1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit 135 || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE 136 ){ 137 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 138 "from within a transaction"); 139 return SQLITE_ERROR; 140 } 141 sqlite3BtreeClose(db->aDb[1].pBt); 142 db->aDb[1].pBt = 0; 143 sqlite3ResetAllSchemasOfConnection(db); 144 } 145 return SQLITE_OK; 146 } 147 #endif /* SQLITE_PAGER_PRAGMAS */ 148 149 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 150 /* 151 ** If the TEMP database is open, close it and mark the database schema 152 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 153 ** or DEFAULT_TEMP_STORE pragmas. 154 */ 155 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 156 int ts = getTempStore(zStorageType); 157 sqlite3 *db = pParse->db; 158 if( db->temp_store==ts ) return SQLITE_OK; 159 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 160 return SQLITE_ERROR; 161 } 162 db->temp_store = (u8)ts; 163 return SQLITE_OK; 164 } 165 #endif /* SQLITE_PAGER_PRAGMAS */ 166 167 /* 168 ** Set result column names for a pragma. 169 */ 170 static void setPragmaResultColumnNames( 171 Vdbe *v, /* The query under construction */ 172 const PragmaName *pPragma /* The pragma */ 173 ){ 174 u8 n = pPragma->nPragCName; 175 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); 176 if( n==0 ){ 177 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); 178 }else{ 179 int i, j; 180 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ 181 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); 182 } 183 } 184 } 185 186 /* 187 ** Generate code to return a single integer value. 188 */ 189 static void returnSingleInt(Vdbe *v, i64 value){ 190 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 191 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 192 } 193 194 /* 195 ** Generate code to return a single text value. 196 */ 197 static void returnSingleText( 198 Vdbe *v, /* Prepared statement under construction */ 199 const char *zValue /* Value to be returned */ 200 ){ 201 if( zValue ){ 202 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 203 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 204 } 205 } 206 207 208 /* 209 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 210 ** set these values for all pagers. 211 */ 212 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 213 static void setAllPagerFlags(sqlite3 *db){ 214 if( db->autoCommit ){ 215 Db *pDb = db->aDb; 216 int n = db->nDb; 217 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 218 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 219 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 220 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 221 == PAGER_FLAGS_MASK ); 222 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 223 while( (n--) > 0 ){ 224 if( pDb->pBt ){ 225 sqlite3BtreeSetPagerFlags(pDb->pBt, 226 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 227 } 228 pDb++; 229 } 230 } 231 } 232 #else 233 # define setAllPagerFlags(X) /* no-op */ 234 #endif 235 236 237 /* 238 ** Return a human-readable name for a constraint resolution action. 239 */ 240 #ifndef SQLITE_OMIT_FOREIGN_KEY 241 static const char *actionName(u8 action){ 242 const char *zName; 243 switch( action ){ 244 case OE_SetNull: zName = "SET NULL"; break; 245 case OE_SetDflt: zName = "SET DEFAULT"; break; 246 case OE_Cascade: zName = "CASCADE"; break; 247 case OE_Restrict: zName = "RESTRICT"; break; 248 default: zName = "NO ACTION"; 249 assert( action==OE_None ); break; 250 } 251 return zName; 252 } 253 #endif 254 255 256 /* 257 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 258 ** defined in pager.h. This function returns the associated lowercase 259 ** journal-mode name. 260 */ 261 const char *sqlite3JournalModename(int eMode){ 262 static char * const azModeName[] = { 263 "delete", "persist", "off", "truncate", "memory" 264 #ifndef SQLITE_OMIT_WAL 265 , "wal" 266 #endif 267 }; 268 assert( PAGER_JOURNALMODE_DELETE==0 ); 269 assert( PAGER_JOURNALMODE_PERSIST==1 ); 270 assert( PAGER_JOURNALMODE_OFF==2 ); 271 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 272 assert( PAGER_JOURNALMODE_MEMORY==4 ); 273 assert( PAGER_JOURNALMODE_WAL==5 ); 274 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 275 276 if( eMode==ArraySize(azModeName) ) return 0; 277 return azModeName[eMode]; 278 } 279 280 /* 281 ** Locate a pragma in the aPragmaName[] array. 282 */ 283 static const PragmaName *pragmaLocate(const char *zName){ 284 int upr, lwr, mid = 0, rc; 285 lwr = 0; 286 upr = ArraySize(aPragmaName)-1; 287 while( lwr<=upr ){ 288 mid = (lwr+upr)/2; 289 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); 290 if( rc==0 ) break; 291 if( rc<0 ){ 292 upr = mid - 1; 293 }else{ 294 lwr = mid + 1; 295 } 296 } 297 return lwr>upr ? 0 : &aPragmaName[mid]; 298 } 299 300 /* 301 ** Create zero or more entries in the output for the SQL functions 302 ** defined by FuncDef p. 303 */ 304 static void pragmaFunclistLine( 305 Vdbe *v, /* The prepared statement being created */ 306 FuncDef *p, /* A particular function definition */ 307 int isBuiltin, /* True if this is a built-in function */ 308 int showInternFuncs /* True if showing internal functions */ 309 ){ 310 u32 mask = 311 SQLITE_DETERMINISTIC | 312 SQLITE_DIRECTONLY | 313 SQLITE_SUBTYPE | 314 SQLITE_INNOCUOUS | 315 SQLITE_FUNC_INTERNAL 316 ; 317 if( showInternFuncs ) mask = 0xffffffff; 318 for(; p; p=p->pNext){ 319 const char *zType; 320 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" }; 321 322 assert( SQLITE_FUNC_ENCMASK==0x3 ); 323 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 ); 324 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 ); 325 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 ); 326 327 if( p->xSFunc==0 ) continue; 328 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0 329 && showInternFuncs==0 330 ){ 331 continue; 332 } 333 if( p->xValue!=0 ){ 334 zType = "w"; 335 }else if( p->xFinalize!=0 ){ 336 zType = "a"; 337 }else{ 338 zType = "s"; 339 } 340 sqlite3VdbeMultiLoad(v, 1, "sissii", 341 p->zName, isBuiltin, 342 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK], 343 p->nArg, 344 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS 345 ); 346 } 347 } 348 349 350 /* 351 ** Helper subroutine for PRAGMA integrity_check: 352 ** 353 ** Generate code to output a single-column result row with a value of the 354 ** string held in register 3. Decrement the result count in register 1 355 ** and halt if the maximum number of result rows have been issued. 356 */ 357 static int integrityCheckResultRow(Vdbe *v){ 358 int addr; 359 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 360 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); 361 VdbeCoverage(v); 362 sqlite3VdbeAddOp0(v, OP_Halt); 363 return addr; 364 } 365 366 /* 367 ** Process a pragma statement. 368 ** 369 ** Pragmas are of this form: 370 ** 371 ** PRAGMA [schema.]id [= value] 372 ** 373 ** The identifier might also be a string. The value is a string, and 374 ** identifier, or a number. If minusFlag is true, then the value is 375 ** a number that was preceded by a minus sign. 376 ** 377 ** If the left side is "database.id" then pId1 is the database name 378 ** and pId2 is the id. If the left side is just "id" then pId1 is the 379 ** id and pId2 is any empty string. 380 */ 381 void sqlite3Pragma( 382 Parse *pParse, 383 Token *pId1, /* First part of [schema.]id field */ 384 Token *pId2, /* Second part of [schema.]id field, or NULL */ 385 Token *pValue, /* Token for <value>, or NULL */ 386 int minusFlag /* True if a '-' sign preceded <value> */ 387 ){ 388 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 389 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 390 const char *zDb = 0; /* The database name */ 391 Token *pId; /* Pointer to <id> token */ 392 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 393 int iDb; /* Database index for <database> */ 394 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 395 sqlite3 *db = pParse->db; /* The database connection */ 396 Db *pDb; /* The specific database being pragmaed */ 397 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 398 const PragmaName *pPragma; /* The pragma */ 399 400 if( v==0 ) return; 401 sqlite3VdbeRunOnlyOnce(v); 402 pParse->nMem = 2; 403 404 /* Interpret the [schema.] part of the pragma statement. iDb is the 405 ** index of the database this pragma is being applied to in db.aDb[]. */ 406 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 407 if( iDb<0 ) return; 408 pDb = &db->aDb[iDb]; 409 410 /* If the temp database has been explicitly named as part of the 411 ** pragma, make sure it is open. 412 */ 413 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 414 return; 415 } 416 417 zLeft = sqlite3NameFromToken(db, pId); 418 if( !zLeft ) return; 419 if( minusFlag ){ 420 zRight = sqlite3MPrintf(db, "-%T", pValue); 421 }else{ 422 zRight = sqlite3NameFromToken(db, pValue); 423 } 424 425 assert( pId2 ); 426 zDb = pId2->n>0 ? pDb->zDbSName : 0; 427 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 428 goto pragma_out; 429 } 430 431 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 432 ** connection. If it returns SQLITE_OK, then assume that the VFS 433 ** handled the pragma and generate a no-op prepared statement. 434 ** 435 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 436 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 437 ** object corresponding to the database file to which the pragma 438 ** statement refers. 439 ** 440 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 441 ** file control is an array of pointers to strings (char**) in which the 442 ** second element of the array is the name of the pragma and the third 443 ** element is the argument to the pragma or NULL if the pragma has no 444 ** argument. 445 */ 446 aFcntl[0] = 0; 447 aFcntl[1] = zLeft; 448 aFcntl[2] = zRight; 449 aFcntl[3] = 0; 450 db->busyHandler.nBusy = 0; 451 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 452 if( rc==SQLITE_OK ){ 453 sqlite3VdbeSetNumCols(v, 1); 454 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); 455 returnSingleText(v, aFcntl[0]); 456 sqlite3_free(aFcntl[0]); 457 goto pragma_out; 458 } 459 if( rc!=SQLITE_NOTFOUND ){ 460 if( aFcntl[0] ){ 461 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 462 sqlite3_free(aFcntl[0]); 463 } 464 pParse->nErr++; 465 pParse->rc = rc; 466 goto pragma_out; 467 } 468 469 /* Locate the pragma in the lookup table */ 470 pPragma = pragmaLocate(zLeft); 471 if( pPragma==0 ){ 472 /* IMP: R-43042-22504 No error messages are generated if an 473 ** unknown pragma is issued. */ 474 goto pragma_out; 475 } 476 477 /* Make sure the database schema is loaded if the pragma requires that */ 478 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ 479 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 480 } 481 482 /* Register the result column names for pragmas that return results */ 483 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 484 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) 485 ){ 486 setPragmaResultColumnNames(v, pPragma); 487 } 488 489 /* Jump to the appropriate pragma handler */ 490 switch( pPragma->ePragTyp ){ 491 492 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 493 /* 494 ** PRAGMA [schema.]default_cache_size 495 ** PRAGMA [schema.]default_cache_size=N 496 ** 497 ** The first form reports the current persistent setting for the 498 ** page cache size. The value returned is the maximum number of 499 ** pages in the page cache. The second form sets both the current 500 ** page cache size value and the persistent page cache size value 501 ** stored in the database file. 502 ** 503 ** Older versions of SQLite would set the default cache size to a 504 ** negative number to indicate synchronous=OFF. These days, synchronous 505 ** is always on by default regardless of the sign of the default cache 506 ** size. But continue to take the absolute value of the default cache 507 ** size of historical compatibility. 508 */ 509 case PragTyp_DEFAULT_CACHE_SIZE: { 510 static const int iLn = VDBE_OFFSET_LINENO(2); 511 static const VdbeOpList getCacheSize[] = { 512 { OP_Transaction, 0, 0, 0}, /* 0 */ 513 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 514 { OP_IfPos, 1, 8, 0}, 515 { OP_Integer, 0, 2, 0}, 516 { OP_Subtract, 1, 2, 1}, 517 { OP_IfPos, 1, 8, 0}, 518 { OP_Integer, 0, 1, 0}, /* 6 */ 519 { OP_Noop, 0, 0, 0}, 520 { OP_ResultRow, 1, 1, 0}, 521 }; 522 VdbeOp *aOp; 523 sqlite3VdbeUsesBtree(v, iDb); 524 if( !zRight ){ 525 pParse->nMem += 2; 526 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 527 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 528 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 529 aOp[0].p1 = iDb; 530 aOp[1].p1 = iDb; 531 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 532 }else{ 533 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 534 sqlite3BeginWriteOperation(pParse, 0, iDb); 535 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 537 pDb->pSchema->cache_size = size; 538 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 539 } 540 break; 541 } 542 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 543 544 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 545 /* 546 ** PRAGMA [schema.]page_size 547 ** PRAGMA [schema.]page_size=N 548 ** 549 ** The first form reports the current setting for the 550 ** database page size in bytes. The second form sets the 551 ** database page size value. The value can only be set if 552 ** the database has not yet been created. 553 */ 554 case PragTyp_PAGE_SIZE: { 555 Btree *pBt = pDb->pBt; 556 assert( pBt!=0 ); 557 if( !zRight ){ 558 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 559 returnSingleInt(v, size); 560 }else{ 561 /* Malloc may fail when setting the page-size, as there is an internal 562 ** buffer that the pager module resizes using sqlite3_realloc(). 563 */ 564 db->nextPagesize = sqlite3Atoi(zRight); 565 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){ 566 sqlite3OomFault(db); 567 } 568 } 569 break; 570 } 571 572 /* 573 ** PRAGMA [schema.]secure_delete 574 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST 575 ** 576 ** The first form reports the current setting for the 577 ** secure_delete flag. The second form changes the secure_delete 578 ** flag setting and reports the new value. 579 */ 580 case PragTyp_SECURE_DELETE: { 581 Btree *pBt = pDb->pBt; 582 int b = -1; 583 assert( pBt!=0 ); 584 if( zRight ){ 585 if( sqlite3_stricmp(zRight, "fast")==0 ){ 586 b = 2; 587 }else{ 588 b = sqlite3GetBoolean(zRight, 0); 589 } 590 } 591 if( pId2->n==0 && b>=0 ){ 592 int ii; 593 for(ii=0; ii<db->nDb; ii++){ 594 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 595 } 596 } 597 b = sqlite3BtreeSecureDelete(pBt, b); 598 returnSingleInt(v, b); 599 break; 600 } 601 602 /* 603 ** PRAGMA [schema.]max_page_count 604 ** PRAGMA [schema.]max_page_count=N 605 ** 606 ** The first form reports the current setting for the 607 ** maximum number of pages in the database file. The 608 ** second form attempts to change this setting. Both 609 ** forms return the current setting. 610 ** 611 ** The absolute value of N is used. This is undocumented and might 612 ** change. The only purpose is to provide an easy way to test 613 ** the sqlite3AbsInt32() function. 614 ** 615 ** PRAGMA [schema.]page_count 616 ** 617 ** Return the number of pages in the specified database. 618 */ 619 case PragTyp_PAGE_COUNT: { 620 int iReg; 621 i64 x = 0; 622 sqlite3CodeVerifySchema(pParse, iDb); 623 iReg = ++pParse->nMem; 624 if( sqlite3Tolower(zLeft[0])=='p' ){ 625 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 626 }else{ 627 if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){ 628 if( x<0 ) x = 0; 629 else if( x>0xfffffffe ) x = 0xfffffffe; 630 }else{ 631 x = 0; 632 } 633 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x); 634 } 635 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 636 break; 637 } 638 639 /* 640 ** PRAGMA [schema.]locking_mode 641 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 642 */ 643 case PragTyp_LOCKING_MODE: { 644 const char *zRet = "normal"; 645 int eMode = getLockingMode(zRight); 646 647 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 648 /* Simple "PRAGMA locking_mode;" statement. This is a query for 649 ** the current default locking mode (which may be different to 650 ** the locking-mode of the main database). 651 */ 652 eMode = db->dfltLockMode; 653 }else{ 654 Pager *pPager; 655 if( pId2->n==0 ){ 656 /* This indicates that no database name was specified as part 657 ** of the PRAGMA command. In this case the locking-mode must be 658 ** set on all attached databases, as well as the main db file. 659 ** 660 ** Also, the sqlite3.dfltLockMode variable is set so that 661 ** any subsequently attached databases also use the specified 662 ** locking mode. 663 */ 664 int ii; 665 assert(pDb==&db->aDb[0]); 666 for(ii=2; ii<db->nDb; ii++){ 667 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 668 sqlite3PagerLockingMode(pPager, eMode); 669 } 670 db->dfltLockMode = (u8)eMode; 671 } 672 pPager = sqlite3BtreePager(pDb->pBt); 673 eMode = sqlite3PagerLockingMode(pPager, eMode); 674 } 675 676 assert( eMode==PAGER_LOCKINGMODE_NORMAL 677 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 678 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 679 zRet = "exclusive"; 680 } 681 returnSingleText(v, zRet); 682 break; 683 } 684 685 /* 686 ** PRAGMA [schema.]journal_mode 687 ** PRAGMA [schema.]journal_mode = 688 ** (delete|persist|off|truncate|memory|wal|off) 689 */ 690 case PragTyp_JOURNAL_MODE: { 691 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 692 int ii; /* Loop counter */ 693 694 if( zRight==0 ){ 695 /* If there is no "=MODE" part of the pragma, do a query for the 696 ** current mode */ 697 eMode = PAGER_JOURNALMODE_QUERY; 698 }else{ 699 const char *zMode; 700 int n = sqlite3Strlen30(zRight); 701 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 702 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 703 } 704 if( !zMode ){ 705 /* If the "=MODE" part does not match any known journal mode, 706 ** then do a query */ 707 eMode = PAGER_JOURNALMODE_QUERY; 708 } 709 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){ 710 /* Do not allow journal-mode "OFF" in defensive since the database 711 ** can become corrupted using ordinary SQL when the journal is off */ 712 eMode = PAGER_JOURNALMODE_QUERY; 713 } 714 } 715 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 716 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 717 iDb = 0; 718 pId2->n = 1; 719 } 720 for(ii=db->nDb-1; ii>=0; ii--){ 721 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 722 sqlite3VdbeUsesBtree(v, ii); 723 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 724 } 725 } 726 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 727 break; 728 } 729 730 /* 731 ** PRAGMA [schema.]journal_size_limit 732 ** PRAGMA [schema.]journal_size_limit=N 733 ** 734 ** Get or set the size limit on rollback journal files. 735 */ 736 case PragTyp_JOURNAL_SIZE_LIMIT: { 737 Pager *pPager = sqlite3BtreePager(pDb->pBt); 738 i64 iLimit = -2; 739 if( zRight ){ 740 sqlite3DecOrHexToI64(zRight, &iLimit); 741 if( iLimit<-1 ) iLimit = -1; 742 } 743 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 744 returnSingleInt(v, iLimit); 745 break; 746 } 747 748 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 749 750 /* 751 ** PRAGMA [schema.]auto_vacuum 752 ** PRAGMA [schema.]auto_vacuum=N 753 ** 754 ** Get or set the value of the database 'auto-vacuum' parameter. 755 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 756 */ 757 #ifndef SQLITE_OMIT_AUTOVACUUM 758 case PragTyp_AUTO_VACUUM: { 759 Btree *pBt = pDb->pBt; 760 assert( pBt!=0 ); 761 if( !zRight ){ 762 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); 763 }else{ 764 int eAuto = getAutoVacuum(zRight); 765 assert( eAuto>=0 && eAuto<=2 ); 766 db->nextAutovac = (u8)eAuto; 767 /* Call SetAutoVacuum() to set initialize the internal auto and 768 ** incr-vacuum flags. This is required in case this connection 769 ** creates the database file. It is important that it is created 770 ** as an auto-vacuum capable db. 771 */ 772 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 773 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 774 /* When setting the auto_vacuum mode to either "full" or 775 ** "incremental", write the value of meta[6] in the database 776 ** file. Before writing to meta[6], check that meta[3] indicates 777 ** that this really is an auto-vacuum capable database. 778 */ 779 static const int iLn = VDBE_OFFSET_LINENO(2); 780 static const VdbeOpList setMeta6[] = { 781 { OP_Transaction, 0, 1, 0}, /* 0 */ 782 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 783 { OP_If, 1, 0, 0}, /* 2 */ 784 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 785 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 786 }; 787 VdbeOp *aOp; 788 int iAddr = sqlite3VdbeCurrentAddr(v); 789 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 790 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 791 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 792 aOp[0].p1 = iDb; 793 aOp[1].p1 = iDb; 794 aOp[2].p2 = iAddr+4; 795 aOp[4].p1 = iDb; 796 aOp[4].p3 = eAuto - 1; 797 sqlite3VdbeUsesBtree(v, iDb); 798 } 799 } 800 break; 801 } 802 #endif 803 804 /* 805 ** PRAGMA [schema.]incremental_vacuum(N) 806 ** 807 ** Do N steps of incremental vacuuming on a database. 808 */ 809 #ifndef SQLITE_OMIT_AUTOVACUUM 810 case PragTyp_INCREMENTAL_VACUUM: { 811 int iLimit = 0, addr; 812 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 813 iLimit = 0x7fffffff; 814 } 815 sqlite3BeginWriteOperation(pParse, 0, iDb); 816 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 817 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 818 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 819 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 820 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 821 sqlite3VdbeJumpHere(v, addr); 822 break; 823 } 824 #endif 825 826 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 827 /* 828 ** PRAGMA [schema.]cache_size 829 ** PRAGMA [schema.]cache_size=N 830 ** 831 ** The first form reports the current local setting for the 832 ** page cache size. The second form sets the local 833 ** page cache size value. If N is positive then that is the 834 ** number of pages in the cache. If N is negative, then the 835 ** number of pages is adjusted so that the cache uses -N kibibytes 836 ** of memory. 837 */ 838 case PragTyp_CACHE_SIZE: { 839 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 840 if( !zRight ){ 841 returnSingleInt(v, pDb->pSchema->cache_size); 842 }else{ 843 int size = sqlite3Atoi(zRight); 844 pDb->pSchema->cache_size = size; 845 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 846 } 847 break; 848 } 849 850 /* 851 ** PRAGMA [schema.]cache_spill 852 ** PRAGMA cache_spill=BOOLEAN 853 ** PRAGMA [schema.]cache_spill=N 854 ** 855 ** The first form reports the current local setting for the 856 ** page cache spill size. The second form turns cache spill on 857 ** or off. When turnning cache spill on, the size is set to the 858 ** current cache_size. The third form sets a spill size that 859 ** may be different form the cache size. 860 ** If N is positive then that is the 861 ** number of pages in the cache. If N is negative, then the 862 ** number of pages is adjusted so that the cache uses -N kibibytes 863 ** of memory. 864 ** 865 ** If the number of cache_spill pages is less then the number of 866 ** cache_size pages, no spilling occurs until the page count exceeds 867 ** the number of cache_size pages. 868 ** 869 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 870 ** not just the schema specified. 871 */ 872 case PragTyp_CACHE_SPILL: { 873 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 874 if( !zRight ){ 875 returnSingleInt(v, 876 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 877 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 878 }else{ 879 int size = 1; 880 if( sqlite3GetInt32(zRight, &size) ){ 881 sqlite3BtreeSetSpillSize(pDb->pBt, size); 882 } 883 if( sqlite3GetBoolean(zRight, size!=0) ){ 884 db->flags |= SQLITE_CacheSpill; 885 }else{ 886 db->flags &= ~(u64)SQLITE_CacheSpill; 887 } 888 setAllPagerFlags(db); 889 } 890 break; 891 } 892 893 /* 894 ** PRAGMA [schema.]mmap_size(N) 895 ** 896 ** Used to set mapping size limit. The mapping size limit is 897 ** used to limit the aggregate size of all memory mapped regions of the 898 ** database file. If this parameter is set to zero, then memory mapping 899 ** is not used at all. If N is negative, then the default memory map 900 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 901 ** The parameter N is measured in bytes. 902 ** 903 ** This value is advisory. The underlying VFS is free to memory map 904 ** as little or as much as it wants. Except, if N is set to 0 then the 905 ** upper layers will never invoke the xFetch interfaces to the VFS. 906 */ 907 case PragTyp_MMAP_SIZE: { 908 sqlite3_int64 sz; 909 #if SQLITE_MAX_MMAP_SIZE>0 910 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 911 if( zRight ){ 912 int ii; 913 sqlite3DecOrHexToI64(zRight, &sz); 914 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 915 if( pId2->n==0 ) db->szMmap = sz; 916 for(ii=db->nDb-1; ii>=0; ii--){ 917 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 918 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 919 } 920 } 921 } 922 sz = -1; 923 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 924 #else 925 sz = 0; 926 rc = SQLITE_OK; 927 #endif 928 if( rc==SQLITE_OK ){ 929 returnSingleInt(v, sz); 930 }else if( rc!=SQLITE_NOTFOUND ){ 931 pParse->nErr++; 932 pParse->rc = rc; 933 } 934 break; 935 } 936 937 /* 938 ** PRAGMA temp_store 939 ** PRAGMA temp_store = "default"|"memory"|"file" 940 ** 941 ** Return or set the local value of the temp_store flag. Changing 942 ** the local value does not make changes to the disk file and the default 943 ** value will be restored the next time the database is opened. 944 ** 945 ** Note that it is possible for the library compile-time options to 946 ** override this setting 947 */ 948 case PragTyp_TEMP_STORE: { 949 if( !zRight ){ 950 returnSingleInt(v, db->temp_store); 951 }else{ 952 changeTempStorage(pParse, zRight); 953 } 954 break; 955 } 956 957 /* 958 ** PRAGMA temp_store_directory 959 ** PRAGMA temp_store_directory = ""|"directory_name" 960 ** 961 ** Return or set the local value of the temp_store_directory flag. Changing 962 ** the value sets a specific directory to be used for temporary files. 963 ** Setting to a null string reverts to the default temporary directory search. 964 ** If temporary directory is changed, then invalidateTempStorage. 965 ** 966 */ 967 case PragTyp_TEMP_STORE_DIRECTORY: { 968 if( !zRight ){ 969 returnSingleText(v, sqlite3_temp_directory); 970 }else{ 971 #ifndef SQLITE_OMIT_WSD 972 if( zRight[0] ){ 973 int res; 974 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 975 if( rc!=SQLITE_OK || res==0 ){ 976 sqlite3ErrorMsg(pParse, "not a writable directory"); 977 goto pragma_out; 978 } 979 } 980 if( SQLITE_TEMP_STORE==0 981 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 982 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 983 ){ 984 invalidateTempStorage(pParse); 985 } 986 sqlite3_free(sqlite3_temp_directory); 987 if( zRight[0] ){ 988 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 989 }else{ 990 sqlite3_temp_directory = 0; 991 } 992 #endif /* SQLITE_OMIT_WSD */ 993 } 994 break; 995 } 996 997 #if SQLITE_OS_WIN 998 /* 999 ** PRAGMA data_store_directory 1000 ** PRAGMA data_store_directory = ""|"directory_name" 1001 ** 1002 ** Return or set the local value of the data_store_directory flag. Changing 1003 ** the value sets a specific directory to be used for database files that 1004 ** were specified with a relative pathname. Setting to a null string reverts 1005 ** to the default database directory, which for database files specified with 1006 ** a relative path will probably be based on the current directory for the 1007 ** process. Database file specified with an absolute path are not impacted 1008 ** by this setting, regardless of its value. 1009 ** 1010 */ 1011 case PragTyp_DATA_STORE_DIRECTORY: { 1012 if( !zRight ){ 1013 returnSingleText(v, sqlite3_data_directory); 1014 }else{ 1015 #ifndef SQLITE_OMIT_WSD 1016 if( zRight[0] ){ 1017 int res; 1018 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 1019 if( rc!=SQLITE_OK || res==0 ){ 1020 sqlite3ErrorMsg(pParse, "not a writable directory"); 1021 goto pragma_out; 1022 } 1023 } 1024 sqlite3_free(sqlite3_data_directory); 1025 if( zRight[0] ){ 1026 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 1027 }else{ 1028 sqlite3_data_directory = 0; 1029 } 1030 #endif /* SQLITE_OMIT_WSD */ 1031 } 1032 break; 1033 } 1034 #endif 1035 1036 #if SQLITE_ENABLE_LOCKING_STYLE 1037 /* 1038 ** PRAGMA [schema.]lock_proxy_file 1039 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 1040 ** 1041 ** Return or set the value of the lock_proxy_file flag. Changing 1042 ** the value sets a specific file to be used for database access locks. 1043 ** 1044 */ 1045 case PragTyp_LOCK_PROXY_FILE: { 1046 if( !zRight ){ 1047 Pager *pPager = sqlite3BtreePager(pDb->pBt); 1048 char *proxy_file_path = NULL; 1049 sqlite3_file *pFile = sqlite3PagerFile(pPager); 1050 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 1051 &proxy_file_path); 1052 returnSingleText(v, proxy_file_path); 1053 }else{ 1054 Pager *pPager = sqlite3BtreePager(pDb->pBt); 1055 sqlite3_file *pFile = sqlite3PagerFile(pPager); 1056 int res; 1057 if( zRight[0] ){ 1058 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 1059 zRight); 1060 } else { 1061 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 1062 NULL); 1063 } 1064 if( res!=SQLITE_OK ){ 1065 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 1066 goto pragma_out; 1067 } 1068 } 1069 break; 1070 } 1071 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 1072 1073 /* 1074 ** PRAGMA [schema.]synchronous 1075 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 1076 ** 1077 ** Return or set the local value of the synchronous flag. Changing 1078 ** the local value does not make changes to the disk file and the 1079 ** default value will be restored the next time the database is 1080 ** opened. 1081 */ 1082 case PragTyp_SYNCHRONOUS: { 1083 if( !zRight ){ 1084 returnSingleInt(v, pDb->safety_level-1); 1085 }else{ 1086 if( !db->autoCommit ){ 1087 sqlite3ErrorMsg(pParse, 1088 "Safety level may not be changed inside a transaction"); 1089 }else if( iDb!=1 ){ 1090 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 1091 if( iLevel==0 ) iLevel = 1; 1092 pDb->safety_level = iLevel; 1093 pDb->bSyncSet = 1; 1094 setAllPagerFlags(db); 1095 } 1096 } 1097 break; 1098 } 1099 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1100 1101 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1102 case PragTyp_FLAG: { 1103 if( zRight==0 ){ 1104 setPragmaResultColumnNames(v, pPragma); 1105 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); 1106 }else{ 1107 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1108 if( db->autoCommit==0 ){ 1109 /* Foreign key support may not be enabled or disabled while not 1110 ** in auto-commit mode. */ 1111 mask &= ~(SQLITE_ForeignKeys); 1112 } 1113 #if SQLITE_USER_AUTHENTICATION 1114 if( db->auth.authLevel==UAUTH_User ){ 1115 /* Do not allow non-admin users to modify the schema arbitrarily */ 1116 mask &= ~(SQLITE_WriteSchema); 1117 } 1118 #endif 1119 1120 if( sqlite3GetBoolean(zRight, 0) ){ 1121 db->flags |= mask; 1122 }else{ 1123 db->flags &= ~mask; 1124 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1125 if( (mask & SQLITE_WriteSchema)!=0 1126 && sqlite3_stricmp(zRight, "reset")==0 1127 ){ 1128 /* IMP: R-60817-01178 If the argument is "RESET" then schema 1129 ** writing is disabled (as with "PRAGMA writable_schema=OFF") and, 1130 ** in addition, the schema is reloaded. */ 1131 sqlite3ResetAllSchemasOfConnection(db); 1132 } 1133 } 1134 1135 /* Many of the flag-pragmas modify the code generated by the SQL 1136 ** compiler (eg. count_changes). So add an opcode to expire all 1137 ** compiled SQL statements after modifying a pragma value. 1138 */ 1139 sqlite3VdbeAddOp0(v, OP_Expire); 1140 setAllPagerFlags(db); 1141 } 1142 break; 1143 } 1144 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1145 1146 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1147 /* 1148 ** PRAGMA table_info(<table>) 1149 ** 1150 ** Return a single row for each column of the named table. The columns of 1151 ** the returned data set are: 1152 ** 1153 ** cid: Column id (numbered from left to right, starting at 0) 1154 ** name: Column name 1155 ** type: Column declaration type. 1156 ** notnull: True if 'NOT NULL' is part of column declaration 1157 ** dflt_value: The default value for the column, if any. 1158 ** pk: Non-zero for PK fields. 1159 */ 1160 case PragTyp_TABLE_INFO: if( zRight ){ 1161 Table *pTab; 1162 sqlite3CodeVerifyNamedSchema(pParse, zDb); 1163 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1164 if( pTab ){ 1165 int i, k; 1166 int nHidden = 0; 1167 Column *pCol; 1168 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1169 pParse->nMem = 7; 1170 sqlite3ViewGetColumnNames(pParse, pTab); 1171 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1172 int isHidden = 0; 1173 const Expr *pColExpr; 1174 if( pCol->colFlags & COLFLAG_NOINSERT ){ 1175 if( pPragma->iArg==0 ){ 1176 nHidden++; 1177 continue; 1178 } 1179 if( pCol->colFlags & COLFLAG_VIRTUAL ){ 1180 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */ 1181 }else if( pCol->colFlags & COLFLAG_STORED ){ 1182 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */ 1183 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN ); 1184 isHidden = 1; /* HIDDEN */ 1185 } 1186 } 1187 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1188 k = 0; 1189 }else if( pPk==0 ){ 1190 k = 1; 1191 }else{ 1192 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1193 } 1194 pColExpr = sqlite3ColumnExpr(pTab,pCol); 1195 assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 ); 1196 assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue) 1197 || isHidden>=2 ); 1198 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi", 1199 i-nHidden, 1200 pCol->zCnName, 1201 sqlite3ColumnType(pCol,""), 1202 pCol->notNull ? 1 : 0, 1203 (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken, 1204 k, 1205 isHidden); 1206 } 1207 } 1208 } 1209 break; 1210 1211 /* 1212 ** PRAGMA table_list 1213 ** 1214 ** Return a single row for each table, virtual table, or view in the 1215 ** entire schema. 1216 ** 1217 ** schema: Name of attached database hold this table 1218 ** name: Name of the table itself 1219 ** type: "table", "view", "virtual", "shadow" 1220 ** ncol: Number of columns 1221 ** wr: True for a WITHOUT ROWID table 1222 ** strict: True for a STRICT table 1223 */ 1224 case PragTyp_TABLE_LIST: { 1225 int ii; 1226 pParse->nMem = 6; 1227 sqlite3CodeVerifyNamedSchema(pParse, zDb); 1228 for(ii=0; ii<db->nDb; ii++){ 1229 HashElem *k; 1230 Hash *pHash; 1231 int initNCol; 1232 if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue; 1233 1234 /* Ensure that the Table.nCol field is initialized for all views 1235 ** and virtual tables. Each time we initialize a Table.nCol value 1236 ** for a table, that can potentially disrupt the hash table, so restart 1237 ** the initialization scan. 1238 */ 1239 pHash = &db->aDb[ii].pSchema->tblHash; 1240 initNCol = sqliteHashCount(pHash); 1241 while( initNCol-- ){ 1242 for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){ 1243 Table *pTab; 1244 if( k==0 ){ initNCol = 0; break; } 1245 pTab = sqliteHashData(k); 1246 if( pTab->nCol==0 ){ 1247 char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName); 1248 if( zSql ){ 1249 sqlite3_stmt *pDummy = 0; 1250 (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0); 1251 (void)sqlite3_finalize(pDummy); 1252 sqlite3DbFree(db, zSql); 1253 } 1254 if( db->mallocFailed ){ 1255 sqlite3ErrorMsg(db->pParse, "out of memory"); 1256 db->pParse->rc = SQLITE_NOMEM_BKPT; 1257 } 1258 pHash = &db->aDb[ii].pSchema->tblHash; 1259 break; 1260 } 1261 } 1262 } 1263 1264 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){ 1265 Table *pTab = sqliteHashData(k); 1266 const char *zType; 1267 if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue; 1268 if( IsView(pTab) ){ 1269 zType = "view"; 1270 }else if( IsVirtual(pTab) ){ 1271 zType = "virtual"; 1272 }else if( pTab->tabFlags & TF_Shadow ){ 1273 zType = "shadow"; 1274 }else{ 1275 zType = "table"; 1276 } 1277 sqlite3VdbeMultiLoad(v, 1, "sssiii", 1278 db->aDb[ii].zDbSName, 1279 sqlite3PreferredTableName(pTab->zName), 1280 zType, 1281 pTab->nCol, 1282 (pTab->tabFlags & TF_WithoutRowid)!=0, 1283 (pTab->tabFlags & TF_Strict)!=0 1284 ); 1285 } 1286 } 1287 } 1288 break; 1289 1290 #ifdef SQLITE_DEBUG 1291 case PragTyp_STATS: { 1292 Index *pIdx; 1293 HashElem *i; 1294 pParse->nMem = 5; 1295 sqlite3CodeVerifySchema(pParse, iDb); 1296 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1297 Table *pTab = sqliteHashData(i); 1298 sqlite3VdbeMultiLoad(v, 1, "ssiii", 1299 sqlite3PreferredTableName(pTab->zName), 1300 0, 1301 pTab->szTabRow, 1302 pTab->nRowLogEst, 1303 pTab->tabFlags); 1304 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1305 sqlite3VdbeMultiLoad(v, 2, "siiiX", 1306 pIdx->zName, 1307 pIdx->szIdxRow, 1308 pIdx->aiRowLogEst[0], 1309 pIdx->hasStat1); 1310 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1311 } 1312 } 1313 } 1314 break; 1315 #endif 1316 1317 case PragTyp_INDEX_INFO: if( zRight ){ 1318 Index *pIdx; 1319 Table *pTab; 1320 pIdx = sqlite3FindIndex(db, zRight, zDb); 1321 if( pIdx==0 ){ 1322 /* If there is no index named zRight, check to see if there is a 1323 ** WITHOUT ROWID table named zRight, and if there is, show the 1324 ** structure of the PRIMARY KEY index for that table. */ 1325 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1326 if( pTab && !HasRowid(pTab) ){ 1327 pIdx = sqlite3PrimaryKeyIndex(pTab); 1328 } 1329 } 1330 if( pIdx ){ 1331 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1332 int i; 1333 int mx; 1334 if( pPragma->iArg ){ 1335 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1336 mx = pIdx->nColumn; 1337 pParse->nMem = 6; 1338 }else{ 1339 /* PRAGMA index_info (legacy version) */ 1340 mx = pIdx->nKeyCol; 1341 pParse->nMem = 3; 1342 } 1343 pTab = pIdx->pTable; 1344 sqlite3CodeVerifySchema(pParse, iIdxDb); 1345 assert( pParse->nMem<=pPragma->nPragCName ); 1346 for(i=0; i<mx; i++){ 1347 i16 cnum = pIdx->aiColumn[i]; 1348 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, 1349 cnum<0 ? 0 : pTab->aCol[cnum].zCnName); 1350 if( pPragma->iArg ){ 1351 sqlite3VdbeMultiLoad(v, 4, "isiX", 1352 pIdx->aSortOrder[i], 1353 pIdx->azColl[i], 1354 i<pIdx->nKeyCol); 1355 } 1356 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1357 } 1358 } 1359 } 1360 break; 1361 1362 case PragTyp_INDEX_LIST: if( zRight ){ 1363 Index *pIdx; 1364 Table *pTab; 1365 int i; 1366 pTab = sqlite3FindTable(db, zRight, zDb); 1367 if( pTab ){ 1368 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1369 pParse->nMem = 5; 1370 sqlite3CodeVerifySchema(pParse, iTabDb); 1371 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1372 const char *azOrigin[] = { "c", "u", "pk" }; 1373 sqlite3VdbeMultiLoad(v, 1, "isisi", 1374 i, 1375 pIdx->zName, 1376 IsUniqueIndex(pIdx), 1377 azOrigin[pIdx->idxType], 1378 pIdx->pPartIdxWhere!=0); 1379 } 1380 } 1381 } 1382 break; 1383 1384 case PragTyp_DATABASE_LIST: { 1385 int i; 1386 pParse->nMem = 3; 1387 for(i=0; i<db->nDb; i++){ 1388 if( db->aDb[i].pBt==0 ) continue; 1389 assert( db->aDb[i].zDbSName!=0 ); 1390 sqlite3VdbeMultiLoad(v, 1, "iss", 1391 i, 1392 db->aDb[i].zDbSName, 1393 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1394 } 1395 } 1396 break; 1397 1398 case PragTyp_COLLATION_LIST: { 1399 int i = 0; 1400 HashElem *p; 1401 pParse->nMem = 2; 1402 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1403 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1404 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1405 } 1406 } 1407 break; 1408 1409 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS 1410 case PragTyp_FUNCTION_LIST: { 1411 int i; 1412 HashElem *j; 1413 FuncDef *p; 1414 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0; 1415 pParse->nMem = 6; 1416 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 1417 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ 1418 assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); 1419 pragmaFunclistLine(v, p, 1, showInternFunc); 1420 } 1421 } 1422 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ 1423 p = (FuncDef*)sqliteHashData(j); 1424 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); 1425 pragmaFunclistLine(v, p, 0, showInternFunc); 1426 } 1427 } 1428 break; 1429 1430 #ifndef SQLITE_OMIT_VIRTUALTABLE 1431 case PragTyp_MODULE_LIST: { 1432 HashElem *j; 1433 pParse->nMem = 1; 1434 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ 1435 Module *pMod = (Module*)sqliteHashData(j); 1436 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); 1437 } 1438 } 1439 break; 1440 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1441 1442 case PragTyp_PRAGMA_LIST: { 1443 int i; 1444 for(i=0; i<ArraySize(aPragmaName); i++){ 1445 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName); 1446 } 1447 } 1448 break; 1449 #endif /* SQLITE_INTROSPECTION_PRAGMAS */ 1450 1451 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1452 1453 #ifndef SQLITE_OMIT_FOREIGN_KEY 1454 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1455 FKey *pFK; 1456 Table *pTab; 1457 pTab = sqlite3FindTable(db, zRight, zDb); 1458 if( pTab && IsOrdinaryTable(pTab) ){ 1459 pFK = pTab->u.tab.pFKey; 1460 if( pFK ){ 1461 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1462 int i = 0; 1463 pParse->nMem = 8; 1464 sqlite3CodeVerifySchema(pParse, iTabDb); 1465 while(pFK){ 1466 int j; 1467 for(j=0; j<pFK->nCol; j++){ 1468 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1469 i, 1470 j, 1471 pFK->zTo, 1472 pTab->aCol[pFK->aCol[j].iFrom].zCnName, 1473 pFK->aCol[j].zCol, 1474 actionName(pFK->aAction[1]), /* ON UPDATE */ 1475 actionName(pFK->aAction[0]), /* ON DELETE */ 1476 "NONE"); 1477 } 1478 ++i; 1479 pFK = pFK->pNextFrom; 1480 } 1481 } 1482 } 1483 } 1484 break; 1485 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1486 1487 #ifndef SQLITE_OMIT_FOREIGN_KEY 1488 #ifndef SQLITE_OMIT_TRIGGER 1489 case PragTyp_FOREIGN_KEY_CHECK: { 1490 FKey *pFK; /* A foreign key constraint */ 1491 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1492 Table *pParent; /* Parent table that child points to */ 1493 Index *pIdx; /* Index in the parent table */ 1494 int i; /* Loop counter: Foreign key number for pTab */ 1495 int j; /* Loop counter: Field of the foreign key */ 1496 HashElem *k; /* Loop counter: Next table in schema */ 1497 int x; /* result variable */ 1498 int regResult; /* 3 registers to hold a result row */ 1499 int regRow; /* Registers to hold a row from pTab */ 1500 int addrTop; /* Top of a loop checking foreign keys */ 1501 int addrOk; /* Jump here if the key is OK */ 1502 int *aiCols; /* child to parent column mapping */ 1503 1504 regResult = pParse->nMem+1; 1505 pParse->nMem += 4; 1506 regRow = ++pParse->nMem; 1507 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1508 while( k ){ 1509 if( zRight ){ 1510 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1511 k = 0; 1512 }else{ 1513 pTab = (Table*)sqliteHashData(k); 1514 k = sqliteHashNext(k); 1515 } 1516 if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue; 1517 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1518 zDb = db->aDb[iDb].zDbSName; 1519 sqlite3CodeVerifySchema(pParse, iDb); 1520 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1521 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1522 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1523 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1524 assert( IsOrdinaryTable(pTab) ); 1525 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1526 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1527 if( pParent==0 ) continue; 1528 pIdx = 0; 1529 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1530 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1531 if( x==0 ){ 1532 if( pIdx==0 ){ 1533 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1534 }else{ 1535 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1536 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1537 } 1538 }else{ 1539 k = 0; 1540 break; 1541 } 1542 } 1543 assert( pParse->nErr>0 || pFK==0 ); 1544 if( pFK ) break; 1545 if( pParse->nTab<i ) pParse->nTab = i; 1546 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1547 assert( IsOrdinaryTable(pTab) ); 1548 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1549 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1550 pIdx = 0; 1551 aiCols = 0; 1552 if( pParent ){ 1553 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1554 assert( x==0 || db->mallocFailed ); 1555 } 1556 addrOk = sqlite3VdbeMakeLabel(pParse); 1557 1558 /* Generate code to read the child key values into registers 1559 ** regRow..regRow+n. If any of the child key values are NULL, this 1560 ** row cannot cause an FK violation. Jump directly to addrOk in 1561 ** this case. */ 1562 if( regRow+pFK->nCol>pParse->nMem ) pParse->nMem = regRow+pFK->nCol; 1563 for(j=0; j<pFK->nCol; j++){ 1564 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; 1565 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); 1566 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1567 } 1568 1569 /* Generate code to query the parent index for a matching parent 1570 ** key. If a match is found, jump to addrOk. */ 1571 if( pIdx ){ 1572 sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0, 1573 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1574 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol); 1575 VdbeCoverage(v); 1576 }else if( pParent ){ 1577 int jmp = sqlite3VdbeCurrentAddr(v)+2; 1578 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); 1579 sqlite3VdbeGoto(v, addrOk); 1580 assert( pFK->nCol==1 || db->mallocFailed ); 1581 } 1582 1583 /* Generate code to report an FK violation to the caller. */ 1584 if( HasRowid(pTab) ){ 1585 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1586 }else{ 1587 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); 1588 } 1589 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); 1590 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1591 sqlite3VdbeResolveLabel(v, addrOk); 1592 sqlite3DbFree(db, aiCols); 1593 } 1594 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1595 sqlite3VdbeJumpHere(v, addrTop); 1596 } 1597 } 1598 break; 1599 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1600 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1601 1602 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA 1603 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1604 ** used will be case sensitive or not depending on the RHS. 1605 */ 1606 case PragTyp_CASE_SENSITIVE_LIKE: { 1607 if( zRight ){ 1608 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1609 } 1610 } 1611 break; 1612 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */ 1613 1614 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1615 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1616 #endif 1617 1618 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1619 /* PRAGMA integrity_check 1620 ** PRAGMA integrity_check(N) 1621 ** PRAGMA quick_check 1622 ** PRAGMA quick_check(N) 1623 ** 1624 ** Verify the integrity of the database. 1625 ** 1626 ** The "quick_check" is reduced version of 1627 ** integrity_check designed to detect most database corruption 1628 ** without the overhead of cross-checking indexes. Quick_check 1629 ** is linear time wherease integrity_check is O(NlogN). 1630 ** 1631 ** The maximum nubmer of errors is 100 by default. A different default 1632 ** can be specified using a numeric parameter N. 1633 ** 1634 ** Or, the parameter N can be the name of a table. In that case, only 1635 ** the one table named is verified. The freelist is only verified if 1636 ** the named table is "sqlite_schema" (or one of its aliases). 1637 ** 1638 ** All schemas are checked by default. To check just a single 1639 ** schema, use the form: 1640 ** 1641 ** PRAGMA schema.integrity_check; 1642 */ 1643 case PragTyp_INTEGRITY_CHECK: { 1644 int i, j, addr, mxErr; 1645 Table *pObjTab = 0; /* Check only this one table, if not NULL */ 1646 1647 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1648 1649 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1650 ** then iDb is set to the index of the database identified by <db>. 1651 ** In this case, the integrity of database iDb only is verified by 1652 ** the VDBE created below. 1653 ** 1654 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1655 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1656 ** to -1 here, to indicate that the VDBE should verify the integrity 1657 ** of all attached databases. */ 1658 assert( iDb>=0 ); 1659 assert( iDb==0 || pId2->z ); 1660 if( pId2->z==0 ) iDb = -1; 1661 1662 /* Initialize the VDBE program */ 1663 pParse->nMem = 6; 1664 1665 /* Set the maximum error count */ 1666 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1667 if( zRight ){ 1668 if( sqlite3GetInt32(zRight, &mxErr) ){ 1669 if( mxErr<=0 ){ 1670 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1671 } 1672 }else{ 1673 pObjTab = sqlite3LocateTable(pParse, 0, zRight, 1674 iDb>=0 ? db->aDb[iDb].zDbSName : 0); 1675 } 1676 } 1677 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ 1678 1679 /* Do an integrity check on each database file */ 1680 for(i=0; i<db->nDb; i++){ 1681 HashElem *x; /* For looping over tables in the schema */ 1682 Hash *pTbls; /* Set of all tables in the schema */ 1683 int *aRoot; /* Array of root page numbers of all btrees */ 1684 int cnt = 0; /* Number of entries in aRoot[] */ 1685 int mxIdx = 0; /* Maximum number of indexes for any table */ 1686 1687 if( OMIT_TEMPDB && i==1 ) continue; 1688 if( iDb>=0 && i!=iDb ) continue; 1689 1690 sqlite3CodeVerifySchema(pParse, i); 1691 1692 /* Do an integrity check of the B-Tree 1693 ** 1694 ** Begin by finding the root pages numbers 1695 ** for all tables and indices in the database. 1696 */ 1697 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1698 pTbls = &db->aDb[i].pSchema->tblHash; 1699 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1700 Table *pTab = sqliteHashData(x); /* Current table */ 1701 Index *pIdx; /* An index on pTab */ 1702 int nIdx; /* Number of indexes on pTab */ 1703 if( pObjTab && pObjTab!=pTab ) continue; 1704 if( HasRowid(pTab) ) cnt++; 1705 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1706 if( nIdx>mxIdx ) mxIdx = nIdx; 1707 } 1708 if( cnt==0 ) continue; 1709 if( pObjTab ) cnt++; 1710 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1711 if( aRoot==0 ) break; 1712 cnt = 0; 1713 if( pObjTab ) aRoot[++cnt] = 0; 1714 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1715 Table *pTab = sqliteHashData(x); 1716 Index *pIdx; 1717 if( pObjTab && pObjTab!=pTab ) continue; 1718 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; 1719 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1720 aRoot[++cnt] = pIdx->tnum; 1721 } 1722 } 1723 aRoot[0] = cnt; 1724 1725 /* Make sure sufficient number of registers have been allocated */ 1726 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1727 sqlite3ClearTempRegCache(pParse); 1728 1729 /* Do the b-tree integrity checks */ 1730 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1731 sqlite3VdbeChangeP5(v, (u8)i); 1732 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1733 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1734 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1735 P4_DYNAMIC); 1736 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); 1737 integrityCheckResultRow(v); 1738 sqlite3VdbeJumpHere(v, addr); 1739 1740 /* Make sure all the indices are constructed correctly. 1741 */ 1742 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1743 Table *pTab = sqliteHashData(x); 1744 Index *pIdx, *pPk; 1745 Index *pPrior = 0; 1746 int loopTop; 1747 int iDataCur, iIdxCur; 1748 int r1 = -1; 1749 int bStrict; 1750 1751 if( !IsOrdinaryTable(pTab) ) continue; 1752 if( pObjTab && pObjTab!=pTab ) continue; 1753 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); 1754 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1755 1, 0, &iDataCur, &iIdxCur); 1756 /* reg[7] counts the number of entries in the table. 1757 ** reg[8+i] counts the number of entries in the i-th index 1758 */ 1759 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1760 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1761 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1762 } 1763 assert( pParse->nMem>=8+j ); 1764 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1765 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1766 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1767 if( !isQuick ){ 1768 /* Sanity check on record header decoding */ 1769 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3); 1770 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1771 VdbeComment((v, "(right-most column)")); 1772 } 1773 /* Verify that all NOT NULL columns really are NOT NULL. At the 1774 ** same time verify the type of the content of STRICT tables */ 1775 bStrict = (pTab->tabFlags & TF_Strict)!=0; 1776 for(j=0; j<pTab->nCol; j++){ 1777 char *zErr; 1778 Column *pCol = pTab->aCol + j; 1779 int doError, jmp2; 1780 if( j==pTab->iPKey ) continue; 1781 if( pCol->notNull==0 && !bStrict ) continue; 1782 doError = bStrict ? sqlite3VdbeMakeLabel(pParse) : 0; 1783 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1784 if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){ 1785 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1786 } 1787 if( pCol->notNull ){ 1788 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); 1789 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1790 pCol->zCnName); 1791 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1792 if( bStrict && pCol->eCType!=COLTYPE_ANY ){ 1793 sqlite3VdbeGoto(v, doError); 1794 }else{ 1795 integrityCheckResultRow(v); 1796 } 1797 sqlite3VdbeJumpHere(v, jmp2); 1798 } 1799 if( (pTab->tabFlags & TF_Strict)!=0 1800 && pCol->eCType!=COLTYPE_ANY 1801 ){ 1802 jmp2 = sqlite3VdbeAddOp3(v, OP_IsNullOrType, 3, 0, 1803 sqlite3StdTypeMap[pCol->eCType-1]); 1804 VdbeCoverage(v); 1805 zErr = sqlite3MPrintf(db, "non-%s value in %s.%s", 1806 sqlite3StdType[pCol->eCType-1], 1807 pTab->zName, pTab->aCol[j].zCnName); 1808 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1809 sqlite3VdbeResolveLabel(v, doError); 1810 integrityCheckResultRow(v); 1811 sqlite3VdbeJumpHere(v, jmp2); 1812 } 1813 } 1814 /* Verify CHECK constraints */ 1815 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1816 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); 1817 if( db->mallocFailed==0 ){ 1818 int addrCkFault = sqlite3VdbeMakeLabel(pParse); 1819 int addrCkOk = sqlite3VdbeMakeLabel(pParse); 1820 char *zErr; 1821 int k; 1822 pParse->iSelfTab = iDataCur + 1; 1823 for(k=pCheck->nExpr-1; k>0; k--){ 1824 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); 1825 } 1826 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 1827 SQLITE_JUMPIFNULL); 1828 sqlite3VdbeResolveLabel(v, addrCkFault); 1829 pParse->iSelfTab = 0; 1830 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", 1831 pTab->zName); 1832 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1833 integrityCheckResultRow(v); 1834 sqlite3VdbeResolveLabel(v, addrCkOk); 1835 } 1836 sqlite3ExprListDelete(db, pCheck); 1837 } 1838 if( !isQuick ){ /* Omit the remaining tests for quick_check */ 1839 /* Validate index entries for the current row */ 1840 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1841 int jmp2, jmp3, jmp4, jmp5; 1842 int ckUniq = sqlite3VdbeMakeLabel(pParse); 1843 if( pPk==pIdx ) continue; 1844 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1845 pPrior, r1); 1846 pPrior = pIdx; 1847 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ 1848 /* Verify that an index entry exists for the current table row */ 1849 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1850 pIdx->nColumn); VdbeCoverage(v); 1851 sqlite3VdbeLoadString(v, 3, "row "); 1852 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1853 sqlite3VdbeLoadString(v, 4, " missing from index "); 1854 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1855 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1856 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1857 jmp4 = integrityCheckResultRow(v); 1858 sqlite3VdbeJumpHere(v, jmp2); 1859 /* For UNIQUE indexes, verify that only one entry exists with the 1860 ** current key. The entry is unique if (1) any column is NULL 1861 ** or (2) the next entry has a different key */ 1862 if( IsUniqueIndex(pIdx) ){ 1863 int uniqOk = sqlite3VdbeMakeLabel(pParse); 1864 int jmp6; 1865 int kk; 1866 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1867 int iCol = pIdx->aiColumn[kk]; 1868 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1869 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1870 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1871 VdbeCoverage(v); 1872 } 1873 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1874 sqlite3VdbeGoto(v, uniqOk); 1875 sqlite3VdbeJumpHere(v, jmp6); 1876 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1877 pIdx->nKeyCol); VdbeCoverage(v); 1878 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1879 sqlite3VdbeGoto(v, jmp5); 1880 sqlite3VdbeResolveLabel(v, uniqOk); 1881 } 1882 sqlite3VdbeJumpHere(v, jmp4); 1883 sqlite3ResolvePartIdxLabel(pParse, jmp3); 1884 } 1885 } 1886 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 1887 sqlite3VdbeJumpHere(v, loopTop-1); 1888 if( !isQuick ){ 1889 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 1890 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1891 if( pPk==pIdx ) continue; 1892 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 1893 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); 1894 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1895 sqlite3VdbeLoadString(v, 4, pIdx->zName); 1896 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); 1897 integrityCheckResultRow(v); 1898 sqlite3VdbeJumpHere(v, addr); 1899 } 1900 } 1901 } 1902 } 1903 { 1904 static const int iLn = VDBE_OFFSET_LINENO(2); 1905 static const VdbeOpList endCode[] = { 1906 { OP_AddImm, 1, 0, 0}, /* 0 */ 1907 { OP_IfNotZero, 1, 4, 0}, /* 1 */ 1908 { OP_String8, 0, 3, 0}, /* 2 */ 1909 { OP_ResultRow, 3, 1, 0}, /* 3 */ 1910 { OP_Halt, 0, 0, 0}, /* 4 */ 1911 { OP_String8, 0, 3, 0}, /* 5 */ 1912 { OP_Goto, 0, 3, 0}, /* 6 */ 1913 }; 1914 VdbeOp *aOp; 1915 1916 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 1917 if( aOp ){ 1918 aOp[0].p2 = 1-mxErr; 1919 aOp[2].p4type = P4_STATIC; 1920 aOp[2].p4.z = "ok"; 1921 aOp[5].p4type = P4_STATIC; 1922 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); 1923 } 1924 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); 1925 } 1926 } 1927 break; 1928 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 1929 1930 #ifndef SQLITE_OMIT_UTF16 1931 /* 1932 ** PRAGMA encoding 1933 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 1934 ** 1935 ** In its first form, this pragma returns the encoding of the main 1936 ** database. If the database is not initialized, it is initialized now. 1937 ** 1938 ** The second form of this pragma is a no-op if the main database file 1939 ** has not already been initialized. In this case it sets the default 1940 ** encoding that will be used for the main database file if a new file 1941 ** is created. If an existing main database file is opened, then the 1942 ** default text encoding for the existing database is used. 1943 ** 1944 ** In all cases new databases created using the ATTACH command are 1945 ** created to use the same default text encoding as the main database. If 1946 ** the main database has not been initialized and/or created when ATTACH 1947 ** is executed, this is done before the ATTACH operation. 1948 ** 1949 ** In the second form this pragma sets the text encoding to be used in 1950 ** new database files created using this database handle. It is only 1951 ** useful if invoked immediately after the main database i 1952 */ 1953 case PragTyp_ENCODING: { 1954 static const struct EncName { 1955 char *zName; 1956 u8 enc; 1957 } encnames[] = { 1958 { "UTF8", SQLITE_UTF8 }, 1959 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 1960 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 1961 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 1962 { "UTF16le", SQLITE_UTF16LE }, 1963 { "UTF16be", SQLITE_UTF16BE }, 1964 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 1965 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 1966 { 0, 0 } 1967 }; 1968 const struct EncName *pEnc; 1969 if( !zRight ){ /* "PRAGMA encoding" */ 1970 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 1971 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 1972 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 1973 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 1974 returnSingleText(v, encnames[ENC(pParse->db)].zName); 1975 }else{ /* "PRAGMA encoding = XXX" */ 1976 /* Only change the value of sqlite.enc if the database handle is not 1977 ** initialized. If the main database exists, the new sqlite.enc value 1978 ** will be overwritten when the schema is next loaded. If it does not 1979 ** already exists, it will be created to use the new encoding value. 1980 */ 1981 if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 1982 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 1983 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 1984 u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 1985 SCHEMA_ENC(db) = enc; 1986 sqlite3SetTextEncoding(db, enc); 1987 break; 1988 } 1989 } 1990 if( !pEnc->zName ){ 1991 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 1992 } 1993 } 1994 } 1995 } 1996 break; 1997 #endif /* SQLITE_OMIT_UTF16 */ 1998 1999 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 2000 /* 2001 ** PRAGMA [schema.]schema_version 2002 ** PRAGMA [schema.]schema_version = <integer> 2003 ** 2004 ** PRAGMA [schema.]user_version 2005 ** PRAGMA [schema.]user_version = <integer> 2006 ** 2007 ** PRAGMA [schema.]freelist_count 2008 ** 2009 ** PRAGMA [schema.]data_version 2010 ** 2011 ** PRAGMA [schema.]application_id 2012 ** PRAGMA [schema.]application_id = <integer> 2013 ** 2014 ** The pragma's schema_version and user_version are used to set or get 2015 ** the value of the schema-version and user-version, respectively. Both 2016 ** the schema-version and the user-version are 32-bit signed integers 2017 ** stored in the database header. 2018 ** 2019 ** The schema-cookie is usually only manipulated internally by SQLite. It 2020 ** is incremented by SQLite whenever the database schema is modified (by 2021 ** creating or dropping a table or index). The schema version is used by 2022 ** SQLite each time a query is executed to ensure that the internal cache 2023 ** of the schema used when compiling the SQL query matches the schema of 2024 ** the database against which the compiled query is actually executed. 2025 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 2026 ** the schema-version is potentially dangerous and may lead to program 2027 ** crashes or database corruption. Use with caution! 2028 ** 2029 ** The user-version is not used internally by SQLite. It may be used by 2030 ** applications for any purpose. 2031 */ 2032 case PragTyp_HEADER_VALUE: { 2033 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 2034 sqlite3VdbeUsesBtree(v, iDb); 2035 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ 2036 /* Write the specified cookie value */ 2037 static const VdbeOpList setCookie[] = { 2038 { OP_Transaction, 0, 1, 0}, /* 0 */ 2039 { OP_SetCookie, 0, 0, 0}, /* 1 */ 2040 }; 2041 VdbeOp *aOp; 2042 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 2043 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 2044 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 2045 aOp[0].p1 = iDb; 2046 aOp[1].p1 = iDb; 2047 aOp[1].p2 = iCookie; 2048 aOp[1].p3 = sqlite3Atoi(zRight); 2049 aOp[1].p5 = 1; 2050 }else{ 2051 /* Read the specified cookie value */ 2052 static const VdbeOpList readCookie[] = { 2053 { OP_Transaction, 0, 0, 0}, /* 0 */ 2054 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 2055 { OP_ResultRow, 1, 1, 0} 2056 }; 2057 VdbeOp *aOp; 2058 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 2059 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 2060 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 2061 aOp[0].p1 = iDb; 2062 aOp[1].p1 = iDb; 2063 aOp[1].p3 = iCookie; 2064 sqlite3VdbeReusable(v); 2065 } 2066 } 2067 break; 2068 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 2069 2070 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 2071 /* 2072 ** PRAGMA compile_options 2073 ** 2074 ** Return the names of all compile-time options used in this build, 2075 ** one option per row. 2076 */ 2077 case PragTyp_COMPILE_OPTIONS: { 2078 int i = 0; 2079 const char *zOpt; 2080 pParse->nMem = 1; 2081 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 2082 sqlite3VdbeLoadString(v, 1, zOpt); 2083 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 2084 } 2085 sqlite3VdbeReusable(v); 2086 } 2087 break; 2088 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 2089 2090 #ifndef SQLITE_OMIT_WAL 2091 /* 2092 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 2093 ** 2094 ** Checkpoint the database. 2095 */ 2096 case PragTyp_WAL_CHECKPOINT: { 2097 int iBt = (pId2->z?iDb:SQLITE_MAX_DB); 2098 int eMode = SQLITE_CHECKPOINT_PASSIVE; 2099 if( zRight ){ 2100 if( sqlite3StrICmp(zRight, "full")==0 ){ 2101 eMode = SQLITE_CHECKPOINT_FULL; 2102 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 2103 eMode = SQLITE_CHECKPOINT_RESTART; 2104 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 2105 eMode = SQLITE_CHECKPOINT_TRUNCATE; 2106 } 2107 } 2108 pParse->nMem = 3; 2109 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 2110 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 2111 } 2112 break; 2113 2114 /* 2115 ** PRAGMA wal_autocheckpoint 2116 ** PRAGMA wal_autocheckpoint = N 2117 ** 2118 ** Configure a database connection to automatically checkpoint a database 2119 ** after accumulating N frames in the log. Or query for the current value 2120 ** of N. 2121 */ 2122 case PragTyp_WAL_AUTOCHECKPOINT: { 2123 if( zRight ){ 2124 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 2125 } 2126 returnSingleInt(v, 2127 db->xWalCallback==sqlite3WalDefaultHook ? 2128 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 2129 } 2130 break; 2131 #endif 2132 2133 /* 2134 ** PRAGMA shrink_memory 2135 ** 2136 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 2137 ** connection on which it is invoked to free up as much memory as it 2138 ** can, by calling sqlite3_db_release_memory(). 2139 */ 2140 case PragTyp_SHRINK_MEMORY: { 2141 sqlite3_db_release_memory(db); 2142 break; 2143 } 2144 2145 /* 2146 ** PRAGMA optimize 2147 ** PRAGMA optimize(MASK) 2148 ** PRAGMA schema.optimize 2149 ** PRAGMA schema.optimize(MASK) 2150 ** 2151 ** Attempt to optimize the database. All schemas are optimized in the first 2152 ** two forms, and only the specified schema is optimized in the latter two. 2153 ** 2154 ** The details of optimizations performed by this pragma are expected 2155 ** to change and improve over time. Applications should anticipate that 2156 ** this pragma will perform new optimizations in future releases. 2157 ** 2158 ** The optional argument is a bitmask of optimizations to perform: 2159 ** 2160 ** 0x0001 Debugging mode. Do not actually perform any optimizations 2161 ** but instead return one line of text for each optimization 2162 ** that would have been done. Off by default. 2163 ** 2164 ** 0x0002 Run ANALYZE on tables that might benefit. On by default. 2165 ** See below for additional information. 2166 ** 2167 ** 0x0004 (Not yet implemented) Record usage and performance 2168 ** information from the current session in the 2169 ** database file so that it will be available to "optimize" 2170 ** pragmas run by future database connections. 2171 ** 2172 ** 0x0008 (Not yet implemented) Create indexes that might have 2173 ** been helpful to recent queries 2174 ** 2175 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all 2176 ** of the optimizations listed above except Debug Mode, including new 2177 ** optimizations that have not yet been invented. If new optimizations are 2178 ** ever added that should be off by default, those off-by-default 2179 ** optimizations will have bitmasks of 0x10000 or larger. 2180 ** 2181 ** DETERMINATION OF WHEN TO RUN ANALYZE 2182 ** 2183 ** In the current implementation, a table is analyzed if only if all of 2184 ** the following are true: 2185 ** 2186 ** (1) MASK bit 0x02 is set. 2187 ** 2188 ** (2) The query planner used sqlite_stat1-style statistics for one or 2189 ** more indexes of the table at some point during the lifetime of 2190 ** the current connection. 2191 ** 2192 ** (3) One or more indexes of the table are currently unanalyzed OR 2193 ** the number of rows in the table has increased by 25 times or more 2194 ** since the last time ANALYZE was run. 2195 ** 2196 ** The rules for when tables are analyzed are likely to change in 2197 ** future releases. 2198 */ 2199 case PragTyp_OPTIMIZE: { 2200 int iDbLast; /* Loop termination point for the schema loop */ 2201 int iTabCur; /* Cursor for a table whose size needs checking */ 2202 HashElem *k; /* Loop over tables of a schema */ 2203 Schema *pSchema; /* The current schema */ 2204 Table *pTab; /* A table in the schema */ 2205 Index *pIdx; /* An index of the table */ 2206 LogEst szThreshold; /* Size threshold above which reanalysis is needd */ 2207 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ 2208 u32 opMask; /* Mask of operations to perform */ 2209 2210 if( zRight ){ 2211 opMask = (u32)sqlite3Atoi(zRight); 2212 if( (opMask & 0x02)==0 ) break; 2213 }else{ 2214 opMask = 0xfffe; 2215 } 2216 iTabCur = pParse->nTab++; 2217 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ 2218 if( iDb==1 ) continue; 2219 sqlite3CodeVerifySchema(pParse, iDb); 2220 pSchema = db->aDb[iDb].pSchema; 2221 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 2222 pTab = (Table*)sqliteHashData(k); 2223 2224 /* If table pTab has not been used in a way that would benefit from 2225 ** having analysis statistics during the current session, then skip it. 2226 ** This also has the effect of skipping virtual tables and views */ 2227 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; 2228 2229 /* Reanalyze if the table is 25 times larger than the last analysis */ 2230 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); 2231 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2232 if( !pIdx->hasStat1 ){ 2233 szThreshold = 0; /* Always analyze if any index lacks statistics */ 2234 break; 2235 } 2236 } 2237 if( szThreshold ){ 2238 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 2239 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, 2240 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); 2241 VdbeCoverage(v); 2242 } 2243 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", 2244 db->aDb[iDb].zDbSName, pTab->zName); 2245 if( opMask & 0x01 ){ 2246 int r1 = sqlite3GetTempReg(pParse); 2247 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); 2248 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); 2249 }else{ 2250 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); 2251 } 2252 } 2253 } 2254 sqlite3VdbeAddOp0(v, OP_Expire); 2255 break; 2256 } 2257 2258 /* 2259 ** PRAGMA busy_timeout 2260 ** PRAGMA busy_timeout = N 2261 ** 2262 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 2263 ** if one is set. If no busy handler or a different busy handler is set 2264 ** then 0 is returned. Setting the busy_timeout to 0 or negative 2265 ** disables the timeout. 2266 */ 2267 /*case PragTyp_BUSY_TIMEOUT*/ default: { 2268 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 2269 if( zRight ){ 2270 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 2271 } 2272 returnSingleInt(v, db->busyTimeout); 2273 break; 2274 } 2275 2276 /* 2277 ** PRAGMA soft_heap_limit 2278 ** PRAGMA soft_heap_limit = N 2279 ** 2280 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 2281 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 2282 ** specified and is a non-negative integer. 2283 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 2284 ** returns the same integer that would be returned by the 2285 ** sqlite3_soft_heap_limit64(-1) C-language function. 2286 */ 2287 case PragTyp_SOFT_HEAP_LIMIT: { 2288 sqlite3_int64 N; 2289 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2290 sqlite3_soft_heap_limit64(N); 2291 } 2292 returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); 2293 break; 2294 } 2295 2296 /* 2297 ** PRAGMA hard_heap_limit 2298 ** PRAGMA hard_heap_limit = N 2299 ** 2300 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap 2301 ** limit. The hard heap limit can be activated or lowered by this 2302 ** pragma, but not raised or deactivated. Only the 2303 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate 2304 ** the hard heap limit. This allows an application to set a heap limit 2305 ** constraint that cannot be relaxed by an untrusted SQL script. 2306 */ 2307 case PragTyp_HARD_HEAP_LIMIT: { 2308 sqlite3_int64 N; 2309 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2310 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1); 2311 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N); 2312 } 2313 returnSingleInt(v, sqlite3_hard_heap_limit64(-1)); 2314 break; 2315 } 2316 2317 /* 2318 ** PRAGMA threads 2319 ** PRAGMA threads = N 2320 ** 2321 ** Configure the maximum number of worker threads. Return the new 2322 ** maximum, which might be less than requested. 2323 */ 2324 case PragTyp_THREADS: { 2325 sqlite3_int64 N; 2326 if( zRight 2327 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 2328 && N>=0 2329 ){ 2330 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 2331 } 2332 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 2333 break; 2334 } 2335 2336 /* 2337 ** PRAGMA analysis_limit 2338 ** PRAGMA analysis_limit = N 2339 ** 2340 ** Configure the maximum number of rows that ANALYZE will examine 2341 ** in each index that it looks at. Return the new limit. 2342 */ 2343 case PragTyp_ANALYSIS_LIMIT: { 2344 sqlite3_int64 N; 2345 if( zRight 2346 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */ 2347 && N>=0 2348 ){ 2349 db->nAnalysisLimit = (int)(N&0x7fffffff); 2350 } 2351 returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */ 2352 break; 2353 } 2354 2355 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 2356 /* 2357 ** Report the current state of file logs for all databases 2358 */ 2359 case PragTyp_LOCK_STATUS: { 2360 static const char *const azLockName[] = { 2361 "unlocked", "shared", "reserved", "pending", "exclusive" 2362 }; 2363 int i; 2364 pParse->nMem = 2; 2365 for(i=0; i<db->nDb; i++){ 2366 Btree *pBt; 2367 const char *zState = "unknown"; 2368 int j; 2369 if( db->aDb[i].zDbSName==0 ) continue; 2370 pBt = db->aDb[i].pBt; 2371 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 2372 zState = "closed"; 2373 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 2374 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 2375 zState = azLockName[j]; 2376 } 2377 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 2378 } 2379 break; 2380 } 2381 #endif 2382 2383 #if defined(SQLITE_ENABLE_CEROD) 2384 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 2385 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 2386 sqlite3_activate_cerod(&zRight[6]); 2387 } 2388 } 2389 break; 2390 #endif 2391 2392 } /* End of the PRAGMA switch */ 2393 2394 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only 2395 ** purpose is to execute assert() statements to verify that if the 2396 ** PragFlg_NoColumns1 flag is set and the caller specified an argument 2397 ** to the PRAGMA, the implementation has not added any OP_ResultRow 2398 ** instructions to the VM. */ 2399 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ 2400 sqlite3VdbeVerifyNoResultRow(v); 2401 } 2402 2403 pragma_out: 2404 sqlite3DbFree(db, zLeft); 2405 sqlite3DbFree(db, zRight); 2406 } 2407 #ifndef SQLITE_OMIT_VIRTUALTABLE 2408 /***************************************************************************** 2409 ** Implementation of an eponymous virtual table that runs a pragma. 2410 ** 2411 */ 2412 typedef struct PragmaVtab PragmaVtab; 2413 typedef struct PragmaVtabCursor PragmaVtabCursor; 2414 struct PragmaVtab { 2415 sqlite3_vtab base; /* Base class. Must be first */ 2416 sqlite3 *db; /* The database connection to which it belongs */ 2417 const PragmaName *pName; /* Name of the pragma */ 2418 u8 nHidden; /* Number of hidden columns */ 2419 u8 iHidden; /* Index of the first hidden column */ 2420 }; 2421 struct PragmaVtabCursor { 2422 sqlite3_vtab_cursor base; /* Base class. Must be first */ 2423 sqlite3_stmt *pPragma; /* The pragma statement to run */ 2424 sqlite_int64 iRowid; /* Current rowid */ 2425 char *azArg[2]; /* Value of the argument and schema */ 2426 }; 2427 2428 /* 2429 ** Pragma virtual table module xConnect method. 2430 */ 2431 static int pragmaVtabConnect( 2432 sqlite3 *db, 2433 void *pAux, 2434 int argc, const char *const*argv, 2435 sqlite3_vtab **ppVtab, 2436 char **pzErr 2437 ){ 2438 const PragmaName *pPragma = (const PragmaName*)pAux; 2439 PragmaVtab *pTab = 0; 2440 int rc; 2441 int i, j; 2442 char cSep = '('; 2443 StrAccum acc; 2444 char zBuf[200]; 2445 2446 UNUSED_PARAMETER(argc); 2447 UNUSED_PARAMETER(argv); 2448 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 2449 sqlite3_str_appendall(&acc, "CREATE TABLE x"); 2450 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ 2451 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); 2452 cSep = ','; 2453 } 2454 if( i==0 ){ 2455 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); 2456 i++; 2457 } 2458 j = 0; 2459 if( pPragma->mPragFlg & PragFlg_Result1 ){ 2460 sqlite3_str_appendall(&acc, ",arg HIDDEN"); 2461 j++; 2462 } 2463 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ 2464 sqlite3_str_appendall(&acc, ",schema HIDDEN"); 2465 j++; 2466 } 2467 sqlite3_str_append(&acc, ")", 1); 2468 sqlite3StrAccumFinish(&acc); 2469 assert( strlen(zBuf) < sizeof(zBuf)-1 ); 2470 rc = sqlite3_declare_vtab(db, zBuf); 2471 if( rc==SQLITE_OK ){ 2472 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); 2473 if( pTab==0 ){ 2474 rc = SQLITE_NOMEM; 2475 }else{ 2476 memset(pTab, 0, sizeof(PragmaVtab)); 2477 pTab->pName = pPragma; 2478 pTab->db = db; 2479 pTab->iHidden = i; 2480 pTab->nHidden = j; 2481 } 2482 }else{ 2483 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2484 } 2485 2486 *ppVtab = (sqlite3_vtab*)pTab; 2487 return rc; 2488 } 2489 2490 /* 2491 ** Pragma virtual table module xDisconnect method. 2492 */ 2493 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ 2494 PragmaVtab *pTab = (PragmaVtab*)pVtab; 2495 sqlite3_free(pTab); 2496 return SQLITE_OK; 2497 } 2498 2499 /* Figure out the best index to use to search a pragma virtual table. 2500 ** 2501 ** There are not really any index choices. But we want to encourage the 2502 ** query planner to give == constraints on as many hidden parameters as 2503 ** possible, and especially on the first hidden parameter. So return a 2504 ** high cost if hidden parameters are unconstrained. 2505 */ 2506 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 2507 PragmaVtab *pTab = (PragmaVtab*)tab; 2508 const struct sqlite3_index_constraint *pConstraint; 2509 int i, j; 2510 int seen[2]; 2511 2512 pIdxInfo->estimatedCost = (double)1; 2513 if( pTab->nHidden==0 ){ return SQLITE_OK; } 2514 pConstraint = pIdxInfo->aConstraint; 2515 seen[0] = 0; 2516 seen[1] = 0; 2517 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 2518 if( pConstraint->usable==0 ) continue; 2519 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 2520 if( pConstraint->iColumn < pTab->iHidden ) continue; 2521 j = pConstraint->iColumn - pTab->iHidden; 2522 assert( j < 2 ); 2523 seen[j] = i+1; 2524 } 2525 if( seen[0]==0 ){ 2526 pIdxInfo->estimatedCost = (double)2147483647; 2527 pIdxInfo->estimatedRows = 2147483647; 2528 return SQLITE_OK; 2529 } 2530 j = seen[0]-1; 2531 pIdxInfo->aConstraintUsage[j].argvIndex = 1; 2532 pIdxInfo->aConstraintUsage[j].omit = 1; 2533 if( seen[1]==0 ) return SQLITE_OK; 2534 pIdxInfo->estimatedCost = (double)20; 2535 pIdxInfo->estimatedRows = 20; 2536 j = seen[1]-1; 2537 pIdxInfo->aConstraintUsage[j].argvIndex = 2; 2538 pIdxInfo->aConstraintUsage[j].omit = 1; 2539 return SQLITE_OK; 2540 } 2541 2542 /* Create a new cursor for the pragma virtual table */ 2543 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ 2544 PragmaVtabCursor *pCsr; 2545 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); 2546 if( pCsr==0 ) return SQLITE_NOMEM; 2547 memset(pCsr, 0, sizeof(PragmaVtabCursor)); 2548 pCsr->base.pVtab = pVtab; 2549 *ppCursor = &pCsr->base; 2550 return SQLITE_OK; 2551 } 2552 2553 /* Clear all content from pragma virtual table cursor. */ 2554 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ 2555 int i; 2556 sqlite3_finalize(pCsr->pPragma); 2557 pCsr->pPragma = 0; 2558 for(i=0; i<ArraySize(pCsr->azArg); i++){ 2559 sqlite3_free(pCsr->azArg[i]); 2560 pCsr->azArg[i] = 0; 2561 } 2562 } 2563 2564 /* Close a pragma virtual table cursor */ 2565 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ 2566 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; 2567 pragmaVtabCursorClear(pCsr); 2568 sqlite3_free(pCsr); 2569 return SQLITE_OK; 2570 } 2571 2572 /* Advance the pragma virtual table cursor to the next row */ 2573 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ 2574 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2575 int rc = SQLITE_OK; 2576 2577 /* Increment the xRowid value */ 2578 pCsr->iRowid++; 2579 assert( pCsr->pPragma ); 2580 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ 2581 rc = sqlite3_finalize(pCsr->pPragma); 2582 pCsr->pPragma = 0; 2583 pragmaVtabCursorClear(pCsr); 2584 } 2585 return rc; 2586 } 2587 2588 /* 2589 ** Pragma virtual table module xFilter method. 2590 */ 2591 static int pragmaVtabFilter( 2592 sqlite3_vtab_cursor *pVtabCursor, 2593 int idxNum, const char *idxStr, 2594 int argc, sqlite3_value **argv 2595 ){ 2596 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2597 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2598 int rc; 2599 int i, j; 2600 StrAccum acc; 2601 char *zSql; 2602 2603 UNUSED_PARAMETER(idxNum); 2604 UNUSED_PARAMETER(idxStr); 2605 pragmaVtabCursorClear(pCsr); 2606 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; 2607 for(i=0; i<argc; i++, j++){ 2608 const char *zText = (const char*)sqlite3_value_text(argv[i]); 2609 assert( j<ArraySize(pCsr->azArg) ); 2610 assert( pCsr->azArg[j]==0 ); 2611 if( zText ){ 2612 pCsr->azArg[j] = sqlite3_mprintf("%s", zText); 2613 if( pCsr->azArg[j]==0 ){ 2614 return SQLITE_NOMEM; 2615 } 2616 } 2617 } 2618 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); 2619 sqlite3_str_appendall(&acc, "PRAGMA "); 2620 if( pCsr->azArg[1] ){ 2621 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); 2622 } 2623 sqlite3_str_appendall(&acc, pTab->pName->zName); 2624 if( pCsr->azArg[0] ){ 2625 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); 2626 } 2627 zSql = sqlite3StrAccumFinish(&acc); 2628 if( zSql==0 ) return SQLITE_NOMEM; 2629 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); 2630 sqlite3_free(zSql); 2631 if( rc!=SQLITE_OK ){ 2632 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); 2633 return rc; 2634 } 2635 return pragmaVtabNext(pVtabCursor); 2636 } 2637 2638 /* 2639 ** Pragma virtual table module xEof method. 2640 */ 2641 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ 2642 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2643 return (pCsr->pPragma==0); 2644 } 2645 2646 /* The xColumn method simply returns the corresponding column from 2647 ** the PRAGMA. 2648 */ 2649 static int pragmaVtabColumn( 2650 sqlite3_vtab_cursor *pVtabCursor, 2651 sqlite3_context *ctx, 2652 int i 2653 ){ 2654 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2655 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2656 if( i<pTab->iHidden ){ 2657 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); 2658 }else{ 2659 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); 2660 } 2661 return SQLITE_OK; 2662 } 2663 2664 /* 2665 ** Pragma virtual table module xRowid method. 2666 */ 2667 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ 2668 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2669 *p = pCsr->iRowid; 2670 return SQLITE_OK; 2671 } 2672 2673 /* The pragma virtual table object */ 2674 static const sqlite3_module pragmaVtabModule = { 2675 0, /* iVersion */ 2676 0, /* xCreate - create a table */ 2677 pragmaVtabConnect, /* xConnect - connect to an existing table */ 2678 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ 2679 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 2680 0, /* xDestroy - Drop a table */ 2681 pragmaVtabOpen, /* xOpen - open a cursor */ 2682 pragmaVtabClose, /* xClose - close a cursor */ 2683 pragmaVtabFilter, /* xFilter - configure scan constraints */ 2684 pragmaVtabNext, /* xNext - advance a cursor */ 2685 pragmaVtabEof, /* xEof */ 2686 pragmaVtabColumn, /* xColumn - read data */ 2687 pragmaVtabRowid, /* xRowid - read data */ 2688 0, /* xUpdate - write data */ 2689 0, /* xBegin - begin transaction */ 2690 0, /* xSync - sync transaction */ 2691 0, /* xCommit - commit transaction */ 2692 0, /* xRollback - rollback transaction */ 2693 0, /* xFindFunction - function overloading */ 2694 0, /* xRename - rename the table */ 2695 0, /* xSavepoint */ 2696 0, /* xRelease */ 2697 0, /* xRollbackTo */ 2698 0 /* xShadowName */ 2699 }; 2700 2701 /* 2702 ** Check to see if zTabName is really the name of a pragma. If it is, 2703 ** then register an eponymous virtual table for that pragma and return 2704 ** a pointer to the Module object for the new virtual table. 2705 */ 2706 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ 2707 const PragmaName *pName; 2708 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); 2709 pName = pragmaLocate(zName+7); 2710 if( pName==0 ) return 0; 2711 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; 2712 assert( sqlite3HashFind(&db->aModule, zName)==0 ); 2713 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); 2714 } 2715 2716 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2717 2718 #endif /* SQLITE_OMIT_PRAGMA */ 2719