1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ 135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 136 "from within a transaction"); 137 return SQLITE_ERROR; 138 } 139 sqlite3BtreeClose(db->aDb[1].pBt); 140 db->aDb[1].pBt = 0; 141 sqlite3ResetAllSchemasOfConnection(db); 142 } 143 return SQLITE_OK; 144 } 145 #endif /* SQLITE_PAGER_PRAGMAS */ 146 147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 148 /* 149 ** If the TEMP database is open, close it and mark the database schema 150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 151 ** or DEFAULT_TEMP_STORE pragmas. 152 */ 153 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 154 int ts = getTempStore(zStorageType); 155 sqlite3 *db = pParse->db; 156 if( db->temp_store==ts ) return SQLITE_OK; 157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 158 return SQLITE_ERROR; 159 } 160 db->temp_store = (u8)ts; 161 return SQLITE_OK; 162 } 163 #endif /* SQLITE_PAGER_PRAGMAS */ 164 165 /* 166 ** Set result column names for a pragma. 167 */ 168 static void setPragmaResultColumnNames( 169 Vdbe *v, /* The query under construction */ 170 const PragmaName *pPragma /* The pragma */ 171 ){ 172 u8 n = pPragma->nPragCName; 173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); 174 if( n==0 ){ 175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); 176 }else{ 177 int i, j; 178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ 179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); 180 } 181 } 182 } 183 184 /* 185 ** Generate code to return a single integer value. 186 */ 187 static void returnSingleInt(Vdbe *v, i64 value){ 188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 190 } 191 192 /* 193 ** Generate code to return a single text value. 194 */ 195 static void returnSingleText( 196 Vdbe *v, /* Prepared statement under construction */ 197 const char *zValue /* Value to be returned */ 198 ){ 199 if( zValue ){ 200 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 202 } 203 } 204 205 206 /* 207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 208 ** set these values for all pagers. 209 */ 210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 211 static void setAllPagerFlags(sqlite3 *db){ 212 if( db->autoCommit ){ 213 Db *pDb = db->aDb; 214 int n = db->nDb; 215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 219 == PAGER_FLAGS_MASK ); 220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 221 while( (n--) > 0 ){ 222 if( pDb->pBt ){ 223 sqlite3BtreeSetPagerFlags(pDb->pBt, 224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 225 } 226 pDb++; 227 } 228 } 229 } 230 #else 231 # define setAllPagerFlags(X) /* no-op */ 232 #endif 233 234 235 /* 236 ** Return a human-readable name for a constraint resolution action. 237 */ 238 #ifndef SQLITE_OMIT_FOREIGN_KEY 239 static const char *actionName(u8 action){ 240 const char *zName; 241 switch( action ){ 242 case OE_SetNull: zName = "SET NULL"; break; 243 case OE_SetDflt: zName = "SET DEFAULT"; break; 244 case OE_Cascade: zName = "CASCADE"; break; 245 case OE_Restrict: zName = "RESTRICT"; break; 246 default: zName = "NO ACTION"; 247 assert( action==OE_None ); break; 248 } 249 return zName; 250 } 251 #endif 252 253 254 /* 255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 256 ** defined in pager.h. This function returns the associated lowercase 257 ** journal-mode name. 258 */ 259 const char *sqlite3JournalModename(int eMode){ 260 static char * const azModeName[] = { 261 "delete", "persist", "off", "truncate", "memory" 262 #ifndef SQLITE_OMIT_WAL 263 , "wal" 264 #endif 265 }; 266 assert( PAGER_JOURNALMODE_DELETE==0 ); 267 assert( PAGER_JOURNALMODE_PERSIST==1 ); 268 assert( PAGER_JOURNALMODE_OFF==2 ); 269 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 270 assert( PAGER_JOURNALMODE_MEMORY==4 ); 271 assert( PAGER_JOURNALMODE_WAL==5 ); 272 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 273 274 if( eMode==ArraySize(azModeName) ) return 0; 275 return azModeName[eMode]; 276 } 277 278 /* 279 ** Locate a pragma in the aPragmaName[] array. 280 */ 281 static const PragmaName *pragmaLocate(const char *zName){ 282 int upr, lwr, mid, rc; 283 lwr = 0; 284 upr = ArraySize(aPragmaName)-1; 285 while( lwr<=upr ){ 286 mid = (lwr+upr)/2; 287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); 288 if( rc==0 ) break; 289 if( rc<0 ){ 290 upr = mid - 1; 291 }else{ 292 lwr = mid + 1; 293 } 294 } 295 return lwr>upr ? 0 : &aPragmaName[mid]; 296 } 297 298 /* 299 ** Process a pragma statement. 300 ** 301 ** Pragmas are of this form: 302 ** 303 ** PRAGMA [schema.]id [= value] 304 ** 305 ** The identifier might also be a string. The value is a string, and 306 ** identifier, or a number. If minusFlag is true, then the value is 307 ** a number that was preceded by a minus sign. 308 ** 309 ** If the left side is "database.id" then pId1 is the database name 310 ** and pId2 is the id. If the left side is just "id" then pId1 is the 311 ** id and pId2 is any empty string. 312 */ 313 void sqlite3Pragma( 314 Parse *pParse, 315 Token *pId1, /* First part of [schema.]id field */ 316 Token *pId2, /* Second part of [schema.]id field, or NULL */ 317 Token *pValue, /* Token for <value>, or NULL */ 318 int minusFlag /* True if a '-' sign preceded <value> */ 319 ){ 320 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 321 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 322 const char *zDb = 0; /* The database name */ 323 Token *pId; /* Pointer to <id> token */ 324 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 325 int iDb; /* Database index for <database> */ 326 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 327 sqlite3 *db = pParse->db; /* The database connection */ 328 Db *pDb; /* The specific database being pragmaed */ 329 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 330 const PragmaName *pPragma; /* The pragma */ 331 332 if( v==0 ) return; 333 sqlite3VdbeRunOnlyOnce(v); 334 pParse->nMem = 2; 335 336 /* Interpret the [schema.] part of the pragma statement. iDb is the 337 ** index of the database this pragma is being applied to in db.aDb[]. */ 338 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 339 if( iDb<0 ) return; 340 pDb = &db->aDb[iDb]; 341 342 /* If the temp database has been explicitly named as part of the 343 ** pragma, make sure it is open. 344 */ 345 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 346 return; 347 } 348 349 zLeft = sqlite3NameFromToken(db, pId); 350 if( !zLeft ) return; 351 if( minusFlag ){ 352 zRight = sqlite3MPrintf(db, "-%T", pValue); 353 }else{ 354 zRight = sqlite3NameFromToken(db, pValue); 355 } 356 357 assert( pId2 ); 358 zDb = pId2->n>0 ? pDb->zDbSName : 0; 359 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 360 goto pragma_out; 361 } 362 363 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 364 ** connection. If it returns SQLITE_OK, then assume that the VFS 365 ** handled the pragma and generate a no-op prepared statement. 366 ** 367 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 368 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 369 ** object corresponding to the database file to which the pragma 370 ** statement refers. 371 ** 372 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 373 ** file control is an array of pointers to strings (char**) in which the 374 ** second element of the array is the name of the pragma and the third 375 ** element is the argument to the pragma or NULL if the pragma has no 376 ** argument. 377 */ 378 aFcntl[0] = 0; 379 aFcntl[1] = zLeft; 380 aFcntl[2] = zRight; 381 aFcntl[3] = 0; 382 db->busyHandler.nBusy = 0; 383 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 384 if( rc==SQLITE_OK ){ 385 sqlite3VdbeSetNumCols(v, 1); 386 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); 387 returnSingleText(v, aFcntl[0]); 388 sqlite3_free(aFcntl[0]); 389 goto pragma_out; 390 } 391 if( rc!=SQLITE_NOTFOUND ){ 392 if( aFcntl[0] ){ 393 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 394 sqlite3_free(aFcntl[0]); 395 } 396 pParse->nErr++; 397 pParse->rc = rc; 398 goto pragma_out; 399 } 400 401 /* Locate the pragma in the lookup table */ 402 pPragma = pragmaLocate(zLeft); 403 if( pPragma==0 ) goto pragma_out; 404 405 /* Make sure the database schema is loaded if the pragma requires that */ 406 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ 407 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 408 } 409 410 /* Register the result column names for pragmas that return results */ 411 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 412 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) 413 ){ 414 setPragmaResultColumnNames(v, pPragma); 415 } 416 417 /* Jump to the appropriate pragma handler */ 418 switch( pPragma->ePragTyp ){ 419 420 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 421 /* 422 ** PRAGMA [schema.]default_cache_size 423 ** PRAGMA [schema.]default_cache_size=N 424 ** 425 ** The first form reports the current persistent setting for the 426 ** page cache size. The value returned is the maximum number of 427 ** pages in the page cache. The second form sets both the current 428 ** page cache size value and the persistent page cache size value 429 ** stored in the database file. 430 ** 431 ** Older versions of SQLite would set the default cache size to a 432 ** negative number to indicate synchronous=OFF. These days, synchronous 433 ** is always on by default regardless of the sign of the default cache 434 ** size. But continue to take the absolute value of the default cache 435 ** size of historical compatibility. 436 */ 437 case PragTyp_DEFAULT_CACHE_SIZE: { 438 static const int iLn = VDBE_OFFSET_LINENO(2); 439 static const VdbeOpList getCacheSize[] = { 440 { OP_Transaction, 0, 0, 0}, /* 0 */ 441 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 442 { OP_IfPos, 1, 8, 0}, 443 { OP_Integer, 0, 2, 0}, 444 { OP_Subtract, 1, 2, 1}, 445 { OP_IfPos, 1, 8, 0}, 446 { OP_Integer, 0, 1, 0}, /* 6 */ 447 { OP_Noop, 0, 0, 0}, 448 { OP_ResultRow, 1, 1, 0}, 449 }; 450 VdbeOp *aOp; 451 sqlite3VdbeUsesBtree(v, iDb); 452 if( !zRight ){ 453 pParse->nMem += 2; 454 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 455 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 456 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 457 aOp[0].p1 = iDb; 458 aOp[1].p1 = iDb; 459 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 460 }else{ 461 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 462 sqlite3BeginWriteOperation(pParse, 0, iDb); 463 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pDb->pSchema->cache_size = size; 466 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 467 } 468 break; 469 } 470 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 471 472 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 473 /* 474 ** PRAGMA [schema.]page_size 475 ** PRAGMA [schema.]page_size=N 476 ** 477 ** The first form reports the current setting for the 478 ** database page size in bytes. The second form sets the 479 ** database page size value. The value can only be set if 480 ** the database has not yet been created. 481 */ 482 case PragTyp_PAGE_SIZE: { 483 Btree *pBt = pDb->pBt; 484 assert( pBt!=0 ); 485 if( !zRight ){ 486 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 487 returnSingleInt(v, size); 488 }else{ 489 /* Malloc may fail when setting the page-size, as there is an internal 490 ** buffer that the pager module resizes using sqlite3_realloc(). 491 */ 492 db->nextPagesize = sqlite3Atoi(zRight); 493 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ 494 sqlite3OomFault(db); 495 } 496 } 497 break; 498 } 499 500 /* 501 ** PRAGMA [schema.]secure_delete 502 ** PRAGMA [schema.]secure_delete=ON/OFF 503 ** 504 ** The first form reports the current setting for the 505 ** secure_delete flag. The second form changes the secure_delete 506 ** flag setting and reports thenew value. 507 */ 508 case PragTyp_SECURE_DELETE: { 509 Btree *pBt = pDb->pBt; 510 int b = -1; 511 assert( pBt!=0 ); 512 if( zRight ){ 513 b = sqlite3GetBoolean(zRight, 0); 514 } 515 if( pId2->n==0 && b>=0 ){ 516 int ii; 517 for(ii=0; ii<db->nDb; ii++){ 518 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 519 } 520 } 521 b = sqlite3BtreeSecureDelete(pBt, b); 522 returnSingleInt(v, b); 523 break; 524 } 525 526 /* 527 ** PRAGMA [schema.]max_page_count 528 ** PRAGMA [schema.]max_page_count=N 529 ** 530 ** The first form reports the current setting for the 531 ** maximum number of pages in the database file. The 532 ** second form attempts to change this setting. Both 533 ** forms return the current setting. 534 ** 535 ** The absolute value of N is used. This is undocumented and might 536 ** change. The only purpose is to provide an easy way to test 537 ** the sqlite3AbsInt32() function. 538 ** 539 ** PRAGMA [schema.]page_count 540 ** 541 ** Return the number of pages in the specified database. 542 */ 543 case PragTyp_PAGE_COUNT: { 544 int iReg; 545 sqlite3CodeVerifySchema(pParse, iDb); 546 iReg = ++pParse->nMem; 547 if( sqlite3Tolower(zLeft[0])=='p' ){ 548 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 549 }else{ 550 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 551 sqlite3AbsInt32(sqlite3Atoi(zRight))); 552 } 553 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 554 break; 555 } 556 557 /* 558 ** PRAGMA [schema.]locking_mode 559 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 560 */ 561 case PragTyp_LOCKING_MODE: { 562 const char *zRet = "normal"; 563 int eMode = getLockingMode(zRight); 564 565 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 566 /* Simple "PRAGMA locking_mode;" statement. This is a query for 567 ** the current default locking mode (which may be different to 568 ** the locking-mode of the main database). 569 */ 570 eMode = db->dfltLockMode; 571 }else{ 572 Pager *pPager; 573 if( pId2->n==0 ){ 574 /* This indicates that no database name was specified as part 575 ** of the PRAGMA command. In this case the locking-mode must be 576 ** set on all attached databases, as well as the main db file. 577 ** 578 ** Also, the sqlite3.dfltLockMode variable is set so that 579 ** any subsequently attached databases also use the specified 580 ** locking mode. 581 */ 582 int ii; 583 assert(pDb==&db->aDb[0]); 584 for(ii=2; ii<db->nDb; ii++){ 585 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 586 sqlite3PagerLockingMode(pPager, eMode); 587 } 588 db->dfltLockMode = (u8)eMode; 589 } 590 pPager = sqlite3BtreePager(pDb->pBt); 591 eMode = sqlite3PagerLockingMode(pPager, eMode); 592 } 593 594 assert( eMode==PAGER_LOCKINGMODE_NORMAL 595 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 596 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 597 zRet = "exclusive"; 598 } 599 returnSingleText(v, zRet); 600 break; 601 } 602 603 /* 604 ** PRAGMA [schema.]journal_mode 605 ** PRAGMA [schema.]journal_mode = 606 ** (delete|persist|off|truncate|memory|wal|off) 607 */ 608 case PragTyp_JOURNAL_MODE: { 609 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 610 int ii; /* Loop counter */ 611 612 if( zRight==0 ){ 613 /* If there is no "=MODE" part of the pragma, do a query for the 614 ** current mode */ 615 eMode = PAGER_JOURNALMODE_QUERY; 616 }else{ 617 const char *zMode; 618 int n = sqlite3Strlen30(zRight); 619 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 620 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 621 } 622 if( !zMode ){ 623 /* If the "=MODE" part does not match any known journal mode, 624 ** then do a query */ 625 eMode = PAGER_JOURNALMODE_QUERY; 626 } 627 } 628 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 629 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 630 iDb = 0; 631 pId2->n = 1; 632 } 633 for(ii=db->nDb-1; ii>=0; ii--){ 634 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 635 sqlite3VdbeUsesBtree(v, ii); 636 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 637 } 638 } 639 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 640 break; 641 } 642 643 /* 644 ** PRAGMA [schema.]journal_size_limit 645 ** PRAGMA [schema.]journal_size_limit=N 646 ** 647 ** Get or set the size limit on rollback journal files. 648 */ 649 case PragTyp_JOURNAL_SIZE_LIMIT: { 650 Pager *pPager = sqlite3BtreePager(pDb->pBt); 651 i64 iLimit = -2; 652 if( zRight ){ 653 sqlite3DecOrHexToI64(zRight, &iLimit); 654 if( iLimit<-1 ) iLimit = -1; 655 } 656 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 657 returnSingleInt(v, iLimit); 658 break; 659 } 660 661 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 662 663 /* 664 ** PRAGMA [schema.]auto_vacuum 665 ** PRAGMA [schema.]auto_vacuum=N 666 ** 667 ** Get or set the value of the database 'auto-vacuum' parameter. 668 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 669 */ 670 #ifndef SQLITE_OMIT_AUTOVACUUM 671 case PragTyp_AUTO_VACUUM: { 672 Btree *pBt = pDb->pBt; 673 assert( pBt!=0 ); 674 if( !zRight ){ 675 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); 676 }else{ 677 int eAuto = getAutoVacuum(zRight); 678 assert( eAuto>=0 && eAuto<=2 ); 679 db->nextAutovac = (u8)eAuto; 680 /* Call SetAutoVacuum() to set initialize the internal auto and 681 ** incr-vacuum flags. This is required in case this connection 682 ** creates the database file. It is important that it is created 683 ** as an auto-vacuum capable db. 684 */ 685 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 686 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 687 /* When setting the auto_vacuum mode to either "full" or 688 ** "incremental", write the value of meta[6] in the database 689 ** file. Before writing to meta[6], check that meta[3] indicates 690 ** that this really is an auto-vacuum capable database. 691 */ 692 static const int iLn = VDBE_OFFSET_LINENO(2); 693 static const VdbeOpList setMeta6[] = { 694 { OP_Transaction, 0, 1, 0}, /* 0 */ 695 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 696 { OP_If, 1, 0, 0}, /* 2 */ 697 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 698 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 699 }; 700 VdbeOp *aOp; 701 int iAddr = sqlite3VdbeCurrentAddr(v); 702 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 703 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 704 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 705 aOp[0].p1 = iDb; 706 aOp[1].p1 = iDb; 707 aOp[2].p2 = iAddr+4; 708 aOp[4].p1 = iDb; 709 aOp[4].p3 = eAuto - 1; 710 sqlite3VdbeUsesBtree(v, iDb); 711 } 712 } 713 break; 714 } 715 #endif 716 717 /* 718 ** PRAGMA [schema.]incremental_vacuum(N) 719 ** 720 ** Do N steps of incremental vacuuming on a database. 721 */ 722 #ifndef SQLITE_OMIT_AUTOVACUUM 723 case PragTyp_INCREMENTAL_VACUUM: { 724 int iLimit, addr; 725 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 726 iLimit = 0x7fffffff; 727 } 728 sqlite3BeginWriteOperation(pParse, 0, iDb); 729 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 730 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 731 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 732 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 733 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 734 sqlite3VdbeJumpHere(v, addr); 735 break; 736 } 737 #endif 738 739 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 740 /* 741 ** PRAGMA [schema.]cache_size 742 ** PRAGMA [schema.]cache_size=N 743 ** 744 ** The first form reports the current local setting for the 745 ** page cache size. The second form sets the local 746 ** page cache size value. If N is positive then that is the 747 ** number of pages in the cache. If N is negative, then the 748 ** number of pages is adjusted so that the cache uses -N kibibytes 749 ** of memory. 750 */ 751 case PragTyp_CACHE_SIZE: { 752 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 753 if( !zRight ){ 754 returnSingleInt(v, pDb->pSchema->cache_size); 755 }else{ 756 int size = sqlite3Atoi(zRight); 757 pDb->pSchema->cache_size = size; 758 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 759 } 760 break; 761 } 762 763 /* 764 ** PRAGMA [schema.]cache_spill 765 ** PRAGMA cache_spill=BOOLEAN 766 ** PRAGMA [schema.]cache_spill=N 767 ** 768 ** The first form reports the current local setting for the 769 ** page cache spill size. The second form turns cache spill on 770 ** or off. When turnning cache spill on, the size is set to the 771 ** current cache_size. The third form sets a spill size that 772 ** may be different form the cache size. 773 ** If N is positive then that is the 774 ** number of pages in the cache. If N is negative, then the 775 ** number of pages is adjusted so that the cache uses -N kibibytes 776 ** of memory. 777 ** 778 ** If the number of cache_spill pages is less then the number of 779 ** cache_size pages, no spilling occurs until the page count exceeds 780 ** the number of cache_size pages. 781 ** 782 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 783 ** not just the schema specified. 784 */ 785 case PragTyp_CACHE_SPILL: { 786 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 787 if( !zRight ){ 788 returnSingleInt(v, 789 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 790 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 791 }else{ 792 int size = 1; 793 if( sqlite3GetInt32(zRight, &size) ){ 794 sqlite3BtreeSetSpillSize(pDb->pBt, size); 795 } 796 if( sqlite3GetBoolean(zRight, size!=0) ){ 797 db->flags |= SQLITE_CacheSpill; 798 }else{ 799 db->flags &= ~SQLITE_CacheSpill; 800 } 801 setAllPagerFlags(db); 802 } 803 break; 804 } 805 806 /* 807 ** PRAGMA [schema.]mmap_size(N) 808 ** 809 ** Used to set mapping size limit. The mapping size limit is 810 ** used to limit the aggregate size of all memory mapped regions of the 811 ** database file. If this parameter is set to zero, then memory mapping 812 ** is not used at all. If N is negative, then the default memory map 813 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 814 ** The parameter N is measured in bytes. 815 ** 816 ** This value is advisory. The underlying VFS is free to memory map 817 ** as little or as much as it wants. Except, if N is set to 0 then the 818 ** upper layers will never invoke the xFetch interfaces to the VFS. 819 */ 820 case PragTyp_MMAP_SIZE: { 821 sqlite3_int64 sz; 822 #if SQLITE_MAX_MMAP_SIZE>0 823 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 824 if( zRight ){ 825 int ii; 826 sqlite3DecOrHexToI64(zRight, &sz); 827 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 828 if( pId2->n==0 ) db->szMmap = sz; 829 for(ii=db->nDb-1; ii>=0; ii--){ 830 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 831 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 832 } 833 } 834 } 835 sz = -1; 836 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 837 #else 838 sz = 0; 839 rc = SQLITE_OK; 840 #endif 841 if( rc==SQLITE_OK ){ 842 returnSingleInt(v, sz); 843 }else if( rc!=SQLITE_NOTFOUND ){ 844 pParse->nErr++; 845 pParse->rc = rc; 846 } 847 break; 848 } 849 850 /* 851 ** PRAGMA temp_store 852 ** PRAGMA temp_store = "default"|"memory"|"file" 853 ** 854 ** Return or set the local value of the temp_store flag. Changing 855 ** the local value does not make changes to the disk file and the default 856 ** value will be restored the next time the database is opened. 857 ** 858 ** Note that it is possible for the library compile-time options to 859 ** override this setting 860 */ 861 case PragTyp_TEMP_STORE: { 862 if( !zRight ){ 863 returnSingleInt(v, db->temp_store); 864 }else{ 865 changeTempStorage(pParse, zRight); 866 } 867 break; 868 } 869 870 /* 871 ** PRAGMA temp_store_directory 872 ** PRAGMA temp_store_directory = ""|"directory_name" 873 ** 874 ** Return or set the local value of the temp_store_directory flag. Changing 875 ** the value sets a specific directory to be used for temporary files. 876 ** Setting to a null string reverts to the default temporary directory search. 877 ** If temporary directory is changed, then invalidateTempStorage. 878 ** 879 */ 880 case PragTyp_TEMP_STORE_DIRECTORY: { 881 if( !zRight ){ 882 returnSingleText(v, sqlite3_temp_directory); 883 }else{ 884 #ifndef SQLITE_OMIT_WSD 885 if( zRight[0] ){ 886 int res; 887 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 888 if( rc!=SQLITE_OK || res==0 ){ 889 sqlite3ErrorMsg(pParse, "not a writable directory"); 890 goto pragma_out; 891 } 892 } 893 if( SQLITE_TEMP_STORE==0 894 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 895 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 896 ){ 897 invalidateTempStorage(pParse); 898 } 899 sqlite3_free(sqlite3_temp_directory); 900 if( zRight[0] ){ 901 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 902 }else{ 903 sqlite3_temp_directory = 0; 904 } 905 #endif /* SQLITE_OMIT_WSD */ 906 } 907 break; 908 } 909 910 #if SQLITE_OS_WIN 911 /* 912 ** PRAGMA data_store_directory 913 ** PRAGMA data_store_directory = ""|"directory_name" 914 ** 915 ** Return or set the local value of the data_store_directory flag. Changing 916 ** the value sets a specific directory to be used for database files that 917 ** were specified with a relative pathname. Setting to a null string reverts 918 ** to the default database directory, which for database files specified with 919 ** a relative path will probably be based on the current directory for the 920 ** process. Database file specified with an absolute path are not impacted 921 ** by this setting, regardless of its value. 922 ** 923 */ 924 case PragTyp_DATA_STORE_DIRECTORY: { 925 if( !zRight ){ 926 returnSingleText(v, sqlite3_data_directory); 927 }else{ 928 #ifndef SQLITE_OMIT_WSD 929 if( zRight[0] ){ 930 int res; 931 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 932 if( rc!=SQLITE_OK || res==0 ){ 933 sqlite3ErrorMsg(pParse, "not a writable directory"); 934 goto pragma_out; 935 } 936 } 937 sqlite3_free(sqlite3_data_directory); 938 if( zRight[0] ){ 939 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 940 }else{ 941 sqlite3_data_directory = 0; 942 } 943 #endif /* SQLITE_OMIT_WSD */ 944 } 945 break; 946 } 947 #endif 948 949 #if SQLITE_ENABLE_LOCKING_STYLE 950 /* 951 ** PRAGMA [schema.]lock_proxy_file 952 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 953 ** 954 ** Return or set the value of the lock_proxy_file flag. Changing 955 ** the value sets a specific file to be used for database access locks. 956 ** 957 */ 958 case PragTyp_LOCK_PROXY_FILE: { 959 if( !zRight ){ 960 Pager *pPager = sqlite3BtreePager(pDb->pBt); 961 char *proxy_file_path = NULL; 962 sqlite3_file *pFile = sqlite3PagerFile(pPager); 963 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 964 &proxy_file_path); 965 returnSingleText(v, proxy_file_path); 966 }else{ 967 Pager *pPager = sqlite3BtreePager(pDb->pBt); 968 sqlite3_file *pFile = sqlite3PagerFile(pPager); 969 int res; 970 if( zRight[0] ){ 971 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 972 zRight); 973 } else { 974 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 975 NULL); 976 } 977 if( res!=SQLITE_OK ){ 978 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 979 goto pragma_out; 980 } 981 } 982 break; 983 } 984 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 985 986 /* 987 ** PRAGMA [schema.]synchronous 988 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 989 ** 990 ** Return or set the local value of the synchronous flag. Changing 991 ** the local value does not make changes to the disk file and the 992 ** default value will be restored the next time the database is 993 ** opened. 994 */ 995 case PragTyp_SYNCHRONOUS: { 996 if( !zRight ){ 997 returnSingleInt(v, pDb->safety_level-1); 998 }else{ 999 if( !db->autoCommit ){ 1000 sqlite3ErrorMsg(pParse, 1001 "Safety level may not be changed inside a transaction"); 1002 }else{ 1003 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 1004 if( iLevel==0 ) iLevel = 1; 1005 pDb->safety_level = iLevel; 1006 pDb->bSyncSet = 1; 1007 setAllPagerFlags(db); 1008 } 1009 } 1010 break; 1011 } 1012 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1013 1014 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1015 case PragTyp_FLAG: { 1016 if( zRight==0 ){ 1017 setPragmaResultColumnNames(v, pPragma); 1018 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); 1019 }else{ 1020 int mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1021 if( db->autoCommit==0 ){ 1022 /* Foreign key support may not be enabled or disabled while not 1023 ** in auto-commit mode. */ 1024 mask &= ~(SQLITE_ForeignKeys); 1025 } 1026 #if SQLITE_USER_AUTHENTICATION 1027 if( db->auth.authLevel==UAUTH_User ){ 1028 /* Do not allow non-admin users to modify the schema arbitrarily */ 1029 mask &= ~(SQLITE_WriteSchema); 1030 } 1031 #endif 1032 1033 if( sqlite3GetBoolean(zRight, 0) ){ 1034 db->flags |= mask; 1035 }else{ 1036 db->flags &= ~mask; 1037 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1038 } 1039 1040 /* Many of the flag-pragmas modify the code generated by the SQL 1041 ** compiler (eg. count_changes). So add an opcode to expire all 1042 ** compiled SQL statements after modifying a pragma value. 1043 */ 1044 sqlite3VdbeAddOp0(v, OP_Expire); 1045 setAllPagerFlags(db); 1046 } 1047 break; 1048 } 1049 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1050 1051 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1052 /* 1053 ** PRAGMA table_info(<table>) 1054 ** 1055 ** Return a single row for each column of the named table. The columns of 1056 ** the returned data set are: 1057 ** 1058 ** cid: Column id (numbered from left to right, starting at 0) 1059 ** name: Column name 1060 ** type: Column declaration type. 1061 ** notnull: True if 'NOT NULL' is part of column declaration 1062 ** dflt_value: The default value for the column, if any. 1063 */ 1064 case PragTyp_TABLE_INFO: if( zRight ){ 1065 Table *pTab; 1066 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1067 if( pTab ){ 1068 int i, k; 1069 int nHidden = 0; 1070 Column *pCol; 1071 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1072 pParse->nMem = 6; 1073 sqlite3CodeVerifySchema(pParse, iDb); 1074 sqlite3ViewGetColumnNames(pParse, pTab); 1075 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1076 if( IsHiddenColumn(pCol) ){ 1077 nHidden++; 1078 continue; 1079 } 1080 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1081 k = 0; 1082 }else if( pPk==0 ){ 1083 k = 1; 1084 }else{ 1085 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1086 } 1087 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); 1088 sqlite3VdbeMultiLoad(v, 1, "issisi", 1089 i-nHidden, 1090 pCol->zName, 1091 sqlite3ColumnType(pCol,""), 1092 pCol->notNull ? 1 : 0, 1093 pCol->pDflt ? pCol->pDflt->u.zToken : 0, 1094 k); 1095 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); 1096 } 1097 } 1098 } 1099 break; 1100 1101 case PragTyp_STATS: { 1102 Index *pIdx; 1103 HashElem *i; 1104 pParse->nMem = 4; 1105 sqlite3CodeVerifySchema(pParse, iDb); 1106 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1107 Table *pTab = sqliteHashData(i); 1108 sqlite3VdbeMultiLoad(v, 1, "ssii", 1109 pTab->zName, 1110 0, 1111 pTab->szTabRow, 1112 pTab->nRowLogEst); 1113 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4); 1114 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1115 sqlite3VdbeMultiLoad(v, 2, "sii", 1116 pIdx->zName, 1117 pIdx->szIdxRow, 1118 pIdx->aiRowLogEst[0]); 1119 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4); 1120 } 1121 } 1122 } 1123 break; 1124 1125 case PragTyp_INDEX_INFO: if( zRight ){ 1126 Index *pIdx; 1127 Table *pTab; 1128 pIdx = sqlite3FindIndex(db, zRight, zDb); 1129 if( pIdx ){ 1130 int i; 1131 int mx; 1132 if( pPragma->iArg ){ 1133 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1134 mx = pIdx->nColumn; 1135 pParse->nMem = 6; 1136 }else{ 1137 /* PRAGMA index_info (legacy version) */ 1138 mx = pIdx->nKeyCol; 1139 pParse->nMem = 3; 1140 } 1141 pTab = pIdx->pTable; 1142 sqlite3CodeVerifySchema(pParse, iDb); 1143 assert( pParse->nMem<=pPragma->nPragCName ); 1144 for(i=0; i<mx; i++){ 1145 i16 cnum = pIdx->aiColumn[i]; 1146 sqlite3VdbeMultiLoad(v, 1, "iis", i, cnum, 1147 cnum<0 ? 0 : pTab->aCol[cnum].zName); 1148 if( pPragma->iArg ){ 1149 sqlite3VdbeMultiLoad(v, 4, "isi", 1150 pIdx->aSortOrder[i], 1151 pIdx->azColl[i], 1152 i<pIdx->nKeyCol); 1153 } 1154 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1155 } 1156 } 1157 } 1158 break; 1159 1160 case PragTyp_INDEX_LIST: if( zRight ){ 1161 Index *pIdx; 1162 Table *pTab; 1163 int i; 1164 pTab = sqlite3FindTable(db, zRight, zDb); 1165 if( pTab ){ 1166 pParse->nMem = 5; 1167 sqlite3CodeVerifySchema(pParse, iDb); 1168 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1169 const char *azOrigin[] = { "c", "u", "pk" }; 1170 sqlite3VdbeMultiLoad(v, 1, "isisi", 1171 i, 1172 pIdx->zName, 1173 IsUniqueIndex(pIdx), 1174 azOrigin[pIdx->idxType], 1175 pIdx->pPartIdxWhere!=0); 1176 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1177 } 1178 } 1179 } 1180 break; 1181 1182 case PragTyp_DATABASE_LIST: { 1183 int i; 1184 pParse->nMem = 3; 1185 for(i=0; i<db->nDb; i++){ 1186 if( db->aDb[i].pBt==0 ) continue; 1187 assert( db->aDb[i].zDbSName!=0 ); 1188 sqlite3VdbeMultiLoad(v, 1, "iss", 1189 i, 1190 db->aDb[i].zDbSName, 1191 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1192 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1193 } 1194 } 1195 break; 1196 1197 case PragTyp_COLLATION_LIST: { 1198 int i = 0; 1199 HashElem *p; 1200 pParse->nMem = 2; 1201 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1202 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1203 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1204 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1205 } 1206 } 1207 break; 1208 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1209 1210 #ifndef SQLITE_OMIT_FOREIGN_KEY 1211 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1212 FKey *pFK; 1213 Table *pTab; 1214 pTab = sqlite3FindTable(db, zRight, zDb); 1215 if( pTab ){ 1216 pFK = pTab->pFKey; 1217 if( pFK ){ 1218 int i = 0; 1219 pParse->nMem = 8; 1220 sqlite3CodeVerifySchema(pParse, iDb); 1221 while(pFK){ 1222 int j; 1223 for(j=0; j<pFK->nCol; j++){ 1224 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1225 i, 1226 j, 1227 pFK->zTo, 1228 pTab->aCol[pFK->aCol[j].iFrom].zName, 1229 pFK->aCol[j].zCol, 1230 actionName(pFK->aAction[1]), /* ON UPDATE */ 1231 actionName(pFK->aAction[0]), /* ON DELETE */ 1232 "NONE"); 1233 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); 1234 } 1235 ++i; 1236 pFK = pFK->pNextFrom; 1237 } 1238 } 1239 } 1240 } 1241 break; 1242 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1243 1244 #ifndef SQLITE_OMIT_FOREIGN_KEY 1245 #ifndef SQLITE_OMIT_TRIGGER 1246 case PragTyp_FOREIGN_KEY_CHECK: { 1247 FKey *pFK; /* A foreign key constraint */ 1248 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1249 Table *pParent; /* Parent table that child points to */ 1250 Index *pIdx; /* Index in the parent table */ 1251 int i; /* Loop counter: Foreign key number for pTab */ 1252 int j; /* Loop counter: Field of the foreign key */ 1253 HashElem *k; /* Loop counter: Next table in schema */ 1254 int x; /* result variable */ 1255 int regResult; /* 3 registers to hold a result row */ 1256 int regKey; /* Register to hold key for checking the FK */ 1257 int regRow; /* Registers to hold a row from pTab */ 1258 int addrTop; /* Top of a loop checking foreign keys */ 1259 int addrOk; /* Jump here if the key is OK */ 1260 int *aiCols; /* child to parent column mapping */ 1261 1262 regResult = pParse->nMem+1; 1263 pParse->nMem += 4; 1264 regKey = ++pParse->nMem; 1265 regRow = ++pParse->nMem; 1266 sqlite3CodeVerifySchema(pParse, iDb); 1267 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1268 while( k ){ 1269 if( zRight ){ 1270 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1271 k = 0; 1272 }else{ 1273 pTab = (Table*)sqliteHashData(k); 1274 k = sqliteHashNext(k); 1275 } 1276 if( pTab==0 || pTab->pFKey==0 ) continue; 1277 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1278 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1279 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1280 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1281 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1282 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1283 if( pParent==0 ) continue; 1284 pIdx = 0; 1285 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1286 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1287 if( x==0 ){ 1288 if( pIdx==0 ){ 1289 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1290 }else{ 1291 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1292 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1293 } 1294 }else{ 1295 k = 0; 1296 break; 1297 } 1298 } 1299 assert( pParse->nErr>0 || pFK==0 ); 1300 if( pFK ) break; 1301 if( pParse->nTab<i ) pParse->nTab = i; 1302 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1303 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1304 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1305 pIdx = 0; 1306 aiCols = 0; 1307 if( pParent ){ 1308 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1309 assert( x==0 ); 1310 } 1311 addrOk = sqlite3VdbeMakeLabel(v); 1312 if( pParent && pIdx==0 ){ 1313 int iKey = pFK->aCol[0].iFrom; 1314 assert( iKey>=0 && iKey<pTab->nCol ); 1315 if( iKey!=pTab->iPKey ){ 1316 sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); 1317 sqlite3ColumnDefault(v, pTab, iKey, regRow); 1318 sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v); 1319 }else{ 1320 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); 1321 } 1322 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v); 1323 sqlite3VdbeGoto(v, addrOk); 1324 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1325 }else{ 1326 for(j=0; j<pFK->nCol; j++){ 1327 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, 1328 aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j); 1329 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1330 } 1331 if( pParent ){ 1332 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, 1333 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1334 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); 1335 VdbeCoverage(v); 1336 } 1337 } 1338 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1339 sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1); 1340 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1341 sqlite3VdbeResolveLabel(v, addrOk); 1342 sqlite3DbFree(db, aiCols); 1343 } 1344 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1345 sqlite3VdbeJumpHere(v, addrTop); 1346 } 1347 } 1348 break; 1349 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1350 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1351 1352 #ifndef NDEBUG 1353 case PragTyp_PARSER_TRACE: { 1354 if( zRight ){ 1355 if( sqlite3GetBoolean(zRight, 0) ){ 1356 sqlite3ParserTrace(stdout, "parser: "); 1357 }else{ 1358 sqlite3ParserTrace(0, 0); 1359 } 1360 } 1361 } 1362 break; 1363 #endif 1364 1365 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1366 ** used will be case sensitive or not depending on the RHS. 1367 */ 1368 case PragTyp_CASE_SENSITIVE_LIKE: { 1369 if( zRight ){ 1370 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1371 } 1372 } 1373 break; 1374 1375 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1376 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1377 #endif 1378 1379 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1380 /* Pragma "quick_check" is reduced version of 1381 ** integrity_check designed to detect most database corruption 1382 ** without most of the overhead of a full integrity-check. 1383 */ 1384 case PragTyp_INTEGRITY_CHECK: { 1385 int i, j, addr, mxErr; 1386 1387 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1388 1389 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1390 ** then iDb is set to the index of the database identified by <db>. 1391 ** In this case, the integrity of database iDb only is verified by 1392 ** the VDBE created below. 1393 ** 1394 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1395 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1396 ** to -1 here, to indicate that the VDBE should verify the integrity 1397 ** of all attached databases. */ 1398 assert( iDb>=0 ); 1399 assert( iDb==0 || pId2->z ); 1400 if( pId2->z==0 ) iDb = -1; 1401 1402 /* Initialize the VDBE program */ 1403 pParse->nMem = 6; 1404 1405 /* Set the maximum error count */ 1406 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1407 if( zRight ){ 1408 sqlite3GetInt32(zRight, &mxErr); 1409 if( mxErr<=0 ){ 1410 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1411 } 1412 } 1413 sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ 1414 1415 /* Do an integrity check on each database file */ 1416 for(i=0; i<db->nDb; i++){ 1417 HashElem *x; 1418 Hash *pTbls; 1419 int *aRoot; 1420 int cnt = 0; 1421 int mxIdx = 0; 1422 int nIdx; 1423 1424 if( OMIT_TEMPDB && i==1 ) continue; 1425 if( iDb>=0 && i!=iDb ) continue; 1426 1427 sqlite3CodeVerifySchema(pParse, i); 1428 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ 1429 VdbeCoverage(v); 1430 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1431 sqlite3VdbeJumpHere(v, addr); 1432 1433 /* Do an integrity check of the B-Tree 1434 ** 1435 ** Begin by finding the root pages numbers 1436 ** for all tables and indices in the database. 1437 */ 1438 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1439 pTbls = &db->aDb[i].pSchema->tblHash; 1440 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1441 Table *pTab = sqliteHashData(x); 1442 Index *pIdx; 1443 if( HasRowid(pTab) ) cnt++; 1444 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1445 if( nIdx>mxIdx ) mxIdx = nIdx; 1446 } 1447 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1448 if( aRoot==0 ) break; 1449 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1450 Table *pTab = sqliteHashData(x); 1451 Index *pIdx; 1452 if( HasRowid(pTab) ) aRoot[cnt++] = pTab->tnum; 1453 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1454 aRoot[cnt++] = pIdx->tnum; 1455 } 1456 } 1457 aRoot[cnt] = 0; 1458 1459 /* Make sure sufficient number of registers have been allocated */ 1460 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1461 1462 /* Do the b-tree integrity checks */ 1463 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1464 sqlite3VdbeChangeP5(v, (u8)i); 1465 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1466 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1467 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1468 P4_DYNAMIC); 1469 sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1); 1470 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); 1471 sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); 1472 sqlite3VdbeJumpHere(v, addr); 1473 1474 /* Make sure all the indices are constructed correctly. 1475 */ 1476 for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ 1477 Table *pTab = sqliteHashData(x); 1478 Index *pIdx, *pPk; 1479 Index *pPrior = 0; 1480 int loopTop; 1481 int iDataCur, iIdxCur; 1482 int r1 = -1; 1483 1484 if( pTab->pIndex==0 ) continue; 1485 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); 1486 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ 1487 VdbeCoverage(v); 1488 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1489 sqlite3VdbeJumpHere(v, addr); 1490 sqlite3ExprCacheClear(pParse); 1491 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1492 1, 0, &iDataCur, &iIdxCur); 1493 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1494 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1495 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1496 } 1497 assert( pParse->nMem>=8+j ); 1498 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1499 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1500 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1501 /* Verify that all NOT NULL columns really are NOT NULL */ 1502 for(j=0; j<pTab->nCol; j++){ 1503 char *zErr; 1504 int jmp2, jmp3; 1505 if( j==pTab->iPKey ) continue; 1506 if( pTab->aCol[j].notNull==0 ) continue; 1507 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1508 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1509 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); 1510 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1511 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1512 pTab->aCol[j].zName); 1513 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1514 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 1515 jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); 1516 sqlite3VdbeAddOp0(v, OP_Halt); 1517 sqlite3VdbeJumpHere(v, jmp2); 1518 sqlite3VdbeJumpHere(v, jmp3); 1519 } 1520 /* Validate index entries for the current row */ 1521 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1522 int jmp2, jmp3, jmp4, jmp5; 1523 int ckUniq = sqlite3VdbeMakeLabel(v); 1524 if( pPk==pIdx ) continue; 1525 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1526 pPrior, r1); 1527 pPrior = pIdx; 1528 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ 1529 /* Verify that an index entry exists for the current table row */ 1530 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1531 pIdx->nColumn); VdbeCoverage(v); 1532 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1533 sqlite3VdbeLoadString(v, 3, "row "); 1534 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1535 sqlite3VdbeLoadString(v, 4, " missing from index "); 1536 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1537 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1538 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1539 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 1540 jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); 1541 sqlite3VdbeAddOp0(v, OP_Halt); 1542 sqlite3VdbeJumpHere(v, jmp2); 1543 /* For UNIQUE indexes, verify that only one entry exists with the 1544 ** current key. The entry is unique if (1) any column is NULL 1545 ** or (2) the next entry has a different key */ 1546 if( IsUniqueIndex(pIdx) ){ 1547 int uniqOk = sqlite3VdbeMakeLabel(v); 1548 int jmp6; 1549 int kk; 1550 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1551 int iCol = pIdx->aiColumn[kk]; 1552 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1553 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1554 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1555 VdbeCoverage(v); 1556 } 1557 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1558 sqlite3VdbeGoto(v, uniqOk); 1559 sqlite3VdbeJumpHere(v, jmp6); 1560 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1561 pIdx->nKeyCol); VdbeCoverage(v); 1562 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ 1563 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1564 sqlite3VdbeGoto(v, jmp5); 1565 sqlite3VdbeResolveLabel(v, uniqOk); 1566 } 1567 sqlite3VdbeJumpHere(v, jmp4); 1568 sqlite3ResolvePartIdxLabel(pParse, jmp3); 1569 } 1570 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 1571 sqlite3VdbeJumpHere(v, loopTop-1); 1572 #ifndef SQLITE_OMIT_BTREECOUNT 1573 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 1574 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1575 if( pPk==pIdx ) continue; 1576 addr = sqlite3VdbeCurrentAddr(v); 1577 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v); 1578 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 1579 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 1580 sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v); 1581 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1582 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 1583 sqlite3VdbeLoadString(v, 3, pIdx->zName); 1584 sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); 1585 sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); 1586 } 1587 #endif /* SQLITE_OMIT_BTREECOUNT */ 1588 } 1589 } 1590 { 1591 static const int iLn = VDBE_OFFSET_LINENO(2); 1592 static const VdbeOpList endCode[] = { 1593 { OP_AddImm, 1, 0, 0}, /* 0 */ 1594 { OP_If, 1, 4, 0}, /* 1 */ 1595 { OP_String8, 0, 3, 0}, /* 2 */ 1596 { OP_ResultRow, 3, 1, 0}, /* 3 */ 1597 }; 1598 VdbeOp *aOp; 1599 1600 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 1601 if( aOp ){ 1602 aOp[0].p2 = -mxErr; 1603 aOp[2].p4type = P4_STATIC; 1604 aOp[2].p4.z = "ok"; 1605 } 1606 } 1607 } 1608 break; 1609 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 1610 1611 #ifndef SQLITE_OMIT_UTF16 1612 /* 1613 ** PRAGMA encoding 1614 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 1615 ** 1616 ** In its first form, this pragma returns the encoding of the main 1617 ** database. If the database is not initialized, it is initialized now. 1618 ** 1619 ** The second form of this pragma is a no-op if the main database file 1620 ** has not already been initialized. In this case it sets the default 1621 ** encoding that will be used for the main database file if a new file 1622 ** is created. If an existing main database file is opened, then the 1623 ** default text encoding for the existing database is used. 1624 ** 1625 ** In all cases new databases created using the ATTACH command are 1626 ** created to use the same default text encoding as the main database. If 1627 ** the main database has not been initialized and/or created when ATTACH 1628 ** is executed, this is done before the ATTACH operation. 1629 ** 1630 ** In the second form this pragma sets the text encoding to be used in 1631 ** new database files created using this database handle. It is only 1632 ** useful if invoked immediately after the main database i 1633 */ 1634 case PragTyp_ENCODING: { 1635 static const struct EncName { 1636 char *zName; 1637 u8 enc; 1638 } encnames[] = { 1639 { "UTF8", SQLITE_UTF8 }, 1640 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 1641 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 1642 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 1643 { "UTF16le", SQLITE_UTF16LE }, 1644 { "UTF16be", SQLITE_UTF16BE }, 1645 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 1646 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 1647 { 0, 0 } 1648 }; 1649 const struct EncName *pEnc; 1650 if( !zRight ){ /* "PRAGMA encoding" */ 1651 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 1652 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 1653 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 1654 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 1655 returnSingleText(v, encnames[ENC(pParse->db)].zName); 1656 }else{ /* "PRAGMA encoding = XXX" */ 1657 /* Only change the value of sqlite.enc if the database handle is not 1658 ** initialized. If the main database exists, the new sqlite.enc value 1659 ** will be overwritten when the schema is next loaded. If it does not 1660 ** already exists, it will be created to use the new encoding value. 1661 */ 1662 if( 1663 !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 1664 DbHasProperty(db, 0, DB_Empty) 1665 ){ 1666 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 1667 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 1668 SCHEMA_ENC(db) = ENC(db) = 1669 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 1670 break; 1671 } 1672 } 1673 if( !pEnc->zName ){ 1674 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 1675 } 1676 } 1677 } 1678 } 1679 break; 1680 #endif /* SQLITE_OMIT_UTF16 */ 1681 1682 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 1683 /* 1684 ** PRAGMA [schema.]schema_version 1685 ** PRAGMA [schema.]schema_version = <integer> 1686 ** 1687 ** PRAGMA [schema.]user_version 1688 ** PRAGMA [schema.]user_version = <integer> 1689 ** 1690 ** PRAGMA [schema.]freelist_count 1691 ** 1692 ** PRAGMA [schema.]data_version 1693 ** 1694 ** PRAGMA [schema.]application_id 1695 ** PRAGMA [schema.]application_id = <integer> 1696 ** 1697 ** The pragma's schema_version and user_version are used to set or get 1698 ** the value of the schema-version and user-version, respectively. Both 1699 ** the schema-version and the user-version are 32-bit signed integers 1700 ** stored in the database header. 1701 ** 1702 ** The schema-cookie is usually only manipulated internally by SQLite. It 1703 ** is incremented by SQLite whenever the database schema is modified (by 1704 ** creating or dropping a table or index). The schema version is used by 1705 ** SQLite each time a query is executed to ensure that the internal cache 1706 ** of the schema used when compiling the SQL query matches the schema of 1707 ** the database against which the compiled query is actually executed. 1708 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 1709 ** the schema-version is potentially dangerous and may lead to program 1710 ** crashes or database corruption. Use with caution! 1711 ** 1712 ** The user-version is not used internally by SQLite. It may be used by 1713 ** applications for any purpose. 1714 */ 1715 case PragTyp_HEADER_VALUE: { 1716 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 1717 sqlite3VdbeUsesBtree(v, iDb); 1718 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ 1719 /* Write the specified cookie value */ 1720 static const VdbeOpList setCookie[] = { 1721 { OP_Transaction, 0, 1, 0}, /* 0 */ 1722 { OP_SetCookie, 0, 0, 0}, /* 1 */ 1723 }; 1724 VdbeOp *aOp; 1725 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 1726 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 1727 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1728 aOp[0].p1 = iDb; 1729 aOp[1].p1 = iDb; 1730 aOp[1].p2 = iCookie; 1731 aOp[1].p3 = sqlite3Atoi(zRight); 1732 }else{ 1733 /* Read the specified cookie value */ 1734 static const VdbeOpList readCookie[] = { 1735 { OP_Transaction, 0, 0, 0}, /* 0 */ 1736 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 1737 { OP_ResultRow, 1, 1, 0} 1738 }; 1739 VdbeOp *aOp; 1740 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 1741 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 1742 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1743 aOp[0].p1 = iDb; 1744 aOp[1].p1 = iDb; 1745 aOp[1].p3 = iCookie; 1746 sqlite3VdbeReusable(v); 1747 } 1748 } 1749 break; 1750 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 1751 1752 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1753 /* 1754 ** PRAGMA compile_options 1755 ** 1756 ** Return the names of all compile-time options used in this build, 1757 ** one option per row. 1758 */ 1759 case PragTyp_COMPILE_OPTIONS: { 1760 int i = 0; 1761 const char *zOpt; 1762 pParse->nMem = 1; 1763 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 1764 sqlite3VdbeLoadString(v, 1, zOpt); 1765 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1766 } 1767 sqlite3VdbeReusable(v); 1768 } 1769 break; 1770 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1771 1772 #ifndef SQLITE_OMIT_WAL 1773 /* 1774 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 1775 ** 1776 ** Checkpoint the database. 1777 */ 1778 case PragTyp_WAL_CHECKPOINT: { 1779 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); 1780 int eMode = SQLITE_CHECKPOINT_PASSIVE; 1781 if( zRight ){ 1782 if( sqlite3StrICmp(zRight, "full")==0 ){ 1783 eMode = SQLITE_CHECKPOINT_FULL; 1784 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 1785 eMode = SQLITE_CHECKPOINT_RESTART; 1786 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 1787 eMode = SQLITE_CHECKPOINT_TRUNCATE; 1788 } 1789 } 1790 pParse->nMem = 3; 1791 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 1792 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1793 } 1794 break; 1795 1796 /* 1797 ** PRAGMA wal_autocheckpoint 1798 ** PRAGMA wal_autocheckpoint = N 1799 ** 1800 ** Configure a database connection to automatically checkpoint a database 1801 ** after accumulating N frames in the log. Or query for the current value 1802 ** of N. 1803 */ 1804 case PragTyp_WAL_AUTOCHECKPOINT: { 1805 if( zRight ){ 1806 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 1807 } 1808 returnSingleInt(v, 1809 db->xWalCallback==sqlite3WalDefaultHook ? 1810 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 1811 } 1812 break; 1813 #endif 1814 1815 /* 1816 ** PRAGMA shrink_memory 1817 ** 1818 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 1819 ** connection on which it is invoked to free up as much memory as it 1820 ** can, by calling sqlite3_db_release_memory(). 1821 */ 1822 case PragTyp_SHRINK_MEMORY: { 1823 sqlite3_db_release_memory(db); 1824 break; 1825 } 1826 1827 /* 1828 ** PRAGMA busy_timeout 1829 ** PRAGMA busy_timeout = N 1830 ** 1831 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 1832 ** if one is set. If no busy handler or a different busy handler is set 1833 ** then 0 is returned. Setting the busy_timeout to 0 or negative 1834 ** disables the timeout. 1835 */ 1836 /*case PragTyp_BUSY_TIMEOUT*/ default: { 1837 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 1838 if( zRight ){ 1839 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 1840 } 1841 returnSingleInt(v, db->busyTimeout); 1842 break; 1843 } 1844 1845 /* 1846 ** PRAGMA soft_heap_limit 1847 ** PRAGMA soft_heap_limit = N 1848 ** 1849 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 1850 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 1851 ** specified and is a non-negative integer. 1852 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 1853 ** returns the same integer that would be returned by the 1854 ** sqlite3_soft_heap_limit64(-1) C-language function. 1855 */ 1856 case PragTyp_SOFT_HEAP_LIMIT: { 1857 sqlite3_int64 N; 1858 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 1859 sqlite3_soft_heap_limit64(N); 1860 } 1861 returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); 1862 break; 1863 } 1864 1865 /* 1866 ** PRAGMA threads 1867 ** PRAGMA threads = N 1868 ** 1869 ** Configure the maximum number of worker threads. Return the new 1870 ** maximum, which might be less than requested. 1871 */ 1872 case PragTyp_THREADS: { 1873 sqlite3_int64 N; 1874 if( zRight 1875 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 1876 && N>=0 1877 ){ 1878 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 1879 } 1880 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 1881 break; 1882 } 1883 1884 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 1885 /* 1886 ** Report the current state of file logs for all databases 1887 */ 1888 case PragTyp_LOCK_STATUS: { 1889 static const char *const azLockName[] = { 1890 "unlocked", "shared", "reserved", "pending", "exclusive" 1891 }; 1892 int i; 1893 pParse->nMem = 2; 1894 for(i=0; i<db->nDb; i++){ 1895 Btree *pBt; 1896 const char *zState = "unknown"; 1897 int j; 1898 if( db->aDb[i].zDbSName==0 ) continue; 1899 pBt = db->aDb[i].pBt; 1900 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 1901 zState = "closed"; 1902 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 1903 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 1904 zState = azLockName[j]; 1905 } 1906 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 1907 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1908 } 1909 break; 1910 } 1911 #endif 1912 1913 #ifdef SQLITE_HAS_CODEC 1914 case PragTyp_KEY: { 1915 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 1916 break; 1917 } 1918 case PragTyp_REKEY: { 1919 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 1920 break; 1921 } 1922 case PragTyp_HEXKEY: { 1923 if( zRight ){ 1924 u8 iByte; 1925 int i; 1926 char zKey[40]; 1927 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ 1928 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); 1929 if( (i&1)!=0 ) zKey[i/2] = iByte; 1930 } 1931 if( (zLeft[3] & 0xf)==0xb ){ 1932 sqlite3_key_v2(db, zDb, zKey, i/2); 1933 }else{ 1934 sqlite3_rekey_v2(db, zDb, zKey, i/2); 1935 } 1936 } 1937 break; 1938 } 1939 #endif 1940 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) 1941 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 1942 #ifdef SQLITE_HAS_CODEC 1943 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ 1944 sqlite3_activate_see(&zRight[4]); 1945 } 1946 #endif 1947 #ifdef SQLITE_ENABLE_CEROD 1948 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 1949 sqlite3_activate_cerod(&zRight[6]); 1950 } 1951 #endif 1952 } 1953 break; 1954 #endif 1955 1956 } /* End of the PRAGMA switch */ 1957 1958 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only 1959 ** purpose is to execute assert() statements to verify that if the 1960 ** PragFlg_NoColumns1 flag is set and the caller specified an argument 1961 ** to the PRAGMA, the implementation has not added any OP_ResultRow 1962 ** instructions to the VM. */ 1963 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ 1964 sqlite3VdbeVerifyNoResultRow(v); 1965 } 1966 1967 pragma_out: 1968 sqlite3DbFree(db, zLeft); 1969 sqlite3DbFree(db, zRight); 1970 } 1971 #ifndef SQLITE_OMIT_VIRTUALTABLE 1972 /***************************************************************************** 1973 ** Implementation of an eponymous virtual table that runs a pragma. 1974 ** 1975 */ 1976 typedef struct PragmaVtab PragmaVtab; 1977 typedef struct PragmaVtabCursor PragmaVtabCursor; 1978 struct PragmaVtab { 1979 sqlite3_vtab base; /* Base class. Must be first */ 1980 sqlite3 *db; /* The database connection to which it belongs */ 1981 const PragmaName *pName; /* Name of the pragma */ 1982 u8 nHidden; /* Number of hidden columns */ 1983 u8 iHidden; /* Index of the first hidden column */ 1984 }; 1985 struct PragmaVtabCursor { 1986 sqlite3_vtab_cursor base; /* Base class. Must be first */ 1987 sqlite3_stmt *pPragma; /* The pragma statement to run */ 1988 sqlite_int64 iRowid; /* Current rowid */ 1989 char *azArg[2]; /* Value of the argument and schema */ 1990 }; 1991 1992 /* 1993 ** Pragma virtual table module xConnect method. 1994 */ 1995 static int pragmaVtabConnect( 1996 sqlite3 *db, 1997 void *pAux, 1998 int argc, const char *const*argv, 1999 sqlite3_vtab **ppVtab, 2000 char **pzErr 2001 ){ 2002 const PragmaName *pPragma = (const PragmaName*)pAux; 2003 PragmaVtab *pTab = 0; 2004 int rc; 2005 int i, j; 2006 char cSep = '('; 2007 StrAccum acc; 2008 char zBuf[200]; 2009 2010 UNUSED_PARAMETER(argc); 2011 UNUSED_PARAMETER(argv); 2012 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 2013 sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x"); 2014 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ 2015 sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]); 2016 cSep = ','; 2017 } 2018 if( i==0 ){ 2019 sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName); 2020 cSep = ','; 2021 i++; 2022 } 2023 j = 0; 2024 if( pPragma->mPragFlg & PragFlg_Result1 ){ 2025 sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN"); 2026 j++; 2027 } 2028 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ 2029 sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN"); 2030 j++; 2031 } 2032 sqlite3StrAccumAppend(&acc, ")", 1); 2033 sqlite3StrAccumFinish(&acc); 2034 assert( strlen(zBuf) < sizeof(zBuf)-1 ); 2035 rc = sqlite3_declare_vtab(db, zBuf); 2036 if( rc==SQLITE_OK ){ 2037 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); 2038 if( pTab==0 ){ 2039 rc = SQLITE_NOMEM; 2040 }else{ 2041 memset(pTab, 0, sizeof(PragmaVtab)); 2042 pTab->pName = pPragma; 2043 pTab->db = db; 2044 pTab->iHidden = i; 2045 pTab->nHidden = j; 2046 } 2047 }else{ 2048 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2049 } 2050 2051 *ppVtab = (sqlite3_vtab*)pTab; 2052 return rc; 2053 } 2054 2055 /* 2056 ** Pragma virtual table module xDisconnect method. 2057 */ 2058 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ 2059 PragmaVtab *pTab = (PragmaVtab*)pVtab; 2060 sqlite3_free(pTab); 2061 return SQLITE_OK; 2062 } 2063 2064 /* Figure out the best index to use to search a pragma virtual table. 2065 ** 2066 ** There are not really any index choices. But we want to encourage the 2067 ** query planner to give == constraints on as many hidden parameters as 2068 ** possible, and especially on the first hidden parameter. So return a 2069 ** high cost if hidden parameters are unconstrained. 2070 */ 2071 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 2072 PragmaVtab *pTab = (PragmaVtab*)tab; 2073 const struct sqlite3_index_constraint *pConstraint; 2074 int i, j; 2075 int seen[2]; 2076 2077 pIdxInfo->estimatedCost = (double)1; 2078 if( pTab->nHidden==0 ){ return SQLITE_OK; } 2079 pConstraint = pIdxInfo->aConstraint; 2080 seen[0] = 0; 2081 seen[1] = 0; 2082 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 2083 if( pConstraint->usable==0 ) continue; 2084 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 2085 if( pConstraint->iColumn < pTab->iHidden ) continue; 2086 j = pConstraint->iColumn - pTab->iHidden; 2087 assert( j < 2 ); 2088 seen[j] = i+1; 2089 } 2090 if( seen[0]==0 ){ 2091 pIdxInfo->estimatedCost = (double)2147483647; 2092 pIdxInfo->estimatedRows = 2147483647; 2093 return SQLITE_OK; 2094 } 2095 j = seen[0]-1; 2096 pIdxInfo->aConstraintUsage[j].argvIndex = 1; 2097 pIdxInfo->aConstraintUsage[j].omit = 1; 2098 if( seen[1]==0 ) return SQLITE_OK; 2099 pIdxInfo->estimatedCost = (double)20; 2100 pIdxInfo->estimatedRows = 20; 2101 j = seen[1]-1; 2102 pIdxInfo->aConstraintUsage[j].argvIndex = 2; 2103 pIdxInfo->aConstraintUsage[j].omit = 1; 2104 return SQLITE_OK; 2105 } 2106 2107 /* Create a new cursor for the pragma virtual table */ 2108 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ 2109 PragmaVtabCursor *pCsr; 2110 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); 2111 if( pCsr==0 ) return SQLITE_NOMEM; 2112 memset(pCsr, 0, sizeof(PragmaVtabCursor)); 2113 pCsr->base.pVtab = pVtab; 2114 *ppCursor = &pCsr->base; 2115 return SQLITE_OK; 2116 } 2117 2118 /* Clear all content from pragma virtual table cursor. */ 2119 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ 2120 int i; 2121 sqlite3_finalize(pCsr->pPragma); 2122 pCsr->pPragma = 0; 2123 for(i=0; i<ArraySize(pCsr->azArg); i++){ 2124 sqlite3_free(pCsr->azArg[i]); 2125 pCsr->azArg[i] = 0; 2126 } 2127 } 2128 2129 /* Close a pragma virtual table cursor */ 2130 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ 2131 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; 2132 pragmaVtabCursorClear(pCsr); 2133 sqlite3_free(pCsr); 2134 return SQLITE_OK; 2135 } 2136 2137 /* Advance the pragma virtual table cursor to the next row */ 2138 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ 2139 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2140 int rc = SQLITE_OK; 2141 2142 /* Increment the xRowid value */ 2143 pCsr->iRowid++; 2144 assert( pCsr->pPragma ); 2145 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ 2146 rc = sqlite3_finalize(pCsr->pPragma); 2147 pCsr->pPragma = 0; 2148 pragmaVtabCursorClear(pCsr); 2149 } 2150 return rc; 2151 } 2152 2153 /* 2154 ** Pragma virtual table module xFilter method. 2155 */ 2156 static int pragmaVtabFilter( 2157 sqlite3_vtab_cursor *pVtabCursor, 2158 int idxNum, const char *idxStr, 2159 int argc, sqlite3_value **argv 2160 ){ 2161 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2162 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2163 int rc; 2164 int i, j; 2165 StrAccum acc; 2166 char *zSql; 2167 2168 UNUSED_PARAMETER(idxNum); 2169 UNUSED_PARAMETER(idxStr); 2170 pragmaVtabCursorClear(pCsr); 2171 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; 2172 for(i=0; i<argc; i++, j++){ 2173 assert( j<ArraySize(pCsr->azArg) ); 2174 pCsr->azArg[j] = sqlite3_mprintf("%s", sqlite3_value_text(argv[i])); 2175 if( pCsr->azArg[j]==0 ){ 2176 return SQLITE_NOMEM; 2177 } 2178 } 2179 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); 2180 sqlite3StrAccumAppendAll(&acc, "PRAGMA "); 2181 if( pCsr->azArg[1] ){ 2182 sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]); 2183 } 2184 sqlite3StrAccumAppendAll(&acc, pTab->pName->zName); 2185 if( pCsr->azArg[0] ){ 2186 sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]); 2187 } 2188 zSql = sqlite3StrAccumFinish(&acc); 2189 if( zSql==0 ) return SQLITE_NOMEM; 2190 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); 2191 sqlite3_free(zSql); 2192 if( rc!=SQLITE_OK ){ 2193 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); 2194 return rc; 2195 } 2196 return pragmaVtabNext(pVtabCursor); 2197 } 2198 2199 /* 2200 ** Pragma virtual table module xEof method. 2201 */ 2202 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ 2203 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2204 return (pCsr->pPragma==0); 2205 } 2206 2207 /* The xColumn method simply returns the corresponding column from 2208 ** the PRAGMA. 2209 */ 2210 static int pragmaVtabColumn( 2211 sqlite3_vtab_cursor *pVtabCursor, 2212 sqlite3_context *ctx, 2213 int i 2214 ){ 2215 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2216 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2217 if( i<pTab->iHidden ){ 2218 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); 2219 }else{ 2220 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); 2221 } 2222 return SQLITE_OK; 2223 } 2224 2225 /* 2226 ** Pragma virtual table module xRowid method. 2227 */ 2228 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ 2229 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2230 *p = pCsr->iRowid; 2231 return SQLITE_OK; 2232 } 2233 2234 /* The pragma virtual table object */ 2235 static const sqlite3_module pragmaVtabModule = { 2236 0, /* iVersion */ 2237 0, /* xCreate - create a table */ 2238 pragmaVtabConnect, /* xConnect - connect to an existing table */ 2239 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ 2240 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 2241 0, /* xDestroy - Drop a table */ 2242 pragmaVtabOpen, /* xOpen - open a cursor */ 2243 pragmaVtabClose, /* xClose - close a cursor */ 2244 pragmaVtabFilter, /* xFilter - configure scan constraints */ 2245 pragmaVtabNext, /* xNext - advance a cursor */ 2246 pragmaVtabEof, /* xEof */ 2247 pragmaVtabColumn, /* xColumn - read data */ 2248 pragmaVtabRowid, /* xRowid - read data */ 2249 0, /* xUpdate - write data */ 2250 0, /* xBegin - begin transaction */ 2251 0, /* xSync - sync transaction */ 2252 0, /* xCommit - commit transaction */ 2253 0, /* xRollback - rollback transaction */ 2254 0, /* xFindFunction - function overloading */ 2255 0, /* xRename - rename the table */ 2256 0, /* xSavepoint */ 2257 0, /* xRelease */ 2258 0 /* xRollbackTo */ 2259 }; 2260 2261 /* 2262 ** Check to see if zTabName is really the name of a pragma. If it is, 2263 ** then register an eponymous virtual table for that pragma and return 2264 ** a pointer to the Module object for the new virtual table. 2265 */ 2266 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ 2267 const PragmaName *pName; 2268 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); 2269 pName = pragmaLocate(zName+7); 2270 if( pName==0 ) return 0; 2271 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; 2272 assert( sqlite3HashFind(&db->aModule, zName)==0 ); 2273 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); 2274 } 2275 2276 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2277 2278 #endif /* SQLITE_OMIT_PRAGMA */ 2279