1 /* 2 ** 2005 May 25 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the implementation of the sqlite3_prepare() 13 ** interface, and routines that contribute to loading the database schema 14 ** from disk. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** Fill the InitData structure with an error message that indicates 20 ** that the database is corrupt. 21 */ 22 static void corruptSchema( 23 InitData *pData, /* Initialization context */ 24 char **azObj, /* Type and name of object being parsed */ 25 const char *zExtra /* Error information */ 26 ){ 27 sqlite3 *db = pData->db; 28 if( db->mallocFailed ){ 29 pData->rc = SQLITE_NOMEM_BKPT; 30 }else if( pData->pzErrMsg[0]!=0 ){ 31 /* A error message has already been generated. Do not overwrite it */ 32 }else if( pData->mInitFlags & (INITFLAG_AlterRename|INITFLAG_AlterDrop) ){ 33 *pData->pzErrMsg = sqlite3MPrintf(db, 34 "error in %s %s after %s: %s", azObj[0], azObj[1], 35 (pData->mInitFlags & INITFLAG_AlterRename) ? "rename" : "drop column", 36 zExtra 37 ); 38 pData->rc = SQLITE_ERROR; 39 }else if( db->flags & SQLITE_WriteSchema ){ 40 pData->rc = SQLITE_CORRUPT_BKPT; 41 }else{ 42 char *z; 43 const char *zObj = azObj[1] ? azObj[1] : "?"; 44 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 45 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 46 *pData->pzErrMsg = z; 47 pData->rc = SQLITE_CORRUPT_BKPT; 48 } 49 } 50 51 /* 52 ** Check to see if any sibling index (another index on the same table) 53 ** of pIndex has the same root page number, and if it does, return true. 54 ** This would indicate a corrupt schema. 55 */ 56 int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ 57 Index *p; 58 for(p=pIndex->pTable->pIndex; p; p=p->pNext){ 59 if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; 60 } 61 return 0; 62 } 63 64 /* forward declaration */ 65 static int sqlite3Prepare( 66 sqlite3 *db, /* Database handle. */ 67 const char *zSql, /* UTF-8 encoded SQL statement. */ 68 int nBytes, /* Length of zSql in bytes. */ 69 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 70 Vdbe *pReprepare, /* VM being reprepared */ 71 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 72 const char **pzTail /* OUT: End of parsed string */ 73 ); 74 75 76 /* 77 ** This is the callback routine for the code that initializes the 78 ** database. See sqlite3Init() below for additional information. 79 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 80 ** 81 ** Each callback contains the following information: 82 ** 83 ** argv[0] = type of object: "table", "index", "trigger", or "view". 84 ** argv[1] = name of thing being created 85 ** argv[2] = associated table if an index or trigger 86 ** argv[3] = root page number for table or index. 0 for trigger or view. 87 ** argv[4] = SQL text for the CREATE statement. 88 ** 89 */ 90 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 91 InitData *pData = (InitData*)pInit; 92 sqlite3 *db = pData->db; 93 int iDb = pData->iDb; 94 95 assert( argc==5 ); 96 UNUSED_PARAMETER2(NotUsed, argc); 97 assert( sqlite3_mutex_held(db->mutex) ); 98 db->mDbFlags |= DBFLAG_EncodingFixed; 99 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 100 pData->nInitRow++; 101 if( db->mallocFailed ){ 102 corruptSchema(pData, argv, 0); 103 return 1; 104 } 105 106 assert( iDb>=0 && iDb<db->nDb ); 107 if( argv[3]==0 ){ 108 corruptSchema(pData, argv, 0); 109 }else if( argv[4] 110 && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] 111 && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ 112 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 113 ** But because db->init.busy is set to 1, no VDBE code is generated 114 ** or executed. All the parser does is build the internal data 115 ** structures that describe the table, index, or view. 116 ** 117 ** No other valid SQL statement, other than the variable CREATE statements, 118 ** can begin with the letters "C" and "R". Thus, it is not possible run 119 ** any other kind of statement while parsing the schema, even a corrupt 120 ** schema. 121 */ 122 int rc; 123 u8 saved_iDb = db->init.iDb; 124 sqlite3_stmt *pStmt; 125 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 126 127 assert( db->init.busy ); 128 db->init.iDb = iDb; 129 if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 130 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) 131 ){ 132 if( sqlite3Config.bExtraSchemaChecks ){ 133 corruptSchema(pData, argv, "invalid rootpage"); 134 } 135 } 136 db->init.orphanTrigger = 0; 137 db->init.azInit = (const char**)argv; 138 pStmt = 0; 139 TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); 140 rc = db->errCode; 141 assert( (rc&0xFF)==(rcp&0xFF) ); 142 db->init.iDb = saved_iDb; 143 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 144 if( SQLITE_OK!=rc ){ 145 if( db->init.orphanTrigger ){ 146 assert( iDb==1 ); 147 }else{ 148 if( rc > pData->rc ) pData->rc = rc; 149 if( rc==SQLITE_NOMEM ){ 150 sqlite3OomFault(db); 151 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 152 corruptSchema(pData, argv, sqlite3_errmsg(db)); 153 } 154 } 155 } 156 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 157 sqlite3_finalize(pStmt); 158 }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ 159 corruptSchema(pData, argv, 0); 160 }else{ 161 /* If the SQL column is blank it means this is an index that 162 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 163 ** constraint for a CREATE TABLE. The index should have already 164 ** been created when we processed the CREATE TABLE. All we have 165 ** to do here is record the root page number for that index. 166 */ 167 Index *pIndex; 168 pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); 169 if( pIndex==0 ){ 170 corruptSchema(pData, argv, "orphan index"); 171 }else 172 if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 173 || pIndex->tnum<2 174 || pIndex->tnum>pData->mxPage 175 || sqlite3IndexHasDuplicateRootPage(pIndex) 176 ){ 177 if( sqlite3Config.bExtraSchemaChecks ){ 178 corruptSchema(pData, argv, "invalid rootpage"); 179 } 180 } 181 } 182 return 0; 183 } 184 185 /* 186 ** Attempt to read the database schema and initialize internal 187 ** data structures for a single database file. The index of the 188 ** database file is given by iDb. iDb==0 is used for the main 189 ** database. iDb==1 should never be used. iDb>=2 is used for 190 ** auxiliary databases. Return one of the SQLITE_ error codes to 191 ** indicate success or failure. 192 */ 193 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 194 int rc; 195 int i; 196 #ifndef SQLITE_OMIT_DEPRECATED 197 int size; 198 #endif 199 Db *pDb; 200 char const *azArg[6]; 201 int meta[5]; 202 InitData initData; 203 const char *zSchemaTabName; 204 int openedTransaction = 0; 205 int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); 206 207 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 208 assert( iDb>=0 && iDb<db->nDb ); 209 assert( db->aDb[iDb].pSchema ); 210 assert( sqlite3_mutex_held(db->mutex) ); 211 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 212 213 db->init.busy = 1; 214 215 /* Construct the in-memory representation schema tables (sqlite_schema or 216 ** sqlite_temp_schema) by invoking the parser directly. The appropriate 217 ** table name will be inserted automatically by the parser so we can just 218 ** use the abbreviation "x" here. The parser will also automatically tag 219 ** the schema table as read-only. */ 220 azArg[0] = "table"; 221 azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); 222 azArg[2] = azArg[1]; 223 azArg[3] = "1"; 224 azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," 225 "rootpage int,sql text)"; 226 azArg[5] = 0; 227 initData.db = db; 228 initData.iDb = iDb; 229 initData.rc = SQLITE_OK; 230 initData.pzErrMsg = pzErrMsg; 231 initData.mInitFlags = mFlags; 232 initData.nInitRow = 0; 233 initData.mxPage = 0; 234 sqlite3InitCallback(&initData, 5, (char **)azArg, 0); 235 db->mDbFlags &= mask; 236 if( initData.rc ){ 237 rc = initData.rc; 238 goto error_out; 239 } 240 241 /* Create a cursor to hold the database open 242 */ 243 pDb = &db->aDb[iDb]; 244 if( pDb->pBt==0 ){ 245 assert( iDb==1 ); 246 DbSetProperty(db, 1, DB_SchemaLoaded); 247 rc = SQLITE_OK; 248 goto error_out; 249 } 250 251 /* If there is not already a read-only (or read-write) transaction opened 252 ** on the b-tree database, open one now. If a transaction is opened, it 253 ** will be closed before this function returns. */ 254 sqlite3BtreeEnter(pDb->pBt); 255 if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ 256 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 257 if( rc!=SQLITE_OK ){ 258 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 259 goto initone_error_out; 260 } 261 openedTransaction = 1; 262 } 263 264 /* Get the database meta information. 265 ** 266 ** Meta values are as follows: 267 ** meta[0] Schema cookie. Changes with each schema change. 268 ** meta[1] File format of schema layer. 269 ** meta[2] Size of the page cache. 270 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 271 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 272 ** meta[5] User version 273 ** meta[6] Incremental vacuum mode 274 ** meta[7] unused 275 ** meta[8] unused 276 ** meta[9] unused 277 ** 278 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 279 ** the possible values of meta[4]. 280 */ 281 for(i=0; i<ArraySize(meta); i++){ 282 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 283 } 284 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 285 memset(meta, 0, sizeof(meta)); 286 } 287 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 288 289 /* If opening a non-empty database, check the text encoding. For the 290 ** main database, set sqlite3.enc to the encoding of the main database. 291 ** For an attached db, it is an error if the encoding is not the same 292 ** as sqlite3.enc. 293 */ 294 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 295 if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 296 u8 encoding; 297 #ifndef SQLITE_OMIT_UTF16 298 /* If opening the main database, set ENC(db). */ 299 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 300 if( encoding==0 ) encoding = SQLITE_UTF8; 301 #else 302 encoding = SQLITE_UTF8; 303 #endif 304 sqlite3SetTextEncoding(db, encoding); 305 }else{ 306 /* If opening an attached database, the encoding much match ENC(db) */ 307 if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ 308 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 309 " text encoding as main database"); 310 rc = SQLITE_ERROR; 311 goto initone_error_out; 312 } 313 } 314 } 315 pDb->pSchema->enc = ENC(db); 316 317 if( pDb->pSchema->cache_size==0 ){ 318 #ifndef SQLITE_OMIT_DEPRECATED 319 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 320 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 321 pDb->pSchema->cache_size = size; 322 #else 323 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 324 #endif 325 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 326 } 327 328 /* 329 ** file_format==1 Version 3.0.0. 330 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 331 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 332 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 333 */ 334 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 335 if( pDb->pSchema->file_format==0 ){ 336 pDb->pSchema->file_format = 1; 337 } 338 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 339 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 340 rc = SQLITE_ERROR; 341 goto initone_error_out; 342 } 343 344 /* Ticket #2804: When we open a database in the newer file format, 345 ** clear the legacy_file_format pragma flag so that a VACUUM will 346 ** not downgrade the database and thus invalidate any descending 347 ** indices that the user might have created. 348 */ 349 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 350 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 351 } 352 353 /* Read the schema information out of the schema tables 354 */ 355 assert( db->init.busy ); 356 initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); 357 { 358 char *zSql; 359 zSql = sqlite3MPrintf(db, 360 "SELECT*FROM\"%w\".%s ORDER BY rowid", 361 db->aDb[iDb].zDbSName, zSchemaTabName); 362 #ifndef SQLITE_OMIT_AUTHORIZATION 363 { 364 sqlite3_xauth xAuth; 365 xAuth = db->xAuth; 366 db->xAuth = 0; 367 #endif 368 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 369 #ifndef SQLITE_OMIT_AUTHORIZATION 370 db->xAuth = xAuth; 371 } 372 #endif 373 if( rc==SQLITE_OK ) rc = initData.rc; 374 sqlite3DbFree(db, zSql); 375 #ifndef SQLITE_OMIT_ANALYZE 376 if( rc==SQLITE_OK ){ 377 sqlite3AnalysisLoad(db, iDb); 378 } 379 #endif 380 } 381 assert( pDb == &(db->aDb[iDb]) ); 382 if( db->mallocFailed ){ 383 rc = SQLITE_NOMEM_BKPT; 384 sqlite3ResetAllSchemasOfConnection(db); 385 pDb = &db->aDb[iDb]; 386 }else 387 if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ 388 /* Hack: If the SQLITE_NoSchemaError flag is set, then consider 389 ** the schema loaded, even if errors (other than OOM) occurred. In 390 ** this situation the current sqlite3_prepare() operation will fail, 391 ** but the following one will attempt to compile the supplied statement 392 ** against whatever subset of the schema was loaded before the error 393 ** occurred. 394 ** 395 ** The primary purpose of this is to allow access to the sqlite_schema 396 ** table even when its contents have been corrupted. 397 */ 398 DbSetProperty(db, iDb, DB_SchemaLoaded); 399 rc = SQLITE_OK; 400 } 401 402 /* Jump here for an error that occurs after successfully allocating 403 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 404 ** before that point, jump to error_out. 405 */ 406 initone_error_out: 407 if( openedTransaction ){ 408 sqlite3BtreeCommit(pDb->pBt); 409 } 410 sqlite3BtreeLeave(pDb->pBt); 411 412 error_out: 413 if( rc ){ 414 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 415 sqlite3OomFault(db); 416 } 417 sqlite3ResetOneSchema(db, iDb); 418 } 419 db->init.busy = 0; 420 return rc; 421 } 422 423 /* 424 ** Initialize all database files - the main database file, the file 425 ** used to store temporary tables, and any additional database files 426 ** created using ATTACH statements. Return a success code. If an 427 ** error occurs, write an error message into *pzErrMsg. 428 ** 429 ** After a database is initialized, the DB_SchemaLoaded bit is set 430 ** bit is set in the flags field of the Db structure. 431 */ 432 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 433 int i, rc; 434 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 435 436 assert( sqlite3_mutex_held(db->mutex) ); 437 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 438 assert( db->init.busy==0 ); 439 ENC(db) = SCHEMA_ENC(db); 440 assert( db->nDb>0 ); 441 /* Do the main schema first */ 442 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 443 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 444 if( rc ) return rc; 445 } 446 /* All other schemas after the main schema. The "temp" schema must be last */ 447 for(i=db->nDb-1; i>0; i--){ 448 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 449 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 450 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 451 if( rc ) return rc; 452 } 453 } 454 if( commit_internal ){ 455 sqlite3CommitInternalChanges(db); 456 } 457 return SQLITE_OK; 458 } 459 460 /* 461 ** This routine is a no-op if the database schema is already initialized. 462 ** Otherwise, the schema is loaded. An error code is returned. 463 */ 464 int sqlite3ReadSchema(Parse *pParse){ 465 int rc = SQLITE_OK; 466 sqlite3 *db = pParse->db; 467 assert( sqlite3_mutex_held(db->mutex) ); 468 if( !db->init.busy ){ 469 rc = sqlite3Init(db, &pParse->zErrMsg); 470 if( rc!=SQLITE_OK ){ 471 pParse->rc = rc; 472 pParse->nErr++; 473 }else if( db->noSharedCache ){ 474 db->mDbFlags |= DBFLAG_SchemaKnownOk; 475 } 476 } 477 return rc; 478 } 479 480 481 /* 482 ** Check schema cookies in all databases. If any cookie is out 483 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 484 ** make no changes to pParse->rc. 485 */ 486 static void schemaIsValid(Parse *pParse){ 487 sqlite3 *db = pParse->db; 488 int iDb; 489 int rc; 490 int cookie; 491 492 assert( pParse->checkSchema ); 493 assert( sqlite3_mutex_held(db->mutex) ); 494 for(iDb=0; iDb<db->nDb; iDb++){ 495 int openedTransaction = 0; /* True if a transaction is opened */ 496 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 497 if( pBt==0 ) continue; 498 499 /* If there is not already a read-only (or read-write) transaction opened 500 ** on the b-tree database, open one now. If a transaction is opened, it 501 ** will be closed immediately after reading the meta-value. */ 502 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ 503 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 504 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 505 sqlite3OomFault(db); 506 pParse->rc = SQLITE_NOMEM; 507 } 508 if( rc!=SQLITE_OK ) return; 509 openedTransaction = 1; 510 } 511 512 /* Read the schema cookie from the database. If it does not match the 513 ** value stored as part of the in-memory schema representation, 514 ** set Parse.rc to SQLITE_SCHEMA. */ 515 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 516 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 517 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 518 sqlite3ResetOneSchema(db, iDb); 519 pParse->rc = SQLITE_SCHEMA; 520 } 521 522 /* Close the transaction, if one was opened. */ 523 if( openedTransaction ){ 524 sqlite3BtreeCommit(pBt); 525 } 526 } 527 } 528 529 /* 530 ** Convert a schema pointer into the iDb index that indicates 531 ** which database file in db->aDb[] the schema refers to. 532 ** 533 ** If the same database is attached more than once, the first 534 ** attached database is returned. 535 */ 536 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 537 int i = -32768; 538 539 /* If pSchema is NULL, then return -32768. This happens when code in 540 ** expr.c is trying to resolve a reference to a transient table (i.e. one 541 ** created by a sub-select). In this case the return value of this 542 ** function should never be used. 543 ** 544 ** We return -32768 instead of the more usual -1 simply because using 545 ** -32768 as the incorrect index into db->aDb[] is much 546 ** more likely to cause a segfault than -1 (of course there are assert() 547 ** statements too, but it never hurts to play the odds) and 548 ** -32768 will still fit into a 16-bit signed integer. 549 */ 550 assert( sqlite3_mutex_held(db->mutex) ); 551 if( pSchema ){ 552 for(i=0; 1; i++){ 553 assert( i<db->nDb ); 554 if( db->aDb[i].pSchema==pSchema ){ 555 break; 556 } 557 } 558 assert( i>=0 && i<db->nDb ); 559 } 560 return i; 561 } 562 563 /* 564 ** Free all memory allocations in the pParse object 565 */ 566 void sqlite3ParserReset(Parse *pParse){ 567 sqlite3 *db = pParse->db; 568 while( pParse->pCleanup ){ 569 ParseCleanup *pCleanup = pParse->pCleanup; 570 pParse->pCleanup = pCleanup->pNext; 571 pCleanup->xCleanup(db, pCleanup->pPtr); 572 sqlite3DbFreeNN(db, pCleanup); 573 } 574 sqlite3DbFree(db, pParse->aLabel); 575 if( pParse->pConstExpr ){ 576 sqlite3ExprListDelete(db, pParse->pConstExpr); 577 } 578 if( db ){ 579 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 580 db->lookaside.bDisable -= pParse->disableLookaside; 581 db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; 582 } 583 pParse->disableLookaside = 0; 584 } 585 586 /* 587 ** Add a new cleanup operation to a Parser. The cleanup should happen when 588 ** the parser object is destroyed. But, beware: the cleanup might happen 589 ** immediately. 590 ** 591 ** Use this mechanism for uncommon cleanups. There is a higher setup 592 ** cost for this mechansim (an extra malloc), so it should not be used 593 ** for common cleanups that happen on most calls. But for less 594 ** common cleanups, we save a single NULL-pointer comparison in 595 ** sqlite3ParserReset(), which reduces the total CPU cycle count. 596 ** 597 ** If a memory allocation error occurs, then the cleanup happens immediately. 598 ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the 599 ** pParse->earlyCleanup flag is set in that case. Calling code show verify 600 ** that test cases exist for which this happens, to guard against possible 601 ** use-after-free errors following an OOM. The preferred way to do this is 602 ** to immediately follow the call to this routine with: 603 ** 604 ** testcase( pParse->earlyCleanup ); 605 ** 606 ** This routine returns a copy of its pPtr input (the third parameter) 607 ** except if an early cleanup occurs, in which case it returns NULL. So 608 ** another way to check for early cleanup is to check the return value. 609 ** Or, stop using the pPtr parameter with this call and use only its 610 ** return value thereafter. Something like this: 611 ** 612 ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); 613 */ 614 void *sqlite3ParserAddCleanup( 615 Parse *pParse, /* Destroy when this Parser finishes */ 616 void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ 617 void *pPtr /* Pointer to object to be cleaned up */ 618 ){ 619 ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); 620 if( pCleanup ){ 621 pCleanup->pNext = pParse->pCleanup; 622 pParse->pCleanup = pCleanup; 623 pCleanup->pPtr = pPtr; 624 pCleanup->xCleanup = xCleanup; 625 }else{ 626 xCleanup(pParse->db, pPtr); 627 pPtr = 0; 628 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 629 pParse->earlyCleanup = 1; 630 #endif 631 } 632 return pPtr; 633 } 634 635 /* 636 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 637 */ 638 static int sqlite3Prepare( 639 sqlite3 *db, /* Database handle. */ 640 const char *zSql, /* UTF-8 encoded SQL statement. */ 641 int nBytes, /* Length of zSql in bytes. */ 642 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 643 Vdbe *pReprepare, /* VM being reprepared */ 644 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 645 const char **pzTail /* OUT: End of parsed string */ 646 ){ 647 char *zErrMsg = 0; /* Error message */ 648 int rc = SQLITE_OK; /* Result code */ 649 int i; /* Loop counter */ 650 Parse sParse; /* Parsing context */ 651 652 memset(&sParse, 0, PARSE_HDR_SZ); 653 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 654 sParse.pReprepare = pReprepare; 655 assert( ppStmt && *ppStmt==0 ); 656 /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ 657 assert( sqlite3_mutex_held(db->mutex) ); 658 659 /* For a long-term use prepared statement avoid the use of 660 ** lookaside memory. 661 */ 662 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 663 sParse.disableLookaside++; 664 DisableLookaside; 665 } 666 sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0; 667 668 /* Check to verify that it is possible to get a read lock on all 669 ** database schemas. The inability to get a read lock indicates that 670 ** some other database connection is holding a write-lock, which in 671 ** turn means that the other connection has made uncommitted changes 672 ** to the schema. 673 ** 674 ** Were we to proceed and prepare the statement against the uncommitted 675 ** schema changes and if those schema changes are subsequently rolled 676 ** back and different changes are made in their place, then when this 677 ** prepared statement goes to run the schema cookie would fail to detect 678 ** the schema change. Disaster would follow. 679 ** 680 ** This thread is currently holding mutexes on all Btrees (because 681 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 682 ** is not possible for another thread to start a new schema change 683 ** while this routine is running. Hence, we do not need to hold 684 ** locks on the schema, we just need to make sure nobody else is 685 ** holding them. 686 ** 687 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 688 ** but it does *not* override schema lock detection, so this all still 689 ** works even if READ_UNCOMMITTED is set. 690 */ 691 if( !db->noSharedCache ){ 692 for(i=0; i<db->nDb; i++) { 693 Btree *pBt = db->aDb[i].pBt; 694 if( pBt ){ 695 assert( sqlite3BtreeHoldsMutex(pBt) ); 696 rc = sqlite3BtreeSchemaLocked(pBt); 697 if( rc ){ 698 const char *zDb = db->aDb[i].zDbSName; 699 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 700 testcase( db->flags & SQLITE_ReadUncommit ); 701 goto end_prepare; 702 } 703 } 704 } 705 } 706 707 sqlite3VtabUnlockList(db); 708 709 sParse.db = db; 710 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 711 char *zSqlCopy; 712 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 713 testcase( nBytes==mxLen ); 714 testcase( nBytes==mxLen+1 ); 715 if( nBytes>mxLen ){ 716 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 717 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 718 goto end_prepare; 719 } 720 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 721 if( zSqlCopy ){ 722 sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); 723 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 724 sqlite3DbFree(db, zSqlCopy); 725 }else{ 726 sParse.zTail = &zSql[nBytes]; 727 } 728 }else{ 729 sqlite3RunParser(&sParse, zSql, &zErrMsg); 730 } 731 assert( 0==sParse.nQueryLoop ); 732 733 if( pzTail ){ 734 *pzTail = sParse.zTail; 735 } 736 737 if( db->init.busy==0 ){ 738 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 739 } 740 if( db->mallocFailed ){ 741 sParse.rc = SQLITE_NOMEM_BKPT; 742 sParse.checkSchema = 0; 743 } 744 if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ 745 if( sParse.checkSchema ){ 746 schemaIsValid(&sParse); 747 } 748 if( sParse.pVdbe ){ 749 sqlite3VdbeFinalize(sParse.pVdbe); 750 } 751 assert( 0==(*ppStmt) ); 752 rc = sParse.rc; 753 if( zErrMsg ){ 754 sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); 755 sqlite3DbFree(db, zErrMsg); 756 }else{ 757 sqlite3Error(db, rc); 758 } 759 }else{ 760 assert( zErrMsg==0 ); 761 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 762 rc = SQLITE_OK; 763 sqlite3ErrorClear(db); 764 } 765 766 767 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 768 while( sParse.pTriggerPrg ){ 769 TriggerPrg *pT = sParse.pTriggerPrg; 770 sParse.pTriggerPrg = pT->pNext; 771 sqlite3DbFree(db, pT); 772 } 773 774 end_prepare: 775 776 sqlite3ParserReset(&sParse); 777 return rc; 778 } 779 static int sqlite3LockAndPrepare( 780 sqlite3 *db, /* Database handle. */ 781 const char *zSql, /* UTF-8 encoded SQL statement. */ 782 int nBytes, /* Length of zSql in bytes. */ 783 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 784 Vdbe *pOld, /* VM being reprepared */ 785 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 786 const char **pzTail /* OUT: End of parsed string */ 787 ){ 788 int rc; 789 int cnt = 0; 790 791 #ifdef SQLITE_ENABLE_API_ARMOR 792 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 793 #endif 794 *ppStmt = 0; 795 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 796 return SQLITE_MISUSE_BKPT; 797 } 798 sqlite3_mutex_enter(db->mutex); 799 sqlite3BtreeEnterAll(db); 800 do{ 801 /* Make multiple attempts to compile the SQL, until it either succeeds 802 ** or encounters a permanent error. A schema problem after one schema 803 ** reset is considered a permanent error. */ 804 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 805 assert( rc==SQLITE_OK || *ppStmt==0 ); 806 }while( rc==SQLITE_ERROR_RETRY 807 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 808 sqlite3BtreeLeaveAll(db); 809 rc = sqlite3ApiExit(db, rc); 810 assert( (rc&db->errMask)==rc ); 811 db->busyHandler.nBusy = 0; 812 sqlite3_mutex_leave(db->mutex); 813 return rc; 814 } 815 816 817 /* 818 ** Rerun the compilation of a statement after a schema change. 819 ** 820 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 821 ** if the statement cannot be recompiled because another connection has 822 ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error 823 ** occurs, return SQLITE_SCHEMA. 824 */ 825 int sqlite3Reprepare(Vdbe *p){ 826 int rc; 827 sqlite3_stmt *pNew; 828 const char *zSql; 829 sqlite3 *db; 830 u8 prepFlags; 831 832 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 833 zSql = sqlite3_sql((sqlite3_stmt *)p); 834 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 835 db = sqlite3VdbeDb(p); 836 assert( sqlite3_mutex_held(db->mutex) ); 837 prepFlags = sqlite3VdbePrepareFlags(p); 838 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 839 if( rc ){ 840 if( rc==SQLITE_NOMEM ){ 841 sqlite3OomFault(db); 842 } 843 assert( pNew==0 ); 844 return rc; 845 }else{ 846 assert( pNew!=0 ); 847 } 848 sqlite3VdbeSwap((Vdbe*)pNew, p); 849 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 850 sqlite3VdbeResetStepResult((Vdbe*)pNew); 851 sqlite3VdbeFinalize((Vdbe*)pNew); 852 return SQLITE_OK; 853 } 854 855 856 /* 857 ** Two versions of the official API. Legacy and new use. In the legacy 858 ** version, the original SQL text is not saved in the prepared statement 859 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 860 ** sqlite3_step(). In the new version, the original SQL text is retained 861 ** and the statement is automatically recompiled if an schema change 862 ** occurs. 863 */ 864 int sqlite3_prepare( 865 sqlite3 *db, /* Database handle. */ 866 const char *zSql, /* UTF-8 encoded SQL statement. */ 867 int nBytes, /* Length of zSql in bytes. */ 868 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 869 const char **pzTail /* OUT: End of parsed string */ 870 ){ 871 int rc; 872 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 873 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 874 return rc; 875 } 876 int sqlite3_prepare_v2( 877 sqlite3 *db, /* Database handle. */ 878 const char *zSql, /* UTF-8 encoded SQL statement. */ 879 int nBytes, /* Length of zSql in bytes. */ 880 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 881 const char **pzTail /* OUT: End of parsed string */ 882 ){ 883 int rc; 884 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 885 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 886 ** parameter. 887 ** 888 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 889 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 890 ppStmt,pzTail); 891 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 892 return rc; 893 } 894 int sqlite3_prepare_v3( 895 sqlite3 *db, /* Database handle. */ 896 const char *zSql, /* UTF-8 encoded SQL statement. */ 897 int nBytes, /* Length of zSql in bytes. */ 898 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 899 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 900 const char **pzTail /* OUT: End of parsed string */ 901 ){ 902 int rc; 903 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 904 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 905 ** which is a bit array consisting of zero or more of the 906 ** SQLITE_PREPARE_* flags. 907 ** 908 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 909 ** directly above. */ 910 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 911 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 912 0,ppStmt,pzTail); 913 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 914 return rc; 915 } 916 917 918 #ifndef SQLITE_OMIT_UTF16 919 /* 920 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 921 */ 922 static int sqlite3Prepare16( 923 sqlite3 *db, /* Database handle. */ 924 const void *zSql, /* UTF-16 encoded SQL statement. */ 925 int nBytes, /* Length of zSql in bytes. */ 926 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 927 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 928 const void **pzTail /* OUT: End of parsed string */ 929 ){ 930 /* This function currently works by first transforming the UTF-16 931 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 932 ** tricky bit is figuring out the pointer to return in *pzTail. 933 */ 934 char *zSql8; 935 const char *zTail8 = 0; 936 int rc = SQLITE_OK; 937 938 #ifdef SQLITE_ENABLE_API_ARMOR 939 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 940 #endif 941 *ppStmt = 0; 942 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 943 return SQLITE_MISUSE_BKPT; 944 } 945 if( nBytes>=0 ){ 946 int sz; 947 const char *z = (const char*)zSql; 948 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 949 nBytes = sz; 950 } 951 sqlite3_mutex_enter(db->mutex); 952 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 953 if( zSql8 ){ 954 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 955 } 956 957 if( zTail8 && pzTail ){ 958 /* If sqlite3_prepare returns a tail pointer, we calculate the 959 ** equivalent pointer into the UTF-16 string by counting the unicode 960 ** characters between zSql8 and zTail8, and then returning a pointer 961 ** the same number of characters into the UTF-16 string. 962 */ 963 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 964 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); 965 } 966 sqlite3DbFree(db, zSql8); 967 rc = sqlite3ApiExit(db, rc); 968 sqlite3_mutex_leave(db->mutex); 969 return rc; 970 } 971 972 /* 973 ** Two versions of the official API. Legacy and new use. In the legacy 974 ** version, the original SQL text is not saved in the prepared statement 975 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 976 ** sqlite3_step(). In the new version, the original SQL text is retained 977 ** and the statement is automatically recompiled if an schema change 978 ** occurs. 979 */ 980 int sqlite3_prepare16( 981 sqlite3 *db, /* Database handle. */ 982 const void *zSql, /* UTF-16 encoded SQL statement. */ 983 int nBytes, /* Length of zSql in bytes. */ 984 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 985 const void **pzTail /* OUT: End of parsed string */ 986 ){ 987 int rc; 988 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 989 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 990 return rc; 991 } 992 int sqlite3_prepare16_v2( 993 sqlite3 *db, /* Database handle. */ 994 const void *zSql, /* UTF-16 encoded SQL statement. */ 995 int nBytes, /* Length of zSql in bytes. */ 996 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 997 const void **pzTail /* OUT: End of parsed string */ 998 ){ 999 int rc; 1000 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 1001 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1002 return rc; 1003 } 1004 int sqlite3_prepare16_v3( 1005 sqlite3 *db, /* Database handle. */ 1006 const void *zSql, /* UTF-16 encoded SQL statement. */ 1007 int nBytes, /* Length of zSql in bytes. */ 1008 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 1009 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 1010 const void **pzTail /* OUT: End of parsed string */ 1011 ){ 1012 int rc; 1013 rc = sqlite3Prepare16(db,zSql,nBytes, 1014 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 1015 ppStmt,pzTail); 1016 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 1017 return rc; 1018 } 1019 1020 #endif /* SQLITE_OMIT_UTF16 */ 1021