1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isPinned; /* Page in use, not on the LRU list */ 100 u8 isBulkLocal; /* This page from bulk local storage */ 101 u8 isAnchor; /* This is the PGroup.lru element */ 102 PgHdr1 *pNext; /* Next in hash table chain */ 103 PCache1 *pCache; /* Cache that currently owns this page */ 104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 106 }; 107 108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 109 ** of one or more PCaches that are able to recycle each other's unpinned 110 ** pages when they are under memory pressure. A PGroup is an instance of 111 ** the following object. 112 ** 113 ** This page cache implementation works in one of two modes: 114 ** 115 ** (1) Every PCache is the sole member of its own PGroup. There is 116 ** one PGroup per PCache. 117 ** 118 ** (2) There is a single global PGroup that all PCaches are a member 119 ** of. 120 ** 121 ** Mode 1 uses more memory (since PCache instances are not able to rob 122 ** unused pages from other PCaches) but it also operates without a mutex, 123 ** and is therefore often faster. Mode 2 requires a mutex in order to be 124 ** threadsafe, but recycles pages more efficiently. 125 ** 126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 127 ** PGroup which is the pcache1.grp global variable and its mutex is 128 ** SQLITE_MUTEX_STATIC_LRU. 129 */ 130 struct PGroup { 131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 136 PgHdr1 lru; /* The beginning and end of the LRU list */ 137 }; 138 139 /* Each page cache is an instance of the following object. Every 140 ** open database file (including each in-memory database and each 141 ** temporary or transient database) has a single page cache which 142 ** is an instance of this object. 143 ** 144 ** Pointers to structures of this type are cast and returned as 145 ** opaque sqlite3_pcache* handles. 146 */ 147 struct PCache1 { 148 /* Cache configuration parameters. Page size (szPage) and the purgeable 149 ** flag (bPurgeable) are set when the cache is created. nMax may be 150 ** modified at any time by a call to the pcache1Cachesize() method. 151 ** The PGroup mutex must be held when accessing nMax. 152 */ 153 PGroup *pGroup; /* PGroup this cache belongs to */ 154 int szPage; /* Size of database content section */ 155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 156 int szAlloc; /* Total size of one pcache line */ 157 int bPurgeable; /* True if cache is purgeable */ 158 unsigned int nMin; /* Minimum number of pages reserved */ 159 unsigned int nMax; /* Configured "cache_size" value */ 160 unsigned int n90pct; /* nMax*9/10 */ 161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 162 163 /* Hash table of all pages. The following variables may only be accessed 164 ** when the accessor is holding the PGroup mutex. 165 */ 166 unsigned int nRecyclable; /* Number of pages in the LRU list */ 167 unsigned int nPage; /* Total number of pages in apHash */ 168 unsigned int nHash; /* Number of slots in apHash[] */ 169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 170 PgHdr1 *pFree; /* List of unused pcache-local pages */ 171 void *pBulk; /* Bulk memory used by pcache-local */ 172 }; 173 174 /* 175 ** Free slots in the allocator used to divide up the global page cache 176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 177 */ 178 struct PgFreeslot { 179 PgFreeslot *pNext; /* Next free slot */ 180 }; 181 182 /* 183 ** Global data used by this cache. 184 */ 185 static SQLITE_WSD struct PCacheGlobal { 186 PGroup grp; /* The global PGroup for mode (2) */ 187 188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 190 ** fixed at sqlite3_initialize() time and do not require mutex protection. 191 ** The nFreeSlot and pFree values do require mutex protection. 192 */ 193 int isInit; /* True if initialized */ 194 int separateCache; /* Use a new PGroup for each PCache */ 195 int nInitPage; /* Initial bulk allocation size */ 196 int szSlot; /* Size of each free slot */ 197 int nSlot; /* The number of pcache slots */ 198 int nReserve; /* Try to keep nFreeSlot above this */ 199 void *pStart, *pEnd; /* Bounds of global page cache memory */ 200 /* Above requires no mutex. Use mutex below for variable that follow. */ 201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 202 PgFreeslot *pFree; /* Free page blocks */ 203 int nFreeSlot; /* Number of unused pcache slots */ 204 /* The following value requires a mutex to change. We skip the mutex on 205 ** reading because (1) most platforms read a 32-bit integer atomically and 206 ** (2) even if an incorrect value is read, no great harm is done since this 207 ** is really just an optimization. */ 208 int bUnderPressure; /* True if low on PAGECACHE memory */ 209 } pcache1_g; 210 211 /* 212 ** All code in this file should access the global structure above via the 213 ** alias "pcache1". This ensures that the WSD emulation is used when 214 ** compiling for systems that do not support real WSD. 215 */ 216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 217 218 /* 219 ** Macros to enter and leave the PCache LRU mutex. 220 */ 221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 222 # define pcache1EnterMutex(X) assert((X)->mutex==0) 223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 225 #else 226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 229 #endif 230 231 /******************************************************************************/ 232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 233 234 235 /* 236 ** This function is called during initialization if a static buffer is 237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 239 ** enough to contain 'n' buffers of 'sz' bytes each. 240 ** 241 ** This routine is called from sqlite3_initialize() and so it is guaranteed 242 ** to be serialized already. There is no need for further mutexing. 243 */ 244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 245 if( pcache1.isInit ){ 246 PgFreeslot *p; 247 if( pBuf==0 ) sz = n = 0; 248 sz = ROUNDDOWN8(sz); 249 pcache1.szSlot = sz; 250 pcache1.nSlot = pcache1.nFreeSlot = n; 251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 252 pcache1.pStart = pBuf; 253 pcache1.pFree = 0; 254 pcache1.bUnderPressure = 0; 255 while( n-- ){ 256 p = (PgFreeslot*)pBuf; 257 p->pNext = pcache1.pFree; 258 pcache1.pFree = p; 259 pBuf = (void*)&((char*)pBuf)[sz]; 260 } 261 pcache1.pEnd = pBuf; 262 } 263 } 264 265 /* 266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 267 ** true if pCache->pFree ends up containing one or more free pages. 268 */ 269 static int pcache1InitBulk(PCache1 *pCache){ 270 i64 szBulk; 271 char *zBulk; 272 if( pcache1.nInitPage==0 ) return 0; 273 /* Do not bother with a bulk allocation if the cache size very small */ 274 if( pCache->nMax<3 ) return 0; 275 sqlite3BeginBenignMalloc(); 276 if( pcache1.nInitPage>0 ){ 277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 278 }else{ 279 szBulk = -1024 * (i64)pcache1.nInitPage; 280 } 281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 282 szBulk = pCache->szAlloc*pCache->nMax; 283 } 284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 285 sqlite3EndBenignMalloc(); 286 if( zBulk ){ 287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 288 int i; 289 for(i=0; i<nBulk; i++){ 290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 291 pX->page.pBuf = zBulk; 292 pX->page.pExtra = &pX[1]; 293 pX->isBulkLocal = 1; 294 pX->isAnchor = 0; 295 pX->pNext = pCache->pFree; 296 pCache->pFree = pX; 297 zBulk += pCache->szAlloc; 298 } 299 } 300 return pCache->pFree!=0; 301 } 302 303 /* 304 ** Malloc function used within this file to allocate space from the buffer 305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 306 ** such buffer exists or there is no space left in it, this function falls 307 ** back to sqlite3Malloc(). 308 ** 309 ** Multiple threads can run this routine at the same time. Global variables 310 ** in pcache1 need to be protected via mutex. 311 */ 312 static void *pcache1Alloc(int nByte){ 313 void *p = 0; 314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 315 if( nByte<=pcache1.szSlot ){ 316 sqlite3_mutex_enter(pcache1.mutex); 317 p = (PgHdr1 *)pcache1.pFree; 318 if( p ){ 319 pcache1.pFree = pcache1.pFree->pNext; 320 pcache1.nFreeSlot--; 321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 322 assert( pcache1.nFreeSlot>=0 ); 323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 325 } 326 sqlite3_mutex_leave(pcache1.mutex); 327 } 328 if( p==0 ){ 329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 330 ** it from sqlite3Malloc instead. 331 */ 332 p = sqlite3Malloc(nByte); 333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 334 if( p ){ 335 int sz = sqlite3MallocSize(p); 336 sqlite3_mutex_enter(pcache1.mutex); 337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 339 sqlite3_mutex_leave(pcache1.mutex); 340 } 341 #endif 342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 343 } 344 return p; 345 } 346 347 /* 348 ** Free an allocated buffer obtained from pcache1Alloc(). 349 */ 350 static void pcache1Free(void *p){ 351 if( p==0 ) return; 352 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 353 PgFreeslot *pSlot; 354 sqlite3_mutex_enter(pcache1.mutex); 355 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 356 pSlot = (PgFreeslot*)p; 357 pSlot->pNext = pcache1.pFree; 358 pcache1.pFree = pSlot; 359 pcache1.nFreeSlot++; 360 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 361 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 362 sqlite3_mutex_leave(pcache1.mutex); 363 }else{ 364 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 365 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 366 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 367 { 368 int nFreed = 0; 369 nFreed = sqlite3MallocSize(p); 370 sqlite3_mutex_enter(pcache1.mutex); 371 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 372 sqlite3_mutex_leave(pcache1.mutex); 373 } 374 #endif 375 sqlite3_free(p); 376 } 377 } 378 379 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 380 /* 381 ** Return the size of a pcache allocation 382 */ 383 static int pcache1MemSize(void *p){ 384 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 385 return pcache1.szSlot; 386 }else{ 387 int iSize; 388 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 389 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 390 iSize = sqlite3MallocSize(p); 391 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 392 return iSize; 393 } 394 } 395 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 396 397 /* 398 ** Allocate a new page object initially associated with cache pCache. 399 */ 400 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 401 PgHdr1 *p = 0; 402 void *pPg; 403 404 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 405 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 406 p = pCache->pFree; 407 pCache->pFree = p->pNext; 408 p->pNext = 0; 409 }else{ 410 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 411 /* The group mutex must be released before pcache1Alloc() is called. This 412 ** is because it might call sqlite3_release_memory(), which assumes that 413 ** this mutex is not held. */ 414 assert( pcache1.separateCache==0 ); 415 assert( pCache->pGroup==&pcache1.grp ); 416 pcache1LeaveMutex(pCache->pGroup); 417 #endif 418 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 419 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 420 pPg = pcache1Alloc(pCache->szPage); 421 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 422 if( !pPg || !p ){ 423 pcache1Free(pPg); 424 sqlite3_free(p); 425 pPg = 0; 426 } 427 #else 428 pPg = pcache1Alloc(pCache->szAlloc); 429 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 430 #endif 431 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 433 pcache1EnterMutex(pCache->pGroup); 434 #endif 435 if( pPg==0 ) return 0; 436 p->page.pBuf = pPg; 437 p->page.pExtra = &p[1]; 438 p->isBulkLocal = 0; 439 p->isAnchor = 0; 440 } 441 if( pCache->bPurgeable ){ 442 pCache->pGroup->nCurrentPage++; 443 } 444 return p; 445 } 446 447 /* 448 ** Free a page object allocated by pcache1AllocPage(). 449 */ 450 static void pcache1FreePage(PgHdr1 *p){ 451 PCache1 *pCache; 452 assert( p!=0 ); 453 pCache = p->pCache; 454 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 455 if( p->isBulkLocal ){ 456 p->pNext = pCache->pFree; 457 pCache->pFree = p; 458 }else{ 459 pcache1Free(p->page.pBuf); 460 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 461 sqlite3_free(p); 462 #endif 463 } 464 if( pCache->bPurgeable ){ 465 pCache->pGroup->nCurrentPage--; 466 } 467 } 468 469 /* 470 ** Malloc function used by SQLite to obtain space from the buffer configured 471 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 472 ** exists, this function falls back to sqlite3Malloc(). 473 */ 474 void *sqlite3PageMalloc(int sz){ 475 return pcache1Alloc(sz); 476 } 477 478 /* 479 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 480 */ 481 void sqlite3PageFree(void *p){ 482 pcache1Free(p); 483 } 484 485 486 /* 487 ** Return true if it desirable to avoid allocating a new page cache 488 ** entry. 489 ** 490 ** If memory was allocated specifically to the page cache using 491 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 492 ** it is desirable to avoid allocating a new page cache entry because 493 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 494 ** for all page cache needs and we should not need to spill the 495 ** allocation onto the heap. 496 ** 497 ** Or, the heap is used for all page cache memory but the heap is 498 ** under memory pressure, then again it is desirable to avoid 499 ** allocating a new page cache entry in order to avoid stressing 500 ** the heap even further. 501 */ 502 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 503 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 504 return pcache1.bUnderPressure; 505 }else{ 506 return sqlite3HeapNearlyFull(); 507 } 508 } 509 510 /******************************************************************************/ 511 /******** General Implementation Functions ************************************/ 512 513 /* 514 ** This function is used to resize the hash table used by the cache passed 515 ** as the first argument. 516 ** 517 ** The PCache mutex must be held when this function is called. 518 */ 519 static void pcache1ResizeHash(PCache1 *p){ 520 PgHdr1 **apNew; 521 unsigned int nNew; 522 unsigned int i; 523 524 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 525 526 nNew = p->nHash*2; 527 if( nNew<256 ){ 528 nNew = 256; 529 } 530 531 pcache1LeaveMutex(p->pGroup); 532 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 533 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 534 if( p->nHash ){ sqlite3EndBenignMalloc(); } 535 pcache1EnterMutex(p->pGroup); 536 if( apNew ){ 537 for(i=0; i<p->nHash; i++){ 538 PgHdr1 *pPage; 539 PgHdr1 *pNext = p->apHash[i]; 540 while( (pPage = pNext)!=0 ){ 541 unsigned int h = pPage->iKey % nNew; 542 pNext = pPage->pNext; 543 pPage->pNext = apNew[h]; 544 apNew[h] = pPage; 545 } 546 } 547 sqlite3_free(p->apHash); 548 p->apHash = apNew; 549 p->nHash = nNew; 550 } 551 } 552 553 /* 554 ** This function is used internally to remove the page pPage from the 555 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 556 ** LRU list, then this function is a no-op. 557 ** 558 ** The PGroup mutex must be held when this function is called. 559 */ 560 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 561 PCache1 *pCache; 562 563 assert( pPage!=0 ); 564 assert( pPage->isPinned==0 ); 565 pCache = pPage->pCache; 566 assert( pPage->pLruNext ); 567 assert( pPage->pLruPrev ); 568 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 569 pPage->pLruPrev->pLruNext = pPage->pLruNext; 570 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 571 pPage->pLruNext = 0; 572 pPage->pLruPrev = 0; 573 pPage->isPinned = 1; 574 assert( pPage->isAnchor==0 ); 575 assert( pCache->pGroup->lru.isAnchor==1 ); 576 pCache->nRecyclable--; 577 return pPage; 578 } 579 580 581 /* 582 ** Remove the page supplied as an argument from the hash table 583 ** (PCache1.apHash structure) that it is currently stored in. 584 ** Also free the page if freePage is true. 585 ** 586 ** The PGroup mutex must be held when this function is called. 587 */ 588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 589 unsigned int h; 590 PCache1 *pCache = pPage->pCache; 591 PgHdr1 **pp; 592 593 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 594 h = pPage->iKey % pCache->nHash; 595 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 596 *pp = (*pp)->pNext; 597 598 pCache->nPage--; 599 if( freeFlag ) pcache1FreePage(pPage); 600 } 601 602 /* 603 ** If there are currently more than nMaxPage pages allocated, try 604 ** to recycle pages to reduce the number allocated to nMaxPage. 605 */ 606 static void pcache1EnforceMaxPage(PCache1 *pCache){ 607 PGroup *pGroup = pCache->pGroup; 608 PgHdr1 *p; 609 assert( sqlite3_mutex_held(pGroup->mutex) ); 610 while( pGroup->nCurrentPage>pGroup->nMaxPage 611 && (p=pGroup->lru.pLruPrev)->isAnchor==0 612 ){ 613 assert( p->pCache->pGroup==pGroup ); 614 assert( p->isPinned==0 ); 615 pcache1PinPage(p); 616 pcache1RemoveFromHash(p, 1); 617 } 618 if( pCache->nPage==0 && pCache->pBulk ){ 619 sqlite3_free(pCache->pBulk); 620 pCache->pBulk = pCache->pFree = 0; 621 } 622 } 623 624 /* 625 ** Discard all pages from cache pCache with a page number (key value) 626 ** greater than or equal to iLimit. Any pinned pages that meet this 627 ** criteria are unpinned before they are discarded. 628 ** 629 ** The PCache mutex must be held when this function is called. 630 */ 631 static void pcache1TruncateUnsafe( 632 PCache1 *pCache, /* The cache to truncate */ 633 unsigned int iLimit /* Drop pages with this pgno or larger */ 634 ){ 635 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 636 unsigned int h, iStop; 637 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 638 assert( pCache->iMaxKey >= iLimit ); 639 assert( pCache->nHash > 0 ); 640 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 641 /* If we are just shaving the last few pages off the end of the 642 ** cache, then there is no point in scanning the entire hash table. 643 ** Only scan those hash slots that might contain pages that need to 644 ** be removed. */ 645 h = iLimit % pCache->nHash; 646 iStop = pCache->iMaxKey % pCache->nHash; 647 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 648 }else{ 649 /* This is the general case where many pages are being removed. 650 ** It is necessary to scan the entire hash table */ 651 h = pCache->nHash/2; 652 iStop = h - 1; 653 } 654 for(;;){ 655 PgHdr1 **pp; 656 PgHdr1 *pPage; 657 assert( h<pCache->nHash ); 658 pp = &pCache->apHash[h]; 659 while( (pPage = *pp)!=0 ){ 660 if( pPage->iKey>=iLimit ){ 661 pCache->nPage--; 662 *pp = pPage->pNext; 663 if( !pPage->isPinned ) pcache1PinPage(pPage); 664 pcache1FreePage(pPage); 665 }else{ 666 pp = &pPage->pNext; 667 TESTONLY( if( nPage>=0 ) nPage++; ) 668 } 669 } 670 if( h==iStop ) break; 671 h = (h+1) % pCache->nHash; 672 } 673 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 674 } 675 676 /******************************************************************************/ 677 /******** sqlite3_pcache Methods **********************************************/ 678 679 /* 680 ** Implementation of the sqlite3_pcache.xInit method. 681 */ 682 static int pcache1Init(void *NotUsed){ 683 UNUSED_PARAMETER(NotUsed); 684 assert( pcache1.isInit==0 ); 685 memset(&pcache1, 0, sizeof(pcache1)); 686 687 688 /* 689 ** The pcache1.separateCache variable is true if each PCache has its own 690 ** private PGroup (mode-1). pcache1.separateCache is false if the single 691 ** PGroup in pcache1.grp is used for all page caches (mode-2). 692 ** 693 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 694 ** 695 ** * Use a unified cache in single-threaded applications that have 696 ** configured a start-time buffer for use as page-cache memory using 697 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 698 ** pBuf argument. 699 ** 700 ** * Otherwise use separate caches (mode-1) 701 */ 702 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 703 pcache1.separateCache = 0; 704 #elif SQLITE_THREADSAFE 705 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 706 || sqlite3GlobalConfig.bCoreMutex>0; 707 #else 708 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 709 #endif 710 711 #if SQLITE_THREADSAFE 712 if( sqlite3GlobalConfig.bCoreMutex ){ 713 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 714 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 715 } 716 #endif 717 if( pcache1.separateCache 718 && sqlite3GlobalConfig.nPage!=0 719 && sqlite3GlobalConfig.pPage==0 720 ){ 721 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 722 }else{ 723 pcache1.nInitPage = 0; 724 } 725 pcache1.grp.mxPinned = 10; 726 pcache1.isInit = 1; 727 return SQLITE_OK; 728 } 729 730 /* 731 ** Implementation of the sqlite3_pcache.xShutdown method. 732 ** Note that the static mutex allocated in xInit does 733 ** not need to be freed. 734 */ 735 static void pcache1Shutdown(void *NotUsed){ 736 UNUSED_PARAMETER(NotUsed); 737 assert( pcache1.isInit!=0 ); 738 memset(&pcache1, 0, sizeof(pcache1)); 739 } 740 741 /* forward declaration */ 742 static void pcache1Destroy(sqlite3_pcache *p); 743 744 /* 745 ** Implementation of the sqlite3_pcache.xCreate method. 746 ** 747 ** Allocate a new cache. 748 */ 749 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 750 PCache1 *pCache; /* The newly created page cache */ 751 PGroup *pGroup; /* The group the new page cache will belong to */ 752 int sz; /* Bytes of memory required to allocate the new cache */ 753 754 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 755 assert( szExtra < 300 ); 756 757 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 758 pCache = (PCache1 *)sqlite3MallocZero(sz); 759 if( pCache ){ 760 if( pcache1.separateCache ){ 761 pGroup = (PGroup*)&pCache[1]; 762 pGroup->mxPinned = 10; 763 }else{ 764 pGroup = &pcache1.grp; 765 } 766 if( pGroup->lru.isAnchor==0 ){ 767 pGroup->lru.isAnchor = 1; 768 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 769 } 770 pCache->pGroup = pGroup; 771 pCache->szPage = szPage; 772 pCache->szExtra = szExtra; 773 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 774 pCache->bPurgeable = (bPurgeable ? 1 : 0); 775 pcache1EnterMutex(pGroup); 776 pcache1ResizeHash(pCache); 777 if( bPurgeable ){ 778 pCache->nMin = 10; 779 pGroup->nMinPage += pCache->nMin; 780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 781 } 782 pcache1LeaveMutex(pGroup); 783 if( pCache->nHash==0 ){ 784 pcache1Destroy((sqlite3_pcache*)pCache); 785 pCache = 0; 786 } 787 } 788 return (sqlite3_pcache *)pCache; 789 } 790 791 /* 792 ** Implementation of the sqlite3_pcache.xCachesize method. 793 ** 794 ** Configure the cache_size limit for a cache. 795 */ 796 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 797 PCache1 *pCache = (PCache1 *)p; 798 if( pCache->bPurgeable ){ 799 PGroup *pGroup = pCache->pGroup; 800 pcache1EnterMutex(pGroup); 801 pGroup->nMaxPage += (nMax - pCache->nMax); 802 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 803 pCache->nMax = nMax; 804 pCache->n90pct = pCache->nMax*9/10; 805 pcache1EnforceMaxPage(pCache); 806 pcache1LeaveMutex(pGroup); 807 } 808 } 809 810 /* 811 ** Implementation of the sqlite3_pcache.xShrink method. 812 ** 813 ** Free up as much memory as possible. 814 */ 815 static void pcache1Shrink(sqlite3_pcache *p){ 816 PCache1 *pCache = (PCache1*)p; 817 if( pCache->bPurgeable ){ 818 PGroup *pGroup = pCache->pGroup; 819 int savedMaxPage; 820 pcache1EnterMutex(pGroup); 821 savedMaxPage = pGroup->nMaxPage; 822 pGroup->nMaxPage = 0; 823 pcache1EnforceMaxPage(pCache); 824 pGroup->nMaxPage = savedMaxPage; 825 pcache1LeaveMutex(pGroup); 826 } 827 } 828 829 /* 830 ** Implementation of the sqlite3_pcache.xPagecount method. 831 */ 832 static int pcache1Pagecount(sqlite3_pcache *p){ 833 int n; 834 PCache1 *pCache = (PCache1*)p; 835 pcache1EnterMutex(pCache->pGroup); 836 n = pCache->nPage; 837 pcache1LeaveMutex(pCache->pGroup); 838 return n; 839 } 840 841 842 /* 843 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 844 ** in the header of the pcache1Fetch() procedure. 845 ** 846 ** This steps are broken out into a separate procedure because they are 847 ** usually not needed, and by avoiding the stack initialization required 848 ** for these steps, the main pcache1Fetch() procedure can run faster. 849 */ 850 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 851 PCache1 *pCache, 852 unsigned int iKey, 853 int createFlag 854 ){ 855 unsigned int nPinned; 856 PGroup *pGroup = pCache->pGroup; 857 PgHdr1 *pPage = 0; 858 859 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 860 assert( pCache->nPage >= pCache->nRecyclable ); 861 nPinned = pCache->nPage - pCache->nRecyclable; 862 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 863 assert( pCache->n90pct == pCache->nMax*9/10 ); 864 if( createFlag==1 && ( 865 nPinned>=pGroup->mxPinned 866 || nPinned>=pCache->n90pct 867 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 868 )){ 869 return 0; 870 } 871 872 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 873 assert( pCache->nHash>0 && pCache->apHash ); 874 875 /* Step 4. Try to recycle a page. */ 876 if( pCache->bPurgeable 877 && !pGroup->lru.pLruPrev->isAnchor 878 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 879 ){ 880 PCache1 *pOther; 881 pPage = pGroup->lru.pLruPrev; 882 assert( pPage->isPinned==0 ); 883 pcache1RemoveFromHash(pPage, 0); 884 pcache1PinPage(pPage); 885 pOther = pPage->pCache; 886 if( pOther->szAlloc != pCache->szAlloc ){ 887 pcache1FreePage(pPage); 888 pPage = 0; 889 }else{ 890 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 891 } 892 } 893 894 /* Step 5. If a usable page buffer has still not been found, 895 ** attempt to allocate a new one. 896 */ 897 if( !pPage ){ 898 pPage = pcache1AllocPage(pCache, createFlag==1); 899 } 900 901 if( pPage ){ 902 unsigned int h = iKey % pCache->nHash; 903 pCache->nPage++; 904 pPage->iKey = iKey; 905 pPage->pNext = pCache->apHash[h]; 906 pPage->pCache = pCache; 907 pPage->pLruPrev = 0; 908 pPage->pLruNext = 0; 909 pPage->isPinned = 1; 910 *(void **)pPage->page.pExtra = 0; 911 pCache->apHash[h] = pPage; 912 if( iKey>pCache->iMaxKey ){ 913 pCache->iMaxKey = iKey; 914 } 915 } 916 return pPage; 917 } 918 919 /* 920 ** Implementation of the sqlite3_pcache.xFetch method. 921 ** 922 ** Fetch a page by key value. 923 ** 924 ** Whether or not a new page may be allocated by this function depends on 925 ** the value of the createFlag argument. 0 means do not allocate a new 926 ** page. 1 means allocate a new page if space is easily available. 2 927 ** means to try really hard to allocate a new page. 928 ** 929 ** For a non-purgeable cache (a cache used as the storage for an in-memory 930 ** database) there is really no difference between createFlag 1 and 2. So 931 ** the calling function (pcache.c) will never have a createFlag of 1 on 932 ** a non-purgeable cache. 933 ** 934 ** There are three different approaches to obtaining space for a page, 935 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 936 ** 937 ** 1. Regardless of the value of createFlag, the cache is searched for a 938 ** copy of the requested page. If one is found, it is returned. 939 ** 940 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 941 ** returned. 942 ** 943 ** 3. If createFlag is 1, and the page is not already in the cache, then 944 ** return NULL (do not allocate a new page) if any of the following 945 ** conditions are true: 946 ** 947 ** (a) the number of pages pinned by the cache is greater than 948 ** PCache1.nMax, or 949 ** 950 ** (b) the number of pages pinned by the cache is greater than 951 ** the sum of nMax for all purgeable caches, less the sum of 952 ** nMin for all other purgeable caches, or 953 ** 954 ** 4. If none of the first three conditions apply and the cache is marked 955 ** as purgeable, and if one of the following is true: 956 ** 957 ** (a) The number of pages allocated for the cache is already 958 ** PCache1.nMax, or 959 ** 960 ** (b) The number of pages allocated for all purgeable caches is 961 ** already equal to or greater than the sum of nMax for all 962 ** purgeable caches, 963 ** 964 ** (c) The system is under memory pressure and wants to avoid 965 ** unnecessary pages cache entry allocations 966 ** 967 ** then attempt to recycle a page from the LRU list. If it is the right 968 ** size, return the recycled buffer. Otherwise, free the buffer and 969 ** proceed to step 5. 970 ** 971 ** 5. Otherwise, allocate and return a new page buffer. 972 ** 973 ** There are two versions of this routine. pcache1FetchWithMutex() is 974 ** the general case. pcache1FetchNoMutex() is a faster implementation for 975 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 976 ** invokes the appropriate routine. 977 */ 978 static PgHdr1 *pcache1FetchNoMutex( 979 sqlite3_pcache *p, 980 unsigned int iKey, 981 int createFlag 982 ){ 983 PCache1 *pCache = (PCache1 *)p; 984 PgHdr1 *pPage = 0; 985 986 /* Step 1: Search the hash table for an existing entry. */ 987 pPage = pCache->apHash[iKey % pCache->nHash]; 988 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 989 990 /* Step 2: If the page was found in the hash table, then return it. 991 ** If the page was not in the hash table and createFlag is 0, abort. 992 ** Otherwise (page not in hash and createFlag!=0) continue with 993 ** subsequent steps to try to create the page. */ 994 if( pPage ){ 995 if( !pPage->isPinned ){ 996 return pcache1PinPage(pPage); 997 }else{ 998 return pPage; 999 } 1000 }else if( createFlag ){ 1001 /* Steps 3, 4, and 5 implemented by this subroutine */ 1002 return pcache1FetchStage2(pCache, iKey, createFlag); 1003 }else{ 1004 return 0; 1005 } 1006 } 1007 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1008 static PgHdr1 *pcache1FetchWithMutex( 1009 sqlite3_pcache *p, 1010 unsigned int iKey, 1011 int createFlag 1012 ){ 1013 PCache1 *pCache = (PCache1 *)p; 1014 PgHdr1 *pPage; 1015 1016 pcache1EnterMutex(pCache->pGroup); 1017 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1018 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1019 pcache1LeaveMutex(pCache->pGroup); 1020 return pPage; 1021 } 1022 #endif 1023 static sqlite3_pcache_page *pcache1Fetch( 1024 sqlite3_pcache *p, 1025 unsigned int iKey, 1026 int createFlag 1027 ){ 1028 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1029 PCache1 *pCache = (PCache1 *)p; 1030 #endif 1031 1032 assert( offsetof(PgHdr1,page)==0 ); 1033 assert( pCache->bPurgeable || createFlag!=1 ); 1034 assert( pCache->bPurgeable || pCache->nMin==0 ); 1035 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1036 assert( pCache->nMin==0 || pCache->bPurgeable ); 1037 assert( pCache->nHash>0 ); 1038 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1039 if( pCache->pGroup->mutex ){ 1040 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1041 }else 1042 #endif 1043 { 1044 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1045 } 1046 } 1047 1048 1049 /* 1050 ** Implementation of the sqlite3_pcache.xUnpin method. 1051 ** 1052 ** Mark a page as unpinned (eligible for asynchronous recycling). 1053 */ 1054 static void pcache1Unpin( 1055 sqlite3_pcache *p, 1056 sqlite3_pcache_page *pPg, 1057 int reuseUnlikely 1058 ){ 1059 PCache1 *pCache = (PCache1 *)p; 1060 PgHdr1 *pPage = (PgHdr1 *)pPg; 1061 PGroup *pGroup = pCache->pGroup; 1062 1063 assert( pPage->pCache==pCache ); 1064 pcache1EnterMutex(pGroup); 1065 1066 /* It is an error to call this function if the page is already 1067 ** part of the PGroup LRU list. 1068 */ 1069 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1070 assert( pPage->isPinned==1 ); 1071 1072 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1073 pcache1RemoveFromHash(pPage, 1); 1074 }else{ 1075 /* Add the page to the PGroup LRU list. */ 1076 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1077 pPage->pLruPrev = &pGroup->lru; 1078 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1079 *ppFirst = pPage; 1080 pCache->nRecyclable++; 1081 pPage->isPinned = 0; 1082 } 1083 1084 pcache1LeaveMutex(pCache->pGroup); 1085 } 1086 1087 /* 1088 ** Implementation of the sqlite3_pcache.xRekey method. 1089 */ 1090 static void pcache1Rekey( 1091 sqlite3_pcache *p, 1092 sqlite3_pcache_page *pPg, 1093 unsigned int iOld, 1094 unsigned int iNew 1095 ){ 1096 PCache1 *pCache = (PCache1 *)p; 1097 PgHdr1 *pPage = (PgHdr1 *)pPg; 1098 PgHdr1 **pp; 1099 unsigned int h; 1100 assert( pPage->iKey==iOld ); 1101 assert( pPage->pCache==pCache ); 1102 1103 pcache1EnterMutex(pCache->pGroup); 1104 1105 h = iOld%pCache->nHash; 1106 pp = &pCache->apHash[h]; 1107 while( (*pp)!=pPage ){ 1108 pp = &(*pp)->pNext; 1109 } 1110 *pp = pPage->pNext; 1111 1112 h = iNew%pCache->nHash; 1113 pPage->iKey = iNew; 1114 pPage->pNext = pCache->apHash[h]; 1115 pCache->apHash[h] = pPage; 1116 if( iNew>pCache->iMaxKey ){ 1117 pCache->iMaxKey = iNew; 1118 } 1119 1120 pcache1LeaveMutex(pCache->pGroup); 1121 } 1122 1123 /* 1124 ** Implementation of the sqlite3_pcache.xTruncate method. 1125 ** 1126 ** Discard all unpinned pages in the cache with a page number equal to 1127 ** or greater than parameter iLimit. Any pinned pages with a page number 1128 ** equal to or greater than iLimit are implicitly unpinned. 1129 */ 1130 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1131 PCache1 *pCache = (PCache1 *)p; 1132 pcache1EnterMutex(pCache->pGroup); 1133 if( iLimit<=pCache->iMaxKey ){ 1134 pcache1TruncateUnsafe(pCache, iLimit); 1135 pCache->iMaxKey = iLimit-1; 1136 } 1137 pcache1LeaveMutex(pCache->pGroup); 1138 } 1139 1140 /* 1141 ** Implementation of the sqlite3_pcache.xDestroy method. 1142 ** 1143 ** Destroy a cache allocated using pcache1Create(). 1144 */ 1145 static void pcache1Destroy(sqlite3_pcache *p){ 1146 PCache1 *pCache = (PCache1 *)p; 1147 PGroup *pGroup = pCache->pGroup; 1148 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1149 pcache1EnterMutex(pGroup); 1150 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1151 assert( pGroup->nMaxPage >= pCache->nMax ); 1152 pGroup->nMaxPage -= pCache->nMax; 1153 assert( pGroup->nMinPage >= pCache->nMin ); 1154 pGroup->nMinPage -= pCache->nMin; 1155 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1156 pcache1EnforceMaxPage(pCache); 1157 pcache1LeaveMutex(pGroup); 1158 sqlite3_free(pCache->pBulk); 1159 sqlite3_free(pCache->apHash); 1160 sqlite3_free(pCache); 1161 } 1162 1163 /* 1164 ** This function is called during initialization (sqlite3_initialize()) to 1165 ** install the default pluggable cache module, assuming the user has not 1166 ** already provided an alternative. 1167 */ 1168 void sqlite3PCacheSetDefault(void){ 1169 static const sqlite3_pcache_methods2 defaultMethods = { 1170 1, /* iVersion */ 1171 0, /* pArg */ 1172 pcache1Init, /* xInit */ 1173 pcache1Shutdown, /* xShutdown */ 1174 pcache1Create, /* xCreate */ 1175 pcache1Cachesize, /* xCachesize */ 1176 pcache1Pagecount, /* xPagecount */ 1177 pcache1Fetch, /* xFetch */ 1178 pcache1Unpin, /* xUnpin */ 1179 pcache1Rekey, /* xRekey */ 1180 pcache1Truncate, /* xTruncate */ 1181 pcache1Destroy, /* xDestroy */ 1182 pcache1Shrink /* xShrink */ 1183 }; 1184 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1185 } 1186 1187 /* 1188 ** Return the size of the header on each page of this PCACHE implementation. 1189 */ 1190 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1191 1192 /* 1193 ** Return the global mutex used by this PCACHE implementation. The 1194 ** sqlite3_status() routine needs access to this mutex. 1195 */ 1196 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1197 return pcache1.mutex; 1198 } 1199 1200 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1201 /* 1202 ** This function is called to free superfluous dynamically allocated memory 1203 ** held by the pager system. Memory in use by any SQLite pager allocated 1204 ** by the current thread may be sqlite3_free()ed. 1205 ** 1206 ** nReq is the number of bytes of memory required. Once this much has 1207 ** been released, the function returns. The return value is the total number 1208 ** of bytes of memory released. 1209 */ 1210 int sqlite3PcacheReleaseMemory(int nReq){ 1211 int nFree = 0; 1212 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1213 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1214 if( sqlite3GlobalConfig.nPage==0 ){ 1215 PgHdr1 *p; 1216 pcache1EnterMutex(&pcache1.grp); 1217 while( (nReq<0 || nFree<nReq) 1218 && (p=pcache1.grp.lru.pLruPrev)!=0 1219 && p->isAnchor==0 1220 ){ 1221 nFree += pcache1MemSize(p->page.pBuf); 1222 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1223 nFree += sqlite3MemSize(p); 1224 #endif 1225 assert( p->isPinned==0 ); 1226 pcache1PinPage(p); 1227 pcache1RemoveFromHash(p, 1); 1228 } 1229 pcache1LeaveMutex(&pcache1.grp); 1230 } 1231 return nFree; 1232 } 1233 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1234 1235 #ifdef SQLITE_TEST 1236 /* 1237 ** This function is used by test procedures to inspect the internal state 1238 ** of the global cache. 1239 */ 1240 void sqlite3PcacheStats( 1241 int *pnCurrent, /* OUT: Total number of pages cached */ 1242 int *pnMax, /* OUT: Global maximum cache size */ 1243 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1244 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1245 ){ 1246 PgHdr1 *p; 1247 int nRecyclable = 0; 1248 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1249 assert( p->isPinned==0 ); 1250 nRecyclable++; 1251 } 1252 *pnCurrent = pcache1.grp.nCurrentPage; 1253 *pnMax = (int)pcache1.grp.nMaxPage; 1254 *pnMin = (int)pcache1.grp.nMinPage; 1255 *pnRecyclable = nRecyclable; 1256 } 1257 #endif 1258