1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ 135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 136 "from within a transaction"); 137 return SQLITE_ERROR; 138 } 139 sqlite3BtreeClose(db->aDb[1].pBt); 140 db->aDb[1].pBt = 0; 141 sqlite3ResetAllSchemasOfConnection(db); 142 } 143 return SQLITE_OK; 144 } 145 #endif /* SQLITE_PAGER_PRAGMAS */ 146 147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 148 /* 149 ** If the TEMP database is open, close it and mark the database schema 150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 151 ** or DEFAULT_TEMP_STORE pragmas. 152 */ 153 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 154 int ts = getTempStore(zStorageType); 155 sqlite3 *db = pParse->db; 156 if( db->temp_store==ts ) return SQLITE_OK; 157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 158 return SQLITE_ERROR; 159 } 160 db->temp_store = (u8)ts; 161 return SQLITE_OK; 162 } 163 #endif /* SQLITE_PAGER_PRAGMAS */ 164 165 /* 166 ** Set result column names for a pragma. 167 */ 168 static void setPragmaResultColumnNames( 169 Vdbe *v, /* The query under construction */ 170 const PragmaName *pPragma /* The pragma */ 171 ){ 172 u8 n = pPragma->nPragCName; 173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); 174 if( n==0 ){ 175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); 176 }else{ 177 int i, j; 178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ 179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); 180 } 181 } 182 } 183 184 /* 185 ** Generate code to return a single integer value. 186 */ 187 static void returnSingleInt(Vdbe *v, i64 value){ 188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 190 } 191 192 /* 193 ** Generate code to return a single text value. 194 */ 195 static void returnSingleText( 196 Vdbe *v, /* Prepared statement under construction */ 197 const char *zValue /* Value to be returned */ 198 ){ 199 if( zValue ){ 200 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 202 } 203 } 204 205 206 /* 207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 208 ** set these values for all pagers. 209 */ 210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 211 static void setAllPagerFlags(sqlite3 *db){ 212 if( db->autoCommit ){ 213 Db *pDb = db->aDb; 214 int n = db->nDb; 215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 219 == PAGER_FLAGS_MASK ); 220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 221 while( (n--) > 0 ){ 222 if( pDb->pBt ){ 223 sqlite3BtreeSetPagerFlags(pDb->pBt, 224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 225 } 226 pDb++; 227 } 228 } 229 } 230 #else 231 # define setAllPagerFlags(X) /* no-op */ 232 #endif 233 234 235 /* 236 ** Return a human-readable name for a constraint resolution action. 237 */ 238 #ifndef SQLITE_OMIT_FOREIGN_KEY 239 static const char *actionName(u8 action){ 240 const char *zName; 241 switch( action ){ 242 case OE_SetNull: zName = "SET NULL"; break; 243 case OE_SetDflt: zName = "SET DEFAULT"; break; 244 case OE_Cascade: zName = "CASCADE"; break; 245 case OE_Restrict: zName = "RESTRICT"; break; 246 default: zName = "NO ACTION"; 247 assert( action==OE_None ); break; 248 } 249 return zName; 250 } 251 #endif 252 253 254 /* 255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 256 ** defined in pager.h. This function returns the associated lowercase 257 ** journal-mode name. 258 */ 259 const char *sqlite3JournalModename(int eMode){ 260 static char * const azModeName[] = { 261 "delete", "persist", "off", "truncate", "memory" 262 #ifndef SQLITE_OMIT_WAL 263 , "wal" 264 #endif 265 }; 266 assert( PAGER_JOURNALMODE_DELETE==0 ); 267 assert( PAGER_JOURNALMODE_PERSIST==1 ); 268 assert( PAGER_JOURNALMODE_OFF==2 ); 269 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 270 assert( PAGER_JOURNALMODE_MEMORY==4 ); 271 assert( PAGER_JOURNALMODE_WAL==5 ); 272 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 273 274 if( eMode==ArraySize(azModeName) ) return 0; 275 return azModeName[eMode]; 276 } 277 278 /* 279 ** Locate a pragma in the aPragmaName[] array. 280 */ 281 static const PragmaName *pragmaLocate(const char *zName){ 282 int upr, lwr, mid = 0, rc; 283 lwr = 0; 284 upr = ArraySize(aPragmaName)-1; 285 while( lwr<=upr ){ 286 mid = (lwr+upr)/2; 287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); 288 if( rc==0 ) break; 289 if( rc<0 ){ 290 upr = mid - 1; 291 }else{ 292 lwr = mid + 1; 293 } 294 } 295 return lwr>upr ? 0 : &aPragmaName[mid]; 296 } 297 298 /* 299 ** Helper subroutine for PRAGMA integrity_check: 300 ** 301 ** Generate code to output a single-column result row with a value of the 302 ** string held in register 3. Decrement the result count in register 1 303 ** and halt if the maximum number of result rows have been issued. 304 */ 305 static int integrityCheckResultRow(Vdbe *v){ 306 int addr; 307 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 308 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); 309 VdbeCoverage(v); 310 sqlite3VdbeAddOp0(v, OP_Halt); 311 return addr; 312 } 313 314 /* 315 ** Process a pragma statement. 316 ** 317 ** Pragmas are of this form: 318 ** 319 ** PRAGMA [schema.]id [= value] 320 ** 321 ** The identifier might also be a string. The value is a string, and 322 ** identifier, or a number. If minusFlag is true, then the value is 323 ** a number that was preceded by a minus sign. 324 ** 325 ** If the left side is "database.id" then pId1 is the database name 326 ** and pId2 is the id. If the left side is just "id" then pId1 is the 327 ** id and pId2 is any empty string. 328 */ 329 void sqlite3Pragma( 330 Parse *pParse, 331 Token *pId1, /* First part of [schema.]id field */ 332 Token *pId2, /* Second part of [schema.]id field, or NULL */ 333 Token *pValue, /* Token for <value>, or NULL */ 334 int minusFlag /* True if a '-' sign preceded <value> */ 335 ){ 336 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 337 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 338 const char *zDb = 0; /* The database name */ 339 Token *pId; /* Pointer to <id> token */ 340 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 341 int iDb; /* Database index for <database> */ 342 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 343 sqlite3 *db = pParse->db; /* The database connection */ 344 Db *pDb; /* The specific database being pragmaed */ 345 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 346 const PragmaName *pPragma; /* The pragma */ 347 348 if( v==0 ) return; 349 sqlite3VdbeRunOnlyOnce(v); 350 pParse->nMem = 2; 351 352 /* Interpret the [schema.] part of the pragma statement. iDb is the 353 ** index of the database this pragma is being applied to in db.aDb[]. */ 354 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 355 if( iDb<0 ) return; 356 pDb = &db->aDb[iDb]; 357 358 /* If the temp database has been explicitly named as part of the 359 ** pragma, make sure it is open. 360 */ 361 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 362 return; 363 } 364 365 zLeft = sqlite3NameFromToken(db, pId); 366 if( !zLeft ) return; 367 if( minusFlag ){ 368 zRight = sqlite3MPrintf(db, "-%T", pValue); 369 }else{ 370 zRight = sqlite3NameFromToken(db, pValue); 371 } 372 373 assert( pId2 ); 374 zDb = pId2->n>0 ? pDb->zDbSName : 0; 375 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 376 goto pragma_out; 377 } 378 379 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 380 ** connection. If it returns SQLITE_OK, then assume that the VFS 381 ** handled the pragma and generate a no-op prepared statement. 382 ** 383 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 384 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 385 ** object corresponding to the database file to which the pragma 386 ** statement refers. 387 ** 388 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 389 ** file control is an array of pointers to strings (char**) in which the 390 ** second element of the array is the name of the pragma and the third 391 ** element is the argument to the pragma or NULL if the pragma has no 392 ** argument. 393 */ 394 aFcntl[0] = 0; 395 aFcntl[1] = zLeft; 396 aFcntl[2] = zRight; 397 aFcntl[3] = 0; 398 db->busyHandler.nBusy = 0; 399 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 400 if( rc==SQLITE_OK ){ 401 sqlite3VdbeSetNumCols(v, 1); 402 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); 403 returnSingleText(v, aFcntl[0]); 404 sqlite3_free(aFcntl[0]); 405 goto pragma_out; 406 } 407 if( rc!=SQLITE_NOTFOUND ){ 408 if( aFcntl[0] ){ 409 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 410 sqlite3_free(aFcntl[0]); 411 } 412 pParse->nErr++; 413 pParse->rc = rc; 414 goto pragma_out; 415 } 416 417 /* Locate the pragma in the lookup table */ 418 pPragma = pragmaLocate(zLeft); 419 if( pPragma==0 ) goto pragma_out; 420 421 /* Make sure the database schema is loaded if the pragma requires that */ 422 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ 423 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 424 } 425 426 /* Register the result column names for pragmas that return results */ 427 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 428 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) 429 ){ 430 setPragmaResultColumnNames(v, pPragma); 431 } 432 433 /* Jump to the appropriate pragma handler */ 434 switch( pPragma->ePragTyp ){ 435 436 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 437 /* 438 ** PRAGMA [schema.]default_cache_size 439 ** PRAGMA [schema.]default_cache_size=N 440 ** 441 ** The first form reports the current persistent setting for the 442 ** page cache size. The value returned is the maximum number of 443 ** pages in the page cache. The second form sets both the current 444 ** page cache size value and the persistent page cache size value 445 ** stored in the database file. 446 ** 447 ** Older versions of SQLite would set the default cache size to a 448 ** negative number to indicate synchronous=OFF. These days, synchronous 449 ** is always on by default regardless of the sign of the default cache 450 ** size. But continue to take the absolute value of the default cache 451 ** size of historical compatibility. 452 */ 453 case PragTyp_DEFAULT_CACHE_SIZE: { 454 static const int iLn = VDBE_OFFSET_LINENO(2); 455 static const VdbeOpList getCacheSize[] = { 456 { OP_Transaction, 0, 0, 0}, /* 0 */ 457 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 458 { OP_IfPos, 1, 8, 0}, 459 { OP_Integer, 0, 2, 0}, 460 { OP_Subtract, 1, 2, 1}, 461 { OP_IfPos, 1, 8, 0}, 462 { OP_Integer, 0, 1, 0}, /* 6 */ 463 { OP_Noop, 0, 0, 0}, 464 { OP_ResultRow, 1, 1, 0}, 465 }; 466 VdbeOp *aOp; 467 sqlite3VdbeUsesBtree(v, iDb); 468 if( !zRight ){ 469 pParse->nMem += 2; 470 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 471 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 472 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 473 aOp[0].p1 = iDb; 474 aOp[1].p1 = iDb; 475 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 476 }else{ 477 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 478 sqlite3BeginWriteOperation(pParse, 0, iDb); 479 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 480 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 481 pDb->pSchema->cache_size = size; 482 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 483 } 484 break; 485 } 486 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 487 488 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 489 /* 490 ** PRAGMA [schema.]page_size 491 ** PRAGMA [schema.]page_size=N 492 ** 493 ** The first form reports the current setting for the 494 ** database page size in bytes. The second form sets the 495 ** database page size value. The value can only be set if 496 ** the database has not yet been created. 497 */ 498 case PragTyp_PAGE_SIZE: { 499 Btree *pBt = pDb->pBt; 500 assert( pBt!=0 ); 501 if( !zRight ){ 502 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 503 returnSingleInt(v, size); 504 }else{ 505 /* Malloc may fail when setting the page-size, as there is an internal 506 ** buffer that the pager module resizes using sqlite3_realloc(). 507 */ 508 db->nextPagesize = sqlite3Atoi(zRight); 509 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ 510 sqlite3OomFault(db); 511 } 512 } 513 break; 514 } 515 516 /* 517 ** PRAGMA [schema.]secure_delete 518 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST 519 ** 520 ** The first form reports the current setting for the 521 ** secure_delete flag. The second form changes the secure_delete 522 ** flag setting and reports the new value. 523 */ 524 case PragTyp_SECURE_DELETE: { 525 Btree *pBt = pDb->pBt; 526 int b = -1; 527 assert( pBt!=0 ); 528 if( zRight ){ 529 if( sqlite3_stricmp(zRight, "fast")==0 ){ 530 b = 2; 531 }else{ 532 b = sqlite3GetBoolean(zRight, 0); 533 } 534 } 535 if( pId2->n==0 && b>=0 ){ 536 int ii; 537 for(ii=0; ii<db->nDb; ii++){ 538 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 539 } 540 } 541 b = sqlite3BtreeSecureDelete(pBt, b); 542 returnSingleInt(v, b); 543 break; 544 } 545 546 /* 547 ** PRAGMA [schema.]max_page_count 548 ** PRAGMA [schema.]max_page_count=N 549 ** 550 ** The first form reports the current setting for the 551 ** maximum number of pages in the database file. The 552 ** second form attempts to change this setting. Both 553 ** forms return the current setting. 554 ** 555 ** The absolute value of N is used. This is undocumented and might 556 ** change. The only purpose is to provide an easy way to test 557 ** the sqlite3AbsInt32() function. 558 ** 559 ** PRAGMA [schema.]page_count 560 ** 561 ** Return the number of pages in the specified database. 562 */ 563 case PragTyp_PAGE_COUNT: { 564 int iReg; 565 sqlite3CodeVerifySchema(pParse, iDb); 566 iReg = ++pParse->nMem; 567 if( sqlite3Tolower(zLeft[0])=='p' ){ 568 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 569 }else{ 570 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 571 sqlite3AbsInt32(sqlite3Atoi(zRight))); 572 } 573 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 574 break; 575 } 576 577 /* 578 ** PRAGMA [schema.]locking_mode 579 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 580 */ 581 case PragTyp_LOCKING_MODE: { 582 const char *zRet = "normal"; 583 int eMode = getLockingMode(zRight); 584 585 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 586 /* Simple "PRAGMA locking_mode;" statement. This is a query for 587 ** the current default locking mode (which may be different to 588 ** the locking-mode of the main database). 589 */ 590 eMode = db->dfltLockMode; 591 }else{ 592 Pager *pPager; 593 if( pId2->n==0 ){ 594 /* This indicates that no database name was specified as part 595 ** of the PRAGMA command. In this case the locking-mode must be 596 ** set on all attached databases, as well as the main db file. 597 ** 598 ** Also, the sqlite3.dfltLockMode variable is set so that 599 ** any subsequently attached databases also use the specified 600 ** locking mode. 601 */ 602 int ii; 603 assert(pDb==&db->aDb[0]); 604 for(ii=2; ii<db->nDb; ii++){ 605 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 606 sqlite3PagerLockingMode(pPager, eMode); 607 } 608 db->dfltLockMode = (u8)eMode; 609 } 610 pPager = sqlite3BtreePager(pDb->pBt); 611 eMode = sqlite3PagerLockingMode(pPager, eMode); 612 } 613 614 assert( eMode==PAGER_LOCKINGMODE_NORMAL 615 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 616 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 617 zRet = "exclusive"; 618 } 619 returnSingleText(v, zRet); 620 break; 621 } 622 623 /* 624 ** PRAGMA [schema.]journal_mode 625 ** PRAGMA [schema.]journal_mode = 626 ** (delete|persist|off|truncate|memory|wal|off) 627 */ 628 case PragTyp_JOURNAL_MODE: { 629 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 630 int ii; /* Loop counter */ 631 632 if( zRight==0 ){ 633 /* If there is no "=MODE" part of the pragma, do a query for the 634 ** current mode */ 635 eMode = PAGER_JOURNALMODE_QUERY; 636 }else{ 637 const char *zMode; 638 int n = sqlite3Strlen30(zRight); 639 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 640 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 641 } 642 if( !zMode ){ 643 /* If the "=MODE" part does not match any known journal mode, 644 ** then do a query */ 645 eMode = PAGER_JOURNALMODE_QUERY; 646 } 647 } 648 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 649 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 650 iDb = 0; 651 pId2->n = 1; 652 } 653 for(ii=db->nDb-1; ii>=0; ii--){ 654 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 655 sqlite3VdbeUsesBtree(v, ii); 656 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 657 } 658 } 659 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 660 break; 661 } 662 663 /* 664 ** PRAGMA [schema.]journal_size_limit 665 ** PRAGMA [schema.]journal_size_limit=N 666 ** 667 ** Get or set the size limit on rollback journal files. 668 */ 669 case PragTyp_JOURNAL_SIZE_LIMIT: { 670 Pager *pPager = sqlite3BtreePager(pDb->pBt); 671 i64 iLimit = -2; 672 if( zRight ){ 673 sqlite3DecOrHexToI64(zRight, &iLimit); 674 if( iLimit<-1 ) iLimit = -1; 675 } 676 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 677 returnSingleInt(v, iLimit); 678 break; 679 } 680 681 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 682 683 /* 684 ** PRAGMA [schema.]auto_vacuum 685 ** PRAGMA [schema.]auto_vacuum=N 686 ** 687 ** Get or set the value of the database 'auto-vacuum' parameter. 688 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 689 */ 690 #ifndef SQLITE_OMIT_AUTOVACUUM 691 case PragTyp_AUTO_VACUUM: { 692 Btree *pBt = pDb->pBt; 693 assert( pBt!=0 ); 694 if( !zRight ){ 695 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); 696 }else{ 697 int eAuto = getAutoVacuum(zRight); 698 assert( eAuto>=0 && eAuto<=2 ); 699 db->nextAutovac = (u8)eAuto; 700 /* Call SetAutoVacuum() to set initialize the internal auto and 701 ** incr-vacuum flags. This is required in case this connection 702 ** creates the database file. It is important that it is created 703 ** as an auto-vacuum capable db. 704 */ 705 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 706 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 707 /* When setting the auto_vacuum mode to either "full" or 708 ** "incremental", write the value of meta[6] in the database 709 ** file. Before writing to meta[6], check that meta[3] indicates 710 ** that this really is an auto-vacuum capable database. 711 */ 712 static const int iLn = VDBE_OFFSET_LINENO(2); 713 static const VdbeOpList setMeta6[] = { 714 { OP_Transaction, 0, 1, 0}, /* 0 */ 715 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 716 { OP_If, 1, 0, 0}, /* 2 */ 717 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 718 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 719 }; 720 VdbeOp *aOp; 721 int iAddr = sqlite3VdbeCurrentAddr(v); 722 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 723 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 724 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 725 aOp[0].p1 = iDb; 726 aOp[1].p1 = iDb; 727 aOp[2].p2 = iAddr+4; 728 aOp[4].p1 = iDb; 729 aOp[4].p3 = eAuto - 1; 730 sqlite3VdbeUsesBtree(v, iDb); 731 } 732 } 733 break; 734 } 735 #endif 736 737 /* 738 ** PRAGMA [schema.]incremental_vacuum(N) 739 ** 740 ** Do N steps of incremental vacuuming on a database. 741 */ 742 #ifndef SQLITE_OMIT_AUTOVACUUM 743 case PragTyp_INCREMENTAL_VACUUM: { 744 int iLimit, addr; 745 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 746 iLimit = 0x7fffffff; 747 } 748 sqlite3BeginWriteOperation(pParse, 0, iDb); 749 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 750 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 751 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 752 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 753 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 754 sqlite3VdbeJumpHere(v, addr); 755 break; 756 } 757 #endif 758 759 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 760 /* 761 ** PRAGMA [schema.]cache_size 762 ** PRAGMA [schema.]cache_size=N 763 ** 764 ** The first form reports the current local setting for the 765 ** page cache size. The second form sets the local 766 ** page cache size value. If N is positive then that is the 767 ** number of pages in the cache. If N is negative, then the 768 ** number of pages is adjusted so that the cache uses -N kibibytes 769 ** of memory. 770 */ 771 case PragTyp_CACHE_SIZE: { 772 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 773 if( !zRight ){ 774 returnSingleInt(v, pDb->pSchema->cache_size); 775 }else{ 776 int size = sqlite3Atoi(zRight); 777 pDb->pSchema->cache_size = size; 778 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 779 } 780 break; 781 } 782 783 /* 784 ** PRAGMA [schema.]cache_spill 785 ** PRAGMA cache_spill=BOOLEAN 786 ** PRAGMA [schema.]cache_spill=N 787 ** 788 ** The first form reports the current local setting for the 789 ** page cache spill size. The second form turns cache spill on 790 ** or off. When turnning cache spill on, the size is set to the 791 ** current cache_size. The third form sets a spill size that 792 ** may be different form the cache size. 793 ** If N is positive then that is the 794 ** number of pages in the cache. If N is negative, then the 795 ** number of pages is adjusted so that the cache uses -N kibibytes 796 ** of memory. 797 ** 798 ** If the number of cache_spill pages is less then the number of 799 ** cache_size pages, no spilling occurs until the page count exceeds 800 ** the number of cache_size pages. 801 ** 802 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 803 ** not just the schema specified. 804 */ 805 case PragTyp_CACHE_SPILL: { 806 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 807 if( !zRight ){ 808 returnSingleInt(v, 809 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 810 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 811 }else{ 812 int size = 1; 813 if( sqlite3GetInt32(zRight, &size) ){ 814 sqlite3BtreeSetSpillSize(pDb->pBt, size); 815 } 816 if( sqlite3GetBoolean(zRight, size!=0) ){ 817 db->flags |= SQLITE_CacheSpill; 818 }else{ 819 db->flags &= ~SQLITE_CacheSpill; 820 } 821 setAllPagerFlags(db); 822 } 823 break; 824 } 825 826 /* 827 ** PRAGMA [schema.]mmap_size(N) 828 ** 829 ** Used to set mapping size limit. The mapping size limit is 830 ** used to limit the aggregate size of all memory mapped regions of the 831 ** database file. If this parameter is set to zero, then memory mapping 832 ** is not used at all. If N is negative, then the default memory map 833 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 834 ** The parameter N is measured in bytes. 835 ** 836 ** This value is advisory. The underlying VFS is free to memory map 837 ** as little or as much as it wants. Except, if N is set to 0 then the 838 ** upper layers will never invoke the xFetch interfaces to the VFS. 839 */ 840 case PragTyp_MMAP_SIZE: { 841 sqlite3_int64 sz; 842 #if SQLITE_MAX_MMAP_SIZE>0 843 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 844 if( zRight ){ 845 int ii; 846 sqlite3DecOrHexToI64(zRight, &sz); 847 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 848 if( pId2->n==0 ) db->szMmap = sz; 849 for(ii=db->nDb-1; ii>=0; ii--){ 850 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 851 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 852 } 853 } 854 } 855 sz = -1; 856 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 857 #else 858 sz = 0; 859 rc = SQLITE_OK; 860 #endif 861 if( rc==SQLITE_OK ){ 862 returnSingleInt(v, sz); 863 }else if( rc!=SQLITE_NOTFOUND ){ 864 pParse->nErr++; 865 pParse->rc = rc; 866 } 867 break; 868 } 869 870 /* 871 ** PRAGMA temp_store 872 ** PRAGMA temp_store = "default"|"memory"|"file" 873 ** 874 ** Return or set the local value of the temp_store flag. Changing 875 ** the local value does not make changes to the disk file and the default 876 ** value will be restored the next time the database is opened. 877 ** 878 ** Note that it is possible for the library compile-time options to 879 ** override this setting 880 */ 881 case PragTyp_TEMP_STORE: { 882 if( !zRight ){ 883 returnSingleInt(v, db->temp_store); 884 }else{ 885 changeTempStorage(pParse, zRight); 886 } 887 break; 888 } 889 890 /* 891 ** PRAGMA temp_store_directory 892 ** PRAGMA temp_store_directory = ""|"directory_name" 893 ** 894 ** Return or set the local value of the temp_store_directory flag. Changing 895 ** the value sets a specific directory to be used for temporary files. 896 ** Setting to a null string reverts to the default temporary directory search. 897 ** If temporary directory is changed, then invalidateTempStorage. 898 ** 899 */ 900 case PragTyp_TEMP_STORE_DIRECTORY: { 901 if( !zRight ){ 902 returnSingleText(v, sqlite3_temp_directory); 903 }else{ 904 #ifndef SQLITE_OMIT_WSD 905 if( zRight[0] ){ 906 int res; 907 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 908 if( rc!=SQLITE_OK || res==0 ){ 909 sqlite3ErrorMsg(pParse, "not a writable directory"); 910 goto pragma_out; 911 } 912 } 913 if( SQLITE_TEMP_STORE==0 914 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 915 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 916 ){ 917 invalidateTempStorage(pParse); 918 } 919 sqlite3_free(sqlite3_temp_directory); 920 if( zRight[0] ){ 921 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 922 }else{ 923 sqlite3_temp_directory = 0; 924 } 925 #endif /* SQLITE_OMIT_WSD */ 926 } 927 break; 928 } 929 930 #if SQLITE_OS_WIN 931 /* 932 ** PRAGMA data_store_directory 933 ** PRAGMA data_store_directory = ""|"directory_name" 934 ** 935 ** Return or set the local value of the data_store_directory flag. Changing 936 ** the value sets a specific directory to be used for database files that 937 ** were specified with a relative pathname. Setting to a null string reverts 938 ** to the default database directory, which for database files specified with 939 ** a relative path will probably be based on the current directory for the 940 ** process. Database file specified with an absolute path are not impacted 941 ** by this setting, regardless of its value. 942 ** 943 */ 944 case PragTyp_DATA_STORE_DIRECTORY: { 945 if( !zRight ){ 946 returnSingleText(v, sqlite3_data_directory); 947 }else{ 948 #ifndef SQLITE_OMIT_WSD 949 if( zRight[0] ){ 950 int res; 951 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 952 if( rc!=SQLITE_OK || res==0 ){ 953 sqlite3ErrorMsg(pParse, "not a writable directory"); 954 goto pragma_out; 955 } 956 } 957 sqlite3_free(sqlite3_data_directory); 958 if( zRight[0] ){ 959 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 960 }else{ 961 sqlite3_data_directory = 0; 962 } 963 #endif /* SQLITE_OMIT_WSD */ 964 } 965 break; 966 } 967 #endif 968 969 #if SQLITE_ENABLE_LOCKING_STYLE 970 /* 971 ** PRAGMA [schema.]lock_proxy_file 972 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 973 ** 974 ** Return or set the value of the lock_proxy_file flag. Changing 975 ** the value sets a specific file to be used for database access locks. 976 ** 977 */ 978 case PragTyp_LOCK_PROXY_FILE: { 979 if( !zRight ){ 980 Pager *pPager = sqlite3BtreePager(pDb->pBt); 981 char *proxy_file_path = NULL; 982 sqlite3_file *pFile = sqlite3PagerFile(pPager); 983 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 984 &proxy_file_path); 985 returnSingleText(v, proxy_file_path); 986 }else{ 987 Pager *pPager = sqlite3BtreePager(pDb->pBt); 988 sqlite3_file *pFile = sqlite3PagerFile(pPager); 989 int res; 990 if( zRight[0] ){ 991 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 992 zRight); 993 } else { 994 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 995 NULL); 996 } 997 if( res!=SQLITE_OK ){ 998 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 999 goto pragma_out; 1000 } 1001 } 1002 break; 1003 } 1004 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 1005 1006 /* 1007 ** PRAGMA [schema.]synchronous 1008 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 1009 ** 1010 ** Return or set the local value of the synchronous flag. Changing 1011 ** the local value does not make changes to the disk file and the 1012 ** default value will be restored the next time the database is 1013 ** opened. 1014 */ 1015 case PragTyp_SYNCHRONOUS: { 1016 if( !zRight ){ 1017 returnSingleInt(v, pDb->safety_level-1); 1018 }else{ 1019 if( !db->autoCommit ){ 1020 sqlite3ErrorMsg(pParse, 1021 "Safety level may not be changed inside a transaction"); 1022 }else if( iDb!=1 ){ 1023 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 1024 if( iLevel==0 ) iLevel = 1; 1025 pDb->safety_level = iLevel; 1026 pDb->bSyncSet = 1; 1027 setAllPagerFlags(db); 1028 } 1029 } 1030 break; 1031 } 1032 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1033 1034 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1035 case PragTyp_FLAG: { 1036 if( zRight==0 ){ 1037 setPragmaResultColumnNames(v, pPragma); 1038 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); 1039 }else{ 1040 int mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1041 if( db->autoCommit==0 ){ 1042 /* Foreign key support may not be enabled or disabled while not 1043 ** in auto-commit mode. */ 1044 mask &= ~(SQLITE_ForeignKeys); 1045 } 1046 #if SQLITE_USER_AUTHENTICATION 1047 if( db->auth.authLevel==UAUTH_User ){ 1048 /* Do not allow non-admin users to modify the schema arbitrarily */ 1049 mask &= ~(SQLITE_WriteSchema); 1050 } 1051 #endif 1052 1053 if( sqlite3GetBoolean(zRight, 0) ){ 1054 db->flags |= mask; 1055 }else{ 1056 db->flags &= ~mask; 1057 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1058 } 1059 1060 /* Many of the flag-pragmas modify the code generated by the SQL 1061 ** compiler (eg. count_changes). So add an opcode to expire all 1062 ** compiled SQL statements after modifying a pragma value. 1063 */ 1064 sqlite3VdbeAddOp0(v, OP_Expire); 1065 setAllPagerFlags(db); 1066 } 1067 break; 1068 } 1069 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1070 1071 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1072 /* 1073 ** PRAGMA table_info(<table>) 1074 ** 1075 ** Return a single row for each column of the named table. The columns of 1076 ** the returned data set are: 1077 ** 1078 ** cid: Column id (numbered from left to right, starting at 0) 1079 ** name: Column name 1080 ** type: Column declaration type. 1081 ** notnull: True if 'NOT NULL' is part of column declaration 1082 ** dflt_value: The default value for the column, if any. 1083 ** pk: Non-zero for PK fields. 1084 */ 1085 case PragTyp_TABLE_INFO: if( zRight ){ 1086 Table *pTab; 1087 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1088 if( pTab ){ 1089 int i, k; 1090 int nHidden = 0; 1091 Column *pCol; 1092 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1093 pParse->nMem = 6; 1094 sqlite3CodeVerifySchema(pParse, iDb); 1095 sqlite3ViewGetColumnNames(pParse, pTab); 1096 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1097 if( IsHiddenColumn(pCol) ){ 1098 nHidden++; 1099 continue; 1100 } 1101 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1102 k = 0; 1103 }else if( pPk==0 ){ 1104 k = 1; 1105 }else{ 1106 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1107 } 1108 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); 1109 sqlite3VdbeMultiLoad(v, 1, "issisi", 1110 i-nHidden, 1111 pCol->zName, 1112 sqlite3ColumnType(pCol,""), 1113 pCol->notNull ? 1 : 0, 1114 pCol->pDflt ? pCol->pDflt->u.zToken : 0, 1115 k); 1116 } 1117 } 1118 } 1119 break; 1120 1121 #ifdef SQLITE_DEBUG 1122 case PragTyp_STATS: { 1123 Index *pIdx; 1124 HashElem *i; 1125 pParse->nMem = 5; 1126 sqlite3CodeVerifySchema(pParse, iDb); 1127 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1128 Table *pTab = sqliteHashData(i); 1129 sqlite3VdbeMultiLoad(v, 1, "ssiii", 1130 pTab->zName, 1131 0, 1132 pTab->szTabRow, 1133 pTab->nRowLogEst, 1134 pTab->tabFlags); 1135 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1136 sqlite3VdbeMultiLoad(v, 2, "siiiX", 1137 pIdx->zName, 1138 pIdx->szIdxRow, 1139 pIdx->aiRowLogEst[0], 1140 pIdx->hasStat1); 1141 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1142 } 1143 } 1144 } 1145 break; 1146 #endif 1147 1148 case PragTyp_INDEX_INFO: if( zRight ){ 1149 Index *pIdx; 1150 Table *pTab; 1151 pIdx = sqlite3FindIndex(db, zRight, zDb); 1152 if( pIdx ){ 1153 int i; 1154 int mx; 1155 if( pPragma->iArg ){ 1156 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1157 mx = pIdx->nColumn; 1158 pParse->nMem = 6; 1159 }else{ 1160 /* PRAGMA index_info (legacy version) */ 1161 mx = pIdx->nKeyCol; 1162 pParse->nMem = 3; 1163 } 1164 pTab = pIdx->pTable; 1165 sqlite3CodeVerifySchema(pParse, iDb); 1166 assert( pParse->nMem<=pPragma->nPragCName ); 1167 for(i=0; i<mx; i++){ 1168 i16 cnum = pIdx->aiColumn[i]; 1169 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, 1170 cnum<0 ? 0 : pTab->aCol[cnum].zName); 1171 if( pPragma->iArg ){ 1172 sqlite3VdbeMultiLoad(v, 4, "isiX", 1173 pIdx->aSortOrder[i], 1174 pIdx->azColl[i], 1175 i<pIdx->nKeyCol); 1176 } 1177 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1178 } 1179 } 1180 } 1181 break; 1182 1183 case PragTyp_INDEX_LIST: if( zRight ){ 1184 Index *pIdx; 1185 Table *pTab; 1186 int i; 1187 pTab = sqlite3FindTable(db, zRight, zDb); 1188 if( pTab ){ 1189 pParse->nMem = 5; 1190 sqlite3CodeVerifySchema(pParse, iDb); 1191 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1192 const char *azOrigin[] = { "c", "u", "pk" }; 1193 sqlite3VdbeMultiLoad(v, 1, "isisi", 1194 i, 1195 pIdx->zName, 1196 IsUniqueIndex(pIdx), 1197 azOrigin[pIdx->idxType], 1198 pIdx->pPartIdxWhere!=0); 1199 } 1200 } 1201 } 1202 break; 1203 1204 case PragTyp_DATABASE_LIST: { 1205 int i; 1206 pParse->nMem = 3; 1207 for(i=0; i<db->nDb; i++){ 1208 if( db->aDb[i].pBt==0 ) continue; 1209 assert( db->aDb[i].zDbSName!=0 ); 1210 sqlite3VdbeMultiLoad(v, 1, "iss", 1211 i, 1212 db->aDb[i].zDbSName, 1213 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1214 } 1215 } 1216 break; 1217 1218 case PragTyp_COLLATION_LIST: { 1219 int i = 0; 1220 HashElem *p; 1221 pParse->nMem = 2; 1222 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1223 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1224 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1225 } 1226 } 1227 break; 1228 1229 #ifdef SQLITE_INTROSPECTION_PRAGMAS 1230 case PragTyp_FUNCTION_LIST: { 1231 int i; 1232 HashElem *j; 1233 FuncDef *p; 1234 pParse->nMem = 2; 1235 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 1236 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ 1237 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1); 1238 } 1239 } 1240 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ 1241 p = (FuncDef*)sqliteHashData(j); 1242 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0); 1243 } 1244 } 1245 break; 1246 1247 #ifndef SQLITE_OMIT_VIRTUALTABLE 1248 case PragTyp_MODULE_LIST: { 1249 HashElem *j; 1250 pParse->nMem = 1; 1251 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ 1252 Module *pMod = (Module*)sqliteHashData(j); 1253 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); 1254 } 1255 } 1256 break; 1257 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1258 1259 case PragTyp_PRAGMA_LIST: { 1260 int i; 1261 for(i=0; i<ArraySize(aPragmaName); i++){ 1262 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName); 1263 } 1264 } 1265 break; 1266 #endif /* SQLITE_INTROSPECTION_PRAGMAS */ 1267 1268 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1269 1270 #ifndef SQLITE_OMIT_FOREIGN_KEY 1271 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1272 FKey *pFK; 1273 Table *pTab; 1274 pTab = sqlite3FindTable(db, zRight, zDb); 1275 if( pTab ){ 1276 pFK = pTab->pFKey; 1277 if( pFK ){ 1278 int i = 0; 1279 pParse->nMem = 8; 1280 sqlite3CodeVerifySchema(pParse, iDb); 1281 while(pFK){ 1282 int j; 1283 for(j=0; j<pFK->nCol; j++){ 1284 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1285 i, 1286 j, 1287 pFK->zTo, 1288 pTab->aCol[pFK->aCol[j].iFrom].zName, 1289 pFK->aCol[j].zCol, 1290 actionName(pFK->aAction[1]), /* ON UPDATE */ 1291 actionName(pFK->aAction[0]), /* ON DELETE */ 1292 "NONE"); 1293 } 1294 ++i; 1295 pFK = pFK->pNextFrom; 1296 } 1297 } 1298 } 1299 } 1300 break; 1301 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1302 1303 #ifndef SQLITE_OMIT_FOREIGN_KEY 1304 #ifndef SQLITE_OMIT_TRIGGER 1305 case PragTyp_FOREIGN_KEY_CHECK: { 1306 FKey *pFK; /* A foreign key constraint */ 1307 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1308 Table *pParent; /* Parent table that child points to */ 1309 Index *pIdx; /* Index in the parent table */ 1310 int i; /* Loop counter: Foreign key number for pTab */ 1311 int j; /* Loop counter: Field of the foreign key */ 1312 HashElem *k; /* Loop counter: Next table in schema */ 1313 int x; /* result variable */ 1314 int regResult; /* 3 registers to hold a result row */ 1315 int regKey; /* Register to hold key for checking the FK */ 1316 int regRow; /* Registers to hold a row from pTab */ 1317 int addrTop; /* Top of a loop checking foreign keys */ 1318 int addrOk; /* Jump here if the key is OK */ 1319 int *aiCols; /* child to parent column mapping */ 1320 1321 regResult = pParse->nMem+1; 1322 pParse->nMem += 4; 1323 regKey = ++pParse->nMem; 1324 regRow = ++pParse->nMem; 1325 sqlite3CodeVerifySchema(pParse, iDb); 1326 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1327 while( k ){ 1328 if( zRight ){ 1329 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1330 k = 0; 1331 }else{ 1332 pTab = (Table*)sqliteHashData(k); 1333 k = sqliteHashNext(k); 1334 } 1335 if( pTab==0 || pTab->pFKey==0 ) continue; 1336 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1337 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1338 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1339 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1340 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1341 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1342 if( pParent==0 ) continue; 1343 pIdx = 0; 1344 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1345 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1346 if( x==0 ){ 1347 if( pIdx==0 ){ 1348 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1349 }else{ 1350 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1351 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1352 } 1353 }else{ 1354 k = 0; 1355 break; 1356 } 1357 } 1358 assert( pParse->nErr>0 || pFK==0 ); 1359 if( pFK ) break; 1360 if( pParse->nTab<i ) pParse->nTab = i; 1361 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1362 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1363 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1364 pIdx = 0; 1365 aiCols = 0; 1366 if( pParent ){ 1367 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1368 assert( x==0 ); 1369 } 1370 addrOk = sqlite3VdbeMakeLabel(v); 1371 1372 /* Generate code to read the child key values into registers 1373 ** regRow..regRow+n. If any of the child key values are NULL, this 1374 ** row cannot cause an FK violation. Jump directly to addrOk in 1375 ** this case. */ 1376 for(j=0; j<pFK->nCol; j++){ 1377 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; 1378 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); 1379 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1380 } 1381 1382 /* Generate code to query the parent index for a matching parent 1383 ** key. If a match is found, jump to addrOk. */ 1384 if( pIdx ){ 1385 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, 1386 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1387 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); 1388 VdbeCoverage(v); 1389 }else if( pParent ){ 1390 int jmp = sqlite3VdbeCurrentAddr(v)+2; 1391 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); 1392 sqlite3VdbeGoto(v, addrOk); 1393 assert( pFK->nCol==1 ); 1394 } 1395 1396 /* Generate code to report an FK violation to the caller. */ 1397 if( HasRowid(pTab) ){ 1398 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1399 }else{ 1400 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); 1401 } 1402 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); 1403 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1404 sqlite3VdbeResolveLabel(v, addrOk); 1405 sqlite3DbFree(db, aiCols); 1406 } 1407 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1408 sqlite3VdbeJumpHere(v, addrTop); 1409 } 1410 } 1411 break; 1412 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1413 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1414 1415 #ifndef NDEBUG 1416 case PragTyp_PARSER_TRACE: { 1417 if( zRight ){ 1418 if( sqlite3GetBoolean(zRight, 0) ){ 1419 sqlite3ParserTrace(stdout, "parser: "); 1420 }else{ 1421 sqlite3ParserTrace(0, 0); 1422 } 1423 } 1424 } 1425 break; 1426 #endif 1427 1428 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1429 ** used will be case sensitive or not depending on the RHS. 1430 */ 1431 case PragTyp_CASE_SENSITIVE_LIKE: { 1432 if( zRight ){ 1433 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1434 } 1435 } 1436 break; 1437 1438 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1439 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1440 #endif 1441 1442 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1443 /* PRAGMA integrity_check 1444 ** PRAGMA integrity_check(N) 1445 ** PRAGMA quick_check 1446 ** PRAGMA quick_check(N) 1447 ** 1448 ** Verify the integrity of the database. 1449 ** 1450 ** The "quick_check" is reduced version of 1451 ** integrity_check designed to detect most database corruption 1452 ** without the overhead of cross-checking indexes. Quick_check 1453 ** is linear time wherease integrity_check is O(NlogN). 1454 */ 1455 case PragTyp_INTEGRITY_CHECK: { 1456 int i, j, addr, mxErr; 1457 1458 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1459 1460 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1461 ** then iDb is set to the index of the database identified by <db>. 1462 ** In this case, the integrity of database iDb only is verified by 1463 ** the VDBE created below. 1464 ** 1465 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1466 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1467 ** to -1 here, to indicate that the VDBE should verify the integrity 1468 ** of all attached databases. */ 1469 assert( iDb>=0 ); 1470 assert( iDb==0 || pId2->z ); 1471 if( pId2->z==0 ) iDb = -1; 1472 1473 /* Initialize the VDBE program */ 1474 pParse->nMem = 6; 1475 1476 /* Set the maximum error count */ 1477 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1478 if( zRight ){ 1479 sqlite3GetInt32(zRight, &mxErr); 1480 if( mxErr<=0 ){ 1481 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1482 } 1483 } 1484 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ 1485 1486 /* Do an integrity check on each database file */ 1487 for(i=0; i<db->nDb; i++){ 1488 HashElem *x; /* For looping over tables in the schema */ 1489 Hash *pTbls; /* Set of all tables in the schema */ 1490 int *aRoot; /* Array of root page numbers of all btrees */ 1491 int cnt = 0; /* Number of entries in aRoot[] */ 1492 int mxIdx = 0; /* Maximum number of indexes for any table */ 1493 1494 if( OMIT_TEMPDB && i==1 ) continue; 1495 if( iDb>=0 && i!=iDb ) continue; 1496 1497 sqlite3CodeVerifySchema(pParse, i); 1498 1499 /* Do an integrity check of the B-Tree 1500 ** 1501 ** Begin by finding the root pages numbers 1502 ** for all tables and indices in the database. 1503 */ 1504 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1505 pTbls = &db->aDb[i].pSchema->tblHash; 1506 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1507 Table *pTab = sqliteHashData(x); /* Current table */ 1508 Index *pIdx; /* An index on pTab */ 1509 int nIdx; /* Number of indexes on pTab */ 1510 if( HasRowid(pTab) ) cnt++; 1511 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1512 if( nIdx>mxIdx ) mxIdx = nIdx; 1513 } 1514 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1515 if( aRoot==0 ) break; 1516 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1517 Table *pTab = sqliteHashData(x); 1518 Index *pIdx; 1519 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; 1520 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1521 aRoot[++cnt] = pIdx->tnum; 1522 } 1523 } 1524 aRoot[0] = cnt; 1525 1526 /* Make sure sufficient number of registers have been allocated */ 1527 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1528 sqlite3ClearTempRegCache(pParse); 1529 1530 /* Do the b-tree integrity checks */ 1531 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1532 sqlite3VdbeChangeP5(v, (u8)i); 1533 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1534 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1535 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1536 P4_DYNAMIC); 1537 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); 1538 integrityCheckResultRow(v); 1539 sqlite3VdbeJumpHere(v, addr); 1540 1541 /* Make sure all the indices are constructed correctly. 1542 */ 1543 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1544 Table *pTab = sqliteHashData(x); 1545 Index *pIdx, *pPk; 1546 Index *pPrior = 0; 1547 int loopTop; 1548 int iDataCur, iIdxCur; 1549 int r1 = -1; 1550 1551 if( pTab->tnum<1 ) continue; /* Skip VIEWs or VIRTUAL TABLEs */ 1552 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); 1553 sqlite3ExprCacheClear(pParse); 1554 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1555 1, 0, &iDataCur, &iIdxCur); 1556 /* reg[7] counts the number of entries in the table. 1557 ** reg[8+i] counts the number of entries in the i-th index 1558 */ 1559 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1560 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1561 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1562 } 1563 assert( pParse->nMem>=8+j ); 1564 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1565 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1566 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1567 if( !isQuick ){ 1568 /* Sanity check on record header decoding */ 1569 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nCol-1, 3); 1570 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1571 } 1572 /* Verify that all NOT NULL columns really are NOT NULL */ 1573 for(j=0; j<pTab->nCol; j++){ 1574 char *zErr; 1575 int jmp2; 1576 if( j==pTab->iPKey ) continue; 1577 if( pTab->aCol[j].notNull==0 ) continue; 1578 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1579 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1580 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); 1581 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1582 pTab->aCol[j].zName); 1583 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1584 integrityCheckResultRow(v); 1585 sqlite3VdbeJumpHere(v, jmp2); 1586 } 1587 /* Verify CHECK constraints */ 1588 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1589 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); 1590 if( db->mallocFailed==0 ){ 1591 int addrCkFault = sqlite3VdbeMakeLabel(v); 1592 int addrCkOk = sqlite3VdbeMakeLabel(v); 1593 char *zErr; 1594 int k; 1595 pParse->iSelfTab = iDataCur + 1; 1596 sqlite3ExprCachePush(pParse); 1597 for(k=pCheck->nExpr-1; k>0; k--){ 1598 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); 1599 } 1600 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 1601 SQLITE_JUMPIFNULL); 1602 sqlite3VdbeResolveLabel(v, addrCkFault); 1603 pParse->iSelfTab = 0; 1604 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", 1605 pTab->zName); 1606 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1607 integrityCheckResultRow(v); 1608 sqlite3VdbeResolveLabel(v, addrCkOk); 1609 sqlite3ExprCachePop(pParse); 1610 } 1611 sqlite3ExprListDelete(db, pCheck); 1612 } 1613 if( !isQuick ){ /* Omit the remaining tests for quick_check */ 1614 /* Validate index entries for the current row */ 1615 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1616 int jmp2, jmp3, jmp4, jmp5; 1617 int ckUniq = sqlite3VdbeMakeLabel(v); 1618 if( pPk==pIdx ) continue; 1619 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1620 pPrior, r1); 1621 pPrior = pIdx; 1622 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ 1623 /* Verify that an index entry exists for the current table row */ 1624 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1625 pIdx->nColumn); VdbeCoverage(v); 1626 sqlite3VdbeLoadString(v, 3, "row "); 1627 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1628 sqlite3VdbeLoadString(v, 4, " missing from index "); 1629 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1630 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1631 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1632 jmp4 = integrityCheckResultRow(v); 1633 sqlite3VdbeJumpHere(v, jmp2); 1634 /* For UNIQUE indexes, verify that only one entry exists with the 1635 ** current key. The entry is unique if (1) any column is NULL 1636 ** or (2) the next entry has a different key */ 1637 if( IsUniqueIndex(pIdx) ){ 1638 int uniqOk = sqlite3VdbeMakeLabel(v); 1639 int jmp6; 1640 int kk; 1641 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1642 int iCol = pIdx->aiColumn[kk]; 1643 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1644 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1645 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1646 VdbeCoverage(v); 1647 } 1648 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1649 sqlite3VdbeGoto(v, uniqOk); 1650 sqlite3VdbeJumpHere(v, jmp6); 1651 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1652 pIdx->nKeyCol); VdbeCoverage(v); 1653 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1654 sqlite3VdbeGoto(v, jmp5); 1655 sqlite3VdbeResolveLabel(v, uniqOk); 1656 } 1657 sqlite3VdbeJumpHere(v, jmp4); 1658 sqlite3ResolvePartIdxLabel(pParse, jmp3); 1659 } 1660 } 1661 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 1662 sqlite3VdbeJumpHere(v, loopTop-1); 1663 #ifndef SQLITE_OMIT_BTREECOUNT 1664 if( !isQuick ){ 1665 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 1666 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1667 if( pPk==pIdx ) continue; 1668 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 1669 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); 1670 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1671 sqlite3VdbeLoadString(v, 4, pIdx->zName); 1672 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); 1673 integrityCheckResultRow(v); 1674 sqlite3VdbeJumpHere(v, addr); 1675 } 1676 } 1677 #endif /* SQLITE_OMIT_BTREECOUNT */ 1678 } 1679 } 1680 { 1681 static const int iLn = VDBE_OFFSET_LINENO(2); 1682 static const VdbeOpList endCode[] = { 1683 { OP_AddImm, 1, 0, 0}, /* 0 */ 1684 { OP_IfNotZero, 1, 4, 0}, /* 1 */ 1685 { OP_String8, 0, 3, 0}, /* 2 */ 1686 { OP_ResultRow, 3, 1, 0}, /* 3 */ 1687 { OP_Halt, 0, 0, 0}, /* 4 */ 1688 { OP_String8, 0, 3, 0}, /* 5 */ 1689 { OP_Goto, 0, 3, 0}, /* 6 */ 1690 }; 1691 VdbeOp *aOp; 1692 1693 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 1694 if( aOp ){ 1695 aOp[0].p2 = 1-mxErr; 1696 aOp[2].p4type = P4_STATIC; 1697 aOp[2].p4.z = "ok"; 1698 aOp[5].p4type = P4_STATIC; 1699 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); 1700 } 1701 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); 1702 } 1703 } 1704 break; 1705 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 1706 1707 #ifndef SQLITE_OMIT_UTF16 1708 /* 1709 ** PRAGMA encoding 1710 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 1711 ** 1712 ** In its first form, this pragma returns the encoding of the main 1713 ** database. If the database is not initialized, it is initialized now. 1714 ** 1715 ** The second form of this pragma is a no-op if the main database file 1716 ** has not already been initialized. In this case it sets the default 1717 ** encoding that will be used for the main database file if a new file 1718 ** is created. If an existing main database file is opened, then the 1719 ** default text encoding for the existing database is used. 1720 ** 1721 ** In all cases new databases created using the ATTACH command are 1722 ** created to use the same default text encoding as the main database. If 1723 ** the main database has not been initialized and/or created when ATTACH 1724 ** is executed, this is done before the ATTACH operation. 1725 ** 1726 ** In the second form this pragma sets the text encoding to be used in 1727 ** new database files created using this database handle. It is only 1728 ** useful if invoked immediately after the main database i 1729 */ 1730 case PragTyp_ENCODING: { 1731 static const struct EncName { 1732 char *zName; 1733 u8 enc; 1734 } encnames[] = { 1735 { "UTF8", SQLITE_UTF8 }, 1736 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 1737 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 1738 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 1739 { "UTF16le", SQLITE_UTF16LE }, 1740 { "UTF16be", SQLITE_UTF16BE }, 1741 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 1742 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 1743 { 0, 0 } 1744 }; 1745 const struct EncName *pEnc; 1746 if( !zRight ){ /* "PRAGMA encoding" */ 1747 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 1748 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 1749 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 1750 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 1751 returnSingleText(v, encnames[ENC(pParse->db)].zName); 1752 }else{ /* "PRAGMA encoding = XXX" */ 1753 /* Only change the value of sqlite.enc if the database handle is not 1754 ** initialized. If the main database exists, the new sqlite.enc value 1755 ** will be overwritten when the schema is next loaded. If it does not 1756 ** already exists, it will be created to use the new encoding value. 1757 */ 1758 if( 1759 !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 1760 DbHasProperty(db, 0, DB_Empty) 1761 ){ 1762 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 1763 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 1764 SCHEMA_ENC(db) = ENC(db) = 1765 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 1766 break; 1767 } 1768 } 1769 if( !pEnc->zName ){ 1770 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 1771 } 1772 } 1773 } 1774 } 1775 break; 1776 #endif /* SQLITE_OMIT_UTF16 */ 1777 1778 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 1779 /* 1780 ** PRAGMA [schema.]schema_version 1781 ** PRAGMA [schema.]schema_version = <integer> 1782 ** 1783 ** PRAGMA [schema.]user_version 1784 ** PRAGMA [schema.]user_version = <integer> 1785 ** 1786 ** PRAGMA [schema.]freelist_count 1787 ** 1788 ** PRAGMA [schema.]data_version 1789 ** 1790 ** PRAGMA [schema.]application_id 1791 ** PRAGMA [schema.]application_id = <integer> 1792 ** 1793 ** The pragma's schema_version and user_version are used to set or get 1794 ** the value of the schema-version and user-version, respectively. Both 1795 ** the schema-version and the user-version are 32-bit signed integers 1796 ** stored in the database header. 1797 ** 1798 ** The schema-cookie is usually only manipulated internally by SQLite. It 1799 ** is incremented by SQLite whenever the database schema is modified (by 1800 ** creating or dropping a table or index). The schema version is used by 1801 ** SQLite each time a query is executed to ensure that the internal cache 1802 ** of the schema used when compiling the SQL query matches the schema of 1803 ** the database against which the compiled query is actually executed. 1804 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 1805 ** the schema-version is potentially dangerous and may lead to program 1806 ** crashes or database corruption. Use with caution! 1807 ** 1808 ** The user-version is not used internally by SQLite. It may be used by 1809 ** applications for any purpose. 1810 */ 1811 case PragTyp_HEADER_VALUE: { 1812 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 1813 sqlite3VdbeUsesBtree(v, iDb); 1814 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ 1815 /* Write the specified cookie value */ 1816 static const VdbeOpList setCookie[] = { 1817 { OP_Transaction, 0, 1, 0}, /* 0 */ 1818 { OP_SetCookie, 0, 0, 0}, /* 1 */ 1819 }; 1820 VdbeOp *aOp; 1821 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 1822 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 1823 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1824 aOp[0].p1 = iDb; 1825 aOp[1].p1 = iDb; 1826 aOp[1].p2 = iCookie; 1827 aOp[1].p3 = sqlite3Atoi(zRight); 1828 }else{ 1829 /* Read the specified cookie value */ 1830 static const VdbeOpList readCookie[] = { 1831 { OP_Transaction, 0, 0, 0}, /* 0 */ 1832 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 1833 { OP_ResultRow, 1, 1, 0} 1834 }; 1835 VdbeOp *aOp; 1836 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 1837 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 1838 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1839 aOp[0].p1 = iDb; 1840 aOp[1].p1 = iDb; 1841 aOp[1].p3 = iCookie; 1842 sqlite3VdbeReusable(v); 1843 } 1844 } 1845 break; 1846 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 1847 1848 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1849 /* 1850 ** PRAGMA compile_options 1851 ** 1852 ** Return the names of all compile-time options used in this build, 1853 ** one option per row. 1854 */ 1855 case PragTyp_COMPILE_OPTIONS: { 1856 int i = 0; 1857 const char *zOpt; 1858 pParse->nMem = 1; 1859 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 1860 sqlite3VdbeLoadString(v, 1, zOpt); 1861 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1862 } 1863 sqlite3VdbeReusable(v); 1864 } 1865 break; 1866 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1867 1868 #ifndef SQLITE_OMIT_WAL 1869 /* 1870 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 1871 ** 1872 ** Checkpoint the database. 1873 */ 1874 case PragTyp_WAL_CHECKPOINT: { 1875 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); 1876 int eMode = SQLITE_CHECKPOINT_PASSIVE; 1877 if( zRight ){ 1878 if( sqlite3StrICmp(zRight, "full")==0 ){ 1879 eMode = SQLITE_CHECKPOINT_FULL; 1880 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 1881 eMode = SQLITE_CHECKPOINT_RESTART; 1882 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 1883 eMode = SQLITE_CHECKPOINT_TRUNCATE; 1884 } 1885 } 1886 pParse->nMem = 3; 1887 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 1888 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1889 } 1890 break; 1891 1892 /* 1893 ** PRAGMA wal_autocheckpoint 1894 ** PRAGMA wal_autocheckpoint = N 1895 ** 1896 ** Configure a database connection to automatically checkpoint a database 1897 ** after accumulating N frames in the log. Or query for the current value 1898 ** of N. 1899 */ 1900 case PragTyp_WAL_AUTOCHECKPOINT: { 1901 if( zRight ){ 1902 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 1903 } 1904 returnSingleInt(v, 1905 db->xWalCallback==sqlite3WalDefaultHook ? 1906 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 1907 } 1908 break; 1909 #endif 1910 1911 /* 1912 ** PRAGMA shrink_memory 1913 ** 1914 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 1915 ** connection on which it is invoked to free up as much memory as it 1916 ** can, by calling sqlite3_db_release_memory(). 1917 */ 1918 case PragTyp_SHRINK_MEMORY: { 1919 sqlite3_db_release_memory(db); 1920 break; 1921 } 1922 1923 /* 1924 ** PRAGMA optimize 1925 ** PRAGMA optimize(MASK) 1926 ** PRAGMA schema.optimize 1927 ** PRAGMA schema.optimize(MASK) 1928 ** 1929 ** Attempt to optimize the database. All schemas are optimized in the first 1930 ** two forms, and only the specified schema is optimized in the latter two. 1931 ** 1932 ** The details of optimizations performed by this pragma are expected 1933 ** to change and improve over time. Applications should anticipate that 1934 ** this pragma will perform new optimizations in future releases. 1935 ** 1936 ** The optional argument is a bitmask of optimizations to perform: 1937 ** 1938 ** 0x0001 Debugging mode. Do not actually perform any optimizations 1939 ** but instead return one line of text for each optimization 1940 ** that would have been done. Off by default. 1941 ** 1942 ** 0x0002 Run ANALYZE on tables that might benefit. On by default. 1943 ** See below for additional information. 1944 ** 1945 ** 0x0004 (Not yet implemented) Record usage and performance 1946 ** information from the current session in the 1947 ** database file so that it will be available to "optimize" 1948 ** pragmas run by future database connections. 1949 ** 1950 ** 0x0008 (Not yet implemented) Create indexes that might have 1951 ** been helpful to recent queries 1952 ** 1953 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all 1954 ** of the optimizations listed above except Debug Mode, including new 1955 ** optimizations that have not yet been invented. If new optimizations are 1956 ** ever added that should be off by default, those off-by-default 1957 ** optimizations will have bitmasks of 0x10000 or larger. 1958 ** 1959 ** DETERMINATION OF WHEN TO RUN ANALYZE 1960 ** 1961 ** In the current implementation, a table is analyzed if only if all of 1962 ** the following are true: 1963 ** 1964 ** (1) MASK bit 0x02 is set. 1965 ** 1966 ** (2) The query planner used sqlite_stat1-style statistics for one or 1967 ** more indexes of the table at some point during the lifetime of 1968 ** the current connection. 1969 ** 1970 ** (3) One or more indexes of the table are currently unanalyzed OR 1971 ** the number of rows in the table has increased by 25 times or more 1972 ** since the last time ANALYZE was run. 1973 ** 1974 ** The rules for when tables are analyzed are likely to change in 1975 ** future releases. 1976 */ 1977 case PragTyp_OPTIMIZE: { 1978 int iDbLast; /* Loop termination point for the schema loop */ 1979 int iTabCur; /* Cursor for a table whose size needs checking */ 1980 HashElem *k; /* Loop over tables of a schema */ 1981 Schema *pSchema; /* The current schema */ 1982 Table *pTab; /* A table in the schema */ 1983 Index *pIdx; /* An index of the table */ 1984 LogEst szThreshold; /* Size threshold above which reanalysis is needd */ 1985 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ 1986 u32 opMask; /* Mask of operations to perform */ 1987 1988 if( zRight ){ 1989 opMask = (u32)sqlite3Atoi(zRight); 1990 if( (opMask & 0x02)==0 ) break; 1991 }else{ 1992 opMask = 0xfffe; 1993 } 1994 iTabCur = pParse->nTab++; 1995 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ 1996 if( iDb==1 ) continue; 1997 sqlite3CodeVerifySchema(pParse, iDb); 1998 pSchema = db->aDb[iDb].pSchema; 1999 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 2000 pTab = (Table*)sqliteHashData(k); 2001 2002 /* If table pTab has not been used in a way that would benefit from 2003 ** having analysis statistics during the current session, then skip it. 2004 ** This also has the effect of skipping virtual tables and views */ 2005 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; 2006 2007 /* Reanalyze if the table is 25 times larger than the last analysis */ 2008 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); 2009 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2010 if( !pIdx->hasStat1 ){ 2011 szThreshold = 0; /* Always analyze if any index lacks statistics */ 2012 break; 2013 } 2014 } 2015 if( szThreshold ){ 2016 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 2017 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, 2018 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); 2019 VdbeCoverage(v); 2020 } 2021 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", 2022 db->aDb[iDb].zDbSName, pTab->zName); 2023 if( opMask & 0x01 ){ 2024 int r1 = sqlite3GetTempReg(pParse); 2025 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); 2026 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); 2027 }else{ 2028 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); 2029 } 2030 } 2031 } 2032 sqlite3VdbeAddOp0(v, OP_Expire); 2033 break; 2034 } 2035 2036 /* 2037 ** PRAGMA busy_timeout 2038 ** PRAGMA busy_timeout = N 2039 ** 2040 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 2041 ** if one is set. If no busy handler or a different busy handler is set 2042 ** then 0 is returned. Setting the busy_timeout to 0 or negative 2043 ** disables the timeout. 2044 */ 2045 /*case PragTyp_BUSY_TIMEOUT*/ default: { 2046 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 2047 if( zRight ){ 2048 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 2049 } 2050 returnSingleInt(v, db->busyTimeout); 2051 break; 2052 } 2053 2054 /* 2055 ** PRAGMA soft_heap_limit 2056 ** PRAGMA soft_heap_limit = N 2057 ** 2058 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 2059 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 2060 ** specified and is a non-negative integer. 2061 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 2062 ** returns the same integer that would be returned by the 2063 ** sqlite3_soft_heap_limit64(-1) C-language function. 2064 */ 2065 case PragTyp_SOFT_HEAP_LIMIT: { 2066 sqlite3_int64 N; 2067 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2068 sqlite3_soft_heap_limit64(N); 2069 } 2070 returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); 2071 break; 2072 } 2073 2074 /* 2075 ** PRAGMA threads 2076 ** PRAGMA threads = N 2077 ** 2078 ** Configure the maximum number of worker threads. Return the new 2079 ** maximum, which might be less than requested. 2080 */ 2081 case PragTyp_THREADS: { 2082 sqlite3_int64 N; 2083 if( zRight 2084 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 2085 && N>=0 2086 ){ 2087 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 2088 } 2089 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 2090 break; 2091 } 2092 2093 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 2094 /* 2095 ** Report the current state of file logs for all databases 2096 */ 2097 case PragTyp_LOCK_STATUS: { 2098 static const char *const azLockName[] = { 2099 "unlocked", "shared", "reserved", "pending", "exclusive" 2100 }; 2101 int i; 2102 pParse->nMem = 2; 2103 for(i=0; i<db->nDb; i++){ 2104 Btree *pBt; 2105 const char *zState = "unknown"; 2106 int j; 2107 if( db->aDb[i].zDbSName==0 ) continue; 2108 pBt = db->aDb[i].pBt; 2109 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 2110 zState = "closed"; 2111 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 2112 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 2113 zState = azLockName[j]; 2114 } 2115 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 2116 } 2117 break; 2118 } 2119 #endif 2120 2121 #ifdef SQLITE_HAS_CODEC 2122 case PragTyp_KEY: { 2123 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 2124 break; 2125 } 2126 case PragTyp_REKEY: { 2127 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 2128 break; 2129 } 2130 case PragTyp_HEXKEY: { 2131 if( zRight ){ 2132 u8 iByte; 2133 int i; 2134 char zKey[40]; 2135 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ 2136 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); 2137 if( (i&1)!=0 ) zKey[i/2] = iByte; 2138 } 2139 if( (zLeft[3] & 0xf)==0xb ){ 2140 sqlite3_key_v2(db, zDb, zKey, i/2); 2141 }else{ 2142 sqlite3_rekey_v2(db, zDb, zKey, i/2); 2143 } 2144 } 2145 break; 2146 } 2147 #endif 2148 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) 2149 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 2150 #ifdef SQLITE_HAS_CODEC 2151 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ 2152 sqlite3_activate_see(&zRight[4]); 2153 } 2154 #endif 2155 #ifdef SQLITE_ENABLE_CEROD 2156 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 2157 sqlite3_activate_cerod(&zRight[6]); 2158 } 2159 #endif 2160 } 2161 break; 2162 #endif 2163 2164 } /* End of the PRAGMA switch */ 2165 2166 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only 2167 ** purpose is to execute assert() statements to verify that if the 2168 ** PragFlg_NoColumns1 flag is set and the caller specified an argument 2169 ** to the PRAGMA, the implementation has not added any OP_ResultRow 2170 ** instructions to the VM. */ 2171 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ 2172 sqlite3VdbeVerifyNoResultRow(v); 2173 } 2174 2175 pragma_out: 2176 sqlite3DbFree(db, zLeft); 2177 sqlite3DbFree(db, zRight); 2178 } 2179 #ifndef SQLITE_OMIT_VIRTUALTABLE 2180 /***************************************************************************** 2181 ** Implementation of an eponymous virtual table that runs a pragma. 2182 ** 2183 */ 2184 typedef struct PragmaVtab PragmaVtab; 2185 typedef struct PragmaVtabCursor PragmaVtabCursor; 2186 struct PragmaVtab { 2187 sqlite3_vtab base; /* Base class. Must be first */ 2188 sqlite3 *db; /* The database connection to which it belongs */ 2189 const PragmaName *pName; /* Name of the pragma */ 2190 u8 nHidden; /* Number of hidden columns */ 2191 u8 iHidden; /* Index of the first hidden column */ 2192 }; 2193 struct PragmaVtabCursor { 2194 sqlite3_vtab_cursor base; /* Base class. Must be first */ 2195 sqlite3_stmt *pPragma; /* The pragma statement to run */ 2196 sqlite_int64 iRowid; /* Current rowid */ 2197 char *azArg[2]; /* Value of the argument and schema */ 2198 }; 2199 2200 /* 2201 ** Pragma virtual table module xConnect method. 2202 */ 2203 static int pragmaVtabConnect( 2204 sqlite3 *db, 2205 void *pAux, 2206 int argc, const char *const*argv, 2207 sqlite3_vtab **ppVtab, 2208 char **pzErr 2209 ){ 2210 const PragmaName *pPragma = (const PragmaName*)pAux; 2211 PragmaVtab *pTab = 0; 2212 int rc; 2213 int i, j; 2214 char cSep = '('; 2215 StrAccum acc; 2216 char zBuf[200]; 2217 2218 UNUSED_PARAMETER(argc); 2219 UNUSED_PARAMETER(argv); 2220 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 2221 sqlite3_str_appendall(&acc, "CREATE TABLE x"); 2222 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ 2223 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); 2224 cSep = ','; 2225 } 2226 if( i==0 ){ 2227 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); 2228 cSep = ','; 2229 i++; 2230 } 2231 j = 0; 2232 if( pPragma->mPragFlg & PragFlg_Result1 ){ 2233 sqlite3_str_appendall(&acc, ",arg HIDDEN"); 2234 j++; 2235 } 2236 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ 2237 sqlite3_str_appendall(&acc, ",schema HIDDEN"); 2238 j++; 2239 } 2240 sqlite3_str_append(&acc, ")", 1); 2241 sqlite3StrAccumFinish(&acc); 2242 assert( strlen(zBuf) < sizeof(zBuf)-1 ); 2243 rc = sqlite3_declare_vtab(db, zBuf); 2244 if( rc==SQLITE_OK ){ 2245 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); 2246 if( pTab==0 ){ 2247 rc = SQLITE_NOMEM; 2248 }else{ 2249 memset(pTab, 0, sizeof(PragmaVtab)); 2250 pTab->pName = pPragma; 2251 pTab->db = db; 2252 pTab->iHidden = i; 2253 pTab->nHidden = j; 2254 } 2255 }else{ 2256 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2257 } 2258 2259 *ppVtab = (sqlite3_vtab*)pTab; 2260 return rc; 2261 } 2262 2263 /* 2264 ** Pragma virtual table module xDisconnect method. 2265 */ 2266 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ 2267 PragmaVtab *pTab = (PragmaVtab*)pVtab; 2268 sqlite3_free(pTab); 2269 return SQLITE_OK; 2270 } 2271 2272 /* Figure out the best index to use to search a pragma virtual table. 2273 ** 2274 ** There are not really any index choices. But we want to encourage the 2275 ** query planner to give == constraints on as many hidden parameters as 2276 ** possible, and especially on the first hidden parameter. So return a 2277 ** high cost if hidden parameters are unconstrained. 2278 */ 2279 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 2280 PragmaVtab *pTab = (PragmaVtab*)tab; 2281 const struct sqlite3_index_constraint *pConstraint; 2282 int i, j; 2283 int seen[2]; 2284 2285 pIdxInfo->estimatedCost = (double)1; 2286 if( pTab->nHidden==0 ){ return SQLITE_OK; } 2287 pConstraint = pIdxInfo->aConstraint; 2288 seen[0] = 0; 2289 seen[1] = 0; 2290 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 2291 if( pConstraint->usable==0 ) continue; 2292 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 2293 if( pConstraint->iColumn < pTab->iHidden ) continue; 2294 j = pConstraint->iColumn - pTab->iHidden; 2295 assert( j < 2 ); 2296 seen[j] = i+1; 2297 } 2298 if( seen[0]==0 ){ 2299 pIdxInfo->estimatedCost = (double)2147483647; 2300 pIdxInfo->estimatedRows = 2147483647; 2301 return SQLITE_OK; 2302 } 2303 j = seen[0]-1; 2304 pIdxInfo->aConstraintUsage[j].argvIndex = 1; 2305 pIdxInfo->aConstraintUsage[j].omit = 1; 2306 if( seen[1]==0 ) return SQLITE_OK; 2307 pIdxInfo->estimatedCost = (double)20; 2308 pIdxInfo->estimatedRows = 20; 2309 j = seen[1]-1; 2310 pIdxInfo->aConstraintUsage[j].argvIndex = 2; 2311 pIdxInfo->aConstraintUsage[j].omit = 1; 2312 return SQLITE_OK; 2313 } 2314 2315 /* Create a new cursor for the pragma virtual table */ 2316 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ 2317 PragmaVtabCursor *pCsr; 2318 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); 2319 if( pCsr==0 ) return SQLITE_NOMEM; 2320 memset(pCsr, 0, sizeof(PragmaVtabCursor)); 2321 pCsr->base.pVtab = pVtab; 2322 *ppCursor = &pCsr->base; 2323 return SQLITE_OK; 2324 } 2325 2326 /* Clear all content from pragma virtual table cursor. */ 2327 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ 2328 int i; 2329 sqlite3_finalize(pCsr->pPragma); 2330 pCsr->pPragma = 0; 2331 for(i=0; i<ArraySize(pCsr->azArg); i++){ 2332 sqlite3_free(pCsr->azArg[i]); 2333 pCsr->azArg[i] = 0; 2334 } 2335 } 2336 2337 /* Close a pragma virtual table cursor */ 2338 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ 2339 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; 2340 pragmaVtabCursorClear(pCsr); 2341 sqlite3_free(pCsr); 2342 return SQLITE_OK; 2343 } 2344 2345 /* Advance the pragma virtual table cursor to the next row */ 2346 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ 2347 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2348 int rc = SQLITE_OK; 2349 2350 /* Increment the xRowid value */ 2351 pCsr->iRowid++; 2352 assert( pCsr->pPragma ); 2353 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ 2354 rc = sqlite3_finalize(pCsr->pPragma); 2355 pCsr->pPragma = 0; 2356 pragmaVtabCursorClear(pCsr); 2357 } 2358 return rc; 2359 } 2360 2361 /* 2362 ** Pragma virtual table module xFilter method. 2363 */ 2364 static int pragmaVtabFilter( 2365 sqlite3_vtab_cursor *pVtabCursor, 2366 int idxNum, const char *idxStr, 2367 int argc, sqlite3_value **argv 2368 ){ 2369 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2370 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2371 int rc; 2372 int i, j; 2373 StrAccum acc; 2374 char *zSql; 2375 2376 UNUSED_PARAMETER(idxNum); 2377 UNUSED_PARAMETER(idxStr); 2378 pragmaVtabCursorClear(pCsr); 2379 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; 2380 for(i=0; i<argc; i++, j++){ 2381 const char *zText = (const char*)sqlite3_value_text(argv[i]); 2382 assert( j<ArraySize(pCsr->azArg) ); 2383 assert( pCsr->azArg[j]==0 ); 2384 if( zText ){ 2385 pCsr->azArg[j] = sqlite3_mprintf("%s", zText); 2386 if( pCsr->azArg[j]==0 ){ 2387 return SQLITE_NOMEM; 2388 } 2389 } 2390 } 2391 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); 2392 sqlite3_str_appendall(&acc, "PRAGMA "); 2393 if( pCsr->azArg[1] ){ 2394 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); 2395 } 2396 sqlite3_str_appendall(&acc, pTab->pName->zName); 2397 if( pCsr->azArg[0] ){ 2398 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); 2399 } 2400 zSql = sqlite3StrAccumFinish(&acc); 2401 if( zSql==0 ) return SQLITE_NOMEM; 2402 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); 2403 sqlite3_free(zSql); 2404 if( rc!=SQLITE_OK ){ 2405 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); 2406 return rc; 2407 } 2408 return pragmaVtabNext(pVtabCursor); 2409 } 2410 2411 /* 2412 ** Pragma virtual table module xEof method. 2413 */ 2414 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ 2415 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2416 return (pCsr->pPragma==0); 2417 } 2418 2419 /* The xColumn method simply returns the corresponding column from 2420 ** the PRAGMA. 2421 */ 2422 static int pragmaVtabColumn( 2423 sqlite3_vtab_cursor *pVtabCursor, 2424 sqlite3_context *ctx, 2425 int i 2426 ){ 2427 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2428 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2429 if( i<pTab->iHidden ){ 2430 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); 2431 }else{ 2432 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); 2433 } 2434 return SQLITE_OK; 2435 } 2436 2437 /* 2438 ** Pragma virtual table module xRowid method. 2439 */ 2440 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ 2441 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2442 *p = pCsr->iRowid; 2443 return SQLITE_OK; 2444 } 2445 2446 /* The pragma virtual table object */ 2447 static const sqlite3_module pragmaVtabModule = { 2448 0, /* iVersion */ 2449 0, /* xCreate - create a table */ 2450 pragmaVtabConnect, /* xConnect - connect to an existing table */ 2451 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ 2452 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 2453 0, /* xDestroy - Drop a table */ 2454 pragmaVtabOpen, /* xOpen - open a cursor */ 2455 pragmaVtabClose, /* xClose - close a cursor */ 2456 pragmaVtabFilter, /* xFilter - configure scan constraints */ 2457 pragmaVtabNext, /* xNext - advance a cursor */ 2458 pragmaVtabEof, /* xEof */ 2459 pragmaVtabColumn, /* xColumn - read data */ 2460 pragmaVtabRowid, /* xRowid - read data */ 2461 0, /* xUpdate - write data */ 2462 0, /* xBegin - begin transaction */ 2463 0, /* xSync - sync transaction */ 2464 0, /* xCommit - commit transaction */ 2465 0, /* xRollback - rollback transaction */ 2466 0, /* xFindFunction - function overloading */ 2467 0, /* xRename - rename the table */ 2468 0, /* xSavepoint */ 2469 0, /* xRelease */ 2470 0 /* xRollbackTo */ 2471 }; 2472 2473 /* 2474 ** Check to see if zTabName is really the name of a pragma. If it is, 2475 ** then register an eponymous virtual table for that pragma and return 2476 ** a pointer to the Module object for the new virtual table. 2477 */ 2478 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ 2479 const PragmaName *pName; 2480 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); 2481 pName = pragmaLocate(zName+7); 2482 if( pName==0 ) return 0; 2483 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; 2484 assert( sqlite3HashFind(&db->aModule, zName)==0 ); 2485 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); 2486 } 2487 2488 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2489 2490 #endif /* SQLITE_OMIT_PRAGMA */ 2491