xref: /sqlite-3.40.0/src/pcache1.c (revision b80bb6ce)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isBulkLocal;                /* This page from bulk local storage */
100   u8 isAnchor;                   /* This is the PGroup.lru element */
101   PgHdr1 *pNext;                 /* Next in hash table chain */
102   PCache1 *pCache;               /* Cache that currently owns this page */
103   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
104   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
105 };
106 
107 /*
108 ** A page is pinned if it is no on the LRU list
109 */
110 #define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)
111 #define PAGE_IS_UNPINNED(p)  ((p)->pLruNext!=0)
112 
113 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
114 ** of one or more PCaches that are able to recycle each other's unpinned
115 ** pages when they are under memory pressure.  A PGroup is an instance of
116 ** the following object.
117 **
118 ** This page cache implementation works in one of two modes:
119 **
120 **   (1)  Every PCache is the sole member of its own PGroup.  There is
121 **        one PGroup per PCache.
122 **
123 **   (2)  There is a single global PGroup that all PCaches are a member
124 **        of.
125 **
126 ** Mode 1 uses more memory (since PCache instances are not able to rob
127 ** unused pages from other PCaches) but it also operates without a mutex,
128 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
129 ** threadsafe, but recycles pages more efficiently.
130 **
131 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
132 ** PGroup which is the pcache1.grp global variable and its mutex is
133 ** SQLITE_MUTEX_STATIC_LRU.
134 */
135 struct PGroup {
136   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
137   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
138   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
139   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
140   unsigned int nPurgeable;       /* Number of purgeable pages allocated */
141   PgHdr1 lru;                    /* The beginning and end of the LRU list */
142 };
143 
144 /* Each page cache is an instance of the following object.  Every
145 ** open database file (including each in-memory database and each
146 ** temporary or transient database) has a single page cache which
147 ** is an instance of this object.
148 **
149 ** Pointers to structures of this type are cast and returned as
150 ** opaque sqlite3_pcache* handles.
151 */
152 struct PCache1 {
153   /* Cache configuration parameters. Page size (szPage) and the purgeable
154   ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
155   ** cache is created and are never changed thereafter. nMax may be
156   ** modified at any time by a call to the pcache1Cachesize() method.
157   ** The PGroup mutex must be held when accessing nMax.
158   */
159   PGroup *pGroup;                     /* PGroup this cache belongs to */
160   unsigned int *pnPurgeable;          /* Pointer to pGroup->nPurgeable */
161   int szPage;                         /* Size of database content section */
162   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
163   int szAlloc;                        /* Total size of one pcache line */
164   int bPurgeable;                     /* True if cache is purgeable */
165   unsigned int nMin;                  /* Minimum number of pages reserved */
166   unsigned int nMax;                  /* Configured "cache_size" value */
167   unsigned int n90pct;                /* nMax*9/10 */
168   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
169 
170   /* Hash table of all pages. The following variables may only be accessed
171   ** when the accessor is holding the PGroup mutex.
172   */
173   unsigned int nRecyclable;           /* Number of pages in the LRU list */
174   unsigned int nPage;                 /* Total number of pages in apHash */
175   unsigned int nHash;                 /* Number of slots in apHash[] */
176   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
177   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
178   void *pBulk;                        /* Bulk memory used by pcache-local */
179 };
180 
181 /*
182 ** Free slots in the allocator used to divide up the global page cache
183 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
184 */
185 struct PgFreeslot {
186   PgFreeslot *pNext;  /* Next free slot */
187 };
188 
189 /*
190 ** Global data used by this cache.
191 */
192 static SQLITE_WSD struct PCacheGlobal {
193   PGroup grp;                    /* The global PGroup for mode (2) */
194 
195   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
196   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
197   ** fixed at sqlite3_initialize() time and do not require mutex protection.
198   ** The nFreeSlot and pFree values do require mutex protection.
199   */
200   int isInit;                    /* True if initialized */
201   int separateCache;             /* Use a new PGroup for each PCache */
202   int nInitPage;                 /* Initial bulk allocation size */
203   int szSlot;                    /* Size of each free slot */
204   int nSlot;                     /* The number of pcache slots */
205   int nReserve;                  /* Try to keep nFreeSlot above this */
206   void *pStart, *pEnd;           /* Bounds of global page cache memory */
207   /* Above requires no mutex.  Use mutex below for variable that follow. */
208   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
209   PgFreeslot *pFree;             /* Free page blocks */
210   int nFreeSlot;                 /* Number of unused pcache slots */
211   /* The following value requires a mutex to change.  We skip the mutex on
212   ** reading because (1) most platforms read a 32-bit integer atomically and
213   ** (2) even if an incorrect value is read, no great harm is done since this
214   ** is really just an optimization. */
215   int bUnderPressure;            /* True if low on PAGECACHE memory */
216 } pcache1_g;
217 
218 /*
219 ** All code in this file should access the global structure above via the
220 ** alias "pcache1". This ensures that the WSD emulation is used when
221 ** compiling for systems that do not support real WSD.
222 */
223 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
224 
225 /*
226 ** Macros to enter and leave the PCache LRU mutex.
227 */
228 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
229 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
230 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
231 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
232 #else
233 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
234 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
235 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
236 #endif
237 
238 /******************************************************************************/
239 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
240 
241 
242 /*
243 ** This function is called during initialization if a static buffer is
244 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
245 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
246 ** enough to contain 'n' buffers of 'sz' bytes each.
247 **
248 ** This routine is called from sqlite3_initialize() and so it is guaranteed
249 ** to be serialized already.  There is no need for further mutexing.
250 */
251 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
252   if( pcache1.isInit ){
253     PgFreeslot *p;
254     if( pBuf==0 ) sz = n = 0;
255     if( n==0 ) sz = 0;
256     sz = ROUNDDOWN8(sz);
257     pcache1.szSlot = sz;
258     pcache1.nSlot = pcache1.nFreeSlot = n;
259     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
260     pcache1.pStart = pBuf;
261     pcache1.pFree = 0;
262     pcache1.bUnderPressure = 0;
263     while( n-- ){
264       p = (PgFreeslot*)pBuf;
265       p->pNext = pcache1.pFree;
266       pcache1.pFree = p;
267       pBuf = (void*)&((char*)pBuf)[sz];
268     }
269     pcache1.pEnd = pBuf;
270   }
271 }
272 
273 /*
274 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
275 ** true if pCache->pFree ends up containing one or more free pages.
276 */
277 static int pcache1InitBulk(PCache1 *pCache){
278   i64 szBulk;
279   char *zBulk;
280   if( pcache1.nInitPage==0 ) return 0;
281   /* Do not bother with a bulk allocation if the cache size very small */
282   if( pCache->nMax<3 ) return 0;
283   sqlite3BeginBenignMalloc();
284   if( pcache1.nInitPage>0 ){
285     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
286   }else{
287     szBulk = -1024 * (i64)pcache1.nInitPage;
288   }
289   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
290     szBulk = pCache->szAlloc*(i64)pCache->nMax;
291   }
292   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
293   sqlite3EndBenignMalloc();
294   if( zBulk ){
295     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
296     do{
297       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
298       pX->page.pBuf = zBulk;
299       pX->page.pExtra = &pX[1];
300       pX->isBulkLocal = 1;
301       pX->isAnchor = 0;
302       pX->pNext = pCache->pFree;
303       pCache->pFree = pX;
304       zBulk += pCache->szAlloc;
305     }while( --nBulk );
306   }
307   return pCache->pFree!=0;
308 }
309 
310 /*
311 ** Malloc function used within this file to allocate space from the buffer
312 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
313 ** such buffer exists or there is no space left in it, this function falls
314 ** back to sqlite3Malloc().
315 **
316 ** Multiple threads can run this routine at the same time.  Global variables
317 ** in pcache1 need to be protected via mutex.
318 */
319 static void *pcache1Alloc(int nByte){
320   void *p = 0;
321   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
322   if( nByte<=pcache1.szSlot ){
323     sqlite3_mutex_enter(pcache1.mutex);
324     p = (PgHdr1 *)pcache1.pFree;
325     if( p ){
326       pcache1.pFree = pcache1.pFree->pNext;
327       pcache1.nFreeSlot--;
328       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
329       assert( pcache1.nFreeSlot>=0 );
330       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
331       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
332     }
333     sqlite3_mutex_leave(pcache1.mutex);
334   }
335   if( p==0 ){
336     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
337     ** it from sqlite3Malloc instead.
338     */
339     p = sqlite3Malloc(nByte);
340 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
341     if( p ){
342       int sz = sqlite3MallocSize(p);
343       sqlite3_mutex_enter(pcache1.mutex);
344       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
345       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
346       sqlite3_mutex_leave(pcache1.mutex);
347     }
348 #endif
349     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
350   }
351   return p;
352 }
353 
354 /*
355 ** Free an allocated buffer obtained from pcache1Alloc().
356 */
357 static void pcache1Free(void *p){
358   if( p==0 ) return;
359   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
360     PgFreeslot *pSlot;
361     sqlite3_mutex_enter(pcache1.mutex);
362     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
363     pSlot = (PgFreeslot*)p;
364     pSlot->pNext = pcache1.pFree;
365     pcache1.pFree = pSlot;
366     pcache1.nFreeSlot++;
367     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
368     assert( pcache1.nFreeSlot<=pcache1.nSlot );
369     sqlite3_mutex_leave(pcache1.mutex);
370   }else{
371     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
372     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
373 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
374     {
375       int nFreed = 0;
376       nFreed = sqlite3MallocSize(p);
377       sqlite3_mutex_enter(pcache1.mutex);
378       sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
379       sqlite3_mutex_leave(pcache1.mutex);
380     }
381 #endif
382     sqlite3_free(p);
383   }
384 }
385 
386 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
387 /*
388 ** Return the size of a pcache allocation
389 */
390 static int pcache1MemSize(void *p){
391   if( p>=pcache1.pStart && p<pcache1.pEnd ){
392     return pcache1.szSlot;
393   }else{
394     int iSize;
395     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
396     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
397     iSize = sqlite3MallocSize(p);
398     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
399     return iSize;
400   }
401 }
402 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
403 
404 /*
405 ** Allocate a new page object initially associated with cache pCache.
406 */
407 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
408   PgHdr1 *p = 0;
409   void *pPg;
410 
411   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
412   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
413     p = pCache->pFree;
414     pCache->pFree = p->pNext;
415     p->pNext = 0;
416   }else{
417 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
418     /* The group mutex must be released before pcache1Alloc() is called. This
419     ** is because it might call sqlite3_release_memory(), which assumes that
420     ** this mutex is not held. */
421     assert( pcache1.separateCache==0 );
422     assert( pCache->pGroup==&pcache1.grp );
423     pcache1LeaveMutex(pCache->pGroup);
424 #endif
425     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
426 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
427     pPg = pcache1Alloc(pCache->szPage);
428     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
429     if( !pPg || !p ){
430       pcache1Free(pPg);
431       sqlite3_free(p);
432       pPg = 0;
433     }
434 #else
435     pPg = pcache1Alloc(pCache->szAlloc);
436     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
437 #endif
438     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
439 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
440     pcache1EnterMutex(pCache->pGroup);
441 #endif
442     if( pPg==0 ) return 0;
443     p->page.pBuf = pPg;
444     p->page.pExtra = &p[1];
445     p->isBulkLocal = 0;
446     p->isAnchor = 0;
447   }
448   (*pCache->pnPurgeable)++;
449   return p;
450 }
451 
452 /*
453 ** Free a page object allocated by pcache1AllocPage().
454 */
455 static void pcache1FreePage(PgHdr1 *p){
456   PCache1 *pCache;
457   assert( p!=0 );
458   pCache = p->pCache;
459   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
460   if( p->isBulkLocal ){
461     p->pNext = pCache->pFree;
462     pCache->pFree = p;
463   }else{
464     pcache1Free(p->page.pBuf);
465 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
466     sqlite3_free(p);
467 #endif
468   }
469   (*pCache->pnPurgeable)--;
470 }
471 
472 /*
473 ** Malloc function used by SQLite to obtain space from the buffer configured
474 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
475 ** exists, this function falls back to sqlite3Malloc().
476 */
477 void *sqlite3PageMalloc(int sz){
478   return pcache1Alloc(sz);
479 }
480 
481 /*
482 ** Free an allocated buffer obtained from sqlite3PageMalloc().
483 */
484 void sqlite3PageFree(void *p){
485   pcache1Free(p);
486 }
487 
488 
489 /*
490 ** Return true if it desirable to avoid allocating a new page cache
491 ** entry.
492 **
493 ** If memory was allocated specifically to the page cache using
494 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
495 ** it is desirable to avoid allocating a new page cache entry because
496 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
497 ** for all page cache needs and we should not need to spill the
498 ** allocation onto the heap.
499 **
500 ** Or, the heap is used for all page cache memory but the heap is
501 ** under memory pressure, then again it is desirable to avoid
502 ** allocating a new page cache entry in order to avoid stressing
503 ** the heap even further.
504 */
505 static int pcache1UnderMemoryPressure(PCache1 *pCache){
506   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
507     return pcache1.bUnderPressure;
508   }else{
509     return sqlite3HeapNearlyFull();
510   }
511 }
512 
513 /******************************************************************************/
514 /******** General Implementation Functions ************************************/
515 
516 /*
517 ** This function is used to resize the hash table used by the cache passed
518 ** as the first argument.
519 **
520 ** The PCache mutex must be held when this function is called.
521 */
522 static void pcache1ResizeHash(PCache1 *p){
523   PgHdr1 **apNew;
524   unsigned int nNew;
525   unsigned int i;
526 
527   assert( sqlite3_mutex_held(p->pGroup->mutex) );
528 
529   nNew = p->nHash*2;
530   if( nNew<256 ){
531     nNew = 256;
532   }
533 
534   pcache1LeaveMutex(p->pGroup);
535   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
536   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
537   if( p->nHash ){ sqlite3EndBenignMalloc(); }
538   pcache1EnterMutex(p->pGroup);
539   if( apNew ){
540     for(i=0; i<p->nHash; i++){
541       PgHdr1 *pPage;
542       PgHdr1 *pNext = p->apHash[i];
543       while( (pPage = pNext)!=0 ){
544         unsigned int h = pPage->iKey % nNew;
545         pNext = pPage->pNext;
546         pPage->pNext = apNew[h];
547         apNew[h] = pPage;
548       }
549     }
550     sqlite3_free(p->apHash);
551     p->apHash = apNew;
552     p->nHash = nNew;
553   }
554 }
555 
556 /*
557 ** This function is used internally to remove the page pPage from the
558 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
559 ** LRU list, then this function is a no-op.
560 **
561 ** The PGroup mutex must be held when this function is called.
562 */
563 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
564   assert( pPage!=0 );
565   assert( PAGE_IS_UNPINNED(pPage) );
566   assert( pPage->pLruNext );
567   assert( pPage->pLruPrev );
568   assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
569   pPage->pLruPrev->pLruNext = pPage->pLruNext;
570   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
571   pPage->pLruNext = 0;
572   pPage->pLruPrev = 0;
573   assert( pPage->isAnchor==0 );
574   assert( pPage->pCache->pGroup->lru.isAnchor==1 );
575   pPage->pCache->nRecyclable--;
576   return pPage;
577 }
578 
579 
580 /*
581 ** Remove the page supplied as an argument from the hash table
582 ** (PCache1.apHash structure) that it is currently stored in.
583 ** Also free the page if freePage is true.
584 **
585 ** The PGroup mutex must be held when this function is called.
586 */
587 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
588   unsigned int h;
589   PCache1 *pCache = pPage->pCache;
590   PgHdr1 **pp;
591 
592   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
593   h = pPage->iKey % pCache->nHash;
594   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
595   *pp = (*pp)->pNext;
596 
597   pCache->nPage--;
598   if( freeFlag ) pcache1FreePage(pPage);
599 }
600 
601 /*
602 ** If there are currently more than nMaxPage pages allocated, try
603 ** to recycle pages to reduce the number allocated to nMaxPage.
604 */
605 static void pcache1EnforceMaxPage(PCache1 *pCache){
606   PGroup *pGroup = pCache->pGroup;
607   PgHdr1 *p;
608   assert( sqlite3_mutex_held(pGroup->mutex) );
609   while( pGroup->nPurgeable>pGroup->nMaxPage
610       && (p=pGroup->lru.pLruPrev)->isAnchor==0
611   ){
612     assert( p->pCache->pGroup==pGroup );
613     assert( PAGE_IS_UNPINNED(p) );
614     pcache1PinPage(p);
615     pcache1RemoveFromHash(p, 1);
616   }
617   if( pCache->nPage==0 && pCache->pBulk ){
618     sqlite3_free(pCache->pBulk);
619     pCache->pBulk = pCache->pFree = 0;
620   }
621 }
622 
623 /*
624 ** Discard all pages from cache pCache with a page number (key value)
625 ** greater than or equal to iLimit. Any pinned pages that meet this
626 ** criteria are unpinned before they are discarded.
627 **
628 ** The PCache mutex must be held when this function is called.
629 */
630 static void pcache1TruncateUnsafe(
631   PCache1 *pCache,             /* The cache to truncate */
632   unsigned int iLimit          /* Drop pages with this pgno or larger */
633 ){
634   TESTONLY( int nPage = 0; )  /* To assert pCache->nPage is correct */
635   unsigned int h, iStop;
636   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
637   assert( pCache->iMaxKey >= iLimit );
638   assert( pCache->nHash > 0 );
639   if( pCache->iMaxKey - iLimit < pCache->nHash ){
640     /* If we are just shaving the last few pages off the end of the
641     ** cache, then there is no point in scanning the entire hash table.
642     ** Only scan those hash slots that might contain pages that need to
643     ** be removed. */
644     h = iLimit % pCache->nHash;
645     iStop = pCache->iMaxKey % pCache->nHash;
646     TESTONLY( nPage = -10; )  /* Disable the pCache->nPage validity check */
647   }else{
648     /* This is the general case where many pages are being removed.
649     ** It is necessary to scan the entire hash table */
650     h = pCache->nHash/2;
651     iStop = h - 1;
652   }
653   for(;;){
654     PgHdr1 **pp;
655     PgHdr1 *pPage;
656     assert( h<pCache->nHash );
657     pp = &pCache->apHash[h];
658     while( (pPage = *pp)!=0 ){
659       if( pPage->iKey>=iLimit ){
660         pCache->nPage--;
661         *pp = pPage->pNext;
662         if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
663         pcache1FreePage(pPage);
664       }else{
665         pp = &pPage->pNext;
666         TESTONLY( if( nPage>=0 ) nPage++; )
667       }
668     }
669     if( h==iStop ) break;
670     h = (h+1) % pCache->nHash;
671   }
672   assert( nPage<0 || pCache->nPage==(unsigned)nPage );
673 }
674 
675 /******************************************************************************/
676 /******** sqlite3_pcache Methods **********************************************/
677 
678 /*
679 ** Implementation of the sqlite3_pcache.xInit method.
680 */
681 static int pcache1Init(void *NotUsed){
682   UNUSED_PARAMETER(NotUsed);
683   assert( pcache1.isInit==0 );
684   memset(&pcache1, 0, sizeof(pcache1));
685 
686 
687   /*
688   ** The pcache1.separateCache variable is true if each PCache has its own
689   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
690   ** PGroup in pcache1.grp is used for all page caches (mode-2).
691   **
692   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
693   **
694   **   *  Use a unified cache in single-threaded applications that have
695   **      configured a start-time buffer for use as page-cache memory using
696   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
697   **      pBuf argument.
698   **
699   **   *  Otherwise use separate caches (mode-1)
700   */
701 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
702   pcache1.separateCache = 0;
703 #elif SQLITE_THREADSAFE
704   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
705                           || sqlite3GlobalConfig.bCoreMutex>0;
706 #else
707   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
708 #endif
709 
710 #if SQLITE_THREADSAFE
711   if( sqlite3GlobalConfig.bCoreMutex ){
712     pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
713     pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
714   }
715 #endif
716   if( pcache1.separateCache
717    && sqlite3GlobalConfig.nPage!=0
718    && sqlite3GlobalConfig.pPage==0
719   ){
720     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
721   }else{
722     pcache1.nInitPage = 0;
723   }
724   pcache1.grp.mxPinned = 10;
725   pcache1.isInit = 1;
726   return SQLITE_OK;
727 }
728 
729 /*
730 ** Implementation of the sqlite3_pcache.xShutdown method.
731 ** Note that the static mutex allocated in xInit does
732 ** not need to be freed.
733 */
734 static void pcache1Shutdown(void *NotUsed){
735   UNUSED_PARAMETER(NotUsed);
736   assert( pcache1.isInit!=0 );
737   memset(&pcache1, 0, sizeof(pcache1));
738 }
739 
740 /* forward declaration */
741 static void pcache1Destroy(sqlite3_pcache *p);
742 
743 /*
744 ** Implementation of the sqlite3_pcache.xCreate method.
745 **
746 ** Allocate a new cache.
747 */
748 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
749   PCache1 *pCache;      /* The newly created page cache */
750   PGroup *pGroup;       /* The group the new page cache will belong to */
751   int sz;               /* Bytes of memory required to allocate the new cache */
752 
753   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
754   assert( szExtra < 300 );
755 
756   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
757   pCache = (PCache1 *)sqlite3MallocZero(sz);
758   if( pCache ){
759     if( pcache1.separateCache ){
760       pGroup = (PGroup*)&pCache[1];
761       pGroup->mxPinned = 10;
762     }else{
763       pGroup = &pcache1.grp;
764     }
765     if( pGroup->lru.isAnchor==0 ){
766       pGroup->lru.isAnchor = 1;
767       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
768     }
769     pCache->pGroup = pGroup;
770     pCache->szPage = szPage;
771     pCache->szExtra = szExtra;
772     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
773     pCache->bPurgeable = (bPurgeable ? 1 : 0);
774     pcache1EnterMutex(pGroup);
775     pcache1ResizeHash(pCache);
776     if( bPurgeable ){
777       pCache->nMin = 10;
778       pGroup->nMinPage += pCache->nMin;
779       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
780       pCache->pnPurgeable = &pGroup->nPurgeable;
781     }else{
782       static unsigned int dummyCurrentPage;
783       pCache->pnPurgeable = &dummyCurrentPage;
784     }
785     pcache1LeaveMutex(pGroup);
786     if( pCache->nHash==0 ){
787       pcache1Destroy((sqlite3_pcache*)pCache);
788       pCache = 0;
789     }
790   }
791   return (sqlite3_pcache *)pCache;
792 }
793 
794 /*
795 ** Implementation of the sqlite3_pcache.xCachesize method.
796 **
797 ** Configure the cache_size limit for a cache.
798 */
799 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
800   PCache1 *pCache = (PCache1 *)p;
801   if( pCache->bPurgeable ){
802     PGroup *pGroup = pCache->pGroup;
803     pcache1EnterMutex(pGroup);
804     pGroup->nMaxPage += (nMax - pCache->nMax);
805     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
806     pCache->nMax = nMax;
807     pCache->n90pct = pCache->nMax*9/10;
808     pcache1EnforceMaxPage(pCache);
809     pcache1LeaveMutex(pGroup);
810   }
811 }
812 
813 /*
814 ** Implementation of the sqlite3_pcache.xShrink method.
815 **
816 ** Free up as much memory as possible.
817 */
818 static void pcache1Shrink(sqlite3_pcache *p){
819   PCache1 *pCache = (PCache1*)p;
820   if( pCache->bPurgeable ){
821     PGroup *pGroup = pCache->pGroup;
822     int savedMaxPage;
823     pcache1EnterMutex(pGroup);
824     savedMaxPage = pGroup->nMaxPage;
825     pGroup->nMaxPage = 0;
826     pcache1EnforceMaxPage(pCache);
827     pGroup->nMaxPage = savedMaxPage;
828     pcache1LeaveMutex(pGroup);
829   }
830 }
831 
832 /*
833 ** Implementation of the sqlite3_pcache.xPagecount method.
834 */
835 static int pcache1Pagecount(sqlite3_pcache *p){
836   int n;
837   PCache1 *pCache = (PCache1*)p;
838   pcache1EnterMutex(pCache->pGroup);
839   n = pCache->nPage;
840   pcache1LeaveMutex(pCache->pGroup);
841   return n;
842 }
843 
844 
845 /*
846 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
847 ** in the header of the pcache1Fetch() procedure.
848 **
849 ** This steps are broken out into a separate procedure because they are
850 ** usually not needed, and by avoiding the stack initialization required
851 ** for these steps, the main pcache1Fetch() procedure can run faster.
852 */
853 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
854   PCache1 *pCache,
855   unsigned int iKey,
856   int createFlag
857 ){
858   unsigned int nPinned;
859   PGroup *pGroup = pCache->pGroup;
860   PgHdr1 *pPage = 0;
861 
862   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
863   assert( pCache->nPage >= pCache->nRecyclable );
864   nPinned = pCache->nPage - pCache->nRecyclable;
865   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
866   assert( pCache->n90pct == pCache->nMax*9/10 );
867   if( createFlag==1 && (
868         nPinned>=pGroup->mxPinned
869      || nPinned>=pCache->n90pct
870      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
871   )){
872     return 0;
873   }
874 
875   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
876   assert( pCache->nHash>0 && pCache->apHash );
877 
878   /* Step 4. Try to recycle a page. */
879   if( pCache->bPurgeable
880    && !pGroup->lru.pLruPrev->isAnchor
881    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
882   ){
883     PCache1 *pOther;
884     pPage = pGroup->lru.pLruPrev;
885     assert( PAGE_IS_UNPINNED(pPage) );
886     pcache1RemoveFromHash(pPage, 0);
887     pcache1PinPage(pPage);
888     pOther = pPage->pCache;
889     if( pOther->szAlloc != pCache->szAlloc ){
890       pcache1FreePage(pPage);
891       pPage = 0;
892     }else{
893       pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
894     }
895   }
896 
897   /* Step 5. If a usable page buffer has still not been found,
898   ** attempt to allocate a new one.
899   */
900   if( !pPage ){
901     pPage = pcache1AllocPage(pCache, createFlag==1);
902   }
903 
904   if( pPage ){
905     unsigned int h = iKey % pCache->nHash;
906     pCache->nPage++;
907     pPage->iKey = iKey;
908     pPage->pNext = pCache->apHash[h];
909     pPage->pCache = pCache;
910     pPage->pLruPrev = 0;
911     pPage->pLruNext = 0;
912     *(void **)pPage->page.pExtra = 0;
913     pCache->apHash[h] = pPage;
914     if( iKey>pCache->iMaxKey ){
915       pCache->iMaxKey = iKey;
916     }
917   }
918   return pPage;
919 }
920 
921 /*
922 ** Implementation of the sqlite3_pcache.xFetch method.
923 **
924 ** Fetch a page by key value.
925 **
926 ** Whether or not a new page may be allocated by this function depends on
927 ** the value of the createFlag argument.  0 means do not allocate a new
928 ** page.  1 means allocate a new page if space is easily available.  2
929 ** means to try really hard to allocate a new page.
930 **
931 ** For a non-purgeable cache (a cache used as the storage for an in-memory
932 ** database) there is really no difference between createFlag 1 and 2.  So
933 ** the calling function (pcache.c) will never have a createFlag of 1 on
934 ** a non-purgeable cache.
935 **
936 ** There are three different approaches to obtaining space for a page,
937 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
938 **
939 **   1. Regardless of the value of createFlag, the cache is searched for a
940 **      copy of the requested page. If one is found, it is returned.
941 **
942 **   2. If createFlag==0 and the page is not already in the cache, NULL is
943 **      returned.
944 **
945 **   3. If createFlag is 1, and the page is not already in the cache, then
946 **      return NULL (do not allocate a new page) if any of the following
947 **      conditions are true:
948 **
949 **       (a) the number of pages pinned by the cache is greater than
950 **           PCache1.nMax, or
951 **
952 **       (b) the number of pages pinned by the cache is greater than
953 **           the sum of nMax for all purgeable caches, less the sum of
954 **           nMin for all other purgeable caches, or
955 **
956 **   4. If none of the first three conditions apply and the cache is marked
957 **      as purgeable, and if one of the following is true:
958 **
959 **       (a) The number of pages allocated for the cache is already
960 **           PCache1.nMax, or
961 **
962 **       (b) The number of pages allocated for all purgeable caches is
963 **           already equal to or greater than the sum of nMax for all
964 **           purgeable caches,
965 **
966 **       (c) The system is under memory pressure and wants to avoid
967 **           unnecessary pages cache entry allocations
968 **
969 **      then attempt to recycle a page from the LRU list. If it is the right
970 **      size, return the recycled buffer. Otherwise, free the buffer and
971 **      proceed to step 5.
972 **
973 **   5. Otherwise, allocate and return a new page buffer.
974 **
975 ** There are two versions of this routine.  pcache1FetchWithMutex() is
976 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
977 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
978 ** invokes the appropriate routine.
979 */
980 static PgHdr1 *pcache1FetchNoMutex(
981   sqlite3_pcache *p,
982   unsigned int iKey,
983   int createFlag
984 ){
985   PCache1 *pCache = (PCache1 *)p;
986   PgHdr1 *pPage = 0;
987 
988   /* Step 1: Search the hash table for an existing entry. */
989   pPage = pCache->apHash[iKey % pCache->nHash];
990   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
991 
992   /* Step 2: If the page was found in the hash table, then return it.
993   ** If the page was not in the hash table and createFlag is 0, abort.
994   ** Otherwise (page not in hash and createFlag!=0) continue with
995   ** subsequent steps to try to create the page. */
996   if( pPage ){
997     if( PAGE_IS_UNPINNED(pPage) ){
998       return pcache1PinPage(pPage);
999     }else{
1000       return pPage;
1001     }
1002   }else if( createFlag ){
1003     /* Steps 3, 4, and 5 implemented by this subroutine */
1004     return pcache1FetchStage2(pCache, iKey, createFlag);
1005   }else{
1006     return 0;
1007   }
1008 }
1009 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1010 static PgHdr1 *pcache1FetchWithMutex(
1011   sqlite3_pcache *p,
1012   unsigned int iKey,
1013   int createFlag
1014 ){
1015   PCache1 *pCache = (PCache1 *)p;
1016   PgHdr1 *pPage;
1017 
1018   pcache1EnterMutex(pCache->pGroup);
1019   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1020   assert( pPage==0 || pCache->iMaxKey>=iKey );
1021   pcache1LeaveMutex(pCache->pGroup);
1022   return pPage;
1023 }
1024 #endif
1025 static sqlite3_pcache_page *pcache1Fetch(
1026   sqlite3_pcache *p,
1027   unsigned int iKey,
1028   int createFlag
1029 ){
1030 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1031   PCache1 *pCache = (PCache1 *)p;
1032 #endif
1033 
1034   assert( offsetof(PgHdr1,page)==0 );
1035   assert( pCache->bPurgeable || createFlag!=1 );
1036   assert( pCache->bPurgeable || pCache->nMin==0 );
1037   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1038   assert( pCache->nMin==0 || pCache->bPurgeable );
1039   assert( pCache->nHash>0 );
1040 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1041   if( pCache->pGroup->mutex ){
1042     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1043   }else
1044 #endif
1045   {
1046     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1047   }
1048 }
1049 
1050 
1051 /*
1052 ** Implementation of the sqlite3_pcache.xUnpin method.
1053 **
1054 ** Mark a page as unpinned (eligible for asynchronous recycling).
1055 */
1056 static void pcache1Unpin(
1057   sqlite3_pcache *p,
1058   sqlite3_pcache_page *pPg,
1059   int reuseUnlikely
1060 ){
1061   PCache1 *pCache = (PCache1 *)p;
1062   PgHdr1 *pPage = (PgHdr1 *)pPg;
1063   PGroup *pGroup = pCache->pGroup;
1064 
1065   assert( pPage->pCache==pCache );
1066   pcache1EnterMutex(pGroup);
1067 
1068   /* It is an error to call this function if the page is already
1069   ** part of the PGroup LRU list.
1070   */
1071   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1072   assert( PAGE_IS_PINNED(pPage) );
1073 
1074   if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1075     pcache1RemoveFromHash(pPage, 1);
1076   }else{
1077     /* Add the page to the PGroup LRU list. */
1078     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1079     pPage->pLruPrev = &pGroup->lru;
1080     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1081     *ppFirst = pPage;
1082     pCache->nRecyclable++;
1083   }
1084 
1085   pcache1LeaveMutex(pCache->pGroup);
1086 }
1087 
1088 /*
1089 ** Implementation of the sqlite3_pcache.xRekey method.
1090 */
1091 static void pcache1Rekey(
1092   sqlite3_pcache *p,
1093   sqlite3_pcache_page *pPg,
1094   unsigned int iOld,
1095   unsigned int iNew
1096 ){
1097   PCache1 *pCache = (PCache1 *)p;
1098   PgHdr1 *pPage = (PgHdr1 *)pPg;
1099   PgHdr1 **pp;
1100   unsigned int h;
1101   assert( pPage->iKey==iOld );
1102   assert( pPage->pCache==pCache );
1103 
1104   pcache1EnterMutex(pCache->pGroup);
1105 
1106   h = iOld%pCache->nHash;
1107   pp = &pCache->apHash[h];
1108   while( (*pp)!=pPage ){
1109     pp = &(*pp)->pNext;
1110   }
1111   *pp = pPage->pNext;
1112 
1113   h = iNew%pCache->nHash;
1114   pPage->iKey = iNew;
1115   pPage->pNext = pCache->apHash[h];
1116   pCache->apHash[h] = pPage;
1117   if( iNew>pCache->iMaxKey ){
1118     pCache->iMaxKey = iNew;
1119   }
1120 
1121   pcache1LeaveMutex(pCache->pGroup);
1122 }
1123 
1124 /*
1125 ** Implementation of the sqlite3_pcache.xTruncate method.
1126 **
1127 ** Discard all unpinned pages in the cache with a page number equal to
1128 ** or greater than parameter iLimit. Any pinned pages with a page number
1129 ** equal to or greater than iLimit are implicitly unpinned.
1130 */
1131 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1132   PCache1 *pCache = (PCache1 *)p;
1133   pcache1EnterMutex(pCache->pGroup);
1134   if( iLimit<=pCache->iMaxKey ){
1135     pcache1TruncateUnsafe(pCache, iLimit);
1136     pCache->iMaxKey = iLimit-1;
1137   }
1138   pcache1LeaveMutex(pCache->pGroup);
1139 }
1140 
1141 /*
1142 ** Implementation of the sqlite3_pcache.xDestroy method.
1143 **
1144 ** Destroy a cache allocated using pcache1Create().
1145 */
1146 static void pcache1Destroy(sqlite3_pcache *p){
1147   PCache1 *pCache = (PCache1 *)p;
1148   PGroup *pGroup = pCache->pGroup;
1149   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1150   pcache1EnterMutex(pGroup);
1151   if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1152   assert( pGroup->nMaxPage >= pCache->nMax );
1153   pGroup->nMaxPage -= pCache->nMax;
1154   assert( pGroup->nMinPage >= pCache->nMin );
1155   pGroup->nMinPage -= pCache->nMin;
1156   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1157   pcache1EnforceMaxPage(pCache);
1158   pcache1LeaveMutex(pGroup);
1159   sqlite3_free(pCache->pBulk);
1160   sqlite3_free(pCache->apHash);
1161   sqlite3_free(pCache);
1162 }
1163 
1164 /*
1165 ** This function is called during initialization (sqlite3_initialize()) to
1166 ** install the default pluggable cache module, assuming the user has not
1167 ** already provided an alternative.
1168 */
1169 void sqlite3PCacheSetDefault(void){
1170   static const sqlite3_pcache_methods2 defaultMethods = {
1171     1,                       /* iVersion */
1172     0,                       /* pArg */
1173     pcache1Init,             /* xInit */
1174     pcache1Shutdown,         /* xShutdown */
1175     pcache1Create,           /* xCreate */
1176     pcache1Cachesize,        /* xCachesize */
1177     pcache1Pagecount,        /* xPagecount */
1178     pcache1Fetch,            /* xFetch */
1179     pcache1Unpin,            /* xUnpin */
1180     pcache1Rekey,            /* xRekey */
1181     pcache1Truncate,         /* xTruncate */
1182     pcache1Destroy,          /* xDestroy */
1183     pcache1Shrink            /* xShrink */
1184   };
1185   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1186 }
1187 
1188 /*
1189 ** Return the size of the header on each page of this PCACHE implementation.
1190 */
1191 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1192 
1193 /*
1194 ** Return the global mutex used by this PCACHE implementation.  The
1195 ** sqlite3_status() routine needs access to this mutex.
1196 */
1197 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1198   return pcache1.mutex;
1199 }
1200 
1201 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1202 /*
1203 ** This function is called to free superfluous dynamically allocated memory
1204 ** held by the pager system. Memory in use by any SQLite pager allocated
1205 ** by the current thread may be sqlite3_free()ed.
1206 **
1207 ** nReq is the number of bytes of memory required. Once this much has
1208 ** been released, the function returns. The return value is the total number
1209 ** of bytes of memory released.
1210 */
1211 int sqlite3PcacheReleaseMemory(int nReq){
1212   int nFree = 0;
1213   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1214   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1215   if( sqlite3GlobalConfig.pPage==0 ){
1216     PgHdr1 *p;
1217     pcache1EnterMutex(&pcache1.grp);
1218     while( (nReq<0 || nFree<nReq)
1219        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1220        &&  p->isAnchor==0
1221     ){
1222       nFree += pcache1MemSize(p->page.pBuf);
1223 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1224       nFree += sqlite3MemSize(p);
1225 #endif
1226       assert( PAGE_IS_UNPINNED(p) );
1227       pcache1PinPage(p);
1228       pcache1RemoveFromHash(p, 1);
1229     }
1230     pcache1LeaveMutex(&pcache1.grp);
1231   }
1232   return nFree;
1233 }
1234 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1235 
1236 #ifdef SQLITE_TEST
1237 /*
1238 ** This function is used by test procedures to inspect the internal state
1239 ** of the global cache.
1240 */
1241 void sqlite3PcacheStats(
1242   int *pnCurrent,      /* OUT: Total number of pages cached */
1243   int *pnMax,          /* OUT: Global maximum cache size */
1244   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1245   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1246 ){
1247   PgHdr1 *p;
1248   int nRecyclable = 0;
1249   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1250     assert( PAGE_IS_UNPINNED(p) );
1251     nRecyclable++;
1252   }
1253   *pnCurrent = pcache1.grp.nPurgeable;
1254   *pnMax = (int)pcache1.grp.nMaxPage;
1255   *pnMin = (int)pcache1.grp.nMinPage;
1256   *pnRecyclable = nRecyclable;
1257 }
1258 #endif
1259