1 /* 2 ** 2005 May 25 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the implementation of the sqlite3_prepare() 13 ** interface, and routines that contribute to loading the database schema 14 ** from disk. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** Fill the InitData structure with an error message that indicates 20 ** that the database is corrupt. 21 */ 22 static void corruptSchema( 23 InitData *pData, /* Initialization context */ 24 char **azObj, /* Type and name of object being parsed */ 25 const char *zExtra /* Error information */ 26 ){ 27 sqlite3 *db = pData->db; 28 if( db->mallocFailed ){ 29 pData->rc = SQLITE_NOMEM_BKPT; 30 }else if( pData->pzErrMsg[0]!=0 ){ 31 /* A error message has already been generated. Do not overwrite it */ 32 }else if( pData->mInitFlags & (INITFLAG_AlterRename|INITFLAG_AlterDrop) ){ 33 *pData->pzErrMsg = sqlite3MPrintf(db, 34 "error in %s %s after %s: %s", azObj[0], azObj[1], 35 (pData->mInitFlags & INITFLAG_AlterRename) ? "rename" : "drop column", 36 zExtra 37 ); 38 pData->rc = SQLITE_ERROR; 39 }else if( db->flags & SQLITE_WriteSchema ){ 40 pData->rc = SQLITE_CORRUPT_BKPT; 41 }else{ 42 char *z; 43 const char *zObj = azObj[1] ? azObj[1] : "?"; 44 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 45 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 46 *pData->pzErrMsg = z; 47 pData->rc = SQLITE_CORRUPT_BKPT; 48 } 49 } 50 51 /* 52 ** Check to see if any sibling index (another index on the same table) 53 ** of pIndex has the same root page number, and if it does, return true. 54 ** This would indicate a corrupt schema. 55 */ 56 int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ 57 Index *p; 58 for(p=pIndex->pTable->pIndex; p; p=p->pNext){ 59 if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; 60 } 61 return 0; 62 } 63 64 /* forward declaration */ 65 static int sqlite3Prepare( 66 sqlite3 *db, /* Database handle. */ 67 const char *zSql, /* UTF-8 encoded SQL statement. */ 68 int nBytes, /* Length of zSql in bytes. */ 69 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 70 Vdbe *pReprepare, /* VM being reprepared */ 71 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 72 const char **pzTail /* OUT: End of parsed string */ 73 ); 74 75 76 /* 77 ** This is the callback routine for the code that initializes the 78 ** database. See sqlite3Init() below for additional information. 79 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 80 ** 81 ** Each callback contains the following information: 82 ** 83 ** argv[0] = type of object: "table", "index", "trigger", or "view". 84 ** argv[1] = name of thing being created 85 ** argv[2] = associated table if an index or trigger 86 ** argv[3] = root page number for table or index. 0 for trigger or view. 87 ** argv[4] = SQL text for the CREATE statement. 88 ** 89 */ 90 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 91 InitData *pData = (InitData*)pInit; 92 sqlite3 *db = pData->db; 93 int iDb = pData->iDb; 94 95 assert( argc==5 ); 96 UNUSED_PARAMETER2(NotUsed, argc); 97 assert( sqlite3_mutex_held(db->mutex) ); 98 db->mDbFlags |= DBFLAG_EncodingFixed; 99 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 100 pData->nInitRow++; 101 if( db->mallocFailed ){ 102 corruptSchema(pData, argv, 0); 103 return 1; 104 } 105 106 assert( iDb>=0 && iDb<db->nDb ); 107 if( argv[3]==0 ){ 108 corruptSchema(pData, argv, 0); 109 }else if( argv[4] 110 && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] 111 && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ 112 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 113 ** But because db->init.busy is set to 1, no VDBE code is generated 114 ** or executed. All the parser does is build the internal data 115 ** structures that describe the table, index, or view. 116 ** 117 ** No other valid SQL statement, other than the variable CREATE statements, 118 ** can begin with the letters "C" and "R". Thus, it is not possible run 119 ** any other kind of statement while parsing the schema, even a corrupt 120 ** schema. 121 */ 122 int rc; 123 u8 saved_iDb = db->init.iDb; 124 sqlite3_stmt *pStmt; 125 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 126 127 assert( db->init.busy ); 128 db->init.iDb = iDb; 129 if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 130 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) 131 ){ 132 if( sqlite3Config.bExtraSchemaChecks ){ 133 corruptSchema(pData, argv, "invalid rootpage"); 134 } 135 } 136 db->init.orphanTrigger = 0; 137 db->init.azInit = argv; 138 pStmt = 0; 139 TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); 140 rc = db->errCode; 141 assert( (rc&0xFF)==(rcp&0xFF) ); 142 db->init.iDb = saved_iDb; 143 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 144 if( SQLITE_OK!=rc ){ 145 if( db->init.orphanTrigger ){ 146 assert( iDb==1 ); 147 }else{ 148 if( rc > pData->rc ) pData->rc = rc; 149 if( rc==SQLITE_NOMEM ){ 150 sqlite3OomFault(db); 151 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 152 corruptSchema(pData, argv, sqlite3_errmsg(db)); 153 } 154 } 155 } 156 sqlite3_finalize(pStmt); 157 }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ 158 corruptSchema(pData, argv, 0); 159 }else{ 160 /* If the SQL column is blank it means this is an index that 161 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 162 ** constraint for a CREATE TABLE. The index should have already 163 ** been created when we processed the CREATE TABLE. All we have 164 ** to do here is record the root page number for that index. 165 */ 166 Index *pIndex; 167 pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); 168 if( pIndex==0 ){ 169 corruptSchema(pData, argv, "orphan index"); 170 }else 171 if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 172 || pIndex->tnum<2 173 || pIndex->tnum>pData->mxPage 174 || sqlite3IndexHasDuplicateRootPage(pIndex) 175 ){ 176 if( sqlite3Config.bExtraSchemaChecks ){ 177 corruptSchema(pData, argv, "invalid rootpage"); 178 } 179 } 180 } 181 return 0; 182 } 183 184 /* 185 ** Attempt to read the database schema and initialize internal 186 ** data structures for a single database file. The index of the 187 ** database file is given by iDb. iDb==0 is used for the main 188 ** database. iDb==1 should never be used. iDb>=2 is used for 189 ** auxiliary databases. Return one of the SQLITE_ error codes to 190 ** indicate success or failure. 191 */ 192 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 193 int rc; 194 int i; 195 #ifndef SQLITE_OMIT_DEPRECATED 196 int size; 197 #endif 198 Db *pDb; 199 char const *azArg[6]; 200 int meta[5]; 201 InitData initData; 202 const char *zSchemaTabName; 203 int openedTransaction = 0; 204 int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); 205 206 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 207 assert( iDb>=0 && iDb<db->nDb ); 208 assert( db->aDb[iDb].pSchema ); 209 assert( sqlite3_mutex_held(db->mutex) ); 210 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 211 212 db->init.busy = 1; 213 214 /* Construct the in-memory representation schema tables (sqlite_schema or 215 ** sqlite_temp_schema) by invoking the parser directly. The appropriate 216 ** table name will be inserted automatically by the parser so we can just 217 ** use the abbreviation "x" here. The parser will also automatically tag 218 ** the schema table as read-only. */ 219 azArg[0] = "table"; 220 azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); 221 azArg[2] = azArg[1]; 222 azArg[3] = "1"; 223 azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," 224 "rootpage int,sql text)"; 225 azArg[5] = 0; 226 initData.db = db; 227 initData.iDb = iDb; 228 initData.rc = SQLITE_OK; 229 initData.pzErrMsg = pzErrMsg; 230 initData.mInitFlags = mFlags; 231 initData.nInitRow = 0; 232 initData.mxPage = 0; 233 sqlite3InitCallback(&initData, 5, (char **)azArg, 0); 234 db->mDbFlags &= mask; 235 if( initData.rc ){ 236 rc = initData.rc; 237 goto error_out; 238 } 239 240 /* Create a cursor to hold the database open 241 */ 242 pDb = &db->aDb[iDb]; 243 if( pDb->pBt==0 ){ 244 assert( iDb==1 ); 245 DbSetProperty(db, 1, DB_SchemaLoaded); 246 rc = SQLITE_OK; 247 goto error_out; 248 } 249 250 /* If there is not already a read-only (or read-write) transaction opened 251 ** on the b-tree database, open one now. If a transaction is opened, it 252 ** will be closed before this function returns. */ 253 sqlite3BtreeEnter(pDb->pBt); 254 if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ 255 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 256 if( rc!=SQLITE_OK ){ 257 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 258 goto initone_error_out; 259 } 260 openedTransaction = 1; 261 } 262 263 /* Get the database meta information. 264 ** 265 ** Meta values are as follows: 266 ** meta[0] Schema cookie. Changes with each schema change. 267 ** meta[1] File format of schema layer. 268 ** meta[2] Size of the page cache. 269 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 270 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 271 ** meta[5] User version 272 ** meta[6] Incremental vacuum mode 273 ** meta[7] unused 274 ** meta[8] unused 275 ** meta[9] unused 276 ** 277 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 278 ** the possible values of meta[4]. 279 */ 280 for(i=0; i<ArraySize(meta); i++){ 281 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 282 } 283 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 284 memset(meta, 0, sizeof(meta)); 285 } 286 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 287 288 /* If opening a non-empty database, check the text encoding. For the 289 ** main database, set sqlite3.enc to the encoding of the main database. 290 ** For an attached db, it is an error if the encoding is not the same 291 ** as sqlite3.enc. 292 */ 293 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 294 if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 295 u8 encoding; 296 #ifndef SQLITE_OMIT_UTF16 297 /* If opening the main database, set ENC(db). */ 298 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 299 if( encoding==0 ) encoding = SQLITE_UTF8; 300 #else 301 encoding = SQLITE_UTF8; 302 #endif 303 sqlite3SetTextEncoding(db, encoding); 304 }else{ 305 /* If opening an attached database, the encoding much match ENC(db) */ 306 if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ 307 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 308 " text encoding as main database"); 309 rc = SQLITE_ERROR; 310 goto initone_error_out; 311 } 312 } 313 } 314 pDb->pSchema->enc = ENC(db); 315 316 if( pDb->pSchema->cache_size==0 ){ 317 #ifndef SQLITE_OMIT_DEPRECATED 318 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 319 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 320 pDb->pSchema->cache_size = size; 321 #else 322 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 323 #endif 324 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 325 } 326 327 /* 328 ** file_format==1 Version 3.0.0. 329 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 330 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 331 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 332 */ 333 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 334 if( pDb->pSchema->file_format==0 ){ 335 pDb->pSchema->file_format = 1; 336 } 337 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 338 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 339 rc = SQLITE_ERROR; 340 goto initone_error_out; 341 } 342 343 /* Ticket #2804: When we open a database in the newer file format, 344 ** clear the legacy_file_format pragma flag so that a VACUUM will 345 ** not downgrade the database and thus invalidate any descending 346 ** indices that the user might have created. 347 */ 348 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 349 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 350 } 351 352 /* Read the schema information out of the schema tables 353 */ 354 assert( db->init.busy ); 355 initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); 356 { 357 char *zSql; 358 zSql = sqlite3MPrintf(db, 359 "SELECT*FROM\"%w\".%s ORDER BY rowid", 360 db->aDb[iDb].zDbSName, zSchemaTabName); 361 #ifndef SQLITE_OMIT_AUTHORIZATION 362 { 363 sqlite3_xauth xAuth; 364 xAuth = db->xAuth; 365 db->xAuth = 0; 366 #endif 367 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 368 #ifndef SQLITE_OMIT_AUTHORIZATION 369 db->xAuth = xAuth; 370 } 371 #endif 372 if( rc==SQLITE_OK ) rc = initData.rc; 373 sqlite3DbFree(db, zSql); 374 #ifndef SQLITE_OMIT_ANALYZE 375 if( rc==SQLITE_OK ){ 376 sqlite3AnalysisLoad(db, iDb); 377 } 378 #endif 379 } 380 if( db->mallocFailed ){ 381 rc = SQLITE_NOMEM_BKPT; 382 sqlite3ResetAllSchemasOfConnection(db); 383 }else 384 if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ 385 /* Hack: If the SQLITE_NoSchemaError flag is set, then consider 386 ** the schema loaded, even if errors (other than OOM) occurred. In 387 ** this situation the current sqlite3_prepare() operation will fail, 388 ** but the following one will attempt to compile the supplied statement 389 ** against whatever subset of the schema was loaded before the error 390 ** occurred. 391 ** 392 ** The primary purpose of this is to allow access to the sqlite_schema 393 ** table even when its contents have been corrupted. 394 */ 395 DbSetProperty(db, iDb, DB_SchemaLoaded); 396 rc = SQLITE_OK; 397 } 398 399 /* Jump here for an error that occurs after successfully allocating 400 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 401 ** before that point, jump to error_out. 402 */ 403 initone_error_out: 404 if( openedTransaction ){ 405 sqlite3BtreeCommit(pDb->pBt); 406 } 407 sqlite3BtreeLeave(pDb->pBt); 408 409 error_out: 410 if( rc ){ 411 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 412 sqlite3OomFault(db); 413 } 414 sqlite3ResetOneSchema(db, iDb); 415 } 416 db->init.busy = 0; 417 return rc; 418 } 419 420 /* 421 ** Initialize all database files - the main database file, the file 422 ** used to store temporary tables, and any additional database files 423 ** created using ATTACH statements. Return a success code. If an 424 ** error occurs, write an error message into *pzErrMsg. 425 ** 426 ** After a database is initialized, the DB_SchemaLoaded bit is set 427 ** bit is set in the flags field of the Db structure. 428 */ 429 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 430 int i, rc; 431 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 432 433 assert( sqlite3_mutex_held(db->mutex) ); 434 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 435 assert( db->init.busy==0 ); 436 ENC(db) = SCHEMA_ENC(db); 437 assert( db->nDb>0 ); 438 /* Do the main schema first */ 439 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 440 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 441 if( rc ) return rc; 442 } 443 /* All other schemas after the main schema. The "temp" schema must be last */ 444 for(i=db->nDb-1; i>0; i--){ 445 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 446 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 447 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 448 if( rc ) return rc; 449 } 450 } 451 if( commit_internal ){ 452 sqlite3CommitInternalChanges(db); 453 } 454 return SQLITE_OK; 455 } 456 457 /* 458 ** This routine is a no-op if the database schema is already initialized. 459 ** Otherwise, the schema is loaded. An error code is returned. 460 */ 461 int sqlite3ReadSchema(Parse *pParse){ 462 int rc = SQLITE_OK; 463 sqlite3 *db = pParse->db; 464 assert( sqlite3_mutex_held(db->mutex) ); 465 if( !db->init.busy ){ 466 rc = sqlite3Init(db, &pParse->zErrMsg); 467 if( rc!=SQLITE_OK ){ 468 pParse->rc = rc; 469 pParse->nErr++; 470 }else if( db->noSharedCache ){ 471 db->mDbFlags |= DBFLAG_SchemaKnownOk; 472 } 473 } 474 return rc; 475 } 476 477 478 /* 479 ** Check schema cookies in all databases. If any cookie is out 480 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 481 ** make no changes to pParse->rc. 482 */ 483 static void schemaIsValid(Parse *pParse){ 484 sqlite3 *db = pParse->db; 485 int iDb; 486 int rc; 487 int cookie; 488 489 assert( pParse->checkSchema ); 490 assert( sqlite3_mutex_held(db->mutex) ); 491 for(iDb=0; iDb<db->nDb; iDb++){ 492 int openedTransaction = 0; /* True if a transaction is opened */ 493 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 494 if( pBt==0 ) continue; 495 496 /* If there is not already a read-only (or read-write) transaction opened 497 ** on the b-tree database, open one now. If a transaction is opened, it 498 ** will be closed immediately after reading the meta-value. */ 499 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ 500 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 501 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 502 sqlite3OomFault(db); 503 pParse->rc = SQLITE_NOMEM; 504 } 505 if( rc!=SQLITE_OK ) return; 506 openedTransaction = 1; 507 } 508 509 /* Read the schema cookie from the database. If it does not match the 510 ** value stored as part of the in-memory schema representation, 511 ** set Parse.rc to SQLITE_SCHEMA. */ 512 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 513 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 514 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 515 sqlite3ResetOneSchema(db, iDb); 516 pParse->rc = SQLITE_SCHEMA; 517 } 518 519 /* Close the transaction, if one was opened. */ 520 if( openedTransaction ){ 521 sqlite3BtreeCommit(pBt); 522 } 523 } 524 } 525 526 /* 527 ** Convert a schema pointer into the iDb index that indicates 528 ** which database file in db->aDb[] the schema refers to. 529 ** 530 ** If the same database is attached more than once, the first 531 ** attached database is returned. 532 */ 533 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 534 int i = -32768; 535 536 /* If pSchema is NULL, then return -32768. This happens when code in 537 ** expr.c is trying to resolve a reference to a transient table (i.e. one 538 ** created by a sub-select). In this case the return value of this 539 ** function should never be used. 540 ** 541 ** We return -32768 instead of the more usual -1 simply because using 542 ** -32768 as the incorrect index into db->aDb[] is much 543 ** more likely to cause a segfault than -1 (of course there are assert() 544 ** statements too, but it never hurts to play the odds) and 545 ** -32768 will still fit into a 16-bit signed integer. 546 */ 547 assert( sqlite3_mutex_held(db->mutex) ); 548 if( pSchema ){ 549 for(i=0; 1; i++){ 550 assert( i<db->nDb ); 551 if( db->aDb[i].pSchema==pSchema ){ 552 break; 553 } 554 } 555 assert( i>=0 && i<db->nDb ); 556 } 557 return i; 558 } 559 560 /* 561 ** Free all memory allocations in the pParse object 562 */ 563 void sqlite3ParserReset(Parse *pParse){ 564 sqlite3 *db = pParse->db; 565 while( pParse->pCleanup ){ 566 ParseCleanup *pCleanup = pParse->pCleanup; 567 pParse->pCleanup = pCleanup->pNext; 568 pCleanup->xCleanup(db, pCleanup->pPtr); 569 sqlite3DbFreeNN(db, pCleanup); 570 } 571 sqlite3DbFree(db, pParse->aLabel); 572 if( pParse->pConstExpr ){ 573 sqlite3ExprListDelete(db, pParse->pConstExpr); 574 } 575 if( db ){ 576 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 577 db->lookaside.bDisable -= pParse->disableLookaside; 578 db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; 579 } 580 pParse->disableLookaside = 0; 581 } 582 583 /* 584 ** Add a new cleanup operation to a Parser. The cleanup should happen when 585 ** the parser object is destroyed. But, beware: the cleanup might happen 586 ** immediately. 587 ** 588 ** Use this mechanism for uncommon cleanups. There is a higher setup 589 ** cost for this mechansim (an extra malloc), so it should not be used 590 ** for common cleanups that happen on most calls. But for less 591 ** common cleanups, we save a single NULL-pointer comparison in 592 ** sqlite3ParserReset(), which reduces the total CPU cycle count. 593 ** 594 ** If a memory allocation error occurs, then the cleanup happens immediately. 595 ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the 596 ** pParse->earlyCleanup flag is set in that case. Calling code show verify 597 ** that test cases exist for which this happens, to guard against possible 598 ** use-after-free errors following an OOM. The preferred way to do this is 599 ** to immediately follow the call to this routine with: 600 ** 601 ** testcase( pParse->earlyCleanup ); 602 ** 603 ** This routine returns a copy of its pPtr input (the third parameter) 604 ** except if an early cleanup occurs, in which case it returns NULL. So 605 ** another way to check for early cleanup is to check the return value. 606 ** Or, stop using the pPtr parameter with this call and use only its 607 ** return value thereafter. Something like this: 608 ** 609 ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); 610 */ 611 void *sqlite3ParserAddCleanup( 612 Parse *pParse, /* Destroy when this Parser finishes */ 613 void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ 614 void *pPtr /* Pointer to object to be cleaned up */ 615 ){ 616 ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); 617 if( pCleanup ){ 618 pCleanup->pNext = pParse->pCleanup; 619 pParse->pCleanup = pCleanup; 620 pCleanup->pPtr = pPtr; 621 pCleanup->xCleanup = xCleanup; 622 }else{ 623 xCleanup(pParse->db, pPtr); 624 pPtr = 0; 625 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 626 pParse->earlyCleanup = 1; 627 #endif 628 } 629 return pPtr; 630 } 631 632 /* 633 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 634 */ 635 static int sqlite3Prepare( 636 sqlite3 *db, /* Database handle. */ 637 const char *zSql, /* UTF-8 encoded SQL statement. */ 638 int nBytes, /* Length of zSql in bytes. */ 639 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 640 Vdbe *pReprepare, /* VM being reprepared */ 641 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 642 const char **pzTail /* OUT: End of parsed string */ 643 ){ 644 char *zErrMsg = 0; /* Error message */ 645 int rc = SQLITE_OK; /* Result code */ 646 int i; /* Loop counter */ 647 Parse sParse; /* Parsing context */ 648 649 memset(&sParse, 0, PARSE_HDR_SZ); 650 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 651 sParse.pReprepare = pReprepare; 652 assert( ppStmt && *ppStmt==0 ); 653 /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ 654 assert( sqlite3_mutex_held(db->mutex) ); 655 656 /* For a long-term use prepared statement avoid the use of 657 ** lookaside memory. 658 */ 659 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 660 sParse.disableLookaside++; 661 DisableLookaside; 662 } 663 sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0; 664 665 /* Check to verify that it is possible to get a read lock on all 666 ** database schemas. The inability to get a read lock indicates that 667 ** some other database connection is holding a write-lock, which in 668 ** turn means that the other connection has made uncommitted changes 669 ** to the schema. 670 ** 671 ** Were we to proceed and prepare the statement against the uncommitted 672 ** schema changes and if those schema changes are subsequently rolled 673 ** back and different changes are made in their place, then when this 674 ** prepared statement goes to run the schema cookie would fail to detect 675 ** the schema change. Disaster would follow. 676 ** 677 ** This thread is currently holding mutexes on all Btrees (because 678 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 679 ** is not possible for another thread to start a new schema change 680 ** while this routine is running. Hence, we do not need to hold 681 ** locks on the schema, we just need to make sure nobody else is 682 ** holding them. 683 ** 684 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 685 ** but it does *not* override schema lock detection, so this all still 686 ** works even if READ_UNCOMMITTED is set. 687 */ 688 if( !db->noSharedCache ){ 689 for(i=0; i<db->nDb; i++) { 690 Btree *pBt = db->aDb[i].pBt; 691 if( pBt ){ 692 assert( sqlite3BtreeHoldsMutex(pBt) ); 693 rc = sqlite3BtreeSchemaLocked(pBt); 694 if( rc ){ 695 const char *zDb = db->aDb[i].zDbSName; 696 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 697 testcase( db->flags & SQLITE_ReadUncommit ); 698 goto end_prepare; 699 } 700 } 701 } 702 } 703 704 sqlite3VtabUnlockList(db); 705 706 sParse.db = db; 707 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 708 char *zSqlCopy; 709 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 710 testcase( nBytes==mxLen ); 711 testcase( nBytes==mxLen+1 ); 712 if( nBytes>mxLen ){ 713 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 714 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 715 goto end_prepare; 716 } 717 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 718 if( zSqlCopy ){ 719 sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); 720 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 721 sqlite3DbFree(db, zSqlCopy); 722 }else{ 723 sParse.zTail = &zSql[nBytes]; 724 } 725 }else{ 726 sqlite3RunParser(&sParse, zSql, &zErrMsg); 727 } 728 assert( 0==sParse.nQueryLoop ); 729 730 if( pzTail ){ 731 *pzTail = sParse.zTail; 732 } 733 734 if( db->init.busy==0 ){ 735 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 736 } 737 if( db->mallocFailed ){ 738 sParse.rc = SQLITE_NOMEM_BKPT; 739 sParse.checkSchema = 0; 740 } 741 if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ 742 if( sParse.checkSchema ){ 743 schemaIsValid(&sParse); 744 } 745 if( sParse.pVdbe ){ 746 sqlite3VdbeFinalize(sParse.pVdbe); 747 } 748 assert( 0==(*ppStmt) ); 749 rc = sParse.rc; 750 if( zErrMsg ){ 751 sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); 752 sqlite3DbFree(db, zErrMsg); 753 }else{ 754 sqlite3Error(db, rc); 755 } 756 }else{ 757 assert( zErrMsg==0 ); 758 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 759 rc = SQLITE_OK; 760 sqlite3ErrorClear(db); 761 } 762 763 764 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 765 while( sParse.pTriggerPrg ){ 766 TriggerPrg *pT = sParse.pTriggerPrg; 767 sParse.pTriggerPrg = pT->pNext; 768 sqlite3DbFree(db, pT); 769 } 770 771 end_prepare: 772 773 sqlite3ParserReset(&sParse); 774 return rc; 775 } 776 static int sqlite3LockAndPrepare( 777 sqlite3 *db, /* Database handle. */ 778 const char *zSql, /* UTF-8 encoded SQL statement. */ 779 int nBytes, /* Length of zSql in bytes. */ 780 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 781 Vdbe *pOld, /* VM being reprepared */ 782 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 783 const char **pzTail /* OUT: End of parsed string */ 784 ){ 785 int rc; 786 int cnt = 0; 787 788 #ifdef SQLITE_ENABLE_API_ARMOR 789 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 790 #endif 791 *ppStmt = 0; 792 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 793 return SQLITE_MISUSE_BKPT; 794 } 795 sqlite3_mutex_enter(db->mutex); 796 sqlite3BtreeEnterAll(db); 797 do{ 798 /* Make multiple attempts to compile the SQL, until it either succeeds 799 ** or encounters a permanent error. A schema problem after one schema 800 ** reset is considered a permanent error. */ 801 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 802 assert( rc==SQLITE_OK || *ppStmt==0 ); 803 }while( rc==SQLITE_ERROR_RETRY 804 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 805 sqlite3BtreeLeaveAll(db); 806 rc = sqlite3ApiExit(db, rc); 807 assert( (rc&db->errMask)==rc ); 808 db->busyHandler.nBusy = 0; 809 sqlite3_mutex_leave(db->mutex); 810 return rc; 811 } 812 813 814 /* 815 ** Rerun the compilation of a statement after a schema change. 816 ** 817 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 818 ** if the statement cannot be recompiled because another connection has 819 ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error 820 ** occurs, return SQLITE_SCHEMA. 821 */ 822 int sqlite3Reprepare(Vdbe *p){ 823 int rc; 824 sqlite3_stmt *pNew; 825 const char *zSql; 826 sqlite3 *db; 827 u8 prepFlags; 828 829 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 830 zSql = sqlite3_sql((sqlite3_stmt *)p); 831 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 832 db = sqlite3VdbeDb(p); 833 assert( sqlite3_mutex_held(db->mutex) ); 834 prepFlags = sqlite3VdbePrepareFlags(p); 835 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 836 if( rc ){ 837 if( rc==SQLITE_NOMEM ){ 838 sqlite3OomFault(db); 839 } 840 assert( pNew==0 ); 841 return rc; 842 }else{ 843 assert( pNew!=0 ); 844 } 845 sqlite3VdbeSwap((Vdbe*)pNew, p); 846 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 847 sqlite3VdbeResetStepResult((Vdbe*)pNew); 848 sqlite3VdbeFinalize((Vdbe*)pNew); 849 return SQLITE_OK; 850 } 851 852 853 /* 854 ** Two versions of the official API. Legacy and new use. In the legacy 855 ** version, the original SQL text is not saved in the prepared statement 856 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 857 ** sqlite3_step(). In the new version, the original SQL text is retained 858 ** and the statement is automatically recompiled if an schema change 859 ** occurs. 860 */ 861 int sqlite3_prepare( 862 sqlite3 *db, /* Database handle. */ 863 const char *zSql, /* UTF-8 encoded SQL statement. */ 864 int nBytes, /* Length of zSql in bytes. */ 865 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 866 const char **pzTail /* OUT: End of parsed string */ 867 ){ 868 int rc; 869 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 870 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 871 return rc; 872 } 873 int sqlite3_prepare_v2( 874 sqlite3 *db, /* Database handle. */ 875 const char *zSql, /* UTF-8 encoded SQL statement. */ 876 int nBytes, /* Length of zSql in bytes. */ 877 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 878 const char **pzTail /* OUT: End of parsed string */ 879 ){ 880 int rc; 881 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 882 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 883 ** parameter. 884 ** 885 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 886 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 887 ppStmt,pzTail); 888 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 889 return rc; 890 } 891 int sqlite3_prepare_v3( 892 sqlite3 *db, /* Database handle. */ 893 const char *zSql, /* UTF-8 encoded SQL statement. */ 894 int nBytes, /* Length of zSql in bytes. */ 895 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 896 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 897 const char **pzTail /* OUT: End of parsed string */ 898 ){ 899 int rc; 900 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 901 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 902 ** which is a bit array consisting of zero or more of the 903 ** SQLITE_PREPARE_* flags. 904 ** 905 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 906 ** directly above. */ 907 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 908 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 909 0,ppStmt,pzTail); 910 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 911 return rc; 912 } 913 914 915 #ifndef SQLITE_OMIT_UTF16 916 /* 917 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 918 */ 919 static int sqlite3Prepare16( 920 sqlite3 *db, /* Database handle. */ 921 const void *zSql, /* UTF-16 encoded SQL statement. */ 922 int nBytes, /* Length of zSql in bytes. */ 923 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 924 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 925 const void **pzTail /* OUT: End of parsed string */ 926 ){ 927 /* This function currently works by first transforming the UTF-16 928 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 929 ** tricky bit is figuring out the pointer to return in *pzTail. 930 */ 931 char *zSql8; 932 const char *zTail8 = 0; 933 int rc = SQLITE_OK; 934 935 #ifdef SQLITE_ENABLE_API_ARMOR 936 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 937 #endif 938 *ppStmt = 0; 939 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 940 return SQLITE_MISUSE_BKPT; 941 } 942 if( nBytes>=0 ){ 943 int sz; 944 const char *z = (const char*)zSql; 945 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 946 nBytes = sz; 947 } 948 sqlite3_mutex_enter(db->mutex); 949 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 950 if( zSql8 ){ 951 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 952 } 953 954 if( zTail8 && pzTail ){ 955 /* If sqlite3_prepare returns a tail pointer, we calculate the 956 ** equivalent pointer into the UTF-16 string by counting the unicode 957 ** characters between zSql8 and zTail8, and then returning a pointer 958 ** the same number of characters into the UTF-16 string. 959 */ 960 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 961 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); 962 } 963 sqlite3DbFree(db, zSql8); 964 rc = sqlite3ApiExit(db, rc); 965 sqlite3_mutex_leave(db->mutex); 966 return rc; 967 } 968 969 /* 970 ** Two versions of the official API. Legacy and new use. In the legacy 971 ** version, the original SQL text is not saved in the prepared statement 972 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 973 ** sqlite3_step(). In the new version, the original SQL text is retained 974 ** and the statement is automatically recompiled if an schema change 975 ** occurs. 976 */ 977 int sqlite3_prepare16( 978 sqlite3 *db, /* Database handle. */ 979 const void *zSql, /* UTF-16 encoded SQL statement. */ 980 int nBytes, /* Length of zSql in bytes. */ 981 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 982 const void **pzTail /* OUT: End of parsed string */ 983 ){ 984 int rc; 985 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 986 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 987 return rc; 988 } 989 int sqlite3_prepare16_v2( 990 sqlite3 *db, /* Database handle. */ 991 const void *zSql, /* UTF-16 encoded SQL statement. */ 992 int nBytes, /* Length of zSql in bytes. */ 993 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 994 const void **pzTail /* OUT: End of parsed string */ 995 ){ 996 int rc; 997 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 998 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 999 return rc; 1000 } 1001 int sqlite3_prepare16_v3( 1002 sqlite3 *db, /* Database handle. */ 1003 const void *zSql, /* UTF-16 encoded SQL statement. */ 1004 int nBytes, /* Length of zSql in bytes. */ 1005 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1006 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1007 const void **pzTail /* OUT: End of parsed string */ 1008 ){ 1009 int rc; 1010 rc = sqlite3Prepare16(db,zSql,nBytes, 1011 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 1012 ppStmt,pzTail); 1013 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1014 return rc; 1015 } 1016 1017 #endif /* SQLITE_OMIT_UTF16 */ 1018