xref: /sqlite-3.40.0/src/pcache1.c (revision e89feee5)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isBulkLocal;                /* This page from bulk local storage */
100   u8 isAnchor;                   /* This is the PGroup.lru element */
101   PgHdr1 *pNext;                 /* Next in hash table chain */
102   PCache1 *pCache;               /* Cache that currently owns this page */
103   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
104   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
105                                  /* NB: pLruPrev is only valid if pLruNext!=0 */
106 };
107 
108 /*
109 ** A page is pinned if it is not on the LRU list.  To be "pinned" means
110 ** that the page is in active use and must not be deallocated.
111 */
112 #define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)
113 #define PAGE_IS_UNPINNED(p)  ((p)->pLruNext!=0)
114 
115 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
116 ** of one or more PCaches that are able to recycle each other's unpinned
117 ** pages when they are under memory pressure.  A PGroup is an instance of
118 ** the following object.
119 **
120 ** This page cache implementation works in one of two modes:
121 **
122 **   (1)  Every PCache is the sole member of its own PGroup.  There is
123 **        one PGroup per PCache.
124 **
125 **   (2)  There is a single global PGroup that all PCaches are a member
126 **        of.
127 **
128 ** Mode 1 uses more memory (since PCache instances are not able to rob
129 ** unused pages from other PCaches) but it also operates without a mutex,
130 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
131 ** threadsafe, but recycles pages more efficiently.
132 **
133 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
134 ** PGroup which is the pcache1.grp global variable and its mutex is
135 ** SQLITE_MUTEX_STATIC_LRU.
136 */
137 struct PGroup {
138   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
139   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
140   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
141   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
142   unsigned int nPurgeable;       /* Number of purgeable pages allocated */
143   PgHdr1 lru;                    /* The beginning and end of the LRU list */
144 };
145 
146 /* Each page cache is an instance of the following object.  Every
147 ** open database file (including each in-memory database and each
148 ** temporary or transient database) has a single page cache which
149 ** is an instance of this object.
150 **
151 ** Pointers to structures of this type are cast and returned as
152 ** opaque sqlite3_pcache* handles.
153 */
154 struct PCache1 {
155   /* Cache configuration parameters. Page size (szPage) and the purgeable
156   ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
157   ** cache is created and are never changed thereafter. nMax may be
158   ** modified at any time by a call to the pcache1Cachesize() method.
159   ** The PGroup mutex must be held when accessing nMax.
160   */
161   PGroup *pGroup;                     /* PGroup this cache belongs to */
162   unsigned int *pnPurgeable;          /* Pointer to pGroup->nPurgeable */
163   int szPage;                         /* Size of database content section */
164   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
165   int szAlloc;                        /* Total size of one pcache line */
166   int bPurgeable;                     /* True if cache is purgeable */
167   unsigned int nMin;                  /* Minimum number of pages reserved */
168   unsigned int nMax;                  /* Configured "cache_size" value */
169   unsigned int n90pct;                /* nMax*9/10 */
170   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
171 
172   /* Hash table of all pages. The following variables may only be accessed
173   ** when the accessor is holding the PGroup mutex.
174   */
175   unsigned int nRecyclable;           /* Number of pages in the LRU list */
176   unsigned int nPage;                 /* Total number of pages in apHash */
177   unsigned int nHash;                 /* Number of slots in apHash[] */
178   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
179   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
180   void *pBulk;                        /* Bulk memory used by pcache-local */
181 };
182 
183 /*
184 ** Free slots in the allocator used to divide up the global page cache
185 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
186 */
187 struct PgFreeslot {
188   PgFreeslot *pNext;  /* Next free slot */
189 };
190 
191 /*
192 ** Global data used by this cache.
193 */
194 static SQLITE_WSD struct PCacheGlobal {
195   PGroup grp;                    /* The global PGroup for mode (2) */
196 
197   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
198   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
199   ** fixed at sqlite3_initialize() time and do not require mutex protection.
200   ** The nFreeSlot and pFree values do require mutex protection.
201   */
202   int isInit;                    /* True if initialized */
203   int separateCache;             /* Use a new PGroup for each PCache */
204   int nInitPage;                 /* Initial bulk allocation size */
205   int szSlot;                    /* Size of each free slot */
206   int nSlot;                     /* The number of pcache slots */
207   int nReserve;                  /* Try to keep nFreeSlot above this */
208   void *pStart, *pEnd;           /* Bounds of global page cache memory */
209   /* Above requires no mutex.  Use mutex below for variable that follow. */
210   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
211   PgFreeslot *pFree;             /* Free page blocks */
212   int nFreeSlot;                 /* Number of unused pcache slots */
213   /* The following value requires a mutex to change.  We skip the mutex on
214   ** reading because (1) most platforms read a 32-bit integer atomically and
215   ** (2) even if an incorrect value is read, no great harm is done since this
216   ** is really just an optimization. */
217   int bUnderPressure;            /* True if low on PAGECACHE memory */
218 } pcache1_g;
219 
220 /*
221 ** All code in this file should access the global structure above via the
222 ** alias "pcache1". This ensures that the WSD emulation is used when
223 ** compiling for systems that do not support real WSD.
224 */
225 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
226 
227 /*
228 ** Macros to enter and leave the PCache LRU mutex.
229 */
230 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
231 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
232 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
233 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
234 #else
235 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
236 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
237 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
238 #endif
239 
240 /******************************************************************************/
241 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
242 
243 
244 /*
245 ** This function is called during initialization if a static buffer is
246 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
247 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
248 ** enough to contain 'n' buffers of 'sz' bytes each.
249 **
250 ** This routine is called from sqlite3_initialize() and so it is guaranteed
251 ** to be serialized already.  There is no need for further mutexing.
252 */
253 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
254   if( pcache1.isInit ){
255     PgFreeslot *p;
256     if( pBuf==0 ) sz = n = 0;
257     if( n==0 ) sz = 0;
258     sz = ROUNDDOWN8(sz);
259     pcache1.szSlot = sz;
260     pcache1.nSlot = pcache1.nFreeSlot = n;
261     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
262     pcache1.pStart = pBuf;
263     pcache1.pFree = 0;
264     pcache1.bUnderPressure = 0;
265     while( n-- ){
266       p = (PgFreeslot*)pBuf;
267       p->pNext = pcache1.pFree;
268       pcache1.pFree = p;
269       pBuf = (void*)&((char*)pBuf)[sz];
270     }
271     pcache1.pEnd = pBuf;
272   }
273 }
274 
275 /*
276 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
277 ** true if pCache->pFree ends up containing one or more free pages.
278 */
279 static int pcache1InitBulk(PCache1 *pCache){
280   i64 szBulk;
281   char *zBulk;
282   if( pcache1.nInitPage==0 ) return 0;
283   /* Do not bother with a bulk allocation if the cache size very small */
284   if( pCache->nMax<3 ) return 0;
285   sqlite3BeginBenignMalloc();
286   if( pcache1.nInitPage>0 ){
287     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
288   }else{
289     szBulk = -1024 * (i64)pcache1.nInitPage;
290   }
291   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
292     szBulk = pCache->szAlloc*(i64)pCache->nMax;
293   }
294   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
295   sqlite3EndBenignMalloc();
296   if( zBulk ){
297     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
298     do{
299       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
300       pX->page.pBuf = zBulk;
301       pX->page.pExtra = &pX[1];
302       pX->isBulkLocal = 1;
303       pX->isAnchor = 0;
304       pX->pNext = pCache->pFree;
305       pCache->pFree = pX;
306       zBulk += pCache->szAlloc;
307     }while( --nBulk );
308   }
309   return pCache->pFree!=0;
310 }
311 
312 /*
313 ** Malloc function used within this file to allocate space from the buffer
314 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
315 ** such buffer exists or there is no space left in it, this function falls
316 ** back to sqlite3Malloc().
317 **
318 ** Multiple threads can run this routine at the same time.  Global variables
319 ** in pcache1 need to be protected via mutex.
320 */
321 static void *pcache1Alloc(int nByte){
322   void *p = 0;
323   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
324   if( nByte<=pcache1.szSlot ){
325     sqlite3_mutex_enter(pcache1.mutex);
326     p = (PgHdr1 *)pcache1.pFree;
327     if( p ){
328       pcache1.pFree = pcache1.pFree->pNext;
329       pcache1.nFreeSlot--;
330       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
331       assert( pcache1.nFreeSlot>=0 );
332       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
333       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
334     }
335     sqlite3_mutex_leave(pcache1.mutex);
336   }
337   if( p==0 ){
338     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
339     ** it from sqlite3Malloc instead.
340     */
341     p = sqlite3Malloc(nByte);
342 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
343     if( p ){
344       int sz = sqlite3MallocSize(p);
345       sqlite3_mutex_enter(pcache1.mutex);
346       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
347       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
348       sqlite3_mutex_leave(pcache1.mutex);
349     }
350 #endif
351     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
352   }
353   return p;
354 }
355 
356 /*
357 ** Free an allocated buffer obtained from pcache1Alloc().
358 */
359 static void pcache1Free(void *p){
360   if( p==0 ) return;
361   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
362     PgFreeslot *pSlot;
363     sqlite3_mutex_enter(pcache1.mutex);
364     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
365     pSlot = (PgFreeslot*)p;
366     pSlot->pNext = pcache1.pFree;
367     pcache1.pFree = pSlot;
368     pcache1.nFreeSlot++;
369     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
370     assert( pcache1.nFreeSlot<=pcache1.nSlot );
371     sqlite3_mutex_leave(pcache1.mutex);
372   }else{
373     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
374     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
375 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
376     {
377       int nFreed = 0;
378       nFreed = sqlite3MallocSize(p);
379       sqlite3_mutex_enter(pcache1.mutex);
380       sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
381       sqlite3_mutex_leave(pcache1.mutex);
382     }
383 #endif
384     sqlite3_free(p);
385   }
386 }
387 
388 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
389 /*
390 ** Return the size of a pcache allocation
391 */
392 static int pcache1MemSize(void *p){
393   if( p>=pcache1.pStart && p<pcache1.pEnd ){
394     return pcache1.szSlot;
395   }else{
396     int iSize;
397     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
398     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
399     iSize = sqlite3MallocSize(p);
400     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
401     return iSize;
402   }
403 }
404 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
405 
406 /*
407 ** Allocate a new page object initially associated with cache pCache.
408 */
409 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
410   PgHdr1 *p = 0;
411   void *pPg;
412 
413   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
414   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
415     p = pCache->pFree;
416     pCache->pFree = p->pNext;
417     p->pNext = 0;
418   }else{
419 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
420     /* The group mutex must be released before pcache1Alloc() is called. This
421     ** is because it might call sqlite3_release_memory(), which assumes that
422     ** this mutex is not held. */
423     assert( pcache1.separateCache==0 );
424     assert( pCache->pGroup==&pcache1.grp );
425     pcache1LeaveMutex(pCache->pGroup);
426 #endif
427     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
428 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
429     pPg = pcache1Alloc(pCache->szPage);
430     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
431     if( !pPg || !p ){
432       pcache1Free(pPg);
433       sqlite3_free(p);
434       pPg = 0;
435     }
436 #else
437     pPg = pcache1Alloc(pCache->szAlloc);
438     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
439 #endif
440     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
441 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
442     pcache1EnterMutex(pCache->pGroup);
443 #endif
444     if( pPg==0 ) return 0;
445     p->page.pBuf = pPg;
446     p->page.pExtra = &p[1];
447     p->isBulkLocal = 0;
448     p->isAnchor = 0;
449   }
450   (*pCache->pnPurgeable)++;
451   return p;
452 }
453 
454 /*
455 ** Free a page object allocated by pcache1AllocPage().
456 */
457 static void pcache1FreePage(PgHdr1 *p){
458   PCache1 *pCache;
459   assert( p!=0 );
460   pCache = p->pCache;
461   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
462   if( p->isBulkLocal ){
463     p->pNext = pCache->pFree;
464     pCache->pFree = p;
465   }else{
466     pcache1Free(p->page.pBuf);
467 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
468     sqlite3_free(p);
469 #endif
470   }
471   (*pCache->pnPurgeable)--;
472 }
473 
474 /*
475 ** Malloc function used by SQLite to obtain space from the buffer configured
476 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
477 ** exists, this function falls back to sqlite3Malloc().
478 */
479 void *sqlite3PageMalloc(int sz){
480   return pcache1Alloc(sz);
481 }
482 
483 /*
484 ** Free an allocated buffer obtained from sqlite3PageMalloc().
485 */
486 void sqlite3PageFree(void *p){
487   pcache1Free(p);
488 }
489 
490 
491 /*
492 ** Return true if it desirable to avoid allocating a new page cache
493 ** entry.
494 **
495 ** If memory was allocated specifically to the page cache using
496 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
497 ** it is desirable to avoid allocating a new page cache entry because
498 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
499 ** for all page cache needs and we should not need to spill the
500 ** allocation onto the heap.
501 **
502 ** Or, the heap is used for all page cache memory but the heap is
503 ** under memory pressure, then again it is desirable to avoid
504 ** allocating a new page cache entry in order to avoid stressing
505 ** the heap even further.
506 */
507 static int pcache1UnderMemoryPressure(PCache1 *pCache){
508   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
509     return pcache1.bUnderPressure;
510   }else{
511     return sqlite3HeapNearlyFull();
512   }
513 }
514 
515 /******************************************************************************/
516 /******** General Implementation Functions ************************************/
517 
518 /*
519 ** This function is used to resize the hash table used by the cache passed
520 ** as the first argument.
521 **
522 ** The PCache mutex must be held when this function is called.
523 */
524 static void pcache1ResizeHash(PCache1 *p){
525   PgHdr1 **apNew;
526   unsigned int nNew;
527   unsigned int i;
528 
529   assert( sqlite3_mutex_held(p->pGroup->mutex) );
530 
531   nNew = p->nHash*2;
532   if( nNew<256 ){
533     nNew = 256;
534   }
535 
536   pcache1LeaveMutex(p->pGroup);
537   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
538   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
539   if( p->nHash ){ sqlite3EndBenignMalloc(); }
540   pcache1EnterMutex(p->pGroup);
541   if( apNew ){
542     for(i=0; i<p->nHash; i++){
543       PgHdr1 *pPage;
544       PgHdr1 *pNext = p->apHash[i];
545       while( (pPage = pNext)!=0 ){
546         unsigned int h = pPage->iKey % nNew;
547         pNext = pPage->pNext;
548         pPage->pNext = apNew[h];
549         apNew[h] = pPage;
550       }
551     }
552     sqlite3_free(p->apHash);
553     p->apHash = apNew;
554     p->nHash = nNew;
555   }
556 }
557 
558 /*
559 ** This function is used internally to remove the page pPage from the
560 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
561 ** LRU list, then this function is a no-op.
562 **
563 ** The PGroup mutex must be held when this function is called.
564 */
565 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
566   assert( pPage!=0 );
567   assert( PAGE_IS_UNPINNED(pPage) );
568   assert( pPage->pLruNext );
569   assert( pPage->pLruPrev );
570   assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
571   pPage->pLruPrev->pLruNext = pPage->pLruNext;
572   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
573   pPage->pLruNext = 0;
574   /* pPage->pLruPrev = 0;
575   ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
576   assert( pPage->isAnchor==0 );
577   assert( pPage->pCache->pGroup->lru.isAnchor==1 );
578   pPage->pCache->nRecyclable--;
579   return pPage;
580 }
581 
582 
583 /*
584 ** Remove the page supplied as an argument from the hash table
585 ** (PCache1.apHash structure) that it is currently stored in.
586 ** Also free the page if freePage is true.
587 **
588 ** The PGroup mutex must be held when this function is called.
589 */
590 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
591   unsigned int h;
592   PCache1 *pCache = pPage->pCache;
593   PgHdr1 **pp;
594 
595   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
596   h = pPage->iKey % pCache->nHash;
597   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
598   *pp = (*pp)->pNext;
599 
600   pCache->nPage--;
601   if( freeFlag ) pcache1FreePage(pPage);
602 }
603 
604 /*
605 ** If there are currently more than nMaxPage pages allocated, try
606 ** to recycle pages to reduce the number allocated to nMaxPage.
607 */
608 static void pcache1EnforceMaxPage(PCache1 *pCache){
609   PGroup *pGroup = pCache->pGroup;
610   PgHdr1 *p;
611   assert( sqlite3_mutex_held(pGroup->mutex) );
612   while( pGroup->nPurgeable>pGroup->nMaxPage
613       && (p=pGroup->lru.pLruPrev)->isAnchor==0
614   ){
615     assert( p->pCache->pGroup==pGroup );
616     assert( PAGE_IS_UNPINNED(p) );
617     pcache1PinPage(p);
618     pcache1RemoveFromHash(p, 1);
619   }
620   if( pCache->nPage==0 && pCache->pBulk ){
621     sqlite3_free(pCache->pBulk);
622     pCache->pBulk = pCache->pFree = 0;
623   }
624 }
625 
626 /*
627 ** Discard all pages from cache pCache with a page number (key value)
628 ** greater than or equal to iLimit. Any pinned pages that meet this
629 ** criteria are unpinned before they are discarded.
630 **
631 ** The PCache mutex must be held when this function is called.
632 */
633 static void pcache1TruncateUnsafe(
634   PCache1 *pCache,             /* The cache to truncate */
635   unsigned int iLimit          /* Drop pages with this pgno or larger */
636 ){
637   TESTONLY( int nPage = 0; )  /* To assert pCache->nPage is correct */
638   unsigned int h, iStop;
639   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
640   assert( pCache->iMaxKey >= iLimit );
641   assert( pCache->nHash > 0 );
642   if( pCache->iMaxKey - iLimit < pCache->nHash ){
643     /* If we are just shaving the last few pages off the end of the
644     ** cache, then there is no point in scanning the entire hash table.
645     ** Only scan those hash slots that might contain pages that need to
646     ** be removed. */
647     h = iLimit % pCache->nHash;
648     iStop = pCache->iMaxKey % pCache->nHash;
649     TESTONLY( nPage = -10; )  /* Disable the pCache->nPage validity check */
650   }else{
651     /* This is the general case where many pages are being removed.
652     ** It is necessary to scan the entire hash table */
653     h = pCache->nHash/2;
654     iStop = h - 1;
655   }
656   for(;;){
657     PgHdr1 **pp;
658     PgHdr1 *pPage;
659     assert( h<pCache->nHash );
660     pp = &pCache->apHash[h];
661     while( (pPage = *pp)!=0 ){
662       if( pPage->iKey>=iLimit ){
663         pCache->nPage--;
664         *pp = pPage->pNext;
665         if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
666         pcache1FreePage(pPage);
667       }else{
668         pp = &pPage->pNext;
669         TESTONLY( if( nPage>=0 ) nPage++; )
670       }
671     }
672     if( h==iStop ) break;
673     h = (h+1) % pCache->nHash;
674   }
675   assert( nPage<0 || pCache->nPage==(unsigned)nPage );
676 }
677 
678 /******************************************************************************/
679 /******** sqlite3_pcache Methods **********************************************/
680 
681 /*
682 ** Implementation of the sqlite3_pcache.xInit method.
683 */
684 static int pcache1Init(void *NotUsed){
685   UNUSED_PARAMETER(NotUsed);
686   assert( pcache1.isInit==0 );
687   memset(&pcache1, 0, sizeof(pcache1));
688 
689 
690   /*
691   ** The pcache1.separateCache variable is true if each PCache has its own
692   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
693   ** PGroup in pcache1.grp is used for all page caches (mode-2).
694   **
695   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
696   **
697   **   *  Use a unified cache in single-threaded applications that have
698   **      configured a start-time buffer for use as page-cache memory using
699   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
700   **      pBuf argument.
701   **
702   **   *  Otherwise use separate caches (mode-1)
703   */
704 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
705   pcache1.separateCache = 0;
706 #elif SQLITE_THREADSAFE
707   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
708                           || sqlite3GlobalConfig.bCoreMutex>0;
709 #else
710   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
711 #endif
712 
713 #if SQLITE_THREADSAFE
714   if( sqlite3GlobalConfig.bCoreMutex ){
715     pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
716     pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
717   }
718 #endif
719   if( pcache1.separateCache
720    && sqlite3GlobalConfig.nPage!=0
721    && sqlite3GlobalConfig.pPage==0
722   ){
723     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
724   }else{
725     pcache1.nInitPage = 0;
726   }
727   pcache1.grp.mxPinned = 10;
728   pcache1.isInit = 1;
729   return SQLITE_OK;
730 }
731 
732 /*
733 ** Implementation of the sqlite3_pcache.xShutdown method.
734 ** Note that the static mutex allocated in xInit does
735 ** not need to be freed.
736 */
737 static void pcache1Shutdown(void *NotUsed){
738   UNUSED_PARAMETER(NotUsed);
739   assert( pcache1.isInit!=0 );
740   memset(&pcache1, 0, sizeof(pcache1));
741 }
742 
743 /* forward declaration */
744 static void pcache1Destroy(sqlite3_pcache *p);
745 
746 /*
747 ** Implementation of the sqlite3_pcache.xCreate method.
748 **
749 ** Allocate a new cache.
750 */
751 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
752   PCache1 *pCache;      /* The newly created page cache */
753   PGroup *pGroup;       /* The group the new page cache will belong to */
754   int sz;               /* Bytes of memory required to allocate the new cache */
755 
756   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
757   assert( szExtra < 300 );
758 
759   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
760   pCache = (PCache1 *)sqlite3MallocZero(sz);
761   if( pCache ){
762     if( pcache1.separateCache ){
763       pGroup = (PGroup*)&pCache[1];
764       pGroup->mxPinned = 10;
765     }else{
766       pGroup = &pcache1.grp;
767     }
768     if( pGroup->lru.isAnchor==0 ){
769       pGroup->lru.isAnchor = 1;
770       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
771     }
772     pCache->pGroup = pGroup;
773     pCache->szPage = szPage;
774     pCache->szExtra = szExtra;
775     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
776     pCache->bPurgeable = (bPurgeable ? 1 : 0);
777     pcache1EnterMutex(pGroup);
778     pcache1ResizeHash(pCache);
779     if( bPurgeable ){
780       pCache->nMin = 10;
781       pGroup->nMinPage += pCache->nMin;
782       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
783       pCache->pnPurgeable = &pGroup->nPurgeable;
784     }else{
785       static unsigned int dummyCurrentPage;
786       pCache->pnPurgeable = &dummyCurrentPage;
787     }
788     pcache1LeaveMutex(pGroup);
789     if( pCache->nHash==0 ){
790       pcache1Destroy((sqlite3_pcache*)pCache);
791       pCache = 0;
792     }
793   }
794   return (sqlite3_pcache *)pCache;
795 }
796 
797 /*
798 ** Implementation of the sqlite3_pcache.xCachesize method.
799 **
800 ** Configure the cache_size limit for a cache.
801 */
802 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
803   PCache1 *pCache = (PCache1 *)p;
804   if( pCache->bPurgeable ){
805     PGroup *pGroup = pCache->pGroup;
806     pcache1EnterMutex(pGroup);
807     pGroup->nMaxPage += (nMax - pCache->nMax);
808     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
809     pCache->nMax = nMax;
810     pCache->n90pct = pCache->nMax*9/10;
811     pcache1EnforceMaxPage(pCache);
812     pcache1LeaveMutex(pGroup);
813   }
814 }
815 
816 /*
817 ** Implementation of the sqlite3_pcache.xShrink method.
818 **
819 ** Free up as much memory as possible.
820 */
821 static void pcache1Shrink(sqlite3_pcache *p){
822   PCache1 *pCache = (PCache1*)p;
823   if( pCache->bPurgeable ){
824     PGroup *pGroup = pCache->pGroup;
825     int savedMaxPage;
826     pcache1EnterMutex(pGroup);
827     savedMaxPage = pGroup->nMaxPage;
828     pGroup->nMaxPage = 0;
829     pcache1EnforceMaxPage(pCache);
830     pGroup->nMaxPage = savedMaxPage;
831     pcache1LeaveMutex(pGroup);
832   }
833 }
834 
835 /*
836 ** Implementation of the sqlite3_pcache.xPagecount method.
837 */
838 static int pcache1Pagecount(sqlite3_pcache *p){
839   int n;
840   PCache1 *pCache = (PCache1*)p;
841   pcache1EnterMutex(pCache->pGroup);
842   n = pCache->nPage;
843   pcache1LeaveMutex(pCache->pGroup);
844   return n;
845 }
846 
847 
848 /*
849 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
850 ** in the header of the pcache1Fetch() procedure.
851 **
852 ** This steps are broken out into a separate procedure because they are
853 ** usually not needed, and by avoiding the stack initialization required
854 ** for these steps, the main pcache1Fetch() procedure can run faster.
855 */
856 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
857   PCache1 *pCache,
858   unsigned int iKey,
859   int createFlag
860 ){
861   unsigned int nPinned;
862   PGroup *pGroup = pCache->pGroup;
863   PgHdr1 *pPage = 0;
864 
865   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
866   assert( pCache->nPage >= pCache->nRecyclable );
867   nPinned = pCache->nPage - pCache->nRecyclable;
868   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
869   assert( pCache->n90pct == pCache->nMax*9/10 );
870   if( createFlag==1 && (
871         nPinned>=pGroup->mxPinned
872      || nPinned>=pCache->n90pct
873      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
874   )){
875     return 0;
876   }
877 
878   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
879   assert( pCache->nHash>0 && pCache->apHash );
880 
881   /* Step 4. Try to recycle a page. */
882   if( pCache->bPurgeable
883    && !pGroup->lru.pLruPrev->isAnchor
884    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
885   ){
886     PCache1 *pOther;
887     pPage = pGroup->lru.pLruPrev;
888     assert( PAGE_IS_UNPINNED(pPage) );
889     pcache1RemoveFromHash(pPage, 0);
890     pcache1PinPage(pPage);
891     pOther = pPage->pCache;
892     if( pOther->szAlloc != pCache->szAlloc ){
893       pcache1FreePage(pPage);
894       pPage = 0;
895     }else{
896       pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
897     }
898   }
899 
900   /* Step 5. If a usable page buffer has still not been found,
901   ** attempt to allocate a new one.
902   */
903   if( !pPage ){
904     pPage = pcache1AllocPage(pCache, createFlag==1);
905   }
906 
907   if( pPage ){
908     unsigned int h = iKey % pCache->nHash;
909     pCache->nPage++;
910     pPage->iKey = iKey;
911     pPage->pNext = pCache->apHash[h];
912     pPage->pCache = pCache;
913     pPage->pLruNext = 0;
914     /* pPage->pLruPrev = 0;
915     ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
916     *(void **)pPage->page.pExtra = 0;
917     pCache->apHash[h] = pPage;
918     if( iKey>pCache->iMaxKey ){
919       pCache->iMaxKey = iKey;
920     }
921   }
922   return pPage;
923 }
924 
925 /*
926 ** Implementation of the sqlite3_pcache.xFetch method.
927 **
928 ** Fetch a page by key value.
929 **
930 ** Whether or not a new page may be allocated by this function depends on
931 ** the value of the createFlag argument.  0 means do not allocate a new
932 ** page.  1 means allocate a new page if space is easily available.  2
933 ** means to try really hard to allocate a new page.
934 **
935 ** For a non-purgeable cache (a cache used as the storage for an in-memory
936 ** database) there is really no difference between createFlag 1 and 2.  So
937 ** the calling function (pcache.c) will never have a createFlag of 1 on
938 ** a non-purgeable cache.
939 **
940 ** There are three different approaches to obtaining space for a page,
941 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
942 **
943 **   1. Regardless of the value of createFlag, the cache is searched for a
944 **      copy of the requested page. If one is found, it is returned.
945 **
946 **   2. If createFlag==0 and the page is not already in the cache, NULL is
947 **      returned.
948 **
949 **   3. If createFlag is 1, and the page is not already in the cache, then
950 **      return NULL (do not allocate a new page) if any of the following
951 **      conditions are true:
952 **
953 **       (a) the number of pages pinned by the cache is greater than
954 **           PCache1.nMax, or
955 **
956 **       (b) the number of pages pinned by the cache is greater than
957 **           the sum of nMax for all purgeable caches, less the sum of
958 **           nMin for all other purgeable caches, or
959 **
960 **   4. If none of the first three conditions apply and the cache is marked
961 **      as purgeable, and if one of the following is true:
962 **
963 **       (a) The number of pages allocated for the cache is already
964 **           PCache1.nMax, or
965 **
966 **       (b) The number of pages allocated for all purgeable caches is
967 **           already equal to or greater than the sum of nMax for all
968 **           purgeable caches,
969 **
970 **       (c) The system is under memory pressure and wants to avoid
971 **           unnecessary pages cache entry allocations
972 **
973 **      then attempt to recycle a page from the LRU list. If it is the right
974 **      size, return the recycled buffer. Otherwise, free the buffer and
975 **      proceed to step 5.
976 **
977 **   5. Otherwise, allocate and return a new page buffer.
978 **
979 ** There are two versions of this routine.  pcache1FetchWithMutex() is
980 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
981 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
982 ** invokes the appropriate routine.
983 */
984 static PgHdr1 *pcache1FetchNoMutex(
985   sqlite3_pcache *p,
986   unsigned int iKey,
987   int createFlag
988 ){
989   PCache1 *pCache = (PCache1 *)p;
990   PgHdr1 *pPage = 0;
991 
992   /* Step 1: Search the hash table for an existing entry. */
993   pPage = pCache->apHash[iKey % pCache->nHash];
994   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
995 
996   /* Step 2: If the page was found in the hash table, then return it.
997   ** If the page was not in the hash table and createFlag is 0, abort.
998   ** Otherwise (page not in hash and createFlag!=0) continue with
999   ** subsequent steps to try to create the page. */
1000   if( pPage ){
1001     if( PAGE_IS_UNPINNED(pPage) ){
1002       return pcache1PinPage(pPage);
1003     }else{
1004       return pPage;
1005     }
1006   }else if( createFlag ){
1007     /* Steps 3, 4, and 5 implemented by this subroutine */
1008     return pcache1FetchStage2(pCache, iKey, createFlag);
1009   }else{
1010     return 0;
1011   }
1012 }
1013 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1014 static PgHdr1 *pcache1FetchWithMutex(
1015   sqlite3_pcache *p,
1016   unsigned int iKey,
1017   int createFlag
1018 ){
1019   PCache1 *pCache = (PCache1 *)p;
1020   PgHdr1 *pPage;
1021 
1022   pcache1EnterMutex(pCache->pGroup);
1023   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1024   assert( pPage==0 || pCache->iMaxKey>=iKey );
1025   pcache1LeaveMutex(pCache->pGroup);
1026   return pPage;
1027 }
1028 #endif
1029 static sqlite3_pcache_page *pcache1Fetch(
1030   sqlite3_pcache *p,
1031   unsigned int iKey,
1032   int createFlag
1033 ){
1034 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1035   PCache1 *pCache = (PCache1 *)p;
1036 #endif
1037 
1038   assert( offsetof(PgHdr1,page)==0 );
1039   assert( pCache->bPurgeable || createFlag!=1 );
1040   assert( pCache->bPurgeable || pCache->nMin==0 );
1041   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1042   assert( pCache->nMin==0 || pCache->bPurgeable );
1043   assert( pCache->nHash>0 );
1044 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1045   if( pCache->pGroup->mutex ){
1046     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1047   }else
1048 #endif
1049   {
1050     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1051   }
1052 }
1053 
1054 
1055 /*
1056 ** Implementation of the sqlite3_pcache.xUnpin method.
1057 **
1058 ** Mark a page as unpinned (eligible for asynchronous recycling).
1059 */
1060 static void pcache1Unpin(
1061   sqlite3_pcache *p,
1062   sqlite3_pcache_page *pPg,
1063   int reuseUnlikely
1064 ){
1065   PCache1 *pCache = (PCache1 *)p;
1066   PgHdr1 *pPage = (PgHdr1 *)pPg;
1067   PGroup *pGroup = pCache->pGroup;
1068 
1069   assert( pPage->pCache==pCache );
1070   pcache1EnterMutex(pGroup);
1071 
1072   /* It is an error to call this function if the page is already
1073   ** part of the PGroup LRU list.
1074   */
1075   assert( pPage->pLruNext==0 );
1076   assert( PAGE_IS_PINNED(pPage) );
1077 
1078   if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1079     pcache1RemoveFromHash(pPage, 1);
1080   }else{
1081     /* Add the page to the PGroup LRU list. */
1082     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1083     pPage->pLruPrev = &pGroup->lru;
1084     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1085     *ppFirst = pPage;
1086     pCache->nRecyclable++;
1087   }
1088 
1089   pcache1LeaveMutex(pCache->pGroup);
1090 }
1091 
1092 /*
1093 ** Implementation of the sqlite3_pcache.xRekey method.
1094 */
1095 static void pcache1Rekey(
1096   sqlite3_pcache *p,
1097   sqlite3_pcache_page *pPg,
1098   unsigned int iOld,
1099   unsigned int iNew
1100 ){
1101   PCache1 *pCache = (PCache1 *)p;
1102   PgHdr1 *pPage = (PgHdr1 *)pPg;
1103   PgHdr1 **pp;
1104   unsigned int h;
1105   assert( pPage->iKey==iOld );
1106   assert( pPage->pCache==pCache );
1107 
1108   pcache1EnterMutex(pCache->pGroup);
1109 
1110   h = iOld%pCache->nHash;
1111   pp = &pCache->apHash[h];
1112   while( (*pp)!=pPage ){
1113     pp = &(*pp)->pNext;
1114   }
1115   *pp = pPage->pNext;
1116 
1117   h = iNew%pCache->nHash;
1118   pPage->iKey = iNew;
1119   pPage->pNext = pCache->apHash[h];
1120   pCache->apHash[h] = pPage;
1121   if( iNew>pCache->iMaxKey ){
1122     pCache->iMaxKey = iNew;
1123   }
1124 
1125   pcache1LeaveMutex(pCache->pGroup);
1126 }
1127 
1128 /*
1129 ** Implementation of the sqlite3_pcache.xTruncate method.
1130 **
1131 ** Discard all unpinned pages in the cache with a page number equal to
1132 ** or greater than parameter iLimit. Any pinned pages with a page number
1133 ** equal to or greater than iLimit are implicitly unpinned.
1134 */
1135 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1136   PCache1 *pCache = (PCache1 *)p;
1137   pcache1EnterMutex(pCache->pGroup);
1138   if( iLimit<=pCache->iMaxKey ){
1139     pcache1TruncateUnsafe(pCache, iLimit);
1140     pCache->iMaxKey = iLimit-1;
1141   }
1142   pcache1LeaveMutex(pCache->pGroup);
1143 }
1144 
1145 /*
1146 ** Implementation of the sqlite3_pcache.xDestroy method.
1147 **
1148 ** Destroy a cache allocated using pcache1Create().
1149 */
1150 static void pcache1Destroy(sqlite3_pcache *p){
1151   PCache1 *pCache = (PCache1 *)p;
1152   PGroup *pGroup = pCache->pGroup;
1153   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1154   pcache1EnterMutex(pGroup);
1155   if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1156   assert( pGroup->nMaxPage >= pCache->nMax );
1157   pGroup->nMaxPage -= pCache->nMax;
1158   assert( pGroup->nMinPage >= pCache->nMin );
1159   pGroup->nMinPage -= pCache->nMin;
1160   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1161   pcache1EnforceMaxPage(pCache);
1162   pcache1LeaveMutex(pGroup);
1163   sqlite3_free(pCache->pBulk);
1164   sqlite3_free(pCache->apHash);
1165   sqlite3_free(pCache);
1166 }
1167 
1168 /*
1169 ** This function is called during initialization (sqlite3_initialize()) to
1170 ** install the default pluggable cache module, assuming the user has not
1171 ** already provided an alternative.
1172 */
1173 void sqlite3PCacheSetDefault(void){
1174   static const sqlite3_pcache_methods2 defaultMethods = {
1175     1,                       /* iVersion */
1176     0,                       /* pArg */
1177     pcache1Init,             /* xInit */
1178     pcache1Shutdown,         /* xShutdown */
1179     pcache1Create,           /* xCreate */
1180     pcache1Cachesize,        /* xCachesize */
1181     pcache1Pagecount,        /* xPagecount */
1182     pcache1Fetch,            /* xFetch */
1183     pcache1Unpin,            /* xUnpin */
1184     pcache1Rekey,            /* xRekey */
1185     pcache1Truncate,         /* xTruncate */
1186     pcache1Destroy,          /* xDestroy */
1187     pcache1Shrink            /* xShrink */
1188   };
1189   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1190 }
1191 
1192 /*
1193 ** Return the size of the header on each page of this PCACHE implementation.
1194 */
1195 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1196 
1197 /*
1198 ** Return the global mutex used by this PCACHE implementation.  The
1199 ** sqlite3_status() routine needs access to this mutex.
1200 */
1201 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1202   return pcache1.mutex;
1203 }
1204 
1205 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1206 /*
1207 ** This function is called to free superfluous dynamically allocated memory
1208 ** held by the pager system. Memory in use by any SQLite pager allocated
1209 ** by the current thread may be sqlite3_free()ed.
1210 **
1211 ** nReq is the number of bytes of memory required. Once this much has
1212 ** been released, the function returns. The return value is the total number
1213 ** of bytes of memory released.
1214 */
1215 int sqlite3PcacheReleaseMemory(int nReq){
1216   int nFree = 0;
1217   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1218   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1219   if( sqlite3GlobalConfig.pPage==0 ){
1220     PgHdr1 *p;
1221     pcache1EnterMutex(&pcache1.grp);
1222     while( (nReq<0 || nFree<nReq)
1223        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1224        &&  p->isAnchor==0
1225     ){
1226       nFree += pcache1MemSize(p->page.pBuf);
1227 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1228       nFree += sqlite3MemSize(p);
1229 #endif
1230       assert( PAGE_IS_UNPINNED(p) );
1231       pcache1PinPage(p);
1232       pcache1RemoveFromHash(p, 1);
1233     }
1234     pcache1LeaveMutex(&pcache1.grp);
1235   }
1236   return nFree;
1237 }
1238 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1239 
1240 #ifdef SQLITE_TEST
1241 /*
1242 ** This function is used by test procedures to inspect the internal state
1243 ** of the global cache.
1244 */
1245 void sqlite3PcacheStats(
1246   int *pnCurrent,      /* OUT: Total number of pages cached */
1247   int *pnMax,          /* OUT: Global maximum cache size */
1248   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1249   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1250 ){
1251   PgHdr1 *p;
1252   int nRecyclable = 0;
1253   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1254     assert( PAGE_IS_UNPINNED(p) );
1255     nRecyclable++;
1256   }
1257   *pnCurrent = pcache1.grp.nPurgeable;
1258   *pnMax = (int)pcache1.grp.nMaxPage;
1259   *pnMin = (int)pcache1.grp.nMinPage;
1260   *pnRecyclable = nRecyclable;
1261 }
1262 #endif
1263