1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ 135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 136 "from within a transaction"); 137 return SQLITE_ERROR; 138 } 139 sqlite3BtreeClose(db->aDb[1].pBt); 140 db->aDb[1].pBt = 0; 141 sqlite3ResetAllSchemasOfConnection(db); 142 } 143 return SQLITE_OK; 144 } 145 #endif /* SQLITE_PAGER_PRAGMAS */ 146 147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 148 /* 149 ** If the TEMP database is open, close it and mark the database schema 150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 151 ** or DEFAULT_TEMP_STORE pragmas. 152 */ 153 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 154 int ts = getTempStore(zStorageType); 155 sqlite3 *db = pParse->db; 156 if( db->temp_store==ts ) return SQLITE_OK; 157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 158 return SQLITE_ERROR; 159 } 160 db->temp_store = (u8)ts; 161 return SQLITE_OK; 162 } 163 #endif /* SQLITE_PAGER_PRAGMAS */ 164 165 /* 166 ** Set result column names for a pragma. 167 */ 168 static void setPragmaResultColumnNames( 169 Vdbe *v, /* The query under construction */ 170 const PragmaName *pPragma /* The pragma */ 171 ){ 172 u8 n = pPragma->nPragCName; 173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); 174 if( n==0 ){ 175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); 176 }else{ 177 int i, j; 178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ 179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); 180 } 181 } 182 } 183 184 /* 185 ** Generate code to return a single integer value. 186 */ 187 static void returnSingleInt(Vdbe *v, i64 value){ 188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 190 } 191 192 /* 193 ** Generate code to return a single text value. 194 */ 195 static void returnSingleText( 196 Vdbe *v, /* Prepared statement under construction */ 197 const char *zValue /* Value to be returned */ 198 ){ 199 if( zValue ){ 200 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 202 } 203 } 204 205 206 /* 207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 208 ** set these values for all pagers. 209 */ 210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 211 static void setAllPagerFlags(sqlite3 *db){ 212 if( db->autoCommit ){ 213 Db *pDb = db->aDb; 214 int n = db->nDb; 215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 219 == PAGER_FLAGS_MASK ); 220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 221 while( (n--) > 0 ){ 222 if( pDb->pBt ){ 223 sqlite3BtreeSetPagerFlags(pDb->pBt, 224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 225 } 226 pDb++; 227 } 228 } 229 } 230 #else 231 # define setAllPagerFlags(X) /* no-op */ 232 #endif 233 234 235 /* 236 ** Return a human-readable name for a constraint resolution action. 237 */ 238 #ifndef SQLITE_OMIT_FOREIGN_KEY 239 static const char *actionName(u8 action){ 240 const char *zName; 241 switch( action ){ 242 case OE_SetNull: zName = "SET NULL"; break; 243 case OE_SetDflt: zName = "SET DEFAULT"; break; 244 case OE_Cascade: zName = "CASCADE"; break; 245 case OE_Restrict: zName = "RESTRICT"; break; 246 default: zName = "NO ACTION"; 247 assert( action==OE_None ); break; 248 } 249 return zName; 250 } 251 #endif 252 253 254 /* 255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 256 ** defined in pager.h. This function returns the associated lowercase 257 ** journal-mode name. 258 */ 259 const char *sqlite3JournalModename(int eMode){ 260 static char * const azModeName[] = { 261 "delete", "persist", "off", "truncate", "memory" 262 #ifndef SQLITE_OMIT_WAL 263 , "wal" 264 #endif 265 }; 266 assert( PAGER_JOURNALMODE_DELETE==0 ); 267 assert( PAGER_JOURNALMODE_PERSIST==1 ); 268 assert( PAGER_JOURNALMODE_OFF==2 ); 269 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 270 assert( PAGER_JOURNALMODE_MEMORY==4 ); 271 assert( PAGER_JOURNALMODE_WAL==5 ); 272 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 273 274 if( eMode==ArraySize(azModeName) ) return 0; 275 return azModeName[eMode]; 276 } 277 278 /* 279 ** Locate a pragma in the aPragmaName[] array. 280 */ 281 static const PragmaName *pragmaLocate(const char *zName){ 282 int upr, lwr, mid = 0, rc; 283 lwr = 0; 284 upr = ArraySize(aPragmaName)-1; 285 while( lwr<=upr ){ 286 mid = (lwr+upr)/2; 287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); 288 if( rc==0 ) break; 289 if( rc<0 ){ 290 upr = mid - 1; 291 }else{ 292 lwr = mid + 1; 293 } 294 } 295 return lwr>upr ? 0 : &aPragmaName[mid]; 296 } 297 298 /* 299 ** Helper subroutine for PRAGMA integrity_check: 300 ** 301 ** Generate code to output a single-column result row with the result 302 ** held in register regResult. Decrement the result count and halt if 303 ** the maximum number of result rows have been issued. 304 */ 305 static int integrityCheckResultRow(Vdbe *v, int regResult){ 306 int addr; 307 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 1); 308 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); 309 VdbeCoverage(v); 310 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); 311 return addr; 312 } 313 314 /* 315 ** Process a pragma statement. 316 ** 317 ** Pragmas are of this form: 318 ** 319 ** PRAGMA [schema.]id [= value] 320 ** 321 ** The identifier might also be a string. The value is a string, and 322 ** identifier, or a number. If minusFlag is true, then the value is 323 ** a number that was preceded by a minus sign. 324 ** 325 ** If the left side is "database.id" then pId1 is the database name 326 ** and pId2 is the id. If the left side is just "id" then pId1 is the 327 ** id and pId2 is any empty string. 328 */ 329 void sqlite3Pragma( 330 Parse *pParse, 331 Token *pId1, /* First part of [schema.]id field */ 332 Token *pId2, /* Second part of [schema.]id field, or NULL */ 333 Token *pValue, /* Token for <value>, or NULL */ 334 int minusFlag /* True if a '-' sign preceded <value> */ 335 ){ 336 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 337 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 338 const char *zDb = 0; /* The database name */ 339 Token *pId; /* Pointer to <id> token */ 340 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 341 int iDb; /* Database index for <database> */ 342 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 343 sqlite3 *db = pParse->db; /* The database connection */ 344 Db *pDb; /* The specific database being pragmaed */ 345 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 346 const PragmaName *pPragma; /* The pragma */ 347 348 if( v==0 ) return; 349 sqlite3VdbeRunOnlyOnce(v); 350 pParse->nMem = 2; 351 352 /* Interpret the [schema.] part of the pragma statement. iDb is the 353 ** index of the database this pragma is being applied to in db.aDb[]. */ 354 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 355 if( iDb<0 ) return; 356 pDb = &db->aDb[iDb]; 357 358 /* If the temp database has been explicitly named as part of the 359 ** pragma, make sure it is open. 360 */ 361 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 362 return; 363 } 364 365 zLeft = sqlite3NameFromToken(db, pId); 366 if( !zLeft ) return; 367 if( minusFlag ){ 368 zRight = sqlite3MPrintf(db, "-%T", pValue); 369 }else{ 370 zRight = sqlite3NameFromToken(db, pValue); 371 } 372 373 assert( pId2 ); 374 zDb = pId2->n>0 ? pDb->zDbSName : 0; 375 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 376 goto pragma_out; 377 } 378 379 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 380 ** connection. If it returns SQLITE_OK, then assume that the VFS 381 ** handled the pragma and generate a no-op prepared statement. 382 ** 383 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 384 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 385 ** object corresponding to the database file to which the pragma 386 ** statement refers. 387 ** 388 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 389 ** file control is an array of pointers to strings (char**) in which the 390 ** second element of the array is the name of the pragma and the third 391 ** element is the argument to the pragma or NULL if the pragma has no 392 ** argument. 393 */ 394 aFcntl[0] = 0; 395 aFcntl[1] = zLeft; 396 aFcntl[2] = zRight; 397 aFcntl[3] = 0; 398 db->busyHandler.nBusy = 0; 399 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 400 if( rc==SQLITE_OK ){ 401 sqlite3VdbeSetNumCols(v, 1); 402 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); 403 returnSingleText(v, aFcntl[0]); 404 sqlite3_free(aFcntl[0]); 405 goto pragma_out; 406 } 407 if( rc!=SQLITE_NOTFOUND ){ 408 if( aFcntl[0] ){ 409 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 410 sqlite3_free(aFcntl[0]); 411 } 412 pParse->nErr++; 413 pParse->rc = rc; 414 goto pragma_out; 415 } 416 417 /* Locate the pragma in the lookup table */ 418 pPragma = pragmaLocate(zLeft); 419 if( pPragma==0 ) goto pragma_out; 420 421 /* Make sure the database schema is loaded if the pragma requires that */ 422 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ 423 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 424 } 425 426 /* Register the result column names for pragmas that return results */ 427 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 428 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) 429 ){ 430 setPragmaResultColumnNames(v, pPragma); 431 } 432 433 /* Jump to the appropriate pragma handler */ 434 switch( pPragma->ePragTyp ){ 435 436 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 437 /* 438 ** PRAGMA [schema.]default_cache_size 439 ** PRAGMA [schema.]default_cache_size=N 440 ** 441 ** The first form reports the current persistent setting for the 442 ** page cache size. The value returned is the maximum number of 443 ** pages in the page cache. The second form sets both the current 444 ** page cache size value and the persistent page cache size value 445 ** stored in the database file. 446 ** 447 ** Older versions of SQLite would set the default cache size to a 448 ** negative number to indicate synchronous=OFF. These days, synchronous 449 ** is always on by default regardless of the sign of the default cache 450 ** size. But continue to take the absolute value of the default cache 451 ** size of historical compatibility. 452 */ 453 case PragTyp_DEFAULT_CACHE_SIZE: { 454 static const int iLn = VDBE_OFFSET_LINENO(2); 455 static const VdbeOpList getCacheSize[] = { 456 { OP_Transaction, 0, 0, 0}, /* 0 */ 457 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 458 { OP_IfPos, 1, 8, 0}, 459 { OP_Integer, 0, 2, 0}, 460 { OP_Subtract, 1, 2, 1}, 461 { OP_IfPos, 1, 8, 0}, 462 { OP_Integer, 0, 1, 0}, /* 6 */ 463 { OP_Noop, 0, 0, 0}, 464 { OP_ResultRow, 1, 1, 0}, 465 }; 466 VdbeOp *aOp; 467 sqlite3VdbeUsesBtree(v, iDb); 468 if( !zRight ){ 469 pParse->nMem += 2; 470 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 471 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 472 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 473 aOp[0].p1 = iDb; 474 aOp[1].p1 = iDb; 475 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 476 }else{ 477 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 478 sqlite3BeginWriteOperation(pParse, 0, iDb); 479 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 480 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 481 pDb->pSchema->cache_size = size; 482 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 483 } 484 break; 485 } 486 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 487 488 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 489 /* 490 ** PRAGMA [schema.]page_size 491 ** PRAGMA [schema.]page_size=N 492 ** 493 ** The first form reports the current setting for the 494 ** database page size in bytes. The second form sets the 495 ** database page size value. The value can only be set if 496 ** the database has not yet been created. 497 */ 498 case PragTyp_PAGE_SIZE: { 499 Btree *pBt = pDb->pBt; 500 assert( pBt!=0 ); 501 if( !zRight ){ 502 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 503 returnSingleInt(v, size); 504 }else{ 505 /* Malloc may fail when setting the page-size, as there is an internal 506 ** buffer that the pager module resizes using sqlite3_realloc(). 507 */ 508 db->nextPagesize = sqlite3Atoi(zRight); 509 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ 510 sqlite3OomFault(db); 511 } 512 } 513 break; 514 } 515 516 /* 517 ** PRAGMA [schema.]secure_delete 518 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST 519 ** 520 ** The first form reports the current setting for the 521 ** secure_delete flag. The second form changes the secure_delete 522 ** flag setting and reports the new value. 523 */ 524 case PragTyp_SECURE_DELETE: { 525 Btree *pBt = pDb->pBt; 526 int b = -1; 527 assert( pBt!=0 ); 528 if( zRight ){ 529 if( sqlite3_stricmp(zRight, "fast")==0 ){ 530 b = 2; 531 }else{ 532 b = sqlite3GetBoolean(zRight, 0); 533 } 534 } 535 if( pId2->n==0 && b>=0 ){ 536 int ii; 537 for(ii=0; ii<db->nDb; ii++){ 538 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 539 } 540 } 541 b = sqlite3BtreeSecureDelete(pBt, b); 542 returnSingleInt(v, b); 543 break; 544 } 545 546 /* 547 ** PRAGMA [schema.]max_page_count 548 ** PRAGMA [schema.]max_page_count=N 549 ** 550 ** The first form reports the current setting for the 551 ** maximum number of pages in the database file. The 552 ** second form attempts to change this setting. Both 553 ** forms return the current setting. 554 ** 555 ** The absolute value of N is used. This is undocumented and might 556 ** change. The only purpose is to provide an easy way to test 557 ** the sqlite3AbsInt32() function. 558 ** 559 ** PRAGMA [schema.]page_count 560 ** 561 ** Return the number of pages in the specified database. 562 */ 563 case PragTyp_PAGE_COUNT: { 564 int iReg; 565 sqlite3CodeVerifySchema(pParse, iDb); 566 iReg = ++pParse->nMem; 567 if( sqlite3Tolower(zLeft[0])=='p' ){ 568 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 569 }else{ 570 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 571 sqlite3AbsInt32(sqlite3Atoi(zRight))); 572 } 573 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 574 break; 575 } 576 577 /* 578 ** PRAGMA [schema.]locking_mode 579 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 580 */ 581 case PragTyp_LOCKING_MODE: { 582 const char *zRet = "normal"; 583 int eMode = getLockingMode(zRight); 584 585 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 586 /* Simple "PRAGMA locking_mode;" statement. This is a query for 587 ** the current default locking mode (which may be different to 588 ** the locking-mode of the main database). 589 */ 590 eMode = db->dfltLockMode; 591 }else{ 592 Pager *pPager; 593 if( pId2->n==0 ){ 594 /* This indicates that no database name was specified as part 595 ** of the PRAGMA command. In this case the locking-mode must be 596 ** set on all attached databases, as well as the main db file. 597 ** 598 ** Also, the sqlite3.dfltLockMode variable is set so that 599 ** any subsequently attached databases also use the specified 600 ** locking mode. 601 */ 602 int ii; 603 assert(pDb==&db->aDb[0]); 604 for(ii=2; ii<db->nDb; ii++){ 605 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 606 sqlite3PagerLockingMode(pPager, eMode); 607 } 608 db->dfltLockMode = (u8)eMode; 609 } 610 pPager = sqlite3BtreePager(pDb->pBt); 611 eMode = sqlite3PagerLockingMode(pPager, eMode); 612 } 613 614 assert( eMode==PAGER_LOCKINGMODE_NORMAL 615 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 616 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 617 zRet = "exclusive"; 618 } 619 returnSingleText(v, zRet); 620 break; 621 } 622 623 /* 624 ** PRAGMA [schema.]journal_mode 625 ** PRAGMA [schema.]journal_mode = 626 ** (delete|persist|off|truncate|memory|wal|off) 627 */ 628 case PragTyp_JOURNAL_MODE: { 629 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 630 int ii; /* Loop counter */ 631 632 if( zRight==0 ){ 633 /* If there is no "=MODE" part of the pragma, do a query for the 634 ** current mode */ 635 eMode = PAGER_JOURNALMODE_QUERY; 636 }else{ 637 const char *zMode; 638 int n = sqlite3Strlen30(zRight); 639 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 640 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 641 } 642 if( !zMode ){ 643 /* If the "=MODE" part does not match any known journal mode, 644 ** then do a query */ 645 eMode = PAGER_JOURNALMODE_QUERY; 646 } 647 } 648 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 649 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 650 iDb = 0; 651 pId2->n = 1; 652 } 653 for(ii=db->nDb-1; ii>=0; ii--){ 654 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 655 sqlite3VdbeUsesBtree(v, ii); 656 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 657 } 658 } 659 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 660 break; 661 } 662 663 /* 664 ** PRAGMA [schema.]journal_size_limit 665 ** PRAGMA [schema.]journal_size_limit=N 666 ** 667 ** Get or set the size limit on rollback journal files. 668 */ 669 case PragTyp_JOURNAL_SIZE_LIMIT: { 670 Pager *pPager = sqlite3BtreePager(pDb->pBt); 671 i64 iLimit = -2; 672 if( zRight ){ 673 sqlite3DecOrHexToI64(zRight, &iLimit); 674 if( iLimit<-1 ) iLimit = -1; 675 } 676 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 677 returnSingleInt(v, iLimit); 678 break; 679 } 680 681 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 682 683 /* 684 ** PRAGMA [schema.]auto_vacuum 685 ** PRAGMA [schema.]auto_vacuum=N 686 ** 687 ** Get or set the value of the database 'auto-vacuum' parameter. 688 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 689 */ 690 #ifndef SQLITE_OMIT_AUTOVACUUM 691 case PragTyp_AUTO_VACUUM: { 692 Btree *pBt = pDb->pBt; 693 assert( pBt!=0 ); 694 if( !zRight ){ 695 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); 696 }else{ 697 int eAuto = getAutoVacuum(zRight); 698 assert( eAuto>=0 && eAuto<=2 ); 699 db->nextAutovac = (u8)eAuto; 700 /* Call SetAutoVacuum() to set initialize the internal auto and 701 ** incr-vacuum flags. This is required in case this connection 702 ** creates the database file. It is important that it is created 703 ** as an auto-vacuum capable db. 704 */ 705 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 706 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 707 /* When setting the auto_vacuum mode to either "full" or 708 ** "incremental", write the value of meta[6] in the database 709 ** file. Before writing to meta[6], check that meta[3] indicates 710 ** that this really is an auto-vacuum capable database. 711 */ 712 static const int iLn = VDBE_OFFSET_LINENO(2); 713 static const VdbeOpList setMeta6[] = { 714 { OP_Transaction, 0, 1, 0}, /* 0 */ 715 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 716 { OP_If, 1, 0, 0}, /* 2 */ 717 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 718 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 719 }; 720 VdbeOp *aOp; 721 int iAddr = sqlite3VdbeCurrentAddr(v); 722 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 723 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 724 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 725 aOp[0].p1 = iDb; 726 aOp[1].p1 = iDb; 727 aOp[2].p2 = iAddr+4; 728 aOp[4].p1 = iDb; 729 aOp[4].p3 = eAuto - 1; 730 sqlite3VdbeUsesBtree(v, iDb); 731 } 732 } 733 break; 734 } 735 #endif 736 737 /* 738 ** PRAGMA [schema.]incremental_vacuum(N) 739 ** 740 ** Do N steps of incremental vacuuming on a database. 741 */ 742 #ifndef SQLITE_OMIT_AUTOVACUUM 743 case PragTyp_INCREMENTAL_VACUUM: { 744 int iLimit, addr; 745 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 746 iLimit = 0x7fffffff; 747 } 748 sqlite3BeginWriteOperation(pParse, 0, iDb); 749 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 750 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 751 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 752 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 753 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 754 sqlite3VdbeJumpHere(v, addr); 755 break; 756 } 757 #endif 758 759 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 760 /* 761 ** PRAGMA [schema.]cache_size 762 ** PRAGMA [schema.]cache_size=N 763 ** 764 ** The first form reports the current local setting for the 765 ** page cache size. The second form sets the local 766 ** page cache size value. If N is positive then that is the 767 ** number of pages in the cache. If N is negative, then the 768 ** number of pages is adjusted so that the cache uses -N kibibytes 769 ** of memory. 770 */ 771 case PragTyp_CACHE_SIZE: { 772 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 773 if( !zRight ){ 774 returnSingleInt(v, pDb->pSchema->cache_size); 775 }else{ 776 int size = sqlite3Atoi(zRight); 777 pDb->pSchema->cache_size = size; 778 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 779 } 780 break; 781 } 782 783 /* 784 ** PRAGMA [schema.]cache_spill 785 ** PRAGMA cache_spill=BOOLEAN 786 ** PRAGMA [schema.]cache_spill=N 787 ** 788 ** The first form reports the current local setting for the 789 ** page cache spill size. The second form turns cache spill on 790 ** or off. When turnning cache spill on, the size is set to the 791 ** current cache_size. The third form sets a spill size that 792 ** may be different form the cache size. 793 ** If N is positive then that is the 794 ** number of pages in the cache. If N is negative, then the 795 ** number of pages is adjusted so that the cache uses -N kibibytes 796 ** of memory. 797 ** 798 ** If the number of cache_spill pages is less then the number of 799 ** cache_size pages, no spilling occurs until the page count exceeds 800 ** the number of cache_size pages. 801 ** 802 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 803 ** not just the schema specified. 804 */ 805 case PragTyp_CACHE_SPILL: { 806 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 807 if( !zRight ){ 808 returnSingleInt(v, 809 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 810 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 811 }else{ 812 int size = 1; 813 if( sqlite3GetInt32(zRight, &size) ){ 814 sqlite3BtreeSetSpillSize(pDb->pBt, size); 815 } 816 if( sqlite3GetBoolean(zRight, size!=0) ){ 817 db->flags |= SQLITE_CacheSpill; 818 }else{ 819 db->flags &= ~SQLITE_CacheSpill; 820 } 821 setAllPagerFlags(db); 822 } 823 break; 824 } 825 826 /* 827 ** PRAGMA [schema.]mmap_size(N) 828 ** 829 ** Used to set mapping size limit. The mapping size limit is 830 ** used to limit the aggregate size of all memory mapped regions of the 831 ** database file. If this parameter is set to zero, then memory mapping 832 ** is not used at all. If N is negative, then the default memory map 833 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 834 ** The parameter N is measured in bytes. 835 ** 836 ** This value is advisory. The underlying VFS is free to memory map 837 ** as little or as much as it wants. Except, if N is set to 0 then the 838 ** upper layers will never invoke the xFetch interfaces to the VFS. 839 */ 840 case PragTyp_MMAP_SIZE: { 841 sqlite3_int64 sz; 842 #if SQLITE_MAX_MMAP_SIZE>0 843 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 844 if( zRight ){ 845 int ii; 846 sqlite3DecOrHexToI64(zRight, &sz); 847 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 848 if( pId2->n==0 ) db->szMmap = sz; 849 for(ii=db->nDb-1; ii>=0; ii--){ 850 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 851 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 852 } 853 } 854 } 855 sz = -1; 856 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 857 #else 858 sz = 0; 859 rc = SQLITE_OK; 860 #endif 861 if( rc==SQLITE_OK ){ 862 returnSingleInt(v, sz); 863 }else if( rc!=SQLITE_NOTFOUND ){ 864 pParse->nErr++; 865 pParse->rc = rc; 866 } 867 break; 868 } 869 870 /* 871 ** PRAGMA temp_store 872 ** PRAGMA temp_store = "default"|"memory"|"file" 873 ** 874 ** Return or set the local value of the temp_store flag. Changing 875 ** the local value does not make changes to the disk file and the default 876 ** value will be restored the next time the database is opened. 877 ** 878 ** Note that it is possible for the library compile-time options to 879 ** override this setting 880 */ 881 case PragTyp_TEMP_STORE: { 882 if( !zRight ){ 883 returnSingleInt(v, db->temp_store); 884 }else{ 885 changeTempStorage(pParse, zRight); 886 } 887 break; 888 } 889 890 /* 891 ** PRAGMA temp_store_directory 892 ** PRAGMA temp_store_directory = ""|"directory_name" 893 ** 894 ** Return or set the local value of the temp_store_directory flag. Changing 895 ** the value sets a specific directory to be used for temporary files. 896 ** Setting to a null string reverts to the default temporary directory search. 897 ** If temporary directory is changed, then invalidateTempStorage. 898 ** 899 */ 900 case PragTyp_TEMP_STORE_DIRECTORY: { 901 if( !zRight ){ 902 returnSingleText(v, sqlite3_temp_directory); 903 }else{ 904 #ifndef SQLITE_OMIT_WSD 905 if( zRight[0] ){ 906 int res; 907 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 908 if( rc!=SQLITE_OK || res==0 ){ 909 sqlite3ErrorMsg(pParse, "not a writable directory"); 910 goto pragma_out; 911 } 912 } 913 if( SQLITE_TEMP_STORE==0 914 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 915 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 916 ){ 917 invalidateTempStorage(pParse); 918 } 919 sqlite3_free(sqlite3_temp_directory); 920 if( zRight[0] ){ 921 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 922 }else{ 923 sqlite3_temp_directory = 0; 924 } 925 #endif /* SQLITE_OMIT_WSD */ 926 } 927 break; 928 } 929 930 #if SQLITE_OS_WIN 931 /* 932 ** PRAGMA data_store_directory 933 ** PRAGMA data_store_directory = ""|"directory_name" 934 ** 935 ** Return or set the local value of the data_store_directory flag. Changing 936 ** the value sets a specific directory to be used for database files that 937 ** were specified with a relative pathname. Setting to a null string reverts 938 ** to the default database directory, which for database files specified with 939 ** a relative path will probably be based on the current directory for the 940 ** process. Database file specified with an absolute path are not impacted 941 ** by this setting, regardless of its value. 942 ** 943 */ 944 case PragTyp_DATA_STORE_DIRECTORY: { 945 if( !zRight ){ 946 returnSingleText(v, sqlite3_data_directory); 947 }else{ 948 #ifndef SQLITE_OMIT_WSD 949 if( zRight[0] ){ 950 int res; 951 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 952 if( rc!=SQLITE_OK || res==0 ){ 953 sqlite3ErrorMsg(pParse, "not a writable directory"); 954 goto pragma_out; 955 } 956 } 957 sqlite3_free(sqlite3_data_directory); 958 if( zRight[0] ){ 959 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 960 }else{ 961 sqlite3_data_directory = 0; 962 } 963 #endif /* SQLITE_OMIT_WSD */ 964 } 965 break; 966 } 967 #endif 968 969 #if SQLITE_ENABLE_LOCKING_STYLE 970 /* 971 ** PRAGMA [schema.]lock_proxy_file 972 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 973 ** 974 ** Return or set the value of the lock_proxy_file flag. Changing 975 ** the value sets a specific file to be used for database access locks. 976 ** 977 */ 978 case PragTyp_LOCK_PROXY_FILE: { 979 if( !zRight ){ 980 Pager *pPager = sqlite3BtreePager(pDb->pBt); 981 char *proxy_file_path = NULL; 982 sqlite3_file *pFile = sqlite3PagerFile(pPager); 983 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 984 &proxy_file_path); 985 returnSingleText(v, proxy_file_path); 986 }else{ 987 Pager *pPager = sqlite3BtreePager(pDb->pBt); 988 sqlite3_file *pFile = sqlite3PagerFile(pPager); 989 int res; 990 if( zRight[0] ){ 991 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 992 zRight); 993 } else { 994 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 995 NULL); 996 } 997 if( res!=SQLITE_OK ){ 998 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 999 goto pragma_out; 1000 } 1001 } 1002 break; 1003 } 1004 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 1005 1006 /* 1007 ** PRAGMA [schema.]synchronous 1008 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 1009 ** 1010 ** Return or set the local value of the synchronous flag. Changing 1011 ** the local value does not make changes to the disk file and the 1012 ** default value will be restored the next time the database is 1013 ** opened. 1014 */ 1015 case PragTyp_SYNCHRONOUS: { 1016 if( !zRight ){ 1017 returnSingleInt(v, pDb->safety_level-1); 1018 }else{ 1019 if( !db->autoCommit ){ 1020 sqlite3ErrorMsg(pParse, 1021 "Safety level may not be changed inside a transaction"); 1022 }else if( iDb!=1 ){ 1023 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 1024 if( iLevel==0 ) iLevel = 1; 1025 pDb->safety_level = iLevel; 1026 pDb->bSyncSet = 1; 1027 setAllPagerFlags(db); 1028 } 1029 } 1030 break; 1031 } 1032 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1033 1034 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1035 case PragTyp_FLAG: { 1036 if( zRight==0 ){ 1037 setPragmaResultColumnNames(v, pPragma); 1038 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); 1039 }else{ 1040 int mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1041 if( db->autoCommit==0 ){ 1042 /* Foreign key support may not be enabled or disabled while not 1043 ** in auto-commit mode. */ 1044 mask &= ~(SQLITE_ForeignKeys); 1045 } 1046 #if SQLITE_USER_AUTHENTICATION 1047 if( db->auth.authLevel==UAUTH_User ){ 1048 /* Do not allow non-admin users to modify the schema arbitrarily */ 1049 mask &= ~(SQLITE_WriteSchema); 1050 } 1051 #endif 1052 1053 if( sqlite3GetBoolean(zRight, 0) ){ 1054 db->flags |= mask; 1055 }else{ 1056 db->flags &= ~mask; 1057 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1058 } 1059 1060 /* Many of the flag-pragmas modify the code generated by the SQL 1061 ** compiler (eg. count_changes). So add an opcode to expire all 1062 ** compiled SQL statements after modifying a pragma value. 1063 */ 1064 sqlite3VdbeAddOp0(v, OP_Expire); 1065 setAllPagerFlags(db); 1066 } 1067 break; 1068 } 1069 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1070 1071 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1072 /* 1073 ** PRAGMA table_info(<table>) 1074 ** 1075 ** Return a single row for each column of the named table. The columns of 1076 ** the returned data set are: 1077 ** 1078 ** cid: Column id (numbered from left to right, starting at 0) 1079 ** name: Column name 1080 ** type: Column declaration type. 1081 ** notnull: True if 'NOT NULL' is part of column declaration 1082 ** dflt_value: The default value for the column, if any. 1083 */ 1084 case PragTyp_TABLE_INFO: if( zRight ){ 1085 Table *pTab; 1086 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1087 if( pTab ){ 1088 int i, k; 1089 int nHidden = 0; 1090 Column *pCol; 1091 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1092 pParse->nMem = 6; 1093 sqlite3CodeVerifySchema(pParse, iDb); 1094 sqlite3ViewGetColumnNames(pParse, pTab); 1095 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1096 if( IsHiddenColumn(pCol) ){ 1097 nHidden++; 1098 continue; 1099 } 1100 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1101 k = 0; 1102 }else if( pPk==0 ){ 1103 k = 1; 1104 }else{ 1105 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1106 } 1107 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); 1108 sqlite3VdbeMultiLoad(v, 1, "issisi", 1109 i-nHidden, 1110 pCol->zName, 1111 sqlite3ColumnType(pCol,""), 1112 pCol->notNull ? 1 : 0, 1113 pCol->pDflt ? pCol->pDflt->u.zToken : 0, 1114 k); 1115 } 1116 } 1117 } 1118 break; 1119 1120 #ifdef SQLITE_DEBUG 1121 case PragTyp_STATS: { 1122 Index *pIdx; 1123 HashElem *i; 1124 pParse->nMem = 5; 1125 sqlite3CodeVerifySchema(pParse, iDb); 1126 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1127 Table *pTab = sqliteHashData(i); 1128 sqlite3VdbeMultiLoad(v, 1, "ssiii", 1129 pTab->zName, 1130 0, 1131 pTab->szTabRow, 1132 pTab->nRowLogEst, 1133 pTab->tabFlags); 1134 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1135 sqlite3VdbeMultiLoad(v, 2, "siiiX", 1136 pIdx->zName, 1137 pIdx->szIdxRow, 1138 pIdx->aiRowLogEst[0], 1139 pIdx->hasStat1); 1140 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1141 } 1142 } 1143 } 1144 break; 1145 #endif 1146 1147 case PragTyp_INDEX_INFO: if( zRight ){ 1148 Index *pIdx; 1149 Table *pTab; 1150 pIdx = sqlite3FindIndex(db, zRight, zDb); 1151 if( pIdx ){ 1152 int i; 1153 int mx; 1154 if( pPragma->iArg ){ 1155 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1156 mx = pIdx->nColumn; 1157 pParse->nMem = 6; 1158 }else{ 1159 /* PRAGMA index_info (legacy version) */ 1160 mx = pIdx->nKeyCol; 1161 pParse->nMem = 3; 1162 } 1163 pTab = pIdx->pTable; 1164 sqlite3CodeVerifySchema(pParse, iDb); 1165 assert( pParse->nMem<=pPragma->nPragCName ); 1166 for(i=0; i<mx; i++){ 1167 i16 cnum = pIdx->aiColumn[i]; 1168 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, 1169 cnum<0 ? 0 : pTab->aCol[cnum].zName); 1170 if( pPragma->iArg ){ 1171 sqlite3VdbeMultiLoad(v, 4, "isiX", 1172 pIdx->aSortOrder[i], 1173 pIdx->azColl[i], 1174 i<pIdx->nKeyCol); 1175 } 1176 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1177 } 1178 } 1179 } 1180 break; 1181 1182 case PragTyp_INDEX_LIST: if( zRight ){ 1183 Index *pIdx; 1184 Table *pTab; 1185 int i; 1186 pTab = sqlite3FindTable(db, zRight, zDb); 1187 if( pTab ){ 1188 pParse->nMem = 5; 1189 sqlite3CodeVerifySchema(pParse, iDb); 1190 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1191 const char *azOrigin[] = { "c", "u", "pk" }; 1192 sqlite3VdbeMultiLoad(v, 1, "isisi", 1193 i, 1194 pIdx->zName, 1195 IsUniqueIndex(pIdx), 1196 azOrigin[pIdx->idxType], 1197 pIdx->pPartIdxWhere!=0); 1198 } 1199 } 1200 } 1201 break; 1202 1203 case PragTyp_DATABASE_LIST: { 1204 int i; 1205 pParse->nMem = 3; 1206 for(i=0; i<db->nDb; i++){ 1207 if( db->aDb[i].pBt==0 ) continue; 1208 assert( db->aDb[i].zDbSName!=0 ); 1209 sqlite3VdbeMultiLoad(v, 1, "iss", 1210 i, 1211 db->aDb[i].zDbSName, 1212 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1213 } 1214 } 1215 break; 1216 1217 case PragTyp_COLLATION_LIST: { 1218 int i = 0; 1219 HashElem *p; 1220 pParse->nMem = 2; 1221 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1222 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1223 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1224 } 1225 } 1226 break; 1227 1228 #ifdef SQLITE_INTROSPECTION_PRAGMAS 1229 case PragTyp_FUNCTION_LIST: { 1230 int i; 1231 HashElem *j; 1232 FuncDef *p; 1233 pParse->nMem = 2; 1234 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 1235 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ 1236 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1); 1237 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1238 } 1239 } 1240 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ 1241 p = (FuncDef*)sqliteHashData(j); 1242 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0); 1243 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); 1244 } 1245 } 1246 break; 1247 1248 #ifndef SQLITE_OMIT_VIRTUALTABLE 1249 case PragTyp_MODULE_LIST: { 1250 HashElem *j; 1251 pParse->nMem = 1; 1252 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ 1253 Module *pMod = (Module*)sqliteHashData(j); 1254 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); 1255 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1256 } 1257 } 1258 break; 1259 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1260 1261 case PragTyp_PRAGMA_LIST: { 1262 int i; 1263 for(i=0; i<ArraySize(aPragmaName); i++){ 1264 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName); 1265 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1266 } 1267 } 1268 break; 1269 #endif /* SQLITE_INTROSPECTION_PRAGMAS */ 1270 1271 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1272 1273 #ifndef SQLITE_OMIT_FOREIGN_KEY 1274 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1275 FKey *pFK; 1276 Table *pTab; 1277 pTab = sqlite3FindTable(db, zRight, zDb); 1278 if( pTab ){ 1279 pFK = pTab->pFKey; 1280 if( pFK ){ 1281 int i = 0; 1282 pParse->nMem = 8; 1283 sqlite3CodeVerifySchema(pParse, iDb); 1284 while(pFK){ 1285 int j; 1286 for(j=0; j<pFK->nCol; j++){ 1287 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1288 i, 1289 j, 1290 pFK->zTo, 1291 pTab->aCol[pFK->aCol[j].iFrom].zName, 1292 pFK->aCol[j].zCol, 1293 actionName(pFK->aAction[1]), /* ON UPDATE */ 1294 actionName(pFK->aAction[0]), /* ON DELETE */ 1295 "NONE"); 1296 } 1297 ++i; 1298 pFK = pFK->pNextFrom; 1299 } 1300 } 1301 } 1302 } 1303 break; 1304 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1305 1306 #ifndef SQLITE_OMIT_FOREIGN_KEY 1307 #ifndef SQLITE_OMIT_TRIGGER 1308 case PragTyp_FOREIGN_KEY_CHECK: { 1309 FKey *pFK; /* A foreign key constraint */ 1310 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1311 Table *pParent; /* Parent table that child points to */ 1312 Index *pIdx; /* Index in the parent table */ 1313 int i; /* Loop counter: Foreign key number for pTab */ 1314 int j; /* Loop counter: Field of the foreign key */ 1315 HashElem *k; /* Loop counter: Next table in schema */ 1316 int x; /* result variable */ 1317 int regResult; /* 3 registers to hold a result row */ 1318 int regKey; /* Register to hold key for checking the FK */ 1319 int regRow; /* Registers to hold a row from pTab */ 1320 int addrTop; /* Top of a loop checking foreign keys */ 1321 int addrOk; /* Jump here if the key is OK */ 1322 int *aiCols; /* child to parent column mapping */ 1323 1324 regResult = pParse->nMem+1; 1325 pParse->nMem += 4; 1326 regKey = ++pParse->nMem; 1327 regRow = ++pParse->nMem; 1328 sqlite3CodeVerifySchema(pParse, iDb); 1329 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1330 while( k ){ 1331 if( zRight ){ 1332 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1333 k = 0; 1334 }else{ 1335 pTab = (Table*)sqliteHashData(k); 1336 k = sqliteHashNext(k); 1337 } 1338 if( pTab==0 || pTab->pFKey==0 ) continue; 1339 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1340 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1341 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1342 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1343 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1344 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1345 if( pParent==0 ) continue; 1346 pIdx = 0; 1347 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1348 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1349 if( x==0 ){ 1350 if( pIdx==0 ){ 1351 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1352 }else{ 1353 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1354 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1355 } 1356 }else{ 1357 k = 0; 1358 break; 1359 } 1360 } 1361 assert( pParse->nErr>0 || pFK==0 ); 1362 if( pFK ) break; 1363 if( pParse->nTab<i ) pParse->nTab = i; 1364 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1365 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1366 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1367 pIdx = 0; 1368 aiCols = 0; 1369 if( pParent ){ 1370 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1371 assert( x==0 ); 1372 } 1373 addrOk = sqlite3VdbeMakeLabel(v); 1374 1375 /* Generate code to read the child key values into registers 1376 ** regRow..regRow+n. If any of the child key values are NULL, this 1377 ** row cannot cause an FK violation. Jump directly to addrOk in 1378 ** this case. */ 1379 for(j=0; j<pFK->nCol; j++){ 1380 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; 1381 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); 1382 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1383 } 1384 1385 /* Generate code to query the parent index for a matching parent 1386 ** key. If a match is found, jump to addrOk. */ 1387 if( pIdx ){ 1388 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, 1389 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1390 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); 1391 VdbeCoverage(v); 1392 }else if( pParent ){ 1393 int jmp = sqlite3VdbeCurrentAddr(v)+2; 1394 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); 1395 sqlite3VdbeGoto(v, addrOk); 1396 assert( pFK->nCol==1 ); 1397 } 1398 1399 /* Generate code to report an FK violation to the caller. */ 1400 if( HasRowid(pTab) ){ 1401 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1402 }else{ 1403 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); 1404 } 1405 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); 1406 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1407 sqlite3VdbeResolveLabel(v, addrOk); 1408 sqlite3DbFree(db, aiCols); 1409 } 1410 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1411 sqlite3VdbeJumpHere(v, addrTop); 1412 } 1413 } 1414 break; 1415 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1416 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1417 1418 #ifndef NDEBUG 1419 case PragTyp_PARSER_TRACE: { 1420 if( zRight ){ 1421 if( sqlite3GetBoolean(zRight, 0) ){ 1422 sqlite3ParserTrace(stdout, "parser: "); 1423 }else{ 1424 sqlite3ParserTrace(0, 0); 1425 } 1426 } 1427 } 1428 break; 1429 #endif 1430 1431 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1432 ** used will be case sensitive or not depending on the RHS. 1433 */ 1434 case PragTyp_CASE_SENSITIVE_LIKE: { 1435 if( zRight ){ 1436 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1437 } 1438 } 1439 break; 1440 1441 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1442 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1443 #endif 1444 1445 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1446 /* PRAGMA integrity_check 1447 ** PRAGMA integrity_check(N) 1448 ** PRAGMA quick_check 1449 ** PRAGMA quick_check(N) 1450 ** 1451 ** Verify the integrity of the database. 1452 ** 1453 ** The "quick_check" is reduced version of 1454 ** integrity_check designed to detect most database corruption 1455 ** without the overhead of cross-checking indexes. Quick_check 1456 ** is linear time wherease integrity_check is O(NlogN). 1457 */ 1458 case PragTyp_INTEGRITY_CHECK: { 1459 int i, j, addr, mxErr; 1460 1461 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1462 1463 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1464 ** then iDb is set to the index of the database identified by <db>. 1465 ** In this case, the integrity of database iDb only is verified by 1466 ** the VDBE created below. 1467 ** 1468 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1469 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1470 ** to -1 here, to indicate that the VDBE should verify the integrity 1471 ** of all attached databases. */ 1472 assert( iDb>=0 ); 1473 assert( iDb==0 || pId2->z ); 1474 if( pId2->z==0 ) iDb = -1; 1475 1476 /* Initialize the VDBE program */ 1477 pParse->nMem = 6; 1478 1479 /* Set the maximum error count */ 1480 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1481 if( zRight ){ 1482 sqlite3GetInt32(zRight, &mxErr); 1483 if( mxErr<=0 ){ 1484 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1485 } 1486 } 1487 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ 1488 1489 /* Do an integrity check on each database file */ 1490 for(i=0; i<db->nDb; i++){ 1491 HashElem *x; 1492 Hash *pTbls; 1493 int *aRoot; 1494 int cnt = 0; 1495 int mxIdx = 0; 1496 int nIdx; 1497 1498 if( OMIT_TEMPDB && i==1 ) continue; 1499 if( iDb>=0 && i!=iDb ) continue; 1500 1501 sqlite3CodeVerifySchema(pParse, i); 1502 1503 /* Do an integrity check of the B-Tree 1504 ** 1505 ** Begin by finding the root pages numbers 1506 ** for all tables and indices in the database. 1507 */ 1508 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1509 pTbls = &db->aDb[i].pSchema->tblHash; 1510 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1511 Table *pTab = sqliteHashData(x); 1512 Index *pIdx; 1513 if( HasRowid(pTab) ) cnt++; 1514 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1515 if( nIdx>mxIdx ) mxIdx = nIdx; 1516 } 1517 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1518 if( aRoot==0 ) break; 1519 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1520 Table *pTab = sqliteHashData(x); 1521 Index *pIdx; 1522 if( HasRowid(pTab) ) aRoot[cnt++] = pTab->tnum; 1523 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1524 aRoot[cnt++] = pIdx->tnum; 1525 } 1526 } 1527 aRoot[cnt] = 0; 1528 1529 /* Make sure sufficient number of registers have been allocated */ 1530 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1531 sqlite3ClearTempRegCache(pParse); 1532 1533 /* Do the b-tree integrity checks */ 1534 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1535 sqlite3VdbeChangeP5(v, (u8)i); 1536 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1537 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1538 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1539 P4_DYNAMIC); 1540 sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1); 1541 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); 1542 integrityCheckResultRow(v, 2); 1543 sqlite3VdbeJumpHere(v, addr); 1544 1545 /* Make sure all the indices are constructed correctly. 1546 */ 1547 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1548 Table *pTab = sqliteHashData(x); 1549 Index *pIdx, *pPk; 1550 Index *pPrior = 0; 1551 int loopTop; 1552 int iDataCur, iIdxCur; 1553 int r1 = -1; 1554 1555 if( pTab->tnum<1 ) continue; /* Skip VIEWs or VIRTUAL TABLEs */ 1556 if( pTab->pCheck==0 1557 && (pTab->tabFlags & TF_HasNotNull)==0 1558 && (pTab->pIndex==0 || isQuick) 1559 ){ 1560 continue; /* No additional checks needed for this table */ 1561 } 1562 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); 1563 sqlite3ExprCacheClear(pParse); 1564 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1565 1, 0, &iDataCur, &iIdxCur); 1566 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1567 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1568 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1569 } 1570 assert( pParse->nMem>=8+j ); 1571 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1572 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1573 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1574 /* Verify that all NOT NULL columns really are NOT NULL */ 1575 for(j=0; j<pTab->nCol; j++){ 1576 char *zErr; 1577 int jmp2; 1578 if( j==pTab->iPKey ) continue; 1579 if( pTab->aCol[j].notNull==0 ) continue; 1580 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1581 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1582 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); 1583 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1584 pTab->aCol[j].zName); 1585 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1586 integrityCheckResultRow(v, 3); 1587 sqlite3VdbeJumpHere(v, jmp2); 1588 } 1589 /* Verify CHECK constraints */ 1590 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1591 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); 1592 if( db->mallocFailed==0 ){ 1593 int addrCkFault = sqlite3VdbeMakeLabel(v); 1594 int addrCkOk = sqlite3VdbeMakeLabel(v); 1595 char *zErr; 1596 int k; 1597 pParse->iSelfTab = iDataCur + 1; 1598 sqlite3ExprCachePush(pParse); 1599 for(k=pCheck->nExpr-1; k>0; k--){ 1600 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); 1601 } 1602 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 1603 SQLITE_JUMPIFNULL); 1604 sqlite3VdbeResolveLabel(v, addrCkFault); 1605 pParse->iSelfTab = 0; 1606 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", 1607 pTab->zName); 1608 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1609 integrityCheckResultRow(v, 3); 1610 sqlite3VdbeResolveLabel(v, addrCkOk); 1611 sqlite3ExprCachePop(pParse); 1612 } 1613 sqlite3ExprListDelete(db, pCheck); 1614 } 1615 /* Validate index entries for the current row */ 1616 for(j=0, pIdx=pTab->pIndex; pIdx && !isQuick; pIdx=pIdx->pNext, j++){ 1617 int jmp2, jmp3, jmp4, jmp5; 1618 int ckUniq = sqlite3VdbeMakeLabel(v); 1619 if( pPk==pIdx ) continue; 1620 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1621 pPrior, r1); 1622 pPrior = pIdx; 1623 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ 1624 /* Verify that an index entry exists for the current table row */ 1625 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1626 pIdx->nColumn); VdbeCoverage(v); 1627 sqlite3VdbeLoadString(v, 3, "row "); 1628 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1629 sqlite3VdbeLoadString(v, 4, " missing from index "); 1630 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1631 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1632 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1633 jmp4 = integrityCheckResultRow(v, 3); 1634 sqlite3VdbeJumpHere(v, jmp2); 1635 /* For UNIQUE indexes, verify that only one entry exists with the 1636 ** current key. The entry is unique if (1) any column is NULL 1637 ** or (2) the next entry has a different key */ 1638 if( IsUniqueIndex(pIdx) ){ 1639 int uniqOk = sqlite3VdbeMakeLabel(v); 1640 int jmp6; 1641 int kk; 1642 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1643 int iCol = pIdx->aiColumn[kk]; 1644 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1645 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1646 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1647 VdbeCoverage(v); 1648 } 1649 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1650 sqlite3VdbeGoto(v, uniqOk); 1651 sqlite3VdbeJumpHere(v, jmp6); 1652 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1653 pIdx->nKeyCol); VdbeCoverage(v); 1654 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1655 sqlite3VdbeGoto(v, jmp5); 1656 sqlite3VdbeResolveLabel(v, uniqOk); 1657 } 1658 sqlite3VdbeJumpHere(v, jmp4); 1659 sqlite3ResolvePartIdxLabel(pParse, jmp3); 1660 } 1661 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 1662 sqlite3VdbeJumpHere(v, loopTop-1); 1663 #ifndef SQLITE_OMIT_BTREECOUNT 1664 if( !isQuick ){ 1665 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 1666 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1667 if( pPk==pIdx ) continue; 1668 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 1669 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); 1670 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1671 sqlite3VdbeLoadString(v, 3, pIdx->zName); 1672 sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); 1673 integrityCheckResultRow(v, 7); 1674 sqlite3VdbeJumpHere(v, addr); 1675 } 1676 } 1677 #endif /* SQLITE_OMIT_BTREECOUNT */ 1678 } 1679 } 1680 { 1681 static const int iLn = VDBE_OFFSET_LINENO(2); 1682 static const VdbeOpList endCode[] = { 1683 { OP_AddImm, 1, 0, 0}, /* 0 */ 1684 { OP_IfNotZero, 1, 4, 0}, /* 1 */ 1685 { OP_String8, 0, 3, 0}, /* 2 */ 1686 { OP_ResultRow, 3, 1, 0}, /* 3 */ 1687 }; 1688 VdbeOp *aOp; 1689 1690 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 1691 if( aOp ){ 1692 aOp[0].p2 = 1-mxErr; 1693 aOp[2].p4type = P4_STATIC; 1694 aOp[2].p4.z = "ok"; 1695 } 1696 } 1697 } 1698 break; 1699 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 1700 1701 #ifndef SQLITE_OMIT_UTF16 1702 /* 1703 ** PRAGMA encoding 1704 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 1705 ** 1706 ** In its first form, this pragma returns the encoding of the main 1707 ** database. If the database is not initialized, it is initialized now. 1708 ** 1709 ** The second form of this pragma is a no-op if the main database file 1710 ** has not already been initialized. In this case it sets the default 1711 ** encoding that will be used for the main database file if a new file 1712 ** is created. If an existing main database file is opened, then the 1713 ** default text encoding for the existing database is used. 1714 ** 1715 ** In all cases new databases created using the ATTACH command are 1716 ** created to use the same default text encoding as the main database. If 1717 ** the main database has not been initialized and/or created when ATTACH 1718 ** is executed, this is done before the ATTACH operation. 1719 ** 1720 ** In the second form this pragma sets the text encoding to be used in 1721 ** new database files created using this database handle. It is only 1722 ** useful if invoked immediately after the main database i 1723 */ 1724 case PragTyp_ENCODING: { 1725 static const struct EncName { 1726 char *zName; 1727 u8 enc; 1728 } encnames[] = { 1729 { "UTF8", SQLITE_UTF8 }, 1730 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 1731 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 1732 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 1733 { "UTF16le", SQLITE_UTF16LE }, 1734 { "UTF16be", SQLITE_UTF16BE }, 1735 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 1736 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 1737 { 0, 0 } 1738 }; 1739 const struct EncName *pEnc; 1740 if( !zRight ){ /* "PRAGMA encoding" */ 1741 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 1742 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 1743 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 1744 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 1745 returnSingleText(v, encnames[ENC(pParse->db)].zName); 1746 }else{ /* "PRAGMA encoding = XXX" */ 1747 /* Only change the value of sqlite.enc if the database handle is not 1748 ** initialized. If the main database exists, the new sqlite.enc value 1749 ** will be overwritten when the schema is next loaded. If it does not 1750 ** already exists, it will be created to use the new encoding value. 1751 */ 1752 if( 1753 !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 1754 DbHasProperty(db, 0, DB_Empty) 1755 ){ 1756 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 1757 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 1758 SCHEMA_ENC(db) = ENC(db) = 1759 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 1760 break; 1761 } 1762 } 1763 if( !pEnc->zName ){ 1764 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 1765 } 1766 } 1767 } 1768 } 1769 break; 1770 #endif /* SQLITE_OMIT_UTF16 */ 1771 1772 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 1773 /* 1774 ** PRAGMA [schema.]schema_version 1775 ** PRAGMA [schema.]schema_version = <integer> 1776 ** 1777 ** PRAGMA [schema.]user_version 1778 ** PRAGMA [schema.]user_version = <integer> 1779 ** 1780 ** PRAGMA [schema.]freelist_count 1781 ** 1782 ** PRAGMA [schema.]data_version 1783 ** 1784 ** PRAGMA [schema.]application_id 1785 ** PRAGMA [schema.]application_id = <integer> 1786 ** 1787 ** The pragma's schema_version and user_version are used to set or get 1788 ** the value of the schema-version and user-version, respectively. Both 1789 ** the schema-version and the user-version are 32-bit signed integers 1790 ** stored in the database header. 1791 ** 1792 ** The schema-cookie is usually only manipulated internally by SQLite. It 1793 ** is incremented by SQLite whenever the database schema is modified (by 1794 ** creating or dropping a table or index). The schema version is used by 1795 ** SQLite each time a query is executed to ensure that the internal cache 1796 ** of the schema used when compiling the SQL query matches the schema of 1797 ** the database against which the compiled query is actually executed. 1798 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 1799 ** the schema-version is potentially dangerous and may lead to program 1800 ** crashes or database corruption. Use with caution! 1801 ** 1802 ** The user-version is not used internally by SQLite. It may be used by 1803 ** applications for any purpose. 1804 */ 1805 case PragTyp_HEADER_VALUE: { 1806 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 1807 sqlite3VdbeUsesBtree(v, iDb); 1808 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ 1809 /* Write the specified cookie value */ 1810 static const VdbeOpList setCookie[] = { 1811 { OP_Transaction, 0, 1, 0}, /* 0 */ 1812 { OP_SetCookie, 0, 0, 0}, /* 1 */ 1813 }; 1814 VdbeOp *aOp; 1815 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 1816 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 1817 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1818 aOp[0].p1 = iDb; 1819 aOp[1].p1 = iDb; 1820 aOp[1].p2 = iCookie; 1821 aOp[1].p3 = sqlite3Atoi(zRight); 1822 }else{ 1823 /* Read the specified cookie value */ 1824 static const VdbeOpList readCookie[] = { 1825 { OP_Transaction, 0, 0, 0}, /* 0 */ 1826 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 1827 { OP_ResultRow, 1, 1, 0} 1828 }; 1829 VdbeOp *aOp; 1830 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 1831 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 1832 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 1833 aOp[0].p1 = iDb; 1834 aOp[1].p1 = iDb; 1835 aOp[1].p3 = iCookie; 1836 sqlite3VdbeReusable(v); 1837 } 1838 } 1839 break; 1840 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 1841 1842 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1843 /* 1844 ** PRAGMA compile_options 1845 ** 1846 ** Return the names of all compile-time options used in this build, 1847 ** one option per row. 1848 */ 1849 case PragTyp_COMPILE_OPTIONS: { 1850 int i = 0; 1851 const char *zOpt; 1852 pParse->nMem = 1; 1853 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 1854 sqlite3VdbeLoadString(v, 1, zOpt); 1855 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 1856 } 1857 sqlite3VdbeReusable(v); 1858 } 1859 break; 1860 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1861 1862 #ifndef SQLITE_OMIT_WAL 1863 /* 1864 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 1865 ** 1866 ** Checkpoint the database. 1867 */ 1868 case PragTyp_WAL_CHECKPOINT: { 1869 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); 1870 int eMode = SQLITE_CHECKPOINT_PASSIVE; 1871 if( zRight ){ 1872 if( sqlite3StrICmp(zRight, "full")==0 ){ 1873 eMode = SQLITE_CHECKPOINT_FULL; 1874 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 1875 eMode = SQLITE_CHECKPOINT_RESTART; 1876 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 1877 eMode = SQLITE_CHECKPOINT_TRUNCATE; 1878 } 1879 } 1880 pParse->nMem = 3; 1881 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 1882 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 1883 } 1884 break; 1885 1886 /* 1887 ** PRAGMA wal_autocheckpoint 1888 ** PRAGMA wal_autocheckpoint = N 1889 ** 1890 ** Configure a database connection to automatically checkpoint a database 1891 ** after accumulating N frames in the log. Or query for the current value 1892 ** of N. 1893 */ 1894 case PragTyp_WAL_AUTOCHECKPOINT: { 1895 if( zRight ){ 1896 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 1897 } 1898 returnSingleInt(v, 1899 db->xWalCallback==sqlite3WalDefaultHook ? 1900 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 1901 } 1902 break; 1903 #endif 1904 1905 /* 1906 ** PRAGMA shrink_memory 1907 ** 1908 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 1909 ** connection on which it is invoked to free up as much memory as it 1910 ** can, by calling sqlite3_db_release_memory(). 1911 */ 1912 case PragTyp_SHRINK_MEMORY: { 1913 sqlite3_db_release_memory(db); 1914 break; 1915 } 1916 1917 /* 1918 ** PRAGMA optimize 1919 ** PRAGMA optimize(MASK) 1920 ** PRAGMA schema.optimize 1921 ** PRAGMA schema.optimize(MASK) 1922 ** 1923 ** Attempt to optimize the database. All schemas are optimized in the first 1924 ** two forms, and only the specified schema is optimized in the latter two. 1925 ** 1926 ** The details of optimizations performed by this pragma are expected 1927 ** to change and improve over time. Applications should anticipate that 1928 ** this pragma will perform new optimizations in future releases. 1929 ** 1930 ** The optional argument is a bitmask of optimizations to perform: 1931 ** 1932 ** 0x0001 Debugging mode. Do not actually perform any optimizations 1933 ** but instead return one line of text for each optimization 1934 ** that would have been done. Off by default. 1935 ** 1936 ** 0x0002 Run ANALYZE on tables that might benefit. On by default. 1937 ** See below for additional information. 1938 ** 1939 ** 0x0004 (Not yet implemented) Record usage and performance 1940 ** information from the current session in the 1941 ** database file so that it will be available to "optimize" 1942 ** pragmas run by future database connections. 1943 ** 1944 ** 0x0008 (Not yet implemented) Create indexes that might have 1945 ** been helpful to recent queries 1946 ** 1947 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all 1948 ** of the optimizations listed above except Debug Mode, including new 1949 ** optimizations that have not yet been invented. If new optimizations are 1950 ** ever added that should be off by default, those off-by-default 1951 ** optimizations will have bitmasks of 0x10000 or larger. 1952 ** 1953 ** DETERMINATION OF WHEN TO RUN ANALYZE 1954 ** 1955 ** In the current implementation, a table is analyzed if only if all of 1956 ** the following are true: 1957 ** 1958 ** (1) MASK bit 0x02 is set. 1959 ** 1960 ** (2) The query planner used sqlite_stat1-style statistics for one or 1961 ** more indexes of the table at some point during the lifetime of 1962 ** the current connection. 1963 ** 1964 ** (3) One or more indexes of the table are currently unanalyzed OR 1965 ** the number of rows in the table has increased by 25 times or more 1966 ** since the last time ANALYZE was run. 1967 ** 1968 ** The rules for when tables are analyzed are likely to change in 1969 ** future releases. 1970 */ 1971 case PragTyp_OPTIMIZE: { 1972 int iDbLast; /* Loop termination point for the schema loop */ 1973 int iTabCur; /* Cursor for a table whose size needs checking */ 1974 HashElem *k; /* Loop over tables of a schema */ 1975 Schema *pSchema; /* The current schema */ 1976 Table *pTab; /* A table in the schema */ 1977 Index *pIdx; /* An index of the table */ 1978 LogEst szThreshold; /* Size threshold above which reanalysis is needd */ 1979 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ 1980 u32 opMask; /* Mask of operations to perform */ 1981 1982 if( zRight ){ 1983 opMask = (u32)sqlite3Atoi(zRight); 1984 if( (opMask & 0x02)==0 ) break; 1985 }else{ 1986 opMask = 0xfffe; 1987 } 1988 iTabCur = pParse->nTab++; 1989 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ 1990 if( iDb==1 ) continue; 1991 sqlite3CodeVerifySchema(pParse, iDb); 1992 pSchema = db->aDb[iDb].pSchema; 1993 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1994 pTab = (Table*)sqliteHashData(k); 1995 1996 /* If table pTab has not been used in a way that would benefit from 1997 ** having analysis statistics during the current session, then skip it. 1998 ** This also has the effect of skipping virtual tables and views */ 1999 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; 2000 2001 /* Reanalyze if the table is 25 times larger than the last analysis */ 2002 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); 2003 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2004 if( !pIdx->hasStat1 ){ 2005 szThreshold = 0; /* Always analyze if any index lacks statistics */ 2006 break; 2007 } 2008 } 2009 if( szThreshold ){ 2010 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 2011 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, 2012 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); 2013 VdbeCoverage(v); 2014 } 2015 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", 2016 db->aDb[iDb].zDbSName, pTab->zName); 2017 if( opMask & 0x01 ){ 2018 int r1 = sqlite3GetTempReg(pParse); 2019 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); 2020 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); 2021 }else{ 2022 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); 2023 } 2024 } 2025 } 2026 sqlite3VdbeAddOp0(v, OP_Expire); 2027 break; 2028 } 2029 2030 /* 2031 ** PRAGMA busy_timeout 2032 ** PRAGMA busy_timeout = N 2033 ** 2034 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 2035 ** if one is set. If no busy handler or a different busy handler is set 2036 ** then 0 is returned. Setting the busy_timeout to 0 or negative 2037 ** disables the timeout. 2038 */ 2039 /*case PragTyp_BUSY_TIMEOUT*/ default: { 2040 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 2041 if( zRight ){ 2042 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 2043 } 2044 returnSingleInt(v, db->busyTimeout); 2045 break; 2046 } 2047 2048 /* 2049 ** PRAGMA soft_heap_limit 2050 ** PRAGMA soft_heap_limit = N 2051 ** 2052 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 2053 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 2054 ** specified and is a non-negative integer. 2055 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 2056 ** returns the same integer that would be returned by the 2057 ** sqlite3_soft_heap_limit64(-1) C-language function. 2058 */ 2059 case PragTyp_SOFT_HEAP_LIMIT: { 2060 sqlite3_int64 N; 2061 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2062 sqlite3_soft_heap_limit64(N); 2063 } 2064 returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); 2065 break; 2066 } 2067 2068 /* 2069 ** PRAGMA threads 2070 ** PRAGMA threads = N 2071 ** 2072 ** Configure the maximum number of worker threads. Return the new 2073 ** maximum, which might be less than requested. 2074 */ 2075 case PragTyp_THREADS: { 2076 sqlite3_int64 N; 2077 if( zRight 2078 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 2079 && N>=0 2080 ){ 2081 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 2082 } 2083 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 2084 break; 2085 } 2086 2087 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 2088 /* 2089 ** Report the current state of file logs for all databases 2090 */ 2091 case PragTyp_LOCK_STATUS: { 2092 static const char *const azLockName[] = { 2093 "unlocked", "shared", "reserved", "pending", "exclusive" 2094 }; 2095 int i; 2096 pParse->nMem = 2; 2097 for(i=0; i<db->nDb; i++){ 2098 Btree *pBt; 2099 const char *zState = "unknown"; 2100 int j; 2101 if( db->aDb[i].zDbSName==0 ) continue; 2102 pBt = db->aDb[i].pBt; 2103 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 2104 zState = "closed"; 2105 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 2106 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 2107 zState = azLockName[j]; 2108 } 2109 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 2110 } 2111 break; 2112 } 2113 #endif 2114 2115 #ifdef SQLITE_HAS_CODEC 2116 case PragTyp_KEY: { 2117 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 2118 break; 2119 } 2120 case PragTyp_REKEY: { 2121 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); 2122 break; 2123 } 2124 case PragTyp_HEXKEY: { 2125 if( zRight ){ 2126 u8 iByte; 2127 int i; 2128 char zKey[40]; 2129 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ 2130 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); 2131 if( (i&1)!=0 ) zKey[i/2] = iByte; 2132 } 2133 if( (zLeft[3] & 0xf)==0xb ){ 2134 sqlite3_key_v2(db, zDb, zKey, i/2); 2135 }else{ 2136 sqlite3_rekey_v2(db, zDb, zKey, i/2); 2137 } 2138 } 2139 break; 2140 } 2141 #endif 2142 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) 2143 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 2144 #ifdef SQLITE_HAS_CODEC 2145 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ 2146 sqlite3_activate_see(&zRight[4]); 2147 } 2148 #endif 2149 #ifdef SQLITE_ENABLE_CEROD 2150 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 2151 sqlite3_activate_cerod(&zRight[6]); 2152 } 2153 #endif 2154 } 2155 break; 2156 #endif 2157 2158 } /* End of the PRAGMA switch */ 2159 2160 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only 2161 ** purpose is to execute assert() statements to verify that if the 2162 ** PragFlg_NoColumns1 flag is set and the caller specified an argument 2163 ** to the PRAGMA, the implementation has not added any OP_ResultRow 2164 ** instructions to the VM. */ 2165 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ 2166 sqlite3VdbeVerifyNoResultRow(v); 2167 } 2168 2169 pragma_out: 2170 sqlite3DbFree(db, zLeft); 2171 sqlite3DbFree(db, zRight); 2172 } 2173 #ifndef SQLITE_OMIT_VIRTUALTABLE 2174 /***************************************************************************** 2175 ** Implementation of an eponymous virtual table that runs a pragma. 2176 ** 2177 */ 2178 typedef struct PragmaVtab PragmaVtab; 2179 typedef struct PragmaVtabCursor PragmaVtabCursor; 2180 struct PragmaVtab { 2181 sqlite3_vtab base; /* Base class. Must be first */ 2182 sqlite3 *db; /* The database connection to which it belongs */ 2183 const PragmaName *pName; /* Name of the pragma */ 2184 u8 nHidden; /* Number of hidden columns */ 2185 u8 iHidden; /* Index of the first hidden column */ 2186 }; 2187 struct PragmaVtabCursor { 2188 sqlite3_vtab_cursor base; /* Base class. Must be first */ 2189 sqlite3_stmt *pPragma; /* The pragma statement to run */ 2190 sqlite_int64 iRowid; /* Current rowid */ 2191 char *azArg[2]; /* Value of the argument and schema */ 2192 }; 2193 2194 /* 2195 ** Pragma virtual table module xConnect method. 2196 */ 2197 static int pragmaVtabConnect( 2198 sqlite3 *db, 2199 void *pAux, 2200 int argc, const char *const*argv, 2201 sqlite3_vtab **ppVtab, 2202 char **pzErr 2203 ){ 2204 const PragmaName *pPragma = (const PragmaName*)pAux; 2205 PragmaVtab *pTab = 0; 2206 int rc; 2207 int i, j; 2208 char cSep = '('; 2209 StrAccum acc; 2210 char zBuf[200]; 2211 2212 UNUSED_PARAMETER(argc); 2213 UNUSED_PARAMETER(argv); 2214 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 2215 sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x"); 2216 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ 2217 sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]); 2218 cSep = ','; 2219 } 2220 if( i==0 ){ 2221 sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName); 2222 cSep = ','; 2223 i++; 2224 } 2225 j = 0; 2226 if( pPragma->mPragFlg & PragFlg_Result1 ){ 2227 sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN"); 2228 j++; 2229 } 2230 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ 2231 sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN"); 2232 j++; 2233 } 2234 sqlite3StrAccumAppend(&acc, ")", 1); 2235 sqlite3StrAccumFinish(&acc); 2236 assert( strlen(zBuf) < sizeof(zBuf)-1 ); 2237 rc = sqlite3_declare_vtab(db, zBuf); 2238 if( rc==SQLITE_OK ){ 2239 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); 2240 if( pTab==0 ){ 2241 rc = SQLITE_NOMEM; 2242 }else{ 2243 memset(pTab, 0, sizeof(PragmaVtab)); 2244 pTab->pName = pPragma; 2245 pTab->db = db; 2246 pTab->iHidden = i; 2247 pTab->nHidden = j; 2248 } 2249 }else{ 2250 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2251 } 2252 2253 *ppVtab = (sqlite3_vtab*)pTab; 2254 return rc; 2255 } 2256 2257 /* 2258 ** Pragma virtual table module xDisconnect method. 2259 */ 2260 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ 2261 PragmaVtab *pTab = (PragmaVtab*)pVtab; 2262 sqlite3_free(pTab); 2263 return SQLITE_OK; 2264 } 2265 2266 /* Figure out the best index to use to search a pragma virtual table. 2267 ** 2268 ** There are not really any index choices. But we want to encourage the 2269 ** query planner to give == constraints on as many hidden parameters as 2270 ** possible, and especially on the first hidden parameter. So return a 2271 ** high cost if hidden parameters are unconstrained. 2272 */ 2273 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 2274 PragmaVtab *pTab = (PragmaVtab*)tab; 2275 const struct sqlite3_index_constraint *pConstraint; 2276 int i, j; 2277 int seen[2]; 2278 2279 pIdxInfo->estimatedCost = (double)1; 2280 if( pTab->nHidden==0 ){ return SQLITE_OK; } 2281 pConstraint = pIdxInfo->aConstraint; 2282 seen[0] = 0; 2283 seen[1] = 0; 2284 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 2285 if( pConstraint->usable==0 ) continue; 2286 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 2287 if( pConstraint->iColumn < pTab->iHidden ) continue; 2288 j = pConstraint->iColumn - pTab->iHidden; 2289 assert( j < 2 ); 2290 seen[j] = i+1; 2291 } 2292 if( seen[0]==0 ){ 2293 pIdxInfo->estimatedCost = (double)2147483647; 2294 pIdxInfo->estimatedRows = 2147483647; 2295 return SQLITE_OK; 2296 } 2297 j = seen[0]-1; 2298 pIdxInfo->aConstraintUsage[j].argvIndex = 1; 2299 pIdxInfo->aConstraintUsage[j].omit = 1; 2300 if( seen[1]==0 ) return SQLITE_OK; 2301 pIdxInfo->estimatedCost = (double)20; 2302 pIdxInfo->estimatedRows = 20; 2303 j = seen[1]-1; 2304 pIdxInfo->aConstraintUsage[j].argvIndex = 2; 2305 pIdxInfo->aConstraintUsage[j].omit = 1; 2306 return SQLITE_OK; 2307 } 2308 2309 /* Create a new cursor for the pragma virtual table */ 2310 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ 2311 PragmaVtabCursor *pCsr; 2312 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); 2313 if( pCsr==0 ) return SQLITE_NOMEM; 2314 memset(pCsr, 0, sizeof(PragmaVtabCursor)); 2315 pCsr->base.pVtab = pVtab; 2316 *ppCursor = &pCsr->base; 2317 return SQLITE_OK; 2318 } 2319 2320 /* Clear all content from pragma virtual table cursor. */ 2321 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ 2322 int i; 2323 sqlite3_finalize(pCsr->pPragma); 2324 pCsr->pPragma = 0; 2325 for(i=0; i<ArraySize(pCsr->azArg); i++){ 2326 sqlite3_free(pCsr->azArg[i]); 2327 pCsr->azArg[i] = 0; 2328 } 2329 } 2330 2331 /* Close a pragma virtual table cursor */ 2332 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ 2333 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; 2334 pragmaVtabCursorClear(pCsr); 2335 sqlite3_free(pCsr); 2336 return SQLITE_OK; 2337 } 2338 2339 /* Advance the pragma virtual table cursor to the next row */ 2340 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ 2341 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2342 int rc = SQLITE_OK; 2343 2344 /* Increment the xRowid value */ 2345 pCsr->iRowid++; 2346 assert( pCsr->pPragma ); 2347 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ 2348 rc = sqlite3_finalize(pCsr->pPragma); 2349 pCsr->pPragma = 0; 2350 pragmaVtabCursorClear(pCsr); 2351 } 2352 return rc; 2353 } 2354 2355 /* 2356 ** Pragma virtual table module xFilter method. 2357 */ 2358 static int pragmaVtabFilter( 2359 sqlite3_vtab_cursor *pVtabCursor, 2360 int idxNum, const char *idxStr, 2361 int argc, sqlite3_value **argv 2362 ){ 2363 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2364 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2365 int rc; 2366 int i, j; 2367 StrAccum acc; 2368 char *zSql; 2369 2370 UNUSED_PARAMETER(idxNum); 2371 UNUSED_PARAMETER(idxStr); 2372 pragmaVtabCursorClear(pCsr); 2373 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; 2374 for(i=0; i<argc; i++, j++){ 2375 const char *zText = (const char*)sqlite3_value_text(argv[i]); 2376 assert( j<ArraySize(pCsr->azArg) ); 2377 assert( pCsr->azArg[j]==0 ); 2378 if( zText ){ 2379 pCsr->azArg[j] = sqlite3_mprintf("%s", zText); 2380 if( pCsr->azArg[j]==0 ){ 2381 return SQLITE_NOMEM; 2382 } 2383 } 2384 } 2385 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); 2386 sqlite3StrAccumAppendAll(&acc, "PRAGMA "); 2387 if( pCsr->azArg[1] ){ 2388 sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]); 2389 } 2390 sqlite3StrAccumAppendAll(&acc, pTab->pName->zName); 2391 if( pCsr->azArg[0] ){ 2392 sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]); 2393 } 2394 zSql = sqlite3StrAccumFinish(&acc); 2395 if( zSql==0 ) return SQLITE_NOMEM; 2396 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); 2397 sqlite3_free(zSql); 2398 if( rc!=SQLITE_OK ){ 2399 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); 2400 return rc; 2401 } 2402 return pragmaVtabNext(pVtabCursor); 2403 } 2404 2405 /* 2406 ** Pragma virtual table module xEof method. 2407 */ 2408 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ 2409 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2410 return (pCsr->pPragma==0); 2411 } 2412 2413 /* The xColumn method simply returns the corresponding column from 2414 ** the PRAGMA. 2415 */ 2416 static int pragmaVtabColumn( 2417 sqlite3_vtab_cursor *pVtabCursor, 2418 sqlite3_context *ctx, 2419 int i 2420 ){ 2421 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2422 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2423 if( i<pTab->iHidden ){ 2424 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); 2425 }else{ 2426 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); 2427 } 2428 return SQLITE_OK; 2429 } 2430 2431 /* 2432 ** Pragma virtual table module xRowid method. 2433 */ 2434 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ 2435 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2436 *p = pCsr->iRowid; 2437 return SQLITE_OK; 2438 } 2439 2440 /* The pragma virtual table object */ 2441 static const sqlite3_module pragmaVtabModule = { 2442 0, /* iVersion */ 2443 0, /* xCreate - create a table */ 2444 pragmaVtabConnect, /* xConnect - connect to an existing table */ 2445 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ 2446 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 2447 0, /* xDestroy - Drop a table */ 2448 pragmaVtabOpen, /* xOpen - open a cursor */ 2449 pragmaVtabClose, /* xClose - close a cursor */ 2450 pragmaVtabFilter, /* xFilter - configure scan constraints */ 2451 pragmaVtabNext, /* xNext - advance a cursor */ 2452 pragmaVtabEof, /* xEof */ 2453 pragmaVtabColumn, /* xColumn - read data */ 2454 pragmaVtabRowid, /* xRowid - read data */ 2455 0, /* xUpdate - write data */ 2456 0, /* xBegin - begin transaction */ 2457 0, /* xSync - sync transaction */ 2458 0, /* xCommit - commit transaction */ 2459 0, /* xRollback - rollback transaction */ 2460 0, /* xFindFunction - function overloading */ 2461 0, /* xRename - rename the table */ 2462 0, /* xSavepoint */ 2463 0, /* xRelease */ 2464 0 /* xRollbackTo */ 2465 }; 2466 2467 /* 2468 ** Check to see if zTabName is really the name of a pragma. If it is, 2469 ** then register an eponymous virtual table for that pragma and return 2470 ** a pointer to the Module object for the new virtual table. 2471 */ 2472 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ 2473 const PragmaName *pName; 2474 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); 2475 pName = pragmaLocate(zName+7); 2476 if( pName==0 ) return 0; 2477 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; 2478 assert( sqlite3HashFind(&db->aModule, zName)==0 ); 2479 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); 2480 } 2481 2482 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2483 2484 #endif /* SQLITE_OMIT_PRAGMA */ 2485