xref: /sqlite-3.40.0/src/pcache1.c (revision f2fcd075)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overriden, then neither of
17 ** these two features are available.
18 */
19 
20 #include "sqliteInt.h"
21 
22 typedef struct PCache1 PCache1;
23 typedef struct PgHdr1 PgHdr1;
24 typedef struct PgFreeslot PgFreeslot;
25 
26 /* Each page cache is an instance of the following object.  Every
27 ** open database file (including each in-memory database and each
28 ** temporary or transient database) has a single page cache which
29 ** is an instance of this object.
30 **
31 ** Pointers to structures of this type are cast and returned as
32 ** opaque sqlite3_pcache* handles.
33 */
34 struct PCache1 {
35   /* Cache configuration parameters. Page size (szPage) and the purgeable
36   ** flag (bPurgeable) are set when the cache is created. nMax may be
37   ** modified at any time by a call to the pcache1CacheSize() method.
38   ** The global mutex must be held when accessing nMax.
39   */
40   int szPage;                         /* Size of allocated pages in bytes */
41   int bPurgeable;                     /* True if cache is purgeable */
42   unsigned int nMin;                  /* Minimum number of pages reserved */
43   unsigned int nMax;                  /* Configured "cache_size" value */
44 
45   /* Hash table of all pages. The following variables may only be accessed
46   ** when the accessor is holding the global mutex (see pcache1EnterMutex()
47   ** and pcache1LeaveMutex()).
48   */
49   unsigned int nRecyclable;           /* Number of pages in the LRU list */
50   unsigned int nPage;                 /* Total number of pages in apHash */
51   unsigned int nHash;                 /* Number of slots in apHash[] */
52   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
53 
54   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
55 };
56 
57 /*
58 ** Each cache entry is represented by an instance of the following
59 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
60 ** directly before this structure in memory (see the PGHDR1_TO_PAGE()
61 ** macro below).
62 */
63 struct PgHdr1 {
64   unsigned int iKey;             /* Key value (page number) */
65   PgHdr1 *pNext;                 /* Next in hash table chain */
66   PCache1 *pCache;               /* Cache that currently owns this page */
67   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
68   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
69 };
70 
71 /*
72 ** Free slots in the allocator used to divide up the buffer provided using
73 ** the SQLITE_CONFIG_PAGECACHE mechanism.
74 */
75 struct PgFreeslot {
76   PgFreeslot *pNext;  /* Next free slot */
77 };
78 
79 /*
80 ** Global data used by this cache.
81 */
82 static SQLITE_WSD struct PCacheGlobal {
83   sqlite3_mutex *mutex;               /* static mutex MUTEX_STATIC_LRU */
84 
85   int nMaxPage;                       /* Sum of nMaxPage for purgeable caches */
86   int nMinPage;                       /* Sum of nMinPage for purgeable caches */
87   int nCurrentPage;                   /* Number of purgeable pages allocated */
88   PgHdr1 *pLruHead, *pLruTail;        /* LRU list of unpinned pages */
89 
90   /* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
91   int szSlot;                         /* Size of each free slot */
92   int nSlot;                          /* The number of pcache slots */
93   int nFreeSlot;                      /* Number of unused pcache slots */
94   int nReserve;                       /* Try to keep nFreeSlot above this */
95   void *pStart, *pEnd;                /* Bounds of pagecache malloc range */
96   PgFreeslot *pFree;                  /* Free page blocks */
97   int isInit;                         /* True if initialized */
98 } pcache1_g;
99 
100 /*
101 ** All code in this file should access the global structure above via the
102 ** alias "pcache1". This ensures that the WSD emulation is used when
103 ** compiling for systems that do not support real WSD.
104 */
105 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
106 
107 /*
108 ** When a PgHdr1 structure is allocated, the associated PCache1.szPage
109 ** bytes of data are located directly before it in memory (i.e. the total
110 ** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
111 ** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
112 ** an argument and returns a pointer to the associated block of szPage
113 ** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
114 ** a pointer to a block of szPage bytes of data and the return value is
115 ** a pointer to the associated PgHdr1 structure.
116 **
117 **   assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
118 */
119 #define PGHDR1_TO_PAGE(p)    (void*)(((char*)p) - p->pCache->szPage)
120 #define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
121 
122 /*
123 ** Macros to enter and leave the global LRU mutex.
124 */
125 #define pcache1EnterMutex() sqlite3_mutex_enter(pcache1.mutex)
126 #define pcache1LeaveMutex() sqlite3_mutex_leave(pcache1.mutex)
127 
128 /******************************************************************************/
129 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
130 
131 /*
132 ** This function is called during initialization if a static buffer is
133 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
134 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
135 ** enough to contain 'n' buffers of 'sz' bytes each.
136 */
137 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
138   if( pcache1.isInit ){
139     PgFreeslot *p;
140     sz = ROUNDDOWN8(sz);
141     pcache1.szSlot = sz;
142     pcache1.nSlot = pcache1.nFreeSlot = n;
143     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
144     pcache1.pStart = pBuf;
145     pcache1.pFree = 0;
146     while( n-- ){
147       p = (PgFreeslot*)pBuf;
148       p->pNext = pcache1.pFree;
149       pcache1.pFree = p;
150       pBuf = (void*)&((char*)pBuf)[sz];
151     }
152     pcache1.pEnd = pBuf;
153   }
154 }
155 
156 /*
157 ** Malloc function used within this file to allocate space from the buffer
158 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
159 ** such buffer exists or there is no space left in it, this function falls
160 ** back to sqlite3Malloc().
161 */
162 static void *pcache1Alloc(int nByte){
163   void *p;
164   assert( sqlite3_mutex_held(pcache1.mutex) );
165   sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
166   if( nByte<=pcache1.szSlot && pcache1.pFree ){
167     assert( pcache1.isInit );
168     p = (PgHdr1 *)pcache1.pFree;
169     pcache1.pFree = pcache1.pFree->pNext;
170     pcache1.nFreeSlot--;
171     assert( pcache1.nFreeSlot>=0 );
172     sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
173   }else{
174 
175     /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
176     ** global pcache mutex and unlock the pager-cache object pCache. This is
177     ** so that if the attempt to allocate a new buffer causes the the
178     ** configured soft-heap-limit to be breached, it will be possible to
179     ** reclaim memory from this pager-cache.
180     */
181     pcache1LeaveMutex();
182     p = sqlite3Malloc(nByte);
183     pcache1EnterMutex();
184     if( p ){
185       int sz = sqlite3MallocSize(p);
186       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
187     }
188     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
189   }
190   return p;
191 }
192 
193 /*
194 ** Free an allocated buffer obtained from pcache1Alloc().
195 */
196 static void pcache1Free(void *p){
197   assert( sqlite3_mutex_held(pcache1.mutex) );
198   if( p==0 ) return;
199   if( p>=pcache1.pStart && p<pcache1.pEnd ){
200     PgFreeslot *pSlot;
201     sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
202     pSlot = (PgFreeslot*)p;
203     pSlot->pNext = pcache1.pFree;
204     pcache1.pFree = pSlot;
205     pcache1.nFreeSlot++;
206     assert( pcache1.nFreeSlot<=pcache1.nSlot );
207   }else{
208     int iSize;
209     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
210     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
211     iSize = sqlite3MallocSize(p);
212     sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
213     sqlite3_free(p);
214   }
215 }
216 
217 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
218 /*
219 ** Return the size of a pcache allocation
220 */
221 static int pcache1MemSize(void *p){
222   assert( sqlite3_mutex_held(pcache1.mutex) );
223   if( p>=pcache1.pStart && p<pcache1.pEnd ){
224     return pcache1.szSlot;
225   }else{
226     int iSize;
227     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
228     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
229     iSize = sqlite3MallocSize(p);
230     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
231     return iSize;
232   }
233 }
234 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
235 
236 /*
237 ** Allocate a new page object initially associated with cache pCache.
238 */
239 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
240   int nByte = sizeof(PgHdr1) + pCache->szPage;
241   void *pPg = pcache1Alloc(nByte);
242   PgHdr1 *p;
243   if( pPg ){
244     p = PAGE_TO_PGHDR1(pCache, pPg);
245     if( pCache->bPurgeable ){
246       pcache1.nCurrentPage++;
247     }
248   }else{
249     p = 0;
250   }
251   return p;
252 }
253 
254 /*
255 ** Free a page object allocated by pcache1AllocPage().
256 **
257 ** The pointer is allowed to be NULL, which is prudent.  But it turns out
258 ** that the current implementation happens to never call this routine
259 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
260 */
261 static void pcache1FreePage(PgHdr1 *p){
262   if( ALWAYS(p) ){
263     if( p->pCache->bPurgeable ){
264       pcache1.nCurrentPage--;
265     }
266     pcache1Free(PGHDR1_TO_PAGE(p));
267   }
268 }
269 
270 /*
271 ** Malloc function used by SQLite to obtain space from the buffer configured
272 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
273 ** exists, this function falls back to sqlite3Malloc().
274 */
275 void *sqlite3PageMalloc(int sz){
276   void *p;
277   pcache1EnterMutex();
278   p = pcache1Alloc(sz);
279   pcache1LeaveMutex();
280   return p;
281 }
282 
283 /*
284 ** Free an allocated buffer obtained from sqlite3PageMalloc().
285 */
286 void sqlite3PageFree(void *p){
287   pcache1EnterMutex();
288   pcache1Free(p);
289   pcache1LeaveMutex();
290 }
291 
292 
293 /*
294 ** Return true if it desirable to avoid allocating a new page cache
295 ** entry.
296 **
297 ** If memory was allocated specifically to the page cache using
298 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
299 ** it is desirable to avoid allocating a new page cache entry because
300 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
301 ** for all page cache needs and we should not need to spill the
302 ** allocation onto the heap.
303 **
304 ** Or, the heap is used for all page cache memory put the heap is
305 ** under memory pressure, then again it is desirable to avoid
306 ** allocating a new page cache entry in order to avoid stressing
307 ** the heap even further.
308 */
309 static int pcache1UnderMemoryPressure(PCache1 *pCache){
310   assert( sqlite3_mutex_held(pcache1.mutex) );
311   if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
312     return pcache1.nFreeSlot<pcache1.nReserve;
313   }else{
314     return sqlite3HeapNearlyFull();
315   }
316 }
317 
318 /******************************************************************************/
319 /******** General Implementation Functions ************************************/
320 
321 /*
322 ** This function is used to resize the hash table used by the cache passed
323 ** as the first argument.
324 **
325 ** The global mutex must be held when this function is called.
326 */
327 static int pcache1ResizeHash(PCache1 *p){
328   PgHdr1 **apNew;
329   unsigned int nNew;
330   unsigned int i;
331 
332   assert( sqlite3_mutex_held(pcache1.mutex) );
333 
334   nNew = p->nHash*2;
335   if( nNew<256 ){
336     nNew = 256;
337   }
338 
339   pcache1LeaveMutex();
340   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
341   apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
342   if( p->nHash ){ sqlite3EndBenignMalloc(); }
343   pcache1EnterMutex();
344   if( apNew ){
345     memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
346     for(i=0; i<p->nHash; i++){
347       PgHdr1 *pPage;
348       PgHdr1 *pNext = p->apHash[i];
349       while( (pPage = pNext)!=0 ){
350         unsigned int h = pPage->iKey % nNew;
351         pNext = pPage->pNext;
352         pPage->pNext = apNew[h];
353         apNew[h] = pPage;
354       }
355     }
356     sqlite3_free(p->apHash);
357     p->apHash = apNew;
358     p->nHash = nNew;
359   }
360 
361   return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
362 }
363 
364 /*
365 ** This function is used internally to remove the page pPage from the
366 ** global LRU list, if is part of it. If pPage is not part of the global
367 ** LRU list, then this function is a no-op.
368 **
369 ** The global mutex must be held when this function is called.
370 */
371 static void pcache1PinPage(PgHdr1 *pPage){
372   assert( sqlite3_mutex_held(pcache1.mutex) );
373   if( pPage && (pPage->pLruNext || pPage==pcache1.pLruTail) ){
374     if( pPage->pLruPrev ){
375       pPage->pLruPrev->pLruNext = pPage->pLruNext;
376     }
377     if( pPage->pLruNext ){
378       pPage->pLruNext->pLruPrev = pPage->pLruPrev;
379     }
380     if( pcache1.pLruHead==pPage ){
381       pcache1.pLruHead = pPage->pLruNext;
382     }
383     if( pcache1.pLruTail==pPage ){
384       pcache1.pLruTail = pPage->pLruPrev;
385     }
386     pPage->pLruNext = 0;
387     pPage->pLruPrev = 0;
388     pPage->pCache->nRecyclable--;
389   }
390 }
391 
392 
393 /*
394 ** Remove the page supplied as an argument from the hash table
395 ** (PCache1.apHash structure) that it is currently stored in.
396 **
397 ** The global mutex must be held when this function is called.
398 */
399 static void pcache1RemoveFromHash(PgHdr1 *pPage){
400   unsigned int h;
401   PCache1 *pCache = pPage->pCache;
402   PgHdr1 **pp;
403 
404   h = pPage->iKey % pCache->nHash;
405   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
406   *pp = (*pp)->pNext;
407 
408   pCache->nPage--;
409 }
410 
411 /*
412 ** If there are currently more than pcache.nMaxPage pages allocated, try
413 ** to recycle pages to reduce the number allocated to pcache.nMaxPage.
414 */
415 static void pcache1EnforceMaxPage(void){
416   assert( sqlite3_mutex_held(pcache1.mutex) );
417   while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
418     PgHdr1 *p = pcache1.pLruTail;
419     pcache1PinPage(p);
420     pcache1RemoveFromHash(p);
421     pcache1FreePage(p);
422   }
423 }
424 
425 /*
426 ** Discard all pages from cache pCache with a page number (key value)
427 ** greater than or equal to iLimit. Any pinned pages that meet this
428 ** criteria are unpinned before they are discarded.
429 **
430 ** The global mutex must be held when this function is called.
431 */
432 static void pcache1TruncateUnsafe(
433   PCache1 *pCache,
434   unsigned int iLimit
435 ){
436   TESTONLY( unsigned int nPage = 0; )      /* Used to assert pCache->nPage is correct */
437   unsigned int h;
438   assert( sqlite3_mutex_held(pcache1.mutex) );
439   for(h=0; h<pCache->nHash; h++){
440     PgHdr1 **pp = &pCache->apHash[h];
441     PgHdr1 *pPage;
442     while( (pPage = *pp)!=0 ){
443       if( pPage->iKey>=iLimit ){
444         pCache->nPage--;
445         *pp = pPage->pNext;
446         pcache1PinPage(pPage);
447         pcache1FreePage(pPage);
448       }else{
449         pp = &pPage->pNext;
450         TESTONLY( nPage++; )
451       }
452     }
453   }
454   assert( pCache->nPage==nPage );
455 }
456 
457 /******************************************************************************/
458 /******** sqlite3_pcache Methods **********************************************/
459 
460 /*
461 ** Implementation of the sqlite3_pcache.xInit method.
462 */
463 static int pcache1Init(void *NotUsed){
464   UNUSED_PARAMETER(NotUsed);
465   assert( pcache1.isInit==0 );
466   memset(&pcache1, 0, sizeof(pcache1));
467   if( sqlite3GlobalConfig.bCoreMutex ){
468     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
469   }
470   pcache1.isInit = 1;
471   return SQLITE_OK;
472 }
473 
474 /*
475 ** Implementation of the sqlite3_pcache.xShutdown method.
476 ** Note that the static mutex allocated in xInit does
477 ** not need to be freed.
478 */
479 static void pcache1Shutdown(void *NotUsed){
480   UNUSED_PARAMETER(NotUsed);
481   assert( pcache1.isInit!=0 );
482   memset(&pcache1, 0, sizeof(pcache1));
483 }
484 
485 /*
486 ** Implementation of the sqlite3_pcache.xCreate method.
487 **
488 ** Allocate a new cache.
489 */
490 static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
491   PCache1 *pCache;
492 
493   pCache = (PCache1 *)sqlite3_malloc(sizeof(PCache1));
494   if( pCache ){
495     memset(pCache, 0, sizeof(PCache1));
496     pCache->szPage = szPage;
497     pCache->bPurgeable = (bPurgeable ? 1 : 0);
498     if( bPurgeable ){
499       pCache->nMin = 10;
500       pcache1EnterMutex();
501       pcache1.nMinPage += pCache->nMin;
502       pcache1LeaveMutex();
503     }
504   }
505   return (sqlite3_pcache *)pCache;
506 }
507 
508 /*
509 ** Implementation of the sqlite3_pcache.xCachesize method.
510 **
511 ** Configure the cache_size limit for a cache.
512 */
513 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
514   PCache1 *pCache = (PCache1 *)p;
515   if( pCache->bPurgeable ){
516     pcache1EnterMutex();
517     pcache1.nMaxPage += (nMax - pCache->nMax);
518     pCache->nMax = nMax;
519     pcache1EnforceMaxPage();
520     pcache1LeaveMutex();
521   }
522 }
523 
524 /*
525 ** Implementation of the sqlite3_pcache.xPagecount method.
526 */
527 static int pcache1Pagecount(sqlite3_pcache *p){
528   int n;
529   pcache1EnterMutex();
530   n = ((PCache1 *)p)->nPage;
531   pcache1LeaveMutex();
532   return n;
533 }
534 
535 /*
536 ** Implementation of the sqlite3_pcache.xFetch method.
537 **
538 ** Fetch a page by key value.
539 **
540 ** Whether or not a new page may be allocated by this function depends on
541 ** the value of the createFlag argument.  0 means do not allocate a new
542 ** page.  1 means allocate a new page if space is easily available.  2
543 ** means to try really hard to allocate a new page.
544 **
545 ** For a non-purgeable cache (a cache used as the storage for an in-memory
546 ** database) there is really no difference between createFlag 1 and 2.  So
547 ** the calling function (pcache.c) will never have a createFlag of 1 on
548 ** a non-purgable cache.
549 **
550 ** There are three different approaches to obtaining space for a page,
551 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
552 **
553 **   1. Regardless of the value of createFlag, the cache is searched for a
554 **      copy of the requested page. If one is found, it is returned.
555 **
556 **   2. If createFlag==0 and the page is not already in the cache, NULL is
557 **      returned.
558 **
559 **   3. If createFlag is 1, and the page is not already in the cache, then
560 **      return NULL (do not allocate a new page) if any of the following
561 **      conditions are true:
562 **
563 **       (a) the number of pages pinned by the cache is greater than
564 **           PCache1.nMax, or
565 **
566 **       (b) the number of pages pinned by the cache is greater than
567 **           the sum of nMax for all purgeable caches, less the sum of
568 **           nMin for all other purgeable caches, or
569 **
570 **   4. If none of the first three conditions apply and the cache is marked
571 **      as purgeable, and if one of the following is true:
572 **
573 **       (a) The number of pages allocated for the cache is already
574 **           PCache1.nMax, or
575 **
576 **       (b) The number of pages allocated for all purgeable caches is
577 **           already equal to or greater than the sum of nMax for all
578 **           purgeable caches,
579 **
580 **       (c) The system is under memory pressure and wants to avoid
581 **           unnecessary pages cache entry allocations
582 **
583 **      then attempt to recycle a page from the LRU list. If it is the right
584 **      size, return the recycled buffer. Otherwise, free the buffer and
585 **      proceed to step 5.
586 **
587 **   5. Otherwise, allocate and return a new page buffer.
588 */
589 static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
590   unsigned int nPinned;
591   PCache1 *pCache = (PCache1 *)p;
592   PgHdr1 *pPage = 0;
593 
594   assert( pCache->bPurgeable || createFlag!=1 );
595   pcache1EnterMutex();
596   if( createFlag==1 ) sqlite3BeginBenignMalloc();
597 
598   /* Search the hash table for an existing entry. */
599   if( pCache->nHash>0 ){
600     unsigned int h = iKey % pCache->nHash;
601     for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
602   }
603 
604   if( pPage || createFlag==0 ){
605     pcache1PinPage(pPage);
606     goto fetch_out;
607   }
608 
609   /* Step 3 of header comment. */
610   nPinned = pCache->nPage - pCache->nRecyclable;
611   if( createFlag==1 && (
612         nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
613      || nPinned>=(pCache->nMax * 9 / 10)
614      || pcache1UnderMemoryPressure(pCache)
615   )){
616     goto fetch_out;
617   }
618 
619   if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
620     goto fetch_out;
621   }
622 
623   /* Step 4. Try to recycle a page buffer if appropriate. */
624   if( pCache->bPurgeable && pcache1.pLruTail && (
625          (pCache->nPage+1>=pCache->nMax)
626       || pcache1.nCurrentPage>=pcache1.nMaxPage
627       || pcache1UnderMemoryPressure(pCache)
628   )){
629     pPage = pcache1.pLruTail;
630     pcache1RemoveFromHash(pPage);
631     pcache1PinPage(pPage);
632     if( pPage->pCache->szPage!=pCache->szPage ){
633       pcache1FreePage(pPage);
634       pPage = 0;
635     }else{
636       pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
637     }
638   }
639 
640   /* Step 5. If a usable page buffer has still not been found,
641   ** attempt to allocate a new one.
642   */
643   if( !pPage ){
644     pPage = pcache1AllocPage(pCache);
645   }
646 
647   if( pPage ){
648     unsigned int h = iKey % pCache->nHash;
649     pCache->nPage++;
650     pPage->iKey = iKey;
651     pPage->pNext = pCache->apHash[h];
652     pPage->pCache = pCache;
653     pPage->pLruPrev = 0;
654     pPage->pLruNext = 0;
655     *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
656     pCache->apHash[h] = pPage;
657   }
658 
659 fetch_out:
660   if( pPage && iKey>pCache->iMaxKey ){
661     pCache->iMaxKey = iKey;
662   }
663   if( createFlag==1 ) sqlite3EndBenignMalloc();
664   pcache1LeaveMutex();
665   return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
666 }
667 
668 
669 /*
670 ** Implementation of the sqlite3_pcache.xUnpin method.
671 **
672 ** Mark a page as unpinned (eligible for asynchronous recycling).
673 */
674 static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
675   PCache1 *pCache = (PCache1 *)p;
676   PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
677 
678   assert( pPage->pCache==pCache );
679   pcache1EnterMutex();
680 
681   /* It is an error to call this function if the page is already
682   ** part of the global LRU list.
683   */
684   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
685   assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );
686 
687   if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
688     pcache1RemoveFromHash(pPage);
689     pcache1FreePage(pPage);
690   }else{
691     /* Add the page to the global LRU list. Normally, the page is added to
692     ** the head of the list (last page to be recycled). However, if the
693     ** reuseUnlikely flag passed to this function is true, the page is added
694     ** to the tail of the list (first page to be recycled).
695     */
696     if( pcache1.pLruHead ){
697       pcache1.pLruHead->pLruPrev = pPage;
698       pPage->pLruNext = pcache1.pLruHead;
699       pcache1.pLruHead = pPage;
700     }else{
701       pcache1.pLruTail = pPage;
702       pcache1.pLruHead = pPage;
703     }
704     pCache->nRecyclable++;
705   }
706 
707   pcache1LeaveMutex();
708 }
709 
710 /*
711 ** Implementation of the sqlite3_pcache.xRekey method.
712 */
713 static void pcache1Rekey(
714   sqlite3_pcache *p,
715   void *pPg,
716   unsigned int iOld,
717   unsigned int iNew
718 ){
719   PCache1 *pCache = (PCache1 *)p;
720   PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
721   PgHdr1 **pp;
722   unsigned int h;
723   assert( pPage->iKey==iOld );
724   assert( pPage->pCache==pCache );
725 
726   pcache1EnterMutex();
727 
728   h = iOld%pCache->nHash;
729   pp = &pCache->apHash[h];
730   while( (*pp)!=pPage ){
731     pp = &(*pp)->pNext;
732   }
733   *pp = pPage->pNext;
734 
735   h = iNew%pCache->nHash;
736   pPage->iKey = iNew;
737   pPage->pNext = pCache->apHash[h];
738   pCache->apHash[h] = pPage;
739   if( iNew>pCache->iMaxKey ){
740     pCache->iMaxKey = iNew;
741   }
742 
743   pcache1LeaveMutex();
744 }
745 
746 /*
747 ** Implementation of the sqlite3_pcache.xTruncate method.
748 **
749 ** Discard all unpinned pages in the cache with a page number equal to
750 ** or greater than parameter iLimit. Any pinned pages with a page number
751 ** equal to or greater than iLimit are implicitly unpinned.
752 */
753 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
754   PCache1 *pCache = (PCache1 *)p;
755   pcache1EnterMutex();
756   if( iLimit<=pCache->iMaxKey ){
757     pcache1TruncateUnsafe(pCache, iLimit);
758     pCache->iMaxKey = iLimit-1;
759   }
760   pcache1LeaveMutex();
761 }
762 
763 /*
764 ** Implementation of the sqlite3_pcache.xDestroy method.
765 **
766 ** Destroy a cache allocated using pcache1Create().
767 */
768 static void pcache1Destroy(sqlite3_pcache *p){
769   PCache1 *pCache = (PCache1 *)p;
770   pcache1EnterMutex();
771   pcache1TruncateUnsafe(pCache, 0);
772   pcache1.nMaxPage -= pCache->nMax;
773   pcache1.nMinPage -= pCache->nMin;
774   pcache1EnforceMaxPage();
775   pcache1LeaveMutex();
776   sqlite3_free(pCache->apHash);
777   sqlite3_free(pCache);
778 }
779 
780 /*
781 ** This function is called during initialization (sqlite3_initialize()) to
782 ** install the default pluggable cache module, assuming the user has not
783 ** already provided an alternative.
784 */
785 void sqlite3PCacheSetDefault(void){
786   static const sqlite3_pcache_methods defaultMethods = {
787     0,                       /* pArg */
788     pcache1Init,             /* xInit */
789     pcache1Shutdown,         /* xShutdown */
790     pcache1Create,           /* xCreate */
791     pcache1Cachesize,        /* xCachesize */
792     pcache1Pagecount,        /* xPagecount */
793     pcache1Fetch,            /* xFetch */
794     pcache1Unpin,            /* xUnpin */
795     pcache1Rekey,            /* xRekey */
796     pcache1Truncate,         /* xTruncate */
797     pcache1Destroy           /* xDestroy */
798   };
799   sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
800 }
801 
802 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
803 /*
804 ** This function is called to free superfluous dynamically allocated memory
805 ** held by the pager system. Memory in use by any SQLite pager allocated
806 ** by the current thread may be sqlite3_free()ed.
807 **
808 ** nReq is the number of bytes of memory required. Once this much has
809 ** been released, the function returns. The return value is the total number
810 ** of bytes of memory released.
811 */
812 int sqlite3PcacheReleaseMemory(int nReq){
813   int nFree = 0;
814   if( pcache1.pStart==0 ){
815     PgHdr1 *p;
816     pcache1EnterMutex();
817     while( (nReq<0 || nFree<nReq) && ((p=pcache1.pLruTail)!=0) ){
818       nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
819       pcache1PinPage(p);
820       pcache1RemoveFromHash(p);
821       pcache1FreePage(p);
822     }
823     pcache1LeaveMutex();
824   }
825   return nFree;
826 }
827 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
828 
829 #ifdef SQLITE_TEST
830 /*
831 ** This function is used by test procedures to inspect the internal state
832 ** of the global cache.
833 */
834 void sqlite3PcacheStats(
835   int *pnCurrent,      /* OUT: Total number of pages cached */
836   int *pnMax,          /* OUT: Global maximum cache size */
837   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
838   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
839 ){
840   PgHdr1 *p;
841   int nRecyclable = 0;
842   for(p=pcache1.pLruHead; p; p=p->pLruNext){
843     nRecyclable++;
844   }
845   *pnCurrent = pcache1.nCurrentPage;
846   *pnMax = pcache1.nMaxPage;
847   *pnMin = pcache1.nMinPage;
848   *pnRecyclable = nRecyclable;
849 }
850 #endif
851