xref: /sqlite-3.40.0/src/pragma.c (revision aeb4e6ee)
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15 
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 #  if defined(__APPLE__)
18 #    define SQLITE_ENABLE_LOCKING_STYLE 1
19 #  else
20 #    define SQLITE_ENABLE_LOCKING_STYLE 0
21 #  endif
22 #endif
23 
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object.  This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly.  Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32 
33 /*
34 ** Interpret the given string as a safety level.  Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
36 ** unrecognized string argument.  The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
41 ** to support legacy SQL code.  The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45                              /* 123456789 123456789 123 */
46   static const char zText[] = "onoffalseyestruextrafull";
47   static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
48   static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
49   static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
50                             /* on no off false yes true extra full */
51   int i, n;
52   if( sqlite3Isdigit(*z) ){
53     return (u8)sqlite3Atoi(z);
54   }
55   n = sqlite3Strlen30(z);
56   for(i=0; i<ArraySize(iLength); i++){
57     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58      && (!omitFull || iValue[i]<=1)
59     ){
60       return iValue[i];
61     }
62   }
63   return dflt;
64 }
65 
66 /*
67 ** Interpret the given string as a boolean value.
68 */
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70   return getSafetyLevel(z,1,dflt)!=0;
71 }
72 
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing.  So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78 
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
82 static int getLockingMode(const char *z){
83   if( z ){
84     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86   }
87   return PAGER_LOCKINGMODE_QUERY;
88 }
89 
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
97 static int getAutoVacuum(const char *z){
98   int i;
99   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102   i = sqlite3Atoi(z);
103   return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106 
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
113 static int getTempStore(const char *z){
114   if( z[0]>='0' && z[0]<='2' ){
115     return z[0] - '0';
116   }else if( sqlite3StrICmp(z, "file")==0 ){
117     return 1;
118   }else if( sqlite3StrICmp(z, "memory")==0 ){
119     return 2;
120   }else{
121     return 0;
122   }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125 
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
131 static int invalidateTempStorage(Parse *pParse){
132   sqlite3 *db = pParse->db;
133   if( db->aDb[1].pBt!=0 ){
134     if( !db->autoCommit
135      || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
136     ){
137       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
138         "from within a transaction");
139       return SQLITE_ERROR;
140     }
141     sqlite3BtreeClose(db->aDb[1].pBt);
142     db->aDb[1].pBt = 0;
143     sqlite3ResetAllSchemasOfConnection(db);
144   }
145   return SQLITE_OK;
146 }
147 #endif /* SQLITE_PAGER_PRAGMAS */
148 
149 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
150 /*
151 ** If the TEMP database is open, close it and mark the database schema
152 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
153 ** or DEFAULT_TEMP_STORE pragmas.
154 */
155 static int changeTempStorage(Parse *pParse, const char *zStorageType){
156   int ts = getTempStore(zStorageType);
157   sqlite3 *db = pParse->db;
158   if( db->temp_store==ts ) return SQLITE_OK;
159   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
160     return SQLITE_ERROR;
161   }
162   db->temp_store = (u8)ts;
163   return SQLITE_OK;
164 }
165 #endif /* SQLITE_PAGER_PRAGMAS */
166 
167 /*
168 ** Set result column names for a pragma.
169 */
170 static void setPragmaResultColumnNames(
171   Vdbe *v,                     /* The query under construction */
172   const PragmaName *pPragma    /* The pragma */
173 ){
174   u8 n = pPragma->nPragCName;
175   sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
176   if( n==0 ){
177     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
178   }else{
179     int i, j;
180     for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
181       sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
182     }
183   }
184 }
185 
186 /*
187 ** Generate code to return a single integer value.
188 */
189 static void returnSingleInt(Vdbe *v, i64 value){
190   sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
191   sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
192 }
193 
194 /*
195 ** Generate code to return a single text value.
196 */
197 static void returnSingleText(
198   Vdbe *v,                /* Prepared statement under construction */
199   const char *zValue      /* Value to be returned */
200 ){
201   if( zValue ){
202     sqlite3VdbeLoadString(v, 1, (const char*)zValue);
203     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
204   }
205 }
206 
207 
208 /*
209 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
210 ** set these values for all pagers.
211 */
212 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
213 static void setAllPagerFlags(sqlite3 *db){
214   if( db->autoCommit ){
215     Db *pDb = db->aDb;
216     int n = db->nDb;
217     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
218     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
219     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
220     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
221              ==  PAGER_FLAGS_MASK );
222     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
223     while( (n--) > 0 ){
224       if( pDb->pBt ){
225         sqlite3BtreeSetPagerFlags(pDb->pBt,
226                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
227       }
228       pDb++;
229     }
230   }
231 }
232 #else
233 # define setAllPagerFlags(X)  /* no-op */
234 #endif
235 
236 
237 /*
238 ** Return a human-readable name for a constraint resolution action.
239 */
240 #ifndef SQLITE_OMIT_FOREIGN_KEY
241 static const char *actionName(u8 action){
242   const char *zName;
243   switch( action ){
244     case OE_SetNull:  zName = "SET NULL";        break;
245     case OE_SetDflt:  zName = "SET DEFAULT";     break;
246     case OE_Cascade:  zName = "CASCADE";         break;
247     case OE_Restrict: zName = "RESTRICT";        break;
248     default:          zName = "NO ACTION";
249                       assert( action==OE_None ); break;
250   }
251   return zName;
252 }
253 #endif
254 
255 
256 /*
257 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
258 ** defined in pager.h. This function returns the associated lowercase
259 ** journal-mode name.
260 */
261 const char *sqlite3JournalModename(int eMode){
262   static char * const azModeName[] = {
263     "delete", "persist", "off", "truncate", "memory"
264 #ifndef SQLITE_OMIT_WAL
265      , "wal"
266 #endif
267   };
268   assert( PAGER_JOURNALMODE_DELETE==0 );
269   assert( PAGER_JOURNALMODE_PERSIST==1 );
270   assert( PAGER_JOURNALMODE_OFF==2 );
271   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
272   assert( PAGER_JOURNALMODE_MEMORY==4 );
273   assert( PAGER_JOURNALMODE_WAL==5 );
274   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
275 
276   if( eMode==ArraySize(azModeName) ) return 0;
277   return azModeName[eMode];
278 }
279 
280 /*
281 ** Locate a pragma in the aPragmaName[] array.
282 */
283 static const PragmaName *pragmaLocate(const char *zName){
284   int upr, lwr, mid = 0, rc;
285   lwr = 0;
286   upr = ArraySize(aPragmaName)-1;
287   while( lwr<=upr ){
288     mid = (lwr+upr)/2;
289     rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
290     if( rc==0 ) break;
291     if( rc<0 ){
292       upr = mid - 1;
293     }else{
294       lwr = mid + 1;
295     }
296   }
297   return lwr>upr ? 0 : &aPragmaName[mid];
298 }
299 
300 /*
301 ** Create zero or more entries in the output for the SQL functions
302 ** defined by FuncDef p.
303 */
304 static void pragmaFunclistLine(
305   Vdbe *v,               /* The prepared statement being created */
306   FuncDef *p,            /* A particular function definition */
307   int isBuiltin,         /* True if this is a built-in function */
308   int showInternFuncs    /* True if showing internal functions */
309 ){
310   for(; p; p=p->pNext){
311     const char *zType;
312     static const u32 mask =
313         SQLITE_DETERMINISTIC |
314         SQLITE_DIRECTONLY |
315         SQLITE_SUBTYPE |
316         SQLITE_INNOCUOUS |
317         SQLITE_FUNC_INTERNAL
318     ;
319     static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
320 
321     assert( SQLITE_FUNC_ENCMASK==0x3 );
322     assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
323     assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
324     assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
325 
326     if( p->xSFunc==0 ) continue;
327     if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
328      && showInternFuncs==0
329     ){
330       continue;
331     }
332     if( p->xValue!=0 ){
333       zType = "w";
334     }else if( p->xFinalize!=0 ){
335       zType = "a";
336     }else{
337       zType = "s";
338     }
339     sqlite3VdbeMultiLoad(v, 1, "sissii",
340        p->zName, isBuiltin,
341        zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
342        p->nArg,
343        (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
344     );
345   }
346 }
347 
348 
349 /*
350 ** Helper subroutine for PRAGMA integrity_check:
351 **
352 ** Generate code to output a single-column result row with a value of the
353 ** string held in register 3.  Decrement the result count in register 1
354 ** and halt if the maximum number of result rows have been issued.
355 */
356 static int integrityCheckResultRow(Vdbe *v){
357   int addr;
358   sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
359   addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
360   VdbeCoverage(v);
361   sqlite3VdbeAddOp0(v, OP_Halt);
362   return addr;
363 }
364 
365 /*
366 ** Process a pragma statement.
367 **
368 ** Pragmas are of this form:
369 **
370 **      PRAGMA [schema.]id [= value]
371 **
372 ** The identifier might also be a string.  The value is a string, and
373 ** identifier, or a number.  If minusFlag is true, then the value is
374 ** a number that was preceded by a minus sign.
375 **
376 ** If the left side is "database.id" then pId1 is the database name
377 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
378 ** id and pId2 is any empty string.
379 */
380 void sqlite3Pragma(
381   Parse *pParse,
382   Token *pId1,        /* First part of [schema.]id field */
383   Token *pId2,        /* Second part of [schema.]id field, or NULL */
384   Token *pValue,      /* Token for <value>, or NULL */
385   int minusFlag       /* True if a '-' sign preceded <value> */
386 ){
387   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
388   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
389   const char *zDb = 0;   /* The database name */
390   Token *pId;            /* Pointer to <id> token */
391   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
392   int iDb;               /* Database index for <database> */
393   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
394   sqlite3 *db = pParse->db;    /* The database connection */
395   Db *pDb;                     /* The specific database being pragmaed */
396   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
397   const PragmaName *pPragma;   /* The pragma */
398 
399   if( v==0 ) return;
400   sqlite3VdbeRunOnlyOnce(v);
401   pParse->nMem = 2;
402 
403   /* Interpret the [schema.] part of the pragma statement. iDb is the
404   ** index of the database this pragma is being applied to in db.aDb[]. */
405   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
406   if( iDb<0 ) return;
407   pDb = &db->aDb[iDb];
408 
409   /* If the temp database has been explicitly named as part of the
410   ** pragma, make sure it is open.
411   */
412   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
413     return;
414   }
415 
416   zLeft = sqlite3NameFromToken(db, pId);
417   if( !zLeft ) return;
418   if( minusFlag ){
419     zRight = sqlite3MPrintf(db, "-%T", pValue);
420   }else{
421     zRight = sqlite3NameFromToken(db, pValue);
422   }
423 
424   assert( pId2 );
425   zDb = pId2->n>0 ? pDb->zDbSName : 0;
426   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
427     goto pragma_out;
428   }
429 
430   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
431   ** connection.  If it returns SQLITE_OK, then assume that the VFS
432   ** handled the pragma and generate a no-op prepared statement.
433   **
434   ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
435   ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
436   ** object corresponding to the database file to which the pragma
437   ** statement refers.
438   **
439   ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
440   ** file control is an array of pointers to strings (char**) in which the
441   ** second element of the array is the name of the pragma and the third
442   ** element is the argument to the pragma or NULL if the pragma has no
443   ** argument.
444   */
445   aFcntl[0] = 0;
446   aFcntl[1] = zLeft;
447   aFcntl[2] = zRight;
448   aFcntl[3] = 0;
449   db->busyHandler.nBusy = 0;
450   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
451   if( rc==SQLITE_OK ){
452     sqlite3VdbeSetNumCols(v, 1);
453     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
454     returnSingleText(v, aFcntl[0]);
455     sqlite3_free(aFcntl[0]);
456     goto pragma_out;
457   }
458   if( rc!=SQLITE_NOTFOUND ){
459     if( aFcntl[0] ){
460       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
461       sqlite3_free(aFcntl[0]);
462     }
463     pParse->nErr++;
464     pParse->rc = rc;
465     goto pragma_out;
466   }
467 
468   /* Locate the pragma in the lookup table */
469   pPragma = pragmaLocate(zLeft);
470   if( pPragma==0 ) goto pragma_out;
471 
472   /* Make sure the database schema is loaded if the pragma requires that */
473   if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
474     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
475   }
476 
477   /* Register the result column names for pragmas that return results */
478   if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
479    && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
480   ){
481     setPragmaResultColumnNames(v, pPragma);
482   }
483 
484   /* Jump to the appropriate pragma handler */
485   switch( pPragma->ePragTyp ){
486 
487 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
488   /*
489   **  PRAGMA [schema.]default_cache_size
490   **  PRAGMA [schema.]default_cache_size=N
491   **
492   ** The first form reports the current persistent setting for the
493   ** page cache size.  The value returned is the maximum number of
494   ** pages in the page cache.  The second form sets both the current
495   ** page cache size value and the persistent page cache size value
496   ** stored in the database file.
497   **
498   ** Older versions of SQLite would set the default cache size to a
499   ** negative number to indicate synchronous=OFF.  These days, synchronous
500   ** is always on by default regardless of the sign of the default cache
501   ** size.  But continue to take the absolute value of the default cache
502   ** size of historical compatibility.
503   */
504   case PragTyp_DEFAULT_CACHE_SIZE: {
505     static const int iLn = VDBE_OFFSET_LINENO(2);
506     static const VdbeOpList getCacheSize[] = {
507       { OP_Transaction, 0, 0,        0},                         /* 0 */
508       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
509       { OP_IfPos,       1, 8,        0},
510       { OP_Integer,     0, 2,        0},
511       { OP_Subtract,    1, 2,        1},
512       { OP_IfPos,       1, 8,        0},
513       { OP_Integer,     0, 1,        0},                         /* 6 */
514       { OP_Noop,        0, 0,        0},
515       { OP_ResultRow,   1, 1,        0},
516     };
517     VdbeOp *aOp;
518     sqlite3VdbeUsesBtree(v, iDb);
519     if( !zRight ){
520       pParse->nMem += 2;
521       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
522       aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
523       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
524       aOp[0].p1 = iDb;
525       aOp[1].p1 = iDb;
526       aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
527     }else{
528       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
529       sqlite3BeginWriteOperation(pParse, 0, iDb);
530       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
531       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
532       pDb->pSchema->cache_size = size;
533       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
534     }
535     break;
536   }
537 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
538 
539 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
540   /*
541   **  PRAGMA [schema.]page_size
542   **  PRAGMA [schema.]page_size=N
543   **
544   ** The first form reports the current setting for the
545   ** database page size in bytes.  The second form sets the
546   ** database page size value.  The value can only be set if
547   ** the database has not yet been created.
548   */
549   case PragTyp_PAGE_SIZE: {
550     Btree *pBt = pDb->pBt;
551     assert( pBt!=0 );
552     if( !zRight ){
553       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
554       returnSingleInt(v, size);
555     }else{
556       /* Malloc may fail when setting the page-size, as there is an internal
557       ** buffer that the pager module resizes using sqlite3_realloc().
558       */
559       db->nextPagesize = sqlite3Atoi(zRight);
560       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
561         sqlite3OomFault(db);
562       }
563     }
564     break;
565   }
566 
567   /*
568   **  PRAGMA [schema.]secure_delete
569   **  PRAGMA [schema.]secure_delete=ON/OFF/FAST
570   **
571   ** The first form reports the current setting for the
572   ** secure_delete flag.  The second form changes the secure_delete
573   ** flag setting and reports the new value.
574   */
575   case PragTyp_SECURE_DELETE: {
576     Btree *pBt = pDb->pBt;
577     int b = -1;
578     assert( pBt!=0 );
579     if( zRight ){
580       if( sqlite3_stricmp(zRight, "fast")==0 ){
581         b = 2;
582       }else{
583         b = sqlite3GetBoolean(zRight, 0);
584       }
585     }
586     if( pId2->n==0 && b>=0 ){
587       int ii;
588       for(ii=0; ii<db->nDb; ii++){
589         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
590       }
591     }
592     b = sqlite3BtreeSecureDelete(pBt, b);
593     returnSingleInt(v, b);
594     break;
595   }
596 
597   /*
598   **  PRAGMA [schema.]max_page_count
599   **  PRAGMA [schema.]max_page_count=N
600   **
601   ** The first form reports the current setting for the
602   ** maximum number of pages in the database file.  The
603   ** second form attempts to change this setting.  Both
604   ** forms return the current setting.
605   **
606   ** The absolute value of N is used.  This is undocumented and might
607   ** change.  The only purpose is to provide an easy way to test
608   ** the sqlite3AbsInt32() function.
609   **
610   **  PRAGMA [schema.]page_count
611   **
612   ** Return the number of pages in the specified database.
613   */
614   case PragTyp_PAGE_COUNT: {
615     int iReg;
616     i64 x = 0;
617     sqlite3CodeVerifySchema(pParse, iDb);
618     iReg = ++pParse->nMem;
619     if( sqlite3Tolower(zLeft[0])=='p' ){
620       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
621     }else{
622       if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
623         if( x<0 ) x = 0;
624         else if( x>0xfffffffe ) x = 0xfffffffe;
625       }else{
626         x = 0;
627       }
628       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
629     }
630     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
631     break;
632   }
633 
634   /*
635   **  PRAGMA [schema.]locking_mode
636   **  PRAGMA [schema.]locking_mode = (normal|exclusive)
637   */
638   case PragTyp_LOCKING_MODE: {
639     const char *zRet = "normal";
640     int eMode = getLockingMode(zRight);
641 
642     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
643       /* Simple "PRAGMA locking_mode;" statement. This is a query for
644       ** the current default locking mode (which may be different to
645       ** the locking-mode of the main database).
646       */
647       eMode = db->dfltLockMode;
648     }else{
649       Pager *pPager;
650       if( pId2->n==0 ){
651         /* This indicates that no database name was specified as part
652         ** of the PRAGMA command. In this case the locking-mode must be
653         ** set on all attached databases, as well as the main db file.
654         **
655         ** Also, the sqlite3.dfltLockMode variable is set so that
656         ** any subsequently attached databases also use the specified
657         ** locking mode.
658         */
659         int ii;
660         assert(pDb==&db->aDb[0]);
661         for(ii=2; ii<db->nDb; ii++){
662           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
663           sqlite3PagerLockingMode(pPager, eMode);
664         }
665         db->dfltLockMode = (u8)eMode;
666       }
667       pPager = sqlite3BtreePager(pDb->pBt);
668       eMode = sqlite3PagerLockingMode(pPager, eMode);
669     }
670 
671     assert( eMode==PAGER_LOCKINGMODE_NORMAL
672             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
673     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
674       zRet = "exclusive";
675     }
676     returnSingleText(v, zRet);
677     break;
678   }
679 
680   /*
681   **  PRAGMA [schema.]journal_mode
682   **  PRAGMA [schema.]journal_mode =
683   **                      (delete|persist|off|truncate|memory|wal|off)
684   */
685   case PragTyp_JOURNAL_MODE: {
686     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
687     int ii;           /* Loop counter */
688 
689     if( zRight==0 ){
690       /* If there is no "=MODE" part of the pragma, do a query for the
691       ** current mode */
692       eMode = PAGER_JOURNALMODE_QUERY;
693     }else{
694       const char *zMode;
695       int n = sqlite3Strlen30(zRight);
696       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
697         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
698       }
699       if( !zMode ){
700         /* If the "=MODE" part does not match any known journal mode,
701         ** then do a query */
702         eMode = PAGER_JOURNALMODE_QUERY;
703       }
704       if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
705         /* Do not allow journal-mode "OFF" in defensive since the database
706         ** can become corrupted using ordinary SQL when the journal is off */
707         eMode = PAGER_JOURNALMODE_QUERY;
708       }
709     }
710     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
711       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
712       iDb = 0;
713       pId2->n = 1;
714     }
715     for(ii=db->nDb-1; ii>=0; ii--){
716       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
717         sqlite3VdbeUsesBtree(v, ii);
718         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
719       }
720     }
721     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
722     break;
723   }
724 
725   /*
726   **  PRAGMA [schema.]journal_size_limit
727   **  PRAGMA [schema.]journal_size_limit=N
728   **
729   ** Get or set the size limit on rollback journal files.
730   */
731   case PragTyp_JOURNAL_SIZE_LIMIT: {
732     Pager *pPager = sqlite3BtreePager(pDb->pBt);
733     i64 iLimit = -2;
734     if( zRight ){
735       sqlite3DecOrHexToI64(zRight, &iLimit);
736       if( iLimit<-1 ) iLimit = -1;
737     }
738     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
739     returnSingleInt(v, iLimit);
740     break;
741   }
742 
743 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
744 
745   /*
746   **  PRAGMA [schema.]auto_vacuum
747   **  PRAGMA [schema.]auto_vacuum=N
748   **
749   ** Get or set the value of the database 'auto-vacuum' parameter.
750   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
751   */
752 #ifndef SQLITE_OMIT_AUTOVACUUM
753   case PragTyp_AUTO_VACUUM: {
754     Btree *pBt = pDb->pBt;
755     assert( pBt!=0 );
756     if( !zRight ){
757       returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
758     }else{
759       int eAuto = getAutoVacuum(zRight);
760       assert( eAuto>=0 && eAuto<=2 );
761       db->nextAutovac = (u8)eAuto;
762       /* Call SetAutoVacuum() to set initialize the internal auto and
763       ** incr-vacuum flags. This is required in case this connection
764       ** creates the database file. It is important that it is created
765       ** as an auto-vacuum capable db.
766       */
767       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
768       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
769         /* When setting the auto_vacuum mode to either "full" or
770         ** "incremental", write the value of meta[6] in the database
771         ** file. Before writing to meta[6], check that meta[3] indicates
772         ** that this really is an auto-vacuum capable database.
773         */
774         static const int iLn = VDBE_OFFSET_LINENO(2);
775         static const VdbeOpList setMeta6[] = {
776           { OP_Transaction,    0,         1,                 0},    /* 0 */
777           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
778           { OP_If,             1,         0,                 0},    /* 2 */
779           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
780           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
781         };
782         VdbeOp *aOp;
783         int iAddr = sqlite3VdbeCurrentAddr(v);
784         sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
785         aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
786         if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
787         aOp[0].p1 = iDb;
788         aOp[1].p1 = iDb;
789         aOp[2].p2 = iAddr+4;
790         aOp[4].p1 = iDb;
791         aOp[4].p3 = eAuto - 1;
792         sqlite3VdbeUsesBtree(v, iDb);
793       }
794     }
795     break;
796   }
797 #endif
798 
799   /*
800   **  PRAGMA [schema.]incremental_vacuum(N)
801   **
802   ** Do N steps of incremental vacuuming on a database.
803   */
804 #ifndef SQLITE_OMIT_AUTOVACUUM
805   case PragTyp_INCREMENTAL_VACUUM: {
806     int iLimit, addr;
807     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
808       iLimit = 0x7fffffff;
809     }
810     sqlite3BeginWriteOperation(pParse, 0, iDb);
811     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
812     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
813     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
814     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
815     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
816     sqlite3VdbeJumpHere(v, addr);
817     break;
818   }
819 #endif
820 
821 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
822   /*
823   **  PRAGMA [schema.]cache_size
824   **  PRAGMA [schema.]cache_size=N
825   **
826   ** The first form reports the current local setting for the
827   ** page cache size. The second form sets the local
828   ** page cache size value.  If N is positive then that is the
829   ** number of pages in the cache.  If N is negative, then the
830   ** number of pages is adjusted so that the cache uses -N kibibytes
831   ** of memory.
832   */
833   case PragTyp_CACHE_SIZE: {
834     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
835     if( !zRight ){
836       returnSingleInt(v, pDb->pSchema->cache_size);
837     }else{
838       int size = sqlite3Atoi(zRight);
839       pDb->pSchema->cache_size = size;
840       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
841     }
842     break;
843   }
844 
845   /*
846   **  PRAGMA [schema.]cache_spill
847   **  PRAGMA cache_spill=BOOLEAN
848   **  PRAGMA [schema.]cache_spill=N
849   **
850   ** The first form reports the current local setting for the
851   ** page cache spill size. The second form turns cache spill on
852   ** or off.  When turnning cache spill on, the size is set to the
853   ** current cache_size.  The third form sets a spill size that
854   ** may be different form the cache size.
855   ** If N is positive then that is the
856   ** number of pages in the cache.  If N is negative, then the
857   ** number of pages is adjusted so that the cache uses -N kibibytes
858   ** of memory.
859   **
860   ** If the number of cache_spill pages is less then the number of
861   ** cache_size pages, no spilling occurs until the page count exceeds
862   ** the number of cache_size pages.
863   **
864   ** The cache_spill=BOOLEAN setting applies to all attached schemas,
865   ** not just the schema specified.
866   */
867   case PragTyp_CACHE_SPILL: {
868     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
869     if( !zRight ){
870       returnSingleInt(v,
871          (db->flags & SQLITE_CacheSpill)==0 ? 0 :
872             sqlite3BtreeSetSpillSize(pDb->pBt,0));
873     }else{
874       int size = 1;
875       if( sqlite3GetInt32(zRight, &size) ){
876         sqlite3BtreeSetSpillSize(pDb->pBt, size);
877       }
878       if( sqlite3GetBoolean(zRight, size!=0) ){
879         db->flags |= SQLITE_CacheSpill;
880       }else{
881         db->flags &= ~(u64)SQLITE_CacheSpill;
882       }
883       setAllPagerFlags(db);
884     }
885     break;
886   }
887 
888   /*
889   **  PRAGMA [schema.]mmap_size(N)
890   **
891   ** Used to set mapping size limit. The mapping size limit is
892   ** used to limit the aggregate size of all memory mapped regions of the
893   ** database file. If this parameter is set to zero, then memory mapping
894   ** is not used at all.  If N is negative, then the default memory map
895   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
896   ** The parameter N is measured in bytes.
897   **
898   ** This value is advisory.  The underlying VFS is free to memory map
899   ** as little or as much as it wants.  Except, if N is set to 0 then the
900   ** upper layers will never invoke the xFetch interfaces to the VFS.
901   */
902   case PragTyp_MMAP_SIZE: {
903     sqlite3_int64 sz;
904 #if SQLITE_MAX_MMAP_SIZE>0
905     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
906     if( zRight ){
907       int ii;
908       sqlite3DecOrHexToI64(zRight, &sz);
909       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
910       if( pId2->n==0 ) db->szMmap = sz;
911       for(ii=db->nDb-1; ii>=0; ii--){
912         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
913           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
914         }
915       }
916     }
917     sz = -1;
918     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
919 #else
920     sz = 0;
921     rc = SQLITE_OK;
922 #endif
923     if( rc==SQLITE_OK ){
924       returnSingleInt(v, sz);
925     }else if( rc!=SQLITE_NOTFOUND ){
926       pParse->nErr++;
927       pParse->rc = rc;
928     }
929     break;
930   }
931 
932   /*
933   **   PRAGMA temp_store
934   **   PRAGMA temp_store = "default"|"memory"|"file"
935   **
936   ** Return or set the local value of the temp_store flag.  Changing
937   ** the local value does not make changes to the disk file and the default
938   ** value will be restored the next time the database is opened.
939   **
940   ** Note that it is possible for the library compile-time options to
941   ** override this setting
942   */
943   case PragTyp_TEMP_STORE: {
944     if( !zRight ){
945       returnSingleInt(v, db->temp_store);
946     }else{
947       changeTempStorage(pParse, zRight);
948     }
949     break;
950   }
951 
952   /*
953   **   PRAGMA temp_store_directory
954   **   PRAGMA temp_store_directory = ""|"directory_name"
955   **
956   ** Return or set the local value of the temp_store_directory flag.  Changing
957   ** the value sets a specific directory to be used for temporary files.
958   ** Setting to a null string reverts to the default temporary directory search.
959   ** If temporary directory is changed, then invalidateTempStorage.
960   **
961   */
962   case PragTyp_TEMP_STORE_DIRECTORY: {
963     if( !zRight ){
964       returnSingleText(v, sqlite3_temp_directory);
965     }else{
966 #ifndef SQLITE_OMIT_WSD
967       if( zRight[0] ){
968         int res;
969         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
970         if( rc!=SQLITE_OK || res==0 ){
971           sqlite3ErrorMsg(pParse, "not a writable directory");
972           goto pragma_out;
973         }
974       }
975       if( SQLITE_TEMP_STORE==0
976        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
977        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
978       ){
979         invalidateTempStorage(pParse);
980       }
981       sqlite3_free(sqlite3_temp_directory);
982       if( zRight[0] ){
983         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
984       }else{
985         sqlite3_temp_directory = 0;
986       }
987 #endif /* SQLITE_OMIT_WSD */
988     }
989     break;
990   }
991 
992 #if SQLITE_OS_WIN
993   /*
994   **   PRAGMA data_store_directory
995   **   PRAGMA data_store_directory = ""|"directory_name"
996   **
997   ** Return or set the local value of the data_store_directory flag.  Changing
998   ** the value sets a specific directory to be used for database files that
999   ** were specified with a relative pathname.  Setting to a null string reverts
1000   ** to the default database directory, which for database files specified with
1001   ** a relative path will probably be based on the current directory for the
1002   ** process.  Database file specified with an absolute path are not impacted
1003   ** by this setting, regardless of its value.
1004   **
1005   */
1006   case PragTyp_DATA_STORE_DIRECTORY: {
1007     if( !zRight ){
1008       returnSingleText(v, sqlite3_data_directory);
1009     }else{
1010 #ifndef SQLITE_OMIT_WSD
1011       if( zRight[0] ){
1012         int res;
1013         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1014         if( rc!=SQLITE_OK || res==0 ){
1015           sqlite3ErrorMsg(pParse, "not a writable directory");
1016           goto pragma_out;
1017         }
1018       }
1019       sqlite3_free(sqlite3_data_directory);
1020       if( zRight[0] ){
1021         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1022       }else{
1023         sqlite3_data_directory = 0;
1024       }
1025 #endif /* SQLITE_OMIT_WSD */
1026     }
1027     break;
1028   }
1029 #endif
1030 
1031 #if SQLITE_ENABLE_LOCKING_STYLE
1032   /*
1033   **   PRAGMA [schema.]lock_proxy_file
1034   **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1035   **
1036   ** Return or set the value of the lock_proxy_file flag.  Changing
1037   ** the value sets a specific file to be used for database access locks.
1038   **
1039   */
1040   case PragTyp_LOCK_PROXY_FILE: {
1041     if( !zRight ){
1042       Pager *pPager = sqlite3BtreePager(pDb->pBt);
1043       char *proxy_file_path = NULL;
1044       sqlite3_file *pFile = sqlite3PagerFile(pPager);
1045       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1046                            &proxy_file_path);
1047       returnSingleText(v, proxy_file_path);
1048     }else{
1049       Pager *pPager = sqlite3BtreePager(pDb->pBt);
1050       sqlite3_file *pFile = sqlite3PagerFile(pPager);
1051       int res;
1052       if( zRight[0] ){
1053         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1054                                      zRight);
1055       } else {
1056         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1057                                      NULL);
1058       }
1059       if( res!=SQLITE_OK ){
1060         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1061         goto pragma_out;
1062       }
1063     }
1064     break;
1065   }
1066 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1067 
1068   /*
1069   **   PRAGMA [schema.]synchronous
1070   **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1071   **
1072   ** Return or set the local value of the synchronous flag.  Changing
1073   ** the local value does not make changes to the disk file and the
1074   ** default value will be restored the next time the database is
1075   ** opened.
1076   */
1077   case PragTyp_SYNCHRONOUS: {
1078     if( !zRight ){
1079       returnSingleInt(v, pDb->safety_level-1);
1080     }else{
1081       if( !db->autoCommit ){
1082         sqlite3ErrorMsg(pParse,
1083             "Safety level may not be changed inside a transaction");
1084       }else if( iDb!=1 ){
1085         int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1086         if( iLevel==0 ) iLevel = 1;
1087         pDb->safety_level = iLevel;
1088         pDb->bSyncSet = 1;
1089         setAllPagerFlags(db);
1090       }
1091     }
1092     break;
1093   }
1094 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1095 
1096 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1097   case PragTyp_FLAG: {
1098     if( zRight==0 ){
1099       setPragmaResultColumnNames(v, pPragma);
1100       returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1101     }else{
1102       u64 mask = pPragma->iArg;    /* Mask of bits to set or clear. */
1103       if( db->autoCommit==0 ){
1104         /* Foreign key support may not be enabled or disabled while not
1105         ** in auto-commit mode.  */
1106         mask &= ~(SQLITE_ForeignKeys);
1107       }
1108 #if SQLITE_USER_AUTHENTICATION
1109       if( db->auth.authLevel==UAUTH_User ){
1110         /* Do not allow non-admin users to modify the schema arbitrarily */
1111         mask &= ~(SQLITE_WriteSchema);
1112       }
1113 #endif
1114 
1115       if( sqlite3GetBoolean(zRight, 0) ){
1116         db->flags |= mask;
1117       }else{
1118         db->flags &= ~mask;
1119         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1120       }
1121 
1122       /* Many of the flag-pragmas modify the code generated by the SQL
1123       ** compiler (eg. count_changes). So add an opcode to expire all
1124       ** compiled SQL statements after modifying a pragma value.
1125       */
1126       sqlite3VdbeAddOp0(v, OP_Expire);
1127       setAllPagerFlags(db);
1128     }
1129     break;
1130   }
1131 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1132 
1133 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1134   /*
1135   **   PRAGMA table_info(<table>)
1136   **
1137   ** Return a single row for each column of the named table. The columns of
1138   ** the returned data set are:
1139   **
1140   ** cid:        Column id (numbered from left to right, starting at 0)
1141   ** name:       Column name
1142   ** type:       Column declaration type.
1143   ** notnull:    True if 'NOT NULL' is part of column declaration
1144   ** dflt_value: The default value for the column, if any.
1145   ** pk:         Non-zero for PK fields.
1146   */
1147   case PragTyp_TABLE_INFO: if( zRight ){
1148     Table *pTab;
1149     sqlite3CodeVerifyNamedSchema(pParse, zDb);
1150     pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1151     if( pTab ){
1152       int i, k;
1153       int nHidden = 0;
1154       Column *pCol;
1155       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1156       pParse->nMem = 7;
1157       sqlite3ViewGetColumnNames(pParse, pTab);
1158       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1159         int isHidden = 0;
1160         if( pCol->colFlags & COLFLAG_NOINSERT ){
1161           if( pPragma->iArg==0 ){
1162             nHidden++;
1163             continue;
1164           }
1165           if( pCol->colFlags & COLFLAG_VIRTUAL ){
1166             isHidden = 2;  /* GENERATED ALWAYS AS ... VIRTUAL */
1167           }else if( pCol->colFlags & COLFLAG_STORED ){
1168             isHidden = 3;  /* GENERATED ALWAYS AS ... STORED */
1169           }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1170             isHidden = 1;  /* HIDDEN */
1171           }
1172         }
1173         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1174           k = 0;
1175         }else if( pPk==0 ){
1176           k = 1;
1177         }else{
1178           for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1179         }
1180         assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN || isHidden>=2 );
1181         sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1182                i-nHidden,
1183                pCol->zName,
1184                sqlite3ColumnType(pCol,""),
1185                pCol->notNull ? 1 : 0,
1186                pCol->pDflt && isHidden<2 ? pCol->pDflt->u.zToken : 0,
1187                k,
1188                isHidden);
1189       }
1190     }
1191   }
1192   break;
1193 
1194 #ifdef SQLITE_DEBUG
1195   case PragTyp_STATS: {
1196     Index *pIdx;
1197     HashElem *i;
1198     pParse->nMem = 5;
1199     sqlite3CodeVerifySchema(pParse, iDb);
1200     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1201       Table *pTab = sqliteHashData(i);
1202       sqlite3VdbeMultiLoad(v, 1, "ssiii",
1203            pTab->zName,
1204            0,
1205            pTab->szTabRow,
1206            pTab->nRowLogEst,
1207            pTab->tabFlags);
1208       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1209         sqlite3VdbeMultiLoad(v, 2, "siiiX",
1210            pIdx->zName,
1211            pIdx->szIdxRow,
1212            pIdx->aiRowLogEst[0],
1213            pIdx->hasStat1);
1214         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1215       }
1216     }
1217   }
1218   break;
1219 #endif
1220 
1221   case PragTyp_INDEX_INFO: if( zRight ){
1222     Index *pIdx;
1223     Table *pTab;
1224     pIdx = sqlite3FindIndex(db, zRight, zDb);
1225     if( pIdx==0 ){
1226       /* If there is no index named zRight, check to see if there is a
1227       ** WITHOUT ROWID table named zRight, and if there is, show the
1228       ** structure of the PRIMARY KEY index for that table. */
1229       pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1230       if( pTab && !HasRowid(pTab) ){
1231         pIdx = sqlite3PrimaryKeyIndex(pTab);
1232       }
1233     }
1234     if( pIdx ){
1235       int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1236       int i;
1237       int mx;
1238       if( pPragma->iArg ){
1239         /* PRAGMA index_xinfo (newer version with more rows and columns) */
1240         mx = pIdx->nColumn;
1241         pParse->nMem = 6;
1242       }else{
1243         /* PRAGMA index_info (legacy version) */
1244         mx = pIdx->nKeyCol;
1245         pParse->nMem = 3;
1246       }
1247       pTab = pIdx->pTable;
1248       sqlite3CodeVerifySchema(pParse, iIdxDb);
1249       assert( pParse->nMem<=pPragma->nPragCName );
1250       for(i=0; i<mx; i++){
1251         i16 cnum = pIdx->aiColumn[i];
1252         sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1253                              cnum<0 ? 0 : pTab->aCol[cnum].zName);
1254         if( pPragma->iArg ){
1255           sqlite3VdbeMultiLoad(v, 4, "isiX",
1256             pIdx->aSortOrder[i],
1257             pIdx->azColl[i],
1258             i<pIdx->nKeyCol);
1259         }
1260         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1261       }
1262     }
1263   }
1264   break;
1265 
1266   case PragTyp_INDEX_LIST: if( zRight ){
1267     Index *pIdx;
1268     Table *pTab;
1269     int i;
1270     pTab = sqlite3FindTable(db, zRight, zDb);
1271     if( pTab ){
1272       int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1273       pParse->nMem = 5;
1274       sqlite3CodeVerifySchema(pParse, iTabDb);
1275       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1276         const char *azOrigin[] = { "c", "u", "pk" };
1277         sqlite3VdbeMultiLoad(v, 1, "isisi",
1278            i,
1279            pIdx->zName,
1280            IsUniqueIndex(pIdx),
1281            azOrigin[pIdx->idxType],
1282            pIdx->pPartIdxWhere!=0);
1283       }
1284     }
1285   }
1286   break;
1287 
1288   case PragTyp_DATABASE_LIST: {
1289     int i;
1290     pParse->nMem = 3;
1291     for(i=0; i<db->nDb; i++){
1292       if( db->aDb[i].pBt==0 ) continue;
1293       assert( db->aDb[i].zDbSName!=0 );
1294       sqlite3VdbeMultiLoad(v, 1, "iss",
1295          i,
1296          db->aDb[i].zDbSName,
1297          sqlite3BtreeGetFilename(db->aDb[i].pBt));
1298     }
1299   }
1300   break;
1301 
1302   case PragTyp_COLLATION_LIST: {
1303     int i = 0;
1304     HashElem *p;
1305     pParse->nMem = 2;
1306     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1307       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1308       sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1309     }
1310   }
1311   break;
1312 
1313 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1314   case PragTyp_FUNCTION_LIST: {
1315     int i;
1316     HashElem *j;
1317     FuncDef *p;
1318     int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1319     pParse->nMem = 6;
1320     for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1321       for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1322         pragmaFunclistLine(v, p, 1, showInternFunc);
1323       }
1324     }
1325     for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1326       p = (FuncDef*)sqliteHashData(j);
1327       pragmaFunclistLine(v, p, 0, showInternFunc);
1328     }
1329   }
1330   break;
1331 
1332 #ifndef SQLITE_OMIT_VIRTUALTABLE
1333   case PragTyp_MODULE_LIST: {
1334     HashElem *j;
1335     pParse->nMem = 1;
1336     for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1337       Module *pMod = (Module*)sqliteHashData(j);
1338       sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1339     }
1340   }
1341   break;
1342 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1343 
1344   case PragTyp_PRAGMA_LIST: {
1345     int i;
1346     for(i=0; i<ArraySize(aPragmaName); i++){
1347       sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1348     }
1349   }
1350   break;
1351 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1352 
1353 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1354 
1355 #ifndef SQLITE_OMIT_FOREIGN_KEY
1356   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1357     FKey *pFK;
1358     Table *pTab;
1359     pTab = sqlite3FindTable(db, zRight, zDb);
1360     if( pTab ){
1361       pFK = pTab->pFKey;
1362       if( pFK ){
1363         int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1364         int i = 0;
1365         pParse->nMem = 8;
1366         sqlite3CodeVerifySchema(pParse, iTabDb);
1367         while(pFK){
1368           int j;
1369           for(j=0; j<pFK->nCol; j++){
1370             sqlite3VdbeMultiLoad(v, 1, "iissssss",
1371                    i,
1372                    j,
1373                    pFK->zTo,
1374                    pTab->aCol[pFK->aCol[j].iFrom].zName,
1375                    pFK->aCol[j].zCol,
1376                    actionName(pFK->aAction[1]),  /* ON UPDATE */
1377                    actionName(pFK->aAction[0]),  /* ON DELETE */
1378                    "NONE");
1379           }
1380           ++i;
1381           pFK = pFK->pNextFrom;
1382         }
1383       }
1384     }
1385   }
1386   break;
1387 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1388 
1389 #ifndef SQLITE_OMIT_FOREIGN_KEY
1390 #ifndef SQLITE_OMIT_TRIGGER
1391   case PragTyp_FOREIGN_KEY_CHECK: {
1392     FKey *pFK;             /* A foreign key constraint */
1393     Table *pTab;           /* Child table contain "REFERENCES" keyword */
1394     Table *pParent;        /* Parent table that child points to */
1395     Index *pIdx;           /* Index in the parent table */
1396     int i;                 /* Loop counter:  Foreign key number for pTab */
1397     int j;                 /* Loop counter:  Field of the foreign key */
1398     HashElem *k;           /* Loop counter:  Next table in schema */
1399     int x;                 /* result variable */
1400     int regResult;         /* 3 registers to hold a result row */
1401     int regKey;            /* Register to hold key for checking the FK */
1402     int regRow;            /* Registers to hold a row from pTab */
1403     int addrTop;           /* Top of a loop checking foreign keys */
1404     int addrOk;            /* Jump here if the key is OK */
1405     int *aiCols;           /* child to parent column mapping */
1406 
1407     regResult = pParse->nMem+1;
1408     pParse->nMem += 4;
1409     regKey = ++pParse->nMem;
1410     regRow = ++pParse->nMem;
1411     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1412     while( k ){
1413       if( zRight ){
1414         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1415         k = 0;
1416       }else{
1417         pTab = (Table*)sqliteHashData(k);
1418         k = sqliteHashNext(k);
1419       }
1420       if( pTab==0 || pTab->pFKey==0 ) continue;
1421       iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1422       zDb = db->aDb[iDb].zDbSName;
1423       sqlite3CodeVerifySchema(pParse, iDb);
1424       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1425       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1426       sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1427       sqlite3VdbeLoadString(v, regResult, pTab->zName);
1428       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1429         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1430         if( pParent==0 ) continue;
1431         pIdx = 0;
1432         sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1433         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1434         if( x==0 ){
1435           if( pIdx==0 ){
1436             sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1437           }else{
1438             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1439             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1440           }
1441         }else{
1442           k = 0;
1443           break;
1444         }
1445       }
1446       assert( pParse->nErr>0 || pFK==0 );
1447       if( pFK ) break;
1448       if( pParse->nTab<i ) pParse->nTab = i;
1449       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1450       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1451         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1452         pIdx = 0;
1453         aiCols = 0;
1454         if( pParent ){
1455           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1456           assert( x==0 || db->mallocFailed );
1457         }
1458         addrOk = sqlite3VdbeMakeLabel(pParse);
1459 
1460         /* Generate code to read the child key values into registers
1461         ** regRow..regRow+n. If any of the child key values are NULL, this
1462         ** row cannot cause an FK violation. Jump directly to addrOk in
1463         ** this case. */
1464         for(j=0; j<pFK->nCol; j++){
1465           int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1466           sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1467           sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1468         }
1469 
1470         /* Generate code to query the parent index for a matching parent
1471         ** key. If a match is found, jump to addrOk. */
1472         if( pIdx ){
1473           sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1474               sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1475           sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1476           VdbeCoverage(v);
1477         }else if( pParent ){
1478           int jmp = sqlite3VdbeCurrentAddr(v)+2;
1479           sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1480           sqlite3VdbeGoto(v, addrOk);
1481           assert( pFK->nCol==1 || db->mallocFailed );
1482         }
1483 
1484         /* Generate code to report an FK violation to the caller. */
1485         if( HasRowid(pTab) ){
1486           sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1487         }else{
1488           sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1489         }
1490         sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1491         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1492         sqlite3VdbeResolveLabel(v, addrOk);
1493         sqlite3DbFree(db, aiCols);
1494       }
1495       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1496       sqlite3VdbeJumpHere(v, addrTop);
1497     }
1498   }
1499   break;
1500 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1501 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1502 
1503 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1504   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
1505   ** used will be case sensitive or not depending on the RHS.
1506   */
1507   case PragTyp_CASE_SENSITIVE_LIKE: {
1508     if( zRight ){
1509       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1510     }
1511   }
1512   break;
1513 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1514 
1515 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1516 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1517 #endif
1518 
1519 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1520   /*    PRAGMA integrity_check
1521   **    PRAGMA integrity_check(N)
1522   **    PRAGMA quick_check
1523   **    PRAGMA quick_check(N)
1524   **
1525   ** Verify the integrity of the database.
1526   **
1527   ** The "quick_check" is reduced version of
1528   ** integrity_check designed to detect most database corruption
1529   ** without the overhead of cross-checking indexes.  Quick_check
1530   ** is linear time wherease integrity_check is O(NlogN).
1531   **
1532   ** The maximum nubmer of errors is 100 by default.  A different default
1533   ** can be specified using a numeric parameter N.
1534   **
1535   ** Or, the parameter N can be the name of a table.  In that case, only
1536   ** the one table named is verified.  The freelist is only verified if
1537   ** the named table is "sqlite_schema" (or one of its aliases).
1538   **
1539   ** All schemas are checked by default.  To check just a single
1540   ** schema, use the form:
1541   **
1542   **      PRAGMA schema.integrity_check;
1543   */
1544   case PragTyp_INTEGRITY_CHECK: {
1545     int i, j, addr, mxErr;
1546     Table *pObjTab = 0;     /* Check only this one table, if not NULL */
1547 
1548     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1549 
1550     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1551     ** then iDb is set to the index of the database identified by <db>.
1552     ** In this case, the integrity of database iDb only is verified by
1553     ** the VDBE created below.
1554     **
1555     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1556     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1557     ** to -1 here, to indicate that the VDBE should verify the integrity
1558     ** of all attached databases.  */
1559     assert( iDb>=0 );
1560     assert( iDb==0 || pId2->z );
1561     if( pId2->z==0 ) iDb = -1;
1562 
1563     /* Initialize the VDBE program */
1564     pParse->nMem = 6;
1565 
1566     /* Set the maximum error count */
1567     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1568     if( zRight ){
1569       if( sqlite3GetInt32(zRight, &mxErr) ){
1570         if( mxErr<=0 ){
1571           mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1572         }
1573       }else{
1574         pObjTab = sqlite3LocateTable(pParse, 0, zRight,
1575                       iDb>=0 ? db->aDb[iDb].zDbSName : 0);
1576       }
1577     }
1578     sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1579 
1580     /* Do an integrity check on each database file */
1581     for(i=0; i<db->nDb; i++){
1582       HashElem *x;     /* For looping over tables in the schema */
1583       Hash *pTbls;     /* Set of all tables in the schema */
1584       int *aRoot;      /* Array of root page numbers of all btrees */
1585       int cnt = 0;     /* Number of entries in aRoot[] */
1586       int mxIdx = 0;   /* Maximum number of indexes for any table */
1587 
1588       if( OMIT_TEMPDB && i==1 ) continue;
1589       if( iDb>=0 && i!=iDb ) continue;
1590 
1591       sqlite3CodeVerifySchema(pParse, i);
1592 
1593       /* Do an integrity check of the B-Tree
1594       **
1595       ** Begin by finding the root pages numbers
1596       ** for all tables and indices in the database.
1597       */
1598       assert( sqlite3SchemaMutexHeld(db, i, 0) );
1599       pTbls = &db->aDb[i].pSchema->tblHash;
1600       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1601         Table *pTab = sqliteHashData(x);  /* Current table */
1602         Index *pIdx;                      /* An index on pTab */
1603         int nIdx;                         /* Number of indexes on pTab */
1604         if( pObjTab && pObjTab!=pTab ) continue;
1605         if( HasRowid(pTab) ) cnt++;
1606         for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1607         if( nIdx>mxIdx ) mxIdx = nIdx;
1608       }
1609       if( cnt==0 ) continue;
1610       if( pObjTab ) cnt++;
1611       aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1612       if( aRoot==0 ) break;
1613       cnt = 0;
1614       if( pObjTab ) aRoot[++cnt] = 0;
1615       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1616         Table *pTab = sqliteHashData(x);
1617         Index *pIdx;
1618         if( pObjTab && pObjTab!=pTab ) continue;
1619         if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1620         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1621           aRoot[++cnt] = pIdx->tnum;
1622         }
1623       }
1624       aRoot[0] = cnt;
1625 
1626       /* Make sure sufficient number of registers have been allocated */
1627       pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1628       sqlite3ClearTempRegCache(pParse);
1629 
1630       /* Do the b-tree integrity checks */
1631       sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1632       sqlite3VdbeChangeP5(v, (u8)i);
1633       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1634       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1635          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1636          P4_DYNAMIC);
1637       sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1638       integrityCheckResultRow(v);
1639       sqlite3VdbeJumpHere(v, addr);
1640 
1641       /* Make sure all the indices are constructed correctly.
1642       */
1643       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1644         Table *pTab = sqliteHashData(x);
1645         Index *pIdx, *pPk;
1646         Index *pPrior = 0;
1647         int loopTop;
1648         int iDataCur, iIdxCur;
1649         int r1 = -1;
1650 
1651         if( pTab->tnum<1 ) continue;  /* Skip VIEWs or VIRTUAL TABLEs */
1652         if( pObjTab && pObjTab!=pTab ) continue;
1653         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1654         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1655                                    1, 0, &iDataCur, &iIdxCur);
1656         /* reg[7] counts the number of entries in the table.
1657         ** reg[8+i] counts the number of entries in the i-th index
1658         */
1659         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1660         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1661           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1662         }
1663         assert( pParse->nMem>=8+j );
1664         assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1665         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1666         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1667         if( !isQuick ){
1668           /* Sanity check on record header decoding */
1669           sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
1670           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1671         }
1672         /* Verify that all NOT NULL columns really are NOT NULL */
1673         for(j=0; j<pTab->nCol; j++){
1674           char *zErr;
1675           int jmp2;
1676           if( j==pTab->iPKey ) continue;
1677           if( pTab->aCol[j].notNull==0 ) continue;
1678           sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1679           if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
1680             sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1681           }
1682           jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1683           zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1684                               pTab->aCol[j].zName);
1685           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1686           integrityCheckResultRow(v);
1687           sqlite3VdbeJumpHere(v, jmp2);
1688         }
1689         /* Verify CHECK constraints */
1690         if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1691           ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1692           if( db->mallocFailed==0 ){
1693             int addrCkFault = sqlite3VdbeMakeLabel(pParse);
1694             int addrCkOk = sqlite3VdbeMakeLabel(pParse);
1695             char *zErr;
1696             int k;
1697             pParse->iSelfTab = iDataCur + 1;
1698             for(k=pCheck->nExpr-1; k>0; k--){
1699               sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1700             }
1701             sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1702                 SQLITE_JUMPIFNULL);
1703             sqlite3VdbeResolveLabel(v, addrCkFault);
1704             pParse->iSelfTab = 0;
1705             zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1706                 pTab->zName);
1707             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1708             integrityCheckResultRow(v);
1709             sqlite3VdbeResolveLabel(v, addrCkOk);
1710           }
1711           sqlite3ExprListDelete(db, pCheck);
1712         }
1713         if( !isQuick ){ /* Omit the remaining tests for quick_check */
1714           /* Validate index entries for the current row */
1715           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1716             int jmp2, jmp3, jmp4, jmp5;
1717             int ckUniq = sqlite3VdbeMakeLabel(pParse);
1718             if( pPk==pIdx ) continue;
1719             r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1720                                          pPrior, r1);
1721             pPrior = pIdx;
1722             sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1723             /* Verify that an index entry exists for the current table row */
1724             jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1725                                         pIdx->nColumn); VdbeCoverage(v);
1726             sqlite3VdbeLoadString(v, 3, "row ");
1727             sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1728             sqlite3VdbeLoadString(v, 4, " missing from index ");
1729             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1730             jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1731             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1732             jmp4 = integrityCheckResultRow(v);
1733             sqlite3VdbeJumpHere(v, jmp2);
1734             /* For UNIQUE indexes, verify that only one entry exists with the
1735             ** current key.  The entry is unique if (1) any column is NULL
1736             ** or (2) the next entry has a different key */
1737             if( IsUniqueIndex(pIdx) ){
1738               int uniqOk = sqlite3VdbeMakeLabel(pParse);
1739               int jmp6;
1740               int kk;
1741               for(kk=0; kk<pIdx->nKeyCol; kk++){
1742                 int iCol = pIdx->aiColumn[kk];
1743                 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1744                 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1745                 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1746                 VdbeCoverage(v);
1747               }
1748               jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1749               sqlite3VdbeGoto(v, uniqOk);
1750               sqlite3VdbeJumpHere(v, jmp6);
1751               sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1752                                    pIdx->nKeyCol); VdbeCoverage(v);
1753               sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1754               sqlite3VdbeGoto(v, jmp5);
1755               sqlite3VdbeResolveLabel(v, uniqOk);
1756             }
1757             sqlite3VdbeJumpHere(v, jmp4);
1758             sqlite3ResolvePartIdxLabel(pParse, jmp3);
1759           }
1760         }
1761         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1762         sqlite3VdbeJumpHere(v, loopTop-1);
1763         if( !isQuick ){
1764           sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1765           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1766             if( pPk==pIdx ) continue;
1767             sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1768             addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1769             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1770             sqlite3VdbeLoadString(v, 4, pIdx->zName);
1771             sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1772             integrityCheckResultRow(v);
1773             sqlite3VdbeJumpHere(v, addr);
1774           }
1775         }
1776       }
1777     }
1778     {
1779       static const int iLn = VDBE_OFFSET_LINENO(2);
1780       static const VdbeOpList endCode[] = {
1781         { OP_AddImm,      1, 0,        0},    /* 0 */
1782         { OP_IfNotZero,   1, 4,        0},    /* 1 */
1783         { OP_String8,     0, 3,        0},    /* 2 */
1784         { OP_ResultRow,   3, 1,        0},    /* 3 */
1785         { OP_Halt,        0, 0,        0},    /* 4 */
1786         { OP_String8,     0, 3,        0},    /* 5 */
1787         { OP_Goto,        0, 3,        0},    /* 6 */
1788       };
1789       VdbeOp *aOp;
1790 
1791       aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1792       if( aOp ){
1793         aOp[0].p2 = 1-mxErr;
1794         aOp[2].p4type = P4_STATIC;
1795         aOp[2].p4.z = "ok";
1796         aOp[5].p4type = P4_STATIC;
1797         aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1798       }
1799       sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1800     }
1801   }
1802   break;
1803 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1804 
1805 #ifndef SQLITE_OMIT_UTF16
1806   /*
1807   **   PRAGMA encoding
1808   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1809   **
1810   ** In its first form, this pragma returns the encoding of the main
1811   ** database. If the database is not initialized, it is initialized now.
1812   **
1813   ** The second form of this pragma is a no-op if the main database file
1814   ** has not already been initialized. In this case it sets the default
1815   ** encoding that will be used for the main database file if a new file
1816   ** is created. If an existing main database file is opened, then the
1817   ** default text encoding for the existing database is used.
1818   **
1819   ** In all cases new databases created using the ATTACH command are
1820   ** created to use the same default text encoding as the main database. If
1821   ** the main database has not been initialized and/or created when ATTACH
1822   ** is executed, this is done before the ATTACH operation.
1823   **
1824   ** In the second form this pragma sets the text encoding to be used in
1825   ** new database files created using this database handle. It is only
1826   ** useful if invoked immediately after the main database i
1827   */
1828   case PragTyp_ENCODING: {
1829     static const struct EncName {
1830       char *zName;
1831       u8 enc;
1832     } encnames[] = {
1833       { "UTF8",     SQLITE_UTF8        },
1834       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
1835       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
1836       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
1837       { "UTF16le",  SQLITE_UTF16LE     },
1838       { "UTF16be",  SQLITE_UTF16BE     },
1839       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
1840       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
1841       { 0, 0 }
1842     };
1843     const struct EncName *pEnc;
1844     if( !zRight ){    /* "PRAGMA encoding" */
1845       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1846       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1847       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1848       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1849       returnSingleText(v, encnames[ENC(pParse->db)].zName);
1850     }else{                        /* "PRAGMA encoding = XXX" */
1851       /* Only change the value of sqlite.enc if the database handle is not
1852       ** initialized. If the main database exists, the new sqlite.enc value
1853       ** will be overwritten when the schema is next loaded. If it does not
1854       ** already exists, it will be created to use the new encoding value.
1855       */
1856       if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
1857         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1858           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1859             u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1860             SCHEMA_ENC(db) = enc;
1861             sqlite3SetTextEncoding(db, enc);
1862             break;
1863           }
1864         }
1865         if( !pEnc->zName ){
1866           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1867         }
1868       }
1869     }
1870   }
1871   break;
1872 #endif /* SQLITE_OMIT_UTF16 */
1873 
1874 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1875   /*
1876   **   PRAGMA [schema.]schema_version
1877   **   PRAGMA [schema.]schema_version = <integer>
1878   **
1879   **   PRAGMA [schema.]user_version
1880   **   PRAGMA [schema.]user_version = <integer>
1881   **
1882   **   PRAGMA [schema.]freelist_count
1883   **
1884   **   PRAGMA [schema.]data_version
1885   **
1886   **   PRAGMA [schema.]application_id
1887   **   PRAGMA [schema.]application_id = <integer>
1888   **
1889   ** The pragma's schema_version and user_version are used to set or get
1890   ** the value of the schema-version and user-version, respectively. Both
1891   ** the schema-version and the user-version are 32-bit signed integers
1892   ** stored in the database header.
1893   **
1894   ** The schema-cookie is usually only manipulated internally by SQLite. It
1895   ** is incremented by SQLite whenever the database schema is modified (by
1896   ** creating or dropping a table or index). The schema version is used by
1897   ** SQLite each time a query is executed to ensure that the internal cache
1898   ** of the schema used when compiling the SQL query matches the schema of
1899   ** the database against which the compiled query is actually executed.
1900   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1901   ** the schema-version is potentially dangerous and may lead to program
1902   ** crashes or database corruption. Use with caution!
1903   **
1904   ** The user-version is not used internally by SQLite. It may be used by
1905   ** applications for any purpose.
1906   */
1907   case PragTyp_HEADER_VALUE: {
1908     int iCookie = pPragma->iArg;  /* Which cookie to read or write */
1909     sqlite3VdbeUsesBtree(v, iDb);
1910     if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1911       /* Write the specified cookie value */
1912       static const VdbeOpList setCookie[] = {
1913         { OP_Transaction,    0,  1,  0},    /* 0 */
1914         { OP_SetCookie,      0,  0,  0},    /* 1 */
1915       };
1916       VdbeOp *aOp;
1917       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1918       aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1919       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1920       aOp[0].p1 = iDb;
1921       aOp[1].p1 = iDb;
1922       aOp[1].p2 = iCookie;
1923       aOp[1].p3 = sqlite3Atoi(zRight);
1924       aOp[1].p5 = 1;
1925     }else{
1926       /* Read the specified cookie value */
1927       static const VdbeOpList readCookie[] = {
1928         { OP_Transaction,     0,  0,  0},    /* 0 */
1929         { OP_ReadCookie,      0,  1,  0},    /* 1 */
1930         { OP_ResultRow,       1,  1,  0}
1931       };
1932       VdbeOp *aOp;
1933       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1934       aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1935       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1936       aOp[0].p1 = iDb;
1937       aOp[1].p1 = iDb;
1938       aOp[1].p3 = iCookie;
1939       sqlite3VdbeReusable(v);
1940     }
1941   }
1942   break;
1943 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1944 
1945 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1946   /*
1947   **   PRAGMA compile_options
1948   **
1949   ** Return the names of all compile-time options used in this build,
1950   ** one option per row.
1951   */
1952   case PragTyp_COMPILE_OPTIONS: {
1953     int i = 0;
1954     const char *zOpt;
1955     pParse->nMem = 1;
1956     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1957       sqlite3VdbeLoadString(v, 1, zOpt);
1958       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1959     }
1960     sqlite3VdbeReusable(v);
1961   }
1962   break;
1963 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1964 
1965 #ifndef SQLITE_OMIT_WAL
1966   /*
1967   **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1968   **
1969   ** Checkpoint the database.
1970   */
1971   case PragTyp_WAL_CHECKPOINT: {
1972     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1973     int eMode = SQLITE_CHECKPOINT_PASSIVE;
1974     if( zRight ){
1975       if( sqlite3StrICmp(zRight, "full")==0 ){
1976         eMode = SQLITE_CHECKPOINT_FULL;
1977       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1978         eMode = SQLITE_CHECKPOINT_RESTART;
1979       }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1980         eMode = SQLITE_CHECKPOINT_TRUNCATE;
1981       }
1982     }
1983     pParse->nMem = 3;
1984     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1985     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1986   }
1987   break;
1988 
1989   /*
1990   **   PRAGMA wal_autocheckpoint
1991   **   PRAGMA wal_autocheckpoint = N
1992   **
1993   ** Configure a database connection to automatically checkpoint a database
1994   ** after accumulating N frames in the log. Or query for the current value
1995   ** of N.
1996   */
1997   case PragTyp_WAL_AUTOCHECKPOINT: {
1998     if( zRight ){
1999       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
2000     }
2001     returnSingleInt(v,
2002        db->xWalCallback==sqlite3WalDefaultHook ?
2003            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
2004   }
2005   break;
2006 #endif
2007 
2008   /*
2009   **  PRAGMA shrink_memory
2010   **
2011   ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
2012   ** connection on which it is invoked to free up as much memory as it
2013   ** can, by calling sqlite3_db_release_memory().
2014   */
2015   case PragTyp_SHRINK_MEMORY: {
2016     sqlite3_db_release_memory(db);
2017     break;
2018   }
2019 
2020   /*
2021   **  PRAGMA optimize
2022   **  PRAGMA optimize(MASK)
2023   **  PRAGMA schema.optimize
2024   **  PRAGMA schema.optimize(MASK)
2025   **
2026   ** Attempt to optimize the database.  All schemas are optimized in the first
2027   ** two forms, and only the specified schema is optimized in the latter two.
2028   **
2029   ** The details of optimizations performed by this pragma are expected
2030   ** to change and improve over time.  Applications should anticipate that
2031   ** this pragma will perform new optimizations in future releases.
2032   **
2033   ** The optional argument is a bitmask of optimizations to perform:
2034   **
2035   **    0x0001    Debugging mode.  Do not actually perform any optimizations
2036   **              but instead return one line of text for each optimization
2037   **              that would have been done.  Off by default.
2038   **
2039   **    0x0002    Run ANALYZE on tables that might benefit.  On by default.
2040   **              See below for additional information.
2041   **
2042   **    0x0004    (Not yet implemented) Record usage and performance
2043   **              information from the current session in the
2044   **              database file so that it will be available to "optimize"
2045   **              pragmas run by future database connections.
2046   **
2047   **    0x0008    (Not yet implemented) Create indexes that might have
2048   **              been helpful to recent queries
2049   **
2050   ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all
2051   ** of the optimizations listed above except Debug Mode, including new
2052   ** optimizations that have not yet been invented.  If new optimizations are
2053   ** ever added that should be off by default, those off-by-default
2054   ** optimizations will have bitmasks of 0x10000 or larger.
2055   **
2056   ** DETERMINATION OF WHEN TO RUN ANALYZE
2057   **
2058   ** In the current implementation, a table is analyzed if only if all of
2059   ** the following are true:
2060   **
2061   ** (1) MASK bit 0x02 is set.
2062   **
2063   ** (2) The query planner used sqlite_stat1-style statistics for one or
2064   **     more indexes of the table at some point during the lifetime of
2065   **     the current connection.
2066   **
2067   ** (3) One or more indexes of the table are currently unanalyzed OR
2068   **     the number of rows in the table has increased by 25 times or more
2069   **     since the last time ANALYZE was run.
2070   **
2071   ** The rules for when tables are analyzed are likely to change in
2072   ** future releases.
2073   */
2074   case PragTyp_OPTIMIZE: {
2075     int iDbLast;           /* Loop termination point for the schema loop */
2076     int iTabCur;           /* Cursor for a table whose size needs checking */
2077     HashElem *k;           /* Loop over tables of a schema */
2078     Schema *pSchema;       /* The current schema */
2079     Table *pTab;           /* A table in the schema */
2080     Index *pIdx;           /* An index of the table */
2081     LogEst szThreshold;    /* Size threshold above which reanalysis is needd */
2082     char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
2083     u32 opMask;            /* Mask of operations to perform */
2084 
2085     if( zRight ){
2086       opMask = (u32)sqlite3Atoi(zRight);
2087       if( (opMask & 0x02)==0 ) break;
2088     }else{
2089       opMask = 0xfffe;
2090     }
2091     iTabCur = pParse->nTab++;
2092     for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2093       if( iDb==1 ) continue;
2094       sqlite3CodeVerifySchema(pParse, iDb);
2095       pSchema = db->aDb[iDb].pSchema;
2096       for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2097         pTab = (Table*)sqliteHashData(k);
2098 
2099         /* If table pTab has not been used in a way that would benefit from
2100         ** having analysis statistics during the current session, then skip it.
2101         ** This also has the effect of skipping virtual tables and views */
2102         if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2103 
2104         /* Reanalyze if the table is 25 times larger than the last analysis */
2105         szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2106         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2107           if( !pIdx->hasStat1 ){
2108             szThreshold = 0; /* Always analyze if any index lacks statistics */
2109             break;
2110           }
2111         }
2112         if( szThreshold ){
2113           sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2114           sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2115                          sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2116           VdbeCoverage(v);
2117         }
2118         zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2119                                  db->aDb[iDb].zDbSName, pTab->zName);
2120         if( opMask & 0x01 ){
2121           int r1 = sqlite3GetTempReg(pParse);
2122           sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2123           sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2124         }else{
2125           sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2126         }
2127       }
2128     }
2129     sqlite3VdbeAddOp0(v, OP_Expire);
2130     break;
2131   }
2132 
2133   /*
2134   **   PRAGMA busy_timeout
2135   **   PRAGMA busy_timeout = N
2136   **
2137   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
2138   ** if one is set.  If no busy handler or a different busy handler is set
2139   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
2140   ** disables the timeout.
2141   */
2142   /*case PragTyp_BUSY_TIMEOUT*/ default: {
2143     assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2144     if( zRight ){
2145       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2146     }
2147     returnSingleInt(v, db->busyTimeout);
2148     break;
2149   }
2150 
2151   /*
2152   **   PRAGMA soft_heap_limit
2153   **   PRAGMA soft_heap_limit = N
2154   **
2155   ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2156   ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2157   ** specified and is a non-negative integer.
2158   ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2159   ** returns the same integer that would be returned by the
2160   ** sqlite3_soft_heap_limit64(-1) C-language function.
2161   */
2162   case PragTyp_SOFT_HEAP_LIMIT: {
2163     sqlite3_int64 N;
2164     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2165       sqlite3_soft_heap_limit64(N);
2166     }
2167     returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2168     break;
2169   }
2170 
2171   /*
2172   **   PRAGMA hard_heap_limit
2173   **   PRAGMA hard_heap_limit = N
2174   **
2175   ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2176   ** limit.  The hard heap limit can be activated or lowered by this
2177   ** pragma, but not raised or deactivated.  Only the
2178   ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2179   ** the hard heap limit.  This allows an application to set a heap limit
2180   ** constraint that cannot be relaxed by an untrusted SQL script.
2181   */
2182   case PragTyp_HARD_HEAP_LIMIT: {
2183     sqlite3_int64 N;
2184     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2185       sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2186       if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2187     }
2188     returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2189     break;
2190   }
2191 
2192   /*
2193   **   PRAGMA threads
2194   **   PRAGMA threads = N
2195   **
2196   ** Configure the maximum number of worker threads.  Return the new
2197   ** maximum, which might be less than requested.
2198   */
2199   case PragTyp_THREADS: {
2200     sqlite3_int64 N;
2201     if( zRight
2202      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2203      && N>=0
2204     ){
2205       sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2206     }
2207     returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2208     break;
2209   }
2210 
2211   /*
2212   **   PRAGMA analysis_limit
2213   **   PRAGMA analysis_limit = N
2214   **
2215   ** Configure the maximum number of rows that ANALYZE will examine
2216   ** in each index that it looks at.  Return the new limit.
2217   */
2218   case PragTyp_ANALYSIS_LIMIT: {
2219     sqlite3_int64 N;
2220     if( zRight
2221      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2222      && N>=0
2223     ){
2224       db->nAnalysisLimit = (int)(N&0x7fffffff);
2225     }
2226     returnSingleInt(v, db->nAnalysisLimit);
2227     break;
2228   }
2229 
2230 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2231   /*
2232   ** Report the current state of file logs for all databases
2233   */
2234   case PragTyp_LOCK_STATUS: {
2235     static const char *const azLockName[] = {
2236       "unlocked", "shared", "reserved", "pending", "exclusive"
2237     };
2238     int i;
2239     pParse->nMem = 2;
2240     for(i=0; i<db->nDb; i++){
2241       Btree *pBt;
2242       const char *zState = "unknown";
2243       int j;
2244       if( db->aDb[i].zDbSName==0 ) continue;
2245       pBt = db->aDb[i].pBt;
2246       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2247         zState = "closed";
2248       }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2249                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2250          zState = azLockName[j];
2251       }
2252       sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2253     }
2254     break;
2255   }
2256 #endif
2257 
2258 #if defined(SQLITE_ENABLE_CEROD)
2259   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2260     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2261       sqlite3_activate_cerod(&zRight[6]);
2262     }
2263   }
2264   break;
2265 #endif
2266 
2267   } /* End of the PRAGMA switch */
2268 
2269   /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2270   ** purpose is to execute assert() statements to verify that if the
2271   ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2272   ** to the PRAGMA, the implementation has not added any OP_ResultRow
2273   ** instructions to the VM.  */
2274   if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2275     sqlite3VdbeVerifyNoResultRow(v);
2276   }
2277 
2278 pragma_out:
2279   sqlite3DbFree(db, zLeft);
2280   sqlite3DbFree(db, zRight);
2281 }
2282 #ifndef SQLITE_OMIT_VIRTUALTABLE
2283 /*****************************************************************************
2284 ** Implementation of an eponymous virtual table that runs a pragma.
2285 **
2286 */
2287 typedef struct PragmaVtab PragmaVtab;
2288 typedef struct PragmaVtabCursor PragmaVtabCursor;
2289 struct PragmaVtab {
2290   sqlite3_vtab base;        /* Base class.  Must be first */
2291   sqlite3 *db;              /* The database connection to which it belongs */
2292   const PragmaName *pName;  /* Name of the pragma */
2293   u8 nHidden;               /* Number of hidden columns */
2294   u8 iHidden;               /* Index of the first hidden column */
2295 };
2296 struct PragmaVtabCursor {
2297   sqlite3_vtab_cursor base; /* Base class.  Must be first */
2298   sqlite3_stmt *pPragma;    /* The pragma statement to run */
2299   sqlite_int64 iRowid;      /* Current rowid */
2300   char *azArg[2];           /* Value of the argument and schema */
2301 };
2302 
2303 /*
2304 ** Pragma virtual table module xConnect method.
2305 */
2306 static int pragmaVtabConnect(
2307   sqlite3 *db,
2308   void *pAux,
2309   int argc, const char *const*argv,
2310   sqlite3_vtab **ppVtab,
2311   char **pzErr
2312 ){
2313   const PragmaName *pPragma = (const PragmaName*)pAux;
2314   PragmaVtab *pTab = 0;
2315   int rc;
2316   int i, j;
2317   char cSep = '(';
2318   StrAccum acc;
2319   char zBuf[200];
2320 
2321   UNUSED_PARAMETER(argc);
2322   UNUSED_PARAMETER(argv);
2323   sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2324   sqlite3_str_appendall(&acc, "CREATE TABLE x");
2325   for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2326     sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2327     cSep = ',';
2328   }
2329   if( i==0 ){
2330     sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2331     i++;
2332   }
2333   j = 0;
2334   if( pPragma->mPragFlg & PragFlg_Result1 ){
2335     sqlite3_str_appendall(&acc, ",arg HIDDEN");
2336     j++;
2337   }
2338   if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2339     sqlite3_str_appendall(&acc, ",schema HIDDEN");
2340     j++;
2341   }
2342   sqlite3_str_append(&acc, ")", 1);
2343   sqlite3StrAccumFinish(&acc);
2344   assert( strlen(zBuf) < sizeof(zBuf)-1 );
2345   rc = sqlite3_declare_vtab(db, zBuf);
2346   if( rc==SQLITE_OK ){
2347     pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2348     if( pTab==0 ){
2349       rc = SQLITE_NOMEM;
2350     }else{
2351       memset(pTab, 0, sizeof(PragmaVtab));
2352       pTab->pName = pPragma;
2353       pTab->db = db;
2354       pTab->iHidden = i;
2355       pTab->nHidden = j;
2356     }
2357   }else{
2358     *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2359   }
2360 
2361   *ppVtab = (sqlite3_vtab*)pTab;
2362   return rc;
2363 }
2364 
2365 /*
2366 ** Pragma virtual table module xDisconnect method.
2367 */
2368 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2369   PragmaVtab *pTab = (PragmaVtab*)pVtab;
2370   sqlite3_free(pTab);
2371   return SQLITE_OK;
2372 }
2373 
2374 /* Figure out the best index to use to search a pragma virtual table.
2375 **
2376 ** There are not really any index choices.  But we want to encourage the
2377 ** query planner to give == constraints on as many hidden parameters as
2378 ** possible, and especially on the first hidden parameter.  So return a
2379 ** high cost if hidden parameters are unconstrained.
2380 */
2381 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2382   PragmaVtab *pTab = (PragmaVtab*)tab;
2383   const struct sqlite3_index_constraint *pConstraint;
2384   int i, j;
2385   int seen[2];
2386 
2387   pIdxInfo->estimatedCost = (double)1;
2388   if( pTab->nHidden==0 ){ return SQLITE_OK; }
2389   pConstraint = pIdxInfo->aConstraint;
2390   seen[0] = 0;
2391   seen[1] = 0;
2392   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2393     if( pConstraint->usable==0 ) continue;
2394     if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2395     if( pConstraint->iColumn < pTab->iHidden ) continue;
2396     j = pConstraint->iColumn - pTab->iHidden;
2397     assert( j < 2 );
2398     seen[j] = i+1;
2399   }
2400   if( seen[0]==0 ){
2401     pIdxInfo->estimatedCost = (double)2147483647;
2402     pIdxInfo->estimatedRows = 2147483647;
2403     return SQLITE_OK;
2404   }
2405   j = seen[0]-1;
2406   pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2407   pIdxInfo->aConstraintUsage[j].omit = 1;
2408   if( seen[1]==0 ) return SQLITE_OK;
2409   pIdxInfo->estimatedCost = (double)20;
2410   pIdxInfo->estimatedRows = 20;
2411   j = seen[1]-1;
2412   pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2413   pIdxInfo->aConstraintUsage[j].omit = 1;
2414   return SQLITE_OK;
2415 }
2416 
2417 /* Create a new cursor for the pragma virtual table */
2418 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2419   PragmaVtabCursor *pCsr;
2420   pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2421   if( pCsr==0 ) return SQLITE_NOMEM;
2422   memset(pCsr, 0, sizeof(PragmaVtabCursor));
2423   pCsr->base.pVtab = pVtab;
2424   *ppCursor = &pCsr->base;
2425   return SQLITE_OK;
2426 }
2427 
2428 /* Clear all content from pragma virtual table cursor. */
2429 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2430   int i;
2431   sqlite3_finalize(pCsr->pPragma);
2432   pCsr->pPragma = 0;
2433   for(i=0; i<ArraySize(pCsr->azArg); i++){
2434     sqlite3_free(pCsr->azArg[i]);
2435     pCsr->azArg[i] = 0;
2436   }
2437 }
2438 
2439 /* Close a pragma virtual table cursor */
2440 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2441   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2442   pragmaVtabCursorClear(pCsr);
2443   sqlite3_free(pCsr);
2444   return SQLITE_OK;
2445 }
2446 
2447 /* Advance the pragma virtual table cursor to the next row */
2448 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2449   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2450   int rc = SQLITE_OK;
2451 
2452   /* Increment the xRowid value */
2453   pCsr->iRowid++;
2454   assert( pCsr->pPragma );
2455   if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2456     rc = sqlite3_finalize(pCsr->pPragma);
2457     pCsr->pPragma = 0;
2458     pragmaVtabCursorClear(pCsr);
2459   }
2460   return rc;
2461 }
2462 
2463 /*
2464 ** Pragma virtual table module xFilter method.
2465 */
2466 static int pragmaVtabFilter(
2467   sqlite3_vtab_cursor *pVtabCursor,
2468   int idxNum, const char *idxStr,
2469   int argc, sqlite3_value **argv
2470 ){
2471   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2472   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2473   int rc;
2474   int i, j;
2475   StrAccum acc;
2476   char *zSql;
2477 
2478   UNUSED_PARAMETER(idxNum);
2479   UNUSED_PARAMETER(idxStr);
2480   pragmaVtabCursorClear(pCsr);
2481   j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2482   for(i=0; i<argc; i++, j++){
2483     const char *zText = (const char*)sqlite3_value_text(argv[i]);
2484     assert( j<ArraySize(pCsr->azArg) );
2485     assert( pCsr->azArg[j]==0 );
2486     if( zText ){
2487       pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2488       if( pCsr->azArg[j]==0 ){
2489         return SQLITE_NOMEM;
2490       }
2491     }
2492   }
2493   sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2494   sqlite3_str_appendall(&acc, "PRAGMA ");
2495   if( pCsr->azArg[1] ){
2496     sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2497   }
2498   sqlite3_str_appendall(&acc, pTab->pName->zName);
2499   if( pCsr->azArg[0] ){
2500     sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2501   }
2502   zSql = sqlite3StrAccumFinish(&acc);
2503   if( zSql==0 ) return SQLITE_NOMEM;
2504   rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2505   sqlite3_free(zSql);
2506   if( rc!=SQLITE_OK ){
2507     pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2508     return rc;
2509   }
2510   return pragmaVtabNext(pVtabCursor);
2511 }
2512 
2513 /*
2514 ** Pragma virtual table module xEof method.
2515 */
2516 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2517   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2518   return (pCsr->pPragma==0);
2519 }
2520 
2521 /* The xColumn method simply returns the corresponding column from
2522 ** the PRAGMA.
2523 */
2524 static int pragmaVtabColumn(
2525   sqlite3_vtab_cursor *pVtabCursor,
2526   sqlite3_context *ctx,
2527   int i
2528 ){
2529   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2530   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2531   if( i<pTab->iHidden ){
2532     sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2533   }else{
2534     sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2535   }
2536   return SQLITE_OK;
2537 }
2538 
2539 /*
2540 ** Pragma virtual table module xRowid method.
2541 */
2542 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2543   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2544   *p = pCsr->iRowid;
2545   return SQLITE_OK;
2546 }
2547 
2548 /* The pragma virtual table object */
2549 static const sqlite3_module pragmaVtabModule = {
2550   0,                           /* iVersion */
2551   0,                           /* xCreate - create a table */
2552   pragmaVtabConnect,           /* xConnect - connect to an existing table */
2553   pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */
2554   pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */
2555   0,                           /* xDestroy - Drop a table */
2556   pragmaVtabOpen,              /* xOpen - open a cursor */
2557   pragmaVtabClose,             /* xClose - close a cursor */
2558   pragmaVtabFilter,            /* xFilter - configure scan constraints */
2559   pragmaVtabNext,              /* xNext - advance a cursor */
2560   pragmaVtabEof,               /* xEof */
2561   pragmaVtabColumn,            /* xColumn - read data */
2562   pragmaVtabRowid,             /* xRowid - read data */
2563   0,                           /* xUpdate - write data */
2564   0,                           /* xBegin - begin transaction */
2565   0,                           /* xSync - sync transaction */
2566   0,                           /* xCommit - commit transaction */
2567   0,                           /* xRollback - rollback transaction */
2568   0,                           /* xFindFunction - function overloading */
2569   0,                           /* xRename - rename the table */
2570   0,                           /* xSavepoint */
2571   0,                           /* xRelease */
2572   0,                           /* xRollbackTo */
2573   0                            /* xShadowName */
2574 };
2575 
2576 /*
2577 ** Check to see if zTabName is really the name of a pragma.  If it is,
2578 ** then register an eponymous virtual table for that pragma and return
2579 ** a pointer to the Module object for the new virtual table.
2580 */
2581 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2582   const PragmaName *pName;
2583   assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2584   pName = pragmaLocate(zName+7);
2585   if( pName==0 ) return 0;
2586   if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2587   assert( sqlite3HashFind(&db->aModule, zName)==0 );
2588   return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2589 }
2590 
2591 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2592 
2593 #endif /* SQLITE_OMIT_PRAGMA */
2594