1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 ** 96 ** Note: Variables isBulkLocal and isAnchor were once type "u8". That works, 97 ** but causes a 2-byte gap in the structure for most architectures (since 98 ** pointers must be either 4 or 8-byte aligned). As this structure is located 99 ** in memory directly after the associated page data, if the database is 100 ** corrupt, code at the b-tree layer may overread the page buffer and 101 ** read part of this structure before the corruption is detected. This 102 ** can cause a valgrind error if the unitialized gap is accessed. Using u16 103 ** ensures there is no such gap, and therefore no bytes of unitialized memory 104 ** in the structure. 105 */ 106 struct PgHdr1 { 107 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 108 unsigned int iKey; /* Key value (page number) */ 109 u16 isBulkLocal; /* This page from bulk local storage */ 110 u16 isAnchor; /* This is the PGroup.lru element */ 111 PgHdr1 *pNext; /* Next in hash table chain */ 112 PCache1 *pCache; /* Cache that currently owns this page */ 113 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 114 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 115 /* NB: pLruPrev is only valid if pLruNext!=0 */ 116 }; 117 118 /* 119 ** A page is pinned if it is not on the LRU list. To be "pinned" means 120 ** that the page is in active use and must not be deallocated. 121 */ 122 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 123 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 124 125 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 126 ** of one or more PCaches that are able to recycle each other's unpinned 127 ** pages when they are under memory pressure. A PGroup is an instance of 128 ** the following object. 129 ** 130 ** This page cache implementation works in one of two modes: 131 ** 132 ** (1) Every PCache is the sole member of its own PGroup. There is 133 ** one PGroup per PCache. 134 ** 135 ** (2) There is a single global PGroup that all PCaches are a member 136 ** of. 137 ** 138 ** Mode 1 uses more memory (since PCache instances are not able to rob 139 ** unused pages from other PCaches) but it also operates without a mutex, 140 ** and is therefore often faster. Mode 2 requires a mutex in order to be 141 ** threadsafe, but recycles pages more efficiently. 142 ** 143 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 144 ** PGroup which is the pcache1.grp global variable and its mutex is 145 ** SQLITE_MUTEX_STATIC_LRU. 146 */ 147 struct PGroup { 148 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 149 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 150 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 151 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 152 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 153 PgHdr1 lru; /* The beginning and end of the LRU list */ 154 }; 155 156 /* Each page cache is an instance of the following object. Every 157 ** open database file (including each in-memory database and each 158 ** temporary or transient database) has a single page cache which 159 ** is an instance of this object. 160 ** 161 ** Pointers to structures of this type are cast and returned as 162 ** opaque sqlite3_pcache* handles. 163 */ 164 struct PCache1 { 165 /* Cache configuration parameters. Page size (szPage) and the purgeable 166 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 167 ** cache is created and are never changed thereafter. nMax may be 168 ** modified at any time by a call to the pcache1Cachesize() method. 169 ** The PGroup mutex must be held when accessing nMax. 170 */ 171 PGroup *pGroup; /* PGroup this cache belongs to */ 172 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 173 int szPage; /* Size of database content section */ 174 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 175 int szAlloc; /* Total size of one pcache line */ 176 int bPurgeable; /* True if cache is purgeable */ 177 unsigned int nMin; /* Minimum number of pages reserved */ 178 unsigned int nMax; /* Configured "cache_size" value */ 179 unsigned int n90pct; /* nMax*9/10 */ 180 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 181 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ 182 183 /* Hash table of all pages. The following variables may only be accessed 184 ** when the accessor is holding the PGroup mutex. 185 */ 186 unsigned int nRecyclable; /* Number of pages in the LRU list */ 187 unsigned int nPage; /* Total number of pages in apHash */ 188 unsigned int nHash; /* Number of slots in apHash[] */ 189 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 190 PgHdr1 *pFree; /* List of unused pcache-local pages */ 191 void *pBulk; /* Bulk memory used by pcache-local */ 192 }; 193 194 /* 195 ** Free slots in the allocator used to divide up the global page cache 196 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 197 */ 198 struct PgFreeslot { 199 PgFreeslot *pNext; /* Next free slot */ 200 }; 201 202 /* 203 ** Global data used by this cache. 204 */ 205 static SQLITE_WSD struct PCacheGlobal { 206 PGroup grp; /* The global PGroup for mode (2) */ 207 208 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 209 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 210 ** fixed at sqlite3_initialize() time and do not require mutex protection. 211 ** The nFreeSlot and pFree values do require mutex protection. 212 */ 213 int isInit; /* True if initialized */ 214 int separateCache; /* Use a new PGroup for each PCache */ 215 int nInitPage; /* Initial bulk allocation size */ 216 int szSlot; /* Size of each free slot */ 217 int nSlot; /* The number of pcache slots */ 218 int nReserve; /* Try to keep nFreeSlot above this */ 219 void *pStart, *pEnd; /* Bounds of global page cache memory */ 220 /* Above requires no mutex. Use mutex below for variable that follow. */ 221 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 222 PgFreeslot *pFree; /* Free page blocks */ 223 int nFreeSlot; /* Number of unused pcache slots */ 224 /* The following value requires a mutex to change. We skip the mutex on 225 ** reading because (1) most platforms read a 32-bit integer atomically and 226 ** (2) even if an incorrect value is read, no great harm is done since this 227 ** is really just an optimization. */ 228 int bUnderPressure; /* True if low on PAGECACHE memory */ 229 } pcache1_g; 230 231 /* 232 ** All code in this file should access the global structure above via the 233 ** alias "pcache1". This ensures that the WSD emulation is used when 234 ** compiling for systems that do not support real WSD. 235 */ 236 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 237 238 /* 239 ** Macros to enter and leave the PCache LRU mutex. 240 */ 241 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 242 # define pcache1EnterMutex(X) assert((X)->mutex==0) 243 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 244 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 245 #else 246 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 247 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 248 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 249 #endif 250 251 /******************************************************************************/ 252 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 253 254 255 /* 256 ** This function is called during initialization if a static buffer is 257 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 258 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 259 ** enough to contain 'n' buffers of 'sz' bytes each. 260 ** 261 ** This routine is called from sqlite3_initialize() and so it is guaranteed 262 ** to be serialized already. There is no need for further mutexing. 263 */ 264 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 265 if( pcache1.isInit ){ 266 PgFreeslot *p; 267 if( pBuf==0 ) sz = n = 0; 268 if( n==0 ) sz = 0; 269 sz = ROUNDDOWN8(sz); 270 pcache1.szSlot = sz; 271 pcache1.nSlot = pcache1.nFreeSlot = n; 272 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 273 pcache1.pStart = pBuf; 274 pcache1.pFree = 0; 275 pcache1.bUnderPressure = 0; 276 while( n-- ){ 277 p = (PgFreeslot*)pBuf; 278 p->pNext = pcache1.pFree; 279 pcache1.pFree = p; 280 pBuf = (void*)&((char*)pBuf)[sz]; 281 } 282 pcache1.pEnd = pBuf; 283 } 284 } 285 286 /* 287 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 288 ** true if pCache->pFree ends up containing one or more free pages. 289 */ 290 static int pcache1InitBulk(PCache1 *pCache){ 291 i64 szBulk; 292 char *zBulk; 293 if( pcache1.nInitPage==0 ) return 0; 294 /* Do not bother with a bulk allocation if the cache size very small */ 295 if( pCache->nMax<3 ) return 0; 296 sqlite3BeginBenignMalloc(); 297 if( pcache1.nInitPage>0 ){ 298 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 299 }else{ 300 szBulk = -1024 * (i64)pcache1.nInitPage; 301 } 302 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 303 szBulk = pCache->szAlloc*(i64)pCache->nMax; 304 } 305 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 306 sqlite3EndBenignMalloc(); 307 if( zBulk ){ 308 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 309 do{ 310 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 311 pX->page.pBuf = zBulk; 312 pX->page.pExtra = &pX[1]; 313 pX->isBulkLocal = 1; 314 pX->isAnchor = 0; 315 pX->pNext = pCache->pFree; 316 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ 317 pCache->pFree = pX; 318 zBulk += pCache->szAlloc; 319 }while( --nBulk ); 320 } 321 return pCache->pFree!=0; 322 } 323 324 /* 325 ** Malloc function used within this file to allocate space from the buffer 326 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 327 ** such buffer exists or there is no space left in it, this function falls 328 ** back to sqlite3Malloc(). 329 ** 330 ** Multiple threads can run this routine at the same time. Global variables 331 ** in pcache1 need to be protected via mutex. 332 */ 333 static void *pcache1Alloc(int nByte){ 334 void *p = 0; 335 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 336 if( nByte<=pcache1.szSlot ){ 337 sqlite3_mutex_enter(pcache1.mutex); 338 p = (PgHdr1 *)pcache1.pFree; 339 if( p ){ 340 pcache1.pFree = pcache1.pFree->pNext; 341 pcache1.nFreeSlot--; 342 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 343 assert( pcache1.nFreeSlot>=0 ); 344 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 345 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 346 } 347 sqlite3_mutex_leave(pcache1.mutex); 348 } 349 if( p==0 ){ 350 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 351 ** it from sqlite3Malloc instead. 352 */ 353 p = sqlite3Malloc(nByte); 354 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 355 if( p ){ 356 int sz = sqlite3MallocSize(p); 357 sqlite3_mutex_enter(pcache1.mutex); 358 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 359 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 360 sqlite3_mutex_leave(pcache1.mutex); 361 } 362 #endif 363 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 364 } 365 return p; 366 } 367 368 /* 369 ** Free an allocated buffer obtained from pcache1Alloc(). 370 */ 371 static void pcache1Free(void *p){ 372 if( p==0 ) return; 373 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 374 PgFreeslot *pSlot; 375 sqlite3_mutex_enter(pcache1.mutex); 376 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 377 pSlot = (PgFreeslot*)p; 378 pSlot->pNext = pcache1.pFree; 379 pcache1.pFree = pSlot; 380 pcache1.nFreeSlot++; 381 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 382 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 383 sqlite3_mutex_leave(pcache1.mutex); 384 }else{ 385 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 386 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 387 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 388 { 389 int nFreed = 0; 390 nFreed = sqlite3MallocSize(p); 391 sqlite3_mutex_enter(pcache1.mutex); 392 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 393 sqlite3_mutex_leave(pcache1.mutex); 394 } 395 #endif 396 sqlite3_free(p); 397 } 398 } 399 400 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 401 /* 402 ** Return the size of a pcache allocation 403 */ 404 static int pcache1MemSize(void *p){ 405 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 406 return pcache1.szSlot; 407 }else{ 408 int iSize; 409 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 410 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 411 iSize = sqlite3MallocSize(p); 412 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 413 return iSize; 414 } 415 } 416 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 417 418 /* 419 ** Allocate a new page object initially associated with cache pCache. 420 */ 421 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 422 PgHdr1 *p = 0; 423 void *pPg; 424 425 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 426 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 427 p = pCache->pFree; 428 pCache->pFree = p->pNext; 429 p->pNext = 0; 430 }else{ 431 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 432 /* The group mutex must be released before pcache1Alloc() is called. This 433 ** is because it might call sqlite3_release_memory(), which assumes that 434 ** this mutex is not held. */ 435 assert( pcache1.separateCache==0 ); 436 assert( pCache->pGroup==&pcache1.grp ); 437 pcache1LeaveMutex(pCache->pGroup); 438 #endif 439 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 440 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 441 pPg = pcache1Alloc(pCache->szPage); 442 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 443 if( !pPg || !p ){ 444 pcache1Free(pPg); 445 sqlite3_free(p); 446 pPg = 0; 447 } 448 #else 449 pPg = pcache1Alloc(pCache->szAlloc); 450 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 451 #endif 452 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 453 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 454 pcache1EnterMutex(pCache->pGroup); 455 #endif 456 if( pPg==0 ) return 0; 457 p->page.pBuf = pPg; 458 p->page.pExtra = &p[1]; 459 p->isBulkLocal = 0; 460 p->isAnchor = 0; 461 } 462 (*pCache->pnPurgeable)++; 463 return p; 464 } 465 466 /* 467 ** Free a page object allocated by pcache1AllocPage(). 468 */ 469 static void pcache1FreePage(PgHdr1 *p){ 470 PCache1 *pCache; 471 assert( p!=0 ); 472 pCache = p->pCache; 473 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 474 if( p->isBulkLocal ){ 475 p->pNext = pCache->pFree; 476 pCache->pFree = p; 477 }else{ 478 pcache1Free(p->page.pBuf); 479 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 480 sqlite3_free(p); 481 #endif 482 } 483 (*pCache->pnPurgeable)--; 484 } 485 486 /* 487 ** Malloc function used by SQLite to obtain space from the buffer configured 488 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 489 ** exists, this function falls back to sqlite3Malloc(). 490 */ 491 void *sqlite3PageMalloc(int sz){ 492 assert( sz<=65536+8 ); /* These allocations are never very large */ 493 return pcache1Alloc(sz); 494 } 495 496 /* 497 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 498 */ 499 void sqlite3PageFree(void *p){ 500 pcache1Free(p); 501 } 502 503 504 /* 505 ** Return true if it desirable to avoid allocating a new page cache 506 ** entry. 507 ** 508 ** If memory was allocated specifically to the page cache using 509 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 510 ** it is desirable to avoid allocating a new page cache entry because 511 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 512 ** for all page cache needs and we should not need to spill the 513 ** allocation onto the heap. 514 ** 515 ** Or, the heap is used for all page cache memory but the heap is 516 ** under memory pressure, then again it is desirable to avoid 517 ** allocating a new page cache entry in order to avoid stressing 518 ** the heap even further. 519 */ 520 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 521 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 522 return pcache1.bUnderPressure; 523 }else{ 524 return sqlite3HeapNearlyFull(); 525 } 526 } 527 528 /******************************************************************************/ 529 /******** General Implementation Functions ************************************/ 530 531 /* 532 ** This function is used to resize the hash table used by the cache passed 533 ** as the first argument. 534 ** 535 ** The PCache mutex must be held when this function is called. 536 */ 537 static void pcache1ResizeHash(PCache1 *p){ 538 PgHdr1 **apNew; 539 unsigned int nNew; 540 unsigned int i; 541 542 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 543 544 nNew = p->nHash*2; 545 if( nNew<256 ){ 546 nNew = 256; 547 } 548 549 pcache1LeaveMutex(p->pGroup); 550 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 551 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 552 if( p->nHash ){ sqlite3EndBenignMalloc(); } 553 pcache1EnterMutex(p->pGroup); 554 if( apNew ){ 555 for(i=0; i<p->nHash; i++){ 556 PgHdr1 *pPage; 557 PgHdr1 *pNext = p->apHash[i]; 558 while( (pPage = pNext)!=0 ){ 559 unsigned int h = pPage->iKey % nNew; 560 pNext = pPage->pNext; 561 pPage->pNext = apNew[h]; 562 apNew[h] = pPage; 563 } 564 } 565 sqlite3_free(p->apHash); 566 p->apHash = apNew; 567 p->nHash = nNew; 568 } 569 } 570 571 /* 572 ** This function is used internally to remove the page pPage from the 573 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 574 ** LRU list, then this function is a no-op. 575 ** 576 ** The PGroup mutex must be held when this function is called. 577 */ 578 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 579 assert( pPage!=0 ); 580 assert( PAGE_IS_UNPINNED(pPage) ); 581 assert( pPage->pLruNext ); 582 assert( pPage->pLruPrev ); 583 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 584 pPage->pLruPrev->pLruNext = pPage->pLruNext; 585 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 586 pPage->pLruNext = 0; 587 /* pPage->pLruPrev = 0; 588 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 589 assert( pPage->isAnchor==0 ); 590 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 591 pPage->pCache->nRecyclable--; 592 return pPage; 593 } 594 595 596 /* 597 ** Remove the page supplied as an argument from the hash table 598 ** (PCache1.apHash structure) that it is currently stored in. 599 ** Also free the page if freePage is true. 600 ** 601 ** The PGroup mutex must be held when this function is called. 602 */ 603 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 604 unsigned int h; 605 PCache1 *pCache = pPage->pCache; 606 PgHdr1 **pp; 607 608 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 609 h = pPage->iKey % pCache->nHash; 610 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 611 *pp = (*pp)->pNext; 612 613 pCache->nPage--; 614 if( freeFlag ) pcache1FreePage(pPage); 615 } 616 617 /* 618 ** If there are currently more than nMaxPage pages allocated, try 619 ** to recycle pages to reduce the number allocated to nMaxPage. 620 */ 621 static void pcache1EnforceMaxPage(PCache1 *pCache){ 622 PGroup *pGroup = pCache->pGroup; 623 PgHdr1 *p; 624 assert( sqlite3_mutex_held(pGroup->mutex) ); 625 while( pGroup->nPurgeable>pGroup->nMaxPage 626 && (p=pGroup->lru.pLruPrev)->isAnchor==0 627 ){ 628 assert( p->pCache->pGroup==pGroup ); 629 assert( PAGE_IS_UNPINNED(p) ); 630 pcache1PinPage(p); 631 pcache1RemoveFromHash(p, 1); 632 } 633 if( pCache->nPage==0 && pCache->pBulk ){ 634 sqlite3_free(pCache->pBulk); 635 pCache->pBulk = pCache->pFree = 0; 636 } 637 } 638 639 /* 640 ** Discard all pages from cache pCache with a page number (key value) 641 ** greater than or equal to iLimit. Any pinned pages that meet this 642 ** criteria are unpinned before they are discarded. 643 ** 644 ** The PCache mutex must be held when this function is called. 645 */ 646 static void pcache1TruncateUnsafe( 647 PCache1 *pCache, /* The cache to truncate */ 648 unsigned int iLimit /* Drop pages with this pgno or larger */ 649 ){ 650 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 651 unsigned int h, iStop; 652 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 653 assert( pCache->iMaxKey >= iLimit ); 654 assert( pCache->nHash > 0 ); 655 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 656 /* If we are just shaving the last few pages off the end of the 657 ** cache, then there is no point in scanning the entire hash table. 658 ** Only scan those hash slots that might contain pages that need to 659 ** be removed. */ 660 h = iLimit % pCache->nHash; 661 iStop = pCache->iMaxKey % pCache->nHash; 662 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 663 }else{ 664 /* This is the general case where many pages are being removed. 665 ** It is necessary to scan the entire hash table */ 666 h = pCache->nHash/2; 667 iStop = h - 1; 668 } 669 for(;;){ 670 PgHdr1 **pp; 671 PgHdr1 *pPage; 672 assert( h<pCache->nHash ); 673 pp = &pCache->apHash[h]; 674 while( (pPage = *pp)!=0 ){ 675 if( pPage->iKey>=iLimit ){ 676 pCache->nPage--; 677 *pp = pPage->pNext; 678 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 679 pcache1FreePage(pPage); 680 }else{ 681 pp = &pPage->pNext; 682 TESTONLY( if( nPage>=0 ) nPage++; ) 683 } 684 } 685 if( h==iStop ) break; 686 h = (h+1) % pCache->nHash; 687 } 688 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 689 } 690 691 /******************************************************************************/ 692 /******** sqlite3_pcache Methods **********************************************/ 693 694 /* 695 ** Implementation of the sqlite3_pcache.xInit method. 696 */ 697 static int pcache1Init(void *NotUsed){ 698 UNUSED_PARAMETER(NotUsed); 699 assert( pcache1.isInit==0 ); 700 memset(&pcache1, 0, sizeof(pcache1)); 701 702 703 /* 704 ** The pcache1.separateCache variable is true if each PCache has its own 705 ** private PGroup (mode-1). pcache1.separateCache is false if the single 706 ** PGroup in pcache1.grp is used for all page caches (mode-2). 707 ** 708 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 709 ** 710 ** * Use a unified cache in single-threaded applications that have 711 ** configured a start-time buffer for use as page-cache memory using 712 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 713 ** pBuf argument. 714 ** 715 ** * Otherwise use separate caches (mode-1) 716 */ 717 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 718 pcache1.separateCache = 0; 719 #elif SQLITE_THREADSAFE 720 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 721 || sqlite3GlobalConfig.bCoreMutex>0; 722 #else 723 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 724 #endif 725 726 #if SQLITE_THREADSAFE 727 if( sqlite3GlobalConfig.bCoreMutex ){ 728 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 729 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 730 } 731 #endif 732 if( pcache1.separateCache 733 && sqlite3GlobalConfig.nPage!=0 734 && sqlite3GlobalConfig.pPage==0 735 ){ 736 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 737 }else{ 738 pcache1.nInitPage = 0; 739 } 740 pcache1.grp.mxPinned = 10; 741 pcache1.isInit = 1; 742 return SQLITE_OK; 743 } 744 745 /* 746 ** Implementation of the sqlite3_pcache.xShutdown method. 747 ** Note that the static mutex allocated in xInit does 748 ** not need to be freed. 749 */ 750 static void pcache1Shutdown(void *NotUsed){ 751 UNUSED_PARAMETER(NotUsed); 752 assert( pcache1.isInit!=0 ); 753 memset(&pcache1, 0, sizeof(pcache1)); 754 } 755 756 /* forward declaration */ 757 static void pcache1Destroy(sqlite3_pcache *p); 758 759 /* 760 ** Implementation of the sqlite3_pcache.xCreate method. 761 ** 762 ** Allocate a new cache. 763 */ 764 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 765 PCache1 *pCache; /* The newly created page cache */ 766 PGroup *pGroup; /* The group the new page cache will belong to */ 767 int sz; /* Bytes of memory required to allocate the new cache */ 768 769 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 770 assert( szExtra < 300 ); 771 772 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 773 pCache = (PCache1 *)sqlite3MallocZero(sz); 774 if( pCache ){ 775 if( pcache1.separateCache ){ 776 pGroup = (PGroup*)&pCache[1]; 777 pGroup->mxPinned = 10; 778 }else{ 779 pGroup = &pcache1.grp; 780 } 781 pcache1EnterMutex(pGroup); 782 if( pGroup->lru.isAnchor==0 ){ 783 pGroup->lru.isAnchor = 1; 784 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 785 } 786 pCache->pGroup = pGroup; 787 pCache->szPage = szPage; 788 pCache->szExtra = szExtra; 789 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 790 pCache->bPurgeable = (bPurgeable ? 1 : 0); 791 pcache1ResizeHash(pCache); 792 if( bPurgeable ){ 793 pCache->nMin = 10; 794 pGroup->nMinPage += pCache->nMin; 795 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 796 pCache->pnPurgeable = &pGroup->nPurgeable; 797 }else{ 798 pCache->pnPurgeable = &pCache->nPurgeableDummy; 799 } 800 pcache1LeaveMutex(pGroup); 801 if( pCache->nHash==0 ){ 802 pcache1Destroy((sqlite3_pcache*)pCache); 803 pCache = 0; 804 } 805 } 806 return (sqlite3_pcache *)pCache; 807 } 808 809 /* 810 ** Implementation of the sqlite3_pcache.xCachesize method. 811 ** 812 ** Configure the cache_size limit for a cache. 813 */ 814 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 815 PCache1 *pCache = (PCache1 *)p; 816 if( pCache->bPurgeable ){ 817 PGroup *pGroup = pCache->pGroup; 818 pcache1EnterMutex(pGroup); 819 pGroup->nMaxPage += (nMax - pCache->nMax); 820 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 821 pCache->nMax = nMax; 822 pCache->n90pct = pCache->nMax*9/10; 823 pcache1EnforceMaxPage(pCache); 824 pcache1LeaveMutex(pGroup); 825 } 826 } 827 828 /* 829 ** Implementation of the sqlite3_pcache.xShrink method. 830 ** 831 ** Free up as much memory as possible. 832 */ 833 static void pcache1Shrink(sqlite3_pcache *p){ 834 PCache1 *pCache = (PCache1*)p; 835 if( pCache->bPurgeable ){ 836 PGroup *pGroup = pCache->pGroup; 837 int savedMaxPage; 838 pcache1EnterMutex(pGroup); 839 savedMaxPage = pGroup->nMaxPage; 840 pGroup->nMaxPage = 0; 841 pcache1EnforceMaxPage(pCache); 842 pGroup->nMaxPage = savedMaxPage; 843 pcache1LeaveMutex(pGroup); 844 } 845 } 846 847 /* 848 ** Implementation of the sqlite3_pcache.xPagecount method. 849 */ 850 static int pcache1Pagecount(sqlite3_pcache *p){ 851 int n; 852 PCache1 *pCache = (PCache1*)p; 853 pcache1EnterMutex(pCache->pGroup); 854 n = pCache->nPage; 855 pcache1LeaveMutex(pCache->pGroup); 856 return n; 857 } 858 859 860 /* 861 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 862 ** in the header of the pcache1Fetch() procedure. 863 ** 864 ** This steps are broken out into a separate procedure because they are 865 ** usually not needed, and by avoiding the stack initialization required 866 ** for these steps, the main pcache1Fetch() procedure can run faster. 867 */ 868 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 869 PCache1 *pCache, 870 unsigned int iKey, 871 int createFlag 872 ){ 873 unsigned int nPinned; 874 PGroup *pGroup = pCache->pGroup; 875 PgHdr1 *pPage = 0; 876 877 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 878 assert( pCache->nPage >= pCache->nRecyclable ); 879 nPinned = pCache->nPage - pCache->nRecyclable; 880 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 881 assert( pCache->n90pct == pCache->nMax*9/10 ); 882 if( createFlag==1 && ( 883 nPinned>=pGroup->mxPinned 884 || nPinned>=pCache->n90pct 885 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 886 )){ 887 return 0; 888 } 889 890 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 891 assert( pCache->nHash>0 && pCache->apHash ); 892 893 /* Step 4. Try to recycle a page. */ 894 if( pCache->bPurgeable 895 && !pGroup->lru.pLruPrev->isAnchor 896 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 897 ){ 898 PCache1 *pOther; 899 pPage = pGroup->lru.pLruPrev; 900 assert( PAGE_IS_UNPINNED(pPage) ); 901 pcache1RemoveFromHash(pPage, 0); 902 pcache1PinPage(pPage); 903 pOther = pPage->pCache; 904 if( pOther->szAlloc != pCache->szAlloc ){ 905 pcache1FreePage(pPage); 906 pPage = 0; 907 }else{ 908 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 909 } 910 } 911 912 /* Step 5. If a usable page buffer has still not been found, 913 ** attempt to allocate a new one. 914 */ 915 if( !pPage ){ 916 pPage = pcache1AllocPage(pCache, createFlag==1); 917 } 918 919 if( pPage ){ 920 unsigned int h = iKey % pCache->nHash; 921 pCache->nPage++; 922 pPage->iKey = iKey; 923 pPage->pNext = pCache->apHash[h]; 924 pPage->pCache = pCache; 925 pPage->pLruNext = 0; 926 /* pPage->pLruPrev = 0; 927 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 928 *(void **)pPage->page.pExtra = 0; 929 pCache->apHash[h] = pPage; 930 if( iKey>pCache->iMaxKey ){ 931 pCache->iMaxKey = iKey; 932 } 933 } 934 return pPage; 935 } 936 937 /* 938 ** Implementation of the sqlite3_pcache.xFetch method. 939 ** 940 ** Fetch a page by key value. 941 ** 942 ** Whether or not a new page may be allocated by this function depends on 943 ** the value of the createFlag argument. 0 means do not allocate a new 944 ** page. 1 means allocate a new page if space is easily available. 2 945 ** means to try really hard to allocate a new page. 946 ** 947 ** For a non-purgeable cache (a cache used as the storage for an in-memory 948 ** database) there is really no difference between createFlag 1 and 2. So 949 ** the calling function (pcache.c) will never have a createFlag of 1 on 950 ** a non-purgeable cache. 951 ** 952 ** There are three different approaches to obtaining space for a page, 953 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 954 ** 955 ** 1. Regardless of the value of createFlag, the cache is searched for a 956 ** copy of the requested page. If one is found, it is returned. 957 ** 958 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 959 ** returned. 960 ** 961 ** 3. If createFlag is 1, and the page is not already in the cache, then 962 ** return NULL (do not allocate a new page) if any of the following 963 ** conditions are true: 964 ** 965 ** (a) the number of pages pinned by the cache is greater than 966 ** PCache1.nMax, or 967 ** 968 ** (b) the number of pages pinned by the cache is greater than 969 ** the sum of nMax for all purgeable caches, less the sum of 970 ** nMin for all other purgeable caches, or 971 ** 972 ** 4. If none of the first three conditions apply and the cache is marked 973 ** as purgeable, and if one of the following is true: 974 ** 975 ** (a) The number of pages allocated for the cache is already 976 ** PCache1.nMax, or 977 ** 978 ** (b) The number of pages allocated for all purgeable caches is 979 ** already equal to or greater than the sum of nMax for all 980 ** purgeable caches, 981 ** 982 ** (c) The system is under memory pressure and wants to avoid 983 ** unnecessary pages cache entry allocations 984 ** 985 ** then attempt to recycle a page from the LRU list. If it is the right 986 ** size, return the recycled buffer. Otherwise, free the buffer and 987 ** proceed to step 5. 988 ** 989 ** 5. Otherwise, allocate and return a new page buffer. 990 ** 991 ** There are two versions of this routine. pcache1FetchWithMutex() is 992 ** the general case. pcache1FetchNoMutex() is a faster implementation for 993 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 994 ** invokes the appropriate routine. 995 */ 996 static PgHdr1 *pcache1FetchNoMutex( 997 sqlite3_pcache *p, 998 unsigned int iKey, 999 int createFlag 1000 ){ 1001 PCache1 *pCache = (PCache1 *)p; 1002 PgHdr1 *pPage = 0; 1003 1004 /* Step 1: Search the hash table for an existing entry. */ 1005 pPage = pCache->apHash[iKey % pCache->nHash]; 1006 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 1007 1008 /* Step 2: If the page was found in the hash table, then return it. 1009 ** If the page was not in the hash table and createFlag is 0, abort. 1010 ** Otherwise (page not in hash and createFlag!=0) continue with 1011 ** subsequent steps to try to create the page. */ 1012 if( pPage ){ 1013 if( PAGE_IS_UNPINNED(pPage) ){ 1014 return pcache1PinPage(pPage); 1015 }else{ 1016 return pPage; 1017 } 1018 }else if( createFlag ){ 1019 /* Steps 3, 4, and 5 implemented by this subroutine */ 1020 return pcache1FetchStage2(pCache, iKey, createFlag); 1021 }else{ 1022 return 0; 1023 } 1024 } 1025 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1026 static PgHdr1 *pcache1FetchWithMutex( 1027 sqlite3_pcache *p, 1028 unsigned int iKey, 1029 int createFlag 1030 ){ 1031 PCache1 *pCache = (PCache1 *)p; 1032 PgHdr1 *pPage; 1033 1034 pcache1EnterMutex(pCache->pGroup); 1035 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1036 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1037 pcache1LeaveMutex(pCache->pGroup); 1038 return pPage; 1039 } 1040 #endif 1041 static sqlite3_pcache_page *pcache1Fetch( 1042 sqlite3_pcache *p, 1043 unsigned int iKey, 1044 int createFlag 1045 ){ 1046 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1047 PCache1 *pCache = (PCache1 *)p; 1048 #endif 1049 1050 assert( offsetof(PgHdr1,page)==0 ); 1051 assert( pCache->bPurgeable || createFlag!=1 ); 1052 assert( pCache->bPurgeable || pCache->nMin==0 ); 1053 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1054 assert( pCache->nMin==0 || pCache->bPurgeable ); 1055 assert( pCache->nHash>0 ); 1056 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1057 if( pCache->pGroup->mutex ){ 1058 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1059 }else 1060 #endif 1061 { 1062 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1063 } 1064 } 1065 1066 1067 /* 1068 ** Implementation of the sqlite3_pcache.xUnpin method. 1069 ** 1070 ** Mark a page as unpinned (eligible for asynchronous recycling). 1071 */ 1072 static void pcache1Unpin( 1073 sqlite3_pcache *p, 1074 sqlite3_pcache_page *pPg, 1075 int reuseUnlikely 1076 ){ 1077 PCache1 *pCache = (PCache1 *)p; 1078 PgHdr1 *pPage = (PgHdr1 *)pPg; 1079 PGroup *pGroup = pCache->pGroup; 1080 1081 assert( pPage->pCache==pCache ); 1082 pcache1EnterMutex(pGroup); 1083 1084 /* It is an error to call this function if the page is already 1085 ** part of the PGroup LRU list. 1086 */ 1087 assert( pPage->pLruNext==0 ); 1088 assert( PAGE_IS_PINNED(pPage) ); 1089 1090 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1091 pcache1RemoveFromHash(pPage, 1); 1092 }else{ 1093 /* Add the page to the PGroup LRU list. */ 1094 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1095 pPage->pLruPrev = &pGroup->lru; 1096 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1097 *ppFirst = pPage; 1098 pCache->nRecyclable++; 1099 } 1100 1101 pcache1LeaveMutex(pCache->pGroup); 1102 } 1103 1104 /* 1105 ** Implementation of the sqlite3_pcache.xRekey method. 1106 */ 1107 static void pcache1Rekey( 1108 sqlite3_pcache *p, 1109 sqlite3_pcache_page *pPg, 1110 unsigned int iOld, 1111 unsigned int iNew 1112 ){ 1113 PCache1 *pCache = (PCache1 *)p; 1114 PgHdr1 *pPage = (PgHdr1 *)pPg; 1115 PgHdr1 **pp; 1116 unsigned int h; 1117 assert( pPage->iKey==iOld ); 1118 assert( pPage->pCache==pCache ); 1119 1120 pcache1EnterMutex(pCache->pGroup); 1121 1122 h = iOld%pCache->nHash; 1123 pp = &pCache->apHash[h]; 1124 while( (*pp)!=pPage ){ 1125 pp = &(*pp)->pNext; 1126 } 1127 *pp = pPage->pNext; 1128 1129 h = iNew%pCache->nHash; 1130 pPage->iKey = iNew; 1131 pPage->pNext = pCache->apHash[h]; 1132 pCache->apHash[h] = pPage; 1133 if( iNew>pCache->iMaxKey ){ 1134 pCache->iMaxKey = iNew; 1135 } 1136 1137 pcache1LeaveMutex(pCache->pGroup); 1138 } 1139 1140 /* 1141 ** Implementation of the sqlite3_pcache.xTruncate method. 1142 ** 1143 ** Discard all unpinned pages in the cache with a page number equal to 1144 ** or greater than parameter iLimit. Any pinned pages with a page number 1145 ** equal to or greater than iLimit are implicitly unpinned. 1146 */ 1147 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1148 PCache1 *pCache = (PCache1 *)p; 1149 pcache1EnterMutex(pCache->pGroup); 1150 if( iLimit<=pCache->iMaxKey ){ 1151 pcache1TruncateUnsafe(pCache, iLimit); 1152 pCache->iMaxKey = iLimit-1; 1153 } 1154 pcache1LeaveMutex(pCache->pGroup); 1155 } 1156 1157 /* 1158 ** Implementation of the sqlite3_pcache.xDestroy method. 1159 ** 1160 ** Destroy a cache allocated using pcache1Create(). 1161 */ 1162 static void pcache1Destroy(sqlite3_pcache *p){ 1163 PCache1 *pCache = (PCache1 *)p; 1164 PGroup *pGroup = pCache->pGroup; 1165 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1166 pcache1EnterMutex(pGroup); 1167 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1168 assert( pGroup->nMaxPage >= pCache->nMax ); 1169 pGroup->nMaxPage -= pCache->nMax; 1170 assert( pGroup->nMinPage >= pCache->nMin ); 1171 pGroup->nMinPage -= pCache->nMin; 1172 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1173 pcache1EnforceMaxPage(pCache); 1174 pcache1LeaveMutex(pGroup); 1175 sqlite3_free(pCache->pBulk); 1176 sqlite3_free(pCache->apHash); 1177 sqlite3_free(pCache); 1178 } 1179 1180 /* 1181 ** This function is called during initialization (sqlite3_initialize()) to 1182 ** install the default pluggable cache module, assuming the user has not 1183 ** already provided an alternative. 1184 */ 1185 void sqlite3PCacheSetDefault(void){ 1186 static const sqlite3_pcache_methods2 defaultMethods = { 1187 1, /* iVersion */ 1188 0, /* pArg */ 1189 pcache1Init, /* xInit */ 1190 pcache1Shutdown, /* xShutdown */ 1191 pcache1Create, /* xCreate */ 1192 pcache1Cachesize, /* xCachesize */ 1193 pcache1Pagecount, /* xPagecount */ 1194 pcache1Fetch, /* xFetch */ 1195 pcache1Unpin, /* xUnpin */ 1196 pcache1Rekey, /* xRekey */ 1197 pcache1Truncate, /* xTruncate */ 1198 pcache1Destroy, /* xDestroy */ 1199 pcache1Shrink /* xShrink */ 1200 }; 1201 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1202 } 1203 1204 /* 1205 ** Return the size of the header on each page of this PCACHE implementation. 1206 */ 1207 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1208 1209 /* 1210 ** Return the global mutex used by this PCACHE implementation. The 1211 ** sqlite3_status() routine needs access to this mutex. 1212 */ 1213 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1214 return pcache1.mutex; 1215 } 1216 1217 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1218 /* 1219 ** This function is called to free superfluous dynamically allocated memory 1220 ** held by the pager system. Memory in use by any SQLite pager allocated 1221 ** by the current thread may be sqlite3_free()ed. 1222 ** 1223 ** nReq is the number of bytes of memory required. Once this much has 1224 ** been released, the function returns. The return value is the total number 1225 ** of bytes of memory released. 1226 */ 1227 int sqlite3PcacheReleaseMemory(int nReq){ 1228 int nFree = 0; 1229 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1230 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1231 if( sqlite3GlobalConfig.pPage==0 ){ 1232 PgHdr1 *p; 1233 pcache1EnterMutex(&pcache1.grp); 1234 while( (nReq<0 || nFree<nReq) 1235 && (p=pcache1.grp.lru.pLruPrev)!=0 1236 && p->isAnchor==0 1237 ){ 1238 nFree += pcache1MemSize(p->page.pBuf); 1239 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1240 nFree += sqlite3MemSize(p); 1241 #endif 1242 assert( PAGE_IS_UNPINNED(p) ); 1243 pcache1PinPage(p); 1244 pcache1RemoveFromHash(p, 1); 1245 } 1246 pcache1LeaveMutex(&pcache1.grp); 1247 } 1248 return nFree; 1249 } 1250 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1251 1252 #ifdef SQLITE_TEST 1253 /* 1254 ** This function is used by test procedures to inspect the internal state 1255 ** of the global cache. 1256 */ 1257 void sqlite3PcacheStats( 1258 int *pnCurrent, /* OUT: Total number of pages cached */ 1259 int *pnMax, /* OUT: Global maximum cache size */ 1260 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1261 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1262 ){ 1263 PgHdr1 *p; 1264 int nRecyclable = 0; 1265 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1266 assert( PAGE_IS_UNPINNED(p) ); 1267 nRecyclable++; 1268 } 1269 *pnCurrent = pcache1.grp.nPurgeable; 1270 *pnMax = (int)pcache1.grp.nMaxPage; 1271 *pnMin = (int)pcache1.grp.nMinPage; 1272 *pnRecyclable = nRecyclable; 1273 } 1274 #endif 1275