xref: /sqlite-3.40.0/src/pragma.c (revision 87f500ce)
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15 
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 #  if defined(__APPLE__)
18 #    define SQLITE_ENABLE_LOCKING_STYLE 1
19 #  else
20 #    define SQLITE_ENABLE_LOCKING_STYLE 0
21 #  endif
22 #endif
23 
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object.  This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly.  Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32 
33 /*
34 ** Interpret the given string as a safety level.  Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
36 ** unrecognized string argument.  The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
41 ** to support legacy SQL code.  The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45                              /* 123456789 123456789 123 */
46   static const char zText[] = "onoffalseyestruextrafull";
47   static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
48   static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
49   static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
50                             /* on no off false yes true extra full */
51   int i, n;
52   if( sqlite3Isdigit(*z) ){
53     return (u8)sqlite3Atoi(z);
54   }
55   n = sqlite3Strlen30(z);
56   for(i=0; i<ArraySize(iLength); i++){
57     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58      && (!omitFull || iValue[i]<=1)
59     ){
60       return iValue[i];
61     }
62   }
63   return dflt;
64 }
65 
66 /*
67 ** Interpret the given string as a boolean value.
68 */
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70   return getSafetyLevel(z,1,dflt)!=0;
71 }
72 
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing.  So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78 
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
82 static int getLockingMode(const char *z){
83   if( z ){
84     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86   }
87   return PAGER_LOCKINGMODE_QUERY;
88 }
89 
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
97 static int getAutoVacuum(const char *z){
98   int i;
99   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102   i = sqlite3Atoi(z);
103   return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106 
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
113 static int getTempStore(const char *z){
114   if( z[0]>='0' && z[0]<='2' ){
115     return z[0] - '0';
116   }else if( sqlite3StrICmp(z, "file")==0 ){
117     return 1;
118   }else if( sqlite3StrICmp(z, "memory")==0 ){
119     return 2;
120   }else{
121     return 0;
122   }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125 
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
131 static int invalidateTempStorage(Parse *pParse){
132   sqlite3 *db = pParse->db;
133   if( db->aDb[1].pBt!=0 ){
134     if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136         "from within a transaction");
137       return SQLITE_ERROR;
138     }
139     sqlite3BtreeClose(db->aDb[1].pBt);
140     db->aDb[1].pBt = 0;
141     sqlite3ResetAllSchemasOfConnection(db);
142   }
143   return SQLITE_OK;
144 }
145 #endif /* SQLITE_PAGER_PRAGMAS */
146 
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
148 /*
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
152 */
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154   int ts = getTempStore(zStorageType);
155   sqlite3 *db = pParse->db;
156   if( db->temp_store==ts ) return SQLITE_OK;
157   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158     return SQLITE_ERROR;
159   }
160   db->temp_store = (u8)ts;
161   return SQLITE_OK;
162 }
163 #endif /* SQLITE_PAGER_PRAGMAS */
164 
165 /*
166 ** Set result column names for a pragma.
167 */
168 static void setPragmaResultColumnNames(
169   Vdbe *v,                     /* The query under construction */
170   const PragmaName *pPragma    /* The pragma */
171 ){
172   u8 n = pPragma->nPragCName;
173   sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174   if( n==0 ){
175     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176   }else{
177     int i, j;
178     for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179       sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
180     }
181   }
182 }
183 
184 /*
185 ** Generate code to return a single integer value.
186 */
187 static void returnSingleInt(Vdbe *v, i64 value){
188   sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189   sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
190 }
191 
192 /*
193 ** Generate code to return a single text value.
194 */
195 static void returnSingleText(
196   Vdbe *v,                /* Prepared statement under construction */
197   const char *zValue      /* Value to be returned */
198 ){
199   if( zValue ){
200     sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
202   }
203 }
204 
205 
206 /*
207 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
208 ** set these values for all pagers.
209 */
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212   if( db->autoCommit ){
213     Db *pDb = db->aDb;
214     int n = db->nDb;
215     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219              ==  PAGER_FLAGS_MASK );
220     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221     while( (n--) > 0 ){
222       if( pDb->pBt ){
223         sqlite3BtreeSetPagerFlags(pDb->pBt,
224                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
225       }
226       pDb++;
227     }
228   }
229 }
230 #else
231 # define setAllPagerFlags(X)  /* no-op */
232 #endif
233 
234 
235 /*
236 ** Return a human-readable name for a constraint resolution action.
237 */
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240   const char *zName;
241   switch( action ){
242     case OE_SetNull:  zName = "SET NULL";        break;
243     case OE_SetDflt:  zName = "SET DEFAULT";     break;
244     case OE_Cascade:  zName = "CASCADE";         break;
245     case OE_Restrict: zName = "RESTRICT";        break;
246     default:          zName = "NO ACTION";
247                       assert( action==OE_None ); break;
248   }
249   return zName;
250 }
251 #endif
252 
253 
254 /*
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
258 */
259 const char *sqlite3JournalModename(int eMode){
260   static char * const azModeName[] = {
261     "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263      , "wal"
264 #endif
265   };
266   assert( PAGER_JOURNALMODE_DELETE==0 );
267   assert( PAGER_JOURNALMODE_PERSIST==1 );
268   assert( PAGER_JOURNALMODE_OFF==2 );
269   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270   assert( PAGER_JOURNALMODE_MEMORY==4 );
271   assert( PAGER_JOURNALMODE_WAL==5 );
272   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
273 
274   if( eMode==ArraySize(azModeName) ) return 0;
275   return azModeName[eMode];
276 }
277 
278 /*
279 ** Locate a pragma in the aPragmaName[] array.
280 */
281 static const PragmaName *pragmaLocate(const char *zName){
282   int upr, lwr, mid, rc;
283   lwr = 0;
284   upr = ArraySize(aPragmaName)-1;
285   while( lwr<=upr ){
286     mid = (lwr+upr)/2;
287     rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288     if( rc==0 ) break;
289     if( rc<0 ){
290       upr = mid - 1;
291     }else{
292       lwr = mid + 1;
293     }
294   }
295   return lwr>upr ? 0 : &aPragmaName[mid];
296 }
297 
298 /*
299 ** Process a pragma statement.
300 **
301 ** Pragmas are of this form:
302 **
303 **      PRAGMA [schema.]id [= value]
304 **
305 ** The identifier might also be a string.  The value is a string, and
306 ** identifier, or a number.  If minusFlag is true, then the value is
307 ** a number that was preceded by a minus sign.
308 **
309 ** If the left side is "database.id" then pId1 is the database name
310 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
311 ** id and pId2 is any empty string.
312 */
313 void sqlite3Pragma(
314   Parse *pParse,
315   Token *pId1,        /* First part of [schema.]id field */
316   Token *pId2,        /* Second part of [schema.]id field, or NULL */
317   Token *pValue,      /* Token for <value>, or NULL */
318   int minusFlag       /* True if a '-' sign preceded <value> */
319 ){
320   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
321   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
322   const char *zDb = 0;   /* The database name */
323   Token *pId;            /* Pointer to <id> token */
324   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
325   int iDb;               /* Database index for <database> */
326   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
327   sqlite3 *db = pParse->db;    /* The database connection */
328   Db *pDb;                     /* The specific database being pragmaed */
329   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
330   const PragmaName *pPragma;   /* The pragma */
331 
332   if( v==0 ) return;
333   sqlite3VdbeRunOnlyOnce(v);
334   pParse->nMem = 2;
335 
336   /* Interpret the [schema.] part of the pragma statement. iDb is the
337   ** index of the database this pragma is being applied to in db.aDb[]. */
338   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
339   if( iDb<0 ) return;
340   pDb = &db->aDb[iDb];
341 
342   /* If the temp database has been explicitly named as part of the
343   ** pragma, make sure it is open.
344   */
345   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
346     return;
347   }
348 
349   zLeft = sqlite3NameFromToken(db, pId);
350   if( !zLeft ) return;
351   if( minusFlag ){
352     zRight = sqlite3MPrintf(db, "-%T", pValue);
353   }else{
354     zRight = sqlite3NameFromToken(db, pValue);
355   }
356 
357   assert( pId2 );
358   zDb = pId2->n>0 ? pDb->zDbSName : 0;
359   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
360     goto pragma_out;
361   }
362 
363   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
364   ** connection.  If it returns SQLITE_OK, then assume that the VFS
365   ** handled the pragma and generate a no-op prepared statement.
366   **
367   ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
368   ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
369   ** object corresponding to the database file to which the pragma
370   ** statement refers.
371   **
372   ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
373   ** file control is an array of pointers to strings (char**) in which the
374   ** second element of the array is the name of the pragma and the third
375   ** element is the argument to the pragma or NULL if the pragma has no
376   ** argument.
377   */
378   aFcntl[0] = 0;
379   aFcntl[1] = zLeft;
380   aFcntl[2] = zRight;
381   aFcntl[3] = 0;
382   db->busyHandler.nBusy = 0;
383   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
384   if( rc==SQLITE_OK ){
385     sqlite3VdbeSetNumCols(v, 1);
386     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
387     returnSingleText(v, aFcntl[0]);
388     sqlite3_free(aFcntl[0]);
389     goto pragma_out;
390   }
391   if( rc!=SQLITE_NOTFOUND ){
392     if( aFcntl[0] ){
393       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
394       sqlite3_free(aFcntl[0]);
395     }
396     pParse->nErr++;
397     pParse->rc = rc;
398     goto pragma_out;
399   }
400 
401   /* Locate the pragma in the lookup table */
402   pPragma = pragmaLocate(zLeft);
403   if( pPragma==0 ) goto pragma_out;
404 
405   /* Make sure the database schema is loaded if the pragma requires that */
406   if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
407     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
408   }
409 
410   /* Register the result column names for pragmas that return results */
411   if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
412    && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
413   ){
414     setPragmaResultColumnNames(v, pPragma);
415   }
416 
417   /* Jump to the appropriate pragma handler */
418   switch( pPragma->ePragTyp ){
419 
420 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
421   /*
422   **  PRAGMA [schema.]default_cache_size
423   **  PRAGMA [schema.]default_cache_size=N
424   **
425   ** The first form reports the current persistent setting for the
426   ** page cache size.  The value returned is the maximum number of
427   ** pages in the page cache.  The second form sets both the current
428   ** page cache size value and the persistent page cache size value
429   ** stored in the database file.
430   **
431   ** Older versions of SQLite would set the default cache size to a
432   ** negative number to indicate synchronous=OFF.  These days, synchronous
433   ** is always on by default regardless of the sign of the default cache
434   ** size.  But continue to take the absolute value of the default cache
435   ** size of historical compatibility.
436   */
437   case PragTyp_DEFAULT_CACHE_SIZE: {
438     static const int iLn = VDBE_OFFSET_LINENO(2);
439     static const VdbeOpList getCacheSize[] = {
440       { OP_Transaction, 0, 0,        0},                         /* 0 */
441       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
442       { OP_IfPos,       1, 8,        0},
443       { OP_Integer,     0, 2,        0},
444       { OP_Subtract,    1, 2,        1},
445       { OP_IfPos,       1, 8,        0},
446       { OP_Integer,     0, 1,        0},                         /* 6 */
447       { OP_Noop,        0, 0,        0},
448       { OP_ResultRow,   1, 1,        0},
449     };
450     VdbeOp *aOp;
451     sqlite3VdbeUsesBtree(v, iDb);
452     if( !zRight ){
453       pParse->nMem += 2;
454       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
455       aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
456       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
457       aOp[0].p1 = iDb;
458       aOp[1].p1 = iDb;
459       aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
460     }else{
461       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
462       sqlite3BeginWriteOperation(pParse, 0, iDb);
463       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
464       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465       pDb->pSchema->cache_size = size;
466       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
467     }
468     break;
469   }
470 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
471 
472 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
473   /*
474   **  PRAGMA [schema.]page_size
475   **  PRAGMA [schema.]page_size=N
476   **
477   ** The first form reports the current setting for the
478   ** database page size in bytes.  The second form sets the
479   ** database page size value.  The value can only be set if
480   ** the database has not yet been created.
481   */
482   case PragTyp_PAGE_SIZE: {
483     Btree *pBt = pDb->pBt;
484     assert( pBt!=0 );
485     if( !zRight ){
486       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
487       returnSingleInt(v, size);
488     }else{
489       /* Malloc may fail when setting the page-size, as there is an internal
490       ** buffer that the pager module resizes using sqlite3_realloc().
491       */
492       db->nextPagesize = sqlite3Atoi(zRight);
493       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
494         sqlite3OomFault(db);
495       }
496     }
497     break;
498   }
499 
500   /*
501   **  PRAGMA [schema.]secure_delete
502   **  PRAGMA [schema.]secure_delete=ON/OFF
503   **
504   ** The first form reports the current setting for the
505   ** secure_delete flag.  The second form changes the secure_delete
506   ** flag setting and reports thenew value.
507   */
508   case PragTyp_SECURE_DELETE: {
509     Btree *pBt = pDb->pBt;
510     int b = -1;
511     assert( pBt!=0 );
512     if( zRight ){
513       b = sqlite3GetBoolean(zRight, 0);
514     }
515     if( pId2->n==0 && b>=0 ){
516       int ii;
517       for(ii=0; ii<db->nDb; ii++){
518         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
519       }
520     }
521     b = sqlite3BtreeSecureDelete(pBt, b);
522     returnSingleInt(v, b);
523     break;
524   }
525 
526   /*
527   **  PRAGMA [schema.]max_page_count
528   **  PRAGMA [schema.]max_page_count=N
529   **
530   ** The first form reports the current setting for the
531   ** maximum number of pages in the database file.  The
532   ** second form attempts to change this setting.  Both
533   ** forms return the current setting.
534   **
535   ** The absolute value of N is used.  This is undocumented and might
536   ** change.  The only purpose is to provide an easy way to test
537   ** the sqlite3AbsInt32() function.
538   **
539   **  PRAGMA [schema.]page_count
540   **
541   ** Return the number of pages in the specified database.
542   */
543   case PragTyp_PAGE_COUNT: {
544     int iReg;
545     sqlite3CodeVerifySchema(pParse, iDb);
546     iReg = ++pParse->nMem;
547     if( sqlite3Tolower(zLeft[0])=='p' ){
548       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
549     }else{
550       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
551                         sqlite3AbsInt32(sqlite3Atoi(zRight)));
552     }
553     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
554     break;
555   }
556 
557   /*
558   **  PRAGMA [schema.]locking_mode
559   **  PRAGMA [schema.]locking_mode = (normal|exclusive)
560   */
561   case PragTyp_LOCKING_MODE: {
562     const char *zRet = "normal";
563     int eMode = getLockingMode(zRight);
564 
565     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
566       /* Simple "PRAGMA locking_mode;" statement. This is a query for
567       ** the current default locking mode (which may be different to
568       ** the locking-mode of the main database).
569       */
570       eMode = db->dfltLockMode;
571     }else{
572       Pager *pPager;
573       if( pId2->n==0 ){
574         /* This indicates that no database name was specified as part
575         ** of the PRAGMA command. In this case the locking-mode must be
576         ** set on all attached databases, as well as the main db file.
577         **
578         ** Also, the sqlite3.dfltLockMode variable is set so that
579         ** any subsequently attached databases also use the specified
580         ** locking mode.
581         */
582         int ii;
583         assert(pDb==&db->aDb[0]);
584         for(ii=2; ii<db->nDb; ii++){
585           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
586           sqlite3PagerLockingMode(pPager, eMode);
587         }
588         db->dfltLockMode = (u8)eMode;
589       }
590       pPager = sqlite3BtreePager(pDb->pBt);
591       eMode = sqlite3PagerLockingMode(pPager, eMode);
592     }
593 
594     assert( eMode==PAGER_LOCKINGMODE_NORMAL
595             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
596     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
597       zRet = "exclusive";
598     }
599     returnSingleText(v, zRet);
600     break;
601   }
602 
603   /*
604   **  PRAGMA [schema.]journal_mode
605   **  PRAGMA [schema.]journal_mode =
606   **                      (delete|persist|off|truncate|memory|wal|off)
607   */
608   case PragTyp_JOURNAL_MODE: {
609     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
610     int ii;           /* Loop counter */
611 
612     if( zRight==0 ){
613       /* If there is no "=MODE" part of the pragma, do a query for the
614       ** current mode */
615       eMode = PAGER_JOURNALMODE_QUERY;
616     }else{
617       const char *zMode;
618       int n = sqlite3Strlen30(zRight);
619       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
620         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
621       }
622       if( !zMode ){
623         /* If the "=MODE" part does not match any known journal mode,
624         ** then do a query */
625         eMode = PAGER_JOURNALMODE_QUERY;
626       }
627     }
628     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
629       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
630       iDb = 0;
631       pId2->n = 1;
632     }
633     for(ii=db->nDb-1; ii>=0; ii--){
634       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
635         sqlite3VdbeUsesBtree(v, ii);
636         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
637       }
638     }
639     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
640     break;
641   }
642 
643   /*
644   **  PRAGMA [schema.]journal_size_limit
645   **  PRAGMA [schema.]journal_size_limit=N
646   **
647   ** Get or set the size limit on rollback journal files.
648   */
649   case PragTyp_JOURNAL_SIZE_LIMIT: {
650     Pager *pPager = sqlite3BtreePager(pDb->pBt);
651     i64 iLimit = -2;
652     if( zRight ){
653       sqlite3DecOrHexToI64(zRight, &iLimit);
654       if( iLimit<-1 ) iLimit = -1;
655     }
656     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
657     returnSingleInt(v, iLimit);
658     break;
659   }
660 
661 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
662 
663   /*
664   **  PRAGMA [schema.]auto_vacuum
665   **  PRAGMA [schema.]auto_vacuum=N
666   **
667   ** Get or set the value of the database 'auto-vacuum' parameter.
668   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
669   */
670 #ifndef SQLITE_OMIT_AUTOVACUUM
671   case PragTyp_AUTO_VACUUM: {
672     Btree *pBt = pDb->pBt;
673     assert( pBt!=0 );
674     if( !zRight ){
675       returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
676     }else{
677       int eAuto = getAutoVacuum(zRight);
678       assert( eAuto>=0 && eAuto<=2 );
679       db->nextAutovac = (u8)eAuto;
680       /* Call SetAutoVacuum() to set initialize the internal auto and
681       ** incr-vacuum flags. This is required in case this connection
682       ** creates the database file. It is important that it is created
683       ** as an auto-vacuum capable db.
684       */
685       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
686       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
687         /* When setting the auto_vacuum mode to either "full" or
688         ** "incremental", write the value of meta[6] in the database
689         ** file. Before writing to meta[6], check that meta[3] indicates
690         ** that this really is an auto-vacuum capable database.
691         */
692         static const int iLn = VDBE_OFFSET_LINENO(2);
693         static const VdbeOpList setMeta6[] = {
694           { OP_Transaction,    0,         1,                 0},    /* 0 */
695           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
696           { OP_If,             1,         0,                 0},    /* 2 */
697           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
698           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
699         };
700         VdbeOp *aOp;
701         int iAddr = sqlite3VdbeCurrentAddr(v);
702         sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
703         aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
704         if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
705         aOp[0].p1 = iDb;
706         aOp[1].p1 = iDb;
707         aOp[2].p2 = iAddr+4;
708         aOp[4].p1 = iDb;
709         aOp[4].p3 = eAuto - 1;
710         sqlite3VdbeUsesBtree(v, iDb);
711       }
712     }
713     break;
714   }
715 #endif
716 
717   /*
718   **  PRAGMA [schema.]incremental_vacuum(N)
719   **
720   ** Do N steps of incremental vacuuming on a database.
721   */
722 #ifndef SQLITE_OMIT_AUTOVACUUM
723   case PragTyp_INCREMENTAL_VACUUM: {
724     int iLimit, addr;
725     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
726       iLimit = 0x7fffffff;
727     }
728     sqlite3BeginWriteOperation(pParse, 0, iDb);
729     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
730     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
731     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
732     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
733     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
734     sqlite3VdbeJumpHere(v, addr);
735     break;
736   }
737 #endif
738 
739 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
740   /*
741   **  PRAGMA [schema.]cache_size
742   **  PRAGMA [schema.]cache_size=N
743   **
744   ** The first form reports the current local setting for the
745   ** page cache size. The second form sets the local
746   ** page cache size value.  If N is positive then that is the
747   ** number of pages in the cache.  If N is negative, then the
748   ** number of pages is adjusted so that the cache uses -N kibibytes
749   ** of memory.
750   */
751   case PragTyp_CACHE_SIZE: {
752     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
753     if( !zRight ){
754       returnSingleInt(v, pDb->pSchema->cache_size);
755     }else{
756       int size = sqlite3Atoi(zRight);
757       pDb->pSchema->cache_size = size;
758       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
759     }
760     break;
761   }
762 
763   /*
764   **  PRAGMA [schema.]cache_spill
765   **  PRAGMA cache_spill=BOOLEAN
766   **  PRAGMA [schema.]cache_spill=N
767   **
768   ** The first form reports the current local setting for the
769   ** page cache spill size. The second form turns cache spill on
770   ** or off.  When turnning cache spill on, the size is set to the
771   ** current cache_size.  The third form sets a spill size that
772   ** may be different form the cache size.
773   ** If N is positive then that is the
774   ** number of pages in the cache.  If N is negative, then the
775   ** number of pages is adjusted so that the cache uses -N kibibytes
776   ** of memory.
777   **
778   ** If the number of cache_spill pages is less then the number of
779   ** cache_size pages, no spilling occurs until the page count exceeds
780   ** the number of cache_size pages.
781   **
782   ** The cache_spill=BOOLEAN setting applies to all attached schemas,
783   ** not just the schema specified.
784   */
785   case PragTyp_CACHE_SPILL: {
786     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
787     if( !zRight ){
788       returnSingleInt(v,
789          (db->flags & SQLITE_CacheSpill)==0 ? 0 :
790             sqlite3BtreeSetSpillSize(pDb->pBt,0));
791     }else{
792       int size = 1;
793       if( sqlite3GetInt32(zRight, &size) ){
794         sqlite3BtreeSetSpillSize(pDb->pBt, size);
795       }
796       if( sqlite3GetBoolean(zRight, size!=0) ){
797         db->flags |= SQLITE_CacheSpill;
798       }else{
799         db->flags &= ~SQLITE_CacheSpill;
800       }
801       setAllPagerFlags(db);
802     }
803     break;
804   }
805 
806   /*
807   **  PRAGMA [schema.]mmap_size(N)
808   **
809   ** Used to set mapping size limit. The mapping size limit is
810   ** used to limit the aggregate size of all memory mapped regions of the
811   ** database file. If this parameter is set to zero, then memory mapping
812   ** is not used at all.  If N is negative, then the default memory map
813   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
814   ** The parameter N is measured in bytes.
815   **
816   ** This value is advisory.  The underlying VFS is free to memory map
817   ** as little or as much as it wants.  Except, if N is set to 0 then the
818   ** upper layers will never invoke the xFetch interfaces to the VFS.
819   */
820   case PragTyp_MMAP_SIZE: {
821     sqlite3_int64 sz;
822 #if SQLITE_MAX_MMAP_SIZE>0
823     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
824     if( zRight ){
825       int ii;
826       sqlite3DecOrHexToI64(zRight, &sz);
827       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
828       if( pId2->n==0 ) db->szMmap = sz;
829       for(ii=db->nDb-1; ii>=0; ii--){
830         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
831           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
832         }
833       }
834     }
835     sz = -1;
836     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
837 #else
838     sz = 0;
839     rc = SQLITE_OK;
840 #endif
841     if( rc==SQLITE_OK ){
842       returnSingleInt(v, sz);
843     }else if( rc!=SQLITE_NOTFOUND ){
844       pParse->nErr++;
845       pParse->rc = rc;
846     }
847     break;
848   }
849 
850   /*
851   **   PRAGMA temp_store
852   **   PRAGMA temp_store = "default"|"memory"|"file"
853   **
854   ** Return or set the local value of the temp_store flag.  Changing
855   ** the local value does not make changes to the disk file and the default
856   ** value will be restored the next time the database is opened.
857   **
858   ** Note that it is possible for the library compile-time options to
859   ** override this setting
860   */
861   case PragTyp_TEMP_STORE: {
862     if( !zRight ){
863       returnSingleInt(v, db->temp_store);
864     }else{
865       changeTempStorage(pParse, zRight);
866     }
867     break;
868   }
869 
870   /*
871   **   PRAGMA temp_store_directory
872   **   PRAGMA temp_store_directory = ""|"directory_name"
873   **
874   ** Return or set the local value of the temp_store_directory flag.  Changing
875   ** the value sets a specific directory to be used for temporary files.
876   ** Setting to a null string reverts to the default temporary directory search.
877   ** If temporary directory is changed, then invalidateTempStorage.
878   **
879   */
880   case PragTyp_TEMP_STORE_DIRECTORY: {
881     if( !zRight ){
882       returnSingleText(v, sqlite3_temp_directory);
883     }else{
884 #ifndef SQLITE_OMIT_WSD
885       if( zRight[0] ){
886         int res;
887         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
888         if( rc!=SQLITE_OK || res==0 ){
889           sqlite3ErrorMsg(pParse, "not a writable directory");
890           goto pragma_out;
891         }
892       }
893       if( SQLITE_TEMP_STORE==0
894        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
895        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
896       ){
897         invalidateTempStorage(pParse);
898       }
899       sqlite3_free(sqlite3_temp_directory);
900       if( zRight[0] ){
901         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
902       }else{
903         sqlite3_temp_directory = 0;
904       }
905 #endif /* SQLITE_OMIT_WSD */
906     }
907     break;
908   }
909 
910 #if SQLITE_OS_WIN
911   /*
912   **   PRAGMA data_store_directory
913   **   PRAGMA data_store_directory = ""|"directory_name"
914   **
915   ** Return or set the local value of the data_store_directory flag.  Changing
916   ** the value sets a specific directory to be used for database files that
917   ** were specified with a relative pathname.  Setting to a null string reverts
918   ** to the default database directory, which for database files specified with
919   ** a relative path will probably be based on the current directory for the
920   ** process.  Database file specified with an absolute path are not impacted
921   ** by this setting, regardless of its value.
922   **
923   */
924   case PragTyp_DATA_STORE_DIRECTORY: {
925     if( !zRight ){
926       returnSingleText(v, sqlite3_data_directory);
927     }else{
928 #ifndef SQLITE_OMIT_WSD
929       if( zRight[0] ){
930         int res;
931         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
932         if( rc!=SQLITE_OK || res==0 ){
933           sqlite3ErrorMsg(pParse, "not a writable directory");
934           goto pragma_out;
935         }
936       }
937       sqlite3_free(sqlite3_data_directory);
938       if( zRight[0] ){
939         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
940       }else{
941         sqlite3_data_directory = 0;
942       }
943 #endif /* SQLITE_OMIT_WSD */
944     }
945     break;
946   }
947 #endif
948 
949 #if SQLITE_ENABLE_LOCKING_STYLE
950   /*
951   **   PRAGMA [schema.]lock_proxy_file
952   **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
953   **
954   ** Return or set the value of the lock_proxy_file flag.  Changing
955   ** the value sets a specific file to be used for database access locks.
956   **
957   */
958   case PragTyp_LOCK_PROXY_FILE: {
959     if( !zRight ){
960       Pager *pPager = sqlite3BtreePager(pDb->pBt);
961       char *proxy_file_path = NULL;
962       sqlite3_file *pFile = sqlite3PagerFile(pPager);
963       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
964                            &proxy_file_path);
965       returnSingleText(v, proxy_file_path);
966     }else{
967       Pager *pPager = sqlite3BtreePager(pDb->pBt);
968       sqlite3_file *pFile = sqlite3PagerFile(pPager);
969       int res;
970       if( zRight[0] ){
971         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
972                                      zRight);
973       } else {
974         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
975                                      NULL);
976       }
977       if( res!=SQLITE_OK ){
978         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
979         goto pragma_out;
980       }
981     }
982     break;
983   }
984 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
985 
986   /*
987   **   PRAGMA [schema.]synchronous
988   **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
989   **
990   ** Return or set the local value of the synchronous flag.  Changing
991   ** the local value does not make changes to the disk file and the
992   ** default value will be restored the next time the database is
993   ** opened.
994   */
995   case PragTyp_SYNCHRONOUS: {
996     if( !zRight ){
997       returnSingleInt(v, pDb->safety_level-1);
998     }else{
999       if( !db->autoCommit ){
1000         sqlite3ErrorMsg(pParse,
1001             "Safety level may not be changed inside a transaction");
1002       }else{
1003         int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1004         if( iLevel==0 ) iLevel = 1;
1005         pDb->safety_level = iLevel;
1006         pDb->bSyncSet = 1;
1007         setAllPagerFlags(db);
1008       }
1009     }
1010     break;
1011   }
1012 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1013 
1014 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1015   case PragTyp_FLAG: {
1016     if( zRight==0 ){
1017       setPragmaResultColumnNames(v, pPragma);
1018       returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1019     }else{
1020       int mask = pPragma->iArg;    /* Mask of bits to set or clear. */
1021       if( db->autoCommit==0 ){
1022         /* Foreign key support may not be enabled or disabled while not
1023         ** in auto-commit mode.  */
1024         mask &= ~(SQLITE_ForeignKeys);
1025       }
1026 #if SQLITE_USER_AUTHENTICATION
1027       if( db->auth.authLevel==UAUTH_User ){
1028         /* Do not allow non-admin users to modify the schema arbitrarily */
1029         mask &= ~(SQLITE_WriteSchema);
1030       }
1031 #endif
1032 
1033       if( sqlite3GetBoolean(zRight, 0) ){
1034         db->flags |= mask;
1035       }else{
1036         db->flags &= ~mask;
1037         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1038       }
1039 
1040       /* Many of the flag-pragmas modify the code generated by the SQL
1041       ** compiler (eg. count_changes). So add an opcode to expire all
1042       ** compiled SQL statements after modifying a pragma value.
1043       */
1044       sqlite3VdbeAddOp0(v, OP_Expire);
1045       setAllPagerFlags(db);
1046     }
1047     break;
1048   }
1049 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1050 
1051 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1052   /*
1053   **   PRAGMA table_info(<table>)
1054   **
1055   ** Return a single row for each column of the named table. The columns of
1056   ** the returned data set are:
1057   **
1058   ** cid:        Column id (numbered from left to right, starting at 0)
1059   ** name:       Column name
1060   ** type:       Column declaration type.
1061   ** notnull:    True if 'NOT NULL' is part of column declaration
1062   ** dflt_value: The default value for the column, if any.
1063   */
1064   case PragTyp_TABLE_INFO: if( zRight ){
1065     Table *pTab;
1066     pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1067     if( pTab ){
1068       int i, k;
1069       int nHidden = 0;
1070       Column *pCol;
1071       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1072       pParse->nMem = 6;
1073       sqlite3CodeVerifySchema(pParse, iDb);
1074       sqlite3ViewGetColumnNames(pParse, pTab);
1075       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1076         if( IsHiddenColumn(pCol) ){
1077           nHidden++;
1078           continue;
1079         }
1080         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1081           k = 0;
1082         }else if( pPk==0 ){
1083           k = 1;
1084         }else{
1085           for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1086         }
1087         assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
1088         sqlite3VdbeMultiLoad(v, 1, "issisi",
1089                i-nHidden,
1090                pCol->zName,
1091                sqlite3ColumnType(pCol,""),
1092                pCol->notNull ? 1 : 0,
1093                pCol->pDflt ? pCol->pDflt->u.zToken : 0,
1094                k);
1095         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
1096       }
1097     }
1098   }
1099   break;
1100 
1101   case PragTyp_STATS: {
1102     Index *pIdx;
1103     HashElem *i;
1104     pParse->nMem = 4;
1105     sqlite3CodeVerifySchema(pParse, iDb);
1106     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1107       Table *pTab = sqliteHashData(i);
1108       sqlite3VdbeMultiLoad(v, 1, "ssii",
1109            pTab->zName,
1110            0,
1111            pTab->szTabRow,
1112            pTab->nRowLogEst);
1113       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
1114       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1115         sqlite3VdbeMultiLoad(v, 2, "sii",
1116            pIdx->zName,
1117            pIdx->szIdxRow,
1118            pIdx->aiRowLogEst[0]);
1119         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
1120       }
1121     }
1122   }
1123   break;
1124 
1125   case PragTyp_INDEX_INFO: if( zRight ){
1126     Index *pIdx;
1127     Table *pTab;
1128     pIdx = sqlite3FindIndex(db, zRight, zDb);
1129     if( pIdx ){
1130       int i;
1131       int mx;
1132       if( pPragma->iArg ){
1133         /* PRAGMA index_xinfo (newer version with more rows and columns) */
1134         mx = pIdx->nColumn;
1135         pParse->nMem = 6;
1136       }else{
1137         /* PRAGMA index_info (legacy version) */
1138         mx = pIdx->nKeyCol;
1139         pParse->nMem = 3;
1140       }
1141       pTab = pIdx->pTable;
1142       sqlite3CodeVerifySchema(pParse, iDb);
1143       assert( pParse->nMem<=pPragma->nPragCName );
1144       for(i=0; i<mx; i++){
1145         i16 cnum = pIdx->aiColumn[i];
1146         sqlite3VdbeMultiLoad(v, 1, "iis", i, cnum,
1147                              cnum<0 ? 0 : pTab->aCol[cnum].zName);
1148         if( pPragma->iArg ){
1149           sqlite3VdbeMultiLoad(v, 4, "isi",
1150             pIdx->aSortOrder[i],
1151             pIdx->azColl[i],
1152             i<pIdx->nKeyCol);
1153         }
1154         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1155       }
1156     }
1157   }
1158   break;
1159 
1160   case PragTyp_INDEX_LIST: if( zRight ){
1161     Index *pIdx;
1162     Table *pTab;
1163     int i;
1164     pTab = sqlite3FindTable(db, zRight, zDb);
1165     if( pTab ){
1166       pParse->nMem = 5;
1167       sqlite3CodeVerifySchema(pParse, iDb);
1168       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1169         const char *azOrigin[] = { "c", "u", "pk" };
1170         sqlite3VdbeMultiLoad(v, 1, "isisi",
1171            i,
1172            pIdx->zName,
1173            IsUniqueIndex(pIdx),
1174            azOrigin[pIdx->idxType],
1175            pIdx->pPartIdxWhere!=0);
1176         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1177       }
1178     }
1179   }
1180   break;
1181 
1182   case PragTyp_DATABASE_LIST: {
1183     int i;
1184     pParse->nMem = 3;
1185     for(i=0; i<db->nDb; i++){
1186       if( db->aDb[i].pBt==0 ) continue;
1187       assert( db->aDb[i].zDbSName!=0 );
1188       sqlite3VdbeMultiLoad(v, 1, "iss",
1189          i,
1190          db->aDb[i].zDbSName,
1191          sqlite3BtreeGetFilename(db->aDb[i].pBt));
1192       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1193     }
1194   }
1195   break;
1196 
1197   case PragTyp_COLLATION_LIST: {
1198     int i = 0;
1199     HashElem *p;
1200     pParse->nMem = 2;
1201     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1202       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1203       sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1204       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
1205     }
1206   }
1207   break;
1208 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1209 
1210 #ifndef SQLITE_OMIT_FOREIGN_KEY
1211   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1212     FKey *pFK;
1213     Table *pTab;
1214     pTab = sqlite3FindTable(db, zRight, zDb);
1215     if( pTab ){
1216       pFK = pTab->pFKey;
1217       if( pFK ){
1218         int i = 0;
1219         pParse->nMem = 8;
1220         sqlite3CodeVerifySchema(pParse, iDb);
1221         while(pFK){
1222           int j;
1223           for(j=0; j<pFK->nCol; j++){
1224             sqlite3VdbeMultiLoad(v, 1, "iissssss",
1225                    i,
1226                    j,
1227                    pFK->zTo,
1228                    pTab->aCol[pFK->aCol[j].iFrom].zName,
1229                    pFK->aCol[j].zCol,
1230                    actionName(pFK->aAction[1]),  /* ON UPDATE */
1231                    actionName(pFK->aAction[0]),  /* ON DELETE */
1232                    "NONE");
1233             sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
1234           }
1235           ++i;
1236           pFK = pFK->pNextFrom;
1237         }
1238       }
1239     }
1240   }
1241   break;
1242 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1243 
1244 #ifndef SQLITE_OMIT_FOREIGN_KEY
1245 #ifndef SQLITE_OMIT_TRIGGER
1246   case PragTyp_FOREIGN_KEY_CHECK: {
1247     FKey *pFK;             /* A foreign key constraint */
1248     Table *pTab;           /* Child table contain "REFERENCES" keyword */
1249     Table *pParent;        /* Parent table that child points to */
1250     Index *pIdx;           /* Index in the parent table */
1251     int i;                 /* Loop counter:  Foreign key number for pTab */
1252     int j;                 /* Loop counter:  Field of the foreign key */
1253     HashElem *k;           /* Loop counter:  Next table in schema */
1254     int x;                 /* result variable */
1255     int regResult;         /* 3 registers to hold a result row */
1256     int regKey;            /* Register to hold key for checking the FK */
1257     int regRow;            /* Registers to hold a row from pTab */
1258     int addrTop;           /* Top of a loop checking foreign keys */
1259     int addrOk;            /* Jump here if the key is OK */
1260     int *aiCols;           /* child to parent column mapping */
1261 
1262     regResult = pParse->nMem+1;
1263     pParse->nMem += 4;
1264     regKey = ++pParse->nMem;
1265     regRow = ++pParse->nMem;
1266     sqlite3CodeVerifySchema(pParse, iDb);
1267     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1268     while( k ){
1269       if( zRight ){
1270         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1271         k = 0;
1272       }else{
1273         pTab = (Table*)sqliteHashData(k);
1274         k = sqliteHashNext(k);
1275       }
1276       if( pTab==0 || pTab->pFKey==0 ) continue;
1277       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1278       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1279       sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1280       sqlite3VdbeLoadString(v, regResult, pTab->zName);
1281       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1282         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1283         if( pParent==0 ) continue;
1284         pIdx = 0;
1285         sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1286         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1287         if( x==0 ){
1288           if( pIdx==0 ){
1289             sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1290           }else{
1291             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1292             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1293           }
1294         }else{
1295           k = 0;
1296           break;
1297         }
1298       }
1299       assert( pParse->nErr>0 || pFK==0 );
1300       if( pFK ) break;
1301       if( pParse->nTab<i ) pParse->nTab = i;
1302       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1303       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1304         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1305         pIdx = 0;
1306         aiCols = 0;
1307         if( pParent ){
1308           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1309           assert( x==0 );
1310         }
1311         addrOk = sqlite3VdbeMakeLabel(v);
1312         if( pParent && pIdx==0 ){
1313           int iKey = pFK->aCol[0].iFrom;
1314           assert( iKey>=0 && iKey<pTab->nCol );
1315           if( iKey!=pTab->iPKey ){
1316             sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
1317             sqlite3ColumnDefault(v, pTab, iKey, regRow);
1318             sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
1319           }else{
1320             sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
1321           }
1322           sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v);
1323           sqlite3VdbeGoto(v, addrOk);
1324           sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1325         }else{
1326           for(j=0; j<pFK->nCol; j++){
1327             sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
1328                             aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
1329             sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1330           }
1331           if( pParent ){
1332             sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1333                               sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1334             sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1335             VdbeCoverage(v);
1336           }
1337         }
1338         sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1339         sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
1340         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1341         sqlite3VdbeResolveLabel(v, addrOk);
1342         sqlite3DbFree(db, aiCols);
1343       }
1344       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1345       sqlite3VdbeJumpHere(v, addrTop);
1346     }
1347   }
1348   break;
1349 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1350 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1351 
1352 #ifndef NDEBUG
1353   case PragTyp_PARSER_TRACE: {
1354     if( zRight ){
1355       if( sqlite3GetBoolean(zRight, 0) ){
1356         sqlite3ParserTrace(stdout, "parser: ");
1357       }else{
1358         sqlite3ParserTrace(0, 0);
1359       }
1360     }
1361   }
1362   break;
1363 #endif
1364 
1365   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
1366   ** used will be case sensitive or not depending on the RHS.
1367   */
1368   case PragTyp_CASE_SENSITIVE_LIKE: {
1369     if( zRight ){
1370       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1371     }
1372   }
1373   break;
1374 
1375 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1376 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1377 #endif
1378 
1379 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1380   /* Pragma "quick_check" is reduced version of
1381   ** integrity_check designed to detect most database corruption
1382   ** without most of the overhead of a full integrity-check.
1383   */
1384   case PragTyp_INTEGRITY_CHECK: {
1385     int i, j, addr, mxErr;
1386 
1387     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1388 
1389     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1390     ** then iDb is set to the index of the database identified by <db>.
1391     ** In this case, the integrity of database iDb only is verified by
1392     ** the VDBE created below.
1393     **
1394     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1395     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1396     ** to -1 here, to indicate that the VDBE should verify the integrity
1397     ** of all attached databases.  */
1398     assert( iDb>=0 );
1399     assert( iDb==0 || pId2->z );
1400     if( pId2->z==0 ) iDb = -1;
1401 
1402     /* Initialize the VDBE program */
1403     pParse->nMem = 6;
1404 
1405     /* Set the maximum error count */
1406     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1407     if( zRight ){
1408       sqlite3GetInt32(zRight, &mxErr);
1409       if( mxErr<=0 ){
1410         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1411       }
1412     }
1413     sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1);  /* reg[1] holds errors left */
1414 
1415     /* Do an integrity check on each database file */
1416     for(i=0; i<db->nDb; i++){
1417       HashElem *x;
1418       Hash *pTbls;
1419       int *aRoot;
1420       int cnt = 0;
1421       int mxIdx = 0;
1422       int nIdx;
1423 
1424       if( OMIT_TEMPDB && i==1 ) continue;
1425       if( iDb>=0 && i!=iDb ) continue;
1426 
1427       sqlite3CodeVerifySchema(pParse, i);
1428       addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
1429       VdbeCoverage(v);
1430       sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1431       sqlite3VdbeJumpHere(v, addr);
1432 
1433       /* Do an integrity check of the B-Tree
1434       **
1435       ** Begin by finding the root pages numbers
1436       ** for all tables and indices in the database.
1437       */
1438       assert( sqlite3SchemaMutexHeld(db, i, 0) );
1439       pTbls = &db->aDb[i].pSchema->tblHash;
1440       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1441         Table *pTab = sqliteHashData(x);
1442         Index *pIdx;
1443         if( HasRowid(pTab) ) cnt++;
1444         for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1445         if( nIdx>mxIdx ) mxIdx = nIdx;
1446       }
1447       aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1448       if( aRoot==0 ) break;
1449       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1450         Table *pTab = sqliteHashData(x);
1451         Index *pIdx;
1452         if( HasRowid(pTab) ) aRoot[cnt++] = pTab->tnum;
1453         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1454           aRoot[cnt++] = pIdx->tnum;
1455         }
1456       }
1457       aRoot[cnt] = 0;
1458 
1459       /* Make sure sufficient number of registers have been allocated */
1460       pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1461 
1462       /* Do the b-tree integrity checks */
1463       sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1464       sqlite3VdbeChangeP5(v, (u8)i);
1465       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1466       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1467          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1468          P4_DYNAMIC);
1469       sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
1470       sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
1471       sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
1472       sqlite3VdbeJumpHere(v, addr);
1473 
1474       /* Make sure all the indices are constructed correctly.
1475       */
1476       for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
1477         Table *pTab = sqliteHashData(x);
1478         Index *pIdx, *pPk;
1479         Index *pPrior = 0;
1480         int loopTop;
1481         int iDataCur, iIdxCur;
1482         int r1 = -1;
1483 
1484         if( pTab->pIndex==0 ) continue;
1485         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1486         addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
1487         VdbeCoverage(v);
1488         sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1489         sqlite3VdbeJumpHere(v, addr);
1490         sqlite3ExprCacheClear(pParse);
1491         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1492                                    1, 0, &iDataCur, &iIdxCur);
1493         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1494         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1495           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1496         }
1497         assert( pParse->nMem>=8+j );
1498         assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1499         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1500         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1501         /* Verify that all NOT NULL columns really are NOT NULL */
1502         for(j=0; j<pTab->nCol; j++){
1503           char *zErr;
1504           int jmp2, jmp3;
1505           if( j==pTab->iPKey ) continue;
1506           if( pTab->aCol[j].notNull==0 ) continue;
1507           sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1508           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1509           jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1510           sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1511           zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1512                               pTab->aCol[j].zName);
1513           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1514           sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
1515           jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
1516           sqlite3VdbeAddOp0(v, OP_Halt);
1517           sqlite3VdbeJumpHere(v, jmp2);
1518           sqlite3VdbeJumpHere(v, jmp3);
1519         }
1520         /* Validate index entries for the current row */
1521         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1522           int jmp2, jmp3, jmp4, jmp5;
1523           int ckUniq = sqlite3VdbeMakeLabel(v);
1524           if( pPk==pIdx ) continue;
1525           r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1526                                        pPrior, r1);
1527           pPrior = pIdx;
1528           sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);  /* increment entry count */
1529           /* Verify that an index entry exists for the current table row */
1530           jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1531                                       pIdx->nColumn); VdbeCoverage(v);
1532           sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1533           sqlite3VdbeLoadString(v, 3, "row ");
1534           sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1535           sqlite3VdbeLoadString(v, 4, " missing from index ");
1536           sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1537           jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1538           sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1539           sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
1540           jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
1541           sqlite3VdbeAddOp0(v, OP_Halt);
1542           sqlite3VdbeJumpHere(v, jmp2);
1543           /* For UNIQUE indexes, verify that only one entry exists with the
1544           ** current key.  The entry is unique if (1) any column is NULL
1545           ** or (2) the next entry has a different key */
1546           if( IsUniqueIndex(pIdx) ){
1547             int uniqOk = sqlite3VdbeMakeLabel(v);
1548             int jmp6;
1549             int kk;
1550             for(kk=0; kk<pIdx->nKeyCol; kk++){
1551               int iCol = pIdx->aiColumn[kk];
1552               assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1553               if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1554               sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1555               VdbeCoverage(v);
1556             }
1557             jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1558             sqlite3VdbeGoto(v, uniqOk);
1559             sqlite3VdbeJumpHere(v, jmp6);
1560             sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1561                                  pIdx->nKeyCol); VdbeCoverage(v);
1562             sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1563             sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1564             sqlite3VdbeGoto(v, jmp5);
1565             sqlite3VdbeResolveLabel(v, uniqOk);
1566           }
1567           sqlite3VdbeJumpHere(v, jmp4);
1568           sqlite3ResolvePartIdxLabel(pParse, jmp3);
1569         }
1570         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1571         sqlite3VdbeJumpHere(v, loopTop-1);
1572 #ifndef SQLITE_OMIT_BTREECOUNT
1573         sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1574         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1575           if( pPk==pIdx ) continue;
1576           addr = sqlite3VdbeCurrentAddr(v);
1577           sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v);
1578           sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1579           sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1580           sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v);
1581           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1582           sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
1583           sqlite3VdbeLoadString(v, 3, pIdx->zName);
1584           sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
1585           sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
1586         }
1587 #endif /* SQLITE_OMIT_BTREECOUNT */
1588       }
1589     }
1590     {
1591       static const int iLn = VDBE_OFFSET_LINENO(2);
1592       static const VdbeOpList endCode[] = {
1593         { OP_AddImm,      1, 0,        0},    /* 0 */
1594         { OP_If,          1, 4,        0},    /* 1 */
1595         { OP_String8,     0, 3,        0},    /* 2 */
1596         { OP_ResultRow,   3, 1,        0},    /* 3 */
1597       };
1598       VdbeOp *aOp;
1599 
1600       aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1601       if( aOp ){
1602         aOp[0].p2 = -mxErr;
1603         aOp[2].p4type = P4_STATIC;
1604         aOp[2].p4.z = "ok";
1605       }
1606     }
1607   }
1608   break;
1609 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1610 
1611 #ifndef SQLITE_OMIT_UTF16
1612   /*
1613   **   PRAGMA encoding
1614   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1615   **
1616   ** In its first form, this pragma returns the encoding of the main
1617   ** database. If the database is not initialized, it is initialized now.
1618   **
1619   ** The second form of this pragma is a no-op if the main database file
1620   ** has not already been initialized. In this case it sets the default
1621   ** encoding that will be used for the main database file if a new file
1622   ** is created. If an existing main database file is opened, then the
1623   ** default text encoding for the existing database is used.
1624   **
1625   ** In all cases new databases created using the ATTACH command are
1626   ** created to use the same default text encoding as the main database. If
1627   ** the main database has not been initialized and/or created when ATTACH
1628   ** is executed, this is done before the ATTACH operation.
1629   **
1630   ** In the second form this pragma sets the text encoding to be used in
1631   ** new database files created using this database handle. It is only
1632   ** useful if invoked immediately after the main database i
1633   */
1634   case PragTyp_ENCODING: {
1635     static const struct EncName {
1636       char *zName;
1637       u8 enc;
1638     } encnames[] = {
1639       { "UTF8",     SQLITE_UTF8        },
1640       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
1641       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
1642       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
1643       { "UTF16le",  SQLITE_UTF16LE     },
1644       { "UTF16be",  SQLITE_UTF16BE     },
1645       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
1646       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
1647       { 0, 0 }
1648     };
1649     const struct EncName *pEnc;
1650     if( !zRight ){    /* "PRAGMA encoding" */
1651       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1652       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1653       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1654       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1655       returnSingleText(v, encnames[ENC(pParse->db)].zName);
1656     }else{                        /* "PRAGMA encoding = XXX" */
1657       /* Only change the value of sqlite.enc if the database handle is not
1658       ** initialized. If the main database exists, the new sqlite.enc value
1659       ** will be overwritten when the schema is next loaded. If it does not
1660       ** already exists, it will be created to use the new encoding value.
1661       */
1662       if(
1663         !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
1664         DbHasProperty(db, 0, DB_Empty)
1665       ){
1666         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1667           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1668             SCHEMA_ENC(db) = ENC(db) =
1669                 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1670             break;
1671           }
1672         }
1673         if( !pEnc->zName ){
1674           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1675         }
1676       }
1677     }
1678   }
1679   break;
1680 #endif /* SQLITE_OMIT_UTF16 */
1681 
1682 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1683   /*
1684   **   PRAGMA [schema.]schema_version
1685   **   PRAGMA [schema.]schema_version = <integer>
1686   **
1687   **   PRAGMA [schema.]user_version
1688   **   PRAGMA [schema.]user_version = <integer>
1689   **
1690   **   PRAGMA [schema.]freelist_count
1691   **
1692   **   PRAGMA [schema.]data_version
1693   **
1694   **   PRAGMA [schema.]application_id
1695   **   PRAGMA [schema.]application_id = <integer>
1696   **
1697   ** The pragma's schema_version and user_version are used to set or get
1698   ** the value of the schema-version and user-version, respectively. Both
1699   ** the schema-version and the user-version are 32-bit signed integers
1700   ** stored in the database header.
1701   **
1702   ** The schema-cookie is usually only manipulated internally by SQLite. It
1703   ** is incremented by SQLite whenever the database schema is modified (by
1704   ** creating or dropping a table or index). The schema version is used by
1705   ** SQLite each time a query is executed to ensure that the internal cache
1706   ** of the schema used when compiling the SQL query matches the schema of
1707   ** the database against which the compiled query is actually executed.
1708   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1709   ** the schema-version is potentially dangerous and may lead to program
1710   ** crashes or database corruption. Use with caution!
1711   **
1712   ** The user-version is not used internally by SQLite. It may be used by
1713   ** applications for any purpose.
1714   */
1715   case PragTyp_HEADER_VALUE: {
1716     int iCookie = pPragma->iArg;  /* Which cookie to read or write */
1717     sqlite3VdbeUsesBtree(v, iDb);
1718     if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1719       /* Write the specified cookie value */
1720       static const VdbeOpList setCookie[] = {
1721         { OP_Transaction,    0,  1,  0},    /* 0 */
1722         { OP_SetCookie,      0,  0,  0},    /* 1 */
1723       };
1724       VdbeOp *aOp;
1725       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1726       aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1727       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1728       aOp[0].p1 = iDb;
1729       aOp[1].p1 = iDb;
1730       aOp[1].p2 = iCookie;
1731       aOp[1].p3 = sqlite3Atoi(zRight);
1732     }else{
1733       /* Read the specified cookie value */
1734       static const VdbeOpList readCookie[] = {
1735         { OP_Transaction,     0,  0,  0},    /* 0 */
1736         { OP_ReadCookie,      0,  1,  0},    /* 1 */
1737         { OP_ResultRow,       1,  1,  0}
1738       };
1739       VdbeOp *aOp;
1740       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1741       aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1742       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1743       aOp[0].p1 = iDb;
1744       aOp[1].p1 = iDb;
1745       aOp[1].p3 = iCookie;
1746       sqlite3VdbeReusable(v);
1747     }
1748   }
1749   break;
1750 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1751 
1752 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1753   /*
1754   **   PRAGMA compile_options
1755   **
1756   ** Return the names of all compile-time options used in this build,
1757   ** one option per row.
1758   */
1759   case PragTyp_COMPILE_OPTIONS: {
1760     int i = 0;
1761     const char *zOpt;
1762     pParse->nMem = 1;
1763     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1764       sqlite3VdbeLoadString(v, 1, zOpt);
1765       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1766     }
1767     sqlite3VdbeReusable(v);
1768   }
1769   break;
1770 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1771 
1772 #ifndef SQLITE_OMIT_WAL
1773   /*
1774   **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1775   **
1776   ** Checkpoint the database.
1777   */
1778   case PragTyp_WAL_CHECKPOINT: {
1779     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1780     int eMode = SQLITE_CHECKPOINT_PASSIVE;
1781     if( zRight ){
1782       if( sqlite3StrICmp(zRight, "full")==0 ){
1783         eMode = SQLITE_CHECKPOINT_FULL;
1784       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1785         eMode = SQLITE_CHECKPOINT_RESTART;
1786       }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1787         eMode = SQLITE_CHECKPOINT_TRUNCATE;
1788       }
1789     }
1790     pParse->nMem = 3;
1791     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1792     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1793   }
1794   break;
1795 
1796   /*
1797   **   PRAGMA wal_autocheckpoint
1798   **   PRAGMA wal_autocheckpoint = N
1799   **
1800   ** Configure a database connection to automatically checkpoint a database
1801   ** after accumulating N frames in the log. Or query for the current value
1802   ** of N.
1803   */
1804   case PragTyp_WAL_AUTOCHECKPOINT: {
1805     if( zRight ){
1806       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1807     }
1808     returnSingleInt(v,
1809        db->xWalCallback==sqlite3WalDefaultHook ?
1810            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1811   }
1812   break;
1813 #endif
1814 
1815   /*
1816   **  PRAGMA shrink_memory
1817   **
1818   ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1819   ** connection on which it is invoked to free up as much memory as it
1820   ** can, by calling sqlite3_db_release_memory().
1821   */
1822   case PragTyp_SHRINK_MEMORY: {
1823     sqlite3_db_release_memory(db);
1824     break;
1825   }
1826 
1827   /*
1828   **   PRAGMA busy_timeout
1829   **   PRAGMA busy_timeout = N
1830   **
1831   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
1832   ** if one is set.  If no busy handler or a different busy handler is set
1833   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
1834   ** disables the timeout.
1835   */
1836   /*case PragTyp_BUSY_TIMEOUT*/ default: {
1837     assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
1838     if( zRight ){
1839       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
1840     }
1841     returnSingleInt(v, db->busyTimeout);
1842     break;
1843   }
1844 
1845   /*
1846   **   PRAGMA soft_heap_limit
1847   **   PRAGMA soft_heap_limit = N
1848   **
1849   ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
1850   ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
1851   ** specified and is a non-negative integer.
1852   ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
1853   ** returns the same integer that would be returned by the
1854   ** sqlite3_soft_heap_limit64(-1) C-language function.
1855   */
1856   case PragTyp_SOFT_HEAP_LIMIT: {
1857     sqlite3_int64 N;
1858     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
1859       sqlite3_soft_heap_limit64(N);
1860     }
1861     returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
1862     break;
1863   }
1864 
1865   /*
1866   **   PRAGMA threads
1867   **   PRAGMA threads = N
1868   **
1869   ** Configure the maximum number of worker threads.  Return the new
1870   ** maximum, which might be less than requested.
1871   */
1872   case PragTyp_THREADS: {
1873     sqlite3_int64 N;
1874     if( zRight
1875      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
1876      && N>=0
1877     ){
1878       sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
1879     }
1880     returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
1881     break;
1882   }
1883 
1884 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
1885   /*
1886   ** Report the current state of file logs for all databases
1887   */
1888   case PragTyp_LOCK_STATUS: {
1889     static const char *const azLockName[] = {
1890       "unlocked", "shared", "reserved", "pending", "exclusive"
1891     };
1892     int i;
1893     pParse->nMem = 2;
1894     for(i=0; i<db->nDb; i++){
1895       Btree *pBt;
1896       const char *zState = "unknown";
1897       int j;
1898       if( db->aDb[i].zDbSName==0 ) continue;
1899       pBt = db->aDb[i].pBt;
1900       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
1901         zState = "closed";
1902       }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
1903                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
1904          zState = azLockName[j];
1905       }
1906       sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
1907       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
1908     }
1909     break;
1910   }
1911 #endif
1912 
1913 #ifdef SQLITE_HAS_CODEC
1914   case PragTyp_KEY: {
1915     if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
1916     break;
1917   }
1918   case PragTyp_REKEY: {
1919     if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
1920     break;
1921   }
1922   case PragTyp_HEXKEY: {
1923     if( zRight ){
1924       u8 iByte;
1925       int i;
1926       char zKey[40];
1927       for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
1928         iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
1929         if( (i&1)!=0 ) zKey[i/2] = iByte;
1930       }
1931       if( (zLeft[3] & 0xf)==0xb ){
1932         sqlite3_key_v2(db, zDb, zKey, i/2);
1933       }else{
1934         sqlite3_rekey_v2(db, zDb, zKey, i/2);
1935       }
1936     }
1937     break;
1938   }
1939 #endif
1940 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
1941   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
1942 #ifdef SQLITE_HAS_CODEC
1943     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
1944       sqlite3_activate_see(&zRight[4]);
1945     }
1946 #endif
1947 #ifdef SQLITE_ENABLE_CEROD
1948     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
1949       sqlite3_activate_cerod(&zRight[6]);
1950     }
1951 #endif
1952   }
1953   break;
1954 #endif
1955 
1956   } /* End of the PRAGMA switch */
1957 
1958   /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
1959   ** purpose is to execute assert() statements to verify that if the
1960   ** PragFlg_NoColumns1 flag is set and the caller specified an argument
1961   ** to the PRAGMA, the implementation has not added any OP_ResultRow
1962   ** instructions to the VM.  */
1963   if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
1964     sqlite3VdbeVerifyNoResultRow(v);
1965   }
1966 
1967 pragma_out:
1968   sqlite3DbFree(db, zLeft);
1969   sqlite3DbFree(db, zRight);
1970 }
1971 #ifndef SQLITE_OMIT_VIRTUALTABLE
1972 /*****************************************************************************
1973 ** Implementation of an eponymous virtual table that runs a pragma.
1974 **
1975 */
1976 typedef struct PragmaVtab PragmaVtab;
1977 typedef struct PragmaVtabCursor PragmaVtabCursor;
1978 struct PragmaVtab {
1979   sqlite3_vtab base;        /* Base class.  Must be first */
1980   sqlite3 *db;              /* The database connection to which it belongs */
1981   const PragmaName *pName;  /* Name of the pragma */
1982   u8 nHidden;               /* Number of hidden columns */
1983   u8 iHidden;               /* Index of the first hidden column */
1984 };
1985 struct PragmaVtabCursor {
1986   sqlite3_vtab_cursor base; /* Base class.  Must be first */
1987   sqlite3_stmt *pPragma;    /* The pragma statement to run */
1988   sqlite_int64 iRowid;      /* Current rowid */
1989   char *azArg[2];           /* Value of the argument and schema */
1990 };
1991 
1992 /*
1993 ** Pragma virtual table module xConnect method.
1994 */
1995 static int pragmaVtabConnect(
1996   sqlite3 *db,
1997   void *pAux,
1998   int argc, const char *const*argv,
1999   sqlite3_vtab **ppVtab,
2000   char **pzErr
2001 ){
2002   const PragmaName *pPragma = (const PragmaName*)pAux;
2003   PragmaVtab *pTab = 0;
2004   int rc;
2005   int i, j;
2006   char cSep = '(';
2007   StrAccum acc;
2008   char zBuf[200];
2009 
2010   UNUSED_PARAMETER(argc);
2011   UNUSED_PARAMETER(argv);
2012   sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2013   sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x");
2014   for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2015     sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2016     cSep = ',';
2017   }
2018   if( i==0 ){
2019     sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName);
2020     cSep = ',';
2021     i++;
2022   }
2023   j = 0;
2024   if( pPragma->mPragFlg & PragFlg_Result1 ){
2025     sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN");
2026     j++;
2027   }
2028   if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2029     sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN");
2030     j++;
2031   }
2032   sqlite3StrAccumAppend(&acc, ")", 1);
2033   sqlite3StrAccumFinish(&acc);
2034   assert( strlen(zBuf) < sizeof(zBuf)-1 );
2035   rc = sqlite3_declare_vtab(db, zBuf);
2036   if( rc==SQLITE_OK ){
2037     pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2038     if( pTab==0 ){
2039       rc = SQLITE_NOMEM;
2040     }else{
2041       memset(pTab, 0, sizeof(PragmaVtab));
2042       pTab->pName = pPragma;
2043       pTab->db = db;
2044       pTab->iHidden = i;
2045       pTab->nHidden = j;
2046     }
2047   }else{
2048     *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2049   }
2050 
2051   *ppVtab = (sqlite3_vtab*)pTab;
2052   return rc;
2053 }
2054 
2055 /*
2056 ** Pragma virtual table module xDisconnect method.
2057 */
2058 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2059   PragmaVtab *pTab = (PragmaVtab*)pVtab;
2060   sqlite3_free(pTab);
2061   return SQLITE_OK;
2062 }
2063 
2064 /* Figure out the best index to use to search a pragma virtual table.
2065 **
2066 ** There are not really any index choices.  But we want to encourage the
2067 ** query planner to give == constraints on as many hidden parameters as
2068 ** possible, and especially on the first hidden parameter.  So return a
2069 ** high cost if hidden parameters are unconstrained.
2070 */
2071 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2072   PragmaVtab *pTab = (PragmaVtab*)tab;
2073   const struct sqlite3_index_constraint *pConstraint;
2074   int i, j;
2075   int seen[2];
2076 
2077   pIdxInfo->estimatedCost = (double)1;
2078   if( pTab->nHidden==0 ){ return SQLITE_OK; }
2079   pConstraint = pIdxInfo->aConstraint;
2080   seen[0] = 0;
2081   seen[1] = 0;
2082   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2083     if( pConstraint->usable==0 ) continue;
2084     if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2085     if( pConstraint->iColumn < pTab->iHidden ) continue;
2086     j = pConstraint->iColumn - pTab->iHidden;
2087     assert( j < 2 );
2088     seen[j] = i+1;
2089   }
2090   if( seen[0]==0 ){
2091     pIdxInfo->estimatedCost = (double)2147483647;
2092     pIdxInfo->estimatedRows = 2147483647;
2093     return SQLITE_OK;
2094   }
2095   j = seen[0]-1;
2096   pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2097   pIdxInfo->aConstraintUsage[j].omit = 1;
2098   if( seen[1]==0 ) return SQLITE_OK;
2099   pIdxInfo->estimatedCost = (double)20;
2100   pIdxInfo->estimatedRows = 20;
2101   j = seen[1]-1;
2102   pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2103   pIdxInfo->aConstraintUsage[j].omit = 1;
2104   return SQLITE_OK;
2105 }
2106 
2107 /* Create a new cursor for the pragma virtual table */
2108 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2109   PragmaVtabCursor *pCsr;
2110   pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2111   if( pCsr==0 ) return SQLITE_NOMEM;
2112   memset(pCsr, 0, sizeof(PragmaVtabCursor));
2113   pCsr->base.pVtab = pVtab;
2114   *ppCursor = &pCsr->base;
2115   return SQLITE_OK;
2116 }
2117 
2118 /* Clear all content from pragma virtual table cursor. */
2119 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2120   int i;
2121   sqlite3_finalize(pCsr->pPragma);
2122   pCsr->pPragma = 0;
2123   for(i=0; i<ArraySize(pCsr->azArg); i++){
2124     sqlite3_free(pCsr->azArg[i]);
2125     pCsr->azArg[i] = 0;
2126   }
2127 }
2128 
2129 /* Close a pragma virtual table cursor */
2130 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2131   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2132   pragmaVtabCursorClear(pCsr);
2133   sqlite3_free(pCsr);
2134   return SQLITE_OK;
2135 }
2136 
2137 /* Advance the pragma virtual table cursor to the next row */
2138 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2139   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2140   int rc = SQLITE_OK;
2141 
2142   /* Increment the xRowid value */
2143   pCsr->iRowid++;
2144   assert( pCsr->pPragma );
2145   if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2146     rc = sqlite3_finalize(pCsr->pPragma);
2147     pCsr->pPragma = 0;
2148     pragmaVtabCursorClear(pCsr);
2149   }
2150   return rc;
2151 }
2152 
2153 /*
2154 ** Pragma virtual table module xFilter method.
2155 */
2156 static int pragmaVtabFilter(
2157   sqlite3_vtab_cursor *pVtabCursor,
2158   int idxNum, const char *idxStr,
2159   int argc, sqlite3_value **argv
2160 ){
2161   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2162   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2163   int rc;
2164   int i, j;
2165   StrAccum acc;
2166   char *zSql;
2167 
2168   UNUSED_PARAMETER(idxNum);
2169   UNUSED_PARAMETER(idxStr);
2170   pragmaVtabCursorClear(pCsr);
2171   j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2172   for(i=0; i<argc; i++, j++){
2173     assert( j<ArraySize(pCsr->azArg) );
2174     pCsr->azArg[j] = sqlite3_mprintf("%s", sqlite3_value_text(argv[i]));
2175     if( pCsr->azArg[j]==0 ){
2176       return SQLITE_NOMEM;
2177     }
2178   }
2179   sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2180   sqlite3StrAccumAppendAll(&acc, "PRAGMA ");
2181   if( pCsr->azArg[1] ){
2182     sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]);
2183   }
2184   sqlite3StrAccumAppendAll(&acc, pTab->pName->zName);
2185   if( pCsr->azArg[0] ){
2186     sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]);
2187   }
2188   zSql = sqlite3StrAccumFinish(&acc);
2189   if( zSql==0 ) return SQLITE_NOMEM;
2190   rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2191   sqlite3_free(zSql);
2192   if( rc!=SQLITE_OK ){
2193     pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2194     return rc;
2195   }
2196   return pragmaVtabNext(pVtabCursor);
2197 }
2198 
2199 /*
2200 ** Pragma virtual table module xEof method.
2201 */
2202 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2203   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2204   return (pCsr->pPragma==0);
2205 }
2206 
2207 /* The xColumn method simply returns the corresponding column from
2208 ** the PRAGMA.
2209 */
2210 static int pragmaVtabColumn(
2211   sqlite3_vtab_cursor *pVtabCursor,
2212   sqlite3_context *ctx,
2213   int i
2214 ){
2215   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2216   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2217   if( i<pTab->iHidden ){
2218     sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2219   }else{
2220     sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2221   }
2222   return SQLITE_OK;
2223 }
2224 
2225 /*
2226 ** Pragma virtual table module xRowid method.
2227 */
2228 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2229   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2230   *p = pCsr->iRowid;
2231   return SQLITE_OK;
2232 }
2233 
2234 /* The pragma virtual table object */
2235 static const sqlite3_module pragmaVtabModule = {
2236   0,                           /* iVersion */
2237   0,                           /* xCreate - create a table */
2238   pragmaVtabConnect,           /* xConnect - connect to an existing table */
2239   pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */
2240   pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */
2241   0,                           /* xDestroy - Drop a table */
2242   pragmaVtabOpen,              /* xOpen - open a cursor */
2243   pragmaVtabClose,             /* xClose - close a cursor */
2244   pragmaVtabFilter,            /* xFilter - configure scan constraints */
2245   pragmaVtabNext,              /* xNext - advance a cursor */
2246   pragmaVtabEof,               /* xEof */
2247   pragmaVtabColumn,            /* xColumn - read data */
2248   pragmaVtabRowid,             /* xRowid - read data */
2249   0,                           /* xUpdate - write data */
2250   0,                           /* xBegin - begin transaction */
2251   0,                           /* xSync - sync transaction */
2252   0,                           /* xCommit - commit transaction */
2253   0,                           /* xRollback - rollback transaction */
2254   0,                           /* xFindFunction - function overloading */
2255   0,                           /* xRename - rename the table */
2256   0,                           /* xSavepoint */
2257   0,                           /* xRelease */
2258   0                            /* xRollbackTo */
2259 };
2260 
2261 /*
2262 ** Check to see if zTabName is really the name of a pragma.  If it is,
2263 ** then register an eponymous virtual table for that pragma and return
2264 ** a pointer to the Module object for the new virtual table.
2265 */
2266 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2267   const PragmaName *pName;
2268   assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2269   pName = pragmaLocate(zName+7);
2270   if( pName==0 ) return 0;
2271   if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2272   assert( sqlite3HashFind(&db->aModule, zName)==0 );
2273   return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2274 }
2275 
2276 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2277 
2278 #endif /* SQLITE_OMIT_PRAGMA */
2279