xref: /sqlite-3.40.0/src/pragma.c (revision b80bb6ce)
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15 
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 #  if defined(__APPLE__)
18 #    define SQLITE_ENABLE_LOCKING_STYLE 1
19 #  else
20 #    define SQLITE_ENABLE_LOCKING_STYLE 0
21 #  endif
22 #endif
23 
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object.  This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly.  Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32 
33 /*
34 ** Interpret the given string as a safety level.  Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
36 ** unrecognized string argument.  The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
41 ** to support legacy SQL code.  The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45                              /* 123456789 123456789 123 */
46   static const char zText[] = "onoffalseyestruextrafull";
47   static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
48   static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
49   static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
50                             /* on no off false yes true extra full */
51   int i, n;
52   if( sqlite3Isdigit(*z) ){
53     return (u8)sqlite3Atoi(z);
54   }
55   n = sqlite3Strlen30(z);
56   for(i=0; i<ArraySize(iLength); i++){
57     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58      && (!omitFull || iValue[i]<=1)
59     ){
60       return iValue[i];
61     }
62   }
63   return dflt;
64 }
65 
66 /*
67 ** Interpret the given string as a boolean value.
68 */
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70   return getSafetyLevel(z,1,dflt)!=0;
71 }
72 
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing.  So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78 
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
82 static int getLockingMode(const char *z){
83   if( z ){
84     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86   }
87   return PAGER_LOCKINGMODE_QUERY;
88 }
89 
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
97 static int getAutoVacuum(const char *z){
98   int i;
99   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102   i = sqlite3Atoi(z);
103   return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106 
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
113 static int getTempStore(const char *z){
114   if( z[0]>='0' && z[0]<='2' ){
115     return z[0] - '0';
116   }else if( sqlite3StrICmp(z, "file")==0 ){
117     return 1;
118   }else if( sqlite3StrICmp(z, "memory")==0 ){
119     return 2;
120   }else{
121     return 0;
122   }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125 
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
131 static int invalidateTempStorage(Parse *pParse){
132   sqlite3 *db = pParse->db;
133   if( db->aDb[1].pBt!=0 ){
134     if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136         "from within a transaction");
137       return SQLITE_ERROR;
138     }
139     sqlite3BtreeClose(db->aDb[1].pBt);
140     db->aDb[1].pBt = 0;
141     sqlite3ResetAllSchemasOfConnection(db);
142   }
143   return SQLITE_OK;
144 }
145 #endif /* SQLITE_PAGER_PRAGMAS */
146 
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
148 /*
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
152 */
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154   int ts = getTempStore(zStorageType);
155   sqlite3 *db = pParse->db;
156   if( db->temp_store==ts ) return SQLITE_OK;
157   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158     return SQLITE_ERROR;
159   }
160   db->temp_store = (u8)ts;
161   return SQLITE_OK;
162 }
163 #endif /* SQLITE_PAGER_PRAGMAS */
164 
165 /*
166 ** Set result column names for a pragma.
167 */
168 static void setPragmaResultColumnNames(
169   Vdbe *v,                     /* The query under construction */
170   const PragmaName *pPragma    /* The pragma */
171 ){
172   u8 n = pPragma->nPragCName;
173   sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174   if( n==0 ){
175     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176   }else{
177     int i, j;
178     for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179       sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
180     }
181   }
182 }
183 
184 /*
185 ** Generate code to return a single integer value.
186 */
187 static void returnSingleInt(Vdbe *v, i64 value){
188   sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189   sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
190 }
191 
192 /*
193 ** Generate code to return a single text value.
194 */
195 static void returnSingleText(
196   Vdbe *v,                /* Prepared statement under construction */
197   const char *zValue      /* Value to be returned */
198 ){
199   if( zValue ){
200     sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
202   }
203 }
204 
205 
206 /*
207 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
208 ** set these values for all pagers.
209 */
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212   if( db->autoCommit ){
213     Db *pDb = db->aDb;
214     int n = db->nDb;
215     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219              ==  PAGER_FLAGS_MASK );
220     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221     while( (n--) > 0 ){
222       if( pDb->pBt ){
223         sqlite3BtreeSetPagerFlags(pDb->pBt,
224                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
225       }
226       pDb++;
227     }
228   }
229 }
230 #else
231 # define setAllPagerFlags(X)  /* no-op */
232 #endif
233 
234 
235 /*
236 ** Return a human-readable name for a constraint resolution action.
237 */
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240   const char *zName;
241   switch( action ){
242     case OE_SetNull:  zName = "SET NULL";        break;
243     case OE_SetDflt:  zName = "SET DEFAULT";     break;
244     case OE_Cascade:  zName = "CASCADE";         break;
245     case OE_Restrict: zName = "RESTRICT";        break;
246     default:          zName = "NO ACTION";
247                       assert( action==OE_None ); break;
248   }
249   return zName;
250 }
251 #endif
252 
253 
254 /*
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
258 */
259 const char *sqlite3JournalModename(int eMode){
260   static char * const azModeName[] = {
261     "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263      , "wal"
264 #endif
265   };
266   assert( PAGER_JOURNALMODE_DELETE==0 );
267   assert( PAGER_JOURNALMODE_PERSIST==1 );
268   assert( PAGER_JOURNALMODE_OFF==2 );
269   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270   assert( PAGER_JOURNALMODE_MEMORY==4 );
271   assert( PAGER_JOURNALMODE_WAL==5 );
272   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
273 
274   if( eMode==ArraySize(azModeName) ) return 0;
275   return azModeName[eMode];
276 }
277 
278 /*
279 ** Locate a pragma in the aPragmaName[] array.
280 */
281 static const PragmaName *pragmaLocate(const char *zName){
282   int upr, lwr, mid = 0, rc;
283   lwr = 0;
284   upr = ArraySize(aPragmaName)-1;
285   while( lwr<=upr ){
286     mid = (lwr+upr)/2;
287     rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288     if( rc==0 ) break;
289     if( rc<0 ){
290       upr = mid - 1;
291     }else{
292       lwr = mid + 1;
293     }
294   }
295   return lwr>upr ? 0 : &aPragmaName[mid];
296 }
297 
298 /*
299 ** Helper subroutine for PRAGMA integrity_check:
300 **
301 ** Generate code to output a single-column result row with a value of the
302 ** string held in register 3.  Decrement the result count in register 1
303 ** and halt if the maximum number of result rows have been issued.
304 */
305 static int integrityCheckResultRow(Vdbe *v){
306   int addr;
307   sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
308   addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
309   VdbeCoverage(v);
310   sqlite3VdbeAddOp0(v, OP_Halt);
311   return addr;
312 }
313 
314 /*
315 ** Process a pragma statement.
316 **
317 ** Pragmas are of this form:
318 **
319 **      PRAGMA [schema.]id [= value]
320 **
321 ** The identifier might also be a string.  The value is a string, and
322 ** identifier, or a number.  If minusFlag is true, then the value is
323 ** a number that was preceded by a minus sign.
324 **
325 ** If the left side is "database.id" then pId1 is the database name
326 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
327 ** id and pId2 is any empty string.
328 */
329 void sqlite3Pragma(
330   Parse *pParse,
331   Token *pId1,        /* First part of [schema.]id field */
332   Token *pId2,        /* Second part of [schema.]id field, or NULL */
333   Token *pValue,      /* Token for <value>, or NULL */
334   int minusFlag       /* True if a '-' sign preceded <value> */
335 ){
336   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
337   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
338   const char *zDb = 0;   /* The database name */
339   Token *pId;            /* Pointer to <id> token */
340   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
341   int iDb;               /* Database index for <database> */
342   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
343   sqlite3 *db = pParse->db;    /* The database connection */
344   Db *pDb;                     /* The specific database being pragmaed */
345   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
346   const PragmaName *pPragma;   /* The pragma */
347 
348   if( v==0 ) return;
349   sqlite3VdbeRunOnlyOnce(v);
350   pParse->nMem = 2;
351 
352   /* Interpret the [schema.] part of the pragma statement. iDb is the
353   ** index of the database this pragma is being applied to in db.aDb[]. */
354   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
355   if( iDb<0 ) return;
356   pDb = &db->aDb[iDb];
357 
358   /* If the temp database has been explicitly named as part of the
359   ** pragma, make sure it is open.
360   */
361   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
362     return;
363   }
364 
365   zLeft = sqlite3NameFromToken(db, pId);
366   if( !zLeft ) return;
367   if( minusFlag ){
368     zRight = sqlite3MPrintf(db, "-%T", pValue);
369   }else{
370     zRight = sqlite3NameFromToken(db, pValue);
371   }
372 
373   assert( pId2 );
374   zDb = pId2->n>0 ? pDb->zDbSName : 0;
375   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
376     goto pragma_out;
377   }
378 
379   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
380   ** connection.  If it returns SQLITE_OK, then assume that the VFS
381   ** handled the pragma and generate a no-op prepared statement.
382   **
383   ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
384   ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
385   ** object corresponding to the database file to which the pragma
386   ** statement refers.
387   **
388   ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
389   ** file control is an array of pointers to strings (char**) in which the
390   ** second element of the array is the name of the pragma and the third
391   ** element is the argument to the pragma or NULL if the pragma has no
392   ** argument.
393   */
394   aFcntl[0] = 0;
395   aFcntl[1] = zLeft;
396   aFcntl[2] = zRight;
397   aFcntl[3] = 0;
398   db->busyHandler.nBusy = 0;
399   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
400   if( rc==SQLITE_OK ){
401     sqlite3VdbeSetNumCols(v, 1);
402     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
403     returnSingleText(v, aFcntl[0]);
404     sqlite3_free(aFcntl[0]);
405     goto pragma_out;
406   }
407   if( rc!=SQLITE_NOTFOUND ){
408     if( aFcntl[0] ){
409       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
410       sqlite3_free(aFcntl[0]);
411     }
412     pParse->nErr++;
413     pParse->rc = rc;
414     goto pragma_out;
415   }
416 
417   /* Locate the pragma in the lookup table */
418   pPragma = pragmaLocate(zLeft);
419   if( pPragma==0 ) goto pragma_out;
420 
421   /* Make sure the database schema is loaded if the pragma requires that */
422   if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
423     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
424   }
425 
426   /* Register the result column names for pragmas that return results */
427   if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
428    && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
429   ){
430     setPragmaResultColumnNames(v, pPragma);
431   }
432 
433   /* Jump to the appropriate pragma handler */
434   switch( pPragma->ePragTyp ){
435 
436 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
437   /*
438   **  PRAGMA [schema.]default_cache_size
439   **  PRAGMA [schema.]default_cache_size=N
440   **
441   ** The first form reports the current persistent setting for the
442   ** page cache size.  The value returned is the maximum number of
443   ** pages in the page cache.  The second form sets both the current
444   ** page cache size value and the persistent page cache size value
445   ** stored in the database file.
446   **
447   ** Older versions of SQLite would set the default cache size to a
448   ** negative number to indicate synchronous=OFF.  These days, synchronous
449   ** is always on by default regardless of the sign of the default cache
450   ** size.  But continue to take the absolute value of the default cache
451   ** size of historical compatibility.
452   */
453   case PragTyp_DEFAULT_CACHE_SIZE: {
454     static const int iLn = VDBE_OFFSET_LINENO(2);
455     static const VdbeOpList getCacheSize[] = {
456       { OP_Transaction, 0, 0,        0},                         /* 0 */
457       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
458       { OP_IfPos,       1, 8,        0},
459       { OP_Integer,     0, 2,        0},
460       { OP_Subtract,    1, 2,        1},
461       { OP_IfPos,       1, 8,        0},
462       { OP_Integer,     0, 1,        0},                         /* 6 */
463       { OP_Noop,        0, 0,        0},
464       { OP_ResultRow,   1, 1,        0},
465     };
466     VdbeOp *aOp;
467     sqlite3VdbeUsesBtree(v, iDb);
468     if( !zRight ){
469       pParse->nMem += 2;
470       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
471       aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
472       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
473       aOp[0].p1 = iDb;
474       aOp[1].p1 = iDb;
475       aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
476     }else{
477       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
478       sqlite3BeginWriteOperation(pParse, 0, iDb);
479       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
480       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
481       pDb->pSchema->cache_size = size;
482       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
483     }
484     break;
485   }
486 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
487 
488 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
489   /*
490   **  PRAGMA [schema.]page_size
491   **  PRAGMA [schema.]page_size=N
492   **
493   ** The first form reports the current setting for the
494   ** database page size in bytes.  The second form sets the
495   ** database page size value.  The value can only be set if
496   ** the database has not yet been created.
497   */
498   case PragTyp_PAGE_SIZE: {
499     Btree *pBt = pDb->pBt;
500     assert( pBt!=0 );
501     if( !zRight ){
502       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
503       returnSingleInt(v, size);
504     }else{
505       /* Malloc may fail when setting the page-size, as there is an internal
506       ** buffer that the pager module resizes using sqlite3_realloc().
507       */
508       db->nextPagesize = sqlite3Atoi(zRight);
509       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
510         sqlite3OomFault(db);
511       }
512     }
513     break;
514   }
515 
516   /*
517   **  PRAGMA [schema.]secure_delete
518   **  PRAGMA [schema.]secure_delete=ON/OFF/FAST
519   **
520   ** The first form reports the current setting for the
521   ** secure_delete flag.  The second form changes the secure_delete
522   ** flag setting and reports the new value.
523   */
524   case PragTyp_SECURE_DELETE: {
525     Btree *pBt = pDb->pBt;
526     int b = -1;
527     assert( pBt!=0 );
528     if( zRight ){
529       if( sqlite3_stricmp(zRight, "fast")==0 ){
530         b = 2;
531       }else{
532         b = sqlite3GetBoolean(zRight, 0);
533       }
534     }
535     if( pId2->n==0 && b>=0 ){
536       int ii;
537       for(ii=0; ii<db->nDb; ii++){
538         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
539       }
540     }
541     b = sqlite3BtreeSecureDelete(pBt, b);
542     returnSingleInt(v, b);
543     break;
544   }
545 
546   /*
547   **  PRAGMA [schema.]max_page_count
548   **  PRAGMA [schema.]max_page_count=N
549   **
550   ** The first form reports the current setting for the
551   ** maximum number of pages in the database file.  The
552   ** second form attempts to change this setting.  Both
553   ** forms return the current setting.
554   **
555   ** The absolute value of N is used.  This is undocumented and might
556   ** change.  The only purpose is to provide an easy way to test
557   ** the sqlite3AbsInt32() function.
558   **
559   **  PRAGMA [schema.]page_count
560   **
561   ** Return the number of pages in the specified database.
562   */
563   case PragTyp_PAGE_COUNT: {
564     int iReg;
565     sqlite3CodeVerifySchema(pParse, iDb);
566     iReg = ++pParse->nMem;
567     if( sqlite3Tolower(zLeft[0])=='p' ){
568       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
569     }else{
570       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
571                         sqlite3AbsInt32(sqlite3Atoi(zRight)));
572     }
573     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
574     break;
575   }
576 
577   /*
578   **  PRAGMA [schema.]locking_mode
579   **  PRAGMA [schema.]locking_mode = (normal|exclusive)
580   */
581   case PragTyp_LOCKING_MODE: {
582     const char *zRet = "normal";
583     int eMode = getLockingMode(zRight);
584 
585     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
586       /* Simple "PRAGMA locking_mode;" statement. This is a query for
587       ** the current default locking mode (which may be different to
588       ** the locking-mode of the main database).
589       */
590       eMode = db->dfltLockMode;
591     }else{
592       Pager *pPager;
593       if( pId2->n==0 ){
594         /* This indicates that no database name was specified as part
595         ** of the PRAGMA command. In this case the locking-mode must be
596         ** set on all attached databases, as well as the main db file.
597         **
598         ** Also, the sqlite3.dfltLockMode variable is set so that
599         ** any subsequently attached databases also use the specified
600         ** locking mode.
601         */
602         int ii;
603         assert(pDb==&db->aDb[0]);
604         for(ii=2; ii<db->nDb; ii++){
605           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
606           sqlite3PagerLockingMode(pPager, eMode);
607         }
608         db->dfltLockMode = (u8)eMode;
609       }
610       pPager = sqlite3BtreePager(pDb->pBt);
611       eMode = sqlite3PagerLockingMode(pPager, eMode);
612     }
613 
614     assert( eMode==PAGER_LOCKINGMODE_NORMAL
615             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
616     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
617       zRet = "exclusive";
618     }
619     returnSingleText(v, zRet);
620     break;
621   }
622 
623   /*
624   **  PRAGMA [schema.]journal_mode
625   **  PRAGMA [schema.]journal_mode =
626   **                      (delete|persist|off|truncate|memory|wal|off)
627   */
628   case PragTyp_JOURNAL_MODE: {
629     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
630     int ii;           /* Loop counter */
631 
632     if( zRight==0 ){
633       /* If there is no "=MODE" part of the pragma, do a query for the
634       ** current mode */
635       eMode = PAGER_JOURNALMODE_QUERY;
636     }else{
637       const char *zMode;
638       int n = sqlite3Strlen30(zRight);
639       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
640         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
641       }
642       if( !zMode ){
643         /* If the "=MODE" part does not match any known journal mode,
644         ** then do a query */
645         eMode = PAGER_JOURNALMODE_QUERY;
646       }
647     }
648     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
649       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
650       iDb = 0;
651       pId2->n = 1;
652     }
653     for(ii=db->nDb-1; ii>=0; ii--){
654       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
655         sqlite3VdbeUsesBtree(v, ii);
656         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
657       }
658     }
659     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
660     break;
661   }
662 
663   /*
664   **  PRAGMA [schema.]journal_size_limit
665   **  PRAGMA [schema.]journal_size_limit=N
666   **
667   ** Get or set the size limit on rollback journal files.
668   */
669   case PragTyp_JOURNAL_SIZE_LIMIT: {
670     Pager *pPager = sqlite3BtreePager(pDb->pBt);
671     i64 iLimit = -2;
672     if( zRight ){
673       sqlite3DecOrHexToI64(zRight, &iLimit);
674       if( iLimit<-1 ) iLimit = -1;
675     }
676     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
677     returnSingleInt(v, iLimit);
678     break;
679   }
680 
681 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
682 
683   /*
684   **  PRAGMA [schema.]auto_vacuum
685   **  PRAGMA [schema.]auto_vacuum=N
686   **
687   ** Get or set the value of the database 'auto-vacuum' parameter.
688   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
689   */
690 #ifndef SQLITE_OMIT_AUTOVACUUM
691   case PragTyp_AUTO_VACUUM: {
692     Btree *pBt = pDb->pBt;
693     assert( pBt!=0 );
694     if( !zRight ){
695       returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
696     }else{
697       int eAuto = getAutoVacuum(zRight);
698       assert( eAuto>=0 && eAuto<=2 );
699       db->nextAutovac = (u8)eAuto;
700       /* Call SetAutoVacuum() to set initialize the internal auto and
701       ** incr-vacuum flags. This is required in case this connection
702       ** creates the database file. It is important that it is created
703       ** as an auto-vacuum capable db.
704       */
705       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
706       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
707         /* When setting the auto_vacuum mode to either "full" or
708         ** "incremental", write the value of meta[6] in the database
709         ** file. Before writing to meta[6], check that meta[3] indicates
710         ** that this really is an auto-vacuum capable database.
711         */
712         static const int iLn = VDBE_OFFSET_LINENO(2);
713         static const VdbeOpList setMeta6[] = {
714           { OP_Transaction,    0,         1,                 0},    /* 0 */
715           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
716           { OP_If,             1,         0,                 0},    /* 2 */
717           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
718           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
719         };
720         VdbeOp *aOp;
721         int iAddr = sqlite3VdbeCurrentAddr(v);
722         sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
723         aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
724         if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
725         aOp[0].p1 = iDb;
726         aOp[1].p1 = iDb;
727         aOp[2].p2 = iAddr+4;
728         aOp[4].p1 = iDb;
729         aOp[4].p3 = eAuto - 1;
730         sqlite3VdbeUsesBtree(v, iDb);
731       }
732     }
733     break;
734   }
735 #endif
736 
737   /*
738   **  PRAGMA [schema.]incremental_vacuum(N)
739   **
740   ** Do N steps of incremental vacuuming on a database.
741   */
742 #ifndef SQLITE_OMIT_AUTOVACUUM
743   case PragTyp_INCREMENTAL_VACUUM: {
744     int iLimit, addr;
745     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
746       iLimit = 0x7fffffff;
747     }
748     sqlite3BeginWriteOperation(pParse, 0, iDb);
749     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
750     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
751     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
752     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
753     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
754     sqlite3VdbeJumpHere(v, addr);
755     break;
756   }
757 #endif
758 
759 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
760   /*
761   **  PRAGMA [schema.]cache_size
762   **  PRAGMA [schema.]cache_size=N
763   **
764   ** The first form reports the current local setting for the
765   ** page cache size. The second form sets the local
766   ** page cache size value.  If N is positive then that is the
767   ** number of pages in the cache.  If N is negative, then the
768   ** number of pages is adjusted so that the cache uses -N kibibytes
769   ** of memory.
770   */
771   case PragTyp_CACHE_SIZE: {
772     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
773     if( !zRight ){
774       returnSingleInt(v, pDb->pSchema->cache_size);
775     }else{
776       int size = sqlite3Atoi(zRight);
777       pDb->pSchema->cache_size = size;
778       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
779     }
780     break;
781   }
782 
783   /*
784   **  PRAGMA [schema.]cache_spill
785   **  PRAGMA cache_spill=BOOLEAN
786   **  PRAGMA [schema.]cache_spill=N
787   **
788   ** The first form reports the current local setting for the
789   ** page cache spill size. The second form turns cache spill on
790   ** or off.  When turnning cache spill on, the size is set to the
791   ** current cache_size.  The third form sets a spill size that
792   ** may be different form the cache size.
793   ** If N is positive then that is the
794   ** number of pages in the cache.  If N is negative, then the
795   ** number of pages is adjusted so that the cache uses -N kibibytes
796   ** of memory.
797   **
798   ** If the number of cache_spill pages is less then the number of
799   ** cache_size pages, no spilling occurs until the page count exceeds
800   ** the number of cache_size pages.
801   **
802   ** The cache_spill=BOOLEAN setting applies to all attached schemas,
803   ** not just the schema specified.
804   */
805   case PragTyp_CACHE_SPILL: {
806     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
807     if( !zRight ){
808       returnSingleInt(v,
809          (db->flags & SQLITE_CacheSpill)==0 ? 0 :
810             sqlite3BtreeSetSpillSize(pDb->pBt,0));
811     }else{
812       int size = 1;
813       if( sqlite3GetInt32(zRight, &size) ){
814         sqlite3BtreeSetSpillSize(pDb->pBt, size);
815       }
816       if( sqlite3GetBoolean(zRight, size!=0) ){
817         db->flags |= SQLITE_CacheSpill;
818       }else{
819         db->flags &= ~SQLITE_CacheSpill;
820       }
821       setAllPagerFlags(db);
822     }
823     break;
824   }
825 
826   /*
827   **  PRAGMA [schema.]mmap_size(N)
828   **
829   ** Used to set mapping size limit. The mapping size limit is
830   ** used to limit the aggregate size of all memory mapped regions of the
831   ** database file. If this parameter is set to zero, then memory mapping
832   ** is not used at all.  If N is negative, then the default memory map
833   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
834   ** The parameter N is measured in bytes.
835   **
836   ** This value is advisory.  The underlying VFS is free to memory map
837   ** as little or as much as it wants.  Except, if N is set to 0 then the
838   ** upper layers will never invoke the xFetch interfaces to the VFS.
839   */
840   case PragTyp_MMAP_SIZE: {
841     sqlite3_int64 sz;
842 #if SQLITE_MAX_MMAP_SIZE>0
843     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
844     if( zRight ){
845       int ii;
846       sqlite3DecOrHexToI64(zRight, &sz);
847       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
848       if( pId2->n==0 ) db->szMmap = sz;
849       for(ii=db->nDb-1; ii>=0; ii--){
850         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
851           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
852         }
853       }
854     }
855     sz = -1;
856     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
857 #else
858     sz = 0;
859     rc = SQLITE_OK;
860 #endif
861     if( rc==SQLITE_OK ){
862       returnSingleInt(v, sz);
863     }else if( rc!=SQLITE_NOTFOUND ){
864       pParse->nErr++;
865       pParse->rc = rc;
866     }
867     break;
868   }
869 
870   /*
871   **   PRAGMA temp_store
872   **   PRAGMA temp_store = "default"|"memory"|"file"
873   **
874   ** Return or set the local value of the temp_store flag.  Changing
875   ** the local value does not make changes to the disk file and the default
876   ** value will be restored the next time the database is opened.
877   **
878   ** Note that it is possible for the library compile-time options to
879   ** override this setting
880   */
881   case PragTyp_TEMP_STORE: {
882     if( !zRight ){
883       returnSingleInt(v, db->temp_store);
884     }else{
885       changeTempStorage(pParse, zRight);
886     }
887     break;
888   }
889 
890   /*
891   **   PRAGMA temp_store_directory
892   **   PRAGMA temp_store_directory = ""|"directory_name"
893   **
894   ** Return or set the local value of the temp_store_directory flag.  Changing
895   ** the value sets a specific directory to be used for temporary files.
896   ** Setting to a null string reverts to the default temporary directory search.
897   ** If temporary directory is changed, then invalidateTempStorage.
898   **
899   */
900   case PragTyp_TEMP_STORE_DIRECTORY: {
901     if( !zRight ){
902       returnSingleText(v, sqlite3_temp_directory);
903     }else{
904 #ifndef SQLITE_OMIT_WSD
905       if( zRight[0] ){
906         int res;
907         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
908         if( rc!=SQLITE_OK || res==0 ){
909           sqlite3ErrorMsg(pParse, "not a writable directory");
910           goto pragma_out;
911         }
912       }
913       if( SQLITE_TEMP_STORE==0
914        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
915        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
916       ){
917         invalidateTempStorage(pParse);
918       }
919       sqlite3_free(sqlite3_temp_directory);
920       if( zRight[0] ){
921         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
922       }else{
923         sqlite3_temp_directory = 0;
924       }
925 #endif /* SQLITE_OMIT_WSD */
926     }
927     break;
928   }
929 
930 #if SQLITE_OS_WIN
931   /*
932   **   PRAGMA data_store_directory
933   **   PRAGMA data_store_directory = ""|"directory_name"
934   **
935   ** Return or set the local value of the data_store_directory flag.  Changing
936   ** the value sets a specific directory to be used for database files that
937   ** were specified with a relative pathname.  Setting to a null string reverts
938   ** to the default database directory, which for database files specified with
939   ** a relative path will probably be based on the current directory for the
940   ** process.  Database file specified with an absolute path are not impacted
941   ** by this setting, regardless of its value.
942   **
943   */
944   case PragTyp_DATA_STORE_DIRECTORY: {
945     if( !zRight ){
946       returnSingleText(v, sqlite3_data_directory);
947     }else{
948 #ifndef SQLITE_OMIT_WSD
949       if( zRight[0] ){
950         int res;
951         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
952         if( rc!=SQLITE_OK || res==0 ){
953           sqlite3ErrorMsg(pParse, "not a writable directory");
954           goto pragma_out;
955         }
956       }
957       sqlite3_free(sqlite3_data_directory);
958       if( zRight[0] ){
959         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
960       }else{
961         sqlite3_data_directory = 0;
962       }
963 #endif /* SQLITE_OMIT_WSD */
964     }
965     break;
966   }
967 #endif
968 
969 #if SQLITE_ENABLE_LOCKING_STYLE
970   /*
971   **   PRAGMA [schema.]lock_proxy_file
972   **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
973   **
974   ** Return or set the value of the lock_proxy_file flag.  Changing
975   ** the value sets a specific file to be used for database access locks.
976   **
977   */
978   case PragTyp_LOCK_PROXY_FILE: {
979     if( !zRight ){
980       Pager *pPager = sqlite3BtreePager(pDb->pBt);
981       char *proxy_file_path = NULL;
982       sqlite3_file *pFile = sqlite3PagerFile(pPager);
983       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
984                            &proxy_file_path);
985       returnSingleText(v, proxy_file_path);
986     }else{
987       Pager *pPager = sqlite3BtreePager(pDb->pBt);
988       sqlite3_file *pFile = sqlite3PagerFile(pPager);
989       int res;
990       if( zRight[0] ){
991         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
992                                      zRight);
993       } else {
994         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
995                                      NULL);
996       }
997       if( res!=SQLITE_OK ){
998         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
999         goto pragma_out;
1000       }
1001     }
1002     break;
1003   }
1004 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1005 
1006   /*
1007   **   PRAGMA [schema.]synchronous
1008   **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1009   **
1010   ** Return or set the local value of the synchronous flag.  Changing
1011   ** the local value does not make changes to the disk file and the
1012   ** default value will be restored the next time the database is
1013   ** opened.
1014   */
1015   case PragTyp_SYNCHRONOUS: {
1016     if( !zRight ){
1017       returnSingleInt(v, pDb->safety_level-1);
1018     }else{
1019       if( !db->autoCommit ){
1020         sqlite3ErrorMsg(pParse,
1021             "Safety level may not be changed inside a transaction");
1022       }else if( iDb!=1 ){
1023         int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1024         if( iLevel==0 ) iLevel = 1;
1025         pDb->safety_level = iLevel;
1026         pDb->bSyncSet = 1;
1027         setAllPagerFlags(db);
1028       }
1029     }
1030     break;
1031   }
1032 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1033 
1034 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1035   case PragTyp_FLAG: {
1036     if( zRight==0 ){
1037       setPragmaResultColumnNames(v, pPragma);
1038       returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1039     }else{
1040       int mask = pPragma->iArg;    /* Mask of bits to set or clear. */
1041       if( db->autoCommit==0 ){
1042         /* Foreign key support may not be enabled or disabled while not
1043         ** in auto-commit mode.  */
1044         mask &= ~(SQLITE_ForeignKeys);
1045       }
1046 #if SQLITE_USER_AUTHENTICATION
1047       if( db->auth.authLevel==UAUTH_User ){
1048         /* Do not allow non-admin users to modify the schema arbitrarily */
1049         mask &= ~(SQLITE_WriteSchema);
1050       }
1051 #endif
1052 
1053       if( sqlite3GetBoolean(zRight, 0) ){
1054         db->flags |= mask;
1055       }else{
1056         db->flags &= ~mask;
1057         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1058       }
1059 
1060       /* Many of the flag-pragmas modify the code generated by the SQL
1061       ** compiler (eg. count_changes). So add an opcode to expire all
1062       ** compiled SQL statements after modifying a pragma value.
1063       */
1064       sqlite3VdbeAddOp0(v, OP_Expire);
1065       setAllPagerFlags(db);
1066     }
1067     break;
1068   }
1069 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1070 
1071 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1072   /*
1073   **   PRAGMA table_info(<table>)
1074   **
1075   ** Return a single row for each column of the named table. The columns of
1076   ** the returned data set are:
1077   **
1078   ** cid:        Column id (numbered from left to right, starting at 0)
1079   ** name:       Column name
1080   ** type:       Column declaration type.
1081   ** notnull:    True if 'NOT NULL' is part of column declaration
1082   ** dflt_value: The default value for the column, if any.
1083   ** pk:         Non-zero for PK fields.
1084   */
1085   case PragTyp_TABLE_INFO: if( zRight ){
1086     Table *pTab;
1087     pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1088     if( pTab ){
1089       int i, k;
1090       int nHidden = 0;
1091       Column *pCol;
1092       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1093       pParse->nMem = 6;
1094       sqlite3CodeVerifySchema(pParse, iDb);
1095       sqlite3ViewGetColumnNames(pParse, pTab);
1096       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1097         if( IsHiddenColumn(pCol) ){
1098           nHidden++;
1099           continue;
1100         }
1101         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1102           k = 0;
1103         }else if( pPk==0 ){
1104           k = 1;
1105         }else{
1106           for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1107         }
1108         assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
1109         sqlite3VdbeMultiLoad(v, 1, "issisi",
1110                i-nHidden,
1111                pCol->zName,
1112                sqlite3ColumnType(pCol,""),
1113                pCol->notNull ? 1 : 0,
1114                pCol->pDflt ? pCol->pDflt->u.zToken : 0,
1115                k);
1116       }
1117     }
1118   }
1119   break;
1120 
1121 #ifdef SQLITE_DEBUG
1122   case PragTyp_STATS: {
1123     Index *pIdx;
1124     HashElem *i;
1125     pParse->nMem = 5;
1126     sqlite3CodeVerifySchema(pParse, iDb);
1127     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1128       Table *pTab = sqliteHashData(i);
1129       sqlite3VdbeMultiLoad(v, 1, "ssiii",
1130            pTab->zName,
1131            0,
1132            pTab->szTabRow,
1133            pTab->nRowLogEst,
1134            pTab->tabFlags);
1135       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1136         sqlite3VdbeMultiLoad(v, 2, "siiiX",
1137            pIdx->zName,
1138            pIdx->szIdxRow,
1139            pIdx->aiRowLogEst[0],
1140            pIdx->hasStat1);
1141         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1142       }
1143     }
1144   }
1145   break;
1146 #endif
1147 
1148   case PragTyp_INDEX_INFO: if( zRight ){
1149     Index *pIdx;
1150     Table *pTab;
1151     pIdx = sqlite3FindIndex(db, zRight, zDb);
1152     if( pIdx ){
1153       int i;
1154       int mx;
1155       if( pPragma->iArg ){
1156         /* PRAGMA index_xinfo (newer version with more rows and columns) */
1157         mx = pIdx->nColumn;
1158         pParse->nMem = 6;
1159       }else{
1160         /* PRAGMA index_info (legacy version) */
1161         mx = pIdx->nKeyCol;
1162         pParse->nMem = 3;
1163       }
1164       pTab = pIdx->pTable;
1165       sqlite3CodeVerifySchema(pParse, iDb);
1166       assert( pParse->nMem<=pPragma->nPragCName );
1167       for(i=0; i<mx; i++){
1168         i16 cnum = pIdx->aiColumn[i];
1169         sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1170                              cnum<0 ? 0 : pTab->aCol[cnum].zName);
1171         if( pPragma->iArg ){
1172           sqlite3VdbeMultiLoad(v, 4, "isiX",
1173             pIdx->aSortOrder[i],
1174             pIdx->azColl[i],
1175             i<pIdx->nKeyCol);
1176         }
1177         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1178       }
1179     }
1180   }
1181   break;
1182 
1183   case PragTyp_INDEX_LIST: if( zRight ){
1184     Index *pIdx;
1185     Table *pTab;
1186     int i;
1187     pTab = sqlite3FindTable(db, zRight, zDb);
1188     if( pTab ){
1189       pParse->nMem = 5;
1190       sqlite3CodeVerifySchema(pParse, iDb);
1191       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1192         const char *azOrigin[] = { "c", "u", "pk" };
1193         sqlite3VdbeMultiLoad(v, 1, "isisi",
1194            i,
1195            pIdx->zName,
1196            IsUniqueIndex(pIdx),
1197            azOrigin[pIdx->idxType],
1198            pIdx->pPartIdxWhere!=0);
1199       }
1200     }
1201   }
1202   break;
1203 
1204   case PragTyp_DATABASE_LIST: {
1205     int i;
1206     pParse->nMem = 3;
1207     for(i=0; i<db->nDb; i++){
1208       if( db->aDb[i].pBt==0 ) continue;
1209       assert( db->aDb[i].zDbSName!=0 );
1210       sqlite3VdbeMultiLoad(v, 1, "iss",
1211          i,
1212          db->aDb[i].zDbSName,
1213          sqlite3BtreeGetFilename(db->aDb[i].pBt));
1214     }
1215   }
1216   break;
1217 
1218   case PragTyp_COLLATION_LIST: {
1219     int i = 0;
1220     HashElem *p;
1221     pParse->nMem = 2;
1222     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1223       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1224       sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1225     }
1226   }
1227   break;
1228 
1229 #ifdef SQLITE_INTROSPECTION_PRAGMAS
1230   case PragTyp_FUNCTION_LIST: {
1231     int i;
1232     HashElem *j;
1233     FuncDef *p;
1234     pParse->nMem = 2;
1235     for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1236       for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1237         sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1);
1238       }
1239     }
1240     for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1241       p = (FuncDef*)sqliteHashData(j);
1242       sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0);
1243     }
1244   }
1245   break;
1246 
1247 #ifndef SQLITE_OMIT_VIRTUALTABLE
1248   case PragTyp_MODULE_LIST: {
1249     HashElem *j;
1250     pParse->nMem = 1;
1251     for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1252       Module *pMod = (Module*)sqliteHashData(j);
1253       sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1254     }
1255   }
1256   break;
1257 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1258 
1259   case PragTyp_PRAGMA_LIST: {
1260     int i;
1261     for(i=0; i<ArraySize(aPragmaName); i++){
1262       sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1263     }
1264   }
1265   break;
1266 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1267 
1268 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1269 
1270 #ifndef SQLITE_OMIT_FOREIGN_KEY
1271   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1272     FKey *pFK;
1273     Table *pTab;
1274     pTab = sqlite3FindTable(db, zRight, zDb);
1275     if( pTab ){
1276       pFK = pTab->pFKey;
1277       if( pFK ){
1278         int i = 0;
1279         pParse->nMem = 8;
1280         sqlite3CodeVerifySchema(pParse, iDb);
1281         while(pFK){
1282           int j;
1283           for(j=0; j<pFK->nCol; j++){
1284             sqlite3VdbeMultiLoad(v, 1, "iissssss",
1285                    i,
1286                    j,
1287                    pFK->zTo,
1288                    pTab->aCol[pFK->aCol[j].iFrom].zName,
1289                    pFK->aCol[j].zCol,
1290                    actionName(pFK->aAction[1]),  /* ON UPDATE */
1291                    actionName(pFK->aAction[0]),  /* ON DELETE */
1292                    "NONE");
1293           }
1294           ++i;
1295           pFK = pFK->pNextFrom;
1296         }
1297       }
1298     }
1299   }
1300   break;
1301 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1302 
1303 #ifndef SQLITE_OMIT_FOREIGN_KEY
1304 #ifndef SQLITE_OMIT_TRIGGER
1305   case PragTyp_FOREIGN_KEY_CHECK: {
1306     FKey *pFK;             /* A foreign key constraint */
1307     Table *pTab;           /* Child table contain "REFERENCES" keyword */
1308     Table *pParent;        /* Parent table that child points to */
1309     Index *pIdx;           /* Index in the parent table */
1310     int i;                 /* Loop counter:  Foreign key number for pTab */
1311     int j;                 /* Loop counter:  Field of the foreign key */
1312     HashElem *k;           /* Loop counter:  Next table in schema */
1313     int x;                 /* result variable */
1314     int regResult;         /* 3 registers to hold a result row */
1315     int regKey;            /* Register to hold key for checking the FK */
1316     int regRow;            /* Registers to hold a row from pTab */
1317     int addrTop;           /* Top of a loop checking foreign keys */
1318     int addrOk;            /* Jump here if the key is OK */
1319     int *aiCols;           /* child to parent column mapping */
1320 
1321     regResult = pParse->nMem+1;
1322     pParse->nMem += 4;
1323     regKey = ++pParse->nMem;
1324     regRow = ++pParse->nMem;
1325     sqlite3CodeVerifySchema(pParse, iDb);
1326     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1327     while( k ){
1328       if( zRight ){
1329         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1330         k = 0;
1331       }else{
1332         pTab = (Table*)sqliteHashData(k);
1333         k = sqliteHashNext(k);
1334       }
1335       if( pTab==0 || pTab->pFKey==0 ) continue;
1336       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1337       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1338       sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1339       sqlite3VdbeLoadString(v, regResult, pTab->zName);
1340       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1341         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1342         if( pParent==0 ) continue;
1343         pIdx = 0;
1344         sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1345         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1346         if( x==0 ){
1347           if( pIdx==0 ){
1348             sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1349           }else{
1350             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1351             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1352           }
1353         }else{
1354           k = 0;
1355           break;
1356         }
1357       }
1358       assert( pParse->nErr>0 || pFK==0 );
1359       if( pFK ) break;
1360       if( pParse->nTab<i ) pParse->nTab = i;
1361       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1362       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1363         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1364         pIdx = 0;
1365         aiCols = 0;
1366         if( pParent ){
1367           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1368           assert( x==0 );
1369         }
1370         addrOk = sqlite3VdbeMakeLabel(v);
1371 
1372         /* Generate code to read the child key values into registers
1373         ** regRow..regRow+n. If any of the child key values are NULL, this
1374         ** row cannot cause an FK violation. Jump directly to addrOk in
1375         ** this case. */
1376         for(j=0; j<pFK->nCol; j++){
1377           int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1378           sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1379           sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1380         }
1381 
1382         /* Generate code to query the parent index for a matching parent
1383         ** key. If a match is found, jump to addrOk. */
1384         if( pIdx ){
1385           sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1386               sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1387           sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1388           VdbeCoverage(v);
1389         }else if( pParent ){
1390           int jmp = sqlite3VdbeCurrentAddr(v)+2;
1391           sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1392           sqlite3VdbeGoto(v, addrOk);
1393           assert( pFK->nCol==1 );
1394         }
1395 
1396         /* Generate code to report an FK violation to the caller. */
1397         if( HasRowid(pTab) ){
1398           sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1399         }else{
1400           sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1401         }
1402         sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1403         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1404         sqlite3VdbeResolveLabel(v, addrOk);
1405         sqlite3DbFree(db, aiCols);
1406       }
1407       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1408       sqlite3VdbeJumpHere(v, addrTop);
1409     }
1410   }
1411   break;
1412 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1413 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1414 
1415 #ifndef NDEBUG
1416   case PragTyp_PARSER_TRACE: {
1417     if( zRight ){
1418       if( sqlite3GetBoolean(zRight, 0) ){
1419         sqlite3ParserTrace(stdout, "parser: ");
1420       }else{
1421         sqlite3ParserTrace(0, 0);
1422       }
1423     }
1424   }
1425   break;
1426 #endif
1427 
1428   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
1429   ** used will be case sensitive or not depending on the RHS.
1430   */
1431   case PragTyp_CASE_SENSITIVE_LIKE: {
1432     if( zRight ){
1433       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1434     }
1435   }
1436   break;
1437 
1438 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1439 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1440 #endif
1441 
1442 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1443   /*    PRAGMA integrity_check
1444   **    PRAGMA integrity_check(N)
1445   **    PRAGMA quick_check
1446   **    PRAGMA quick_check(N)
1447   **
1448   ** Verify the integrity of the database.
1449   **
1450   ** The "quick_check" is reduced version of
1451   ** integrity_check designed to detect most database corruption
1452   ** without the overhead of cross-checking indexes.  Quick_check
1453   ** is linear time wherease integrity_check is O(NlogN).
1454   */
1455   case PragTyp_INTEGRITY_CHECK: {
1456     int i, j, addr, mxErr;
1457 
1458     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1459 
1460     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1461     ** then iDb is set to the index of the database identified by <db>.
1462     ** In this case, the integrity of database iDb only is verified by
1463     ** the VDBE created below.
1464     **
1465     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1466     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1467     ** to -1 here, to indicate that the VDBE should verify the integrity
1468     ** of all attached databases.  */
1469     assert( iDb>=0 );
1470     assert( iDb==0 || pId2->z );
1471     if( pId2->z==0 ) iDb = -1;
1472 
1473     /* Initialize the VDBE program */
1474     pParse->nMem = 6;
1475 
1476     /* Set the maximum error count */
1477     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1478     if( zRight ){
1479       sqlite3GetInt32(zRight, &mxErr);
1480       if( mxErr<=0 ){
1481         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1482       }
1483     }
1484     sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1485 
1486     /* Do an integrity check on each database file */
1487     for(i=0; i<db->nDb; i++){
1488       HashElem *x;     /* For looping over tables in the schema */
1489       Hash *pTbls;     /* Set of all tables in the schema */
1490       int *aRoot;      /* Array of root page numbers of all btrees */
1491       int cnt = 0;     /* Number of entries in aRoot[] */
1492       int mxIdx = 0;   /* Maximum number of indexes for any table */
1493 
1494       if( OMIT_TEMPDB && i==1 ) continue;
1495       if( iDb>=0 && i!=iDb ) continue;
1496 
1497       sqlite3CodeVerifySchema(pParse, i);
1498 
1499       /* Do an integrity check of the B-Tree
1500       **
1501       ** Begin by finding the root pages numbers
1502       ** for all tables and indices in the database.
1503       */
1504       assert( sqlite3SchemaMutexHeld(db, i, 0) );
1505       pTbls = &db->aDb[i].pSchema->tblHash;
1506       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1507         Table *pTab = sqliteHashData(x);  /* Current table */
1508         Index *pIdx;                      /* An index on pTab */
1509         int nIdx;                         /* Number of indexes on pTab */
1510         if( HasRowid(pTab) ) cnt++;
1511         for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1512         if( nIdx>mxIdx ) mxIdx = nIdx;
1513       }
1514       aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1515       if( aRoot==0 ) break;
1516       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1517         Table *pTab = sqliteHashData(x);
1518         Index *pIdx;
1519         if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1520         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1521           aRoot[++cnt] = pIdx->tnum;
1522         }
1523       }
1524       aRoot[0] = cnt;
1525 
1526       /* Make sure sufficient number of registers have been allocated */
1527       pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1528       sqlite3ClearTempRegCache(pParse);
1529 
1530       /* Do the b-tree integrity checks */
1531       sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1532       sqlite3VdbeChangeP5(v, (u8)i);
1533       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1534       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1535          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1536          P4_DYNAMIC);
1537       sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1538       integrityCheckResultRow(v);
1539       sqlite3VdbeJumpHere(v, addr);
1540 
1541       /* Make sure all the indices are constructed correctly.
1542       */
1543       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1544         Table *pTab = sqliteHashData(x);
1545         Index *pIdx, *pPk;
1546         Index *pPrior = 0;
1547         int loopTop;
1548         int iDataCur, iIdxCur;
1549         int r1 = -1;
1550 
1551         if( pTab->tnum<1 ) continue;  /* Skip VIEWs or VIRTUAL TABLEs */
1552         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1553         sqlite3ExprCacheClear(pParse);
1554         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1555                                    1, 0, &iDataCur, &iIdxCur);
1556         /* reg[7] counts the number of entries in the table.
1557         ** reg[8+i] counts the number of entries in the i-th index
1558         */
1559         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1560         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1561           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1562         }
1563         assert( pParse->nMem>=8+j );
1564         assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1565         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1566         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1567         if( !isQuick ){
1568           /* Sanity check on record header decoding */
1569           sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nCol-1, 3);
1570           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1571         }
1572         /* Verify that all NOT NULL columns really are NOT NULL */
1573         for(j=0; j<pTab->nCol; j++){
1574           char *zErr;
1575           int jmp2;
1576           if( j==pTab->iPKey ) continue;
1577           if( pTab->aCol[j].notNull==0 ) continue;
1578           sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1579           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1580           jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1581           zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1582                               pTab->aCol[j].zName);
1583           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1584           integrityCheckResultRow(v);
1585           sqlite3VdbeJumpHere(v, jmp2);
1586         }
1587         /* Verify CHECK constraints */
1588         if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1589           ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1590           if( db->mallocFailed==0 ){
1591             int addrCkFault = sqlite3VdbeMakeLabel(v);
1592             int addrCkOk = sqlite3VdbeMakeLabel(v);
1593             char *zErr;
1594             int k;
1595             pParse->iSelfTab = iDataCur + 1;
1596             sqlite3ExprCachePush(pParse);
1597             for(k=pCheck->nExpr-1; k>0; k--){
1598               sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1599             }
1600             sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1601                 SQLITE_JUMPIFNULL);
1602             sqlite3VdbeResolveLabel(v, addrCkFault);
1603             pParse->iSelfTab = 0;
1604             zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1605                 pTab->zName);
1606             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1607             integrityCheckResultRow(v);
1608             sqlite3VdbeResolveLabel(v, addrCkOk);
1609             sqlite3ExprCachePop(pParse);
1610           }
1611           sqlite3ExprListDelete(db, pCheck);
1612         }
1613         if( !isQuick ){ /* Omit the remaining tests for quick_check */
1614           /* Validate index entries for the current row */
1615           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1616             int jmp2, jmp3, jmp4, jmp5;
1617             int ckUniq = sqlite3VdbeMakeLabel(v);
1618             if( pPk==pIdx ) continue;
1619             r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1620                                          pPrior, r1);
1621             pPrior = pIdx;
1622             sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1623             /* Verify that an index entry exists for the current table row */
1624             jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1625                                         pIdx->nColumn); VdbeCoverage(v);
1626             sqlite3VdbeLoadString(v, 3, "row ");
1627             sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1628             sqlite3VdbeLoadString(v, 4, " missing from index ");
1629             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1630             jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1631             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1632             jmp4 = integrityCheckResultRow(v);
1633             sqlite3VdbeJumpHere(v, jmp2);
1634             /* For UNIQUE indexes, verify that only one entry exists with the
1635             ** current key.  The entry is unique if (1) any column is NULL
1636             ** or (2) the next entry has a different key */
1637             if( IsUniqueIndex(pIdx) ){
1638               int uniqOk = sqlite3VdbeMakeLabel(v);
1639               int jmp6;
1640               int kk;
1641               for(kk=0; kk<pIdx->nKeyCol; kk++){
1642                 int iCol = pIdx->aiColumn[kk];
1643                 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1644                 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1645                 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1646                 VdbeCoverage(v);
1647               }
1648               jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1649               sqlite3VdbeGoto(v, uniqOk);
1650               sqlite3VdbeJumpHere(v, jmp6);
1651               sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1652                                    pIdx->nKeyCol); VdbeCoverage(v);
1653               sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1654               sqlite3VdbeGoto(v, jmp5);
1655               sqlite3VdbeResolveLabel(v, uniqOk);
1656             }
1657             sqlite3VdbeJumpHere(v, jmp4);
1658             sqlite3ResolvePartIdxLabel(pParse, jmp3);
1659           }
1660         }
1661         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1662         sqlite3VdbeJumpHere(v, loopTop-1);
1663 #ifndef SQLITE_OMIT_BTREECOUNT
1664         if( !isQuick ){
1665           sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1666           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1667             if( pPk==pIdx ) continue;
1668             sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1669             addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1670             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1671             sqlite3VdbeLoadString(v, 4, pIdx->zName);
1672             sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1673             integrityCheckResultRow(v);
1674             sqlite3VdbeJumpHere(v, addr);
1675           }
1676         }
1677 #endif /* SQLITE_OMIT_BTREECOUNT */
1678       }
1679     }
1680     {
1681       static const int iLn = VDBE_OFFSET_LINENO(2);
1682       static const VdbeOpList endCode[] = {
1683         { OP_AddImm,      1, 0,        0},    /* 0 */
1684         { OP_IfNotZero,   1, 4,        0},    /* 1 */
1685         { OP_String8,     0, 3,        0},    /* 2 */
1686         { OP_ResultRow,   3, 1,        0},    /* 3 */
1687         { OP_Halt,        0, 0,        0},    /* 4 */
1688         { OP_String8,     0, 3,        0},    /* 5 */
1689         { OP_Goto,        0, 3,        0},    /* 6 */
1690       };
1691       VdbeOp *aOp;
1692 
1693       aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1694       if( aOp ){
1695         aOp[0].p2 = 1-mxErr;
1696         aOp[2].p4type = P4_STATIC;
1697         aOp[2].p4.z = "ok";
1698         aOp[5].p4type = P4_STATIC;
1699         aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1700       }
1701       sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1702     }
1703   }
1704   break;
1705 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1706 
1707 #ifndef SQLITE_OMIT_UTF16
1708   /*
1709   **   PRAGMA encoding
1710   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1711   **
1712   ** In its first form, this pragma returns the encoding of the main
1713   ** database. If the database is not initialized, it is initialized now.
1714   **
1715   ** The second form of this pragma is a no-op if the main database file
1716   ** has not already been initialized. In this case it sets the default
1717   ** encoding that will be used for the main database file if a new file
1718   ** is created. If an existing main database file is opened, then the
1719   ** default text encoding for the existing database is used.
1720   **
1721   ** In all cases new databases created using the ATTACH command are
1722   ** created to use the same default text encoding as the main database. If
1723   ** the main database has not been initialized and/or created when ATTACH
1724   ** is executed, this is done before the ATTACH operation.
1725   **
1726   ** In the second form this pragma sets the text encoding to be used in
1727   ** new database files created using this database handle. It is only
1728   ** useful if invoked immediately after the main database i
1729   */
1730   case PragTyp_ENCODING: {
1731     static const struct EncName {
1732       char *zName;
1733       u8 enc;
1734     } encnames[] = {
1735       { "UTF8",     SQLITE_UTF8        },
1736       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
1737       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
1738       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
1739       { "UTF16le",  SQLITE_UTF16LE     },
1740       { "UTF16be",  SQLITE_UTF16BE     },
1741       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
1742       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
1743       { 0, 0 }
1744     };
1745     const struct EncName *pEnc;
1746     if( !zRight ){    /* "PRAGMA encoding" */
1747       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1748       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1749       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1750       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1751       returnSingleText(v, encnames[ENC(pParse->db)].zName);
1752     }else{                        /* "PRAGMA encoding = XXX" */
1753       /* Only change the value of sqlite.enc if the database handle is not
1754       ** initialized. If the main database exists, the new sqlite.enc value
1755       ** will be overwritten when the schema is next loaded. If it does not
1756       ** already exists, it will be created to use the new encoding value.
1757       */
1758       if(
1759         !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
1760         DbHasProperty(db, 0, DB_Empty)
1761       ){
1762         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1763           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1764             SCHEMA_ENC(db) = ENC(db) =
1765                 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1766             break;
1767           }
1768         }
1769         if( !pEnc->zName ){
1770           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1771         }
1772       }
1773     }
1774   }
1775   break;
1776 #endif /* SQLITE_OMIT_UTF16 */
1777 
1778 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1779   /*
1780   **   PRAGMA [schema.]schema_version
1781   **   PRAGMA [schema.]schema_version = <integer>
1782   **
1783   **   PRAGMA [schema.]user_version
1784   **   PRAGMA [schema.]user_version = <integer>
1785   **
1786   **   PRAGMA [schema.]freelist_count
1787   **
1788   **   PRAGMA [schema.]data_version
1789   **
1790   **   PRAGMA [schema.]application_id
1791   **   PRAGMA [schema.]application_id = <integer>
1792   **
1793   ** The pragma's schema_version and user_version are used to set or get
1794   ** the value of the schema-version and user-version, respectively. Both
1795   ** the schema-version and the user-version are 32-bit signed integers
1796   ** stored in the database header.
1797   **
1798   ** The schema-cookie is usually only manipulated internally by SQLite. It
1799   ** is incremented by SQLite whenever the database schema is modified (by
1800   ** creating or dropping a table or index). The schema version is used by
1801   ** SQLite each time a query is executed to ensure that the internal cache
1802   ** of the schema used when compiling the SQL query matches the schema of
1803   ** the database against which the compiled query is actually executed.
1804   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1805   ** the schema-version is potentially dangerous and may lead to program
1806   ** crashes or database corruption. Use with caution!
1807   **
1808   ** The user-version is not used internally by SQLite. It may be used by
1809   ** applications for any purpose.
1810   */
1811   case PragTyp_HEADER_VALUE: {
1812     int iCookie = pPragma->iArg;  /* Which cookie to read or write */
1813     sqlite3VdbeUsesBtree(v, iDb);
1814     if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1815       /* Write the specified cookie value */
1816       static const VdbeOpList setCookie[] = {
1817         { OP_Transaction,    0,  1,  0},    /* 0 */
1818         { OP_SetCookie,      0,  0,  0},    /* 1 */
1819       };
1820       VdbeOp *aOp;
1821       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1822       aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1823       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1824       aOp[0].p1 = iDb;
1825       aOp[1].p1 = iDb;
1826       aOp[1].p2 = iCookie;
1827       aOp[1].p3 = sqlite3Atoi(zRight);
1828     }else{
1829       /* Read the specified cookie value */
1830       static const VdbeOpList readCookie[] = {
1831         { OP_Transaction,     0,  0,  0},    /* 0 */
1832         { OP_ReadCookie,      0,  1,  0},    /* 1 */
1833         { OP_ResultRow,       1,  1,  0}
1834       };
1835       VdbeOp *aOp;
1836       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1837       aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1838       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1839       aOp[0].p1 = iDb;
1840       aOp[1].p1 = iDb;
1841       aOp[1].p3 = iCookie;
1842       sqlite3VdbeReusable(v);
1843     }
1844   }
1845   break;
1846 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1847 
1848 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1849   /*
1850   **   PRAGMA compile_options
1851   **
1852   ** Return the names of all compile-time options used in this build,
1853   ** one option per row.
1854   */
1855   case PragTyp_COMPILE_OPTIONS: {
1856     int i = 0;
1857     const char *zOpt;
1858     pParse->nMem = 1;
1859     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1860       sqlite3VdbeLoadString(v, 1, zOpt);
1861       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1862     }
1863     sqlite3VdbeReusable(v);
1864   }
1865   break;
1866 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1867 
1868 #ifndef SQLITE_OMIT_WAL
1869   /*
1870   **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1871   **
1872   ** Checkpoint the database.
1873   */
1874   case PragTyp_WAL_CHECKPOINT: {
1875     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1876     int eMode = SQLITE_CHECKPOINT_PASSIVE;
1877     if( zRight ){
1878       if( sqlite3StrICmp(zRight, "full")==0 ){
1879         eMode = SQLITE_CHECKPOINT_FULL;
1880       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1881         eMode = SQLITE_CHECKPOINT_RESTART;
1882       }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1883         eMode = SQLITE_CHECKPOINT_TRUNCATE;
1884       }
1885     }
1886     pParse->nMem = 3;
1887     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1888     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1889   }
1890   break;
1891 
1892   /*
1893   **   PRAGMA wal_autocheckpoint
1894   **   PRAGMA wal_autocheckpoint = N
1895   **
1896   ** Configure a database connection to automatically checkpoint a database
1897   ** after accumulating N frames in the log. Or query for the current value
1898   ** of N.
1899   */
1900   case PragTyp_WAL_AUTOCHECKPOINT: {
1901     if( zRight ){
1902       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1903     }
1904     returnSingleInt(v,
1905        db->xWalCallback==sqlite3WalDefaultHook ?
1906            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1907   }
1908   break;
1909 #endif
1910 
1911   /*
1912   **  PRAGMA shrink_memory
1913   **
1914   ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1915   ** connection on which it is invoked to free up as much memory as it
1916   ** can, by calling sqlite3_db_release_memory().
1917   */
1918   case PragTyp_SHRINK_MEMORY: {
1919     sqlite3_db_release_memory(db);
1920     break;
1921   }
1922 
1923   /*
1924   **  PRAGMA optimize
1925   **  PRAGMA optimize(MASK)
1926   **  PRAGMA schema.optimize
1927   **  PRAGMA schema.optimize(MASK)
1928   **
1929   ** Attempt to optimize the database.  All schemas are optimized in the first
1930   ** two forms, and only the specified schema is optimized in the latter two.
1931   **
1932   ** The details of optimizations performed by this pragma are expected
1933   ** to change and improve over time.  Applications should anticipate that
1934   ** this pragma will perform new optimizations in future releases.
1935   **
1936   ** The optional argument is a bitmask of optimizations to perform:
1937   **
1938   **    0x0001    Debugging mode.  Do not actually perform any optimizations
1939   **              but instead return one line of text for each optimization
1940   **              that would have been done.  Off by default.
1941   **
1942   **    0x0002    Run ANALYZE on tables that might benefit.  On by default.
1943   **              See below for additional information.
1944   **
1945   **    0x0004    (Not yet implemented) Record usage and performance
1946   **              information from the current session in the
1947   **              database file so that it will be available to "optimize"
1948   **              pragmas run by future database connections.
1949   **
1950   **    0x0008    (Not yet implemented) Create indexes that might have
1951   **              been helpful to recent queries
1952   **
1953   ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all
1954   ** of the optimizations listed above except Debug Mode, including new
1955   ** optimizations that have not yet been invented.  If new optimizations are
1956   ** ever added that should be off by default, those off-by-default
1957   ** optimizations will have bitmasks of 0x10000 or larger.
1958   **
1959   ** DETERMINATION OF WHEN TO RUN ANALYZE
1960   **
1961   ** In the current implementation, a table is analyzed if only if all of
1962   ** the following are true:
1963   **
1964   ** (1) MASK bit 0x02 is set.
1965   **
1966   ** (2) The query planner used sqlite_stat1-style statistics for one or
1967   **     more indexes of the table at some point during the lifetime of
1968   **     the current connection.
1969   **
1970   ** (3) One or more indexes of the table are currently unanalyzed OR
1971   **     the number of rows in the table has increased by 25 times or more
1972   **     since the last time ANALYZE was run.
1973   **
1974   ** The rules for when tables are analyzed are likely to change in
1975   ** future releases.
1976   */
1977   case PragTyp_OPTIMIZE: {
1978     int iDbLast;           /* Loop termination point for the schema loop */
1979     int iTabCur;           /* Cursor for a table whose size needs checking */
1980     HashElem *k;           /* Loop over tables of a schema */
1981     Schema *pSchema;       /* The current schema */
1982     Table *pTab;           /* A table in the schema */
1983     Index *pIdx;           /* An index of the table */
1984     LogEst szThreshold;    /* Size threshold above which reanalysis is needd */
1985     char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
1986     u32 opMask;            /* Mask of operations to perform */
1987 
1988     if( zRight ){
1989       opMask = (u32)sqlite3Atoi(zRight);
1990       if( (opMask & 0x02)==0 ) break;
1991     }else{
1992       opMask = 0xfffe;
1993     }
1994     iTabCur = pParse->nTab++;
1995     for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
1996       if( iDb==1 ) continue;
1997       sqlite3CodeVerifySchema(pParse, iDb);
1998       pSchema = db->aDb[iDb].pSchema;
1999       for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2000         pTab = (Table*)sqliteHashData(k);
2001 
2002         /* If table pTab has not been used in a way that would benefit from
2003         ** having analysis statistics during the current session, then skip it.
2004         ** This also has the effect of skipping virtual tables and views */
2005         if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2006 
2007         /* Reanalyze if the table is 25 times larger than the last analysis */
2008         szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2009         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2010           if( !pIdx->hasStat1 ){
2011             szThreshold = 0; /* Always analyze if any index lacks statistics */
2012             break;
2013           }
2014         }
2015         if( szThreshold ){
2016           sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2017           sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2018                          sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2019           VdbeCoverage(v);
2020         }
2021         zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2022                                  db->aDb[iDb].zDbSName, pTab->zName);
2023         if( opMask & 0x01 ){
2024           int r1 = sqlite3GetTempReg(pParse);
2025           sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2026           sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2027         }else{
2028           sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2029         }
2030       }
2031     }
2032     sqlite3VdbeAddOp0(v, OP_Expire);
2033     break;
2034   }
2035 
2036   /*
2037   **   PRAGMA busy_timeout
2038   **   PRAGMA busy_timeout = N
2039   **
2040   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
2041   ** if one is set.  If no busy handler or a different busy handler is set
2042   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
2043   ** disables the timeout.
2044   */
2045   /*case PragTyp_BUSY_TIMEOUT*/ default: {
2046     assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2047     if( zRight ){
2048       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2049     }
2050     returnSingleInt(v, db->busyTimeout);
2051     break;
2052   }
2053 
2054   /*
2055   **   PRAGMA soft_heap_limit
2056   **   PRAGMA soft_heap_limit = N
2057   **
2058   ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2059   ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2060   ** specified and is a non-negative integer.
2061   ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2062   ** returns the same integer that would be returned by the
2063   ** sqlite3_soft_heap_limit64(-1) C-language function.
2064   */
2065   case PragTyp_SOFT_HEAP_LIMIT: {
2066     sqlite3_int64 N;
2067     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2068       sqlite3_soft_heap_limit64(N);
2069     }
2070     returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2071     break;
2072   }
2073 
2074   /*
2075   **   PRAGMA threads
2076   **   PRAGMA threads = N
2077   **
2078   ** Configure the maximum number of worker threads.  Return the new
2079   ** maximum, which might be less than requested.
2080   */
2081   case PragTyp_THREADS: {
2082     sqlite3_int64 N;
2083     if( zRight
2084      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2085      && N>=0
2086     ){
2087       sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2088     }
2089     returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2090     break;
2091   }
2092 
2093 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2094   /*
2095   ** Report the current state of file logs for all databases
2096   */
2097   case PragTyp_LOCK_STATUS: {
2098     static const char *const azLockName[] = {
2099       "unlocked", "shared", "reserved", "pending", "exclusive"
2100     };
2101     int i;
2102     pParse->nMem = 2;
2103     for(i=0; i<db->nDb; i++){
2104       Btree *pBt;
2105       const char *zState = "unknown";
2106       int j;
2107       if( db->aDb[i].zDbSName==0 ) continue;
2108       pBt = db->aDb[i].pBt;
2109       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2110         zState = "closed";
2111       }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2112                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2113          zState = azLockName[j];
2114       }
2115       sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2116     }
2117     break;
2118   }
2119 #endif
2120 
2121 #ifdef SQLITE_HAS_CODEC
2122   case PragTyp_KEY: {
2123     if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
2124     break;
2125   }
2126   case PragTyp_REKEY: {
2127     if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
2128     break;
2129   }
2130   case PragTyp_HEXKEY: {
2131     if( zRight ){
2132       u8 iByte;
2133       int i;
2134       char zKey[40];
2135       for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
2136         iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
2137         if( (i&1)!=0 ) zKey[i/2] = iByte;
2138       }
2139       if( (zLeft[3] & 0xf)==0xb ){
2140         sqlite3_key_v2(db, zDb, zKey, i/2);
2141       }else{
2142         sqlite3_rekey_v2(db, zDb, zKey, i/2);
2143       }
2144     }
2145     break;
2146   }
2147 #endif
2148 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
2149   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2150 #ifdef SQLITE_HAS_CODEC
2151     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
2152       sqlite3_activate_see(&zRight[4]);
2153     }
2154 #endif
2155 #ifdef SQLITE_ENABLE_CEROD
2156     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2157       sqlite3_activate_cerod(&zRight[6]);
2158     }
2159 #endif
2160   }
2161   break;
2162 #endif
2163 
2164   } /* End of the PRAGMA switch */
2165 
2166   /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2167   ** purpose is to execute assert() statements to verify that if the
2168   ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2169   ** to the PRAGMA, the implementation has not added any OP_ResultRow
2170   ** instructions to the VM.  */
2171   if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2172     sqlite3VdbeVerifyNoResultRow(v);
2173   }
2174 
2175 pragma_out:
2176   sqlite3DbFree(db, zLeft);
2177   sqlite3DbFree(db, zRight);
2178 }
2179 #ifndef SQLITE_OMIT_VIRTUALTABLE
2180 /*****************************************************************************
2181 ** Implementation of an eponymous virtual table that runs a pragma.
2182 **
2183 */
2184 typedef struct PragmaVtab PragmaVtab;
2185 typedef struct PragmaVtabCursor PragmaVtabCursor;
2186 struct PragmaVtab {
2187   sqlite3_vtab base;        /* Base class.  Must be first */
2188   sqlite3 *db;              /* The database connection to which it belongs */
2189   const PragmaName *pName;  /* Name of the pragma */
2190   u8 nHidden;               /* Number of hidden columns */
2191   u8 iHidden;               /* Index of the first hidden column */
2192 };
2193 struct PragmaVtabCursor {
2194   sqlite3_vtab_cursor base; /* Base class.  Must be first */
2195   sqlite3_stmt *pPragma;    /* The pragma statement to run */
2196   sqlite_int64 iRowid;      /* Current rowid */
2197   char *azArg[2];           /* Value of the argument and schema */
2198 };
2199 
2200 /*
2201 ** Pragma virtual table module xConnect method.
2202 */
2203 static int pragmaVtabConnect(
2204   sqlite3 *db,
2205   void *pAux,
2206   int argc, const char *const*argv,
2207   sqlite3_vtab **ppVtab,
2208   char **pzErr
2209 ){
2210   const PragmaName *pPragma = (const PragmaName*)pAux;
2211   PragmaVtab *pTab = 0;
2212   int rc;
2213   int i, j;
2214   char cSep = '(';
2215   StrAccum acc;
2216   char zBuf[200];
2217 
2218   UNUSED_PARAMETER(argc);
2219   UNUSED_PARAMETER(argv);
2220   sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2221   sqlite3_str_appendall(&acc, "CREATE TABLE x");
2222   for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2223     sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2224     cSep = ',';
2225   }
2226   if( i==0 ){
2227     sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2228     cSep = ',';
2229     i++;
2230   }
2231   j = 0;
2232   if( pPragma->mPragFlg & PragFlg_Result1 ){
2233     sqlite3_str_appendall(&acc, ",arg HIDDEN");
2234     j++;
2235   }
2236   if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2237     sqlite3_str_appendall(&acc, ",schema HIDDEN");
2238     j++;
2239   }
2240   sqlite3_str_append(&acc, ")", 1);
2241   sqlite3StrAccumFinish(&acc);
2242   assert( strlen(zBuf) < sizeof(zBuf)-1 );
2243   rc = sqlite3_declare_vtab(db, zBuf);
2244   if( rc==SQLITE_OK ){
2245     pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2246     if( pTab==0 ){
2247       rc = SQLITE_NOMEM;
2248     }else{
2249       memset(pTab, 0, sizeof(PragmaVtab));
2250       pTab->pName = pPragma;
2251       pTab->db = db;
2252       pTab->iHidden = i;
2253       pTab->nHidden = j;
2254     }
2255   }else{
2256     *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2257   }
2258 
2259   *ppVtab = (sqlite3_vtab*)pTab;
2260   return rc;
2261 }
2262 
2263 /*
2264 ** Pragma virtual table module xDisconnect method.
2265 */
2266 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2267   PragmaVtab *pTab = (PragmaVtab*)pVtab;
2268   sqlite3_free(pTab);
2269   return SQLITE_OK;
2270 }
2271 
2272 /* Figure out the best index to use to search a pragma virtual table.
2273 **
2274 ** There are not really any index choices.  But we want to encourage the
2275 ** query planner to give == constraints on as many hidden parameters as
2276 ** possible, and especially on the first hidden parameter.  So return a
2277 ** high cost if hidden parameters are unconstrained.
2278 */
2279 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2280   PragmaVtab *pTab = (PragmaVtab*)tab;
2281   const struct sqlite3_index_constraint *pConstraint;
2282   int i, j;
2283   int seen[2];
2284 
2285   pIdxInfo->estimatedCost = (double)1;
2286   if( pTab->nHidden==0 ){ return SQLITE_OK; }
2287   pConstraint = pIdxInfo->aConstraint;
2288   seen[0] = 0;
2289   seen[1] = 0;
2290   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2291     if( pConstraint->usable==0 ) continue;
2292     if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2293     if( pConstraint->iColumn < pTab->iHidden ) continue;
2294     j = pConstraint->iColumn - pTab->iHidden;
2295     assert( j < 2 );
2296     seen[j] = i+1;
2297   }
2298   if( seen[0]==0 ){
2299     pIdxInfo->estimatedCost = (double)2147483647;
2300     pIdxInfo->estimatedRows = 2147483647;
2301     return SQLITE_OK;
2302   }
2303   j = seen[0]-1;
2304   pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2305   pIdxInfo->aConstraintUsage[j].omit = 1;
2306   if( seen[1]==0 ) return SQLITE_OK;
2307   pIdxInfo->estimatedCost = (double)20;
2308   pIdxInfo->estimatedRows = 20;
2309   j = seen[1]-1;
2310   pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2311   pIdxInfo->aConstraintUsage[j].omit = 1;
2312   return SQLITE_OK;
2313 }
2314 
2315 /* Create a new cursor for the pragma virtual table */
2316 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2317   PragmaVtabCursor *pCsr;
2318   pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2319   if( pCsr==0 ) return SQLITE_NOMEM;
2320   memset(pCsr, 0, sizeof(PragmaVtabCursor));
2321   pCsr->base.pVtab = pVtab;
2322   *ppCursor = &pCsr->base;
2323   return SQLITE_OK;
2324 }
2325 
2326 /* Clear all content from pragma virtual table cursor. */
2327 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2328   int i;
2329   sqlite3_finalize(pCsr->pPragma);
2330   pCsr->pPragma = 0;
2331   for(i=0; i<ArraySize(pCsr->azArg); i++){
2332     sqlite3_free(pCsr->azArg[i]);
2333     pCsr->azArg[i] = 0;
2334   }
2335 }
2336 
2337 /* Close a pragma virtual table cursor */
2338 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2339   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2340   pragmaVtabCursorClear(pCsr);
2341   sqlite3_free(pCsr);
2342   return SQLITE_OK;
2343 }
2344 
2345 /* Advance the pragma virtual table cursor to the next row */
2346 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2347   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2348   int rc = SQLITE_OK;
2349 
2350   /* Increment the xRowid value */
2351   pCsr->iRowid++;
2352   assert( pCsr->pPragma );
2353   if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2354     rc = sqlite3_finalize(pCsr->pPragma);
2355     pCsr->pPragma = 0;
2356     pragmaVtabCursorClear(pCsr);
2357   }
2358   return rc;
2359 }
2360 
2361 /*
2362 ** Pragma virtual table module xFilter method.
2363 */
2364 static int pragmaVtabFilter(
2365   sqlite3_vtab_cursor *pVtabCursor,
2366   int idxNum, const char *idxStr,
2367   int argc, sqlite3_value **argv
2368 ){
2369   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2370   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2371   int rc;
2372   int i, j;
2373   StrAccum acc;
2374   char *zSql;
2375 
2376   UNUSED_PARAMETER(idxNum);
2377   UNUSED_PARAMETER(idxStr);
2378   pragmaVtabCursorClear(pCsr);
2379   j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2380   for(i=0; i<argc; i++, j++){
2381     const char *zText = (const char*)sqlite3_value_text(argv[i]);
2382     assert( j<ArraySize(pCsr->azArg) );
2383     assert( pCsr->azArg[j]==0 );
2384     if( zText ){
2385       pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2386       if( pCsr->azArg[j]==0 ){
2387         return SQLITE_NOMEM;
2388       }
2389     }
2390   }
2391   sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2392   sqlite3_str_appendall(&acc, "PRAGMA ");
2393   if( pCsr->azArg[1] ){
2394     sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2395   }
2396   sqlite3_str_appendall(&acc, pTab->pName->zName);
2397   if( pCsr->azArg[0] ){
2398     sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2399   }
2400   zSql = sqlite3StrAccumFinish(&acc);
2401   if( zSql==0 ) return SQLITE_NOMEM;
2402   rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2403   sqlite3_free(zSql);
2404   if( rc!=SQLITE_OK ){
2405     pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2406     return rc;
2407   }
2408   return pragmaVtabNext(pVtabCursor);
2409 }
2410 
2411 /*
2412 ** Pragma virtual table module xEof method.
2413 */
2414 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2415   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2416   return (pCsr->pPragma==0);
2417 }
2418 
2419 /* The xColumn method simply returns the corresponding column from
2420 ** the PRAGMA.
2421 */
2422 static int pragmaVtabColumn(
2423   sqlite3_vtab_cursor *pVtabCursor,
2424   sqlite3_context *ctx,
2425   int i
2426 ){
2427   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2428   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2429   if( i<pTab->iHidden ){
2430     sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2431   }else{
2432     sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2433   }
2434   return SQLITE_OK;
2435 }
2436 
2437 /*
2438 ** Pragma virtual table module xRowid method.
2439 */
2440 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2441   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2442   *p = pCsr->iRowid;
2443   return SQLITE_OK;
2444 }
2445 
2446 /* The pragma virtual table object */
2447 static const sqlite3_module pragmaVtabModule = {
2448   0,                           /* iVersion */
2449   0,                           /* xCreate - create a table */
2450   pragmaVtabConnect,           /* xConnect - connect to an existing table */
2451   pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */
2452   pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */
2453   0,                           /* xDestroy - Drop a table */
2454   pragmaVtabOpen,              /* xOpen - open a cursor */
2455   pragmaVtabClose,             /* xClose - close a cursor */
2456   pragmaVtabFilter,            /* xFilter - configure scan constraints */
2457   pragmaVtabNext,              /* xNext - advance a cursor */
2458   pragmaVtabEof,               /* xEof */
2459   pragmaVtabColumn,            /* xColumn - read data */
2460   pragmaVtabRowid,             /* xRowid - read data */
2461   0,                           /* xUpdate - write data */
2462   0,                           /* xBegin - begin transaction */
2463   0,                           /* xSync - sync transaction */
2464   0,                           /* xCommit - commit transaction */
2465   0,                           /* xRollback - rollback transaction */
2466   0,                           /* xFindFunction - function overloading */
2467   0,                           /* xRename - rename the table */
2468   0,                           /* xSavepoint */
2469   0,                           /* xRelease */
2470   0                            /* xRollbackTo */
2471 };
2472 
2473 /*
2474 ** Check to see if zTabName is really the name of a pragma.  If it is,
2475 ** then register an eponymous virtual table for that pragma and return
2476 ** a pointer to the Module object for the new virtual table.
2477 */
2478 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2479   const PragmaName *pName;
2480   assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2481   pName = pragmaLocate(zName+7);
2482   if( pName==0 ) return 0;
2483   if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2484   assert( sqlite3HashFind(&db->aModule, zName)==0 );
2485   return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2486 }
2487 
2488 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2489 
2490 #endif /* SQLITE_OMIT_PRAGMA */
2491