1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isBulkLocal; /* This page from bulk local storage */ 100 u8 isAnchor; /* This is the PGroup.lru element */ 101 PgHdr1 *pNext; /* Next in hash table chain */ 102 PCache1 *pCache; /* Cache that currently owns this page */ 103 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 104 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 105 /* NB: pLruPrev is only valid if pLruNext!=0 */ 106 }; 107 108 /* 109 ** A page is pinned if it is not on the LRU list. To be "pinned" means 110 ** that the page is in active use and must not be deallocated. 111 */ 112 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 113 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 114 115 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 116 ** of one or more PCaches that are able to recycle each other's unpinned 117 ** pages when they are under memory pressure. A PGroup is an instance of 118 ** the following object. 119 ** 120 ** This page cache implementation works in one of two modes: 121 ** 122 ** (1) Every PCache is the sole member of its own PGroup. There is 123 ** one PGroup per PCache. 124 ** 125 ** (2) There is a single global PGroup that all PCaches are a member 126 ** of. 127 ** 128 ** Mode 1 uses more memory (since PCache instances are not able to rob 129 ** unused pages from other PCaches) but it also operates without a mutex, 130 ** and is therefore often faster. Mode 2 requires a mutex in order to be 131 ** threadsafe, but recycles pages more efficiently. 132 ** 133 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 134 ** PGroup which is the pcache1.grp global variable and its mutex is 135 ** SQLITE_MUTEX_STATIC_LRU. 136 */ 137 struct PGroup { 138 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 139 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 140 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 141 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 142 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 143 PgHdr1 lru; /* The beginning and end of the LRU list */ 144 }; 145 146 /* Each page cache is an instance of the following object. Every 147 ** open database file (including each in-memory database and each 148 ** temporary or transient database) has a single page cache which 149 ** is an instance of this object. 150 ** 151 ** Pointers to structures of this type are cast and returned as 152 ** opaque sqlite3_pcache* handles. 153 */ 154 struct PCache1 { 155 /* Cache configuration parameters. Page size (szPage) and the purgeable 156 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 157 ** cache is created and are never changed thereafter. nMax may be 158 ** modified at any time by a call to the pcache1Cachesize() method. 159 ** The PGroup mutex must be held when accessing nMax. 160 */ 161 PGroup *pGroup; /* PGroup this cache belongs to */ 162 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 163 int szPage; /* Size of database content section */ 164 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 165 int szAlloc; /* Total size of one pcache line */ 166 int bPurgeable; /* True if cache is purgeable */ 167 unsigned int nMin; /* Minimum number of pages reserved */ 168 unsigned int nMax; /* Configured "cache_size" value */ 169 unsigned int n90pct; /* nMax*9/10 */ 170 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 171 172 /* Hash table of all pages. The following variables may only be accessed 173 ** when the accessor is holding the PGroup mutex. 174 */ 175 unsigned int nRecyclable; /* Number of pages in the LRU list */ 176 unsigned int nPage; /* Total number of pages in apHash */ 177 unsigned int nHash; /* Number of slots in apHash[] */ 178 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 179 PgHdr1 *pFree; /* List of unused pcache-local pages */ 180 void *pBulk; /* Bulk memory used by pcache-local */ 181 }; 182 183 /* 184 ** Free slots in the allocator used to divide up the global page cache 185 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 186 */ 187 struct PgFreeslot { 188 PgFreeslot *pNext; /* Next free slot */ 189 }; 190 191 /* 192 ** Global data used by this cache. 193 */ 194 static SQLITE_WSD struct PCacheGlobal { 195 PGroup grp; /* The global PGroup for mode (2) */ 196 197 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 198 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 199 ** fixed at sqlite3_initialize() time and do not require mutex protection. 200 ** The nFreeSlot and pFree values do require mutex protection. 201 */ 202 int isInit; /* True if initialized */ 203 int separateCache; /* Use a new PGroup for each PCache */ 204 int nInitPage; /* Initial bulk allocation size */ 205 int szSlot; /* Size of each free slot */ 206 int nSlot; /* The number of pcache slots */ 207 int nReserve; /* Try to keep nFreeSlot above this */ 208 void *pStart, *pEnd; /* Bounds of global page cache memory */ 209 /* Above requires no mutex. Use mutex below for variable that follow. */ 210 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 211 PgFreeslot *pFree; /* Free page blocks */ 212 int nFreeSlot; /* Number of unused pcache slots */ 213 /* The following value requires a mutex to change. We skip the mutex on 214 ** reading because (1) most platforms read a 32-bit integer atomically and 215 ** (2) even if an incorrect value is read, no great harm is done since this 216 ** is really just an optimization. */ 217 int bUnderPressure; /* True if low on PAGECACHE memory */ 218 } pcache1_g; 219 220 /* 221 ** All code in this file should access the global structure above via the 222 ** alias "pcache1". This ensures that the WSD emulation is used when 223 ** compiling for systems that do not support real WSD. 224 */ 225 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 226 227 /* 228 ** Macros to enter and leave the PCache LRU mutex. 229 */ 230 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 231 # define pcache1EnterMutex(X) assert((X)->mutex==0) 232 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 233 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 234 #else 235 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 236 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 237 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 238 #endif 239 240 /******************************************************************************/ 241 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 242 243 244 /* 245 ** This function is called during initialization if a static buffer is 246 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 247 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 248 ** enough to contain 'n' buffers of 'sz' bytes each. 249 ** 250 ** This routine is called from sqlite3_initialize() and so it is guaranteed 251 ** to be serialized already. There is no need for further mutexing. 252 */ 253 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 254 if( pcache1.isInit ){ 255 PgFreeslot *p; 256 if( pBuf==0 ) sz = n = 0; 257 if( n==0 ) sz = 0; 258 sz = ROUNDDOWN8(sz); 259 pcache1.szSlot = sz; 260 pcache1.nSlot = pcache1.nFreeSlot = n; 261 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 262 pcache1.pStart = pBuf; 263 pcache1.pFree = 0; 264 pcache1.bUnderPressure = 0; 265 while( n-- ){ 266 p = (PgFreeslot*)pBuf; 267 p->pNext = pcache1.pFree; 268 pcache1.pFree = p; 269 pBuf = (void*)&((char*)pBuf)[sz]; 270 } 271 pcache1.pEnd = pBuf; 272 } 273 } 274 275 /* 276 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 277 ** true if pCache->pFree ends up containing one or more free pages. 278 */ 279 static int pcache1InitBulk(PCache1 *pCache){ 280 i64 szBulk; 281 char *zBulk; 282 if( pcache1.nInitPage==0 ) return 0; 283 /* Do not bother with a bulk allocation if the cache size very small */ 284 if( pCache->nMax<3 ) return 0; 285 sqlite3BeginBenignMalloc(); 286 if( pcache1.nInitPage>0 ){ 287 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 288 }else{ 289 szBulk = -1024 * (i64)pcache1.nInitPage; 290 } 291 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 292 szBulk = pCache->szAlloc*(i64)pCache->nMax; 293 } 294 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 295 sqlite3EndBenignMalloc(); 296 if( zBulk ){ 297 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 298 do{ 299 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 300 pX->page.pBuf = zBulk; 301 pX->page.pExtra = &pX[1]; 302 pX->isBulkLocal = 1; 303 pX->isAnchor = 0; 304 pX->pNext = pCache->pFree; 305 pCache->pFree = pX; 306 zBulk += pCache->szAlloc; 307 }while( --nBulk ); 308 } 309 return pCache->pFree!=0; 310 } 311 312 /* 313 ** Malloc function used within this file to allocate space from the buffer 314 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 315 ** such buffer exists or there is no space left in it, this function falls 316 ** back to sqlite3Malloc(). 317 ** 318 ** Multiple threads can run this routine at the same time. Global variables 319 ** in pcache1 need to be protected via mutex. 320 */ 321 static void *pcache1Alloc(int nByte){ 322 void *p = 0; 323 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 324 if( nByte<=pcache1.szSlot ){ 325 sqlite3_mutex_enter(pcache1.mutex); 326 p = (PgHdr1 *)pcache1.pFree; 327 if( p ){ 328 pcache1.pFree = pcache1.pFree->pNext; 329 pcache1.nFreeSlot--; 330 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 331 assert( pcache1.nFreeSlot>=0 ); 332 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 333 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 334 } 335 sqlite3_mutex_leave(pcache1.mutex); 336 } 337 if( p==0 ){ 338 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 339 ** it from sqlite3Malloc instead. 340 */ 341 p = sqlite3Malloc(nByte); 342 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 343 if( p ){ 344 int sz = sqlite3MallocSize(p); 345 sqlite3_mutex_enter(pcache1.mutex); 346 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 347 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 348 sqlite3_mutex_leave(pcache1.mutex); 349 } 350 #endif 351 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 352 } 353 return p; 354 } 355 356 /* 357 ** Free an allocated buffer obtained from pcache1Alloc(). 358 */ 359 static void pcache1Free(void *p){ 360 if( p==0 ) return; 361 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 362 PgFreeslot *pSlot; 363 sqlite3_mutex_enter(pcache1.mutex); 364 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 365 pSlot = (PgFreeslot*)p; 366 pSlot->pNext = pcache1.pFree; 367 pcache1.pFree = pSlot; 368 pcache1.nFreeSlot++; 369 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 370 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 371 sqlite3_mutex_leave(pcache1.mutex); 372 }else{ 373 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 374 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 375 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 376 { 377 int nFreed = 0; 378 nFreed = sqlite3MallocSize(p); 379 sqlite3_mutex_enter(pcache1.mutex); 380 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 381 sqlite3_mutex_leave(pcache1.mutex); 382 } 383 #endif 384 sqlite3_free(p); 385 } 386 } 387 388 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 389 /* 390 ** Return the size of a pcache allocation 391 */ 392 static int pcache1MemSize(void *p){ 393 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 394 return pcache1.szSlot; 395 }else{ 396 int iSize; 397 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 398 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 399 iSize = sqlite3MallocSize(p); 400 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 401 return iSize; 402 } 403 } 404 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 405 406 /* 407 ** Allocate a new page object initially associated with cache pCache. 408 */ 409 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 410 PgHdr1 *p = 0; 411 void *pPg; 412 413 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 414 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 415 p = pCache->pFree; 416 pCache->pFree = p->pNext; 417 p->pNext = 0; 418 }else{ 419 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 420 /* The group mutex must be released before pcache1Alloc() is called. This 421 ** is because it might call sqlite3_release_memory(), which assumes that 422 ** this mutex is not held. */ 423 assert( pcache1.separateCache==0 ); 424 assert( pCache->pGroup==&pcache1.grp ); 425 pcache1LeaveMutex(pCache->pGroup); 426 #endif 427 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 428 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 429 pPg = pcache1Alloc(pCache->szPage); 430 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 431 if( !pPg || !p ){ 432 pcache1Free(pPg); 433 sqlite3_free(p); 434 pPg = 0; 435 } 436 #else 437 pPg = pcache1Alloc(pCache->szAlloc); 438 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 439 #endif 440 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 441 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 442 pcache1EnterMutex(pCache->pGroup); 443 #endif 444 if( pPg==0 ) return 0; 445 p->page.pBuf = pPg; 446 p->page.pExtra = &p[1]; 447 p->isBulkLocal = 0; 448 p->isAnchor = 0; 449 } 450 (*pCache->pnPurgeable)++; 451 return p; 452 } 453 454 /* 455 ** Free a page object allocated by pcache1AllocPage(). 456 */ 457 static void pcache1FreePage(PgHdr1 *p){ 458 PCache1 *pCache; 459 assert( p!=0 ); 460 pCache = p->pCache; 461 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 462 if( p->isBulkLocal ){ 463 p->pNext = pCache->pFree; 464 pCache->pFree = p; 465 }else{ 466 pcache1Free(p->page.pBuf); 467 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 468 sqlite3_free(p); 469 #endif 470 } 471 (*pCache->pnPurgeable)--; 472 } 473 474 /* 475 ** Malloc function used by SQLite to obtain space from the buffer configured 476 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 477 ** exists, this function falls back to sqlite3Malloc(). 478 */ 479 void *sqlite3PageMalloc(int sz){ 480 return pcache1Alloc(sz); 481 } 482 483 /* 484 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 485 */ 486 void sqlite3PageFree(void *p){ 487 pcache1Free(p); 488 } 489 490 491 /* 492 ** Return true if it desirable to avoid allocating a new page cache 493 ** entry. 494 ** 495 ** If memory was allocated specifically to the page cache using 496 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 497 ** it is desirable to avoid allocating a new page cache entry because 498 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 499 ** for all page cache needs and we should not need to spill the 500 ** allocation onto the heap. 501 ** 502 ** Or, the heap is used for all page cache memory but the heap is 503 ** under memory pressure, then again it is desirable to avoid 504 ** allocating a new page cache entry in order to avoid stressing 505 ** the heap even further. 506 */ 507 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 508 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 509 return pcache1.bUnderPressure; 510 }else{ 511 return sqlite3HeapNearlyFull(); 512 } 513 } 514 515 /******************************************************************************/ 516 /******** General Implementation Functions ************************************/ 517 518 /* 519 ** This function is used to resize the hash table used by the cache passed 520 ** as the first argument. 521 ** 522 ** The PCache mutex must be held when this function is called. 523 */ 524 static void pcache1ResizeHash(PCache1 *p){ 525 PgHdr1 **apNew; 526 unsigned int nNew; 527 unsigned int i; 528 529 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 530 531 nNew = p->nHash*2; 532 if( nNew<256 ){ 533 nNew = 256; 534 } 535 536 pcache1LeaveMutex(p->pGroup); 537 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 538 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 539 if( p->nHash ){ sqlite3EndBenignMalloc(); } 540 pcache1EnterMutex(p->pGroup); 541 if( apNew ){ 542 for(i=0; i<p->nHash; i++){ 543 PgHdr1 *pPage; 544 PgHdr1 *pNext = p->apHash[i]; 545 while( (pPage = pNext)!=0 ){ 546 unsigned int h = pPage->iKey % nNew; 547 pNext = pPage->pNext; 548 pPage->pNext = apNew[h]; 549 apNew[h] = pPage; 550 } 551 } 552 sqlite3_free(p->apHash); 553 p->apHash = apNew; 554 p->nHash = nNew; 555 } 556 } 557 558 /* 559 ** This function is used internally to remove the page pPage from the 560 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 561 ** LRU list, then this function is a no-op. 562 ** 563 ** The PGroup mutex must be held when this function is called. 564 */ 565 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 566 assert( pPage!=0 ); 567 assert( PAGE_IS_UNPINNED(pPage) ); 568 assert( pPage->pLruNext ); 569 assert( pPage->pLruPrev ); 570 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 571 pPage->pLruPrev->pLruNext = pPage->pLruNext; 572 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 573 pPage->pLruNext = 0; 574 /* pPage->pLruPrev = 0; 575 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 576 assert( pPage->isAnchor==0 ); 577 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 578 pPage->pCache->nRecyclable--; 579 return pPage; 580 } 581 582 583 /* 584 ** Remove the page supplied as an argument from the hash table 585 ** (PCache1.apHash structure) that it is currently stored in. 586 ** Also free the page if freePage is true. 587 ** 588 ** The PGroup mutex must be held when this function is called. 589 */ 590 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 591 unsigned int h; 592 PCache1 *pCache = pPage->pCache; 593 PgHdr1 **pp; 594 595 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 596 h = pPage->iKey % pCache->nHash; 597 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 598 *pp = (*pp)->pNext; 599 600 pCache->nPage--; 601 if( freeFlag ) pcache1FreePage(pPage); 602 } 603 604 /* 605 ** If there are currently more than nMaxPage pages allocated, try 606 ** to recycle pages to reduce the number allocated to nMaxPage. 607 */ 608 static void pcache1EnforceMaxPage(PCache1 *pCache){ 609 PGroup *pGroup = pCache->pGroup; 610 PgHdr1 *p; 611 assert( sqlite3_mutex_held(pGroup->mutex) ); 612 while( pGroup->nPurgeable>pGroup->nMaxPage 613 && (p=pGroup->lru.pLruPrev)->isAnchor==0 614 ){ 615 assert( p->pCache->pGroup==pGroup ); 616 assert( PAGE_IS_UNPINNED(p) ); 617 pcache1PinPage(p); 618 pcache1RemoveFromHash(p, 1); 619 } 620 if( pCache->nPage==0 && pCache->pBulk ){ 621 sqlite3_free(pCache->pBulk); 622 pCache->pBulk = pCache->pFree = 0; 623 } 624 } 625 626 /* 627 ** Discard all pages from cache pCache with a page number (key value) 628 ** greater than or equal to iLimit. Any pinned pages that meet this 629 ** criteria are unpinned before they are discarded. 630 ** 631 ** The PCache mutex must be held when this function is called. 632 */ 633 static void pcache1TruncateUnsafe( 634 PCache1 *pCache, /* The cache to truncate */ 635 unsigned int iLimit /* Drop pages with this pgno or larger */ 636 ){ 637 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 638 unsigned int h, iStop; 639 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 640 assert( pCache->iMaxKey >= iLimit ); 641 assert( pCache->nHash > 0 ); 642 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 643 /* If we are just shaving the last few pages off the end of the 644 ** cache, then there is no point in scanning the entire hash table. 645 ** Only scan those hash slots that might contain pages that need to 646 ** be removed. */ 647 h = iLimit % pCache->nHash; 648 iStop = pCache->iMaxKey % pCache->nHash; 649 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 650 }else{ 651 /* This is the general case where many pages are being removed. 652 ** It is necessary to scan the entire hash table */ 653 h = pCache->nHash/2; 654 iStop = h - 1; 655 } 656 for(;;){ 657 PgHdr1 **pp; 658 PgHdr1 *pPage; 659 assert( h<pCache->nHash ); 660 pp = &pCache->apHash[h]; 661 while( (pPage = *pp)!=0 ){ 662 if( pPage->iKey>=iLimit ){ 663 pCache->nPage--; 664 *pp = pPage->pNext; 665 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 666 pcache1FreePage(pPage); 667 }else{ 668 pp = &pPage->pNext; 669 TESTONLY( if( nPage>=0 ) nPage++; ) 670 } 671 } 672 if( h==iStop ) break; 673 h = (h+1) % pCache->nHash; 674 } 675 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 676 } 677 678 /******************************************************************************/ 679 /******** sqlite3_pcache Methods **********************************************/ 680 681 /* 682 ** Implementation of the sqlite3_pcache.xInit method. 683 */ 684 static int pcache1Init(void *NotUsed){ 685 UNUSED_PARAMETER(NotUsed); 686 assert( pcache1.isInit==0 ); 687 memset(&pcache1, 0, sizeof(pcache1)); 688 689 690 /* 691 ** The pcache1.separateCache variable is true if each PCache has its own 692 ** private PGroup (mode-1). pcache1.separateCache is false if the single 693 ** PGroup in pcache1.grp is used for all page caches (mode-2). 694 ** 695 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 696 ** 697 ** * Use a unified cache in single-threaded applications that have 698 ** configured a start-time buffer for use as page-cache memory using 699 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 700 ** pBuf argument. 701 ** 702 ** * Otherwise use separate caches (mode-1) 703 */ 704 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 705 pcache1.separateCache = 0; 706 #elif SQLITE_THREADSAFE 707 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 708 || sqlite3GlobalConfig.bCoreMutex>0; 709 #else 710 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 711 #endif 712 713 #if SQLITE_THREADSAFE 714 if( sqlite3GlobalConfig.bCoreMutex ){ 715 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 716 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 717 } 718 #endif 719 if( pcache1.separateCache 720 && sqlite3GlobalConfig.nPage!=0 721 && sqlite3GlobalConfig.pPage==0 722 ){ 723 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 724 }else{ 725 pcache1.nInitPage = 0; 726 } 727 pcache1.grp.mxPinned = 10; 728 pcache1.isInit = 1; 729 return SQLITE_OK; 730 } 731 732 /* 733 ** Implementation of the sqlite3_pcache.xShutdown method. 734 ** Note that the static mutex allocated in xInit does 735 ** not need to be freed. 736 */ 737 static void pcache1Shutdown(void *NotUsed){ 738 UNUSED_PARAMETER(NotUsed); 739 assert( pcache1.isInit!=0 ); 740 memset(&pcache1, 0, sizeof(pcache1)); 741 } 742 743 /* forward declaration */ 744 static void pcache1Destroy(sqlite3_pcache *p); 745 746 /* 747 ** Implementation of the sqlite3_pcache.xCreate method. 748 ** 749 ** Allocate a new cache. 750 */ 751 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 752 PCache1 *pCache; /* The newly created page cache */ 753 PGroup *pGroup; /* The group the new page cache will belong to */ 754 int sz; /* Bytes of memory required to allocate the new cache */ 755 756 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 757 assert( szExtra < 300 ); 758 759 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 760 pCache = (PCache1 *)sqlite3MallocZero(sz); 761 if( pCache ){ 762 if( pcache1.separateCache ){ 763 pGroup = (PGroup*)&pCache[1]; 764 pGroup->mxPinned = 10; 765 }else{ 766 pGroup = &pcache1.grp; 767 } 768 if( pGroup->lru.isAnchor==0 ){ 769 pGroup->lru.isAnchor = 1; 770 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 771 } 772 pCache->pGroup = pGroup; 773 pCache->szPage = szPage; 774 pCache->szExtra = szExtra; 775 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 776 pCache->bPurgeable = (bPurgeable ? 1 : 0); 777 pcache1EnterMutex(pGroup); 778 pcache1ResizeHash(pCache); 779 if( bPurgeable ){ 780 pCache->nMin = 10; 781 pGroup->nMinPage += pCache->nMin; 782 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 783 pCache->pnPurgeable = &pGroup->nPurgeable; 784 }else{ 785 static unsigned int dummyCurrentPage; 786 pCache->pnPurgeable = &dummyCurrentPage; 787 } 788 pcache1LeaveMutex(pGroup); 789 if( pCache->nHash==0 ){ 790 pcache1Destroy((sqlite3_pcache*)pCache); 791 pCache = 0; 792 } 793 } 794 return (sqlite3_pcache *)pCache; 795 } 796 797 /* 798 ** Implementation of the sqlite3_pcache.xCachesize method. 799 ** 800 ** Configure the cache_size limit for a cache. 801 */ 802 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 803 PCache1 *pCache = (PCache1 *)p; 804 if( pCache->bPurgeable ){ 805 PGroup *pGroup = pCache->pGroup; 806 pcache1EnterMutex(pGroup); 807 pGroup->nMaxPage += (nMax - pCache->nMax); 808 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 809 pCache->nMax = nMax; 810 pCache->n90pct = pCache->nMax*9/10; 811 pcache1EnforceMaxPage(pCache); 812 pcache1LeaveMutex(pGroup); 813 } 814 } 815 816 /* 817 ** Implementation of the sqlite3_pcache.xShrink method. 818 ** 819 ** Free up as much memory as possible. 820 */ 821 static void pcache1Shrink(sqlite3_pcache *p){ 822 PCache1 *pCache = (PCache1*)p; 823 if( pCache->bPurgeable ){ 824 PGroup *pGroup = pCache->pGroup; 825 int savedMaxPage; 826 pcache1EnterMutex(pGroup); 827 savedMaxPage = pGroup->nMaxPage; 828 pGroup->nMaxPage = 0; 829 pcache1EnforceMaxPage(pCache); 830 pGroup->nMaxPage = savedMaxPage; 831 pcache1LeaveMutex(pGroup); 832 } 833 } 834 835 /* 836 ** Implementation of the sqlite3_pcache.xPagecount method. 837 */ 838 static int pcache1Pagecount(sqlite3_pcache *p){ 839 int n; 840 PCache1 *pCache = (PCache1*)p; 841 pcache1EnterMutex(pCache->pGroup); 842 n = pCache->nPage; 843 pcache1LeaveMutex(pCache->pGroup); 844 return n; 845 } 846 847 848 /* 849 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 850 ** in the header of the pcache1Fetch() procedure. 851 ** 852 ** This steps are broken out into a separate procedure because they are 853 ** usually not needed, and by avoiding the stack initialization required 854 ** for these steps, the main pcache1Fetch() procedure can run faster. 855 */ 856 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 857 PCache1 *pCache, 858 unsigned int iKey, 859 int createFlag 860 ){ 861 unsigned int nPinned; 862 PGroup *pGroup = pCache->pGroup; 863 PgHdr1 *pPage = 0; 864 865 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 866 assert( pCache->nPage >= pCache->nRecyclable ); 867 nPinned = pCache->nPage - pCache->nRecyclable; 868 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 869 assert( pCache->n90pct == pCache->nMax*9/10 ); 870 if( createFlag==1 && ( 871 nPinned>=pGroup->mxPinned 872 || nPinned>=pCache->n90pct 873 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 874 )){ 875 return 0; 876 } 877 878 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 879 assert( pCache->nHash>0 && pCache->apHash ); 880 881 /* Step 4. Try to recycle a page. */ 882 if( pCache->bPurgeable 883 && !pGroup->lru.pLruPrev->isAnchor 884 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 885 ){ 886 PCache1 *pOther; 887 pPage = pGroup->lru.pLruPrev; 888 assert( PAGE_IS_UNPINNED(pPage) ); 889 pcache1RemoveFromHash(pPage, 0); 890 pcache1PinPage(pPage); 891 pOther = pPage->pCache; 892 if( pOther->szAlloc != pCache->szAlloc ){ 893 pcache1FreePage(pPage); 894 pPage = 0; 895 }else{ 896 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 897 } 898 } 899 900 /* Step 5. If a usable page buffer has still not been found, 901 ** attempt to allocate a new one. 902 */ 903 if( !pPage ){ 904 pPage = pcache1AllocPage(pCache, createFlag==1); 905 } 906 907 if( pPage ){ 908 unsigned int h = iKey % pCache->nHash; 909 pCache->nPage++; 910 pPage->iKey = iKey; 911 pPage->pNext = pCache->apHash[h]; 912 pPage->pCache = pCache; 913 pPage->pLruNext = 0; 914 /* pPage->pLruPrev = 0; 915 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 916 *(void **)pPage->page.pExtra = 0; 917 pCache->apHash[h] = pPage; 918 if( iKey>pCache->iMaxKey ){ 919 pCache->iMaxKey = iKey; 920 } 921 } 922 return pPage; 923 } 924 925 /* 926 ** Implementation of the sqlite3_pcache.xFetch method. 927 ** 928 ** Fetch a page by key value. 929 ** 930 ** Whether or not a new page may be allocated by this function depends on 931 ** the value of the createFlag argument. 0 means do not allocate a new 932 ** page. 1 means allocate a new page if space is easily available. 2 933 ** means to try really hard to allocate a new page. 934 ** 935 ** For a non-purgeable cache (a cache used as the storage for an in-memory 936 ** database) there is really no difference between createFlag 1 and 2. So 937 ** the calling function (pcache.c) will never have a createFlag of 1 on 938 ** a non-purgeable cache. 939 ** 940 ** There are three different approaches to obtaining space for a page, 941 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 942 ** 943 ** 1. Regardless of the value of createFlag, the cache is searched for a 944 ** copy of the requested page. If one is found, it is returned. 945 ** 946 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 947 ** returned. 948 ** 949 ** 3. If createFlag is 1, and the page is not already in the cache, then 950 ** return NULL (do not allocate a new page) if any of the following 951 ** conditions are true: 952 ** 953 ** (a) the number of pages pinned by the cache is greater than 954 ** PCache1.nMax, or 955 ** 956 ** (b) the number of pages pinned by the cache is greater than 957 ** the sum of nMax for all purgeable caches, less the sum of 958 ** nMin for all other purgeable caches, or 959 ** 960 ** 4. If none of the first three conditions apply and the cache is marked 961 ** as purgeable, and if one of the following is true: 962 ** 963 ** (a) The number of pages allocated for the cache is already 964 ** PCache1.nMax, or 965 ** 966 ** (b) The number of pages allocated for all purgeable caches is 967 ** already equal to or greater than the sum of nMax for all 968 ** purgeable caches, 969 ** 970 ** (c) The system is under memory pressure and wants to avoid 971 ** unnecessary pages cache entry allocations 972 ** 973 ** then attempt to recycle a page from the LRU list. If it is the right 974 ** size, return the recycled buffer. Otherwise, free the buffer and 975 ** proceed to step 5. 976 ** 977 ** 5. Otherwise, allocate and return a new page buffer. 978 ** 979 ** There are two versions of this routine. pcache1FetchWithMutex() is 980 ** the general case. pcache1FetchNoMutex() is a faster implementation for 981 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 982 ** invokes the appropriate routine. 983 */ 984 static PgHdr1 *pcache1FetchNoMutex( 985 sqlite3_pcache *p, 986 unsigned int iKey, 987 int createFlag 988 ){ 989 PCache1 *pCache = (PCache1 *)p; 990 PgHdr1 *pPage = 0; 991 992 /* Step 1: Search the hash table for an existing entry. */ 993 pPage = pCache->apHash[iKey % pCache->nHash]; 994 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 995 996 /* Step 2: If the page was found in the hash table, then return it. 997 ** If the page was not in the hash table and createFlag is 0, abort. 998 ** Otherwise (page not in hash and createFlag!=0) continue with 999 ** subsequent steps to try to create the page. */ 1000 if( pPage ){ 1001 if( PAGE_IS_UNPINNED(pPage) ){ 1002 return pcache1PinPage(pPage); 1003 }else{ 1004 return pPage; 1005 } 1006 }else if( createFlag ){ 1007 /* Steps 3, 4, and 5 implemented by this subroutine */ 1008 return pcache1FetchStage2(pCache, iKey, createFlag); 1009 }else{ 1010 return 0; 1011 } 1012 } 1013 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1014 static PgHdr1 *pcache1FetchWithMutex( 1015 sqlite3_pcache *p, 1016 unsigned int iKey, 1017 int createFlag 1018 ){ 1019 PCache1 *pCache = (PCache1 *)p; 1020 PgHdr1 *pPage; 1021 1022 pcache1EnterMutex(pCache->pGroup); 1023 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1024 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1025 pcache1LeaveMutex(pCache->pGroup); 1026 return pPage; 1027 } 1028 #endif 1029 static sqlite3_pcache_page *pcache1Fetch( 1030 sqlite3_pcache *p, 1031 unsigned int iKey, 1032 int createFlag 1033 ){ 1034 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1035 PCache1 *pCache = (PCache1 *)p; 1036 #endif 1037 1038 assert( offsetof(PgHdr1,page)==0 ); 1039 assert( pCache->bPurgeable || createFlag!=1 ); 1040 assert( pCache->bPurgeable || pCache->nMin==0 ); 1041 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1042 assert( pCache->nMin==0 || pCache->bPurgeable ); 1043 assert( pCache->nHash>0 ); 1044 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1045 if( pCache->pGroup->mutex ){ 1046 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1047 }else 1048 #endif 1049 { 1050 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1051 } 1052 } 1053 1054 1055 /* 1056 ** Implementation of the sqlite3_pcache.xUnpin method. 1057 ** 1058 ** Mark a page as unpinned (eligible for asynchronous recycling). 1059 */ 1060 static void pcache1Unpin( 1061 sqlite3_pcache *p, 1062 sqlite3_pcache_page *pPg, 1063 int reuseUnlikely 1064 ){ 1065 PCache1 *pCache = (PCache1 *)p; 1066 PgHdr1 *pPage = (PgHdr1 *)pPg; 1067 PGroup *pGroup = pCache->pGroup; 1068 1069 assert( pPage->pCache==pCache ); 1070 pcache1EnterMutex(pGroup); 1071 1072 /* It is an error to call this function if the page is already 1073 ** part of the PGroup LRU list. 1074 */ 1075 assert( pPage->pLruNext==0 ); 1076 assert( PAGE_IS_PINNED(pPage) ); 1077 1078 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1079 pcache1RemoveFromHash(pPage, 1); 1080 }else{ 1081 /* Add the page to the PGroup LRU list. */ 1082 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1083 pPage->pLruPrev = &pGroup->lru; 1084 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1085 *ppFirst = pPage; 1086 pCache->nRecyclable++; 1087 } 1088 1089 pcache1LeaveMutex(pCache->pGroup); 1090 } 1091 1092 /* 1093 ** Implementation of the sqlite3_pcache.xRekey method. 1094 */ 1095 static void pcache1Rekey( 1096 sqlite3_pcache *p, 1097 sqlite3_pcache_page *pPg, 1098 unsigned int iOld, 1099 unsigned int iNew 1100 ){ 1101 PCache1 *pCache = (PCache1 *)p; 1102 PgHdr1 *pPage = (PgHdr1 *)pPg; 1103 PgHdr1 **pp; 1104 unsigned int h; 1105 assert( pPage->iKey==iOld ); 1106 assert( pPage->pCache==pCache ); 1107 1108 pcache1EnterMutex(pCache->pGroup); 1109 1110 h = iOld%pCache->nHash; 1111 pp = &pCache->apHash[h]; 1112 while( (*pp)!=pPage ){ 1113 pp = &(*pp)->pNext; 1114 } 1115 *pp = pPage->pNext; 1116 1117 h = iNew%pCache->nHash; 1118 pPage->iKey = iNew; 1119 pPage->pNext = pCache->apHash[h]; 1120 pCache->apHash[h] = pPage; 1121 if( iNew>pCache->iMaxKey ){ 1122 pCache->iMaxKey = iNew; 1123 } 1124 1125 pcache1LeaveMutex(pCache->pGroup); 1126 } 1127 1128 /* 1129 ** Implementation of the sqlite3_pcache.xTruncate method. 1130 ** 1131 ** Discard all unpinned pages in the cache with a page number equal to 1132 ** or greater than parameter iLimit. Any pinned pages with a page number 1133 ** equal to or greater than iLimit are implicitly unpinned. 1134 */ 1135 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1136 PCache1 *pCache = (PCache1 *)p; 1137 pcache1EnterMutex(pCache->pGroup); 1138 if( iLimit<=pCache->iMaxKey ){ 1139 pcache1TruncateUnsafe(pCache, iLimit); 1140 pCache->iMaxKey = iLimit-1; 1141 } 1142 pcache1LeaveMutex(pCache->pGroup); 1143 } 1144 1145 /* 1146 ** Implementation of the sqlite3_pcache.xDestroy method. 1147 ** 1148 ** Destroy a cache allocated using pcache1Create(). 1149 */ 1150 static void pcache1Destroy(sqlite3_pcache *p){ 1151 PCache1 *pCache = (PCache1 *)p; 1152 PGroup *pGroup = pCache->pGroup; 1153 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1154 pcache1EnterMutex(pGroup); 1155 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1156 assert( pGroup->nMaxPage >= pCache->nMax ); 1157 pGroup->nMaxPage -= pCache->nMax; 1158 assert( pGroup->nMinPage >= pCache->nMin ); 1159 pGroup->nMinPage -= pCache->nMin; 1160 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1161 pcache1EnforceMaxPage(pCache); 1162 pcache1LeaveMutex(pGroup); 1163 sqlite3_free(pCache->pBulk); 1164 sqlite3_free(pCache->apHash); 1165 sqlite3_free(pCache); 1166 } 1167 1168 /* 1169 ** This function is called during initialization (sqlite3_initialize()) to 1170 ** install the default pluggable cache module, assuming the user has not 1171 ** already provided an alternative. 1172 */ 1173 void sqlite3PCacheSetDefault(void){ 1174 static const sqlite3_pcache_methods2 defaultMethods = { 1175 1, /* iVersion */ 1176 0, /* pArg */ 1177 pcache1Init, /* xInit */ 1178 pcache1Shutdown, /* xShutdown */ 1179 pcache1Create, /* xCreate */ 1180 pcache1Cachesize, /* xCachesize */ 1181 pcache1Pagecount, /* xPagecount */ 1182 pcache1Fetch, /* xFetch */ 1183 pcache1Unpin, /* xUnpin */ 1184 pcache1Rekey, /* xRekey */ 1185 pcache1Truncate, /* xTruncate */ 1186 pcache1Destroy, /* xDestroy */ 1187 pcache1Shrink /* xShrink */ 1188 }; 1189 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1190 } 1191 1192 /* 1193 ** Return the size of the header on each page of this PCACHE implementation. 1194 */ 1195 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1196 1197 /* 1198 ** Return the global mutex used by this PCACHE implementation. The 1199 ** sqlite3_status() routine needs access to this mutex. 1200 */ 1201 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1202 return pcache1.mutex; 1203 } 1204 1205 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1206 /* 1207 ** This function is called to free superfluous dynamically allocated memory 1208 ** held by the pager system. Memory in use by any SQLite pager allocated 1209 ** by the current thread may be sqlite3_free()ed. 1210 ** 1211 ** nReq is the number of bytes of memory required. Once this much has 1212 ** been released, the function returns. The return value is the total number 1213 ** of bytes of memory released. 1214 */ 1215 int sqlite3PcacheReleaseMemory(int nReq){ 1216 int nFree = 0; 1217 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1218 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1219 if( sqlite3GlobalConfig.pPage==0 ){ 1220 PgHdr1 *p; 1221 pcache1EnterMutex(&pcache1.grp); 1222 while( (nReq<0 || nFree<nReq) 1223 && (p=pcache1.grp.lru.pLruPrev)!=0 1224 && p->isAnchor==0 1225 ){ 1226 nFree += pcache1MemSize(p->page.pBuf); 1227 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1228 nFree += sqlite3MemSize(p); 1229 #endif 1230 assert( PAGE_IS_UNPINNED(p) ); 1231 pcache1PinPage(p); 1232 pcache1RemoveFromHash(p, 1); 1233 } 1234 pcache1LeaveMutex(&pcache1.grp); 1235 } 1236 return nFree; 1237 } 1238 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1239 1240 #ifdef SQLITE_TEST 1241 /* 1242 ** This function is used by test procedures to inspect the internal state 1243 ** of the global cache. 1244 */ 1245 void sqlite3PcacheStats( 1246 int *pnCurrent, /* OUT: Total number of pages cached */ 1247 int *pnMax, /* OUT: Global maximum cache size */ 1248 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1249 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1250 ){ 1251 PgHdr1 *p; 1252 int nRecyclable = 0; 1253 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1254 assert( PAGE_IS_UNPINNED(p) ); 1255 nRecyclable++; 1256 } 1257 *pnCurrent = pcache1.grp.nPurgeable; 1258 *pnMax = (int)pcache1.grp.nMaxPage; 1259 *pnMin = (int)pcache1.grp.nMinPage; 1260 *pnRecyclable = nRecyclable; 1261 } 1262 #endif 1263