1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isBulkLocal; /* This page from bulk local storage */ 100 u8 isAnchor; /* This is the PGroup.lru element */ 101 PgHdr1 *pNext; /* Next in hash table chain */ 102 PCache1 *pCache; /* Cache that currently owns this page */ 103 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 104 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 105 /* NB: pLruPrev is only valid if pLruNext!=0 */ 106 }; 107 108 /* 109 ** A page is pinned if it is not on the LRU list. To be "pinned" means 110 ** that the page is in active use and must not be deallocated. 111 */ 112 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 113 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 114 115 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 116 ** of one or more PCaches that are able to recycle each other's unpinned 117 ** pages when they are under memory pressure. A PGroup is an instance of 118 ** the following object. 119 ** 120 ** This page cache implementation works in one of two modes: 121 ** 122 ** (1) Every PCache is the sole member of its own PGroup. There is 123 ** one PGroup per PCache. 124 ** 125 ** (2) There is a single global PGroup that all PCaches are a member 126 ** of. 127 ** 128 ** Mode 1 uses more memory (since PCache instances are not able to rob 129 ** unused pages from other PCaches) but it also operates without a mutex, 130 ** and is therefore often faster. Mode 2 requires a mutex in order to be 131 ** threadsafe, but recycles pages more efficiently. 132 ** 133 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 134 ** PGroup which is the pcache1.grp global variable and its mutex is 135 ** SQLITE_MUTEX_STATIC_LRU. 136 */ 137 struct PGroup { 138 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 139 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 140 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 141 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 142 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 143 PgHdr1 lru; /* The beginning and end of the LRU list */ 144 }; 145 146 /* Each page cache is an instance of the following object. Every 147 ** open database file (including each in-memory database and each 148 ** temporary or transient database) has a single page cache which 149 ** is an instance of this object. 150 ** 151 ** Pointers to structures of this type are cast and returned as 152 ** opaque sqlite3_pcache* handles. 153 */ 154 struct PCache1 { 155 /* Cache configuration parameters. Page size (szPage) and the purgeable 156 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 157 ** cache is created and are never changed thereafter. nMax may be 158 ** modified at any time by a call to the pcache1Cachesize() method. 159 ** The PGroup mutex must be held when accessing nMax. 160 */ 161 PGroup *pGroup; /* PGroup this cache belongs to */ 162 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 163 int szPage; /* Size of database content section */ 164 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 165 int szAlloc; /* Total size of one pcache line */ 166 int bPurgeable; /* True if cache is purgeable */ 167 unsigned int nMin; /* Minimum number of pages reserved */ 168 unsigned int nMax; /* Configured "cache_size" value */ 169 unsigned int n90pct; /* nMax*9/10 */ 170 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 171 172 /* Hash table of all pages. The following variables may only be accessed 173 ** when the accessor is holding the PGroup mutex. 174 */ 175 unsigned int nRecyclable; /* Number of pages in the LRU list */ 176 unsigned int nPage; /* Total number of pages in apHash */ 177 unsigned int nHash; /* Number of slots in apHash[] */ 178 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 179 PgHdr1 *pFree; /* List of unused pcache-local pages */ 180 void *pBulk; /* Bulk memory used by pcache-local */ 181 }; 182 183 /* 184 ** Free slots in the allocator used to divide up the global page cache 185 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 186 */ 187 struct PgFreeslot { 188 PgFreeslot *pNext; /* Next free slot */ 189 }; 190 191 /* 192 ** Global data used by this cache. 193 */ 194 static SQLITE_WSD struct PCacheGlobal { 195 PGroup grp; /* The global PGroup for mode (2) */ 196 197 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 198 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 199 ** fixed at sqlite3_initialize() time and do not require mutex protection. 200 ** The nFreeSlot and pFree values do require mutex protection. 201 */ 202 int isInit; /* True if initialized */ 203 int separateCache; /* Use a new PGroup for each PCache */ 204 int nInitPage; /* Initial bulk allocation size */ 205 int szSlot; /* Size of each free slot */ 206 int nSlot; /* The number of pcache slots */ 207 int nReserve; /* Try to keep nFreeSlot above this */ 208 void *pStart, *pEnd; /* Bounds of global page cache memory */ 209 /* Above requires no mutex. Use mutex below for variable that follow. */ 210 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 211 PgFreeslot *pFree; /* Free page blocks */ 212 int nFreeSlot; /* Number of unused pcache slots */ 213 /* The following value requires a mutex to change. We skip the mutex on 214 ** reading because (1) most platforms read a 32-bit integer atomically and 215 ** (2) even if an incorrect value is read, no great harm is done since this 216 ** is really just an optimization. */ 217 int bUnderPressure; /* True if low on PAGECACHE memory */ 218 } pcache1_g; 219 220 /* 221 ** All code in this file should access the global structure above via the 222 ** alias "pcache1". This ensures that the WSD emulation is used when 223 ** compiling for systems that do not support real WSD. 224 */ 225 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 226 227 /* 228 ** Macros to enter and leave the PCache LRU mutex. 229 */ 230 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 231 # define pcache1EnterMutex(X) assert((X)->mutex==0) 232 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 233 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 234 #else 235 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 236 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 237 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 238 #endif 239 240 /******************************************************************************/ 241 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 242 243 244 /* 245 ** This function is called during initialization if a static buffer is 246 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 247 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 248 ** enough to contain 'n' buffers of 'sz' bytes each. 249 ** 250 ** This routine is called from sqlite3_initialize() and so it is guaranteed 251 ** to be serialized already. There is no need for further mutexing. 252 */ 253 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 254 if( pcache1.isInit ){ 255 PgFreeslot *p; 256 if( pBuf==0 ) sz = n = 0; 257 if( n==0 ) sz = 0; 258 sz = ROUNDDOWN8(sz); 259 pcache1.szSlot = sz; 260 pcache1.nSlot = pcache1.nFreeSlot = n; 261 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 262 pcache1.pStart = pBuf; 263 pcache1.pFree = 0; 264 pcache1.bUnderPressure = 0; 265 while( n-- ){ 266 p = (PgFreeslot*)pBuf; 267 p->pNext = pcache1.pFree; 268 pcache1.pFree = p; 269 pBuf = (void*)&((char*)pBuf)[sz]; 270 } 271 pcache1.pEnd = pBuf; 272 } 273 } 274 275 /* 276 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 277 ** true if pCache->pFree ends up containing one or more free pages. 278 */ 279 static int pcache1InitBulk(PCache1 *pCache){ 280 i64 szBulk; 281 char *zBulk; 282 if( pcache1.nInitPage==0 ) return 0; 283 /* Do not bother with a bulk allocation if the cache size very small */ 284 if( pCache->nMax<3 ) return 0; 285 sqlite3BeginBenignMalloc(); 286 if( pcache1.nInitPage>0 ){ 287 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 288 }else{ 289 szBulk = -1024 * (i64)pcache1.nInitPage; 290 } 291 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 292 szBulk = pCache->szAlloc*(i64)pCache->nMax; 293 } 294 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 295 sqlite3EndBenignMalloc(); 296 if( zBulk ){ 297 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 298 do{ 299 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 300 pX->page.pBuf = zBulk; 301 pX->page.pExtra = &pX[1]; 302 pX->isBulkLocal = 1; 303 pX->isAnchor = 0; 304 pX->pNext = pCache->pFree; 305 pCache->pFree = pX; 306 zBulk += pCache->szAlloc; 307 }while( --nBulk ); 308 } 309 return pCache->pFree!=0; 310 } 311 312 /* 313 ** Malloc function used within this file to allocate space from the buffer 314 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 315 ** such buffer exists or there is no space left in it, this function falls 316 ** back to sqlite3Malloc(). 317 ** 318 ** Multiple threads can run this routine at the same time. Global variables 319 ** in pcache1 need to be protected via mutex. 320 */ 321 static void *pcache1Alloc(int nByte){ 322 void *p = 0; 323 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 324 if( nByte<=pcache1.szSlot ){ 325 sqlite3_mutex_enter(pcache1.mutex); 326 p = (PgHdr1 *)pcache1.pFree; 327 if( p ){ 328 pcache1.pFree = pcache1.pFree->pNext; 329 pcache1.nFreeSlot--; 330 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 331 assert( pcache1.nFreeSlot>=0 ); 332 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 333 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 334 } 335 sqlite3_mutex_leave(pcache1.mutex); 336 } 337 if( p==0 ){ 338 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 339 ** it from sqlite3Malloc instead. 340 */ 341 p = sqlite3Malloc(nByte); 342 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 343 if( p ){ 344 int sz = sqlite3MallocSize(p); 345 sqlite3_mutex_enter(pcache1.mutex); 346 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 347 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 348 sqlite3_mutex_leave(pcache1.mutex); 349 } 350 #endif 351 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 352 } 353 return p; 354 } 355 356 /* 357 ** Free an allocated buffer obtained from pcache1Alloc(). 358 */ 359 static void pcache1Free(void *p){ 360 if( p==0 ) return; 361 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 362 PgFreeslot *pSlot; 363 sqlite3_mutex_enter(pcache1.mutex); 364 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 365 pSlot = (PgFreeslot*)p; 366 pSlot->pNext = pcache1.pFree; 367 pcache1.pFree = pSlot; 368 pcache1.nFreeSlot++; 369 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 370 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 371 sqlite3_mutex_leave(pcache1.mutex); 372 }else{ 373 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 374 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 375 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 376 { 377 int nFreed = 0; 378 nFreed = sqlite3MallocSize(p); 379 sqlite3_mutex_enter(pcache1.mutex); 380 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 381 sqlite3_mutex_leave(pcache1.mutex); 382 } 383 #endif 384 sqlite3_free(p); 385 } 386 } 387 388 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 389 /* 390 ** Return the size of a pcache allocation 391 */ 392 static int pcache1MemSize(void *p){ 393 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 394 return pcache1.szSlot; 395 }else{ 396 int iSize; 397 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 398 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 399 iSize = sqlite3MallocSize(p); 400 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 401 return iSize; 402 } 403 } 404 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 405 406 /* 407 ** Allocate a new page object initially associated with cache pCache. 408 */ 409 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 410 PgHdr1 *p = 0; 411 void *pPg; 412 413 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 414 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 415 p = pCache->pFree; 416 pCache->pFree = p->pNext; 417 p->pNext = 0; 418 }else{ 419 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 420 /* The group mutex must be released before pcache1Alloc() is called. This 421 ** is because it might call sqlite3_release_memory(), which assumes that 422 ** this mutex is not held. */ 423 assert( pcache1.separateCache==0 ); 424 assert( pCache->pGroup==&pcache1.grp ); 425 pcache1LeaveMutex(pCache->pGroup); 426 #endif 427 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 428 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 429 pPg = pcache1Alloc(pCache->szPage); 430 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 431 if( !pPg || !p ){ 432 pcache1Free(pPg); 433 sqlite3_free(p); 434 pPg = 0; 435 } 436 #else 437 pPg = pcache1Alloc(pCache->szAlloc); 438 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 439 #endif 440 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 441 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 442 pcache1EnterMutex(pCache->pGroup); 443 #endif 444 if( pPg==0 ) return 0; 445 p->page.pBuf = pPg; 446 p->page.pExtra = &p[1]; 447 p->isBulkLocal = 0; 448 p->isAnchor = 0; 449 } 450 (*pCache->pnPurgeable)++; 451 return p; 452 } 453 454 /* 455 ** Free a page object allocated by pcache1AllocPage(). 456 */ 457 static void pcache1FreePage(PgHdr1 *p){ 458 PCache1 *pCache; 459 assert( p!=0 ); 460 pCache = p->pCache; 461 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 462 if( p->isBulkLocal ){ 463 p->pNext = pCache->pFree; 464 pCache->pFree = p; 465 }else{ 466 pcache1Free(p->page.pBuf); 467 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 468 sqlite3_free(p); 469 #endif 470 } 471 (*pCache->pnPurgeable)--; 472 } 473 474 /* 475 ** Malloc function used by SQLite to obtain space from the buffer configured 476 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 477 ** exists, this function falls back to sqlite3Malloc(). 478 */ 479 void *sqlite3PageMalloc(int sz){ 480 /* During rebalance operations on a corrupt database file, it is sometimes 481 ** (rarely) possible to overread the temporary page buffer by a few bytes. 482 ** Enlarge the allocation slightly so that this does not cause problems. */ 483 return pcache1Alloc(sz + 32); 484 } 485 486 /* 487 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 488 */ 489 void sqlite3PageFree(void *p){ 490 pcache1Free(p); 491 } 492 493 494 /* 495 ** Return true if it desirable to avoid allocating a new page cache 496 ** entry. 497 ** 498 ** If memory was allocated specifically to the page cache using 499 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 500 ** it is desirable to avoid allocating a new page cache entry because 501 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 502 ** for all page cache needs and we should not need to spill the 503 ** allocation onto the heap. 504 ** 505 ** Or, the heap is used for all page cache memory but the heap is 506 ** under memory pressure, then again it is desirable to avoid 507 ** allocating a new page cache entry in order to avoid stressing 508 ** the heap even further. 509 */ 510 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 511 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 512 return pcache1.bUnderPressure; 513 }else{ 514 return sqlite3HeapNearlyFull(); 515 } 516 } 517 518 /******************************************************************************/ 519 /******** General Implementation Functions ************************************/ 520 521 /* 522 ** This function is used to resize the hash table used by the cache passed 523 ** as the first argument. 524 ** 525 ** The PCache mutex must be held when this function is called. 526 */ 527 static void pcache1ResizeHash(PCache1 *p){ 528 PgHdr1 **apNew; 529 unsigned int nNew; 530 unsigned int i; 531 532 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 533 534 nNew = p->nHash*2; 535 if( nNew<256 ){ 536 nNew = 256; 537 } 538 539 pcache1LeaveMutex(p->pGroup); 540 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 541 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 542 if( p->nHash ){ sqlite3EndBenignMalloc(); } 543 pcache1EnterMutex(p->pGroup); 544 if( apNew ){ 545 for(i=0; i<p->nHash; i++){ 546 PgHdr1 *pPage; 547 PgHdr1 *pNext = p->apHash[i]; 548 while( (pPage = pNext)!=0 ){ 549 unsigned int h = pPage->iKey % nNew; 550 pNext = pPage->pNext; 551 pPage->pNext = apNew[h]; 552 apNew[h] = pPage; 553 } 554 } 555 sqlite3_free(p->apHash); 556 p->apHash = apNew; 557 p->nHash = nNew; 558 } 559 } 560 561 /* 562 ** This function is used internally to remove the page pPage from the 563 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 564 ** LRU list, then this function is a no-op. 565 ** 566 ** The PGroup mutex must be held when this function is called. 567 */ 568 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 569 assert( pPage!=0 ); 570 assert( PAGE_IS_UNPINNED(pPage) ); 571 assert( pPage->pLruNext ); 572 assert( pPage->pLruPrev ); 573 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 574 pPage->pLruPrev->pLruNext = pPage->pLruNext; 575 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 576 pPage->pLruNext = 0; 577 /* pPage->pLruPrev = 0; 578 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 579 assert( pPage->isAnchor==0 ); 580 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 581 pPage->pCache->nRecyclable--; 582 return pPage; 583 } 584 585 586 /* 587 ** Remove the page supplied as an argument from the hash table 588 ** (PCache1.apHash structure) that it is currently stored in. 589 ** Also free the page if freePage is true. 590 ** 591 ** The PGroup mutex must be held when this function is called. 592 */ 593 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 594 unsigned int h; 595 PCache1 *pCache = pPage->pCache; 596 PgHdr1 **pp; 597 598 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 599 h = pPage->iKey % pCache->nHash; 600 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 601 *pp = (*pp)->pNext; 602 603 pCache->nPage--; 604 if( freeFlag ) pcache1FreePage(pPage); 605 } 606 607 /* 608 ** If there are currently more than nMaxPage pages allocated, try 609 ** to recycle pages to reduce the number allocated to nMaxPage. 610 */ 611 static void pcache1EnforceMaxPage(PCache1 *pCache){ 612 PGroup *pGroup = pCache->pGroup; 613 PgHdr1 *p; 614 assert( sqlite3_mutex_held(pGroup->mutex) ); 615 while( pGroup->nPurgeable>pGroup->nMaxPage 616 && (p=pGroup->lru.pLruPrev)->isAnchor==0 617 ){ 618 assert( p->pCache->pGroup==pGroup ); 619 assert( PAGE_IS_UNPINNED(p) ); 620 pcache1PinPage(p); 621 pcache1RemoveFromHash(p, 1); 622 } 623 if( pCache->nPage==0 && pCache->pBulk ){ 624 sqlite3_free(pCache->pBulk); 625 pCache->pBulk = pCache->pFree = 0; 626 } 627 } 628 629 /* 630 ** Discard all pages from cache pCache with a page number (key value) 631 ** greater than or equal to iLimit. Any pinned pages that meet this 632 ** criteria are unpinned before they are discarded. 633 ** 634 ** The PCache mutex must be held when this function is called. 635 */ 636 static void pcache1TruncateUnsafe( 637 PCache1 *pCache, /* The cache to truncate */ 638 unsigned int iLimit /* Drop pages with this pgno or larger */ 639 ){ 640 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 641 unsigned int h, iStop; 642 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 643 assert( pCache->iMaxKey >= iLimit ); 644 assert( pCache->nHash > 0 ); 645 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 646 /* If we are just shaving the last few pages off the end of the 647 ** cache, then there is no point in scanning the entire hash table. 648 ** Only scan those hash slots that might contain pages that need to 649 ** be removed. */ 650 h = iLimit % pCache->nHash; 651 iStop = pCache->iMaxKey % pCache->nHash; 652 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 653 }else{ 654 /* This is the general case where many pages are being removed. 655 ** It is necessary to scan the entire hash table */ 656 h = pCache->nHash/2; 657 iStop = h - 1; 658 } 659 for(;;){ 660 PgHdr1 **pp; 661 PgHdr1 *pPage; 662 assert( h<pCache->nHash ); 663 pp = &pCache->apHash[h]; 664 while( (pPage = *pp)!=0 ){ 665 if( pPage->iKey>=iLimit ){ 666 pCache->nPage--; 667 *pp = pPage->pNext; 668 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 669 pcache1FreePage(pPage); 670 }else{ 671 pp = &pPage->pNext; 672 TESTONLY( if( nPage>=0 ) nPage++; ) 673 } 674 } 675 if( h==iStop ) break; 676 h = (h+1) % pCache->nHash; 677 } 678 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 679 } 680 681 /******************************************************************************/ 682 /******** sqlite3_pcache Methods **********************************************/ 683 684 /* 685 ** Implementation of the sqlite3_pcache.xInit method. 686 */ 687 static int pcache1Init(void *NotUsed){ 688 UNUSED_PARAMETER(NotUsed); 689 assert( pcache1.isInit==0 ); 690 memset(&pcache1, 0, sizeof(pcache1)); 691 692 693 /* 694 ** The pcache1.separateCache variable is true if each PCache has its own 695 ** private PGroup (mode-1). pcache1.separateCache is false if the single 696 ** PGroup in pcache1.grp is used for all page caches (mode-2). 697 ** 698 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 699 ** 700 ** * Use a unified cache in single-threaded applications that have 701 ** configured a start-time buffer for use as page-cache memory using 702 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 703 ** pBuf argument. 704 ** 705 ** * Otherwise use separate caches (mode-1) 706 */ 707 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 708 pcache1.separateCache = 0; 709 #elif SQLITE_THREADSAFE 710 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 711 || sqlite3GlobalConfig.bCoreMutex>0; 712 #else 713 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 714 #endif 715 716 #if SQLITE_THREADSAFE 717 if( sqlite3GlobalConfig.bCoreMutex ){ 718 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 719 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 720 } 721 #endif 722 if( pcache1.separateCache 723 && sqlite3GlobalConfig.nPage!=0 724 && sqlite3GlobalConfig.pPage==0 725 ){ 726 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 727 }else{ 728 pcache1.nInitPage = 0; 729 } 730 pcache1.grp.mxPinned = 10; 731 pcache1.isInit = 1; 732 return SQLITE_OK; 733 } 734 735 /* 736 ** Implementation of the sqlite3_pcache.xShutdown method. 737 ** Note that the static mutex allocated in xInit does 738 ** not need to be freed. 739 */ 740 static void pcache1Shutdown(void *NotUsed){ 741 UNUSED_PARAMETER(NotUsed); 742 assert( pcache1.isInit!=0 ); 743 memset(&pcache1, 0, sizeof(pcache1)); 744 } 745 746 /* forward declaration */ 747 static void pcache1Destroy(sqlite3_pcache *p); 748 749 /* 750 ** Implementation of the sqlite3_pcache.xCreate method. 751 ** 752 ** Allocate a new cache. 753 */ 754 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 755 PCache1 *pCache; /* The newly created page cache */ 756 PGroup *pGroup; /* The group the new page cache will belong to */ 757 int sz; /* Bytes of memory required to allocate the new cache */ 758 759 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 760 assert( szExtra < 300 ); 761 762 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 763 pCache = (PCache1 *)sqlite3MallocZero(sz); 764 if( pCache ){ 765 if( pcache1.separateCache ){ 766 pGroup = (PGroup*)&pCache[1]; 767 pGroup->mxPinned = 10; 768 }else{ 769 pGroup = &pcache1.grp; 770 } 771 if( pGroup->lru.isAnchor==0 ){ 772 pGroup->lru.isAnchor = 1; 773 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 774 } 775 pCache->pGroup = pGroup; 776 pCache->szPage = szPage; 777 pCache->szExtra = szExtra; 778 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 779 pCache->bPurgeable = (bPurgeable ? 1 : 0); 780 pcache1EnterMutex(pGroup); 781 pcache1ResizeHash(pCache); 782 if( bPurgeable ){ 783 pCache->nMin = 10; 784 pGroup->nMinPage += pCache->nMin; 785 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 786 pCache->pnPurgeable = &pGroup->nPurgeable; 787 }else{ 788 static unsigned int dummyCurrentPage; 789 pCache->pnPurgeable = &dummyCurrentPage; 790 } 791 pcache1LeaveMutex(pGroup); 792 if( pCache->nHash==0 ){ 793 pcache1Destroy((sqlite3_pcache*)pCache); 794 pCache = 0; 795 } 796 } 797 return (sqlite3_pcache *)pCache; 798 } 799 800 /* 801 ** Implementation of the sqlite3_pcache.xCachesize method. 802 ** 803 ** Configure the cache_size limit for a cache. 804 */ 805 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 806 PCache1 *pCache = (PCache1 *)p; 807 if( pCache->bPurgeable ){ 808 PGroup *pGroup = pCache->pGroup; 809 pcache1EnterMutex(pGroup); 810 pGroup->nMaxPage += (nMax - pCache->nMax); 811 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 812 pCache->nMax = nMax; 813 pCache->n90pct = pCache->nMax*9/10; 814 pcache1EnforceMaxPage(pCache); 815 pcache1LeaveMutex(pGroup); 816 } 817 } 818 819 /* 820 ** Implementation of the sqlite3_pcache.xShrink method. 821 ** 822 ** Free up as much memory as possible. 823 */ 824 static void pcache1Shrink(sqlite3_pcache *p){ 825 PCache1 *pCache = (PCache1*)p; 826 if( pCache->bPurgeable ){ 827 PGroup *pGroup = pCache->pGroup; 828 int savedMaxPage; 829 pcache1EnterMutex(pGroup); 830 savedMaxPage = pGroup->nMaxPage; 831 pGroup->nMaxPage = 0; 832 pcache1EnforceMaxPage(pCache); 833 pGroup->nMaxPage = savedMaxPage; 834 pcache1LeaveMutex(pGroup); 835 } 836 } 837 838 /* 839 ** Implementation of the sqlite3_pcache.xPagecount method. 840 */ 841 static int pcache1Pagecount(sqlite3_pcache *p){ 842 int n; 843 PCache1 *pCache = (PCache1*)p; 844 pcache1EnterMutex(pCache->pGroup); 845 n = pCache->nPage; 846 pcache1LeaveMutex(pCache->pGroup); 847 return n; 848 } 849 850 851 /* 852 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 853 ** in the header of the pcache1Fetch() procedure. 854 ** 855 ** This steps are broken out into a separate procedure because they are 856 ** usually not needed, and by avoiding the stack initialization required 857 ** for these steps, the main pcache1Fetch() procedure can run faster. 858 */ 859 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 860 PCache1 *pCache, 861 unsigned int iKey, 862 int createFlag 863 ){ 864 unsigned int nPinned; 865 PGroup *pGroup = pCache->pGroup; 866 PgHdr1 *pPage = 0; 867 868 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 869 assert( pCache->nPage >= pCache->nRecyclable ); 870 nPinned = pCache->nPage - pCache->nRecyclable; 871 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 872 assert( pCache->n90pct == pCache->nMax*9/10 ); 873 if( createFlag==1 && ( 874 nPinned>=pGroup->mxPinned 875 || nPinned>=pCache->n90pct 876 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 877 )){ 878 return 0; 879 } 880 881 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 882 assert( pCache->nHash>0 && pCache->apHash ); 883 884 /* Step 4. Try to recycle a page. */ 885 if( pCache->bPurgeable 886 && !pGroup->lru.pLruPrev->isAnchor 887 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 888 ){ 889 PCache1 *pOther; 890 pPage = pGroup->lru.pLruPrev; 891 assert( PAGE_IS_UNPINNED(pPage) ); 892 pcache1RemoveFromHash(pPage, 0); 893 pcache1PinPage(pPage); 894 pOther = pPage->pCache; 895 if( pOther->szAlloc != pCache->szAlloc ){ 896 pcache1FreePage(pPage); 897 pPage = 0; 898 }else{ 899 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 900 } 901 } 902 903 /* Step 5. If a usable page buffer has still not been found, 904 ** attempt to allocate a new one. 905 */ 906 if( !pPage ){ 907 pPage = pcache1AllocPage(pCache, createFlag==1); 908 } 909 910 if( pPage ){ 911 unsigned int h = iKey % pCache->nHash; 912 pCache->nPage++; 913 pPage->iKey = iKey; 914 pPage->pNext = pCache->apHash[h]; 915 pPage->pCache = pCache; 916 pPage->pLruNext = 0; 917 /* pPage->pLruPrev = 0; 918 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 919 *(void **)pPage->page.pExtra = 0; 920 pCache->apHash[h] = pPage; 921 if( iKey>pCache->iMaxKey ){ 922 pCache->iMaxKey = iKey; 923 } 924 } 925 return pPage; 926 } 927 928 /* 929 ** Implementation of the sqlite3_pcache.xFetch method. 930 ** 931 ** Fetch a page by key value. 932 ** 933 ** Whether or not a new page may be allocated by this function depends on 934 ** the value of the createFlag argument. 0 means do not allocate a new 935 ** page. 1 means allocate a new page if space is easily available. 2 936 ** means to try really hard to allocate a new page. 937 ** 938 ** For a non-purgeable cache (a cache used as the storage for an in-memory 939 ** database) there is really no difference between createFlag 1 and 2. So 940 ** the calling function (pcache.c) will never have a createFlag of 1 on 941 ** a non-purgeable cache. 942 ** 943 ** There are three different approaches to obtaining space for a page, 944 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 945 ** 946 ** 1. Regardless of the value of createFlag, the cache is searched for a 947 ** copy of the requested page. If one is found, it is returned. 948 ** 949 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 950 ** returned. 951 ** 952 ** 3. If createFlag is 1, and the page is not already in the cache, then 953 ** return NULL (do not allocate a new page) if any of the following 954 ** conditions are true: 955 ** 956 ** (a) the number of pages pinned by the cache is greater than 957 ** PCache1.nMax, or 958 ** 959 ** (b) the number of pages pinned by the cache is greater than 960 ** the sum of nMax for all purgeable caches, less the sum of 961 ** nMin for all other purgeable caches, or 962 ** 963 ** 4. If none of the first three conditions apply and the cache is marked 964 ** as purgeable, and if one of the following is true: 965 ** 966 ** (a) The number of pages allocated for the cache is already 967 ** PCache1.nMax, or 968 ** 969 ** (b) The number of pages allocated for all purgeable caches is 970 ** already equal to or greater than the sum of nMax for all 971 ** purgeable caches, 972 ** 973 ** (c) The system is under memory pressure and wants to avoid 974 ** unnecessary pages cache entry allocations 975 ** 976 ** then attempt to recycle a page from the LRU list. If it is the right 977 ** size, return the recycled buffer. Otherwise, free the buffer and 978 ** proceed to step 5. 979 ** 980 ** 5. Otherwise, allocate and return a new page buffer. 981 ** 982 ** There are two versions of this routine. pcache1FetchWithMutex() is 983 ** the general case. pcache1FetchNoMutex() is a faster implementation for 984 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 985 ** invokes the appropriate routine. 986 */ 987 static PgHdr1 *pcache1FetchNoMutex( 988 sqlite3_pcache *p, 989 unsigned int iKey, 990 int createFlag 991 ){ 992 PCache1 *pCache = (PCache1 *)p; 993 PgHdr1 *pPage = 0; 994 995 /* Step 1: Search the hash table for an existing entry. */ 996 pPage = pCache->apHash[iKey % pCache->nHash]; 997 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 998 999 /* Step 2: If the page was found in the hash table, then return it. 1000 ** If the page was not in the hash table and createFlag is 0, abort. 1001 ** Otherwise (page not in hash and createFlag!=0) continue with 1002 ** subsequent steps to try to create the page. */ 1003 if( pPage ){ 1004 if( PAGE_IS_UNPINNED(pPage) ){ 1005 return pcache1PinPage(pPage); 1006 }else{ 1007 return pPage; 1008 } 1009 }else if( createFlag ){ 1010 /* Steps 3, 4, and 5 implemented by this subroutine */ 1011 return pcache1FetchStage2(pCache, iKey, createFlag); 1012 }else{ 1013 return 0; 1014 } 1015 } 1016 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1017 static PgHdr1 *pcache1FetchWithMutex( 1018 sqlite3_pcache *p, 1019 unsigned int iKey, 1020 int createFlag 1021 ){ 1022 PCache1 *pCache = (PCache1 *)p; 1023 PgHdr1 *pPage; 1024 1025 pcache1EnterMutex(pCache->pGroup); 1026 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1027 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1028 pcache1LeaveMutex(pCache->pGroup); 1029 return pPage; 1030 } 1031 #endif 1032 static sqlite3_pcache_page *pcache1Fetch( 1033 sqlite3_pcache *p, 1034 unsigned int iKey, 1035 int createFlag 1036 ){ 1037 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1038 PCache1 *pCache = (PCache1 *)p; 1039 #endif 1040 1041 assert( offsetof(PgHdr1,page)==0 ); 1042 assert( pCache->bPurgeable || createFlag!=1 ); 1043 assert( pCache->bPurgeable || pCache->nMin==0 ); 1044 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1045 assert( pCache->nMin==0 || pCache->bPurgeable ); 1046 assert( pCache->nHash>0 ); 1047 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1048 if( pCache->pGroup->mutex ){ 1049 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1050 }else 1051 #endif 1052 { 1053 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1054 } 1055 } 1056 1057 1058 /* 1059 ** Implementation of the sqlite3_pcache.xUnpin method. 1060 ** 1061 ** Mark a page as unpinned (eligible for asynchronous recycling). 1062 */ 1063 static void pcache1Unpin( 1064 sqlite3_pcache *p, 1065 sqlite3_pcache_page *pPg, 1066 int reuseUnlikely 1067 ){ 1068 PCache1 *pCache = (PCache1 *)p; 1069 PgHdr1 *pPage = (PgHdr1 *)pPg; 1070 PGroup *pGroup = pCache->pGroup; 1071 1072 assert( pPage->pCache==pCache ); 1073 pcache1EnterMutex(pGroup); 1074 1075 /* It is an error to call this function if the page is already 1076 ** part of the PGroup LRU list. 1077 */ 1078 assert( pPage->pLruNext==0 ); 1079 assert( PAGE_IS_PINNED(pPage) ); 1080 1081 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1082 pcache1RemoveFromHash(pPage, 1); 1083 }else{ 1084 /* Add the page to the PGroup LRU list. */ 1085 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1086 pPage->pLruPrev = &pGroup->lru; 1087 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1088 *ppFirst = pPage; 1089 pCache->nRecyclable++; 1090 } 1091 1092 pcache1LeaveMutex(pCache->pGroup); 1093 } 1094 1095 /* 1096 ** Implementation of the sqlite3_pcache.xRekey method. 1097 */ 1098 static void pcache1Rekey( 1099 sqlite3_pcache *p, 1100 sqlite3_pcache_page *pPg, 1101 unsigned int iOld, 1102 unsigned int iNew 1103 ){ 1104 PCache1 *pCache = (PCache1 *)p; 1105 PgHdr1 *pPage = (PgHdr1 *)pPg; 1106 PgHdr1 **pp; 1107 unsigned int h; 1108 assert( pPage->iKey==iOld ); 1109 assert( pPage->pCache==pCache ); 1110 1111 pcache1EnterMutex(pCache->pGroup); 1112 1113 h = iOld%pCache->nHash; 1114 pp = &pCache->apHash[h]; 1115 while( (*pp)!=pPage ){ 1116 pp = &(*pp)->pNext; 1117 } 1118 *pp = pPage->pNext; 1119 1120 h = iNew%pCache->nHash; 1121 pPage->iKey = iNew; 1122 pPage->pNext = pCache->apHash[h]; 1123 pCache->apHash[h] = pPage; 1124 if( iNew>pCache->iMaxKey ){ 1125 pCache->iMaxKey = iNew; 1126 } 1127 1128 pcache1LeaveMutex(pCache->pGroup); 1129 } 1130 1131 /* 1132 ** Implementation of the sqlite3_pcache.xTruncate method. 1133 ** 1134 ** Discard all unpinned pages in the cache with a page number equal to 1135 ** or greater than parameter iLimit. Any pinned pages with a page number 1136 ** equal to or greater than iLimit are implicitly unpinned. 1137 */ 1138 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1139 PCache1 *pCache = (PCache1 *)p; 1140 pcache1EnterMutex(pCache->pGroup); 1141 if( iLimit<=pCache->iMaxKey ){ 1142 pcache1TruncateUnsafe(pCache, iLimit); 1143 pCache->iMaxKey = iLimit-1; 1144 } 1145 pcache1LeaveMutex(pCache->pGroup); 1146 } 1147 1148 /* 1149 ** Implementation of the sqlite3_pcache.xDestroy method. 1150 ** 1151 ** Destroy a cache allocated using pcache1Create(). 1152 */ 1153 static void pcache1Destroy(sqlite3_pcache *p){ 1154 PCache1 *pCache = (PCache1 *)p; 1155 PGroup *pGroup = pCache->pGroup; 1156 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1157 pcache1EnterMutex(pGroup); 1158 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1159 assert( pGroup->nMaxPage >= pCache->nMax ); 1160 pGroup->nMaxPage -= pCache->nMax; 1161 assert( pGroup->nMinPage >= pCache->nMin ); 1162 pGroup->nMinPage -= pCache->nMin; 1163 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1164 pcache1EnforceMaxPage(pCache); 1165 pcache1LeaveMutex(pGroup); 1166 sqlite3_free(pCache->pBulk); 1167 sqlite3_free(pCache->apHash); 1168 sqlite3_free(pCache); 1169 } 1170 1171 /* 1172 ** This function is called during initialization (sqlite3_initialize()) to 1173 ** install the default pluggable cache module, assuming the user has not 1174 ** already provided an alternative. 1175 */ 1176 void sqlite3PCacheSetDefault(void){ 1177 static const sqlite3_pcache_methods2 defaultMethods = { 1178 1, /* iVersion */ 1179 0, /* pArg */ 1180 pcache1Init, /* xInit */ 1181 pcache1Shutdown, /* xShutdown */ 1182 pcache1Create, /* xCreate */ 1183 pcache1Cachesize, /* xCachesize */ 1184 pcache1Pagecount, /* xPagecount */ 1185 pcache1Fetch, /* xFetch */ 1186 pcache1Unpin, /* xUnpin */ 1187 pcache1Rekey, /* xRekey */ 1188 pcache1Truncate, /* xTruncate */ 1189 pcache1Destroy, /* xDestroy */ 1190 pcache1Shrink /* xShrink */ 1191 }; 1192 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1193 } 1194 1195 /* 1196 ** Return the size of the header on each page of this PCACHE implementation. 1197 */ 1198 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1199 1200 /* 1201 ** Return the global mutex used by this PCACHE implementation. The 1202 ** sqlite3_status() routine needs access to this mutex. 1203 */ 1204 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1205 return pcache1.mutex; 1206 } 1207 1208 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1209 /* 1210 ** This function is called to free superfluous dynamically allocated memory 1211 ** held by the pager system. Memory in use by any SQLite pager allocated 1212 ** by the current thread may be sqlite3_free()ed. 1213 ** 1214 ** nReq is the number of bytes of memory required. Once this much has 1215 ** been released, the function returns. The return value is the total number 1216 ** of bytes of memory released. 1217 */ 1218 int sqlite3PcacheReleaseMemory(int nReq){ 1219 int nFree = 0; 1220 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1221 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1222 if( sqlite3GlobalConfig.pPage==0 ){ 1223 PgHdr1 *p; 1224 pcache1EnterMutex(&pcache1.grp); 1225 while( (nReq<0 || nFree<nReq) 1226 && (p=pcache1.grp.lru.pLruPrev)!=0 1227 && p->isAnchor==0 1228 ){ 1229 nFree += pcache1MemSize(p->page.pBuf); 1230 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1231 nFree += sqlite3MemSize(p); 1232 #endif 1233 assert( PAGE_IS_UNPINNED(p) ); 1234 pcache1PinPage(p); 1235 pcache1RemoveFromHash(p, 1); 1236 } 1237 pcache1LeaveMutex(&pcache1.grp); 1238 } 1239 return nFree; 1240 } 1241 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1242 1243 #ifdef SQLITE_TEST 1244 /* 1245 ** This function is used by test procedures to inspect the internal state 1246 ** of the global cache. 1247 */ 1248 void sqlite3PcacheStats( 1249 int *pnCurrent, /* OUT: Total number of pages cached */ 1250 int *pnMax, /* OUT: Global maximum cache size */ 1251 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1252 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1253 ){ 1254 PgHdr1 *p; 1255 int nRecyclable = 0; 1256 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1257 assert( PAGE_IS_UNPINNED(p) ); 1258 nRecyclable++; 1259 } 1260 *pnCurrent = pcache1.grp.nPurgeable; 1261 *pnMax = (int)pcache1.grp.nMaxPage; 1262 *pnMin = (int)pcache1.grp.nMinPage; 1263 *pnRecyclable = nRecyclable; 1264 } 1265 #endif 1266