assert( i>=0 && i<db->nDb ); 558 } 559 return i; 560 } 561 562 /* 563 ** Free all memory allocations in the pParse object 564 */ 565 void sqlite3ParserReset(Parse *pParse){ 566 sqlite3 *db = pParse->db; 567 while( pParse->pCleanup ){ 568 ParseCleanup *pCleanup = pParse->pCleanup; 569 pParse->pCleanup = pCleanup->pNext; 570 pCleanup->xCleanup(db, pCleanup->pPtr); 571 sqlite3DbFreeNN(db, pCleanup); 572 } 573 sqlite3DbFree(db, pParse->aLabel); 574 if( pParse->pConstExpr ){ 575 sqlite3ExprListDelete(db, pParse->pConstExpr); 576 } 577 if( db ){ 578 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 579 db->lookaside.bDisable -= pParse->disableLookaside; 580 db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; 581 } 582 pParse->disableLookaside = 0; 583 } 584 585 /* 586 ** Add a new cleanup operation to a Parser. The cleanup should happen when 587 ** the parser object is destroyed. But, beware: the cleanup might happen 588 ** immediately. 589 ** 590 ** Use this mechanism for uncommon cleanups. There is a higher setup 591 ** cost for this mechansim (an extra malloc), so it should not be used 592 ** for common cleanups that happen on most calls. But for less 593 ** common cleanups, we save a single NULL-pointer comparison in 594 ** sqlite3ParserReset(), which reduces the total CPU cycle count. 595 ** 596 ** If a memory allocation error occurs, then the cleanup happens immediately. 597 ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the 598 ** pParse->earlyCleanup flag is set in that case. Calling code show verify 599 ** that test cases exist for which this happens, to guard against possible 600 ** use-after-free errors following an OOM. The preferred way to do this is 601 ** to immediately follow the call to this routine with: 602 ** 603 ** testcase( pParse->earlyCleanup ); 604 ** 605 ** This routine returns a copy of its pPtr input (the third parameter) 606 ** except if an early cleanup occurs, in which case it returns NULL. So 607 ** another way to check for early cleanup is to check the return value. 608 ** Or, stop using the pPtr parameter with this call and use only its 609 ** return value thereafter. Something like this: 610 ** 611 ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); 612 */ 613 void *sqlite3ParserAddCleanup( 614 Parse *pParse, /* Destroy when this Parser finishes */ 615 void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ 616 void *pPtr /* Pointer to object to be cleaned up */ 617 ){ 618 ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); 619 if( pCleanup ){ 620 pCleanup->pNext = pParse->pCleanup; 621 pParse->pCleanup = pCleanup; 622 pCleanup->pPtr = pPtr; 623 pCleanup->xCleanup = xCleanup; 624 }else{ 625 xCleanup(pParse->db, pPtr); 626 pPtr = 0; 627 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 628 pParse->earlyCleanup = 1; 629 #endif 630 } 631 return pPtr; 632 } 633 634 /* 635 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 636 */ 637 static int sqlite3Prepare( 638 sqlite3 *db, /* Database handle. */ 639 const char *zSql, /* UTF-8 encoded SQL statement. */ 640 int nBytes, /* Length of zSql in bytes. */ 641 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 642 Vdbe *pReprepare, /* VM being reprepared */ 643 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 644 const char **pzTail /* OUT: End of parsed string */ 645 ){ 646 char *zErrMsg = 0; /* Error message */ 647 int rc = SQLITE_OK; /* Result code */ 648 int i; /* Loop counter */ 649 Parse sParse; /* Parsing context */ 650 651 memset(&sParse, 0, PARSE_HDR_SZ); 652 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 653 sParse.pReprepare = pReprepare; 654 assert( ppStmt && *ppStmt==0 ); 655 /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ 656 assert( sqlite3_mutex_held(db->mutex) ); 657 658 /* For a long-term use prepared statement avoid the use of 659 ** lookaside memory. 660 */ 661 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 662 sParse.disableLookaside++; 663 DisableLookaside; 664 } 665 sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0; 666 667 /* Check to verify that it is possible to get a read lock on all 668 ** database schemas. The inability to get a read lock indicates that 669 ** some other database connection is holding a write-lock, which in 670 ** turn means that the other connection has made uncommitted changes 671 ** to the schema. 672 ** 673 ** Were we to proceed and prepare the statement against the uncommitted 674 ** schema changes and if those schema changes are subsequently rolled 675 ** back and different changes are made in their place, then when this 676 ** prepared statement goes to run the schema cookie would fail to detect 677 ** the schema change. Disaster would follow. 678 ** 679 ** This thread is currently holding mutexes on all Btrees (because 680 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 681 ** is not possible for another thread to start a new schema change 682 ** while this routine is running. Hence, we do not need to hold 683 ** locks on the schema, we just need to make sure nobody else is 684 ** holding them. 685 ** 686 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 687 ** but it does *not* override schema lock detection, so this all still 688 ** works even if READ_UNCOMMITTED is set. 689 */ 690 if( !db->noSharedCache ){ 691 for(i=0; i<db->nDb; i++) { 692 Btree *pBt = db->aDb[i].pBt; 693 if( pBt ){ 694 assert( sqlite3BtreeHoldsMutex(pBt) ); 695 rc = sqlite3BtreeSchemaLocked(pBt); 696 if( rc ){ 697 const char *zDb = db->aDb[i].zDbSName; 698 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 699 testcase( db->flags & SQLITE_ReadUncommit ); 700 goto end_prepare; 701 } 702 } 703 } 704 } 705 706 sqlite3VtabUnlockList(db); 707 708 sParse.db = db; 709 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 710 char *zSqlCopy; 711 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 712 testcase( nBytes==mxLen ); 713 testcase( nBytes==mxLen+1 ); 714 if( nBytes>mxLen ){ 715 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 716 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 717 goto end_prepare; 718 } 719 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 720 if( zSqlCopy ){ 721 sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); 722 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 723 sqlite3DbFree(db, zSqlCopy); 724 }else{ 725 sParse.zTail = &zSql[nBytes]; 726 } 727 }else{ 728 sqlite3RunParser(&sParse, zSql, &zErrMsg); 729 } 730 assert( 0==sParse.nQueryLoop ); 731 732 if( pzTail ){ 733 *pzTail = sParse.zTail; 734 } 735 736 if( db->init.busy==0 ){ 737 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 738 } 739 if( db->mallocFailed ){ 740 sParse.rc = SQLITE_NOMEM_BKPT; 741 sParse.checkSchema = 0; 742 } 743 if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ 744 if( sParse.checkSchema ){ 745 schemaIsValid(&sParse); 746 } 747 if( sParse.pVdbe ){ 748 sqlite3VdbeFinalize(sParse.pVdbe); 749 } 750 assert( 0==(*ppStmt) ); 751 rc = sParse.rc; 752 if( zErrMsg ){ 753 sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); 754 sqlite3DbFree(db, zErrMsg); 755 }else{ 756 sqlite3Error(db, rc); 757 } 758 }else{ 759 assert( zErrMsg==0 ); 760 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 761 rc = SQLITE_OK; 762 sqlite3ErrorClear(db); 763 } 764 765 766 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 767 while( sParse.pTriggerPrg ){ 768 TriggerPrg *pT = sParse.pTriggerPrg; 769 sParse.pTriggerPrg = pT->pNext; 770 sqlite3DbFree(db, pT); 771 } 772 773 end_prepare: 774 775 sqlite3ParserReset(&sParse); 776 return rc; 777 } 778 static int sqlite3LockAndPrepare( 779 sqlite3 *db, /* Database handle. */ 780 const char *zSql, /* UTF-8 encoded SQL statement. */ 781 int nBytes, /* Length of zSql in bytes. */ 782 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 783 Vdbe *pOld, /* VM being reprepared */ 784 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 785 const char **pzTail /* OUT: End of parsed string */ 786 ){ 787 int rc; 788 int cnt = 0; 789 790 #ifdef SQLITE_ENABLE_API_ARMOR 791 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 792 #endif 793 *ppStmt = 0; 794 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 795 return SQLITE_MISUSE_BKPT; 796 } 797 sqlite3_mutex_enter(db->mutex); 798 sqlite3BtreeEnterAll(db); 799 do{ 800 /* Make multiple attempts to compile the SQL, until it either succeeds 801 ** or encounters a permanent error. A schema problem after one schema 802 ** reset is considered a permanent error. */ 803 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 804 assert( rc==SQLITE_OK || *ppStmt==0 ); 805 }while( rc==SQLITE_ERROR_RETRY 806 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 807 sqlite3BtreeLeaveAll(db); 808 rc = sqlite3ApiExit(db, rc); 809 assert( (rc&db->errMask)==rc ); 810 db->busyHandler.nBusy = 0; 811 sqlite3_mutex_leave(db->mutex); 812 return rc; 813 } 814 815 816 /* 817 ** Rerun the compilation of a statement after a schema change. 818 ** 819 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 820 ** if the statement cannot be recompiled because another connection has 821 ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error 822 ** occurs, return SQLITE_SCHEMA. 823 */ 824 int sqlite3Reprepare(Vdbe *p){ 825 int rc; 826 sqlite3_stmt *pNew; 827 const char *zSql; 828 sqlite3 *db; 829 u8 prepFlags; 830 831 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 832 zSql = sqlite3_sql((sqlite3_stmt *)p); 833 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 834 db = sqlite3VdbeDb(p); 835 assert( sqlite3_mutex_held(db->mutex) ); 836 prepFlags = sqlite3VdbePrepareFlags(p); 837 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 838 if( rc ){ 839 if( rc==SQLITE_NOMEM ){ 840 sqlite3OomFault(db); 841 } 842 assert( pNew==0 ); 843 return rc; 844 }else{ 845 assert( pNew!=0 ); 846 } 847 sqlite3VdbeSwap((Vdbe*)pNew, p); 848 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 849 sqlite3VdbeResetStepResult((Vdbe*)pNew); 850 sqlite3VdbeFinalize((Vdbe*)pNew); 851 return SQLITE_OK; 852 } 853 854 855 /* 856 ** Two versions of the official API. Legacy and new use. In the legacy 857 ** version, the original SQL text is not saved in the prepared statement 858 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 859 ** sqlite3_step(). In the new version, the original SQL text is retained 860 ** and the statement is automatically recompiled if an schema change 861 ** occurs. 862 */ 863 int sqlite3_prepare( 864 sqlite3 *db, /* Database handle. */ 865 const char *zSql, /* UTF-8 encoded SQL statement. */ 866 int nBytes, /* Length of zSql in bytes. */ 867 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 868 const char **pzTail /* OUT: End of parsed string */ 869 ){ 870 int rc; 871 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 872 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 873 return rc; 874 } 875 int sqlite3_prepare_v2( 876 sqlite3 *db, /* Database handle. */ 877 const char *zSql, /* UTF-8 encoded SQL statement. */ 878 int nBytes, /* Length of zSql in bytes. */ 879 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 880 const char **pzTail /* OUT: End of parsed string */ 881 ){ 882 int rc; 883 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 884 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 885 ** parameter. 886 ** 887 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 888 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 889 ppStmt,pzTail); 890 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 891 return rc; 892 } 893 int sqlite3_prepare_v3( 894 sqlite3 *db, /* Database handle. */ 895 const char *zSql, /* UTF-8 encoded SQL statement. */ 896 int nBytes, /* Length of zSql in bytes. */ 897 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 898 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 899 const char **pzTail /* OUT: End of parsed string */ 900 ){ 901 int rc; 902 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 903 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 904 ** which is a bit array consisting of zero or more of the 905 ** SQLITE_PREPARE_* flags. 906 ** 907 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 908 ** directly above. */ 909 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 910 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 911 0,ppStmt,pzTail); 912 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 913 return rc; 914 } 915 916 917 #ifndef SQLITE_OMIT_UTF16 918 /* 919 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 920 */ 921 static int sqlite3Prepare16( 922 sqlite3 *db, /* Database handle. */ 923 const void *zSql, /* UTF-16 encoded SQL statement. */ 924 int nBytes, /* Length of zSql in bytes. */ 925 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 926 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 927 const void **pzTail /* OUT: End of parsed string */ 928 ){ 929 /* This function currently works by first transforming the UTF-16 930 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 931 ** tricky bit is figuring out the pointer to return in *pzTail. 932 */ 933 char *zSql8; 934 const char *zTail8 = 0; 935 int rc = SQLITE_OK; 936 937 #ifdef SQLITE_ENABLE_API_ARMOR 938 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 939 #endif 940 *ppStmt = 0; 941 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 942 return SQLITE_MISUSE_BKPT; 943 } 944 if( nBytes>=0 ){ 945 int sz; 946 const char *z = (const char*)zSql; 947 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 948 nBytes = sz; 949 } 950 sqlite3_mutex_enter(db->mutex); 951 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 952 if( zSql8 ){ 953 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 954 } 955 956 if( zTail8 && pzTail ){ 957 /* If sqlite3_prepare returns a tail pointer, we calculate the 958 ** equivalent pointer into the UTF-16 string by counting the unicode 959 ** characters between zSql8 and zTail8, and then returning a pointer 960 ** the same number of characters into the UTF-16 string. 961 */ 962 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 963 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); 964 } 965 sqlite3DbFree(db, zSql8); 966 rc = sqlite3ApiExit(db, rc); 967 sqlite3_mutex_leave(db->mutex); 968 return rc; 969 } 970 971 /* 972 ** Two versions of the official API. Legacy and new use. In the legacy 973 ** version, the original SQL text is not saved in the prepared statement 974 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 975 ** sqlite3_step(). In the new version, the original SQL text is retained 976 ** and the statement is automatically recompiled if an schema change 977 ** occurs. 978 */ 979 int sqlite3_prepare16( 980 sqlite3 *db, /* Database handle. */ 981 const void *zSql, /* UTF-16 encoded SQL statement. */ 982 int nBytes, /* Length of zSql in bytes. */ 983 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 984 const void **pzTail /* OUT: End of parsed string */ 985 ){ 986 int rc; 987 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 988 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 989 return rc; 990 } 991 int sqlite3_prepare16_v2( 992 sqlite3 *db, /* Database handle. */ 993 const void *zSql, /* UTF-16 encoded SQL statement. */ 994 int nBytes, /* Length of zSql in bytes. */ 995 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 996 const void **pzTail /* OUT: End of parsed string */ 997 ){ 998 int rc; 999 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 1000 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1001 return rc; 1002 } 1003 int sqlite3_prepare16_v3( 1004 sqlite3 *db, /* Database handle. */ 1005 const void *zSql, /* UTF-16 encoded SQL statement. */ 1006 int nBytes, /* Length of zSql in bytes. */ 1007 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1008 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1009 const void **pzTail /* OUT: End of parsed string */ 1010 ){ 1011 int rc; 1012 rc = sqlite3Prepare16(db,zSql,nBytes, 1013 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 1014 ppStmt,pzTail); 1015 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1016 return rc; 1017 } 1018 1019 #endif /* SQLITE_OMIT_UTF16 */ 1020