xref: /sqlite-3.40.0/src/pcache1.c (revision 9edb5ceb)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PCACHE, 0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
91 ** of one or more PCaches that are able to recycle each other's unpinned
92 ** pages when they are under memory pressure.  A PGroup is an instance of
93 ** the following object.
94 **
95 ** This page cache implementation works in one of two modes:
96 **
97 **   (1)  Every PCache is the sole member of its own PGroup.  There is
98 **        one PGroup per PCache.
99 **
100 **   (2)  There is a single global PGroup that all PCaches are a member
101 **        of.
102 **
103 ** Mode 1 uses more memory (since PCache instances are not able to rob
104 ** unused pages from other PCaches) but it also operates without a mutex,
105 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
106 ** threadsafe, but recycles pages more efficiently.
107 **
108 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
109 ** PGroup which is the pcache1.grp global variable and its mutex is
110 ** SQLITE_MUTEX_STATIC_LRU.
111 */
112 struct PGroup {
113   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
114   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
115   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
116   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
117   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
118   PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
119 };
120 
121 /* Each page cache is an instance of the following object.  Every
122 ** open database file (including each in-memory database and each
123 ** temporary or transient database) has a single page cache which
124 ** is an instance of this object.
125 **
126 ** Pointers to structures of this type are cast and returned as
127 ** opaque sqlite3_pcache* handles.
128 */
129 struct PCache1 {
130   /* Cache configuration parameters. Page size (szPage) and the purgeable
131   ** flag (bPurgeable) are set when the cache is created. nMax may be
132   ** modified at any time by a call to the pcache1Cachesize() method.
133   ** The PGroup mutex must be held when accessing nMax.
134   */
135   PGroup *pGroup;                     /* PGroup this cache belongs to */
136   int szPage;                         /* Size of database content section */
137   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
138   int szAlloc;                        /* Total size of one pcache line */
139   int bPurgeable;                     /* True if cache is purgeable */
140   unsigned int nMin;                  /* Minimum number of pages reserved */
141   unsigned int nMax;                  /* Configured "cache_size" value */
142   unsigned int n90pct;                /* nMax*9/10 */
143   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
144 
145   /* Hash table of all pages. The following variables may only be accessed
146   ** when the accessor is holding the PGroup mutex.
147   */
148   unsigned int nRecyclable;           /* Number of pages in the LRU list */
149   unsigned int nPage;                 /* Total number of pages in apHash */
150   unsigned int nHash;                 /* Number of slots in apHash[] */
151   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
152   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
153   void *pBulk;                        /* Bulk memory used by pcache-local */
154 };
155 
156 /*
157 ** Each cache entry is represented by an instance of the following
158 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
159 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
160 ** in memory.
161 */
162 struct PgHdr1 {
163   sqlite3_pcache_page page;
164   unsigned int iKey;             /* Key value (page number) */
165   u8 isPinned;                   /* Page in use, not on the LRU list */
166   u8 isBulkLocal;                /* This page from bulk local storage */
167   PgHdr1 *pNext;                 /* Next in hash table chain */
168   PCache1 *pCache;               /* Cache that currently owns this page */
169   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
170   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
171 };
172 
173 /*
174 ** Free slots in the allocator used to divide up the global page cache
175 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
176 */
177 struct PgFreeslot {
178   PgFreeslot *pNext;  /* Next free slot */
179 };
180 
181 /*
182 ** Global data used by this cache.
183 */
184 static SQLITE_WSD struct PCacheGlobal {
185   PGroup grp;                    /* The global PGroup for mode (2) */
186 
187   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
188   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
189   ** fixed at sqlite3_initialize() time and do not require mutex protection.
190   ** The nFreeSlot and pFree values do require mutex protection.
191   */
192   int isInit;                    /* True if initialized */
193   int separateCache;             /* Use a new PGroup for each PCache */
194   int nInitPage;                 /* Initial bulk allocation size */
195   int szSlot;                    /* Size of each free slot */
196   int nSlot;                     /* The number of pcache slots */
197   int nReserve;                  /* Try to keep nFreeSlot above this */
198   void *pStart, *pEnd;           /* Bounds of global page cache memory */
199   /* Above requires no mutex.  Use mutex below for variable that follow. */
200   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
201   PgFreeslot *pFree;             /* Free page blocks */
202   int nFreeSlot;                 /* Number of unused pcache slots */
203   /* The following value requires a mutex to change.  We skip the mutex on
204   ** reading because (1) most platforms read a 32-bit integer atomically and
205   ** (2) even if an incorrect value is read, no great harm is done since this
206   ** is really just an optimization. */
207   int bUnderPressure;            /* True if low on PAGECACHE memory */
208 } pcache1_g;
209 
210 /*
211 ** All code in this file should access the global structure above via the
212 ** alias "pcache1". This ensures that the WSD emulation is used when
213 ** compiling for systems that do not support real WSD.
214 */
215 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
216 
217 /*
218 ** Macros to enter and leave the PCache LRU mutex.
219 */
220 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
221 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
222 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
223 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
224 #else
225 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
226 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
227 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
228 #endif
229 
230 /******************************************************************************/
231 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
232 
233 /*
234 ** This function is called during initialization if a static buffer is
235 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
236 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
237 ** enough to contain 'n' buffers of 'sz' bytes each.
238 **
239 ** This routine is called from sqlite3_initialize() and so it is guaranteed
240 ** to be serialized already.  There is no need for further mutexing.
241 */
242 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
243   if( pcache1.isInit ){
244     PgFreeslot *p;
245     if( pBuf==0 ) sz = n = 0;
246     sz = ROUNDDOWN8(sz);
247     pcache1.szSlot = sz;
248     pcache1.nSlot = pcache1.nFreeSlot = n;
249     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
250     pcache1.pStart = pBuf;
251     pcache1.pFree = 0;
252     pcache1.bUnderPressure = 0;
253     while( n-- ){
254       p = (PgFreeslot*)pBuf;
255       p->pNext = pcache1.pFree;
256       pcache1.pFree = p;
257       pBuf = (void*)&((char*)pBuf)[sz];
258     }
259     pcache1.pEnd = pBuf;
260   }
261 }
262 
263 /*
264 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
265 ** true if pCache->pFree ends up containing one or more free pages.
266 */
267 static int pcache1InitBulk(PCache1 *pCache){
268   i64 szBulk;
269   char *zBulk;
270   if( pcache1.nInitPage==0 ) return 0;
271   /* Do not bother with a bulk allocation if the cache size very small */
272   if( pCache->nMax<3 ) return 0;
273   sqlite3BeginBenignMalloc();
274   if( pcache1.nInitPage>0 ){
275     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
276   }else{
277     szBulk = -1024 * (i64)pcache1.nInitPage;
278   }
279   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
280     szBulk = pCache->szAlloc*pCache->nMax;
281   }
282   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
283   sqlite3EndBenignMalloc();
284   if( zBulk ){
285     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
286     int i;
287     for(i=0; i<nBulk; i++){
288       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
289       pX->page.pBuf = zBulk;
290       pX->page.pExtra = &pX[1];
291       pX->isBulkLocal = 1;
292       pX->pNext = pCache->pFree;
293       pCache->pFree = pX;
294       zBulk += pCache->szAlloc;
295     }
296   }
297   return pCache->pFree!=0;
298 }
299 
300 /*
301 ** Malloc function used within this file to allocate space from the buffer
302 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
303 ** such buffer exists or there is no space left in it, this function falls
304 ** back to sqlite3Malloc().
305 **
306 ** Multiple threads can run this routine at the same time.  Global variables
307 ** in pcache1 need to be protected via mutex.
308 */
309 static void *pcache1Alloc(int nByte){
310   void *p = 0;
311   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
312   if( nByte<=pcache1.szSlot ){
313     sqlite3_mutex_enter(pcache1.mutex);
314     p = (PgHdr1 *)pcache1.pFree;
315     if( p ){
316       pcache1.pFree = pcache1.pFree->pNext;
317       pcache1.nFreeSlot--;
318       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
319       assert( pcache1.nFreeSlot>=0 );
320       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
321       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
322     }
323     sqlite3_mutex_leave(pcache1.mutex);
324   }
325   if( p==0 ){
326     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
327     ** it from sqlite3Malloc instead.
328     */
329     p = sqlite3Malloc(nByte);
330 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
331     if( p ){
332       int sz = sqlite3MallocSize(p);
333       sqlite3_mutex_enter(pcache1.mutex);
334       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
335       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
336       sqlite3_mutex_leave(pcache1.mutex);
337     }
338 #endif
339     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
340   }
341   return p;
342 }
343 
344 /*
345 ** Free an allocated buffer obtained from pcache1Alloc().
346 */
347 static void pcache1Free(void *p){
348   int nFreed = 0;
349   if( p==0 ) return;
350   if( p>=pcache1.pStart && p<pcache1.pEnd ){
351     PgFreeslot *pSlot;
352     sqlite3_mutex_enter(pcache1.mutex);
353     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
354     pSlot = (PgFreeslot*)p;
355     pSlot->pNext = pcache1.pFree;
356     pcache1.pFree = pSlot;
357     pcache1.nFreeSlot++;
358     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
359     assert( pcache1.nFreeSlot<=pcache1.nSlot );
360     sqlite3_mutex_leave(pcache1.mutex);
361   }else{
362     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
363     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
364 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
365     nFreed = sqlite3MallocSize(p);
366     sqlite3_mutex_enter(pcache1.mutex);
367     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
368     sqlite3_mutex_leave(pcache1.mutex);
369 #endif
370     sqlite3_free(p);
371   }
372 }
373 
374 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
375 /*
376 ** Return the size of a pcache allocation
377 */
378 static int pcache1MemSize(void *p){
379   if( p>=pcache1.pStart && p<pcache1.pEnd ){
380     return pcache1.szSlot;
381   }else{
382     int iSize;
383     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
384     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
385     iSize = sqlite3MallocSize(p);
386     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
387     return iSize;
388   }
389 }
390 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
391 
392 /*
393 ** Allocate a new page object initially associated with cache pCache.
394 */
395 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
396   PgHdr1 *p = 0;
397   void *pPg;
398 
399   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
400   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
401     p = pCache->pFree;
402     pCache->pFree = p->pNext;
403     p->pNext = 0;
404   }else{
405 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
406     /* The group mutex must be released before pcache1Alloc() is called. This
407     ** is because it might call sqlite3_release_memory(), which assumes that
408     ** this mutex is not held. */
409     assert( pcache1.separateCache==0 );
410     assert( pCache->pGroup==&pcache1.grp );
411     pcache1LeaveMutex(pCache->pGroup);
412 #endif
413 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
414     pPg = pcache1Alloc(pCache->szPage);
415     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
416     if( !pPg || !p ){
417       pcache1Free(pPg);
418       sqlite3_free(p);
419       pPg = 0;
420     }
421 #else
422     pPg = pcache1Alloc(pCache->szAlloc);
423     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
424 #endif
425 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
426     pcache1EnterMutex(pCache->pGroup);
427 #endif
428     if( pPg==0 ) return 0;
429     p->page.pBuf = pPg;
430     p->page.pExtra = &p[1];
431     p->isBulkLocal = 0;
432   }
433   if( pCache->bPurgeable ){
434     pCache->pGroup->nCurrentPage++;
435   }
436   return p;
437 }
438 
439 /*
440 ** Free a page object allocated by pcache1AllocPage().
441 */
442 static void pcache1FreePage(PgHdr1 *p){
443   PCache1 *pCache;
444   assert( p!=0 );
445   pCache = p->pCache;
446   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
447   if( p->isBulkLocal ){
448     p->pNext = pCache->pFree;
449     pCache->pFree = p;
450   }else{
451     pcache1Free(p->page.pBuf);
452 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
453     sqlite3_free(p);
454 #endif
455   }
456   if( pCache->bPurgeable ){
457     pCache->pGroup->nCurrentPage--;
458   }
459 }
460 
461 /*
462 ** Malloc function used by SQLite to obtain space from the buffer configured
463 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
464 ** exists, this function falls back to sqlite3Malloc().
465 */
466 void *sqlite3PageMalloc(int sz){
467   return pcache1Alloc(sz);
468 }
469 
470 /*
471 ** Free an allocated buffer obtained from sqlite3PageMalloc().
472 */
473 void sqlite3PageFree(void *p){
474   pcache1Free(p);
475 }
476 
477 
478 /*
479 ** Return true if it desirable to avoid allocating a new page cache
480 ** entry.
481 **
482 ** If memory was allocated specifically to the page cache using
483 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
484 ** it is desirable to avoid allocating a new page cache entry because
485 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
486 ** for all page cache needs and we should not need to spill the
487 ** allocation onto the heap.
488 **
489 ** Or, the heap is used for all page cache memory but the heap is
490 ** under memory pressure, then again it is desirable to avoid
491 ** allocating a new page cache entry in order to avoid stressing
492 ** the heap even further.
493 */
494 static int pcache1UnderMemoryPressure(PCache1 *pCache){
495   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
496     return pcache1.bUnderPressure;
497   }else{
498     return sqlite3HeapNearlyFull();
499   }
500 }
501 
502 /******************************************************************************/
503 /******** General Implementation Functions ************************************/
504 
505 /*
506 ** This function is used to resize the hash table used by the cache passed
507 ** as the first argument.
508 **
509 ** The PCache mutex must be held when this function is called.
510 */
511 static void pcache1ResizeHash(PCache1 *p){
512   PgHdr1 **apNew;
513   unsigned int nNew;
514   unsigned int i;
515 
516   assert( sqlite3_mutex_held(p->pGroup->mutex) );
517 
518   nNew = p->nHash*2;
519   if( nNew<256 ){
520     nNew = 256;
521   }
522 
523   pcache1LeaveMutex(p->pGroup);
524   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
525   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
526   if( p->nHash ){ sqlite3EndBenignMalloc(); }
527   pcache1EnterMutex(p->pGroup);
528   if( apNew ){
529     for(i=0; i<p->nHash; i++){
530       PgHdr1 *pPage;
531       PgHdr1 *pNext = p->apHash[i];
532       while( (pPage = pNext)!=0 ){
533         unsigned int h = pPage->iKey % nNew;
534         pNext = pPage->pNext;
535         pPage->pNext = apNew[h];
536         apNew[h] = pPage;
537       }
538     }
539     sqlite3_free(p->apHash);
540     p->apHash = apNew;
541     p->nHash = nNew;
542   }
543 }
544 
545 /*
546 ** This function is used internally to remove the page pPage from the
547 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
548 ** LRU list, then this function is a no-op.
549 **
550 ** The PGroup mutex must be held when this function is called.
551 */
552 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
553   PCache1 *pCache;
554 
555   assert( pPage!=0 );
556   assert( pPage->isPinned==0 );
557   pCache = pPage->pCache;
558   assert( pPage->pLruNext || pPage==pCache->pGroup->pLruTail );
559   assert( pPage->pLruPrev || pPage==pCache->pGroup->pLruHead );
560   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
561   if( pPage->pLruPrev ){
562     pPage->pLruPrev->pLruNext = pPage->pLruNext;
563   }else{
564     pCache->pGroup->pLruHead = pPage->pLruNext;
565   }
566   if( pPage->pLruNext ){
567     pPage->pLruNext->pLruPrev = pPage->pLruPrev;
568   }else{
569     pCache->pGroup->pLruTail = pPage->pLruPrev;
570   }
571   pPage->pLruNext = 0;
572   pPage->pLruPrev = 0;
573   pPage->isPinned = 1;
574   pCache->nRecyclable--;
575   return pPage;
576 }
577 
578 
579 /*
580 ** Remove the page supplied as an argument from the hash table
581 ** (PCache1.apHash structure) that it is currently stored in.
582 ** Also free the page if freePage is true.
583 **
584 ** The PGroup mutex must be held when this function is called.
585 */
586 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
587   unsigned int h;
588   PCache1 *pCache = pPage->pCache;
589   PgHdr1 **pp;
590 
591   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
592   h = pPage->iKey % pCache->nHash;
593   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
594   *pp = (*pp)->pNext;
595 
596   pCache->nPage--;
597   if( freeFlag ) pcache1FreePage(pPage);
598 }
599 
600 /*
601 ** If there are currently more than nMaxPage pages allocated, try
602 ** to recycle pages to reduce the number allocated to nMaxPage.
603 */
604 static void pcache1EnforceMaxPage(PCache1 *pCache){
605   PGroup *pGroup = pCache->pGroup;
606   assert( sqlite3_mutex_held(pGroup->mutex) );
607   while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
608     PgHdr1 *p = pGroup->pLruTail;
609     assert( p->pCache->pGroup==pGroup );
610     assert( p->isPinned==0 );
611     pcache1PinPage(p);
612     pcache1RemoveFromHash(p, 1);
613   }
614   if( pCache->nPage==0 && pCache->pBulk ){
615     sqlite3_free(pCache->pBulk);
616     pCache->pBulk = pCache->pFree = 0;
617   }
618 }
619 
620 /*
621 ** Discard all pages from cache pCache with a page number (key value)
622 ** greater than or equal to iLimit. Any pinned pages that meet this
623 ** criteria are unpinned before they are discarded.
624 **
625 ** The PCache mutex must be held when this function is called.
626 */
627 static void pcache1TruncateUnsafe(
628   PCache1 *pCache,             /* The cache to truncate */
629   unsigned int iLimit          /* Drop pages with this pgno or larger */
630 ){
631   TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
632   unsigned int h;
633   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
634   for(h=0; h<pCache->nHash; h++){
635     PgHdr1 **pp = &pCache->apHash[h];
636     PgHdr1 *pPage;
637     while( (pPage = *pp)!=0 ){
638       if( pPage->iKey>=iLimit ){
639         pCache->nPage--;
640         *pp = pPage->pNext;
641         if( !pPage->isPinned ) pcache1PinPage(pPage);
642         pcache1FreePage(pPage);
643       }else{
644         pp = &pPage->pNext;
645         TESTONLY( nPage++; )
646       }
647     }
648   }
649   assert( pCache->nPage==nPage );
650 }
651 
652 /******************************************************************************/
653 /******** sqlite3_pcache Methods **********************************************/
654 
655 /*
656 ** Implementation of the sqlite3_pcache.xInit method.
657 */
658 static int pcache1Init(void *NotUsed){
659   UNUSED_PARAMETER(NotUsed);
660   assert( pcache1.isInit==0 );
661   memset(&pcache1, 0, sizeof(pcache1));
662 
663 
664   /*
665   ** The pcache1.separateCache variable is true if each PCache has its own
666   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
667   ** PGroup in pcache1.grp is used for all page caches (mode-2).
668   **
669   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
670   **
671   **   *  Use a unified cache in single-threaded applications that have
672   **      configured a start-time buffer for use as page-cache memory using
673   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
674   **      pBuf argument.
675   **
676   **   *  Otherwise use separate caches (mode-1)
677   */
678 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
679   pcache1.separateCache = 0;
680 #elif SQLITE_THREADSAFE
681   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
682                           || sqlite3GlobalConfig.bCoreMutex>0;
683 #else
684   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
685 #endif
686 
687 #if SQLITE_THREADSAFE
688   if( sqlite3GlobalConfig.bCoreMutex ){
689     pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
690     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
691   }
692 #endif
693   if( pcache1.separateCache
694    && sqlite3GlobalConfig.nPage!=0
695    && sqlite3GlobalConfig.pPage==0
696   ){
697     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
698   }else{
699     pcache1.nInitPage = 0;
700   }
701   pcache1.grp.mxPinned = 10;
702   pcache1.isInit = 1;
703   return SQLITE_OK;
704 }
705 
706 /*
707 ** Implementation of the sqlite3_pcache.xShutdown method.
708 ** Note that the static mutex allocated in xInit does
709 ** not need to be freed.
710 */
711 static void pcache1Shutdown(void *NotUsed){
712   UNUSED_PARAMETER(NotUsed);
713   assert( pcache1.isInit!=0 );
714   memset(&pcache1, 0, sizeof(pcache1));
715 }
716 
717 /* forward declaration */
718 static void pcache1Destroy(sqlite3_pcache *p);
719 
720 /*
721 ** Implementation of the sqlite3_pcache.xCreate method.
722 **
723 ** Allocate a new cache.
724 */
725 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
726   PCache1 *pCache;      /* The newly created page cache */
727   PGroup *pGroup;       /* The group the new page cache will belong to */
728   int sz;               /* Bytes of memory required to allocate the new cache */
729 
730   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
731   assert( szExtra < 300 );
732 
733   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
734   pCache = (PCache1 *)sqlite3MallocZero(sz);
735   if( pCache ){
736     if( pcache1.separateCache ){
737       pGroup = (PGroup*)&pCache[1];
738       pGroup->mxPinned = 10;
739     }else{
740       pGroup = &pcache1.grp;
741     }
742     pCache->pGroup = pGroup;
743     pCache->szPage = szPage;
744     pCache->szExtra = szExtra;
745     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
746     pCache->bPurgeable = (bPurgeable ? 1 : 0);
747     pcache1EnterMutex(pGroup);
748     pcache1ResizeHash(pCache);
749     if( bPurgeable ){
750       pCache->nMin = 10;
751       pGroup->nMinPage += pCache->nMin;
752       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
753     }
754     pcache1LeaveMutex(pGroup);
755     if( pCache->nHash==0 ){
756       pcache1Destroy((sqlite3_pcache*)pCache);
757       pCache = 0;
758     }
759   }
760   return (sqlite3_pcache *)pCache;
761 }
762 
763 /*
764 ** Implementation of the sqlite3_pcache.xCachesize method.
765 **
766 ** Configure the cache_size limit for a cache.
767 */
768 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
769   PCache1 *pCache = (PCache1 *)p;
770   if( pCache->bPurgeable ){
771     PGroup *pGroup = pCache->pGroup;
772     pcache1EnterMutex(pGroup);
773     pGroup->nMaxPage += (nMax - pCache->nMax);
774     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
775     pCache->nMax = nMax;
776     pCache->n90pct = pCache->nMax*9/10;
777     pcache1EnforceMaxPage(pCache);
778     pcache1LeaveMutex(pGroup);
779   }
780 }
781 
782 /*
783 ** Implementation of the sqlite3_pcache.xShrink method.
784 **
785 ** Free up as much memory as possible.
786 */
787 static void pcache1Shrink(sqlite3_pcache *p){
788   PCache1 *pCache = (PCache1*)p;
789   if( pCache->bPurgeable ){
790     PGroup *pGroup = pCache->pGroup;
791     int savedMaxPage;
792     pcache1EnterMutex(pGroup);
793     savedMaxPage = pGroup->nMaxPage;
794     pGroup->nMaxPage = 0;
795     pcache1EnforceMaxPage(pCache);
796     pGroup->nMaxPage = savedMaxPage;
797     pcache1LeaveMutex(pGroup);
798   }
799 }
800 
801 /*
802 ** Implementation of the sqlite3_pcache.xPagecount method.
803 */
804 static int pcache1Pagecount(sqlite3_pcache *p){
805   int n;
806   PCache1 *pCache = (PCache1*)p;
807   pcache1EnterMutex(pCache->pGroup);
808   n = pCache->nPage;
809   pcache1LeaveMutex(pCache->pGroup);
810   return n;
811 }
812 
813 
814 /*
815 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
816 ** in the header of the pcache1Fetch() procedure.
817 **
818 ** This steps are broken out into a separate procedure because they are
819 ** usually not needed, and by avoiding the stack initialization required
820 ** for these steps, the main pcache1Fetch() procedure can run faster.
821 */
822 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
823   PCache1 *pCache,
824   unsigned int iKey,
825   int createFlag
826 ){
827   unsigned int nPinned;
828   PGroup *pGroup = pCache->pGroup;
829   PgHdr1 *pPage = 0;
830 
831   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
832   assert( pCache->nPage >= pCache->nRecyclable );
833   nPinned = pCache->nPage - pCache->nRecyclable;
834   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
835   assert( pCache->n90pct == pCache->nMax*9/10 );
836   if( createFlag==1 && (
837         nPinned>=pGroup->mxPinned
838      || nPinned>=pCache->n90pct
839      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
840   )){
841     return 0;
842   }
843 
844   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
845   assert( pCache->nHash>0 && pCache->apHash );
846 
847   /* Step 4. Try to recycle a page. */
848   if( pCache->bPurgeable
849    && pGroup->pLruTail
850    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
851   ){
852     PCache1 *pOther;
853     pPage = pGroup->pLruTail;
854     assert( pPage->isPinned==0 );
855     pcache1RemoveFromHash(pPage, 0);
856     pcache1PinPage(pPage);
857     pOther = pPage->pCache;
858     if( pOther->szAlloc != pCache->szAlloc ){
859       pcache1FreePage(pPage);
860       pPage = 0;
861     }else{
862       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
863     }
864   }
865 
866   /* Step 5. If a usable page buffer has still not been found,
867   ** attempt to allocate a new one.
868   */
869   if( !pPage ){
870     if( createFlag==1 ){ sqlite3BeginBenignMalloc(); }
871     pPage = pcache1AllocPage(pCache);
872     if( createFlag==1 ){ sqlite3EndBenignMalloc(); }
873   }
874 
875   if( pPage ){
876     unsigned int h = iKey % pCache->nHash;
877     pCache->nPage++;
878     pPage->iKey = iKey;
879     pPage->pNext = pCache->apHash[h];
880     pPage->pCache = pCache;
881     pPage->pLruPrev = 0;
882     pPage->pLruNext = 0;
883     pPage->isPinned = 1;
884     *(void **)pPage->page.pExtra = 0;
885     pCache->apHash[h] = pPage;
886     if( iKey>pCache->iMaxKey ){
887       pCache->iMaxKey = iKey;
888     }
889   }
890   return pPage;
891 }
892 
893 /*
894 ** Implementation of the sqlite3_pcache.xFetch method.
895 **
896 ** Fetch a page by key value.
897 **
898 ** Whether or not a new page may be allocated by this function depends on
899 ** the value of the createFlag argument.  0 means do not allocate a new
900 ** page.  1 means allocate a new page if space is easily available.  2
901 ** means to try really hard to allocate a new page.
902 **
903 ** For a non-purgeable cache (a cache used as the storage for an in-memory
904 ** database) there is really no difference between createFlag 1 and 2.  So
905 ** the calling function (pcache.c) will never have a createFlag of 1 on
906 ** a non-purgeable cache.
907 **
908 ** There are three different approaches to obtaining space for a page,
909 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
910 **
911 **   1. Regardless of the value of createFlag, the cache is searched for a
912 **      copy of the requested page. If one is found, it is returned.
913 **
914 **   2. If createFlag==0 and the page is not already in the cache, NULL is
915 **      returned.
916 **
917 **   3. If createFlag is 1, and the page is not already in the cache, then
918 **      return NULL (do not allocate a new page) if any of the following
919 **      conditions are true:
920 **
921 **       (a) the number of pages pinned by the cache is greater than
922 **           PCache1.nMax, or
923 **
924 **       (b) the number of pages pinned by the cache is greater than
925 **           the sum of nMax for all purgeable caches, less the sum of
926 **           nMin for all other purgeable caches, or
927 **
928 **   4. If none of the first three conditions apply and the cache is marked
929 **      as purgeable, and if one of the following is true:
930 **
931 **       (a) The number of pages allocated for the cache is already
932 **           PCache1.nMax, or
933 **
934 **       (b) The number of pages allocated for all purgeable caches is
935 **           already equal to or greater than the sum of nMax for all
936 **           purgeable caches,
937 **
938 **       (c) The system is under memory pressure and wants to avoid
939 **           unnecessary pages cache entry allocations
940 **
941 **      then attempt to recycle a page from the LRU list. If it is the right
942 **      size, return the recycled buffer. Otherwise, free the buffer and
943 **      proceed to step 5.
944 **
945 **   5. Otherwise, allocate and return a new page buffer.
946 **
947 ** There are two versions of this routine.  pcache1FetchWithMutex() is
948 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
949 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
950 ** invokes the appropriate routine.
951 */
952 static PgHdr1 *pcache1FetchNoMutex(
953   sqlite3_pcache *p,
954   unsigned int iKey,
955   int createFlag
956 ){
957   PCache1 *pCache = (PCache1 *)p;
958   PgHdr1 *pPage = 0;
959 
960   /* Step 1: Search the hash table for an existing entry. */
961   pPage = pCache->apHash[iKey % pCache->nHash];
962   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
963 
964   /* Step 2: Abort if no existing page is found and createFlag is 0 */
965   if( pPage ){
966     if( !pPage->isPinned ){
967       return pcache1PinPage(pPage);
968     }else{
969       return pPage;
970     }
971   }else if( createFlag ){
972     /* Steps 3, 4, and 5 implemented by this subroutine */
973     return pcache1FetchStage2(pCache, iKey, createFlag);
974   }else{
975     return 0;
976   }
977 }
978 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
979 static PgHdr1 *pcache1FetchWithMutex(
980   sqlite3_pcache *p,
981   unsigned int iKey,
982   int createFlag
983 ){
984   PCache1 *pCache = (PCache1 *)p;
985   PgHdr1 *pPage;
986 
987   pcache1EnterMutex(pCache->pGroup);
988   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
989   assert( pPage==0 || pCache->iMaxKey>=iKey );
990   pcache1LeaveMutex(pCache->pGroup);
991   return pPage;
992 }
993 #endif
994 static sqlite3_pcache_page *pcache1Fetch(
995   sqlite3_pcache *p,
996   unsigned int iKey,
997   int createFlag
998 ){
999 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1000   PCache1 *pCache = (PCache1 *)p;
1001 #endif
1002 
1003   assert( offsetof(PgHdr1,page)==0 );
1004   assert( pCache->bPurgeable || createFlag!=1 );
1005   assert( pCache->bPurgeable || pCache->nMin==0 );
1006   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1007   assert( pCache->nMin==0 || pCache->bPurgeable );
1008   assert( pCache->nHash>0 );
1009 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1010   if( pCache->pGroup->mutex ){
1011     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1012   }else
1013 #endif
1014   {
1015     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1016   }
1017 }
1018 
1019 
1020 /*
1021 ** Implementation of the sqlite3_pcache.xUnpin method.
1022 **
1023 ** Mark a page as unpinned (eligible for asynchronous recycling).
1024 */
1025 static void pcache1Unpin(
1026   sqlite3_pcache *p,
1027   sqlite3_pcache_page *pPg,
1028   int reuseUnlikely
1029 ){
1030   PCache1 *pCache = (PCache1 *)p;
1031   PgHdr1 *pPage = (PgHdr1 *)pPg;
1032   PGroup *pGroup = pCache->pGroup;
1033 
1034   assert( pPage->pCache==pCache );
1035   pcache1EnterMutex(pGroup);
1036 
1037   /* It is an error to call this function if the page is already
1038   ** part of the PGroup LRU list.
1039   */
1040   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1041   assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
1042   assert( pPage->isPinned==1 );
1043 
1044   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1045     pcache1RemoveFromHash(pPage, 1);
1046   }else{
1047     /* Add the page to the PGroup LRU list. */
1048     if( pGroup->pLruHead ){
1049       pGroup->pLruHead->pLruPrev = pPage;
1050       pPage->pLruNext = pGroup->pLruHead;
1051       pGroup->pLruHead = pPage;
1052     }else{
1053       pGroup->pLruTail = pPage;
1054       pGroup->pLruHead = pPage;
1055     }
1056     pCache->nRecyclable++;
1057     pPage->isPinned = 0;
1058   }
1059 
1060   pcache1LeaveMutex(pCache->pGroup);
1061 }
1062 
1063 /*
1064 ** Implementation of the sqlite3_pcache.xRekey method.
1065 */
1066 static void pcache1Rekey(
1067   sqlite3_pcache *p,
1068   sqlite3_pcache_page *pPg,
1069   unsigned int iOld,
1070   unsigned int iNew
1071 ){
1072   PCache1 *pCache = (PCache1 *)p;
1073   PgHdr1 *pPage = (PgHdr1 *)pPg;
1074   PgHdr1 **pp;
1075   unsigned int h;
1076   assert( pPage->iKey==iOld );
1077   assert( pPage->pCache==pCache );
1078 
1079   pcache1EnterMutex(pCache->pGroup);
1080 
1081   h = iOld%pCache->nHash;
1082   pp = &pCache->apHash[h];
1083   while( (*pp)!=pPage ){
1084     pp = &(*pp)->pNext;
1085   }
1086   *pp = pPage->pNext;
1087 
1088   h = iNew%pCache->nHash;
1089   pPage->iKey = iNew;
1090   pPage->pNext = pCache->apHash[h];
1091   pCache->apHash[h] = pPage;
1092   if( iNew>pCache->iMaxKey ){
1093     pCache->iMaxKey = iNew;
1094   }
1095 
1096   pcache1LeaveMutex(pCache->pGroup);
1097 }
1098 
1099 /*
1100 ** Implementation of the sqlite3_pcache.xTruncate method.
1101 **
1102 ** Discard all unpinned pages in the cache with a page number equal to
1103 ** or greater than parameter iLimit. Any pinned pages with a page number
1104 ** equal to or greater than iLimit are implicitly unpinned.
1105 */
1106 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1107   PCache1 *pCache = (PCache1 *)p;
1108   pcache1EnterMutex(pCache->pGroup);
1109   if( iLimit<=pCache->iMaxKey ){
1110     pcache1TruncateUnsafe(pCache, iLimit);
1111     pCache->iMaxKey = iLimit-1;
1112   }
1113   pcache1LeaveMutex(pCache->pGroup);
1114 }
1115 
1116 /*
1117 ** Implementation of the sqlite3_pcache.xDestroy method.
1118 **
1119 ** Destroy a cache allocated using pcache1Create().
1120 */
1121 static void pcache1Destroy(sqlite3_pcache *p){
1122   PCache1 *pCache = (PCache1 *)p;
1123   PGroup *pGroup = pCache->pGroup;
1124   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1125   pcache1EnterMutex(pGroup);
1126   pcache1TruncateUnsafe(pCache, 0);
1127   assert( pGroup->nMaxPage >= pCache->nMax );
1128   pGroup->nMaxPage -= pCache->nMax;
1129   assert( pGroup->nMinPage >= pCache->nMin );
1130   pGroup->nMinPage -= pCache->nMin;
1131   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1132   pcache1EnforceMaxPage(pCache);
1133   pcache1LeaveMutex(pGroup);
1134   sqlite3_free(pCache->pBulk);
1135   sqlite3_free(pCache->apHash);
1136   sqlite3_free(pCache);
1137 }
1138 
1139 /*
1140 ** This function is called during initialization (sqlite3_initialize()) to
1141 ** install the default pluggable cache module, assuming the user has not
1142 ** already provided an alternative.
1143 */
1144 void sqlite3PCacheSetDefault(void){
1145   static const sqlite3_pcache_methods2 defaultMethods = {
1146     1,                       /* iVersion */
1147     0,                       /* pArg */
1148     pcache1Init,             /* xInit */
1149     pcache1Shutdown,         /* xShutdown */
1150     pcache1Create,           /* xCreate */
1151     pcache1Cachesize,        /* xCachesize */
1152     pcache1Pagecount,        /* xPagecount */
1153     pcache1Fetch,            /* xFetch */
1154     pcache1Unpin,            /* xUnpin */
1155     pcache1Rekey,            /* xRekey */
1156     pcache1Truncate,         /* xTruncate */
1157     pcache1Destroy,          /* xDestroy */
1158     pcache1Shrink            /* xShrink */
1159   };
1160   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1161 }
1162 
1163 /*
1164 ** Return the size of the header on each page of this PCACHE implementation.
1165 */
1166 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1167 
1168 /*
1169 ** Return the global mutex used by this PCACHE implementation.  The
1170 ** sqlite3_status() routine needs access to this mutex.
1171 */
1172 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1173   return pcache1.mutex;
1174 }
1175 
1176 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1177 /*
1178 ** This function is called to free superfluous dynamically allocated memory
1179 ** held by the pager system. Memory in use by any SQLite pager allocated
1180 ** by the current thread may be sqlite3_free()ed.
1181 **
1182 ** nReq is the number of bytes of memory required. Once this much has
1183 ** been released, the function returns. The return value is the total number
1184 ** of bytes of memory released.
1185 */
1186 int sqlite3PcacheReleaseMemory(int nReq){
1187   int nFree = 0;
1188   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1189   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1190   if( sqlite3GlobalConfig.nPage==0 ){
1191     PgHdr1 *p;
1192     pcache1EnterMutex(&pcache1.grp);
1193     while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
1194       nFree += pcache1MemSize(p->page.pBuf);
1195 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1196       nFree += sqlite3MemSize(p);
1197 #endif
1198       assert( p->isPinned==0 );
1199       pcache1PinPage(p);
1200       pcache1RemoveFromHash(p, 1);
1201     }
1202     pcache1LeaveMutex(&pcache1.grp);
1203   }
1204   return nFree;
1205 }
1206 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1207 
1208 #ifdef SQLITE_TEST
1209 /*
1210 ** This function is used by test procedures to inspect the internal state
1211 ** of the global cache.
1212 */
1213 void sqlite3PcacheStats(
1214   int *pnCurrent,      /* OUT: Total number of pages cached */
1215   int *pnMax,          /* OUT: Global maximum cache size */
1216   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1217   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1218 ){
1219   PgHdr1 *p;
1220   int nRecyclable = 0;
1221   for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
1222     assert( p->isPinned==0 );
1223     nRecyclable++;
1224   }
1225   *pnCurrent = pcache1.grp.nCurrentPage;
1226   *pnMax = (int)pcache1.grp.nMaxPage;
1227   *pnMin = (int)pcache1.grp.nMinPage;
1228   *pnRecyclable = nRecyclable;
1229 }
1230 #endif
1231