1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isBulkLocal; /* This page from bulk local storage */ 100 u8 isAnchor; /* This is the PGroup.lru element */ 101 PgHdr1 *pNext; /* Next in hash table chain */ 102 PCache1 *pCache; /* Cache that currently owns this page */ 103 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 104 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 105 }; 106 107 /* 108 ** A page is pinned if it is no on the LRU list 109 */ 110 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 111 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 112 113 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 114 ** of one or more PCaches that are able to recycle each other's unpinned 115 ** pages when they are under memory pressure. A PGroup is an instance of 116 ** the following object. 117 ** 118 ** This page cache implementation works in one of two modes: 119 ** 120 ** (1) Every PCache is the sole member of its own PGroup. There is 121 ** one PGroup per PCache. 122 ** 123 ** (2) There is a single global PGroup that all PCaches are a member 124 ** of. 125 ** 126 ** Mode 1 uses more memory (since PCache instances are not able to rob 127 ** unused pages from other PCaches) but it also operates without a mutex, 128 ** and is therefore often faster. Mode 2 requires a mutex in order to be 129 ** threadsafe, but recycles pages more efficiently. 130 ** 131 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 132 ** PGroup which is the pcache1.grp global variable and its mutex is 133 ** SQLITE_MUTEX_STATIC_LRU. 134 */ 135 struct PGroup { 136 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 137 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 138 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 139 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 140 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 141 PgHdr1 lru; /* The beginning and end of the LRU list */ 142 }; 143 144 /* Each page cache is an instance of the following object. Every 145 ** open database file (including each in-memory database and each 146 ** temporary or transient database) has a single page cache which 147 ** is an instance of this object. 148 ** 149 ** Pointers to structures of this type are cast and returned as 150 ** opaque sqlite3_pcache* handles. 151 */ 152 struct PCache1 { 153 /* Cache configuration parameters. Page size (szPage) and the purgeable 154 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 155 ** cache is created and are never changed thereafter. nMax may be 156 ** modified at any time by a call to the pcache1Cachesize() method. 157 ** The PGroup mutex must be held when accessing nMax. 158 */ 159 PGroup *pGroup; /* PGroup this cache belongs to */ 160 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 161 int szPage; /* Size of database content section */ 162 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 163 int szAlloc; /* Total size of one pcache line */ 164 int bPurgeable; /* True if cache is purgeable */ 165 unsigned int nMin; /* Minimum number of pages reserved */ 166 unsigned int nMax; /* Configured "cache_size" value */ 167 unsigned int n90pct; /* nMax*9/10 */ 168 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 169 170 /* Hash table of all pages. The following variables may only be accessed 171 ** when the accessor is holding the PGroup mutex. 172 */ 173 unsigned int nRecyclable; /* Number of pages in the LRU list */ 174 unsigned int nPage; /* Total number of pages in apHash */ 175 unsigned int nHash; /* Number of slots in apHash[] */ 176 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 177 PgHdr1 *pFree; /* List of unused pcache-local pages */ 178 void *pBulk; /* Bulk memory used by pcache-local */ 179 }; 180 181 /* 182 ** Free slots in the allocator used to divide up the global page cache 183 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 184 */ 185 struct PgFreeslot { 186 PgFreeslot *pNext; /* Next free slot */ 187 }; 188 189 /* 190 ** Global data used by this cache. 191 */ 192 static SQLITE_WSD struct PCacheGlobal { 193 PGroup grp; /* The global PGroup for mode (2) */ 194 195 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 196 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 197 ** fixed at sqlite3_initialize() time and do not require mutex protection. 198 ** The nFreeSlot and pFree values do require mutex protection. 199 */ 200 int isInit; /* True if initialized */ 201 int separateCache; /* Use a new PGroup for each PCache */ 202 int nInitPage; /* Initial bulk allocation size */ 203 int szSlot; /* Size of each free slot */ 204 int nSlot; /* The number of pcache slots */ 205 int nReserve; /* Try to keep nFreeSlot above this */ 206 void *pStart, *pEnd; /* Bounds of global page cache memory */ 207 /* Above requires no mutex. Use mutex below for variable that follow. */ 208 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 209 PgFreeslot *pFree; /* Free page blocks */ 210 int nFreeSlot; /* Number of unused pcache slots */ 211 /* The following value requires a mutex to change. We skip the mutex on 212 ** reading because (1) most platforms read a 32-bit integer atomically and 213 ** (2) even if an incorrect value is read, no great harm is done since this 214 ** is really just an optimization. */ 215 int bUnderPressure; /* True if low on PAGECACHE memory */ 216 } pcache1_g; 217 218 /* 219 ** All code in this file should access the global structure above via the 220 ** alias "pcache1". This ensures that the WSD emulation is used when 221 ** compiling for systems that do not support real WSD. 222 */ 223 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 224 225 /* 226 ** Macros to enter and leave the PCache LRU mutex. 227 */ 228 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 229 # define pcache1EnterMutex(X) assert((X)->mutex==0) 230 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 231 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 232 #else 233 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 234 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 235 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 236 #endif 237 238 /******************************************************************************/ 239 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 240 241 242 /* 243 ** This function is called during initialization if a static buffer is 244 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 245 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 246 ** enough to contain 'n' buffers of 'sz' bytes each. 247 ** 248 ** This routine is called from sqlite3_initialize() and so it is guaranteed 249 ** to be serialized already. There is no need for further mutexing. 250 */ 251 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 252 if( pcache1.isInit ){ 253 PgFreeslot *p; 254 if( pBuf==0 ) sz = n = 0; 255 if( n==0 ) sz = 0; 256 sz = ROUNDDOWN8(sz); 257 pcache1.szSlot = sz; 258 pcache1.nSlot = pcache1.nFreeSlot = n; 259 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 260 pcache1.pStart = pBuf; 261 pcache1.pFree = 0; 262 pcache1.bUnderPressure = 0; 263 while( n-- ){ 264 p = (PgFreeslot*)pBuf; 265 p->pNext = pcache1.pFree; 266 pcache1.pFree = p; 267 pBuf = (void*)&((char*)pBuf)[sz]; 268 } 269 pcache1.pEnd = pBuf; 270 } 271 } 272 273 /* 274 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 275 ** true if pCache->pFree ends up containing one or more free pages. 276 */ 277 static int pcache1InitBulk(PCache1 *pCache){ 278 i64 szBulk; 279 char *zBulk; 280 if( pcache1.nInitPage==0 ) return 0; 281 /* Do not bother with a bulk allocation if the cache size very small */ 282 if( pCache->nMax<3 ) return 0; 283 sqlite3BeginBenignMalloc(); 284 if( pcache1.nInitPage>0 ){ 285 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 286 }else{ 287 szBulk = -1024 * (i64)pcache1.nInitPage; 288 } 289 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 290 szBulk = pCache->szAlloc*(i64)pCache->nMax; 291 } 292 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 293 sqlite3EndBenignMalloc(); 294 if( zBulk ){ 295 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 296 do{ 297 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 298 pX->page.pBuf = zBulk; 299 pX->page.pExtra = &pX[1]; 300 pX->isBulkLocal = 1; 301 pX->isAnchor = 0; 302 pX->pNext = pCache->pFree; 303 pCache->pFree = pX; 304 zBulk += pCache->szAlloc; 305 }while( --nBulk ); 306 } 307 return pCache->pFree!=0; 308 } 309 310 /* 311 ** Malloc function used within this file to allocate space from the buffer 312 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 313 ** such buffer exists or there is no space left in it, this function falls 314 ** back to sqlite3Malloc(). 315 ** 316 ** Multiple threads can run this routine at the same time. Global variables 317 ** in pcache1 need to be protected via mutex. 318 */ 319 static void *pcache1Alloc(int nByte){ 320 void *p = 0; 321 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 322 if( nByte<=pcache1.szSlot ){ 323 sqlite3_mutex_enter(pcache1.mutex); 324 p = (PgHdr1 *)pcache1.pFree; 325 if( p ){ 326 pcache1.pFree = pcache1.pFree->pNext; 327 pcache1.nFreeSlot--; 328 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 329 assert( pcache1.nFreeSlot>=0 ); 330 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 331 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 332 } 333 sqlite3_mutex_leave(pcache1.mutex); 334 } 335 if( p==0 ){ 336 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 337 ** it from sqlite3Malloc instead. 338 */ 339 p = sqlite3Malloc(nByte); 340 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 341 if( p ){ 342 int sz = sqlite3MallocSize(p); 343 sqlite3_mutex_enter(pcache1.mutex); 344 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 345 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 346 sqlite3_mutex_leave(pcache1.mutex); 347 } 348 #endif 349 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 350 } 351 return p; 352 } 353 354 /* 355 ** Free an allocated buffer obtained from pcache1Alloc(). 356 */ 357 static void pcache1Free(void *p){ 358 if( p==0 ) return; 359 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 360 PgFreeslot *pSlot; 361 sqlite3_mutex_enter(pcache1.mutex); 362 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 363 pSlot = (PgFreeslot*)p; 364 pSlot->pNext = pcache1.pFree; 365 pcache1.pFree = pSlot; 366 pcache1.nFreeSlot++; 367 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 368 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 369 sqlite3_mutex_leave(pcache1.mutex); 370 }else{ 371 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 372 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 373 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 374 { 375 int nFreed = 0; 376 nFreed = sqlite3MallocSize(p); 377 sqlite3_mutex_enter(pcache1.mutex); 378 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 379 sqlite3_mutex_leave(pcache1.mutex); 380 } 381 #endif 382 sqlite3_free(p); 383 } 384 } 385 386 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 387 /* 388 ** Return the size of a pcache allocation 389 */ 390 static int pcache1MemSize(void *p){ 391 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 392 return pcache1.szSlot; 393 }else{ 394 int iSize; 395 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 396 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 397 iSize = sqlite3MallocSize(p); 398 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 399 return iSize; 400 } 401 } 402 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 403 404 /* 405 ** Allocate a new page object initially associated with cache pCache. 406 */ 407 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 408 PgHdr1 *p = 0; 409 void *pPg; 410 411 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 412 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 413 p = pCache->pFree; 414 pCache->pFree = p->pNext; 415 p->pNext = 0; 416 }else{ 417 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 418 /* The group mutex must be released before pcache1Alloc() is called. This 419 ** is because it might call sqlite3_release_memory(), which assumes that 420 ** this mutex is not held. */ 421 assert( pcache1.separateCache==0 ); 422 assert( pCache->pGroup==&pcache1.grp ); 423 pcache1LeaveMutex(pCache->pGroup); 424 #endif 425 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 426 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 427 pPg = pcache1Alloc(pCache->szPage); 428 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 429 if( !pPg || !p ){ 430 pcache1Free(pPg); 431 sqlite3_free(p); 432 pPg = 0; 433 } 434 #else 435 pPg = pcache1Alloc(pCache->szAlloc); 436 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 437 #endif 438 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 439 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 440 pcache1EnterMutex(pCache->pGroup); 441 #endif 442 if( pPg==0 ) return 0; 443 p->page.pBuf = pPg; 444 p->page.pExtra = &p[1]; 445 p->isBulkLocal = 0; 446 p->isAnchor = 0; 447 } 448 (*pCache->pnPurgeable)++; 449 return p; 450 } 451 452 /* 453 ** Free a page object allocated by pcache1AllocPage(). 454 */ 455 static void pcache1FreePage(PgHdr1 *p){ 456 PCache1 *pCache; 457 assert( p!=0 ); 458 pCache = p->pCache; 459 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 460 if( p->isBulkLocal ){ 461 p->pNext = pCache->pFree; 462 pCache->pFree = p; 463 }else{ 464 pcache1Free(p->page.pBuf); 465 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 466 sqlite3_free(p); 467 #endif 468 } 469 (*pCache->pnPurgeable)--; 470 } 471 472 /* 473 ** Malloc function used by SQLite to obtain space from the buffer configured 474 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 475 ** exists, this function falls back to sqlite3Malloc(). 476 */ 477 void *sqlite3PageMalloc(int sz){ 478 return pcache1Alloc(sz); 479 } 480 481 /* 482 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 483 */ 484 void sqlite3PageFree(void *p){ 485 pcache1Free(p); 486 } 487 488 489 /* 490 ** Return true if it desirable to avoid allocating a new page cache 491 ** entry. 492 ** 493 ** If memory was allocated specifically to the page cache using 494 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 495 ** it is desirable to avoid allocating a new page cache entry because 496 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 497 ** for all page cache needs and we should not need to spill the 498 ** allocation onto the heap. 499 ** 500 ** Or, the heap is used for all page cache memory but the heap is 501 ** under memory pressure, then again it is desirable to avoid 502 ** allocating a new page cache entry in order to avoid stressing 503 ** the heap even further. 504 */ 505 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 506 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 507 return pcache1.bUnderPressure; 508 }else{ 509 return sqlite3HeapNearlyFull(); 510 } 511 } 512 513 /******************************************************************************/ 514 /******** General Implementation Functions ************************************/ 515 516 /* 517 ** This function is used to resize the hash table used by the cache passed 518 ** as the first argument. 519 ** 520 ** The PCache mutex must be held when this function is called. 521 */ 522 static void pcache1ResizeHash(PCache1 *p){ 523 PgHdr1 **apNew; 524 unsigned int nNew; 525 unsigned int i; 526 527 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 528 529 nNew = p->nHash*2; 530 if( nNew<256 ){ 531 nNew = 256; 532 } 533 534 pcache1LeaveMutex(p->pGroup); 535 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 536 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 537 if( p->nHash ){ sqlite3EndBenignMalloc(); } 538 pcache1EnterMutex(p->pGroup); 539 if( apNew ){ 540 for(i=0; i<p->nHash; i++){ 541 PgHdr1 *pPage; 542 PgHdr1 *pNext = p->apHash[i]; 543 while( (pPage = pNext)!=0 ){ 544 unsigned int h = pPage->iKey % nNew; 545 pNext = pPage->pNext; 546 pPage->pNext = apNew[h]; 547 apNew[h] = pPage; 548 } 549 } 550 sqlite3_free(p->apHash); 551 p->apHash = apNew; 552 p->nHash = nNew; 553 } 554 } 555 556 /* 557 ** This function is used internally to remove the page pPage from the 558 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 559 ** LRU list, then this function is a no-op. 560 ** 561 ** The PGroup mutex must be held when this function is called. 562 */ 563 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 564 assert( pPage!=0 ); 565 assert( PAGE_IS_UNPINNED(pPage) ); 566 assert( pPage->pLruNext ); 567 assert( pPage->pLruPrev ); 568 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 569 pPage->pLruPrev->pLruNext = pPage->pLruNext; 570 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 571 pPage->pLruNext = 0; 572 pPage->pLruPrev = 0; 573 assert( pPage->isAnchor==0 ); 574 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 575 pPage->pCache->nRecyclable--; 576 return pPage; 577 } 578 579 580 /* 581 ** Remove the page supplied as an argument from the hash table 582 ** (PCache1.apHash structure) that it is currently stored in. 583 ** Also free the page if freePage is true. 584 ** 585 ** The PGroup mutex must be held when this function is called. 586 */ 587 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 588 unsigned int h; 589 PCache1 *pCache = pPage->pCache; 590 PgHdr1 **pp; 591 592 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 593 h = pPage->iKey % pCache->nHash; 594 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 595 *pp = (*pp)->pNext; 596 597 pCache->nPage--; 598 if( freeFlag ) pcache1FreePage(pPage); 599 } 600 601 /* 602 ** If there are currently more than nMaxPage pages allocated, try 603 ** to recycle pages to reduce the number allocated to nMaxPage. 604 */ 605 static void pcache1EnforceMaxPage(PCache1 *pCache){ 606 PGroup *pGroup = pCache->pGroup; 607 PgHdr1 *p; 608 assert( sqlite3_mutex_held(pGroup->mutex) ); 609 while( pGroup->nPurgeable>pGroup->nMaxPage 610 && (p=pGroup->lru.pLruPrev)->isAnchor==0 611 ){ 612 assert( p->pCache->pGroup==pGroup ); 613 assert( PAGE_IS_UNPINNED(p) ); 614 pcache1PinPage(p); 615 pcache1RemoveFromHash(p, 1); 616 } 617 if( pCache->nPage==0 && pCache->pBulk ){ 618 sqlite3_free(pCache->pBulk); 619 pCache->pBulk = pCache->pFree = 0; 620 } 621 } 622 623 /* 624 ** Discard all pages from cache pCache with a page number (key value) 625 ** greater than or equal to iLimit. Any pinned pages that meet this 626 ** criteria are unpinned before they are discarded. 627 ** 628 ** The PCache mutex must be held when this function is called. 629 */ 630 static void pcache1TruncateUnsafe( 631 PCache1 *pCache, /* The cache to truncate */ 632 unsigned int iLimit /* Drop pages with this pgno or larger */ 633 ){ 634 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 635 unsigned int h, iStop; 636 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 637 assert( pCache->iMaxKey >= iLimit ); 638 assert( pCache->nHash > 0 ); 639 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 640 /* If we are just shaving the last few pages off the end of the 641 ** cache, then there is no point in scanning the entire hash table. 642 ** Only scan those hash slots that might contain pages that need to 643 ** be removed. */ 644 h = iLimit % pCache->nHash; 645 iStop = pCache->iMaxKey % pCache->nHash; 646 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 647 }else{ 648 /* This is the general case where many pages are being removed. 649 ** It is necessary to scan the entire hash table */ 650 h = pCache->nHash/2; 651 iStop = h - 1; 652 } 653 for(;;){ 654 PgHdr1 **pp; 655 PgHdr1 *pPage; 656 assert( h<pCache->nHash ); 657 pp = &pCache->apHash[h]; 658 while( (pPage = *pp)!=0 ){ 659 if( pPage->iKey>=iLimit ){ 660 pCache->nPage--; 661 *pp = pPage->pNext; 662 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 663 pcache1FreePage(pPage); 664 }else{ 665 pp = &pPage->pNext; 666 TESTONLY( if( nPage>=0 ) nPage++; ) 667 } 668 } 669 if( h==iStop ) break; 670 h = (h+1) % pCache->nHash; 671 } 672 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 673 } 674 675 /******************************************************************************/ 676 /******** sqlite3_pcache Methods **********************************************/ 677 678 /* 679 ** Implementation of the sqlite3_pcache.xInit method. 680 */ 681 static int pcache1Init(void *NotUsed){ 682 UNUSED_PARAMETER(NotUsed); 683 assert( pcache1.isInit==0 ); 684 memset(&pcache1, 0, sizeof(pcache1)); 685 686 687 /* 688 ** The pcache1.separateCache variable is true if each PCache has its own 689 ** private PGroup (mode-1). pcache1.separateCache is false if the single 690 ** PGroup in pcache1.grp is used for all page caches (mode-2). 691 ** 692 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 693 ** 694 ** * Use a unified cache in single-threaded applications that have 695 ** configured a start-time buffer for use as page-cache memory using 696 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 697 ** pBuf argument. 698 ** 699 ** * Otherwise use separate caches (mode-1) 700 */ 701 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 702 pcache1.separateCache = 0; 703 #elif SQLITE_THREADSAFE 704 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 705 || sqlite3GlobalConfig.bCoreMutex>0; 706 #else 707 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 708 #endif 709 710 #if SQLITE_THREADSAFE 711 if( sqlite3GlobalConfig.bCoreMutex ){ 712 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 713 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 714 } 715 #endif 716 if( pcache1.separateCache 717 && sqlite3GlobalConfig.nPage!=0 718 && sqlite3GlobalConfig.pPage==0 719 ){ 720 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 721 }else{ 722 pcache1.nInitPage = 0; 723 } 724 pcache1.grp.mxPinned = 10; 725 pcache1.isInit = 1; 726 return SQLITE_OK; 727 } 728 729 /* 730 ** Implementation of the sqlite3_pcache.xShutdown method. 731 ** Note that the static mutex allocated in xInit does 732 ** not need to be freed. 733 */ 734 static void pcache1Shutdown(void *NotUsed){ 735 UNUSED_PARAMETER(NotUsed); 736 assert( pcache1.isInit!=0 ); 737 memset(&pcache1, 0, sizeof(pcache1)); 738 } 739 740 /* forward declaration */ 741 static void pcache1Destroy(sqlite3_pcache *p); 742 743 /* 744 ** Implementation of the sqlite3_pcache.xCreate method. 745 ** 746 ** Allocate a new cache. 747 */ 748 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 749 PCache1 *pCache; /* The newly created page cache */ 750 PGroup *pGroup; /* The group the new page cache will belong to */ 751 int sz; /* Bytes of memory required to allocate the new cache */ 752 753 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 754 assert( szExtra < 300 ); 755 756 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 757 pCache = (PCache1 *)sqlite3MallocZero(sz); 758 if( pCache ){ 759 if( pcache1.separateCache ){ 760 pGroup = (PGroup*)&pCache[1]; 761 pGroup->mxPinned = 10; 762 }else{ 763 pGroup = &pcache1.grp; 764 } 765 if( pGroup->lru.isAnchor==0 ){ 766 pGroup->lru.isAnchor = 1; 767 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 768 } 769 pCache->pGroup = pGroup; 770 pCache->szPage = szPage; 771 pCache->szExtra = szExtra; 772 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 773 pCache->bPurgeable = (bPurgeable ? 1 : 0); 774 pcache1EnterMutex(pGroup); 775 pcache1ResizeHash(pCache); 776 if( bPurgeable ){ 777 pCache->nMin = 10; 778 pGroup->nMinPage += pCache->nMin; 779 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 780 pCache->pnPurgeable = &pGroup->nPurgeable; 781 }else{ 782 static unsigned int dummyCurrentPage; 783 pCache->pnPurgeable = &dummyCurrentPage; 784 } 785 pcache1LeaveMutex(pGroup); 786 if( pCache->nHash==0 ){ 787 pcache1Destroy((sqlite3_pcache*)pCache); 788 pCache = 0; 789 } 790 } 791 return (sqlite3_pcache *)pCache; 792 } 793 794 /* 795 ** Implementation of the sqlite3_pcache.xCachesize method. 796 ** 797 ** Configure the cache_size limit for a cache. 798 */ 799 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 800 PCache1 *pCache = (PCache1 *)p; 801 if( pCache->bPurgeable ){ 802 PGroup *pGroup = pCache->pGroup; 803 pcache1EnterMutex(pGroup); 804 pGroup->nMaxPage += (nMax - pCache->nMax); 805 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 806 pCache->nMax = nMax; 807 pCache->n90pct = pCache->nMax*9/10; 808 pcache1EnforceMaxPage(pCache); 809 pcache1LeaveMutex(pGroup); 810 } 811 } 812 813 /* 814 ** Implementation of the sqlite3_pcache.xShrink method. 815 ** 816 ** Free up as much memory as possible. 817 */ 818 static void pcache1Shrink(sqlite3_pcache *p){ 819 PCache1 *pCache = (PCache1*)p; 820 if( pCache->bPurgeable ){ 821 PGroup *pGroup = pCache->pGroup; 822 int savedMaxPage; 823 pcache1EnterMutex(pGroup); 824 savedMaxPage = pGroup->nMaxPage; 825 pGroup->nMaxPage = 0; 826 pcache1EnforceMaxPage(pCache); 827 pGroup->nMaxPage = savedMaxPage; 828 pcache1LeaveMutex(pGroup); 829 } 830 } 831 832 /* 833 ** Implementation of the sqlite3_pcache.xPagecount method. 834 */ 835 static int pcache1Pagecount(sqlite3_pcache *p){ 836 int n; 837 PCache1 *pCache = (PCache1*)p; 838 pcache1EnterMutex(pCache->pGroup); 839 n = pCache->nPage; 840 pcache1LeaveMutex(pCache->pGroup); 841 return n; 842 } 843 844 845 /* 846 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 847 ** in the header of the pcache1Fetch() procedure. 848 ** 849 ** This steps are broken out into a separate procedure because they are 850 ** usually not needed, and by avoiding the stack initialization required 851 ** for these steps, the main pcache1Fetch() procedure can run faster. 852 */ 853 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 854 PCache1 *pCache, 855 unsigned int iKey, 856 int createFlag 857 ){ 858 unsigned int nPinned; 859 PGroup *pGroup = pCache->pGroup; 860 PgHdr1 *pPage = 0; 861 862 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 863 assert( pCache->nPage >= pCache->nRecyclable ); 864 nPinned = pCache->nPage - pCache->nRecyclable; 865 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 866 assert( pCache->n90pct == pCache->nMax*9/10 ); 867 if( createFlag==1 && ( 868 nPinned>=pGroup->mxPinned 869 || nPinned>=pCache->n90pct 870 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 871 )){ 872 return 0; 873 } 874 875 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 876 assert( pCache->nHash>0 && pCache->apHash ); 877 878 /* Step 4. Try to recycle a page. */ 879 if( pCache->bPurgeable 880 && !pGroup->lru.pLruPrev->isAnchor 881 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 882 ){ 883 PCache1 *pOther; 884 pPage = pGroup->lru.pLruPrev; 885 assert( PAGE_IS_UNPINNED(pPage) ); 886 pcache1RemoveFromHash(pPage, 0); 887 pcache1PinPage(pPage); 888 pOther = pPage->pCache; 889 if( pOther->szAlloc != pCache->szAlloc ){ 890 pcache1FreePage(pPage); 891 pPage = 0; 892 }else{ 893 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 894 } 895 } 896 897 /* Step 5. If a usable page buffer has still not been found, 898 ** attempt to allocate a new one. 899 */ 900 if( !pPage ){ 901 pPage = pcache1AllocPage(pCache, createFlag==1); 902 } 903 904 if( pPage ){ 905 unsigned int h = iKey % pCache->nHash; 906 pCache->nPage++; 907 pPage->iKey = iKey; 908 pPage->pNext = pCache->apHash[h]; 909 pPage->pCache = pCache; 910 pPage->pLruPrev = 0; 911 pPage->pLruNext = 0; 912 *(void **)pPage->page.pExtra = 0; 913 pCache->apHash[h] = pPage; 914 if( iKey>pCache->iMaxKey ){ 915 pCache->iMaxKey = iKey; 916 } 917 } 918 return pPage; 919 } 920 921 /* 922 ** Implementation of the sqlite3_pcache.xFetch method. 923 ** 924 ** Fetch a page by key value. 925 ** 926 ** Whether or not a new page may be allocated by this function depends on 927 ** the value of the createFlag argument. 0 means do not allocate a new 928 ** page. 1 means allocate a new page if space is easily available. 2 929 ** means to try really hard to allocate a new page. 930 ** 931 ** For a non-purgeable cache (a cache used as the storage for an in-memory 932 ** database) there is really no difference between createFlag 1 and 2. So 933 ** the calling function (pcache.c) will never have a createFlag of 1 on 934 ** a non-purgeable cache. 935 ** 936 ** There are three different approaches to obtaining space for a page, 937 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 938 ** 939 ** 1. Regardless of the value of createFlag, the cache is searched for a 940 ** copy of the requested page. If one is found, it is returned. 941 ** 942 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 943 ** returned. 944 ** 945 ** 3. If createFlag is 1, and the page is not already in the cache, then 946 ** return NULL (do not allocate a new page) if any of the following 947 ** conditions are true: 948 ** 949 ** (a) the number of pages pinned by the cache is greater than 950 ** PCache1.nMax, or 951 ** 952 ** (b) the number of pages pinned by the cache is greater than 953 ** the sum of nMax for all purgeable caches, less the sum of 954 ** nMin for all other purgeable caches, or 955 ** 956 ** 4. If none of the first three conditions apply and the cache is marked 957 ** as purgeable, and if one of the following is true: 958 ** 959 ** (a) The number of pages allocated for the cache is already 960 ** PCache1.nMax, or 961 ** 962 ** (b) The number of pages allocated for all purgeable caches is 963 ** already equal to or greater than the sum of nMax for all 964 ** purgeable caches, 965 ** 966 ** (c) The system is under memory pressure and wants to avoid 967 ** unnecessary pages cache entry allocations 968 ** 969 ** then attempt to recycle a page from the LRU list. If it is the right 970 ** size, return the recycled buffer. Otherwise, free the buffer and 971 ** proceed to step 5. 972 ** 973 ** 5. Otherwise, allocate and return a new page buffer. 974 ** 975 ** There are two versions of this routine. pcache1FetchWithMutex() is 976 ** the general case. pcache1FetchNoMutex() is a faster implementation for 977 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 978 ** invokes the appropriate routine. 979 */ 980 static PgHdr1 *pcache1FetchNoMutex( 981 sqlite3_pcache *p, 982 unsigned int iKey, 983 int createFlag 984 ){ 985 PCache1 *pCache = (PCache1 *)p; 986 PgHdr1 *pPage = 0; 987 988 /* Step 1: Search the hash table for an existing entry. */ 989 pPage = pCache->apHash[iKey % pCache->nHash]; 990 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 991 992 /* Step 2: If the page was found in the hash table, then return it. 993 ** If the page was not in the hash table and createFlag is 0, abort. 994 ** Otherwise (page not in hash and createFlag!=0) continue with 995 ** subsequent steps to try to create the page. */ 996 if( pPage ){ 997 if( PAGE_IS_UNPINNED(pPage) ){ 998 return pcache1PinPage(pPage); 999 }else{ 1000 return pPage; 1001 } 1002 }else if( createFlag ){ 1003 /* Steps 3, 4, and 5 implemented by this subroutine */ 1004 return pcache1FetchStage2(pCache, iKey, createFlag); 1005 }else{ 1006 return 0; 1007 } 1008 } 1009 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1010 static PgHdr1 *pcache1FetchWithMutex( 1011 sqlite3_pcache *p, 1012 unsigned int iKey, 1013 int createFlag 1014 ){ 1015 PCache1 *pCache = (PCache1 *)p; 1016 PgHdr1 *pPage; 1017 1018 pcache1EnterMutex(pCache->pGroup); 1019 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1020 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1021 pcache1LeaveMutex(pCache->pGroup); 1022 return pPage; 1023 } 1024 #endif 1025 static sqlite3_pcache_page *pcache1Fetch( 1026 sqlite3_pcache *p, 1027 unsigned int iKey, 1028 int createFlag 1029 ){ 1030 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1031 PCache1 *pCache = (PCache1 *)p; 1032 #endif 1033 1034 assert( offsetof(PgHdr1,page)==0 ); 1035 assert( pCache->bPurgeable || createFlag!=1 ); 1036 assert( pCache->bPurgeable || pCache->nMin==0 ); 1037 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1038 assert( pCache->nMin==0 || pCache->bPurgeable ); 1039 assert( pCache->nHash>0 ); 1040 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1041 if( pCache->pGroup->mutex ){ 1042 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1043 }else 1044 #endif 1045 { 1046 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1047 } 1048 } 1049 1050 1051 /* 1052 ** Implementation of the sqlite3_pcache.xUnpin method. 1053 ** 1054 ** Mark a page as unpinned (eligible for asynchronous recycling). 1055 */ 1056 static void pcache1Unpin( 1057 sqlite3_pcache *p, 1058 sqlite3_pcache_page *pPg, 1059 int reuseUnlikely 1060 ){ 1061 PCache1 *pCache = (PCache1 *)p; 1062 PgHdr1 *pPage = (PgHdr1 *)pPg; 1063 PGroup *pGroup = pCache->pGroup; 1064 1065 assert( pPage->pCache==pCache ); 1066 pcache1EnterMutex(pGroup); 1067 1068 /* It is an error to call this function if the page is already 1069 ** part of the PGroup LRU list. 1070 */ 1071 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1072 assert( PAGE_IS_PINNED(pPage) ); 1073 1074 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1075 pcache1RemoveFromHash(pPage, 1); 1076 }else{ 1077 /* Add the page to the PGroup LRU list. */ 1078 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1079 pPage->pLruPrev = &pGroup->lru; 1080 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1081 *ppFirst = pPage; 1082 pCache->nRecyclable++; 1083 } 1084 1085 pcache1LeaveMutex(pCache->pGroup); 1086 } 1087 1088 /* 1089 ** Implementation of the sqlite3_pcache.xRekey method. 1090 */ 1091 static void pcache1Rekey( 1092 sqlite3_pcache *p, 1093 sqlite3_pcache_page *pPg, 1094 unsigned int iOld, 1095 unsigned int iNew 1096 ){ 1097 PCache1 *pCache = (PCache1 *)p; 1098 PgHdr1 *pPage = (PgHdr1 *)pPg; 1099 PgHdr1 **pp; 1100 unsigned int h; 1101 assert( pPage->iKey==iOld ); 1102 assert( pPage->pCache==pCache ); 1103 1104 pcache1EnterMutex(pCache->pGroup); 1105 1106 h = iOld%pCache->nHash; 1107 pp = &pCache->apHash[h]; 1108 while( (*pp)!=pPage ){ 1109 pp = &(*pp)->pNext; 1110 } 1111 *pp = pPage->pNext; 1112 1113 h = iNew%pCache->nHash; 1114 pPage->iKey = iNew; 1115 pPage->pNext = pCache->apHash[h]; 1116 pCache->apHash[h] = pPage; 1117 if( iNew>pCache->iMaxKey ){ 1118 pCache->iMaxKey = iNew; 1119 } 1120 1121 pcache1LeaveMutex(pCache->pGroup); 1122 } 1123 1124 /* 1125 ** Implementation of the sqlite3_pcache.xTruncate method. 1126 ** 1127 ** Discard all unpinned pages in the cache with a page number equal to 1128 ** or greater than parameter iLimit. Any pinned pages with a page number 1129 ** equal to or greater than iLimit are implicitly unpinned. 1130 */ 1131 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1132 PCache1 *pCache = (PCache1 *)p; 1133 pcache1EnterMutex(pCache->pGroup); 1134 if( iLimit<=pCache->iMaxKey ){ 1135 pcache1TruncateUnsafe(pCache, iLimit); 1136 pCache->iMaxKey = iLimit-1; 1137 } 1138 pcache1LeaveMutex(pCache->pGroup); 1139 } 1140 1141 /* 1142 ** Implementation of the sqlite3_pcache.xDestroy method. 1143 ** 1144 ** Destroy a cache allocated using pcache1Create(). 1145 */ 1146 static void pcache1Destroy(sqlite3_pcache *p){ 1147 PCache1 *pCache = (PCache1 *)p; 1148 PGroup *pGroup = pCache->pGroup; 1149 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1150 pcache1EnterMutex(pGroup); 1151 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1152 assert( pGroup->nMaxPage >= pCache->nMax ); 1153 pGroup->nMaxPage -= pCache->nMax; 1154 assert( pGroup->nMinPage >= pCache->nMin ); 1155 pGroup->nMinPage -= pCache->nMin; 1156 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1157 pcache1EnforceMaxPage(pCache); 1158 pcache1LeaveMutex(pGroup); 1159 sqlite3_free(pCache->pBulk); 1160 sqlite3_free(pCache->apHash); 1161 sqlite3_free(pCache); 1162 } 1163 1164 /* 1165 ** This function is called during initialization (sqlite3_initialize()) to 1166 ** install the default pluggable cache module, assuming the user has not 1167 ** already provided an alternative. 1168 */ 1169 void sqlite3PCacheSetDefault(void){ 1170 static const sqlite3_pcache_methods2 defaultMethods = { 1171 1, /* iVersion */ 1172 0, /* pArg */ 1173 pcache1Init, /* xInit */ 1174 pcache1Shutdown, /* xShutdown */ 1175 pcache1Create, /* xCreate */ 1176 pcache1Cachesize, /* xCachesize */ 1177 pcache1Pagecount, /* xPagecount */ 1178 pcache1Fetch, /* xFetch */ 1179 pcache1Unpin, /* xUnpin */ 1180 pcache1Rekey, /* xRekey */ 1181 pcache1Truncate, /* xTruncate */ 1182 pcache1Destroy, /* xDestroy */ 1183 pcache1Shrink /* xShrink */ 1184 }; 1185 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1186 } 1187 1188 /* 1189 ** Return the size of the header on each page of this PCACHE implementation. 1190 */ 1191 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1192 1193 /* 1194 ** Return the global mutex used by this PCACHE implementation. The 1195 ** sqlite3_status() routine needs access to this mutex. 1196 */ 1197 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1198 return pcache1.mutex; 1199 } 1200 1201 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1202 /* 1203 ** This function is called to free superfluous dynamically allocated memory 1204 ** held by the pager system. Memory in use by any SQLite pager allocated 1205 ** by the current thread may be sqlite3_free()ed. 1206 ** 1207 ** nReq is the number of bytes of memory required. Once this much has 1208 ** been released, the function returns. The return value is the total number 1209 ** of bytes of memory released. 1210 */ 1211 int sqlite3PcacheReleaseMemory(int nReq){ 1212 int nFree = 0; 1213 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1214 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1215 if( sqlite3GlobalConfig.pPage==0 ){ 1216 PgHdr1 *p; 1217 pcache1EnterMutex(&pcache1.grp); 1218 while( (nReq<0 || nFree<nReq) 1219 && (p=pcache1.grp.lru.pLruPrev)!=0 1220 && p->isAnchor==0 1221 ){ 1222 nFree += pcache1MemSize(p->page.pBuf); 1223 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1224 nFree += sqlite3MemSize(p); 1225 #endif 1226 assert( PAGE_IS_UNPINNED(p) ); 1227 pcache1PinPage(p); 1228 pcache1RemoveFromHash(p, 1); 1229 } 1230 pcache1LeaveMutex(&pcache1.grp); 1231 } 1232 return nFree; 1233 } 1234 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1235 1236 #ifdef SQLITE_TEST 1237 /* 1238 ** This function is used by test procedures to inspect the internal state 1239 ** of the global cache. 1240 */ 1241 void sqlite3PcacheStats( 1242 int *pnCurrent, /* OUT: Total number of pages cached */ 1243 int *pnMax, /* OUT: Global maximum cache size */ 1244 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1245 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1246 ){ 1247 PgHdr1 *p; 1248 int nRecyclable = 0; 1249 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1250 assert( PAGE_IS_UNPINNED(p) ); 1251 nRecyclable++; 1252 } 1253 *pnCurrent = pcache1.grp.nPurgeable; 1254 *pnMax = (int)pcache1.grp.nMaxPage; 1255 *pnMin = (int)pcache1.grp.nMinPage; 1256 *pnRecyclable = nRecyclable; 1257 } 1258 #endif 1259