1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ 135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 136 "from within a transaction"); 137 return SQLITE_ERROR; 138 } 139 sqlite3BtreeClose(db->aDb[1].pBt); 140 db->aDb[1].pBt = 0; 141 sqlite3ResetAllSchemasOfConnection(db); 142 } 143 return SQLITE_OK; 144 } 145 #endif /* SQLITE_PAGER_PRAGMAS */ 146 147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 148 /* 149 ** If the TEMP database is open, close it and mark the database schema 150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 151 ** or DEFAULT_TEMP_STORE pragmas. 152 */ 153 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 154 int ts = getTempStore(zStorageType); 155 sqlite3 *db = pParse->db; 156 if( db->temp_store==ts ) return SQLITE_OK; 157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 158 return SQLITE_ERROR; 159 } 160 db->temp_store = (u8)ts; 161 return SQLITE_OK; 162 } 163 #endif /* SQLITE_PAGER_PRAGMAS */ 164 165 /* 166 ** Set the names of the first N columns to the values in azCol[] 167 */ 168 static void setAllColumnNames( 169 Vdbe *v, /* The query under construction */ 170 int N, /* Number of columns */ 171 const char **azCol /* Names of columns */ 172 ){ 173 int i; 174 sqlite3VdbeSetNumCols(v, N); 175 for(i=0; i<N; i++){ 176 sqlite3VdbeSetColName(v, i, COLNAME_NAME, azCol[i], SQLITE_STATIC); 177 } 178 } 179 static void setOneColumnName(Vdbe *v, const char *z){ 180 setAllColumnNames(v, 1, &z); 181 } 182 183 /* 184 ** Generate code to return a single integer value. 185 */ 186 static void returnSingleInt(Vdbe *v, const char *zLabel, i64 value){ 187 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 188 setOneColumnName(v, zLabel); 189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 190 } 191 192 /* 193 ** Generate code to return a single text value. 194 */ 195 static void returnSingleText( 196 Vdbe *v, /* Prepared statement under construction */ 197 const char *zLabel, /* Name of the result column */ 198 const char *zValue /* Value to be returned */ 199 ){ 200 if( zValue ){ 201 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 202 setOneColumnName(v, zLabel); 203 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 204 } 205 } 206 207 208 /* 209 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 210 ** set these values for all pagers. 211 */ 212 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 213 static void setAllPagerFlags(sqlite3 *db){ 214 if( db->autoCommit ){ 215 Db *pDb = db->aDb; 216 int n = db->nDb; 217 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 218 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 219 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 220 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 221 == PAGER_FLAGS_MASK ); 222 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 223 while( (n--) > 0 ){ 224 if( pDb->pBt ){ 225 sqlite3BtreeSetPagerFlags(pDb->pBt, 226 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 227 } 228 pDb++; 229 } 230 } 231 } 232 #else 233 # define setAllPagerFlags(X) /* no-op */ 234 #endif 235 236 237 /* 238 ** Return a human-readable name for a constraint resolution action. 239 */ 240 #ifndef SQLITE_OMIT_FOREIGN_KEY 241 static const char *actionName(u8 action){ 242 const char *zName; 243 switch( action ){ 244 case OE_SetNull: zName = "SET NULL"; break; 245 case OE_SetDflt: zName = "SET DEFAULT"; break; 246 case OE_Cascade: zName = "CASCADE"; break; 247 case OE_Restrict: zName = "RESTRICT"; break; 248 default: zName = "NO ACTION"; 249 assert( action==OE_None ); break; 250 } 251 return zName; 252 } 253 #endif 254 255 256 /* 257 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 258 ** defined in pager.h. This function returns the associated lowercase 259 ** journal-mode name. 260 */ 261 const char *sqlite3JournalModename(int eMode){ 262 static char * const azModeName[] = { 263 "delete", "persist", "off", "truncate", "memory" 264 #ifndef SQLITE_OMIT_WAL 265 , "wal" 266 #endif 267 }; 268 assert( PAGER_JOURNALMODE_DELETE==0 ); 269 assert( PAGER_JOURNALMODE_PERSIST==1 ); 270 assert( PAGER_JOURNALMODE_OFF==2 ); 271 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 272 assert( PAGER_JOURNALMODE_MEMORY==4 ); 273 assert( PAGER_JOURNALMODE_WAL==5 ); 274 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 275 276 if( eMode==ArraySize(azModeName) ) return 0; 277 return azModeName[eMode]; 278 } 279 280 /* 281 ** Process a pragma statement. 282 ** 283 ** Pragmas are of this form: 284 ** 285 ** PRAGMA [schema.]id [= value] 286 ** 287 ** The identifier might also be a string. The value is a string, and 288 ** identifier, or a number. If minusFlag is true, then the value is 289 ** a number that was preceded by a minus sign. 290 ** 291 ** If the left side is "database.id" then pId1 is the database name 292 ** and pId2 is the id. If the left side is just "id" then pId1 is the 293 ** id and pId2 is any empty string. 294 */ 295 void sqlite3Pragma( 296 Parse *pParse, 297 Token *pId1, /* First part of [schema.]id field */ 298 Token *pId2, /* Second part of [schema.]id field, or NULL */ 299 Token *pValue, /* Token for <value>, or NULL */ 300 int minusFlag /* True if a '-' sign preceded <value> */ 301 ){ 302 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 303 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 304 const char *zDb = 0; /* The database name */ 305 Token *pId; /* Pointer to <id> token */ 306 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 307 int iDb; /* Database index for <database> */ 308 int lwr, upr, mid = 0; /* Binary search bounds */ 309 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 310 sqlite3 *db = pParse->db; /* The database connection */ 311 Db *pDb; /* The specific database being pragmaed */ 312 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 313 const struct sPragmaNames *pPragma; 314 315 if( v==0 ) return; 316 sqlite3VdbeRunOnlyOnce(v); 317 pParse->nMem = 2; 318 319 /* Interpret the [schema.] part of the pragma statement. iDb is the 320 ** index of the database this pragma is being applied to in db.aDb[]. */ 321 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 322 if( iDb<0 ) return; 323 pDb = &db->aDb[iDb]; 324 325 /* If the temp database has been explicitly named as part of the 326 ** pragma, make sure it is open. 327 */ 328 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 329 return; 330 } 331 332 zLeft = sqlite3NameFromToken(db, pId); 333 if( !zLeft ) return; 334 if( minusFlag ){ 335 zRight = sqlite3MPrintf(db, "-%T", pValue); 336 }else{ 337 zRight = sqlite3NameFromToken(db, pValue); 338 } 339 340 assert( pId2 ); 341 zDb = pId2->n>0 ? pDb->zDbSName : 0; 342 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 343 goto pragma_out; 344 } 345 346 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 347 ** connection. If it returns SQLITE_OK, then assume that the VFS 348 ** handled the pragma and generate a no-op prepared statement. 349 ** 350 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 351 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 352 ** object corresponding to the database file to which the pragma 353 ** statement refers. 354 ** 355 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 356 ** file control is an array of pointers to strings (char**) in which the 357 ** second element of the array is the name of the pragma and the third 358 ** element is the argument to the pragma or NULL if the pragma has no 359 ** argument. 360 */ 361 aFcntl[0] = 0; 362 aFcntl[1] = zLeft; 363 aFcntl[2] = zRight; 364 aFcntl[3] = 0; 365 db->busyHandler.nBusy = 0; 366 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 367 if( rc==SQLITE_OK ){ 368 returnSingleText(v, "result", aFcntl[0]); 369 sqlite3_free(aFcntl[0]); 370 goto pragma_out; 371 } 372 if( rc!=SQLITE_NOTFOUND ){ 373 if( aFcntl[0] ){ 374 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 375 sqlite3_free(aFcntl[0]); 376 } 377 pParse->nErr++; 378 pParse->rc = rc; 379 goto pragma_out; 380 } 381 382 /* Locate the pragma in the lookup table */ 383 lwr = 0; 384 upr = ArraySize(aPragmaNames)-1; 385 while( lwr<=upr ){ 386 mid = (lwr+upr)/2; 387 rc = sqlite3_stricmp(zLeft, aPragmaNames[mid].zName); 388 if( rc==0 ) break; 389 if( rc<0 ){ 390 upr = mid - 1; 391 }else{ 392 lwr = mid + 1; 393 } 394 } 395 if( lwr>upr ) goto pragma_out; 396 pPragma = &aPragmaNames[mid]; 397 398 /* Make sure the database schema is loaded if the pragma requires that */ 399 if( (pPragma->mPragFlag & PragFlag_NeedSchema)!=0 ){ 400 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 401 } 402 403 /* Jump to the appropriate pragma handler */ 404 switch( pPragma->ePragTyp ){ 405 406 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 407 /* 408 ** PRAGMA [schema.]default_cache_size 409 ** PRAGMA [schema.]default_cache_size=N 410 ** 411 ** The first form reports the current persistent setting for the 412 ** page cache size. The value returned is the maximum number of 413 ** pages in the page cache. The second form sets both the current 414 ** page cache size value and the persistent page cache size value 415 ** stored in the database file. 416 ** 417 ** Older versions of SQLite would set the default cache size to a 418 ** negative number to indicate synchronous=OFF. These days, synchronous 419 ** is always on by default regardless of the sign of the default cache 420 ** size. But continue to take the absolute value of the default cache 421 ** size of historical compatibility. 422 */ 423 case PragTyp_DEFAULT_CACHE_SIZE: { 424 static const int iLn = VDBE_OFFSET_LINENO(2); 425 static const VdbeOpList getCacheSize[] = { 426 { OP_Transaction, 0, 0, 0}, /* 0 */ 427 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 428 { OP_IfPos, 1, 8, 0}, 429 { OP_Integer, 0, 2, 0}, 430 { OP_Subtract, 1, 2, 1}, 431 { OP_IfPos, 1, 8, 0}, 432 { OP_Integer, 0, 1, 0}, /* 6 */ 433 { OP_Noop, 0, 0, 0}, 434 { OP_ResultRow, 1, 1, 0}, 435 }; 436 VdbeOp *aOp; 437 sqlite3VdbeUsesBtree(v, iDb); 438 if( !zRight ){ 439 setOneColumnName(v, "cache_size"); 440 pParse->nMem += 2; 441 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 442 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 443 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 444 aOp[0].p1 = iDb; 445 aOp[1].p1 = iDb; 446 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 447 }else{ 448 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 449 sqlite3BeginWriteOperation(pParse, 0, iDb); 450 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 451 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 452 pDb->pSchema->cache_size = size; 453 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 454 } 455 break; 456 } 457 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 458 459 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 460 /* 461 ** PRAGMA [schema.]page_size 462 ** PRAGMA [schema.]page_size=N 463 ** 464 ** The first form reports the current setting for the 465 ** database page size in bytes. The second form sets the 466 ** database page size value. The value can only be set if 467 ** the database has not yet been created. 468 */ 469 case PragTyp_PAGE_SIZE: { 470 Btree *pBt = pDb->pBt; 471 assert( pBt!=0 ); 472 if( !zRight ){ 473 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 474 returnSingleInt(v, "page_size", size); 475 }else{ 476 /* Malloc may fail when setting the page-size, as there is an internal 477 ** buffer that the pager module resizes using sqlite3_realloc(). 478 */ 479 db->nextPagesize = sqlite3Atoi(zRight); 480 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ 481 sqlite3OomFault(db); 482 } 483 } 484 break; 485 } 486 487 /* 488 ** PRAGMA [schema.]secure_delete 489 ** PRAGMA [schema.]secure_delete=ON/OFF 490 ** 491 ** The first form reports the current setting for the 492 ** secure_delete flag. The second form changes the secure_delete 493 ** flag setting and reports thenew value. 494 */ 495 case PragTyp_SECURE_DELETE: { 496 Btree *pBt = pDb->pBt; 497 int b = -1; 498 assert( pBt!=0 ); 499 if( zRight ){ 500 b = sqlite3GetBoolean(zRight, 0); 501 } 502 if( pId2->n==0 && b>=0 ){ 503 int ii; 504 for(ii=0; ii<db->nDb; ii++){ 505 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 506 } 507 } 508 b = sqlite3BtreeSecureDelete(pBt, b); 509 returnSingleInt(v, "secure_delete", b); 510 break; 511 } 512 513 /* 514 ** PRAGMA [schema.]max_page_count 515 ** PRAGMA [schema.]max_page_count=N 516 ** 517 ** The first form reports the current setting for the 518 ** maximum number of pages in the database file. The 519 ** second form attempts to change this setting. Both 520 ** forms return the current setting. 521 ** 522 ** The absolute value of N is used. This is undocumented and might 523 ** change. The only purpose is to provide an easy way to test 524 ** the sqlite3AbsInt32() function. 525 ** 526 ** PRAGMA [schema.]page_count 527 ** 528 ** Return the number of pages in the specified database. 529 */ 530 case PragTyp_PAGE_COUNT: { 531 int iReg; 532 sqlite3CodeVerifySchema(pParse, iDb); 533 iReg = ++pParse->nMem; 534 if( sqlite3Tolower(zLeft[0])=='p' ){ 535 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 536 }else{ 537 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 538 sqlite3AbsInt32(sqlite3Atoi(zRight))); 539 } 540 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 541 sqlite3VdbeSetNumCols(v, 1); 542 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); 543 break; 544 } 545 546 /* 547 ** PRAGMA [schema.]locking_mode 548 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 549 */ 550 case PragTyp_LOCKING_MODE: { 551 const char *zRet = "normal"; 552 int eMode = getLockingMode(zRight); 553 554 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 555 /* Simple "PRAGMA locking_mode;" statement. This is a query for 556 ** the current default locking mode (which may be different to 557 ** the locking-mode of the main database). 558 */ 559 eMode = db->dfltLockMode; 560 }else{ 561 Pager *pPager; 562 if( pId2->n==0 ){ 563 /* This indicates that no database name was specified as part 564 ** of the PRAGMA command. In this case the locking-mode must be 565 ** set on all attached databases, as well as the main db file. 566 ** 567 ** Also, the sqlite3.dfltLockMode variable is set so that 568 ** any subsequently attached databases also use the specified 569 ** locking mode. 570 */ 571 int ii; 572 assert(pDb==&db->aDb[0]); 573 for(ii=2; ii<db->nDb; ii++){ 574 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 575 sqlite3PagerLockingMode(pPager, eMode); 576 } 577 db->dfltLockMode = (u8)eMode; 578 } 579 pPager = sqlite3BtreePager(pDb->pBt); 580 eMode = sqlite3PagerLockingMode(pPager, eMode); 581 } 582 583 assert( eMode==PAGER_LOCKINGMODE_NORMAL 584 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 585 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 586 zRet = "exclusive"; 587 } 588 returnSingleText(v, "locking_mode", zRet); 589 break; 590 } 591 592 /* 593 ** PRAGMA [schema.]journal_mode 594 ** PRAGMA [schema.]journal_mode = 595 ** (delete|persist|off|truncate|memory|wal|off) 596 */ 597 case PragTyp_JOURNAL_MODE: { 598 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 599 int ii; /* Loop counter */ 600 601 setOneColumnName(v, "journal_mode"); 602 if( zRight==0 ){ 603 /* If there is no "=MODE" part of the pragma, do a query for the 604 ** current mode */ 605 eMode = PAGER_JOURNALMODE_QUERY; 606 }else{ 607 const char *zMode; 608 int n = sqlite3Strlen30(zRight); 609 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 610 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 611 } 612 if( !zMode ){ 613 /* If the "=MODE" part does not match any known journal mode, 614 ** then do a query */ 615 eMode = PAGER_JOURNALMODE_QUERY; 616 } 617 } 618 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 619 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 620 iDb = 0; 621 pId2->n = 1; 622 } 623 for(ii=db->nDb-1; ii>=0; ii--){ 624 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 625 sqlite3VdbeUsesBtree(v, ii); 626 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 627 } 628 } 629 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 630 break; 631 } 632 633 /* 634 ** PRAGMA [schema.]journal_size_limit 635 ** PRAGMA [schema.]journal_size_limit=N 636 ** 637 ** Get or set the size limit on rollback journal files. 638 */ 639 case PragTyp_JOURNAL_SIZE_LIMIT: { 640 Pager *pPager = sqlite3BtreePager(pDb->pBt); 641 i64 iLimit = -2; 642 if( zRight ){ 643 sqlite3DecOrHexToI64(zRight, &iLimit); 644 if( iLimit<-1 ) iLimit = -1; 645 } 646 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 647 returnSingleInt(v, "journal_size_limit", iLimit); 648 break; 649 } 650 651 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 652 653 /* 654 ** PRAGMA [schema.]auto_vacuum 655 ** PRAGMA [schema.]auto_vacuum=N 656 ** 657 ** Get or set the value of the database 'auto-vacuum' parameter. 658 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 659 */ 660 #ifndef SQLITE_OMIT_AUTOVACUUM 661 case PragTyp_AUTO_VACUUM: { 662 Btree *pBt = pDb->pBt; 663 assert( pBt!=0 ); 664 if( !zRight ){ 665 returnSingleInt(v, "auto_vacuum", sqlite3BtreeGetAutoVacuum(pBt)); 666 }else{ 667 int eAuto = getAutoVacuum(zRight); 668 assert( eAuto>=0 && eAuto<=2 ); 669 db->nextAutovac = (u8)eAuto; 670 /* Call SetAutoVacuum() to set initialize the internal auto and 671 ** incr-vacuum flags. This is required in case this connection 672 ** creates the database file. It is important that it is created 673 ** as an auto-vacuum capable db. 674 */ 675 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 676 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 677 /* When setting the auto_vacuum mode to either "full" or 678 ** "incremental", write the value of meta[6] in the database 679 ** file. Before writing to meta[6], check that meta[3] indicates 680 ** that this really is an auto-vacuum capable database. 681 */ 682 static const int iLn = VDBE_OFFSET_LINENO(2); 683 static const VdbeOpList setMeta6[] = { 684 { OP_Transaction, 0, 1, 0}, /* 0 */ 685 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 686 { OP_If, 1, 0, 0}, /* 2 */ 687 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 688 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 689 }; 690 VdbeOp *aOp; 691 int iAddr = sqlite3VdbeCurrentAddr(v); 692 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 693 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 694 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 695 aOp[0].p1 = iDb; 696 aOp[1].p1 = iDb; 697 aOp[2].p2 = iAddr+4; 698 aOp[4].p1 = iDb; 699 aOp[4].p3 = eAuto - 1; 700 sqlite3VdbeUsesBtree(v, iDb); 701 } 702 } 703 break; 704 } 705 #endif 706 707 /* 708 ** PRAGMA [schema.]incremental_vacuum(N) 709 ** 710 ** Do N steps of incremental vacuuming on a database. 711 */ 712 #ifndef SQLITE_OMIT_AUTOVACUUM 713 case PragTyp_INCREMENTAL_VACUUM: { 714 int iLimit, addr; 715 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 716 iLimit = 0x7fffffff; 717 } 718 sqlite3BeginWriteOperation(pParse, 0, iDb); 719 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 720 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 721 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 722 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 723 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 724 sqlite3VdbeJumpHere(v, addr); 725 break; 726 } 727 #endif 728 729 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 730 /* 731 ** PRAGMA [schema.]cache_size 732 ** PRAGMA [schema.]cache_size=N 733 ** 734 ** The first form reports the current local setting for the 735 ** page cache size. The second form sets the local 736 ** page cache size value. If N is positive then that is the 737 ** number of pages in the cache. If N is negative, then the 738 ** number of pages is adjusted so that the cache uses -N kibibytes 739 ** of memory. 740 */ 741 case PragTyp_CACHE_SIZE: { 742 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 743 if( !zRight ){ 744 returnSingleInt(v, "cache_size", pDb->pSchema->cache_size); 745 }else{ 746 int size = sqlite3Atoi(zRight); 747 pDb->pSchema->cache_size = size; 748 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 749 } 750 break; 751 } 752 753 /* 754 ** PRAGMA [schema.]cache_spill 755 ** PRAGMA cache_spill=BOOLEAN 756 ** PRAGMA [schema.]cache_spill=N 757 ** 758 ** The first form reports the current local setting for the 759 ** page cache spill size. The second form turns cache spill on 760 ** or off. When turnning cache spill on, the size is set to the 761 ** current cache_size. The third form sets a spill size that 762 ** may be different form the cache size. 763 ** If N is positive then that is the 764 ** number of pages in the cache. If N is negative, then the 765 ** number of pages is adjusted so that the cache uses -N kibibytes 766 ** of memory. 767 ** 768 ** If the number of cache_spill pages is less then the number of 769 ** cache_size pages, no spilling occurs until the page count exceeds 770 ** the number of cache_size pages. 771 ** 772 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 773 ** not just the schema specified. 774 */ 775 case PragTyp_CACHE_SPILL: { 776 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 777 if( !zRight ){ 778 returnSingleInt(v, "cache_spill", 779 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 780 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 781 }else{ 782 int size = 1; 783 if( sqlite3GetInt32(zRight, &size) ){ 784 sqlite3BtreeSetSpillSize(pDb->pBt, size); 785 } 786 if( sqlite3GetBoolean(zRight, size!=0) ){ 787 db->flags |= SQLITE_CacheSpill; 788 }else{ 789 db->flags &= ~SQLITE_CacheSpill; 790 } 791 setAllPagerFlags(db); 792 } 793 break; 794 } 795 796 /* 797 ** PRAGMA [schema.]mmap_size(N) 798 ** 799 ** Used to set mapping size limit. The mapping size limit is 800 ** used to limit the aggregate size of all memory mapped regions of the 801 ** database file. If this parameter is set to zero, then memory mapping 802 ** is not used at all. If N is negative, then the default memory map 803 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 804 ** The parameter N is measured in bytes. 805 ** 806 ** This value is advisory. The underlying VFS is free to memory map 807 ** as little or as much as it wants. Except, if N is set to 0 then the 808 ** upper layers will never invoke the xFetch interfaces to the VFS. 809 */ 810 case PragTyp_MMAP_SIZE: { 811 sqlite3_int64 sz; 812 #if SQLITE_MAX_MMAP_SIZE>0 813 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 814 if( zRight ){ 815 int ii; 816 sqlite3DecOrHexToI64(zRight, &sz); 817 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 818 if( pId2->n==0 ) db->szMmap = sz; 819 for(ii=db->nDb-1; ii>=0; ii--){ 820 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 821 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 822 } 823 } 824 } 825 sz = -1; 826 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 827 #else 828 sz = 0; 829 rc = SQLITE_OK; 830 #endif 831 if( rc==SQLITE_OK ){ 832 returnSingleInt(v, "mmap_size", sz); 833 }else if( rc!=SQLITE_NOTFOUND ){ 834 pParse->nErr++; 835 pParse->rc = rc; 836 } 837 break; 838 } 839 840 /* 841 ** PRAGMA temp_store 842 ** PRAGMA temp_store = "default"|"memory"|"file" 843 ** 844 ** Return or set the local value of the temp_store flag. Changing 845 ** the local value does not make changes to the disk file and the default 846 ** value will be restored the next time the database is opened. 847 ** 848 ** Note that it is possible for the library compile-time options to 849 ** override this setting 850 */ 851 case PragTyp_TEMP_STORE: { 852 if( !zRight ){ 853 returnSingleInt(v, "temp_store", db->temp_store); 854 }else{ 855 changeTempStorage(pParse, zRight); 856 } 857 break; 858 } 859 860 /* 861 ** PRAGMA temp_store_directory 862 ** PRAGMA temp_store_directory = ""|"directory_name" 863 ** 864 ** Return or set the local value of the temp_store_directory flag. Changing 865 ** the value sets a specific directory to be used for temporary files. 866 ** Setting to a null string reverts to the default temporary directory search. 867 ** If temporary directory is changed, then invalidateTempStorage. 868 ** 869 */ 870 case PragTyp_TEMP_STORE_DIRECTORY: { 871 if( !zRight ){ 872 returnSingleText(v, "temp_store_directory", sqlite3_temp_directory); 873 }else{ 874 #ifndef SQLITE_OMIT_WSD 875 if( zRight[0] ){ 876 int res; 877 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 878 if( rc!=SQLITE_OK || res==0 ){ 879 sqlite3ErrorMsg(pParse, "not a writable directory"); 880 goto pragma_out; 881 } 882 } 883 if( SQLITE_TEMP_STORE==0 884 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 885 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 886 ){ 887 invalidateTempStorage(pParse); 888 } 889 sqlite3_free(sqlite3_temp_directory); 890 if( zRight[0] ){ 891 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 892 }else{ 893 sqlite3_temp_directory = 0; 894 } 895 #endif /* SQLITE_OMIT_WSD */ 896 } 897 break; 898 } 899 900 #if SQLITE_OS_WIN 901 /* 902 ** PRAGMA data_store_directory 903 ** PRAGMA data_store_directory = ""|"directory_name" 904 ** 905 ** Return or set the local value of the data_store_directory flag. Changing 906 ** the value sets a specific directory to be used for database files that 907 ** were specified with a relative pathname. Setting to a null string reverts 908 ** to the default database directory, which for database files specified with 909 ** a relative path will probably be based on the current directory for the 910 ** process. Database file specified with an absolute path are not impacted 911 ** by this setting, regardless of its value. 912 ** 913 */ 914 case PragTyp_DATA_STORE_DIRECTORY: { 915 if( !zRight ){ 916 returnSingleText(v, "data_store_directory", sqlite3_data_directory); 917 }else{ 918 #ifndef SQLITE_OMIT_WSD 919 if( zRight[0] ){ 920 int res; 921 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 922 if( rc!=SQLITE_OK || res==0 ){ 923 sqlite3ErrorMsg(pParse, "not a writable directory"); 924 goto pragma_out; 925 } 926 } 927 sqlite3_free(sqlite3_data_directory); 928 if( zRight[0] ){ 929 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 930 }else{ 931 sqlite3_data_directory = 0; 932 } 933 #endif /* SQLITE_OMIT_WSD */ 934 } 935 break; 936 } 937 #endif 938 939 #if SQLITE_ENABLE_LOCKING_STYLE 940 /* 941 ** PRAGMA [schema.]lock_proxy_file 942 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 943 ** 944 ** Return or set the value of the lock_proxy_file flag. Changing 945 ** the value sets a specific file to be used for database access locks. 946 ** 947 */ 948 case PragTyp_LOCK_PROXY_FILE: { 949 if( !zRight ){ 950 Pager *pPager = sqlite3BtreePager(pDb->pBt); 951 char *proxy_file_path = NULL; 952 sqlite3_file *pFile = sqlite3PagerFile(pPager); 953 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 954 &proxy_file_path); 955 returnSingleText(v, "lock_proxy_file", proxy_file_path); 956 }else{ 957 Pager *pPager = sqlite3BtreePager(pDb->pBt); 958 sqlite3_file *pFile = sqlite3PagerFile(pPager); 959 int res; 960 if( zRight[0] ){ 961 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 962 zRight); 963 } else { 964 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 965 NULL); 966 } 967 if( res!=SQLITE_OK ){ 968 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 969 goto pragma_out; 970 } 971 } 972 break; 973 } 974 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 975 976 /* 977 ** PRAGMA [schema.]synchronous 978 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 979 ** 980 ** Return or set the local value of the synchronous flag. Changing 981 ** the local value does not make changes to the disk file and the 982 ** default value will be restored the next time the database is 983 ** opened. 984 */ 985 case PragTyp_SYNCHRONOUS: { 986 if( !zRight ){ 987 returnSingleInt(v, "synchronous", pDb->safety_level-1); 988 }else{ 989 if( !db->autoCommit ){ 990 sqlite3ErrorMsg(pParse, 991 "Safety level may not be changed inside a transaction"); 992 }else{ 993 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 994 if( iLevel==0 ) iLevel = 1; 995 pDb->safety_level = iLevel; 996 pDb->bSyncSet = 1; 997 setAllPagerFlags(db); 998 } 999 } 1000 break; 1001 } 1002 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1003 1004 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1005 case PragTyp_FLAG: { 1006 if( zRight==0 ){ 1007 returnSingleInt(v, pPragma->zName, (db->flags & pPragma->iArg)!=0 ); 1008 }else{ 1009 int mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1010 if( db->autoCommit==0 ){ 1011 /* Foreign key support may not be enabled or disabled while not 1012 ** in auto-commit mode. */ 1013 mask &= ~(SQLITE_ForeignKeys); 1014 } 1015 #if SQLITE_USER_AUTHENTICATION 1016 if( db->auth.authLevel==UAUTH_User ){ 1017 /* Do not allow non-admin users to modify the schema arbitrarily */ 1018 mask &= ~(SQLITE_WriteSchema); 1019 } 1020 #endif 1021 1022 if( sqlite3GetBoolean(zRight, 0) ){ 1023 db->flags |= mask; 1024 }else{ 1025 db->flags &= ~mask; 1026 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1027 } 1028 1029 /* Many of the flag-pragmas modify the code generated by the SQL 1030 ** compiler (eg. count_changes). So add an opcode to expire all 1031 ** compiled SQL statements after modifying a pragma value. 1032 */ 1033 sqlite3VdbeAddOp0(v, OP_Expire); 1034 setAllPagerFlags(db); 1035 } 1036 break; 1037 } 1038 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1039 1040 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1041 /* 1042 ** PRAGMA table_info(<table>) 1043 ** 1044 ** Return a single row for each column of the named table. The columns of 1045 ** the returned data set are: 1046 ** 1047 ** cid: Column id (numbered from left to right, starting at 0) 1048 ** name: Column name 1049 ** type: Column declaration type. 1050 ** notnull: True if 'NOT NULL' is part of column declaration 1051 ** dflt_value: The default value for the column, if any. 1052 */ 1053 case PragTyp_TABLE_INFO: if( zRight ){ 1054 Table *pTab; 1055 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1056 if( pTab ){ 1057 static const char *azCol[] = { 1058 "cid", "name", "type", "notnull", "dflt_value", "pk" 1059 }; 1060 int i, k; 1061 int nHidden = 0; 1062 Column *pCol; 1063 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1064 pParse->nMem = 6; 1065 sqlite3CodeVerifySchema(pParse, iDb); 1066 setAllColumnNames(v, 6, azCol); assert( 6==ArraySize(azCol) ); 1067 sqlite3ViewGetColumnNames(pParse, pTab); 1068 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1069 if( IsHiddenColumn(pCol) ){ 1070 nHidden++; 1071 continue; 1072 } 1073 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1074 k = 0; 1075 }else if( pPk==0 ){ 1076 k = 1; 1077 }else{ 1078 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1079 } 1080 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); 1081 sqlite3VdbeMultiLoad(v, 1, "issisi", 1082 i-nHidden, 1083 pCol->zName, 1084 sqlite3ColumnType(pCol,""), 1085 pCol->notNull ? 1 : 0, 1086 pCol->pDflt ? pCol->pDflt->u.zToken : 0, 1087 k); 1088 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); 1089 } 1090 } 1091 } 1092 break; 1093 1094 case PragTyp_STATS: { 1095 static const char *azCol[] = { "table", "index", "width", "height" }; 1096 Index *pIdx; 1097 HashElem *i; 1098 v = sqlite3GetVdbe(pParse); 1099 pParse->nMem = 4; 1100 sqlite3CodeVerifySchema(pParse, iDb); 1101 setAllColumnNames(v, 4, azCol); assert( 4==ArraySize(azCol) ); 1102 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1103 Table *pTab = sqliteHashData(i); 1104 sqlite3VdbeMultiLoad(v, 1, "ssii", 1105 pTab->zName, 1106 0, 1107 pTab->szTabRow, 1108 pTab->nRowLogEst); 1109 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4); 1110 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1111 sqlite3VdbeMultiLoad(v, 2, "sii", 1112 pIdx->zName, 1113 pIdx->szIdxRow, 1114 pIdx->aiRowLogEst[0]); 1115 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4); 1116 } 1117 } 1118 } 1119 break; 1120 1121 case PragTyp_INDEX_INFO: if( zRight ){ 1122 Index *pIdx; 1123 Table *pTab; 1124 pIdx = sqlite3FindIndex(db, zRight, zDb); 1125 if( pIdx ){ 1126 static const char *azCol[] = { 1127 "seqno", "cid", "name", "desc", "coll", "key" 1128 }; 1129 int i; 1130 int mx; 1131 if( pPragma->iArg ){ 1132 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1133 mx = pIdx->nColumn; 1134 pParse->nMem = 6; 1135 }else{ 1136 /* PRAGMA index_info (legacy version) */ 1137 mx = pIdx->nKeyCol; 1138 pParse->nMem = 3; 1139 } 1140 pTab = pIdx->pTable; 1141 sqlite3CodeVerifySchema(pParse, iDb); 1142 assert( pParse->nMem<=ArraySize(azCol) ); 1143 setAllColumnNames(v, pParse->nMem, azCol); 1144 for(i=0; i<mx; i++){ 1145 i16 cnum = pIdx->aiColumn[i]; 1146 sqlite3VdbeMultiLoad(v, 1, "iis", i, cnum, 1147 cnum<0 ? 0 : pTab->aCol[cnum].zName); 1148 if( pPragma->iArg ){ 1149 sqlite3VdbeMultiLoad(v, 4, "isi", 1150 pIdx->aSortOrder[i], 1151 pIdx->azColl[i], 1152 i<pIdx->nKeyCol); 1153 } 1154 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1155 } 1156 } 1157 } 1158 break; 1159 1160 case PragTyp_INDEX_LIST: if( zRight ){ 1161 Index *pIdx; 1162 Table *pTab; 1163 int i; 1164 pTab = sqlite3FindTable(db, zRight, zDb); 1165 if( pTab ){ 1166 static const char *azCol[] = { 1167 "seq", "name", "unique", "origin", "partial" 1168 }; 1169 v = sqlite3GetVdbe(pParse); 1170 pParse->nMem = 5; 1171 sqlite3CodeVerifySchema(pParse, iDb); 1172 setAllColumnNames(v, 5, azCol); assert( 5==ArraySize(azCol) ); 1173 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1174 const char *azOrigin[] = { "c", "u", "pk" }; 1175 sqlite3VdbeMultiLoad(v, 1, "isisi", 1176 i, 1177 pIdx->zName, 1178 IsUniqueIndex(pIdx), 1179 azOrigin[pIdx->idxType], 1180 pIdx->pPartIdxWhere!=0); 1181 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1182 } 1183 } 1184 } 1185 break; 1186 1187 case PragTyp_DATABASE_LIST: { 1188 static const char *azCol[] = { "seq", "name", "file" }; 1189 int i; 1190 pParse->nMem = 3; 1191 setAllColumnNames(v, 3, azCol); assert( 3==ArraySize(azCol) ); 1192 for(i=0; i<db->nDb; i++){ 1193 if( db->aDb[i].pBt==0 ) continue; 1194 assert( db->aDb[i].zDbSName!=0 ); 1195 sqlite3VdbeMultiLoad(v, 1, "iss", 1196 i, 1197 db->aDb[i].zDbSName, 1198 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1199 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1200 } 1201 } 1202 break; 1203 1204 case PragTyp_COLLATION_LIST: { 1205 static const char *azCol[] = { "seq", "name" }; 1206 int i = 0; 1207 HashElem *p; 1208 pParse->nMem = 2; 1209 setAllColumnNames(v, 2, azCol); assert( 2==ArraySize(azCol) ); 1210 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1211 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1212 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1213 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1214 } 1215 } 1216 break; 1217 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1218 1219 #ifndef SQLITE_OMIT_FOREIGN_KEY 1220 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1221 FKey *pFK; 1222 Table *pTab; 1223 pTab = sqlite3FindTable(db, zRight, zDb); 1224 if( pTab ){ 1225 v = sqlite3GetVdbe(pParse); 1226 pFK = pTab->pFKey; 1227 if( pFK ){ 1228 static const char *azCol[] = { 1229 "id", "seq", "table", "from", "to", "on_update", "on_delete", 1230 "match" 1231 }; 1232 int i = 0; 1233 pParse->nMem = 8; 1234 sqlite3CodeVerifySchema(pParse, iDb); 1235 setAllColumnNames(v, 8, azCol); assert( 8==ArraySize(azCol) ); 1236 while(pFK){ 1237 int j; 1238 for(j=0; j<pFK->nCol; j++){ 1239 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1240 i, 1241 j, 1242 pFK->zTo, 1243 pTab->aCol[pFK->aCol[j].iFrom].zName, 1244 pFK->aCol[j].zCol, 1245 actionName(pFK->aAction[1]), /* ON UPDATE */ 1246 actionName(pFK->aAction[0]), /* ON DELETE */ 1247 "NONE"); 1248 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); 1249 } 1250 ++i; 1251 pFK = pFK->pNextFrom; 1252 } 1253 } 1254 } 1255 } 1256 break; 1257 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1258 1259 #ifndef SQLITE_OMIT_FOREIGN_KEY 1260 #ifndef SQLITE_OMIT_TRIGGER 1261 case PragTyp_FOREIGN_KEY_CHECK: { 1262 FKey *pFK; /* A foreign key constraint */ 1263 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1264 Table *pParent; /* Parent table that child points to */ 1265 Index *pIdx; /* Index in the parent table */ 1266 int i; /* Loop counter: Foreign key number for pTab */ 1267 int j; /* Loop counter: Field of the foreign key */ 1268 HashElem *k; /* Loop counter: Next table in schema */ 1269 int x; /* result variable */ 1270 int regResult; /* 3 registers to hold a result row */ 1271 int regKey; /* Register to hold key for checking the FK */ 1272 int regRow; /* Registers to hold a row from pTab */ 1273 int addrTop; /* Top of a loop checking foreign keys */ 1274 int addrOk; /* Jump here if the key is OK */ 1275 int *aiCols; /* child to parent column mapping */ 1276 static const char *azCol[] = { "table", "rowid", "parent", "fkid" }; 1277 1278 regResult = pParse->nMem+1; 1279 pParse->nMem += 4; 1280 regKey = ++pParse->nMem; 1281 regRow = ++pParse->nMem; 1282 v = sqlite3GetVdbe(pParse); 1283 setAllColumnNames(v, 4, azCol); assert( 4==ArraySize(azCol) ); 1284 sqlite3CodeVerifySchema(pParse, iDb); 1285 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1286 while( k ){ 1287 if( zRight ){ 1288 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1289 k = 0; 1290 }else{ 1291 pTab = (Table*)sqliteHashData(k); 1292 k = sqliteHashNext(k); 1293 } 1294 if( pTab==0 || pTab->pFKey==0 ) continue; 1295 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1296 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1297 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1298 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1299 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1300 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1301 if( pParent==0 ) continue; 1302 pIdx = 0; 1303 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1304 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1305 if( x==0 ){ 1306 if( pIdx==0 ){ 1307 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1308 }else{ 1309 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1310 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1311 } 1312 }else{ 1313 k = 0; 1314 break; 1315 } 1316 } 1317 assert( pParse->nErr>0 || pFK==0 ); 1318 if( pFK ) break; 1319 if( pParse->nTab<i ) pParse->nTab = i; 1320 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1321 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1322 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1323 pIdx = 0; 1324 aiCols = 0; 1325 if( pParent ){ 1326 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1327 assert( x==0 ); 1328 } 1329 addrOk = sqlite3VdbeMakeLabel(v); 1330 if( pParent && pIdx==0 ){ 1331 int iKey = pFK->aCol[0].iFrom; 1332 assert( iKey>=0 && iKey<pTab->nCol ); 1333 if( iKey!=pTab->iPKey ){ 1334 sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); 1335 sqlite3ColumnDefault(v, pTab, iKey, regRow); 1336 sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v); 1337 }else{ 1338 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); 1339 } 1340 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v); 1341 sqlite3VdbeGoto(v, addrOk); 1342 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1343 }else{ 1344 for(j=0; j<pFK->nCol; j++){ 1345 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, 1346 aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j); 1347 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1348 } 1349 if( pParent ){ 1350 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, 1351 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1352 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); 1353 VdbeCoverage(v); 1354 } 1355 } 1356 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1357 sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1); 1358 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1359 sqlite3VdbeResolveLabel(v, addrOk); 1360 sqlite3DbFree(db, aiCols); 1361 } 1362 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1363 sqlite3VdbeJumpHere(v, addrTop); 1364 } 1365 } 1366 break; 1367 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1368 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1369 1370 #ifndef NDEBUG 1371 case PragTyp_PARSER_TRACE: { 1372 if( zRight ){ 1373 if( sqlite3GetBoolean(zRight, 0) ){ 1374 sqlite3ParserTrace(stdout, "parser: "); 1375 }else{ 1376 sqlite3ParserTrace(0, 0); 1377 } 1378 } 1379 } 1380 break; 1381 #endif 1382 1383 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1384 ** used will be case sensitive or not depending on the RHS. 1385 */ 1386 case PragTyp_CASE_SENSITIVE_LIKE: { 1387 if( zRight ){ 1388 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1389 } 1390 } 1391 break; 1392 1393 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1394 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1395 #endif 1396 1397 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1398 /* Pragma "quick_check" is reduced version of 1399 ** integrity_check designed to detect most database corruption 1400 ** without most of the overhead of a full integrity-check. 1401 */ 1402 case PragTyp_INTEGRITY_CHECK: { 1403 int i, j, addr, mxErr; 1404 1405 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1406 1407 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1408 ** then iDb is set to the index of the database identified by <db>. 1409 ** In this case, the integrity of database iDb only is verified by 1410 ** the VDBE created below. 1411 ** 1412 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1413 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1414 ** to -1 here, to indicate that the VDBE should verify the integrity 1415 ** of all attached databases. */ 1416 assert( iDb>=0 ); 1417 assert( iDb==0 || pId2->z ); 1418 if( pId2->z==0 ) iDb = -1; 1419 1420 /* Initialize the VDBE program */ 1421 pParse->nMem = 6; 1422 setOneColumnName(v, "integrity_check"); 1423 1424 /* Set the maximum error count */ 1425 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1426 if( zRight ){ 1427 sqlite3GetInt32(zRight, &mxErr); 1428 if( mxErr<=0 ){ 1429 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1430 } 1431 } 1432 sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ 1433 1434 /* Do an integrity check on each database file */ 1435 for(i=0; i<db->nDb; i++){ 1436 HashElem *x; 1437 Hash *pTbls; 1438 int *aRoot; 1439 int cnt = 0; 1440 int mxIdx = 0; 1441 int nIdx; 1442 1443 if( OMIT_TEMPDB && i==1 ) continue; 1444 if( iDb>=0 && i!=iDb ) continue; 1445 1446 sqlite3CodeVerifySchema(pParse, i); 1447 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ 1448 VdbeCoverage(v); 1449 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1450 sqlite3VdbeJumpHere(v, addr); 1451 1452 /* Do an integrity check of the B-Tree 1453 ** 1454 ** Begin by finding the root pages numbers 1455 ** for all tables and indices in the database. 1456 */ 1457 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1458 pTbls = &db->aDb[i].pSchema->tblHash; 1459 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1460 Table *pTab = sqliteHashData(x); 1461 Index *pIdx; 1462 if( HasRowid(pTab) ) cnt++; 1463 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1464 if( nIdx>mxIdx ) mxIdx = nIdx; 1465 } 1466 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1467 if( aRoot==0 ) break; 1468 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1469 Table *pTab = sqliteHashData(x); 1470 Index *pIdx; 1471 if( HasRowid(pTab) ) aRoot[cnt++] = pTab->tnum; 1472 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1473 aRoot[cnt++] = pIdx->tnum; 1474 } 1475 } 1476 aRoot[cnt] = 0; 1477 1478 /* Make sure sufficient number of registers have been allocated */ 1479 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1480 1481 /* Do the b-tree integrity checks */ 1482 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1483 sqlite3VdbeChangeP5(v, (u8)i); 1484 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1485 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1486 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1487 P4_DYNAMIC); 1488 sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1); 1489 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); 1490 sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); 1491 sqlite3VdbeJumpHere(v, addr); 1492 1493 /* Make sure all the indices are constructed correctly. 1494 */ 1495 for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ 1496 Table *pTab = sqliteHashData(x); 1497 Index *pIdx, *pPk; 1498 Index *pPrior = 0; 1499 int loopTop; 1500 int iDataCur, iIdxCur; 1501 int r1 = -1; 1502 1503 if( pTab->pIndex==0 ) continue; 1504 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); 1505 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ 1506 VdbeCoverage(v); 1507 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1508 sqlite3VdbeJumpHere(v, addr); 1509 sqlite3ExprCacheClear(pParse); 1510 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1511 1, 0, &iDataCur, &iIdxCur); 1512 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1513 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1514 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1515 } 1516 assert( pParse->nMem>=8+j ); 1517 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1518 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1519 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1520 /* Verify that all NOT NULL columns really are NOT NULL */ 1521 for(j=0; j<pTab->nCol; j++){ 1522 char *zErr; 1523 int jmp2, jmp3; 1524 if( j==pTab->iPKey ) continue; 1525 if( pTab->aCol[j].notNull==0 ) continue; 1526 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1527 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1528 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); 1529 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1530 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1531 pTab->aCol[j].zName); 1532 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1533 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 1534 jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); 1535 sqlite3VdbeAddOp0(v, OP_Halt); 1536 sqlite3VdbeJumpHere(v, jmp2); 1537 sqlite3VdbeJumpHere(v, jmp3); 1538 } 1539 /* Validate index entries for the current row */ 1540 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1541 int jmp2, jmp3, jmp4, jmp5; 1542 int ckUniq = sqlite3VdbeMakeLabel(v); 1543 if( pPk==pIdx ) continue; 1544 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1545 pPrior, r1); 1546 pPrior = pIdx; 1547 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ 1548 /* Verify that an index entry exists for the current table row */ 1549 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1550 pIdx->nColumn); VdbeCoverage(v); 1551 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1552 sqlite3VdbeLoadString(v, 3, "row "); 1553 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1554 sqlite3VdbeLoadString(v, 4, " missing from index "); 1555 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1556 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1557 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1558 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 1559 jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); 1560 sqlite3VdbeAddOp0(v, OP_Halt); 1561 sqlite3VdbeJumpHere(v, jmp2); 1562 /* For UNIQUE indexes, verify that only one entry exists with the 1563 ** current key. The entry is unique if (1) any column is NULL 1564 ** or (2) the next entry has a different key */ 1565 if( IsUniqueIndex(pIdx) ){ 1566 int uniqOk = sqlite3VdbeMakeLabel(v); 1567 int jmp6; 1568 int kk; 1569 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1570 int iCol = pIdx->aiColumn[kk]; 1571 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1572 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1573 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1574 VdbeCoverage(v); 1575 } 1576 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1577 sqlite3VdbeGoto(v, uniqOk); 1578 sqlite3VdbeJumpHere(v, jmp6); 1579 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1580 pIdx->nKeyCol); VdbeCoverage(v); 1581 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1582 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1583 sqlite3VdbeGoto(v, jmp5); 1584 sqlite3VdbeResolveLabel(v, uniqOk); 1585 } 1586 sqlite3VdbeJumpHere(v, jmp4); 1587 sqlite3ResolvePartIdxLabel(pParse, jmp3); 1588 } 1589 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 1590 sqlite3VdbeJumpHere(v, loopTop-1); 1591 #ifndef SQLITE_OMIT_BTREECOUNT 1592 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 1593 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1594 if( pPk==pIdx ) continue; 1595 addr = sqlite3VdbeCurrentAddr(v); 1596 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v); 1597 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1598 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 1599 sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v); 1600 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1601 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 1602 sqlite3VdbeLoadString(v, 3, pIdx->zName); 1603 sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); 1604 sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); 1605 } 1606 #endif /* SQLITE_OMIT_BTREECOUNT */ 1607 } 1608 } 1609 { 1610 static const int iLn = VDBE_OFFSET_LINENO(2); 1611 static const VdbeOpList endCode[] = { 1612 { OP_AddImm, 1, 0, 0}, /* 0 */ 1613 { OP_If, 1, 4, 0}, /* 1 */ 1614 { OP_String8, 0, 3, 0}, /* 2 */ 1615 { OP_ResultRow, 3, 1, 0}, /* 3 */ 1616 }; 1617 VdbeOp *aOp; 1618 1619 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 1620 if( aOp ){ 1621 aOp[0].p2 = -mxErr; 1622 aOp[2].p4type = P4_STATIC; 1623 aOp[2].p4.z = "ok"; 1624 } 1625 } 1626 } 1627 break; 1628 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 1629 1630 #ifndef SQLITE_OMIT_UTF16 1631 /* 1632 ** PRAGMA encoding 1633 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 1634 ** 1635 ** In its first form, this pragma returns the encoding of the main 1636 ** database. If the database is not initialized, it is initialized now. 1637 ** 1638 ** The second form of this pragma is a no-op if the main database file 1639 ** has not already been initialized. In this case it sets the default 1640 ** encoding that will be used for the main database file if a new file 1641 ** is created. If an existing main database file is opened, then the 1642 ** default text encoding for the existing database is used. 1643 ** 1644 ** In all cases new databases created using the ATTACH command are 1645 ** created to use the same default text encoding as the main database. If 1646 ** the main database has not been initialized and/or created when ATTACH 1647 ** is executed, this is done before the ATTACH operation. 1648 ** 1649 ** In the second form this pragma sets the text encoding to be used in 1650 ** new database files created using this database handle. It is only 1651 ** useful if invoked immediately after the main database i 1652 */ 1653 case PragTyp_ENCODING: { 1654 static const struct EncName { 1655 char *zName; 1656 u8 enc; 1657 } encnames[] = { 1658 { "UTF8", SQLITE_UTF8 }, 1659 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 1660 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 1661 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 1662 { "UTF16le", SQLITE_UTF16LE }, 1663 { "UTF16be", SQLITE_UTF16BE }, 1664 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 1665 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 1666 { 0, 0 } 1667 }; 1668 const struct EncName *pEnc; 1669 if( !zRight ){ /* "PRAGMA encoding" */ 1670 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 1671 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 1672 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 1673 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 1674 returnSingleText(v, "encoding", encnames[ENC(pParse->db)].zName); 1675 }else{ /* "PRAGMA encoding = XXX" */ 1676 /* Only change the value of sqlite.enc if the database handle is not 1677 ** initialized. If the main database exists, the new sqlite.enc value 1678 ** will be overwritten when the schema is next loaded. If it does not 1679 ** already exists, it will be created to use the new encoding value. 1680 */ 1681 if( 1682 !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 1683 DbHasProperty(db, 0, DB_Empty) 1684 ){ 1685 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 1686 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 1687 SCHEMA_ENC(db) = ENC(db) = 1688 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 1689 break; 1690 } 1691 } 1692 if( !pEnc->zName ){ 1693 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 1694 } 1695 } 1696 } 1697 } 1698 break; 1699 #endif /* SQLITE_OMIT_UTF16 */ 1700 1701 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 1702 /* 1703 ** PRAGMA [schema.]schema_version 1704 ** PRAGMA [schema.]schema_version = <integer> 1705 ** 1706 ** PRAGMA [schema.]user_version 1707 ** PRAGMA [schema.]user_version = <integer> 1708 ** 1709 ** PRAGMA [schema.]freelist_count 1710 ** 1711 ** PRAGMA [schema.]data_version 1712 ** 1713 ** PRAGMA [schema.]application_id 1714 ** PRAGMA [schema.]application_id = <integer> 1715 ** 1716 ** The pragma's schema_version and user_version are used to set or get 1717 ** the value of the schema-version and user-version, respectively. Both 1718 ** the schema-version and the user-version are 32-bit signed integers 1719 ** stored in the database header. 1720 ** 1721 ** The schema-cookie is usually only manipulated internally by SQLite. It 1722 ** is incremented by SQLite whenever the database schema is modified (by 1723 ** creating or dropping a table or index). The schema version is used by 1724 ** SQLite each time a query is executed to ensure that the internal cache 1725 ** of the schema used when compiling the SQL query matches the schema of 1726 ** the database against which the compiled query is actually executed. 1727 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 1728 ** the schema-version is potentially dangerous and may lead to program 1729 ** crashes or database corruption. Use with caution! 1730 ** 1731 ** The user-version is not used internally by SQLite. It may be used by 1732 ** applications for any purpose. 1733 */ 1734 case PragTyp_HEADER_VALUE: { 1735 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 1736 sqlite3VdbeUsesBtree(v, iDb); 1737 if( zRight && (pPragma->mPragFlag & PragFlag_ReadOnly)==0 ){ 1738 /* Write the specified cookie value */ 1739 static const VdbeOpList setCookie[] = { 1740 { OP_Transaction, 0, 1, 0}, /* 0 */ 1741 { OP_SetCookie, 0, 0, 0}, /* 1 */ 1742 }; 1743 VdbeOp *aOp; 1744 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 1745 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 1746 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1747 aOp[0].p1 = iDb; 1748 aOp[1].p1 = iDb; 1749 aOp[1].p2 = iCookie; 1750 aOp[1].p3 = sqlite3Atoi(zRight); 1751 }else{ 1752 /* Read the specified cookie value */ 1753 static const VdbeOpList readCookie[] = { 1754 { OP_Transaction, 0, 0, 0}, /* 0 */ 1755 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 1756 { OP_ResultRow, 1, 1, 0} 1757 }; 1758 VdbeOp *aOp; 1759 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 1760 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 1761 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1762 aOp[0].p1 = iDb; 1763 aOp[1].p1 = iDb; 1764 aOp[1].p3 = iCookie; 1765 sqlite3VdbeSetNumCols(v, 1); 1766 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); 1767 sqlite3VdbeReusable(v); 1768 } 1769 } 1770 break; 1771 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 1772 1773 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1774 /* 1775 ** PRAGMA compile_options 1776 ** 1777 ** Return the names of all compile-time options used in this build, 1778 ** one option per row. 1779 */ 1780 case PragTyp_COMPILE_OPTIONS: { 1781 int i = 0; 1782 const char *zOpt; 1783 pParse->nMem = 1; 1784 setOneColumnName(v, "compile_option"); 1785 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 1786 sqlite3VdbeLoadString(v, 1, zOpt); 1787 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1788 } 1789 sqlite3VdbeReusable(v); 1790 } 1791 break; 1792 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1793 1794 #ifndef SQLITE_OMIT_WAL 1795 /* 1796 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 1797 ** 1798 ** Checkpoint the database. 1799 */ 1800 case PragTyp_WAL_CHECKPOINT: { 1801 static const char *azCol[] = { "busy", "log", "checkpointed" }; 1802 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); 1803 int eMode = SQLITE_CHECKPOINT_PASSIVE; 1804 if( zRight ){ 1805 if( sqlite3StrICmp(zRight, "full")==0 ){ 1806 eMode = SQLITE_CHECKPOINT_FULL; 1807 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 1808 eMode = SQLITE_CHECKPOINT_RESTART; 1809 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 1810 eMode = SQLITE_CHECKPOINT_TRUNCATE; 1811 } 1812 } 1813 setAllColumnNames(v, 3, azCol); assert( 3==ArraySize(azCol) ); 1814 pParse->nMem = 3; 1815 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 1816 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1817 } 1818 break; 1819 1820 /* 1821 ** PRAGMA wal_autocheckpoint 1822 ** PRAGMA wal_autocheckpoint = N 1823 ** 1824 ** Configure a database connection to automatically checkpoint a database 1825 ** after accumulating N frames in the log. Or query for the current value 1826 ** of N. 1827 */ 1828 case PragTyp_WAL_AUTOCHECKPOINT: { 1829 if( zRight ){ 1830 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 1831 } 1832 returnSingleInt(v, "wal_autocheckpoint", 1833 db->xWalCallback==sqlite3WalDefaultHook ? 1834 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 1835 } 1836 break; 1837 #endif 1838 1839 /* 1840 ** PRAGMA shrink_memory 1841 ** 1842 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 1843 ** connection on which it is invoked to free up as much memory as it 1844 ** can, by calling sqlite3_db_release_memory(). 1845 */ 1846 case PragTyp_SHRINK_MEMORY: { 1847 sqlite3_db_release_memory(db); 1848 break; 1849 } 1850 1851 /* 1852 ** PRAGMA busy_timeout 1853 ** PRAGMA busy_timeout = N 1854 ** 1855 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 1856 ** if one is set. If no busy handler or a different busy handler is set 1857 ** then 0 is returned. Setting the busy_timeout to 0 or negative 1858 ** disables the timeout. 1859 */ 1860 /*case PragTyp_BUSY_TIMEOUT*/ default: { 1861 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 1862 if( zRight ){ 1863 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 1864 } 1865 returnSingleInt(v, "timeout", db->busyTimeout); 1866 break; 1867 } 1868 1869 /* 1870 ** PRAGMA soft_heap_limit 1871 ** PRAGMA soft_heap_limit = N 1872 ** 1873 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 1874 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 1875 ** specified and is a non-negative integer. 1876 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 1877 ** returns the same integer that would be returned by the 1878 ** sqlite3_soft_heap_limit64(-1) C-language function. 1879 */ 1880 case PragTyp_SOFT_HEAP_LIMIT: { 1881 sqlite3_int64 N; 1882 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 1883 sqlite3_soft_heap_limit64(N); 1884 } 1885 returnSingleInt(v, "soft_heap_limit", sqlite3_soft_heap_limit64(-1)); 1886 break; 1887 } 1888 1889 /* 1890 ** PRAGMA threads 1891 ** PRAGMA threads = N 1892 ** 1893 ** Configure the maximum number of worker threads. Return the new 1894 ** maximum, which might be less than requested. 1895 */ 1896 case PragTyp_THREADS: { 1897 sqlite3_int64 N; 1898 if( zRight 1899 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 1900 && N>=0 1901 ){ 1902 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 1903 } 1904 returnSingleInt(v, "threads", 1905 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 1906 break; 1907 } 1908 1909 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 1910 /* 1911 ** Report the current state of file logs for all databases 1912 */ 1913 case PragTyp_LOCK_STATUS: { 1914 static const char *const azLockName[] = { 1915 "unlocked", "shared", "reserved", "pending", "exclusive" 1916 }; 1917 static const char *azCol[] = { "database", "status" }; 1918 int i; 1919 setAllColumnNames(v, 2, azCol); assert( 2==ArraySize(azCol) ); 1920 pParse->nMem = 2; 1921 for(i=0; i<db->nDb; i++){ 1922 Btree *pBt; 1923 const char *zState = "unknown"; 1924 int j; 1925 if( db->aDb[i].zDbSName==0 ) continue; 1926 pBt = db->aDb[i].pBt; 1927 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 1928 zState = "closed"; 1929 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 1930 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 1931 zState = azLockName[j]; 1932 } 1933 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 1934 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1935 } 1936 break; 1937 } 1938 #endif 1939 1940 #ifdef SQLITE_HAS_CODEC 1941 case PragTyp_KEY: { 1942 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 1943 break; 1944 } 1945 case PragTyp_REKEY: { 1946 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 1947 break; 1948 } 1949 case PragTyp_HEXKEY: { 1950 if( zRight ){ 1951 u8 iByte; 1952 int i; 1953 char zKey[40]; 1954 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ 1955 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); 1956 if( (i&1)!=0 ) zKey[i/2] = iByte; 1957 } 1958 if( (zLeft[3] & 0xf)==0xb ){ 1959 sqlite3_key_v2(db, zDb, zKey, i/2); 1960 }else{ 1961 sqlite3_rekey_v2(db, zDb, zKey, i/2); 1962 } 1963 } 1964 break; 1965 } 1966 #endif 1967 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) 1968 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 1969 #ifdef SQLITE_HAS_CODEC 1970 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ 1971 sqlite3_activate_see(&zRight[4]); 1972 } 1973 #endif 1974 #ifdef SQLITE_ENABLE_CEROD 1975 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 1976 sqlite3_activate_cerod(&zRight[6]); 1977 } 1978 #endif 1979 } 1980 break; 1981 #endif 1982 1983 } /* End of the PRAGMA switch */ 1984 1985 pragma_out: 1986 sqlite3DbFree(db, zLeft); 1987 sqlite3DbFree(db, zRight); 1988 } 1989 1990 #endif /* SQLITE_OMIT_PRAGMA */ 1991