xref: /sqlite-3.40.0/src/pragma.c (revision e89feee5)
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15 
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 #  if defined(__APPLE__)
18 #    define SQLITE_ENABLE_LOCKING_STYLE 1
19 #  else
20 #    define SQLITE_ENABLE_LOCKING_STYLE 0
21 #  endif
22 #endif
23 
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object.  This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly.  Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32 
33 /*
34 ** Interpret the given string as a safety level.  Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
36 ** unrecognized string argument.  The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
41 ** to support legacy SQL code.  The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45                              /* 123456789 123456789 123 */
46   static const char zText[] = "onoffalseyestruextrafull";
47   static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
48   static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
49   static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
50                             /* on no off false yes true extra full */
51   int i, n;
52   if( sqlite3Isdigit(*z) ){
53     return (u8)sqlite3Atoi(z);
54   }
55   n = sqlite3Strlen30(z);
56   for(i=0; i<ArraySize(iLength); i++){
57     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58      && (!omitFull || iValue[i]<=1)
59     ){
60       return iValue[i];
61     }
62   }
63   return dflt;
64 }
65 
66 /*
67 ** Interpret the given string as a boolean value.
68 */
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70   return getSafetyLevel(z,1,dflt)!=0;
71 }
72 
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing.  So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78 
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
82 static int getLockingMode(const char *z){
83   if( z ){
84     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86   }
87   return PAGER_LOCKINGMODE_QUERY;
88 }
89 
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
97 static int getAutoVacuum(const char *z){
98   int i;
99   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102   i = sqlite3Atoi(z);
103   return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106 
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
113 static int getTempStore(const char *z){
114   if( z[0]>='0' && z[0]<='2' ){
115     return z[0] - '0';
116   }else if( sqlite3StrICmp(z, "file")==0 ){
117     return 1;
118   }else if( sqlite3StrICmp(z, "memory")==0 ){
119     return 2;
120   }else{
121     return 0;
122   }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125 
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
131 static int invalidateTempStorage(Parse *pParse){
132   sqlite3 *db = pParse->db;
133   if( db->aDb[1].pBt!=0 ){
134     if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136         "from within a transaction");
137       return SQLITE_ERROR;
138     }
139     sqlite3BtreeClose(db->aDb[1].pBt);
140     db->aDb[1].pBt = 0;
141     sqlite3ResetAllSchemasOfConnection(db);
142   }
143   return SQLITE_OK;
144 }
145 #endif /* SQLITE_PAGER_PRAGMAS */
146 
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
148 /*
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
152 */
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154   int ts = getTempStore(zStorageType);
155   sqlite3 *db = pParse->db;
156   if( db->temp_store==ts ) return SQLITE_OK;
157   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158     return SQLITE_ERROR;
159   }
160   db->temp_store = (u8)ts;
161   return SQLITE_OK;
162 }
163 #endif /* SQLITE_PAGER_PRAGMAS */
164 
165 /*
166 ** Set result column names for a pragma.
167 */
168 static void setPragmaResultColumnNames(
169   Vdbe *v,                     /* The query under construction */
170   const PragmaName *pPragma    /* The pragma */
171 ){
172   u8 n = pPragma->nPragCName;
173   sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174   if( n==0 ){
175     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176   }else{
177     int i, j;
178     for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179       sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
180     }
181   }
182 }
183 
184 /*
185 ** Generate code to return a single integer value.
186 */
187 static void returnSingleInt(Vdbe *v, i64 value){
188   sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189   sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
190 }
191 
192 /*
193 ** Generate code to return a single text value.
194 */
195 static void returnSingleText(
196   Vdbe *v,                /* Prepared statement under construction */
197   const char *zValue      /* Value to be returned */
198 ){
199   if( zValue ){
200     sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
202   }
203 }
204 
205 
206 /*
207 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
208 ** set these values for all pagers.
209 */
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212   if( db->autoCommit ){
213     Db *pDb = db->aDb;
214     int n = db->nDb;
215     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219              ==  PAGER_FLAGS_MASK );
220     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221     while( (n--) > 0 ){
222       if( pDb->pBt ){
223         sqlite3BtreeSetPagerFlags(pDb->pBt,
224                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
225       }
226       pDb++;
227     }
228   }
229 }
230 #else
231 # define setAllPagerFlags(X)  /* no-op */
232 #endif
233 
234 
235 /*
236 ** Return a human-readable name for a constraint resolution action.
237 */
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240   const char *zName;
241   switch( action ){
242     case OE_SetNull:  zName = "SET NULL";        break;
243     case OE_SetDflt:  zName = "SET DEFAULT";     break;
244     case OE_Cascade:  zName = "CASCADE";         break;
245     case OE_Restrict: zName = "RESTRICT";        break;
246     default:          zName = "NO ACTION";
247                       assert( action==OE_None ); break;
248   }
249   return zName;
250 }
251 #endif
252 
253 
254 /*
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
258 */
259 const char *sqlite3JournalModename(int eMode){
260   static char * const azModeName[] = {
261     "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263      , "wal"
264 #endif
265   };
266   assert( PAGER_JOURNALMODE_DELETE==0 );
267   assert( PAGER_JOURNALMODE_PERSIST==1 );
268   assert( PAGER_JOURNALMODE_OFF==2 );
269   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270   assert( PAGER_JOURNALMODE_MEMORY==4 );
271   assert( PAGER_JOURNALMODE_WAL==5 );
272   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
273 
274   if( eMode==ArraySize(azModeName) ) return 0;
275   return azModeName[eMode];
276 }
277 
278 /*
279 ** Locate a pragma in the aPragmaName[] array.
280 */
281 static const PragmaName *pragmaLocate(const char *zName){
282   int upr, lwr, mid = 0, rc;
283   lwr = 0;
284   upr = ArraySize(aPragmaName)-1;
285   while( lwr<=upr ){
286     mid = (lwr+upr)/2;
287     rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288     if( rc==0 ) break;
289     if( rc<0 ){
290       upr = mid - 1;
291     }else{
292       lwr = mid + 1;
293     }
294   }
295   return lwr>upr ? 0 : &aPragmaName[mid];
296 }
297 
298 /*
299 ** Helper subroutine for PRAGMA integrity_check:
300 **
301 ** Generate code to output a single-column result row with a value of the
302 ** string held in register 3.  Decrement the result count in register 1
303 ** and halt if the maximum number of result rows have been issued.
304 */
305 static int integrityCheckResultRow(Vdbe *v){
306   int addr;
307   sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
308   addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
309   VdbeCoverage(v);
310   sqlite3VdbeAddOp0(v, OP_Halt);
311   return addr;
312 }
313 
314 /*
315 ** Process a pragma statement.
316 **
317 ** Pragmas are of this form:
318 **
319 **      PRAGMA [schema.]id [= value]
320 **
321 ** The identifier might also be a string.  The value is a string, and
322 ** identifier, or a number.  If minusFlag is true, then the value is
323 ** a number that was preceded by a minus sign.
324 **
325 ** If the left side is "database.id" then pId1 is the database name
326 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
327 ** id and pId2 is any empty string.
328 */
329 void sqlite3Pragma(
330   Parse *pParse,
331   Token *pId1,        /* First part of [schema.]id field */
332   Token *pId2,        /* Second part of [schema.]id field, or NULL */
333   Token *pValue,      /* Token for <value>, or NULL */
334   int minusFlag       /* True if a '-' sign preceded <value> */
335 ){
336   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
337   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
338   const char *zDb = 0;   /* The database name */
339   Token *pId;            /* Pointer to <id> token */
340   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
341   int iDb;               /* Database index for <database> */
342   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
343   sqlite3 *db = pParse->db;    /* The database connection */
344   Db *pDb;                     /* The specific database being pragmaed */
345   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
346   const PragmaName *pPragma;   /* The pragma */
347 
348   if( v==0 ) return;
349   sqlite3VdbeRunOnlyOnce(v);
350   pParse->nMem = 2;
351 
352   /* Interpret the [schema.] part of the pragma statement. iDb is the
353   ** index of the database this pragma is being applied to in db.aDb[]. */
354   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
355   if( iDb<0 ) return;
356   pDb = &db->aDb[iDb];
357 
358   /* If the temp database has been explicitly named as part of the
359   ** pragma, make sure it is open.
360   */
361   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
362     return;
363   }
364 
365   zLeft = sqlite3NameFromToken(db, pId);
366   if( !zLeft ) return;
367   if( minusFlag ){
368     zRight = sqlite3MPrintf(db, "-%T", pValue);
369   }else{
370     zRight = sqlite3NameFromToken(db, pValue);
371   }
372 
373   assert( pId2 );
374   zDb = pId2->n>0 ? pDb->zDbSName : 0;
375   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
376     goto pragma_out;
377   }
378 
379   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
380   ** connection.  If it returns SQLITE_OK, then assume that the VFS
381   ** handled the pragma and generate a no-op prepared statement.
382   **
383   ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
384   ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
385   ** object corresponding to the database file to which the pragma
386   ** statement refers.
387   **
388   ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
389   ** file control is an array of pointers to strings (char**) in which the
390   ** second element of the array is the name of the pragma and the third
391   ** element is the argument to the pragma or NULL if the pragma has no
392   ** argument.
393   */
394   aFcntl[0] = 0;
395   aFcntl[1] = zLeft;
396   aFcntl[2] = zRight;
397   aFcntl[3] = 0;
398   db->busyHandler.nBusy = 0;
399   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
400   if( rc==SQLITE_OK ){
401     sqlite3VdbeSetNumCols(v, 1);
402     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
403     returnSingleText(v, aFcntl[0]);
404     sqlite3_free(aFcntl[0]);
405     goto pragma_out;
406   }
407   if( rc!=SQLITE_NOTFOUND ){
408     if( aFcntl[0] ){
409       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
410       sqlite3_free(aFcntl[0]);
411     }
412     pParse->nErr++;
413     pParse->rc = rc;
414     goto pragma_out;
415   }
416 
417   /* Locate the pragma in the lookup table */
418   pPragma = pragmaLocate(zLeft);
419   if( pPragma==0 ) goto pragma_out;
420 
421   /* Make sure the database schema is loaded if the pragma requires that */
422   if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
423     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
424   }
425 
426   /* Register the result column names for pragmas that return results */
427   if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
428    && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
429   ){
430     setPragmaResultColumnNames(v, pPragma);
431   }
432 
433   /* Jump to the appropriate pragma handler */
434   switch( pPragma->ePragTyp ){
435 
436 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
437   /*
438   **  PRAGMA [schema.]default_cache_size
439   **  PRAGMA [schema.]default_cache_size=N
440   **
441   ** The first form reports the current persistent setting for the
442   ** page cache size.  The value returned is the maximum number of
443   ** pages in the page cache.  The second form sets both the current
444   ** page cache size value and the persistent page cache size value
445   ** stored in the database file.
446   **
447   ** Older versions of SQLite would set the default cache size to a
448   ** negative number to indicate synchronous=OFF.  These days, synchronous
449   ** is always on by default regardless of the sign of the default cache
450   ** size.  But continue to take the absolute value of the default cache
451   ** size of historical compatibility.
452   */
453   case PragTyp_DEFAULT_CACHE_SIZE: {
454     static const int iLn = VDBE_OFFSET_LINENO(2);
455     static const VdbeOpList getCacheSize[] = {
456       { OP_Transaction, 0, 0,        0},                         /* 0 */
457       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
458       { OP_IfPos,       1, 8,        0},
459       { OP_Integer,     0, 2,        0},
460       { OP_Subtract,    1, 2,        1},
461       { OP_IfPos,       1, 8,        0},
462       { OP_Integer,     0, 1,        0},                         /* 6 */
463       { OP_Noop,        0, 0,        0},
464       { OP_ResultRow,   1, 1,        0},
465     };
466     VdbeOp *aOp;
467     sqlite3VdbeUsesBtree(v, iDb);
468     if( !zRight ){
469       pParse->nMem += 2;
470       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
471       aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
472       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
473       aOp[0].p1 = iDb;
474       aOp[1].p1 = iDb;
475       aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
476     }else{
477       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
478       sqlite3BeginWriteOperation(pParse, 0, iDb);
479       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
480       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
481       pDb->pSchema->cache_size = size;
482       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
483     }
484     break;
485   }
486 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
487 
488 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
489   /*
490   **  PRAGMA [schema.]page_size
491   **  PRAGMA [schema.]page_size=N
492   **
493   ** The first form reports the current setting for the
494   ** database page size in bytes.  The second form sets the
495   ** database page size value.  The value can only be set if
496   ** the database has not yet been created.
497   */
498   case PragTyp_PAGE_SIZE: {
499     Btree *pBt = pDb->pBt;
500     assert( pBt!=0 );
501     if( !zRight ){
502       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
503       returnSingleInt(v, size);
504     }else{
505       /* Malloc may fail when setting the page-size, as there is an internal
506       ** buffer that the pager module resizes using sqlite3_realloc().
507       */
508       db->nextPagesize = sqlite3Atoi(zRight);
509       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
510         sqlite3OomFault(db);
511       }
512     }
513     break;
514   }
515 
516   /*
517   **  PRAGMA [schema.]secure_delete
518   **  PRAGMA [schema.]secure_delete=ON/OFF/FAST
519   **
520   ** The first form reports the current setting for the
521   ** secure_delete flag.  The second form changes the secure_delete
522   ** flag setting and reports the new value.
523   */
524   case PragTyp_SECURE_DELETE: {
525     Btree *pBt = pDb->pBt;
526     int b = -1;
527     assert( pBt!=0 );
528     if( zRight ){
529       if( sqlite3_stricmp(zRight, "fast")==0 ){
530         b = 2;
531       }else{
532         b = sqlite3GetBoolean(zRight, 0);
533       }
534     }
535     if( pId2->n==0 && b>=0 ){
536       int ii;
537       for(ii=0; ii<db->nDb; ii++){
538         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
539       }
540     }
541     b = sqlite3BtreeSecureDelete(pBt, b);
542     returnSingleInt(v, b);
543     break;
544   }
545 
546   /*
547   **  PRAGMA [schema.]max_page_count
548   **  PRAGMA [schema.]max_page_count=N
549   **
550   ** The first form reports the current setting for the
551   ** maximum number of pages in the database file.  The
552   ** second form attempts to change this setting.  Both
553   ** forms return the current setting.
554   **
555   ** The absolute value of N is used.  This is undocumented and might
556   ** change.  The only purpose is to provide an easy way to test
557   ** the sqlite3AbsInt32() function.
558   **
559   **  PRAGMA [schema.]page_count
560   **
561   ** Return the number of pages in the specified database.
562   */
563   case PragTyp_PAGE_COUNT: {
564     int iReg;
565     sqlite3CodeVerifySchema(pParse, iDb);
566     iReg = ++pParse->nMem;
567     if( sqlite3Tolower(zLeft[0])=='p' ){
568       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
569     }else{
570       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
571                         sqlite3AbsInt32(sqlite3Atoi(zRight)));
572     }
573     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
574     break;
575   }
576 
577   /*
578   **  PRAGMA [schema.]locking_mode
579   **  PRAGMA [schema.]locking_mode = (normal|exclusive)
580   */
581   case PragTyp_LOCKING_MODE: {
582     const char *zRet = "normal";
583     int eMode = getLockingMode(zRight);
584 
585     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
586       /* Simple "PRAGMA locking_mode;" statement. This is a query for
587       ** the current default locking mode (which may be different to
588       ** the locking-mode of the main database).
589       */
590       eMode = db->dfltLockMode;
591     }else{
592       Pager *pPager;
593       if( pId2->n==0 ){
594         /* This indicates that no database name was specified as part
595         ** of the PRAGMA command. In this case the locking-mode must be
596         ** set on all attached databases, as well as the main db file.
597         **
598         ** Also, the sqlite3.dfltLockMode variable is set so that
599         ** any subsequently attached databases also use the specified
600         ** locking mode.
601         */
602         int ii;
603         assert(pDb==&db->aDb[0]);
604         for(ii=2; ii<db->nDb; ii++){
605           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
606           sqlite3PagerLockingMode(pPager, eMode);
607         }
608         db->dfltLockMode = (u8)eMode;
609       }
610       pPager = sqlite3BtreePager(pDb->pBt);
611       eMode = sqlite3PagerLockingMode(pPager, eMode);
612     }
613 
614     assert( eMode==PAGER_LOCKINGMODE_NORMAL
615             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
616     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
617       zRet = "exclusive";
618     }
619     returnSingleText(v, zRet);
620     break;
621   }
622 
623   /*
624   **  PRAGMA [schema.]journal_mode
625   **  PRAGMA [schema.]journal_mode =
626   **                      (delete|persist|off|truncate|memory|wal|off)
627   */
628   case PragTyp_JOURNAL_MODE: {
629     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
630     int ii;           /* Loop counter */
631 
632     if( zRight==0 ){
633       /* If there is no "=MODE" part of the pragma, do a query for the
634       ** current mode */
635       eMode = PAGER_JOURNALMODE_QUERY;
636     }else{
637       const char *zMode;
638       int n = sqlite3Strlen30(zRight);
639       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
640         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
641       }
642       if( !zMode ){
643         /* If the "=MODE" part does not match any known journal mode,
644         ** then do a query */
645         eMode = PAGER_JOURNALMODE_QUERY;
646       }
647     }
648     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
649       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
650       iDb = 0;
651       pId2->n = 1;
652     }
653     for(ii=db->nDb-1; ii>=0; ii--){
654       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
655         sqlite3VdbeUsesBtree(v, ii);
656         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
657       }
658     }
659     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
660     break;
661   }
662 
663   /*
664   **  PRAGMA [schema.]journal_size_limit
665   **  PRAGMA [schema.]journal_size_limit=N
666   **
667   ** Get or set the size limit on rollback journal files.
668   */
669   case PragTyp_JOURNAL_SIZE_LIMIT: {
670     Pager *pPager = sqlite3BtreePager(pDb->pBt);
671     i64 iLimit = -2;
672     if( zRight ){
673       sqlite3DecOrHexToI64(zRight, &iLimit);
674       if( iLimit<-1 ) iLimit = -1;
675     }
676     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
677     returnSingleInt(v, iLimit);
678     break;
679   }
680 
681 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
682 
683   /*
684   **  PRAGMA [schema.]auto_vacuum
685   **  PRAGMA [schema.]auto_vacuum=N
686   **
687   ** Get or set the value of the database 'auto-vacuum' parameter.
688   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
689   */
690 #ifndef SQLITE_OMIT_AUTOVACUUM
691   case PragTyp_AUTO_VACUUM: {
692     Btree *pBt = pDb->pBt;
693     assert( pBt!=0 );
694     if( !zRight ){
695       returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
696     }else{
697       int eAuto = getAutoVacuum(zRight);
698       assert( eAuto>=0 && eAuto<=2 );
699       db->nextAutovac = (u8)eAuto;
700       /* Call SetAutoVacuum() to set initialize the internal auto and
701       ** incr-vacuum flags. This is required in case this connection
702       ** creates the database file. It is important that it is created
703       ** as an auto-vacuum capable db.
704       */
705       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
706       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
707         /* When setting the auto_vacuum mode to either "full" or
708         ** "incremental", write the value of meta[6] in the database
709         ** file. Before writing to meta[6], check that meta[3] indicates
710         ** that this really is an auto-vacuum capable database.
711         */
712         static const int iLn = VDBE_OFFSET_LINENO(2);
713         static const VdbeOpList setMeta6[] = {
714           { OP_Transaction,    0,         1,                 0},    /* 0 */
715           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
716           { OP_If,             1,         0,                 0},    /* 2 */
717           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
718           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
719         };
720         VdbeOp *aOp;
721         int iAddr = sqlite3VdbeCurrentAddr(v);
722         sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
723         aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
724         if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
725         aOp[0].p1 = iDb;
726         aOp[1].p1 = iDb;
727         aOp[2].p2 = iAddr+4;
728         aOp[4].p1 = iDb;
729         aOp[4].p3 = eAuto - 1;
730         sqlite3VdbeUsesBtree(v, iDb);
731       }
732     }
733     break;
734   }
735 #endif
736 
737   /*
738   **  PRAGMA [schema.]incremental_vacuum(N)
739   **
740   ** Do N steps of incremental vacuuming on a database.
741   */
742 #ifndef SQLITE_OMIT_AUTOVACUUM
743   case PragTyp_INCREMENTAL_VACUUM: {
744     int iLimit, addr;
745     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
746       iLimit = 0x7fffffff;
747     }
748     sqlite3BeginWriteOperation(pParse, 0, iDb);
749     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
750     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
751     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
752     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
753     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
754     sqlite3VdbeJumpHere(v, addr);
755     break;
756   }
757 #endif
758 
759 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
760   /*
761   **  PRAGMA [schema.]cache_size
762   **  PRAGMA [schema.]cache_size=N
763   **
764   ** The first form reports the current local setting for the
765   ** page cache size. The second form sets the local
766   ** page cache size value.  If N is positive then that is the
767   ** number of pages in the cache.  If N is negative, then the
768   ** number of pages is adjusted so that the cache uses -N kibibytes
769   ** of memory.
770   */
771   case PragTyp_CACHE_SIZE: {
772     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
773     if( !zRight ){
774       returnSingleInt(v, pDb->pSchema->cache_size);
775     }else{
776       int size = sqlite3Atoi(zRight);
777       pDb->pSchema->cache_size = size;
778       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
779     }
780     break;
781   }
782 
783   /*
784   **  PRAGMA [schema.]cache_spill
785   **  PRAGMA cache_spill=BOOLEAN
786   **  PRAGMA [schema.]cache_spill=N
787   **
788   ** The first form reports the current local setting for the
789   ** page cache spill size. The second form turns cache spill on
790   ** or off.  When turnning cache spill on, the size is set to the
791   ** current cache_size.  The third form sets a spill size that
792   ** may be different form the cache size.
793   ** If N is positive then that is the
794   ** number of pages in the cache.  If N is negative, then the
795   ** number of pages is adjusted so that the cache uses -N kibibytes
796   ** of memory.
797   **
798   ** If the number of cache_spill pages is less then the number of
799   ** cache_size pages, no spilling occurs until the page count exceeds
800   ** the number of cache_size pages.
801   **
802   ** The cache_spill=BOOLEAN setting applies to all attached schemas,
803   ** not just the schema specified.
804   */
805   case PragTyp_CACHE_SPILL: {
806     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
807     if( !zRight ){
808       returnSingleInt(v,
809          (db->flags & SQLITE_CacheSpill)==0 ? 0 :
810             sqlite3BtreeSetSpillSize(pDb->pBt,0));
811     }else{
812       int size = 1;
813       if( sqlite3GetInt32(zRight, &size) ){
814         sqlite3BtreeSetSpillSize(pDb->pBt, size);
815       }
816       if( sqlite3GetBoolean(zRight, size!=0) ){
817         db->flags |= SQLITE_CacheSpill;
818       }else{
819         db->flags &= ~SQLITE_CacheSpill;
820       }
821       setAllPagerFlags(db);
822     }
823     break;
824   }
825 
826   /*
827   **  PRAGMA [schema.]mmap_size(N)
828   **
829   ** Used to set mapping size limit. The mapping size limit is
830   ** used to limit the aggregate size of all memory mapped regions of the
831   ** database file. If this parameter is set to zero, then memory mapping
832   ** is not used at all.  If N is negative, then the default memory map
833   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
834   ** The parameter N is measured in bytes.
835   **
836   ** This value is advisory.  The underlying VFS is free to memory map
837   ** as little or as much as it wants.  Except, if N is set to 0 then the
838   ** upper layers will never invoke the xFetch interfaces to the VFS.
839   */
840   case PragTyp_MMAP_SIZE: {
841     sqlite3_int64 sz;
842 #if SQLITE_MAX_MMAP_SIZE>0
843     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
844     if( zRight ){
845       int ii;
846       sqlite3DecOrHexToI64(zRight, &sz);
847       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
848       if( pId2->n==0 ) db->szMmap = sz;
849       for(ii=db->nDb-1; ii>=0; ii--){
850         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
851           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
852         }
853       }
854     }
855     sz = -1;
856     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
857 #else
858     sz = 0;
859     rc = SQLITE_OK;
860 #endif
861     if( rc==SQLITE_OK ){
862       returnSingleInt(v, sz);
863     }else if( rc!=SQLITE_NOTFOUND ){
864       pParse->nErr++;
865       pParse->rc = rc;
866     }
867     break;
868   }
869 
870   /*
871   **   PRAGMA temp_store
872   **   PRAGMA temp_store = "default"|"memory"|"file"
873   **
874   ** Return or set the local value of the temp_store flag.  Changing
875   ** the local value does not make changes to the disk file and the default
876   ** value will be restored the next time the database is opened.
877   **
878   ** Note that it is possible for the library compile-time options to
879   ** override this setting
880   */
881   case PragTyp_TEMP_STORE: {
882     if( !zRight ){
883       returnSingleInt(v, db->temp_store);
884     }else{
885       changeTempStorage(pParse, zRight);
886     }
887     break;
888   }
889 
890   /*
891   **   PRAGMA temp_store_directory
892   **   PRAGMA temp_store_directory = ""|"directory_name"
893   **
894   ** Return or set the local value of the temp_store_directory flag.  Changing
895   ** the value sets a specific directory to be used for temporary files.
896   ** Setting to a null string reverts to the default temporary directory search.
897   ** If temporary directory is changed, then invalidateTempStorage.
898   **
899   */
900   case PragTyp_TEMP_STORE_DIRECTORY: {
901     if( !zRight ){
902       returnSingleText(v, sqlite3_temp_directory);
903     }else{
904 #ifndef SQLITE_OMIT_WSD
905       if( zRight[0] ){
906         int res;
907         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
908         if( rc!=SQLITE_OK || res==0 ){
909           sqlite3ErrorMsg(pParse, "not a writable directory");
910           goto pragma_out;
911         }
912       }
913       if( SQLITE_TEMP_STORE==0
914        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
915        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
916       ){
917         invalidateTempStorage(pParse);
918       }
919       sqlite3_free(sqlite3_temp_directory);
920       if( zRight[0] ){
921         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
922       }else{
923         sqlite3_temp_directory = 0;
924       }
925 #endif /* SQLITE_OMIT_WSD */
926     }
927     break;
928   }
929 
930 #if SQLITE_OS_WIN
931   /*
932   **   PRAGMA data_store_directory
933   **   PRAGMA data_store_directory = ""|"directory_name"
934   **
935   ** Return or set the local value of the data_store_directory flag.  Changing
936   ** the value sets a specific directory to be used for database files that
937   ** were specified with a relative pathname.  Setting to a null string reverts
938   ** to the default database directory, which for database files specified with
939   ** a relative path will probably be based on the current directory for the
940   ** process.  Database file specified with an absolute path are not impacted
941   ** by this setting, regardless of its value.
942   **
943   */
944   case PragTyp_DATA_STORE_DIRECTORY: {
945     if( !zRight ){
946       returnSingleText(v, sqlite3_data_directory);
947     }else{
948 #ifndef SQLITE_OMIT_WSD
949       if( zRight[0] ){
950         int res;
951         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
952         if( rc!=SQLITE_OK || res==0 ){
953           sqlite3ErrorMsg(pParse, "not a writable directory");
954           goto pragma_out;
955         }
956       }
957       sqlite3_free(sqlite3_data_directory);
958       if( zRight[0] ){
959         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
960       }else{
961         sqlite3_data_directory = 0;
962       }
963 #endif /* SQLITE_OMIT_WSD */
964     }
965     break;
966   }
967 #endif
968 
969 #if SQLITE_ENABLE_LOCKING_STYLE
970   /*
971   **   PRAGMA [schema.]lock_proxy_file
972   **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
973   **
974   ** Return or set the value of the lock_proxy_file flag.  Changing
975   ** the value sets a specific file to be used for database access locks.
976   **
977   */
978   case PragTyp_LOCK_PROXY_FILE: {
979     if( !zRight ){
980       Pager *pPager = sqlite3BtreePager(pDb->pBt);
981       char *proxy_file_path = NULL;
982       sqlite3_file *pFile = sqlite3PagerFile(pPager);
983       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
984                            &proxy_file_path);
985       returnSingleText(v, proxy_file_path);
986     }else{
987       Pager *pPager = sqlite3BtreePager(pDb->pBt);
988       sqlite3_file *pFile = sqlite3PagerFile(pPager);
989       int res;
990       if( zRight[0] ){
991         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
992                                      zRight);
993       } else {
994         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
995                                      NULL);
996       }
997       if( res!=SQLITE_OK ){
998         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
999         goto pragma_out;
1000       }
1001     }
1002     break;
1003   }
1004 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1005 
1006   /*
1007   **   PRAGMA [schema.]synchronous
1008   **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1009   **
1010   ** Return or set the local value of the synchronous flag.  Changing
1011   ** the local value does not make changes to the disk file and the
1012   ** default value will be restored the next time the database is
1013   ** opened.
1014   */
1015   case PragTyp_SYNCHRONOUS: {
1016     if( !zRight ){
1017       returnSingleInt(v, pDb->safety_level-1);
1018     }else{
1019       if( !db->autoCommit ){
1020         sqlite3ErrorMsg(pParse,
1021             "Safety level may not be changed inside a transaction");
1022       }else if( iDb!=1 ){
1023         int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1024         if( iLevel==0 ) iLevel = 1;
1025         pDb->safety_level = iLevel;
1026         pDb->bSyncSet = 1;
1027         setAllPagerFlags(db);
1028       }
1029     }
1030     break;
1031   }
1032 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1033 
1034 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1035   case PragTyp_FLAG: {
1036     if( zRight==0 ){
1037       setPragmaResultColumnNames(v, pPragma);
1038       returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1039     }else{
1040       u64 mask = pPragma->iArg;    /* Mask of bits to set or clear. */
1041       if( db->autoCommit==0 ){
1042         /* Foreign key support may not be enabled or disabled while not
1043         ** in auto-commit mode.  */
1044         mask &= ~(SQLITE_ForeignKeys);
1045       }
1046 #if SQLITE_USER_AUTHENTICATION
1047       if( db->auth.authLevel==UAUTH_User ){
1048         /* Do not allow non-admin users to modify the schema arbitrarily */
1049         mask &= ~(SQLITE_WriteSchema);
1050       }
1051 #endif
1052 
1053       if( sqlite3GetBoolean(zRight, 0) ){
1054         db->flags |= mask;
1055       }else{
1056         db->flags &= ~mask;
1057         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1058       }
1059 
1060       /* Many of the flag-pragmas modify the code generated by the SQL
1061       ** compiler (eg. count_changes). So add an opcode to expire all
1062       ** compiled SQL statements after modifying a pragma value.
1063       */
1064       sqlite3VdbeAddOp0(v, OP_Expire);
1065       setAllPagerFlags(db);
1066     }
1067     break;
1068   }
1069 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1070 
1071 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1072   /*
1073   **   PRAGMA table_info(<table>)
1074   **
1075   ** Return a single row for each column of the named table. The columns of
1076   ** the returned data set are:
1077   **
1078   ** cid:        Column id (numbered from left to right, starting at 0)
1079   ** name:       Column name
1080   ** type:       Column declaration type.
1081   ** notnull:    True if 'NOT NULL' is part of column declaration
1082   ** dflt_value: The default value for the column, if any.
1083   ** pk:         Non-zero for PK fields.
1084   */
1085   case PragTyp_TABLE_INFO: if( zRight ){
1086     Table *pTab;
1087     pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1088     if( pTab ){
1089       int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1090       int i, k;
1091       int nHidden = 0;
1092       Column *pCol;
1093       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1094       pParse->nMem = 7;
1095       sqlite3CodeVerifySchema(pParse, iTabDb);
1096       sqlite3ViewGetColumnNames(pParse, pTab);
1097       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1098         int isHidden = IsHiddenColumn(pCol);
1099         if( isHidden && pPragma->iArg==0 ){
1100           nHidden++;
1101           continue;
1102         }
1103         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1104           k = 0;
1105         }else if( pPk==0 ){
1106           k = 1;
1107         }else{
1108           for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1109         }
1110         assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
1111         sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1112                i-nHidden,
1113                pCol->zName,
1114                sqlite3ColumnType(pCol,""),
1115                pCol->notNull ? 1 : 0,
1116                pCol->pDflt ? pCol->pDflt->u.zToken : 0,
1117                k,
1118                isHidden);
1119       }
1120     }
1121   }
1122   break;
1123 
1124 #ifdef SQLITE_DEBUG
1125   case PragTyp_STATS: {
1126     Index *pIdx;
1127     HashElem *i;
1128     pParse->nMem = 5;
1129     sqlite3CodeVerifySchema(pParse, iDb);
1130     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1131       Table *pTab = sqliteHashData(i);
1132       sqlite3VdbeMultiLoad(v, 1, "ssiii",
1133            pTab->zName,
1134            0,
1135            pTab->szTabRow,
1136            pTab->nRowLogEst,
1137            pTab->tabFlags);
1138       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1139         sqlite3VdbeMultiLoad(v, 2, "siiiX",
1140            pIdx->zName,
1141            pIdx->szIdxRow,
1142            pIdx->aiRowLogEst[0],
1143            pIdx->hasStat1);
1144         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1145       }
1146     }
1147   }
1148   break;
1149 #endif
1150 
1151   case PragTyp_INDEX_INFO: if( zRight ){
1152     Index *pIdx;
1153     Table *pTab;
1154     pIdx = sqlite3FindIndex(db, zRight, zDb);
1155     if( pIdx ){
1156       int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1157       int i;
1158       int mx;
1159       if( pPragma->iArg ){
1160         /* PRAGMA index_xinfo (newer version with more rows and columns) */
1161         mx = pIdx->nColumn;
1162         pParse->nMem = 6;
1163       }else{
1164         /* PRAGMA index_info (legacy version) */
1165         mx = pIdx->nKeyCol;
1166         pParse->nMem = 3;
1167       }
1168       pTab = pIdx->pTable;
1169       sqlite3CodeVerifySchema(pParse, iIdxDb);
1170       assert( pParse->nMem<=pPragma->nPragCName );
1171       for(i=0; i<mx; i++){
1172         i16 cnum = pIdx->aiColumn[i];
1173         sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1174                              cnum<0 ? 0 : pTab->aCol[cnum].zName);
1175         if( pPragma->iArg ){
1176           sqlite3VdbeMultiLoad(v, 4, "isiX",
1177             pIdx->aSortOrder[i],
1178             pIdx->azColl[i],
1179             i<pIdx->nKeyCol);
1180         }
1181         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1182       }
1183     }
1184   }
1185   break;
1186 
1187   case PragTyp_INDEX_LIST: if( zRight ){
1188     Index *pIdx;
1189     Table *pTab;
1190     int i;
1191     pTab = sqlite3FindTable(db, zRight, zDb);
1192     if( pTab ){
1193       int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1194       pParse->nMem = 5;
1195       sqlite3CodeVerifySchema(pParse, iTabDb);
1196       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1197         const char *azOrigin[] = { "c", "u", "pk" };
1198         sqlite3VdbeMultiLoad(v, 1, "isisi",
1199            i,
1200            pIdx->zName,
1201            IsUniqueIndex(pIdx),
1202            azOrigin[pIdx->idxType],
1203            pIdx->pPartIdxWhere!=0);
1204       }
1205     }
1206   }
1207   break;
1208 
1209   case PragTyp_DATABASE_LIST: {
1210     int i;
1211     pParse->nMem = 3;
1212     for(i=0; i<db->nDb; i++){
1213       if( db->aDb[i].pBt==0 ) continue;
1214       assert( db->aDb[i].zDbSName!=0 );
1215       sqlite3VdbeMultiLoad(v, 1, "iss",
1216          i,
1217          db->aDb[i].zDbSName,
1218          sqlite3BtreeGetFilename(db->aDb[i].pBt));
1219     }
1220   }
1221   break;
1222 
1223   case PragTyp_COLLATION_LIST: {
1224     int i = 0;
1225     HashElem *p;
1226     pParse->nMem = 2;
1227     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1228       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1229       sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1230     }
1231   }
1232   break;
1233 
1234 #ifdef SQLITE_INTROSPECTION_PRAGMAS
1235   case PragTyp_FUNCTION_LIST: {
1236     int i;
1237     HashElem *j;
1238     FuncDef *p;
1239     pParse->nMem = 2;
1240     for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1241       for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1242         if( p->funcFlags & SQLITE_FUNC_INTERNAL ) continue;
1243         sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1);
1244       }
1245     }
1246     for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1247       p = (FuncDef*)sqliteHashData(j);
1248       sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0);
1249     }
1250   }
1251   break;
1252 
1253 #ifndef SQLITE_OMIT_VIRTUALTABLE
1254   case PragTyp_MODULE_LIST: {
1255     HashElem *j;
1256     pParse->nMem = 1;
1257     for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1258       Module *pMod = (Module*)sqliteHashData(j);
1259       sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1260     }
1261   }
1262   break;
1263 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1264 
1265   case PragTyp_PRAGMA_LIST: {
1266     int i;
1267     for(i=0; i<ArraySize(aPragmaName); i++){
1268       sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1269     }
1270   }
1271   break;
1272 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1273 
1274 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1275 
1276 #ifndef SQLITE_OMIT_FOREIGN_KEY
1277   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1278     FKey *pFK;
1279     Table *pTab;
1280     pTab = sqlite3FindTable(db, zRight, zDb);
1281     if( pTab ){
1282       pFK = pTab->pFKey;
1283       if( pFK ){
1284         int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1285         int i = 0;
1286         pParse->nMem = 8;
1287         sqlite3CodeVerifySchema(pParse, iTabDb);
1288         while(pFK){
1289           int j;
1290           for(j=0; j<pFK->nCol; j++){
1291             sqlite3VdbeMultiLoad(v, 1, "iissssss",
1292                    i,
1293                    j,
1294                    pFK->zTo,
1295                    pTab->aCol[pFK->aCol[j].iFrom].zName,
1296                    pFK->aCol[j].zCol,
1297                    actionName(pFK->aAction[1]),  /* ON UPDATE */
1298                    actionName(pFK->aAction[0]),  /* ON DELETE */
1299                    "NONE");
1300           }
1301           ++i;
1302           pFK = pFK->pNextFrom;
1303         }
1304       }
1305     }
1306   }
1307   break;
1308 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1309 
1310 #ifndef SQLITE_OMIT_FOREIGN_KEY
1311 #ifndef SQLITE_OMIT_TRIGGER
1312   case PragTyp_FOREIGN_KEY_CHECK: {
1313     FKey *pFK;             /* A foreign key constraint */
1314     Table *pTab;           /* Child table contain "REFERENCES" keyword */
1315     Table *pParent;        /* Parent table that child points to */
1316     Index *pIdx;           /* Index in the parent table */
1317     int i;                 /* Loop counter:  Foreign key number for pTab */
1318     int j;                 /* Loop counter:  Field of the foreign key */
1319     HashElem *k;           /* Loop counter:  Next table in schema */
1320     int x;                 /* result variable */
1321     int regResult;         /* 3 registers to hold a result row */
1322     int regKey;            /* Register to hold key for checking the FK */
1323     int regRow;            /* Registers to hold a row from pTab */
1324     int addrTop;           /* Top of a loop checking foreign keys */
1325     int addrOk;            /* Jump here if the key is OK */
1326     int *aiCols;           /* child to parent column mapping */
1327 
1328     regResult = pParse->nMem+1;
1329     pParse->nMem += 4;
1330     regKey = ++pParse->nMem;
1331     regRow = ++pParse->nMem;
1332     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1333     while( k ){
1334       int iTabDb;
1335       if( zRight ){
1336         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1337         k = 0;
1338       }else{
1339         pTab = (Table*)sqliteHashData(k);
1340         k = sqliteHashNext(k);
1341       }
1342       if( pTab==0 || pTab->pFKey==0 ) continue;
1343       iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1344       sqlite3CodeVerifySchema(pParse, iTabDb);
1345       sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName);
1346       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1347       sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead);
1348       sqlite3VdbeLoadString(v, regResult, pTab->zName);
1349       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1350         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1351         if( pParent==0 ) continue;
1352         pIdx = 0;
1353         sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName);
1354         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1355         if( x==0 ){
1356           if( pIdx==0 ){
1357             sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead);
1358           }else{
1359             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb);
1360             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1361           }
1362         }else{
1363           k = 0;
1364           break;
1365         }
1366       }
1367       assert( pParse->nErr>0 || pFK==0 );
1368       if( pFK ) break;
1369       if( pParse->nTab<i ) pParse->nTab = i;
1370       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1371       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1372         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1373         pIdx = 0;
1374         aiCols = 0;
1375         if( pParent ){
1376           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1377           assert( x==0 );
1378         }
1379         addrOk = sqlite3VdbeMakeLabel(v);
1380 
1381         /* Generate code to read the child key values into registers
1382         ** regRow..regRow+n. If any of the child key values are NULL, this
1383         ** row cannot cause an FK violation. Jump directly to addrOk in
1384         ** this case. */
1385         for(j=0; j<pFK->nCol; j++){
1386           int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1387           sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1388           sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1389         }
1390 
1391         /* Generate code to query the parent index for a matching parent
1392         ** key. If a match is found, jump to addrOk. */
1393         if( pIdx ){
1394           sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1395               sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1396           sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1397           VdbeCoverage(v);
1398         }else if( pParent ){
1399           int jmp = sqlite3VdbeCurrentAddr(v)+2;
1400           sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1401           sqlite3VdbeGoto(v, addrOk);
1402           assert( pFK->nCol==1 );
1403         }
1404 
1405         /* Generate code to report an FK violation to the caller. */
1406         if( HasRowid(pTab) ){
1407           sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1408         }else{
1409           sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1410         }
1411         sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1412         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1413         sqlite3VdbeResolveLabel(v, addrOk);
1414         sqlite3DbFree(db, aiCols);
1415       }
1416       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1417       sqlite3VdbeJumpHere(v, addrTop);
1418     }
1419   }
1420   break;
1421 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1422 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1423 
1424 #ifndef NDEBUG
1425   case PragTyp_PARSER_TRACE: {
1426     if( zRight ){
1427       if( sqlite3GetBoolean(zRight, 0) ){
1428         sqlite3ParserTrace(stdout, "parser: ");
1429       }else{
1430         sqlite3ParserTrace(0, 0);
1431       }
1432     }
1433   }
1434   break;
1435 #endif
1436 
1437   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
1438   ** used will be case sensitive or not depending on the RHS.
1439   */
1440   case PragTyp_CASE_SENSITIVE_LIKE: {
1441     if( zRight ){
1442       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1443     }
1444   }
1445   break;
1446 
1447 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1448 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1449 #endif
1450 
1451 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1452   /*    PRAGMA integrity_check
1453   **    PRAGMA integrity_check(N)
1454   **    PRAGMA quick_check
1455   **    PRAGMA quick_check(N)
1456   **
1457   ** Verify the integrity of the database.
1458   **
1459   ** The "quick_check" is reduced version of
1460   ** integrity_check designed to detect most database corruption
1461   ** without the overhead of cross-checking indexes.  Quick_check
1462   ** is linear time wherease integrity_check is O(NlogN).
1463   */
1464   case PragTyp_INTEGRITY_CHECK: {
1465     int i, j, addr, mxErr;
1466 
1467     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1468 
1469     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1470     ** then iDb is set to the index of the database identified by <db>.
1471     ** In this case, the integrity of database iDb only is verified by
1472     ** the VDBE created below.
1473     **
1474     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1475     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1476     ** to -1 here, to indicate that the VDBE should verify the integrity
1477     ** of all attached databases.  */
1478     assert( iDb>=0 );
1479     assert( iDb==0 || pId2->z );
1480     if( pId2->z==0 ) iDb = -1;
1481 
1482     /* Initialize the VDBE program */
1483     pParse->nMem = 6;
1484 
1485     /* Set the maximum error count */
1486     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1487     if( zRight ){
1488       sqlite3GetInt32(zRight, &mxErr);
1489       if( mxErr<=0 ){
1490         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1491       }
1492     }
1493     sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1494 
1495     /* Do an integrity check on each database file */
1496     for(i=0; i<db->nDb; i++){
1497       HashElem *x;     /* For looping over tables in the schema */
1498       Hash *pTbls;     /* Set of all tables in the schema */
1499       int *aRoot;      /* Array of root page numbers of all btrees */
1500       int cnt = 0;     /* Number of entries in aRoot[] */
1501       int mxIdx = 0;   /* Maximum number of indexes for any table */
1502 
1503       if( OMIT_TEMPDB && i==1 ) continue;
1504       if( iDb>=0 && i!=iDb ) continue;
1505 
1506       sqlite3CodeVerifySchema(pParse, i);
1507 
1508       /* Do an integrity check of the B-Tree
1509       **
1510       ** Begin by finding the root pages numbers
1511       ** for all tables and indices in the database.
1512       */
1513       assert( sqlite3SchemaMutexHeld(db, i, 0) );
1514       pTbls = &db->aDb[i].pSchema->tblHash;
1515       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1516         Table *pTab = sqliteHashData(x);  /* Current table */
1517         Index *pIdx;                      /* An index on pTab */
1518         int nIdx;                         /* Number of indexes on pTab */
1519         if( HasRowid(pTab) ) cnt++;
1520         for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1521         if( nIdx>mxIdx ) mxIdx = nIdx;
1522       }
1523       aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1524       if( aRoot==0 ) break;
1525       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1526         Table *pTab = sqliteHashData(x);
1527         Index *pIdx;
1528         if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1529         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1530           aRoot[++cnt] = pIdx->tnum;
1531         }
1532       }
1533       aRoot[0] = cnt;
1534 
1535       /* Make sure sufficient number of registers have been allocated */
1536       pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1537       sqlite3ClearTempRegCache(pParse);
1538 
1539       /* Do the b-tree integrity checks */
1540       sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1541       sqlite3VdbeChangeP5(v, (u8)i);
1542       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1543       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1544          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1545          P4_DYNAMIC);
1546       sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1547       integrityCheckResultRow(v);
1548       sqlite3VdbeJumpHere(v, addr);
1549 
1550       /* Make sure all the indices are constructed correctly.
1551       */
1552       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1553         Table *pTab = sqliteHashData(x);
1554         Index *pIdx, *pPk;
1555         Index *pPrior = 0;
1556         int loopTop;
1557         int iDataCur, iIdxCur;
1558         int r1 = -1;
1559 
1560         if( pTab->tnum<1 ) continue;  /* Skip VIEWs or VIRTUAL TABLEs */
1561         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1562         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1563                                    1, 0, &iDataCur, &iIdxCur);
1564         /* reg[7] counts the number of entries in the table.
1565         ** reg[8+i] counts the number of entries in the i-th index
1566         */
1567         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1568         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1569           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1570         }
1571         assert( pParse->nMem>=8+j );
1572         assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1573         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1574         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1575         if( !isQuick ){
1576           /* Sanity check on record header decoding */
1577           sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nCol-1, 3);
1578           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1579         }
1580         /* Verify that all NOT NULL columns really are NOT NULL */
1581         for(j=0; j<pTab->nCol; j++){
1582           char *zErr;
1583           int jmp2;
1584           if( j==pTab->iPKey ) continue;
1585           if( pTab->aCol[j].notNull==0 ) continue;
1586           sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1587           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1588           jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1589           zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1590                               pTab->aCol[j].zName);
1591           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1592           integrityCheckResultRow(v);
1593           sqlite3VdbeJumpHere(v, jmp2);
1594         }
1595         /* Verify CHECK constraints */
1596         if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1597           ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1598           if( db->mallocFailed==0 ){
1599             int addrCkFault = sqlite3VdbeMakeLabel(v);
1600             int addrCkOk = sqlite3VdbeMakeLabel(v);
1601             char *zErr;
1602             int k;
1603             pParse->iSelfTab = iDataCur + 1;
1604             for(k=pCheck->nExpr-1; k>0; k--){
1605               sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1606             }
1607             sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1608                 SQLITE_JUMPIFNULL);
1609             sqlite3VdbeResolveLabel(v, addrCkFault);
1610             pParse->iSelfTab = 0;
1611             zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1612                 pTab->zName);
1613             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1614             integrityCheckResultRow(v);
1615             sqlite3VdbeResolveLabel(v, addrCkOk);
1616           }
1617           sqlite3ExprListDelete(db, pCheck);
1618         }
1619         if( !isQuick ){ /* Omit the remaining tests for quick_check */
1620           /* Validate index entries for the current row */
1621           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1622             int jmp2, jmp3, jmp4, jmp5;
1623             int ckUniq = sqlite3VdbeMakeLabel(v);
1624             if( pPk==pIdx ) continue;
1625             r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1626                                          pPrior, r1);
1627             pPrior = pIdx;
1628             sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1629             /* Verify that an index entry exists for the current table row */
1630             jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1631                                         pIdx->nColumn); VdbeCoverage(v);
1632             sqlite3VdbeLoadString(v, 3, "row ");
1633             sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1634             sqlite3VdbeLoadString(v, 4, " missing from index ");
1635             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1636             jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1637             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1638             jmp4 = integrityCheckResultRow(v);
1639             sqlite3VdbeJumpHere(v, jmp2);
1640             /* For UNIQUE indexes, verify that only one entry exists with the
1641             ** current key.  The entry is unique if (1) any column is NULL
1642             ** or (2) the next entry has a different key */
1643             if( IsUniqueIndex(pIdx) ){
1644               int uniqOk = sqlite3VdbeMakeLabel(v);
1645               int jmp6;
1646               int kk;
1647               for(kk=0; kk<pIdx->nKeyCol; kk++){
1648                 int iCol = pIdx->aiColumn[kk];
1649                 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1650                 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1651                 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1652                 VdbeCoverage(v);
1653               }
1654               jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1655               sqlite3VdbeGoto(v, uniqOk);
1656               sqlite3VdbeJumpHere(v, jmp6);
1657               sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1658                                    pIdx->nKeyCol); VdbeCoverage(v);
1659               sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1660               sqlite3VdbeGoto(v, jmp5);
1661               sqlite3VdbeResolveLabel(v, uniqOk);
1662             }
1663             sqlite3VdbeJumpHere(v, jmp4);
1664             sqlite3ResolvePartIdxLabel(pParse, jmp3);
1665           }
1666         }
1667         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1668         sqlite3VdbeJumpHere(v, loopTop-1);
1669 #ifndef SQLITE_OMIT_BTREECOUNT
1670         if( !isQuick ){
1671           sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1672           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1673             if( pPk==pIdx ) continue;
1674             sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1675             addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1676             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1677             sqlite3VdbeLoadString(v, 4, pIdx->zName);
1678             sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1679             integrityCheckResultRow(v);
1680             sqlite3VdbeJumpHere(v, addr);
1681           }
1682         }
1683 #endif /* SQLITE_OMIT_BTREECOUNT */
1684       }
1685     }
1686     {
1687       static const int iLn = VDBE_OFFSET_LINENO(2);
1688       static const VdbeOpList endCode[] = {
1689         { OP_AddImm,      1, 0,        0},    /* 0 */
1690         { OP_IfNotZero,   1, 4,        0},    /* 1 */
1691         { OP_String8,     0, 3,        0},    /* 2 */
1692         { OP_ResultRow,   3, 1,        0},    /* 3 */
1693         { OP_Halt,        0, 0,        0},    /* 4 */
1694         { OP_String8,     0, 3,        0},    /* 5 */
1695         { OP_Goto,        0, 3,        0},    /* 6 */
1696       };
1697       VdbeOp *aOp;
1698 
1699       aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1700       if( aOp ){
1701         aOp[0].p2 = 1-mxErr;
1702         aOp[2].p4type = P4_STATIC;
1703         aOp[2].p4.z = "ok";
1704         aOp[5].p4type = P4_STATIC;
1705         aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1706       }
1707       sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1708     }
1709   }
1710   break;
1711 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1712 
1713 #ifndef SQLITE_OMIT_UTF16
1714   /*
1715   **   PRAGMA encoding
1716   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1717   **
1718   ** In its first form, this pragma returns the encoding of the main
1719   ** database. If the database is not initialized, it is initialized now.
1720   **
1721   ** The second form of this pragma is a no-op if the main database file
1722   ** has not already been initialized. In this case it sets the default
1723   ** encoding that will be used for the main database file if a new file
1724   ** is created. If an existing main database file is opened, then the
1725   ** default text encoding for the existing database is used.
1726   **
1727   ** In all cases new databases created using the ATTACH command are
1728   ** created to use the same default text encoding as the main database. If
1729   ** the main database has not been initialized and/or created when ATTACH
1730   ** is executed, this is done before the ATTACH operation.
1731   **
1732   ** In the second form this pragma sets the text encoding to be used in
1733   ** new database files created using this database handle. It is only
1734   ** useful if invoked immediately after the main database i
1735   */
1736   case PragTyp_ENCODING: {
1737     static const struct EncName {
1738       char *zName;
1739       u8 enc;
1740     } encnames[] = {
1741       { "UTF8",     SQLITE_UTF8        },
1742       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
1743       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
1744       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
1745       { "UTF16le",  SQLITE_UTF16LE     },
1746       { "UTF16be",  SQLITE_UTF16BE     },
1747       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
1748       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
1749       { 0, 0 }
1750     };
1751     const struct EncName *pEnc;
1752     if( !zRight ){    /* "PRAGMA encoding" */
1753       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1754       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1755       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1756       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1757       returnSingleText(v, encnames[ENC(pParse->db)].zName);
1758     }else{                        /* "PRAGMA encoding = XXX" */
1759       /* Only change the value of sqlite.enc if the database handle is not
1760       ** initialized. If the main database exists, the new sqlite.enc value
1761       ** will be overwritten when the schema is next loaded. If it does not
1762       ** already exists, it will be created to use the new encoding value.
1763       */
1764       if(
1765         !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
1766         DbHasProperty(db, 0, DB_Empty)
1767       ){
1768         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1769           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1770             SCHEMA_ENC(db) = ENC(db) =
1771                 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1772             break;
1773           }
1774         }
1775         if( !pEnc->zName ){
1776           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1777         }
1778       }
1779     }
1780   }
1781   break;
1782 #endif /* SQLITE_OMIT_UTF16 */
1783 
1784 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1785   /*
1786   **   PRAGMA [schema.]schema_version
1787   **   PRAGMA [schema.]schema_version = <integer>
1788   **
1789   **   PRAGMA [schema.]user_version
1790   **   PRAGMA [schema.]user_version = <integer>
1791   **
1792   **   PRAGMA [schema.]freelist_count
1793   **
1794   **   PRAGMA [schema.]data_version
1795   **
1796   **   PRAGMA [schema.]application_id
1797   **   PRAGMA [schema.]application_id = <integer>
1798   **
1799   ** The pragma's schema_version and user_version are used to set or get
1800   ** the value of the schema-version and user-version, respectively. Both
1801   ** the schema-version and the user-version are 32-bit signed integers
1802   ** stored in the database header.
1803   **
1804   ** The schema-cookie is usually only manipulated internally by SQLite. It
1805   ** is incremented by SQLite whenever the database schema is modified (by
1806   ** creating or dropping a table or index). The schema version is used by
1807   ** SQLite each time a query is executed to ensure that the internal cache
1808   ** of the schema used when compiling the SQL query matches the schema of
1809   ** the database against which the compiled query is actually executed.
1810   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1811   ** the schema-version is potentially dangerous and may lead to program
1812   ** crashes or database corruption. Use with caution!
1813   **
1814   ** The user-version is not used internally by SQLite. It may be used by
1815   ** applications for any purpose.
1816   */
1817   case PragTyp_HEADER_VALUE: {
1818     int iCookie = pPragma->iArg;  /* Which cookie to read or write */
1819     sqlite3VdbeUsesBtree(v, iDb);
1820     if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1821       /* Write the specified cookie value */
1822       static const VdbeOpList setCookie[] = {
1823         { OP_Transaction,    0,  1,  0},    /* 0 */
1824         { OP_SetCookie,      0,  0,  0},    /* 1 */
1825       };
1826       VdbeOp *aOp;
1827       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1828       aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1829       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1830       aOp[0].p1 = iDb;
1831       aOp[1].p1 = iDb;
1832       aOp[1].p2 = iCookie;
1833       aOp[1].p3 = sqlite3Atoi(zRight);
1834     }else{
1835       /* Read the specified cookie value */
1836       static const VdbeOpList readCookie[] = {
1837         { OP_Transaction,     0,  0,  0},    /* 0 */
1838         { OP_ReadCookie,      0,  1,  0},    /* 1 */
1839         { OP_ResultRow,       1,  1,  0}
1840       };
1841       VdbeOp *aOp;
1842       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1843       aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1844       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1845       aOp[0].p1 = iDb;
1846       aOp[1].p1 = iDb;
1847       aOp[1].p3 = iCookie;
1848       sqlite3VdbeReusable(v);
1849     }
1850   }
1851   break;
1852 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1853 
1854 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1855   /*
1856   **   PRAGMA compile_options
1857   **
1858   ** Return the names of all compile-time options used in this build,
1859   ** one option per row.
1860   */
1861   case PragTyp_COMPILE_OPTIONS: {
1862     int i = 0;
1863     const char *zOpt;
1864     pParse->nMem = 1;
1865     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1866       sqlite3VdbeLoadString(v, 1, zOpt);
1867       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1868     }
1869     sqlite3VdbeReusable(v);
1870   }
1871   break;
1872 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1873 
1874 #ifndef SQLITE_OMIT_WAL
1875   /*
1876   **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1877   **
1878   ** Checkpoint the database.
1879   */
1880   case PragTyp_WAL_CHECKPOINT: {
1881     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1882     int eMode = SQLITE_CHECKPOINT_PASSIVE;
1883     if( zRight ){
1884       if( sqlite3StrICmp(zRight, "full")==0 ){
1885         eMode = SQLITE_CHECKPOINT_FULL;
1886       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1887         eMode = SQLITE_CHECKPOINT_RESTART;
1888       }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1889         eMode = SQLITE_CHECKPOINT_TRUNCATE;
1890       }
1891     }
1892     pParse->nMem = 3;
1893     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1894     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1895   }
1896   break;
1897 
1898   /*
1899   **   PRAGMA wal_autocheckpoint
1900   **   PRAGMA wal_autocheckpoint = N
1901   **
1902   ** Configure a database connection to automatically checkpoint a database
1903   ** after accumulating N frames in the log. Or query for the current value
1904   ** of N.
1905   */
1906   case PragTyp_WAL_AUTOCHECKPOINT: {
1907     if( zRight ){
1908       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1909     }
1910     returnSingleInt(v,
1911        db->xWalCallback==sqlite3WalDefaultHook ?
1912            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1913   }
1914   break;
1915 #endif
1916 
1917   /*
1918   **  PRAGMA shrink_memory
1919   **
1920   ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1921   ** connection on which it is invoked to free up as much memory as it
1922   ** can, by calling sqlite3_db_release_memory().
1923   */
1924   case PragTyp_SHRINK_MEMORY: {
1925     sqlite3_db_release_memory(db);
1926     break;
1927   }
1928 
1929   /*
1930   **  PRAGMA optimize
1931   **  PRAGMA optimize(MASK)
1932   **  PRAGMA schema.optimize
1933   **  PRAGMA schema.optimize(MASK)
1934   **
1935   ** Attempt to optimize the database.  All schemas are optimized in the first
1936   ** two forms, and only the specified schema is optimized in the latter two.
1937   **
1938   ** The details of optimizations performed by this pragma are expected
1939   ** to change and improve over time.  Applications should anticipate that
1940   ** this pragma will perform new optimizations in future releases.
1941   **
1942   ** The optional argument is a bitmask of optimizations to perform:
1943   **
1944   **    0x0001    Debugging mode.  Do not actually perform any optimizations
1945   **              but instead return one line of text for each optimization
1946   **              that would have been done.  Off by default.
1947   **
1948   **    0x0002    Run ANALYZE on tables that might benefit.  On by default.
1949   **              See below for additional information.
1950   **
1951   **    0x0004    (Not yet implemented) Record usage and performance
1952   **              information from the current session in the
1953   **              database file so that it will be available to "optimize"
1954   **              pragmas run by future database connections.
1955   **
1956   **    0x0008    (Not yet implemented) Create indexes that might have
1957   **              been helpful to recent queries
1958   **
1959   ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all
1960   ** of the optimizations listed above except Debug Mode, including new
1961   ** optimizations that have not yet been invented.  If new optimizations are
1962   ** ever added that should be off by default, those off-by-default
1963   ** optimizations will have bitmasks of 0x10000 or larger.
1964   **
1965   ** DETERMINATION OF WHEN TO RUN ANALYZE
1966   **
1967   ** In the current implementation, a table is analyzed if only if all of
1968   ** the following are true:
1969   **
1970   ** (1) MASK bit 0x02 is set.
1971   **
1972   ** (2) The query planner used sqlite_stat1-style statistics for one or
1973   **     more indexes of the table at some point during the lifetime of
1974   **     the current connection.
1975   **
1976   ** (3) One or more indexes of the table are currently unanalyzed OR
1977   **     the number of rows in the table has increased by 25 times or more
1978   **     since the last time ANALYZE was run.
1979   **
1980   ** The rules for when tables are analyzed are likely to change in
1981   ** future releases.
1982   */
1983   case PragTyp_OPTIMIZE: {
1984     int iDbLast;           /* Loop termination point for the schema loop */
1985     int iTabCur;           /* Cursor for a table whose size needs checking */
1986     HashElem *k;           /* Loop over tables of a schema */
1987     Schema *pSchema;       /* The current schema */
1988     Table *pTab;           /* A table in the schema */
1989     Index *pIdx;           /* An index of the table */
1990     LogEst szThreshold;    /* Size threshold above which reanalysis is needd */
1991     char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
1992     u32 opMask;            /* Mask of operations to perform */
1993 
1994     if( zRight ){
1995       opMask = (u32)sqlite3Atoi(zRight);
1996       if( (opMask & 0x02)==0 ) break;
1997     }else{
1998       opMask = 0xfffe;
1999     }
2000     iTabCur = pParse->nTab++;
2001     for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2002       if( iDb==1 ) continue;
2003       sqlite3CodeVerifySchema(pParse, iDb);
2004       pSchema = db->aDb[iDb].pSchema;
2005       for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2006         pTab = (Table*)sqliteHashData(k);
2007 
2008         /* If table pTab has not been used in a way that would benefit from
2009         ** having analysis statistics during the current session, then skip it.
2010         ** This also has the effect of skipping virtual tables and views */
2011         if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2012 
2013         /* Reanalyze if the table is 25 times larger than the last analysis */
2014         szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2015         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2016           if( !pIdx->hasStat1 ){
2017             szThreshold = 0; /* Always analyze if any index lacks statistics */
2018             break;
2019           }
2020         }
2021         if( szThreshold ){
2022           sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2023           sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2024                          sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2025           VdbeCoverage(v);
2026         }
2027         zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2028                                  db->aDb[iDb].zDbSName, pTab->zName);
2029         if( opMask & 0x01 ){
2030           int r1 = sqlite3GetTempReg(pParse);
2031           sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2032           sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2033         }else{
2034           sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2035         }
2036       }
2037     }
2038     sqlite3VdbeAddOp0(v, OP_Expire);
2039     break;
2040   }
2041 
2042   /*
2043   **   PRAGMA busy_timeout
2044   **   PRAGMA busy_timeout = N
2045   **
2046   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
2047   ** if one is set.  If no busy handler or a different busy handler is set
2048   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
2049   ** disables the timeout.
2050   */
2051   /*case PragTyp_BUSY_TIMEOUT*/ default: {
2052     assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2053     if( zRight ){
2054       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2055     }
2056     returnSingleInt(v, db->busyTimeout);
2057     break;
2058   }
2059 
2060   /*
2061   **   PRAGMA soft_heap_limit
2062   **   PRAGMA soft_heap_limit = N
2063   **
2064   ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2065   ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2066   ** specified and is a non-negative integer.
2067   ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2068   ** returns the same integer that would be returned by the
2069   ** sqlite3_soft_heap_limit64(-1) C-language function.
2070   */
2071   case PragTyp_SOFT_HEAP_LIMIT: {
2072     sqlite3_int64 N;
2073     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2074       sqlite3_soft_heap_limit64(N);
2075     }
2076     returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2077     break;
2078   }
2079 
2080   /*
2081   **   PRAGMA threads
2082   **   PRAGMA threads = N
2083   **
2084   ** Configure the maximum number of worker threads.  Return the new
2085   ** maximum, which might be less than requested.
2086   */
2087   case PragTyp_THREADS: {
2088     sqlite3_int64 N;
2089     if( zRight
2090      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2091      && N>=0
2092     ){
2093       sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2094     }
2095     returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2096     break;
2097   }
2098 
2099 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2100   /*
2101   ** Report the current state of file logs for all databases
2102   */
2103   case PragTyp_LOCK_STATUS: {
2104     static const char *const azLockName[] = {
2105       "unlocked", "shared", "reserved", "pending", "exclusive"
2106     };
2107     int i;
2108     pParse->nMem = 2;
2109     for(i=0; i<db->nDb; i++){
2110       Btree *pBt;
2111       const char *zState = "unknown";
2112       int j;
2113       if( db->aDb[i].zDbSName==0 ) continue;
2114       pBt = db->aDb[i].pBt;
2115       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2116         zState = "closed";
2117       }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2118                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2119          zState = azLockName[j];
2120       }
2121       sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2122     }
2123     break;
2124   }
2125 #endif
2126 
2127 #ifdef SQLITE_HAS_CODEC
2128   /* Pragma        iArg
2129   ** ----------   ------
2130   **  key           0
2131   **  rekey         1
2132   **  hexkey        2
2133   **  hexrekey      3
2134   **  textkey       4
2135   **  textrekey     5
2136   */
2137   case PragTyp_KEY: {
2138     if( zRight ){
2139       int n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1;
2140       if( (pPragma->iArg & 1)==0 ){
2141         sqlite3_key_v2(db, zDb, zRight, n);
2142       }else{
2143         sqlite3_rekey_v2(db, zDb, zRight, n);
2144       }
2145     }
2146     break;
2147   }
2148   case PragTyp_HEXKEY: {
2149     if( zRight ){
2150       u8 iByte;
2151       int i;
2152       char zKey[40];
2153       for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
2154         iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
2155         if( (i&1)!=0 ) zKey[i/2] = iByte;
2156       }
2157       if( (pPragma->iArg & 1)==0 ){
2158         sqlite3_key_v2(db, zDb, zKey, i/2);
2159       }else{
2160         sqlite3_rekey_v2(db, zDb, zKey, i/2);
2161       }
2162     }
2163     break;
2164   }
2165 #endif
2166 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
2167   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2168 #ifdef SQLITE_HAS_CODEC
2169     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
2170       sqlite3_activate_see(&zRight[4]);
2171     }
2172 #endif
2173 #ifdef SQLITE_ENABLE_CEROD
2174     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2175       sqlite3_activate_cerod(&zRight[6]);
2176     }
2177 #endif
2178   }
2179   break;
2180 #endif
2181 
2182   } /* End of the PRAGMA switch */
2183 
2184   /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2185   ** purpose is to execute assert() statements to verify that if the
2186   ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2187   ** to the PRAGMA, the implementation has not added any OP_ResultRow
2188   ** instructions to the VM.  */
2189   if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2190     sqlite3VdbeVerifyNoResultRow(v);
2191   }
2192 
2193 pragma_out:
2194   sqlite3DbFree(db, zLeft);
2195   sqlite3DbFree(db, zRight);
2196 }
2197 #ifndef SQLITE_OMIT_VIRTUALTABLE
2198 /*****************************************************************************
2199 ** Implementation of an eponymous virtual table that runs a pragma.
2200 **
2201 */
2202 typedef struct PragmaVtab PragmaVtab;
2203 typedef struct PragmaVtabCursor PragmaVtabCursor;
2204 struct PragmaVtab {
2205   sqlite3_vtab base;        /* Base class.  Must be first */
2206   sqlite3 *db;              /* The database connection to which it belongs */
2207   const PragmaName *pName;  /* Name of the pragma */
2208   u8 nHidden;               /* Number of hidden columns */
2209   u8 iHidden;               /* Index of the first hidden column */
2210 };
2211 struct PragmaVtabCursor {
2212   sqlite3_vtab_cursor base; /* Base class.  Must be first */
2213   sqlite3_stmt *pPragma;    /* The pragma statement to run */
2214   sqlite_int64 iRowid;      /* Current rowid */
2215   char *azArg[2];           /* Value of the argument and schema */
2216 };
2217 
2218 /*
2219 ** Pragma virtual table module xConnect method.
2220 */
2221 static int pragmaVtabConnect(
2222   sqlite3 *db,
2223   void *pAux,
2224   int argc, const char *const*argv,
2225   sqlite3_vtab **ppVtab,
2226   char **pzErr
2227 ){
2228   const PragmaName *pPragma = (const PragmaName*)pAux;
2229   PragmaVtab *pTab = 0;
2230   int rc;
2231   int i, j;
2232   char cSep = '(';
2233   StrAccum acc;
2234   char zBuf[200];
2235 
2236   UNUSED_PARAMETER(argc);
2237   UNUSED_PARAMETER(argv);
2238   sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2239   sqlite3_str_appendall(&acc, "CREATE TABLE x");
2240   for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2241     sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2242     cSep = ',';
2243   }
2244   if( i==0 ){
2245     sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2246     i++;
2247   }
2248   j = 0;
2249   if( pPragma->mPragFlg & PragFlg_Result1 ){
2250     sqlite3_str_appendall(&acc, ",arg HIDDEN");
2251     j++;
2252   }
2253   if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2254     sqlite3_str_appendall(&acc, ",schema HIDDEN");
2255     j++;
2256   }
2257   sqlite3_str_append(&acc, ")", 1);
2258   sqlite3StrAccumFinish(&acc);
2259   assert( strlen(zBuf) < sizeof(zBuf)-1 );
2260   rc = sqlite3_declare_vtab(db, zBuf);
2261   if( rc==SQLITE_OK ){
2262     pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2263     if( pTab==0 ){
2264       rc = SQLITE_NOMEM;
2265     }else{
2266       memset(pTab, 0, sizeof(PragmaVtab));
2267       pTab->pName = pPragma;
2268       pTab->db = db;
2269       pTab->iHidden = i;
2270       pTab->nHidden = j;
2271     }
2272   }else{
2273     *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2274   }
2275 
2276   *ppVtab = (sqlite3_vtab*)pTab;
2277   return rc;
2278 }
2279 
2280 /*
2281 ** Pragma virtual table module xDisconnect method.
2282 */
2283 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2284   PragmaVtab *pTab = (PragmaVtab*)pVtab;
2285   sqlite3_free(pTab);
2286   return SQLITE_OK;
2287 }
2288 
2289 /* Figure out the best index to use to search a pragma virtual table.
2290 **
2291 ** There are not really any index choices.  But we want to encourage the
2292 ** query planner to give == constraints on as many hidden parameters as
2293 ** possible, and especially on the first hidden parameter.  So return a
2294 ** high cost if hidden parameters are unconstrained.
2295 */
2296 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2297   PragmaVtab *pTab = (PragmaVtab*)tab;
2298   const struct sqlite3_index_constraint *pConstraint;
2299   int i, j;
2300   int seen[2];
2301 
2302   pIdxInfo->estimatedCost = (double)1;
2303   if( pTab->nHidden==0 ){ return SQLITE_OK; }
2304   pConstraint = pIdxInfo->aConstraint;
2305   seen[0] = 0;
2306   seen[1] = 0;
2307   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2308     if( pConstraint->usable==0 ) continue;
2309     if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2310     if( pConstraint->iColumn < pTab->iHidden ) continue;
2311     j = pConstraint->iColumn - pTab->iHidden;
2312     assert( j < 2 );
2313     seen[j] = i+1;
2314   }
2315   if( seen[0]==0 ){
2316     pIdxInfo->estimatedCost = (double)2147483647;
2317     pIdxInfo->estimatedRows = 2147483647;
2318     return SQLITE_OK;
2319   }
2320   j = seen[0]-1;
2321   pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2322   pIdxInfo->aConstraintUsage[j].omit = 1;
2323   if( seen[1]==0 ) return SQLITE_OK;
2324   pIdxInfo->estimatedCost = (double)20;
2325   pIdxInfo->estimatedRows = 20;
2326   j = seen[1]-1;
2327   pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2328   pIdxInfo->aConstraintUsage[j].omit = 1;
2329   return SQLITE_OK;
2330 }
2331 
2332 /* Create a new cursor for the pragma virtual table */
2333 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2334   PragmaVtabCursor *pCsr;
2335   pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2336   if( pCsr==0 ) return SQLITE_NOMEM;
2337   memset(pCsr, 0, sizeof(PragmaVtabCursor));
2338   pCsr->base.pVtab = pVtab;
2339   *ppCursor = &pCsr->base;
2340   return SQLITE_OK;
2341 }
2342 
2343 /* Clear all content from pragma virtual table cursor. */
2344 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2345   int i;
2346   sqlite3_finalize(pCsr->pPragma);
2347   pCsr->pPragma = 0;
2348   for(i=0; i<ArraySize(pCsr->azArg); i++){
2349     sqlite3_free(pCsr->azArg[i]);
2350     pCsr->azArg[i] = 0;
2351   }
2352 }
2353 
2354 /* Close a pragma virtual table cursor */
2355 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2356   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2357   pragmaVtabCursorClear(pCsr);
2358   sqlite3_free(pCsr);
2359   return SQLITE_OK;
2360 }
2361 
2362 /* Advance the pragma virtual table cursor to the next row */
2363 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2364   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2365   int rc = SQLITE_OK;
2366 
2367   /* Increment the xRowid value */
2368   pCsr->iRowid++;
2369   assert( pCsr->pPragma );
2370   if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2371     rc = sqlite3_finalize(pCsr->pPragma);
2372     pCsr->pPragma = 0;
2373     pragmaVtabCursorClear(pCsr);
2374   }
2375   return rc;
2376 }
2377 
2378 /*
2379 ** Pragma virtual table module xFilter method.
2380 */
2381 static int pragmaVtabFilter(
2382   sqlite3_vtab_cursor *pVtabCursor,
2383   int idxNum, const char *idxStr,
2384   int argc, sqlite3_value **argv
2385 ){
2386   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2387   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2388   int rc;
2389   int i, j;
2390   StrAccum acc;
2391   char *zSql;
2392 
2393   UNUSED_PARAMETER(idxNum);
2394   UNUSED_PARAMETER(idxStr);
2395   pragmaVtabCursorClear(pCsr);
2396   j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2397   for(i=0; i<argc; i++, j++){
2398     const char *zText = (const char*)sqlite3_value_text(argv[i]);
2399     assert( j<ArraySize(pCsr->azArg) );
2400     assert( pCsr->azArg[j]==0 );
2401     if( zText ){
2402       pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2403       if( pCsr->azArg[j]==0 ){
2404         return SQLITE_NOMEM;
2405       }
2406     }
2407   }
2408   sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2409   sqlite3_str_appendall(&acc, "PRAGMA ");
2410   if( pCsr->azArg[1] ){
2411     sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2412   }
2413   sqlite3_str_appendall(&acc, pTab->pName->zName);
2414   if( pCsr->azArg[0] ){
2415     sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2416   }
2417   zSql = sqlite3StrAccumFinish(&acc);
2418   if( zSql==0 ) return SQLITE_NOMEM;
2419   rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2420   sqlite3_free(zSql);
2421   if( rc!=SQLITE_OK ){
2422     pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2423     return rc;
2424   }
2425   return pragmaVtabNext(pVtabCursor);
2426 }
2427 
2428 /*
2429 ** Pragma virtual table module xEof method.
2430 */
2431 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2432   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2433   return (pCsr->pPragma==0);
2434 }
2435 
2436 /* The xColumn method simply returns the corresponding column from
2437 ** the PRAGMA.
2438 */
2439 static int pragmaVtabColumn(
2440   sqlite3_vtab_cursor *pVtabCursor,
2441   sqlite3_context *ctx,
2442   int i
2443 ){
2444   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2445   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2446   if( i<pTab->iHidden ){
2447     sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2448   }else{
2449     sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2450   }
2451   return SQLITE_OK;
2452 }
2453 
2454 /*
2455 ** Pragma virtual table module xRowid method.
2456 */
2457 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2458   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2459   *p = pCsr->iRowid;
2460   return SQLITE_OK;
2461 }
2462 
2463 /* The pragma virtual table object */
2464 static const sqlite3_module pragmaVtabModule = {
2465   0,                           /* iVersion */
2466   0,                           /* xCreate - create a table */
2467   pragmaVtabConnect,           /* xConnect - connect to an existing table */
2468   pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */
2469   pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */
2470   0,                           /* xDestroy - Drop a table */
2471   pragmaVtabOpen,              /* xOpen - open a cursor */
2472   pragmaVtabClose,             /* xClose - close a cursor */
2473   pragmaVtabFilter,            /* xFilter - configure scan constraints */
2474   pragmaVtabNext,              /* xNext - advance a cursor */
2475   pragmaVtabEof,               /* xEof */
2476   pragmaVtabColumn,            /* xColumn - read data */
2477   pragmaVtabRowid,             /* xRowid - read data */
2478   0,                           /* xUpdate - write data */
2479   0,                           /* xBegin - begin transaction */
2480   0,                           /* xSync - sync transaction */
2481   0,                           /* xCommit - commit transaction */
2482   0,                           /* xRollback - rollback transaction */
2483   0,                           /* xFindFunction - function overloading */
2484   0,                           /* xRename - rename the table */
2485   0,                           /* xSavepoint */
2486   0,                           /* xRelease */
2487   0,                           /* xRollbackTo */
2488   0                            /* xShadowName */
2489 };
2490 
2491 /*
2492 ** Check to see if zTabName is really the name of a pragma.  If it is,
2493 ** then register an eponymous virtual table for that pragma and return
2494 ** a pointer to the Module object for the new virtual table.
2495 */
2496 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2497   const PragmaName *pName;
2498   assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2499   pName = pragmaLocate(zName+7);
2500   if( pName==0 ) return 0;
2501   if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2502   assert( sqlite3HashFind(&db->aModule, zName)==0 );
2503   return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2504 }
2505 
2506 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2507 
2508 #endif /* SQLITE_OMIT_PRAGMA */
2509