1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER 43 ** was defined, then the page content would be held in a separate memory 44 ** allocation from the PgHdr1. This was intended to avoid clownshoe memory 45 ** allocations. However, the btree layer needs a small (16-byte) overrun 46 ** area after the page content buffer. The header serves as that overrun 47 ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid 48 ** any possibility of a memory error. 49 ** 50 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 51 ** with this module. Information is passed back and forth as PgHdr1 pointers. 52 ** 53 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 54 ** The btree.c module deals with pointers to MemPage objects. 55 ** 56 ** SOURCE OF PAGE CACHE MEMORY: 57 ** 58 ** Memory for a page might come from any of three sources: 59 ** 60 ** (1) The general-purpose memory allocator - sqlite3Malloc() 61 ** (2) Global page-cache memory provided using sqlite3_config() with 62 ** SQLITE_CONFIG_PAGECACHE. 63 ** (3) PCache-local bulk allocation. 64 ** 65 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 66 ** that is allocated when the page cache is created. The size of the local 67 ** bulk allocation can be adjusted using 68 ** 69 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 70 ** 71 ** If N is positive, then N pages worth of memory are allocated using a single 72 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 73 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 74 ** for as many pages as can be accomodated. 75 ** 76 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 77 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 78 ** memory allocator (1). 79 ** 80 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 81 ** show that method (3) with N==100 provides about a 5% performance boost for 82 ** common workloads. 83 */ 84 #include "sqliteInt.h" 85 86 typedef struct PCache1 PCache1; 87 typedef struct PgHdr1 PgHdr1; 88 typedef struct PgFreeslot PgFreeslot; 89 typedef struct PGroup PGroup; 90 91 /* 92 ** Each cache entry is represented by an instance of the following 93 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated 94 ** directly before this structure and is used to cache the page content. 95 ** 96 ** When reading a corrupt database file, it is possible that SQLite might 97 ** read a few bytes (no more than 16 bytes) past the end of the page buffer. 98 ** It will only read past the end of the page buffer, never write. This 99 ** object is positioned immediately after the page buffer to serve as an 100 ** overrun area, so that overreads are harmless. 101 ** 102 ** Variables isBulkLocal and isAnchor were once type "u8". That works, 103 ** but causes a 2-byte gap in the structure for most architectures (since 104 ** pointers must be either 4 or 8-byte aligned). As this structure is located 105 ** in memory directly after the associated page data, if the database is 106 ** corrupt, code at the b-tree layer may overread the page buffer and 107 ** read part of this structure before the corruption is detected. This 108 ** can cause a valgrind error if the unitialized gap is accessed. Using u16 109 ** ensures there is no such gap, and therefore no bytes of unitialized memory 110 ** in the structure. 111 */ 112 struct PgHdr1 { 113 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 114 unsigned int iKey; /* Key value (page number) */ 115 u16 isBulkLocal; /* This page from bulk local storage */ 116 u16 isAnchor; /* This is the PGroup.lru element */ 117 PgHdr1 *pNext; /* Next in hash table chain */ 118 PCache1 *pCache; /* Cache that currently owns this page */ 119 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 120 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 121 /* NB: pLruPrev is only valid if pLruNext!=0 */ 122 }; 123 124 /* 125 ** A page is pinned if it is not on the LRU list. To be "pinned" means 126 ** that the page is in active use and must not be deallocated. 127 */ 128 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 129 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 130 131 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 132 ** of one or more PCaches that are able to recycle each other's unpinned 133 ** pages when they are under memory pressure. A PGroup is an instance of 134 ** the following object. 135 ** 136 ** This page cache implementation works in one of two modes: 137 ** 138 ** (1) Every PCache is the sole member of its own PGroup. There is 139 ** one PGroup per PCache. 140 ** 141 ** (2) There is a single global PGroup that all PCaches are a member 142 ** of. 143 ** 144 ** Mode 1 uses more memory (since PCache instances are not able to rob 145 ** unused pages from other PCaches) but it also operates without a mutex, 146 ** and is therefore often faster. Mode 2 requires a mutex in order to be 147 ** threadsafe, but recycles pages more efficiently. 148 ** 149 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 150 ** PGroup which is the pcache1.grp global variable and its mutex is 151 ** SQLITE_MUTEX_STATIC_LRU. 152 */ 153 struct PGroup { 154 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 155 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 156 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 157 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 158 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 159 PgHdr1 lru; /* The beginning and end of the LRU list */ 160 }; 161 162 /* Each page cache is an instance of the following object. Every 163 ** open database file (including each in-memory database and each 164 ** temporary or transient database) has a single page cache which 165 ** is an instance of this object. 166 ** 167 ** Pointers to structures of this type are cast and returned as 168 ** opaque sqlite3_pcache* handles. 169 */ 170 struct PCache1 { 171 /* Cache configuration parameters. Page size (szPage) and the purgeable 172 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 173 ** cache is created and are never changed thereafter. nMax may be 174 ** modified at any time by a call to the pcache1Cachesize() method. 175 ** The PGroup mutex must be held when accessing nMax. 176 */ 177 PGroup *pGroup; /* PGroup this cache belongs to */ 178 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 179 int szPage; /* Size of database content section */ 180 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 181 int szAlloc; /* Total size of one pcache line */ 182 int bPurgeable; /* True if cache is purgeable */ 183 unsigned int nMin; /* Minimum number of pages reserved */ 184 unsigned int nMax; /* Configured "cache_size" value */ 185 unsigned int n90pct; /* nMax*9/10 */ 186 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 187 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ 188 189 /* Hash table of all pages. The following variables may only be accessed 190 ** when the accessor is holding the PGroup mutex. 191 */ 192 unsigned int nRecyclable; /* Number of pages in the LRU list */ 193 unsigned int nPage; /* Total number of pages in apHash */ 194 unsigned int nHash; /* Number of slots in apHash[] */ 195 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 196 PgHdr1 *pFree; /* List of unused pcache-local pages */ 197 void *pBulk; /* Bulk memory used by pcache-local */ 198 }; 199 200 /* 201 ** Free slots in the allocator used to divide up the global page cache 202 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 203 */ 204 struct PgFreeslot { 205 PgFreeslot *pNext; /* Next free slot */ 206 }; 207 208 /* 209 ** Global data used by this cache. 210 */ 211 static SQLITE_WSD struct PCacheGlobal { 212 PGroup grp; /* The global PGroup for mode (2) */ 213 214 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 215 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 216 ** fixed at sqlite3_initialize() time and do not require mutex protection. 217 ** The nFreeSlot and pFree values do require mutex protection. 218 */ 219 int isInit; /* True if initialized */ 220 int separateCache; /* Use a new PGroup for each PCache */ 221 int nInitPage; /* Initial bulk allocation size */ 222 int szSlot; /* Size of each free slot */ 223 int nSlot; /* The number of pcache slots */ 224 int nReserve; /* Try to keep nFreeSlot above this */ 225 void *pStart, *pEnd; /* Bounds of global page cache memory */ 226 /* Above requires no mutex. Use mutex below for variable that follow. */ 227 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 228 PgFreeslot *pFree; /* Free page blocks */ 229 int nFreeSlot; /* Number of unused pcache slots */ 230 /* The following value requires a mutex to change. We skip the mutex on 231 ** reading because (1) most platforms read a 32-bit integer atomically and 232 ** (2) even if an incorrect value is read, no great harm is done since this 233 ** is really just an optimization. */ 234 int bUnderPressure; /* True if low on PAGECACHE memory */ 235 } pcache1_g; 236 237 /* 238 ** All code in this file should access the global structure above via the 239 ** alias "pcache1". This ensures that the WSD emulation is used when 240 ** compiling for systems that do not support real WSD. 241 */ 242 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 243 244 /* 245 ** Macros to enter and leave the PCache LRU mutex. 246 */ 247 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 248 # define pcache1EnterMutex(X) assert((X)->mutex==0) 249 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 250 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 251 #else 252 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 253 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 254 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 255 #endif 256 257 /******************************************************************************/ 258 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 259 260 261 /* 262 ** This function is called during initialization if a static buffer is 263 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 264 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 265 ** enough to contain 'n' buffers of 'sz' bytes each. 266 ** 267 ** This routine is called from sqlite3_initialize() and so it is guaranteed 268 ** to be serialized already. There is no need for further mutexing. 269 */ 270 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 271 if( pcache1.isInit ){ 272 PgFreeslot *p; 273 if( pBuf==0 ) sz = n = 0; 274 if( n==0 ) sz = 0; 275 sz = ROUNDDOWN8(sz); 276 pcache1.szSlot = sz; 277 pcache1.nSlot = pcache1.nFreeSlot = n; 278 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 279 pcache1.pStart = pBuf; 280 pcache1.pFree = 0; 281 pcache1.bUnderPressure = 0; 282 while( n-- ){ 283 p = (PgFreeslot*)pBuf; 284 p->pNext = pcache1.pFree; 285 pcache1.pFree = p; 286 pBuf = (void*)&((char*)pBuf)[sz]; 287 } 288 pcache1.pEnd = pBuf; 289 } 290 } 291 292 /* 293 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 294 ** true if pCache->pFree ends up containing one or more free pages. 295 */ 296 static int pcache1InitBulk(PCache1 *pCache){ 297 i64 szBulk; 298 char *zBulk; 299 if( pcache1.nInitPage==0 ) return 0; 300 /* Do not bother with a bulk allocation if the cache size very small */ 301 if( pCache->nMax<3 ) return 0; 302 sqlite3BeginBenignMalloc(); 303 if( pcache1.nInitPage>0 ){ 304 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 305 }else{ 306 szBulk = -1024 * (i64)pcache1.nInitPage; 307 } 308 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 309 szBulk = pCache->szAlloc*(i64)pCache->nMax; 310 } 311 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 312 sqlite3EndBenignMalloc(); 313 if( zBulk ){ 314 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 315 do{ 316 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 317 pX->page.pBuf = zBulk; 318 pX->page.pExtra = &pX[1]; 319 pX->isBulkLocal = 1; 320 pX->isAnchor = 0; 321 pX->pNext = pCache->pFree; 322 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ 323 pCache->pFree = pX; 324 zBulk += pCache->szAlloc; 325 }while( --nBulk ); 326 } 327 return pCache->pFree!=0; 328 } 329 330 /* 331 ** Malloc function used within this file to allocate space from the buffer 332 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 333 ** such buffer exists or there is no space left in it, this function falls 334 ** back to sqlite3Malloc(). 335 ** 336 ** Multiple threads can run this routine at the same time. Global variables 337 ** in pcache1 need to be protected via mutex. 338 */ 339 static void *pcache1Alloc(int nByte){ 340 void *p = 0; 341 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 342 if( nByte<=pcache1.szSlot ){ 343 sqlite3_mutex_enter(pcache1.mutex); 344 p = (PgHdr1 *)pcache1.pFree; 345 if( p ){ 346 pcache1.pFree = pcache1.pFree->pNext; 347 pcache1.nFreeSlot--; 348 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 349 assert( pcache1.nFreeSlot>=0 ); 350 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 351 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 352 } 353 sqlite3_mutex_leave(pcache1.mutex); 354 } 355 if( p==0 ){ 356 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 357 ** it from sqlite3Malloc instead. 358 */ 359 p = sqlite3Malloc(nByte); 360 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 361 if( p ){ 362 int sz = sqlite3MallocSize(p); 363 sqlite3_mutex_enter(pcache1.mutex); 364 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 365 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 366 sqlite3_mutex_leave(pcache1.mutex); 367 } 368 #endif 369 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 370 } 371 return p; 372 } 373 374 /* 375 ** Free an allocated buffer obtained from pcache1Alloc(). 376 */ 377 static void pcache1Free(void *p){ 378 if( p==0 ) return; 379 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 380 PgFreeslot *pSlot; 381 sqlite3_mutex_enter(pcache1.mutex); 382 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 383 pSlot = (PgFreeslot*)p; 384 pSlot->pNext = pcache1.pFree; 385 pcache1.pFree = pSlot; 386 pcache1.nFreeSlot++; 387 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 388 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 389 sqlite3_mutex_leave(pcache1.mutex); 390 }else{ 391 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 392 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 393 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 394 { 395 int nFreed = 0; 396 nFreed = sqlite3MallocSize(p); 397 sqlite3_mutex_enter(pcache1.mutex); 398 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 399 sqlite3_mutex_leave(pcache1.mutex); 400 } 401 #endif 402 sqlite3_free(p); 403 } 404 } 405 406 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 407 /* 408 ** Return the size of a pcache allocation 409 */ 410 static int pcache1MemSize(void *p){ 411 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 412 return pcache1.szSlot; 413 }else{ 414 int iSize; 415 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 416 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 417 iSize = sqlite3MallocSize(p); 418 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 419 return iSize; 420 } 421 } 422 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 423 424 /* 425 ** Allocate a new page object initially associated with cache pCache. 426 */ 427 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 428 PgHdr1 *p = 0; 429 void *pPg; 430 431 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 432 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 433 assert( pCache->pFree!=0 ); 434 p = pCache->pFree; 435 pCache->pFree = p->pNext; 436 p->pNext = 0; 437 }else{ 438 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 439 /* The group mutex must be released before pcache1Alloc() is called. This 440 ** is because it might call sqlite3_release_memory(), which assumes that 441 ** this mutex is not held. */ 442 assert( pcache1.separateCache==0 ); 443 assert( pCache->pGroup==&pcache1.grp ); 444 pcache1LeaveMutex(pCache->pGroup); 445 #endif 446 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 447 pPg = pcache1Alloc(pCache->szAlloc); 448 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 449 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 450 pcache1EnterMutex(pCache->pGroup); 451 #endif 452 if( pPg==0 ) return 0; 453 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 454 p->page.pBuf = pPg; 455 p->page.pExtra = &p[1]; 456 p->isBulkLocal = 0; 457 p->isAnchor = 0; 458 p->pLruPrev = 0; /* Initializing this saves a valgrind error */ 459 } 460 (*pCache->pnPurgeable)++; 461 return p; 462 } 463 464 /* 465 ** Free a page object allocated by pcache1AllocPage(). 466 */ 467 static void pcache1FreePage(PgHdr1 *p){ 468 PCache1 *pCache; 469 assert( p!=0 ); 470 pCache = p->pCache; 471 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 472 if( p->isBulkLocal ){ 473 p->pNext = pCache->pFree; 474 pCache->pFree = p; 475 }else{ 476 pcache1Free(p->page.pBuf); 477 } 478 (*pCache->pnPurgeable)--; 479 } 480 481 /* 482 ** Malloc function used by SQLite to obtain space from the buffer configured 483 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 484 ** exists, this function falls back to sqlite3Malloc(). 485 */ 486 void *sqlite3PageMalloc(int sz){ 487 assert( sz<=65536+8 ); /* These allocations are never very large */ 488 return pcache1Alloc(sz); 489 } 490 491 /* 492 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 493 */ 494 void sqlite3PageFree(void *p){ 495 pcache1Free(p); 496 } 497 498 499 /* 500 ** Return true if it desirable to avoid allocating a new page cache 501 ** entry. 502 ** 503 ** If memory was allocated specifically to the page cache using 504 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 505 ** it is desirable to avoid allocating a new page cache entry because 506 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 507 ** for all page cache needs and we should not need to spill the 508 ** allocation onto the heap. 509 ** 510 ** Or, the heap is used for all page cache memory but the heap is 511 ** under memory pressure, then again it is desirable to avoid 512 ** allocating a new page cache entry in order to avoid stressing 513 ** the heap even further. 514 */ 515 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 516 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 517 return pcache1.bUnderPressure; 518 }else{ 519 return sqlite3HeapNearlyFull(); 520 } 521 } 522 523 /******************************************************************************/ 524 /******** General Implementation Functions ************************************/ 525 526 /* 527 ** This function is used to resize the hash table used by the cache passed 528 ** as the first argument. 529 ** 530 ** The PCache mutex must be held when this function is called. 531 */ 532 static void pcache1ResizeHash(PCache1 *p){ 533 PgHdr1 **apNew; 534 unsigned int nNew; 535 unsigned int i; 536 537 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 538 539 nNew = p->nHash*2; 540 if( nNew<256 ){ 541 nNew = 256; 542 } 543 544 pcache1LeaveMutex(p->pGroup); 545 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 546 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 547 if( p->nHash ){ sqlite3EndBenignMalloc(); } 548 pcache1EnterMutex(p->pGroup); 549 if( apNew ){ 550 for(i=0; i<p->nHash; i++){ 551 PgHdr1 *pPage; 552 PgHdr1 *pNext = p->apHash[i]; 553 while( (pPage = pNext)!=0 ){ 554 unsigned int h = pPage->iKey % nNew; 555 pNext = pPage->pNext; 556 pPage->pNext = apNew[h]; 557 apNew[h] = pPage; 558 } 559 } 560 sqlite3_free(p->apHash); 561 p->apHash = apNew; 562 p->nHash = nNew; 563 } 564 } 565 566 /* 567 ** This function is used internally to remove the page pPage from the 568 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 569 ** LRU list, then this function is a no-op. 570 ** 571 ** The PGroup mutex must be held when this function is called. 572 */ 573 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 574 assert( pPage!=0 ); 575 assert( PAGE_IS_UNPINNED(pPage) ); 576 assert( pPage->pLruNext ); 577 assert( pPage->pLruPrev ); 578 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 579 pPage->pLruPrev->pLruNext = pPage->pLruNext; 580 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 581 pPage->pLruNext = 0; 582 /* pPage->pLruPrev = 0; 583 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 584 assert( pPage->isAnchor==0 ); 585 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 586 pPage->pCache->nRecyclable--; 587 return pPage; 588 } 589 590 591 /* 592 ** Remove the page supplied as an argument from the hash table 593 ** (PCache1.apHash structure) that it is currently stored in. 594 ** Also free the page if freePage is true. 595 ** 596 ** The PGroup mutex must be held when this function is called. 597 */ 598 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 599 unsigned int h; 600 PCache1 *pCache = pPage->pCache; 601 PgHdr1 **pp; 602 603 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 604 h = pPage->iKey % pCache->nHash; 605 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 606 *pp = (*pp)->pNext; 607 608 pCache->nPage--; 609 if( freeFlag ) pcache1FreePage(pPage); 610 } 611 612 /* 613 ** If there are currently more than nMaxPage pages allocated, try 614 ** to recycle pages to reduce the number allocated to nMaxPage. 615 */ 616 static void pcache1EnforceMaxPage(PCache1 *pCache){ 617 PGroup *pGroup = pCache->pGroup; 618 PgHdr1 *p; 619 assert( sqlite3_mutex_held(pGroup->mutex) ); 620 while( pGroup->nPurgeable>pGroup->nMaxPage 621 && (p=pGroup->lru.pLruPrev)->isAnchor==0 622 ){ 623 assert( p->pCache->pGroup==pGroup ); 624 assert( PAGE_IS_UNPINNED(p) ); 625 pcache1PinPage(p); 626 pcache1RemoveFromHash(p, 1); 627 } 628 if( pCache->nPage==0 && pCache->pBulk ){ 629 sqlite3_free(pCache->pBulk); 630 pCache->pBulk = pCache->pFree = 0; 631 } 632 } 633 634 /* 635 ** Discard all pages from cache pCache with a page number (key value) 636 ** greater than or equal to iLimit. Any pinned pages that meet this 637 ** criteria are unpinned before they are discarded. 638 ** 639 ** The PCache mutex must be held when this function is called. 640 */ 641 static void pcache1TruncateUnsafe( 642 PCache1 *pCache, /* The cache to truncate */ 643 unsigned int iLimit /* Drop pages with this pgno or larger */ 644 ){ 645 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 646 unsigned int h, iStop; 647 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 648 assert( pCache->iMaxKey >= iLimit ); 649 assert( pCache->nHash > 0 ); 650 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 651 /* If we are just shaving the last few pages off the end of the 652 ** cache, then there is no point in scanning the entire hash table. 653 ** Only scan those hash slots that might contain pages that need to 654 ** be removed. */ 655 h = iLimit % pCache->nHash; 656 iStop = pCache->iMaxKey % pCache->nHash; 657 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 658 }else{ 659 /* This is the general case where many pages are being removed. 660 ** It is necessary to scan the entire hash table */ 661 h = pCache->nHash/2; 662 iStop = h - 1; 663 } 664 for(;;){ 665 PgHdr1 **pp; 666 PgHdr1 *pPage; 667 assert( h<pCache->nHash ); 668 pp = &pCache->apHash[h]; 669 while( (pPage = *pp)!=0 ){ 670 if( pPage->iKey>=iLimit ){ 671 pCache->nPage--; 672 *pp = pPage->pNext; 673 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 674 pcache1FreePage(pPage); 675 }else{ 676 pp = &pPage->pNext; 677 TESTONLY( if( nPage>=0 ) nPage++; ) 678 } 679 } 680 if( h==iStop ) break; 681 h = (h+1) % pCache->nHash; 682 } 683 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 684 } 685 686 /******************************************************************************/ 687 /******** sqlite3_pcache Methods **********************************************/ 688 689 /* 690 ** Implementation of the sqlite3_pcache.xInit method. 691 */ 692 static int pcache1Init(void *NotUsed){ 693 UNUSED_PARAMETER(NotUsed); 694 assert( pcache1.isInit==0 ); 695 memset(&pcache1, 0, sizeof(pcache1)); 696 697 698 /* 699 ** The pcache1.separateCache variable is true if each PCache has its own 700 ** private PGroup (mode-1). pcache1.separateCache is false if the single 701 ** PGroup in pcache1.grp is used for all page caches (mode-2). 702 ** 703 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 704 ** 705 ** * Use a unified cache in single-threaded applications that have 706 ** configured a start-time buffer for use as page-cache memory using 707 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 708 ** pBuf argument. 709 ** 710 ** * Otherwise use separate caches (mode-1) 711 */ 712 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 713 pcache1.separateCache = 0; 714 #elif SQLITE_THREADSAFE 715 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 716 || sqlite3GlobalConfig.bCoreMutex>0; 717 #else 718 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 719 #endif 720 721 #if SQLITE_THREADSAFE 722 if( sqlite3GlobalConfig.bCoreMutex ){ 723 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 724 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 725 } 726 #endif 727 if( pcache1.separateCache 728 && sqlite3GlobalConfig.nPage!=0 729 && sqlite3GlobalConfig.pPage==0 730 ){ 731 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 732 }else{ 733 pcache1.nInitPage = 0; 734 } 735 pcache1.grp.mxPinned = 10; 736 pcache1.isInit = 1; 737 return SQLITE_OK; 738 } 739 740 /* 741 ** Implementation of the sqlite3_pcache.xShutdown method. 742 ** Note that the static mutex allocated in xInit does 743 ** not need to be freed. 744 */ 745 static void pcache1Shutdown(void *NotUsed){ 746 UNUSED_PARAMETER(NotUsed); 747 assert( pcache1.isInit!=0 ); 748 memset(&pcache1, 0, sizeof(pcache1)); 749 } 750 751 /* forward declaration */ 752 static void pcache1Destroy(sqlite3_pcache *p); 753 754 /* 755 ** Implementation of the sqlite3_pcache.xCreate method. 756 ** 757 ** Allocate a new cache. 758 */ 759 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 760 PCache1 *pCache; /* The newly created page cache */ 761 PGroup *pGroup; /* The group the new page cache will belong to */ 762 int sz; /* Bytes of memory required to allocate the new cache */ 763 764 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 765 assert( szExtra < 300 ); 766 767 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 768 pCache = (PCache1 *)sqlite3MallocZero(sz); 769 if( pCache ){ 770 if( pcache1.separateCache ){ 771 pGroup = (PGroup*)&pCache[1]; 772 pGroup->mxPinned = 10; 773 }else{ 774 pGroup = &pcache1.grp; 775 } 776 pcache1EnterMutex(pGroup); 777 if( pGroup->lru.isAnchor==0 ){ 778 pGroup->lru.isAnchor = 1; 779 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 780 } 781 pCache->pGroup = pGroup; 782 pCache->szPage = szPage; 783 pCache->szExtra = szExtra; 784 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 785 pCache->bPurgeable = (bPurgeable ? 1 : 0); 786 pcache1ResizeHash(pCache); 787 if( bPurgeable ){ 788 pCache->nMin = 10; 789 pGroup->nMinPage += pCache->nMin; 790 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 791 pCache->pnPurgeable = &pGroup->nPurgeable; 792 }else{ 793 pCache->pnPurgeable = &pCache->nPurgeableDummy; 794 } 795 pcache1LeaveMutex(pGroup); 796 if( pCache->nHash==0 ){ 797 pcache1Destroy((sqlite3_pcache*)pCache); 798 pCache = 0; 799 } 800 } 801 return (sqlite3_pcache *)pCache; 802 } 803 804 /* 805 ** Implementation of the sqlite3_pcache.xCachesize method. 806 ** 807 ** Configure the cache_size limit for a cache. 808 */ 809 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 810 PCache1 *pCache = (PCache1 *)p; 811 u32 n; 812 assert( nMax>=0 ); 813 if( pCache->bPurgeable ){ 814 PGroup *pGroup = pCache->pGroup; 815 pcache1EnterMutex(pGroup); 816 n = (u32)nMax; 817 if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){ 818 n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax; 819 } 820 pGroup->nMaxPage += (n - pCache->nMax); 821 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 822 pCache->nMax = n; 823 pCache->n90pct = pCache->nMax*9/10; 824 pcache1EnforceMaxPage(pCache); 825 pcache1LeaveMutex(pGroup); 826 } 827 } 828 829 /* 830 ** Implementation of the sqlite3_pcache.xShrink method. 831 ** 832 ** Free up as much memory as possible. 833 */ 834 static void pcache1Shrink(sqlite3_pcache *p){ 835 PCache1 *pCache = (PCache1*)p; 836 if( pCache->bPurgeable ){ 837 PGroup *pGroup = pCache->pGroup; 838 unsigned int savedMaxPage; 839 pcache1EnterMutex(pGroup); 840 savedMaxPage = pGroup->nMaxPage; 841 pGroup->nMaxPage = 0; 842 pcache1EnforceMaxPage(pCache); 843 pGroup->nMaxPage = savedMaxPage; 844 pcache1LeaveMutex(pGroup); 845 } 846 } 847 848 /* 849 ** Implementation of the sqlite3_pcache.xPagecount method. 850 */ 851 static int pcache1Pagecount(sqlite3_pcache *p){ 852 int n; 853 PCache1 *pCache = (PCache1*)p; 854 pcache1EnterMutex(pCache->pGroup); 855 n = pCache->nPage; 856 pcache1LeaveMutex(pCache->pGroup); 857 return n; 858 } 859 860 861 /* 862 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 863 ** in the header of the pcache1Fetch() procedure. 864 ** 865 ** This steps are broken out into a separate procedure because they are 866 ** usually not needed, and by avoiding the stack initialization required 867 ** for these steps, the main pcache1Fetch() procedure can run faster. 868 */ 869 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 870 PCache1 *pCache, 871 unsigned int iKey, 872 int createFlag 873 ){ 874 unsigned int nPinned; 875 PGroup *pGroup = pCache->pGroup; 876 PgHdr1 *pPage = 0; 877 878 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 879 assert( pCache->nPage >= pCache->nRecyclable ); 880 nPinned = pCache->nPage - pCache->nRecyclable; 881 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 882 assert( pCache->n90pct == pCache->nMax*9/10 ); 883 if( createFlag==1 && ( 884 nPinned>=pGroup->mxPinned 885 || nPinned>=pCache->n90pct 886 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 887 )){ 888 return 0; 889 } 890 891 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 892 assert( pCache->nHash>0 && pCache->apHash ); 893 894 /* Step 4. Try to recycle a page. */ 895 if( pCache->bPurgeable 896 && !pGroup->lru.pLruPrev->isAnchor 897 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 898 ){ 899 PCache1 *pOther; 900 pPage = pGroup->lru.pLruPrev; 901 assert( PAGE_IS_UNPINNED(pPage) ); 902 pcache1RemoveFromHash(pPage, 0); 903 pcache1PinPage(pPage); 904 pOther = pPage->pCache; 905 if( pOther->szAlloc != pCache->szAlloc ){ 906 pcache1FreePage(pPage); 907 pPage = 0; 908 }else{ 909 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 910 } 911 } 912 913 /* Step 5. If a usable page buffer has still not been found, 914 ** attempt to allocate a new one. 915 */ 916 if( !pPage ){ 917 pPage = pcache1AllocPage(pCache, createFlag==1); 918 } 919 920 if( pPage ){ 921 unsigned int h = iKey % pCache->nHash; 922 pCache->nPage++; 923 pPage->iKey = iKey; 924 pPage->pNext = pCache->apHash[h]; 925 pPage->pCache = pCache; 926 pPage->pLruNext = 0; 927 /* pPage->pLruPrev = 0; 928 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 929 *(void **)pPage->page.pExtra = 0; 930 pCache->apHash[h] = pPage; 931 if( iKey>pCache->iMaxKey ){ 932 pCache->iMaxKey = iKey; 933 } 934 } 935 return pPage; 936 } 937 938 /* 939 ** Implementation of the sqlite3_pcache.xFetch method. 940 ** 941 ** Fetch a page by key value. 942 ** 943 ** Whether or not a new page may be allocated by this function depends on 944 ** the value of the createFlag argument. 0 means do not allocate a new 945 ** page. 1 means allocate a new page if space is easily available. 2 946 ** means to try really hard to allocate a new page. 947 ** 948 ** For a non-purgeable cache (a cache used as the storage for an in-memory 949 ** database) there is really no difference between createFlag 1 and 2. So 950 ** the calling function (pcache.c) will never have a createFlag of 1 on 951 ** a non-purgeable cache. 952 ** 953 ** There are three different approaches to obtaining space for a page, 954 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 955 ** 956 ** 1. Regardless of the value of createFlag, the cache is searched for a 957 ** copy of the requested page. If one is found, it is returned. 958 ** 959 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 960 ** returned. 961 ** 962 ** 3. If createFlag is 1, and the page is not already in the cache, then 963 ** return NULL (do not allocate a new page) if any of the following 964 ** conditions are true: 965 ** 966 ** (a) the number of pages pinned by the cache is greater than 967 ** PCache1.nMax, or 968 ** 969 ** (b) the number of pages pinned by the cache is greater than 970 ** the sum of nMax for all purgeable caches, less the sum of 971 ** nMin for all other purgeable caches, or 972 ** 973 ** 4. If none of the first three conditions apply and the cache is marked 974 ** as purgeable, and if one of the following is true: 975 ** 976 ** (a) The number of pages allocated for the cache is already 977 ** PCache1.nMax, or 978 ** 979 ** (b) The number of pages allocated for all purgeable caches is 980 ** already equal to or greater than the sum of nMax for all 981 ** purgeable caches, 982 ** 983 ** (c) The system is under memory pressure and wants to avoid 984 ** unnecessary pages cache entry allocations 985 ** 986 ** then attempt to recycle a page from the LRU list. If it is the right 987 ** size, return the recycled buffer. Otherwise, free the buffer and 988 ** proceed to step 5. 989 ** 990 ** 5. Otherwise, allocate and return a new page buffer. 991 ** 992 ** There are two versions of this routine. pcache1FetchWithMutex() is 993 ** the general case. pcache1FetchNoMutex() is a faster implementation for 994 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 995 ** invokes the appropriate routine. 996 */ 997 static PgHdr1 *pcache1FetchNoMutex( 998 sqlite3_pcache *p, 999 unsigned int iKey, 1000 int createFlag 1001 ){ 1002 PCache1 *pCache = (PCache1 *)p; 1003 PgHdr1 *pPage = 0; 1004 1005 /* Step 1: Search the hash table for an existing entry. */ 1006 pPage = pCache->apHash[iKey % pCache->nHash]; 1007 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 1008 1009 /* Step 2: If the page was found in the hash table, then return it. 1010 ** If the page was not in the hash table and createFlag is 0, abort. 1011 ** Otherwise (page not in hash and createFlag!=0) continue with 1012 ** subsequent steps to try to create the page. */ 1013 if( pPage ){ 1014 if( PAGE_IS_UNPINNED(pPage) ){ 1015 return pcache1PinPage(pPage); 1016 }else{ 1017 return pPage; 1018 } 1019 }else if( createFlag ){ 1020 /* Steps 3, 4, and 5 implemented by this subroutine */ 1021 return pcache1FetchStage2(pCache, iKey, createFlag); 1022 }else{ 1023 return 0; 1024 } 1025 } 1026 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1027 static PgHdr1 *pcache1FetchWithMutex( 1028 sqlite3_pcache *p, 1029 unsigned int iKey, 1030 int createFlag 1031 ){ 1032 PCache1 *pCache = (PCache1 *)p; 1033 PgHdr1 *pPage; 1034 1035 pcache1EnterMutex(pCache->pGroup); 1036 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1037 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1038 pcache1LeaveMutex(pCache->pGroup); 1039 return pPage; 1040 } 1041 #endif 1042 static sqlite3_pcache_page *pcache1Fetch( 1043 sqlite3_pcache *p, 1044 unsigned int iKey, 1045 int createFlag 1046 ){ 1047 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1048 PCache1 *pCache = (PCache1 *)p; 1049 #endif 1050 1051 assert( offsetof(PgHdr1,page)==0 ); 1052 assert( pCache->bPurgeable || createFlag!=1 ); 1053 assert( pCache->bPurgeable || pCache->nMin==0 ); 1054 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1055 assert( pCache->nMin==0 || pCache->bPurgeable ); 1056 assert( pCache->nHash>0 ); 1057 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1058 if( pCache->pGroup->mutex ){ 1059 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1060 }else 1061 #endif 1062 { 1063 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1064 } 1065 } 1066 1067 1068 /* 1069 ** Implementation of the sqlite3_pcache.xUnpin method. 1070 ** 1071 ** Mark a page as unpinned (eligible for asynchronous recycling). 1072 */ 1073 static void pcache1Unpin( 1074 sqlite3_pcache *p, 1075 sqlite3_pcache_page *pPg, 1076 int reuseUnlikely 1077 ){ 1078 PCache1 *pCache = (PCache1 *)p; 1079 PgHdr1 *pPage = (PgHdr1 *)pPg; 1080 PGroup *pGroup = pCache->pGroup; 1081 1082 assert( pPage->pCache==pCache ); 1083 pcache1EnterMutex(pGroup); 1084 1085 /* It is an error to call this function if the page is already 1086 ** part of the PGroup LRU list. 1087 */ 1088 assert( pPage->pLruNext==0 ); 1089 assert( PAGE_IS_PINNED(pPage) ); 1090 1091 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1092 pcache1RemoveFromHash(pPage, 1); 1093 }else{ 1094 /* Add the page to the PGroup LRU list. */ 1095 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1096 pPage->pLruPrev = &pGroup->lru; 1097 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1098 *ppFirst = pPage; 1099 pCache->nRecyclable++; 1100 } 1101 1102 pcache1LeaveMutex(pCache->pGroup); 1103 } 1104 1105 /* 1106 ** Implementation of the sqlite3_pcache.xRekey method. 1107 */ 1108 static void pcache1Rekey( 1109 sqlite3_pcache *p, 1110 sqlite3_pcache_page *pPg, 1111 unsigned int iOld, 1112 unsigned int iNew 1113 ){ 1114 PCache1 *pCache = (PCache1 *)p; 1115 PgHdr1 *pPage = (PgHdr1 *)pPg; 1116 PgHdr1 **pp; 1117 unsigned int h; 1118 assert( pPage->iKey==iOld ); 1119 assert( pPage->pCache==pCache ); 1120 1121 pcache1EnterMutex(pCache->pGroup); 1122 1123 h = iOld%pCache->nHash; 1124 pp = &pCache->apHash[h]; 1125 while( (*pp)!=pPage ){ 1126 pp = &(*pp)->pNext; 1127 } 1128 *pp = pPage->pNext; 1129 1130 h = iNew%pCache->nHash; 1131 pPage->iKey = iNew; 1132 pPage->pNext = pCache->apHash[h]; 1133 pCache->apHash[h] = pPage; 1134 if( iNew>pCache->iMaxKey ){ 1135 pCache->iMaxKey = iNew; 1136 } 1137 1138 pcache1LeaveMutex(pCache->pGroup); 1139 } 1140 1141 /* 1142 ** Implementation of the sqlite3_pcache.xTruncate method. 1143 ** 1144 ** Discard all unpinned pages in the cache with a page number equal to 1145 ** or greater than parameter iLimit. Any pinned pages with a page number 1146 ** equal to or greater than iLimit are implicitly unpinned. 1147 */ 1148 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1149 PCache1 *pCache = (PCache1 *)p; 1150 pcache1EnterMutex(pCache->pGroup); 1151 if( iLimit<=pCache->iMaxKey ){ 1152 pcache1TruncateUnsafe(pCache, iLimit); 1153 pCache->iMaxKey = iLimit-1; 1154 } 1155 pcache1LeaveMutex(pCache->pGroup); 1156 } 1157 1158 /* 1159 ** Implementation of the sqlite3_pcache.xDestroy method. 1160 ** 1161 ** Destroy a cache allocated using pcache1Create(). 1162 */ 1163 static void pcache1Destroy(sqlite3_pcache *p){ 1164 PCache1 *pCache = (PCache1 *)p; 1165 PGroup *pGroup = pCache->pGroup; 1166 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1167 pcache1EnterMutex(pGroup); 1168 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1169 assert( pGroup->nMaxPage >= pCache->nMax ); 1170 pGroup->nMaxPage -= pCache->nMax; 1171 assert( pGroup->nMinPage >= pCache->nMin ); 1172 pGroup->nMinPage -= pCache->nMin; 1173 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1174 pcache1EnforceMaxPage(pCache); 1175 pcache1LeaveMutex(pGroup); 1176 sqlite3_free(pCache->pBulk); 1177 sqlite3_free(pCache->apHash); 1178 sqlite3_free(pCache); 1179 } 1180 1181 /* 1182 ** This function is called during initialization (sqlite3_initialize()) to 1183 ** install the default pluggable cache module, assuming the user has not 1184 ** already provided an alternative. 1185 */ 1186 void sqlite3PCacheSetDefault(void){ 1187 static const sqlite3_pcache_methods2 defaultMethods = { 1188 1, /* iVersion */ 1189 0, /* pArg */ 1190 pcache1Init, /* xInit */ 1191 pcache1Shutdown, /* xShutdown */ 1192 pcache1Create, /* xCreate */ 1193 pcache1Cachesize, /* xCachesize */ 1194 pcache1Pagecount, /* xPagecount */ 1195 pcache1Fetch, /* xFetch */ 1196 pcache1Unpin, /* xUnpin */ 1197 pcache1Rekey, /* xRekey */ 1198 pcache1Truncate, /* xTruncate */ 1199 pcache1Destroy, /* xDestroy */ 1200 pcache1Shrink /* xShrink */ 1201 }; 1202 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1203 } 1204 1205 /* 1206 ** Return the size of the header on each page of this PCACHE implementation. 1207 */ 1208 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1209 1210 /* 1211 ** Return the global mutex used by this PCACHE implementation. The 1212 ** sqlite3_status() routine needs access to this mutex. 1213 */ 1214 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1215 return pcache1.mutex; 1216 } 1217 1218 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1219 /* 1220 ** This function is called to free superfluous dynamically allocated memory 1221 ** held by the pager system. Memory in use by any SQLite pager allocated 1222 ** by the current thread may be sqlite3_free()ed. 1223 ** 1224 ** nReq is the number of bytes of memory required. Once this much has 1225 ** been released, the function returns. The return value is the total number 1226 ** of bytes of memory released. 1227 */ 1228 int sqlite3PcacheReleaseMemory(int nReq){ 1229 int nFree = 0; 1230 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1231 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1232 if( sqlite3GlobalConfig.pPage==0 ){ 1233 PgHdr1 *p; 1234 pcache1EnterMutex(&pcache1.grp); 1235 while( (nReq<0 || nFree<nReq) 1236 && (p=pcache1.grp.lru.pLruPrev)!=0 1237 && p->isAnchor==0 1238 ){ 1239 nFree += pcache1MemSize(p->page.pBuf); 1240 assert( PAGE_IS_UNPINNED(p) ); 1241 pcache1PinPage(p); 1242 pcache1RemoveFromHash(p, 1); 1243 } 1244 pcache1LeaveMutex(&pcache1.grp); 1245 } 1246 return nFree; 1247 } 1248 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1249 1250 #ifdef SQLITE_TEST 1251 /* 1252 ** This function is used by test procedures to inspect the internal state 1253 ** of the global cache. 1254 */ 1255 void sqlite3PcacheStats( 1256 int *pnCurrent, /* OUT: Total number of pages cached */ 1257 int *pnMax, /* OUT: Global maximum cache size */ 1258 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1259 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1260 ){ 1261 PgHdr1 *p; 1262 int nRecyclable = 0; 1263 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1264 assert( PAGE_IS_UNPINNED(p) ); 1265 nRecyclable++; 1266 } 1267 *pnCurrent = pcache1.grp.nPurgeable; 1268 *pnMax = (int)pcache1.grp.nMaxPage; 1269 *pnMin = (int)pcache1.grp.nMinPage; 1270 *pnRecyclable = nRecyclable; 1271 } 1272 #endif 1273